
Real-Time Large Object Category Recognition

Using Robust RGB-D Segmentation Features

by

Ross Edward Finman

Submitted to the Department of
Electrical Engineering and Computer Science

A~C~W~S
.

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Feburary 2013

@ Massachusetts Institute of Technology 2012. All rights reserved.

Author-.......
Department of

Electrical Engineering and Computer Science
October 5, 2012

C ertified b y
Seth Teller

Professor of Electrical Engineer and Computer Science
Thesis Supervisor

k

Accepted by..
Le ie olodziejski

Chairman, Department Committee on Graduate Thesis

2

Real-Time Large Object Category Recognition Using Robust

RGB-D Segmentation Features

by

Ross Edward Finman

Submitted to the Department of
Electrical Engineering and Computer Science

on October 5, 2012, in partial fulfillment of the
requirements for the degree of

Master of Science in Computer Science and Engineering

Abstract

This thesis looks at the problem of large object category recognition for use in robotic
systems. While many algorithms exist for object recognition, category recognition
remains a challenge within robotics, particularly with the robustness and real-time
constraints within robotics. Our system addresses category recognition by treating
it as a segmentation problem and using the resulting segments to learn and detect
large objects based on their 3D characteristics. The first part of this thesis examines
how to efficiently do unsupervised segmentation of an RGB-D image in a way that is
consistent across wide viewpoint and scale variance, and creating features from the
resulting segments. The second part of this thesis explores how to do robust data
association to keep temporally consistent segments between frames. Our higher-level
module filters and matches relevant segments to a learned database of categories and
outputs a pixel-accurate, labeled object mask. Our system has a run time that is
nearly linear with the number of RGB-D samples and we evaluate it in a real-time
robotic application.

Thesis Supervisor: Seth Teller
Title: Professor of Electrical Engineer and Computer Science

3

4

Acknowledgments

This work required the support of many people. First, to my advisor Prof. Seth

Teller, thank you for your invaluable guidance, advice, and, most importantly, pa-

tience during these past two years. To Sachithra Hemachandra, thank you for your

thoughtful input into my work and invaluable friendship. To Matthew Walter, thank

you for your research insights and advice on my work and bigger picture.

To all my friends, thank you for being there for the long research discussions, the

in-depth debates, and making sure my life was never boring. To my family, thank

you for your unwaivering moral support.

5

6

Contents

1 Introduction 15

1.1 Problem Description and Approach 16

1.2 Thesis Overview . 18

2 Related Work 19

2.1 Feature Descriptors . 19

2.2 Object Recognition . 20

2.3 Segmentation . 21

2.3.1 RGB . 21

2.3.2 Point Cloud . 21

2.3.3 Video . 22

3 Infrastructure 23

3.1 RGB-D Cameras . 23

3.1.1 Primesense . 23

3.1.2 SoftKinetic DepthSense . 25

3.1.3 Stereo . 25

3.2 Platform . 26

3.3 OpenNI . 26

3.4 PCL . 27

4 Segmentation 29

4.1 Graph Building . 30

7

4.2 Contour Filtering . 30

4.3 Initial Segmentation . 32

4.4 Superpixel Joining . 33

4.5 Segment Feature Extraction . 36

4.5.1 PCA . 38

5 Matching Objects 41

5.1 Data Association . 41

5.1.1 Temporal Filtering . 42

5.2 Consistent Segment Filtering . 44

5.3 Objects . 44

5.3.1 Learning Objects . 46

5.4 Matching . 48

5.4.1 Segment Matching . 53

5.4.2 Edge Matching . 53

6 Results 55

6.1 Segmentation . 55

6.2 Object Matching . 58

6.3 Run-Time Evaluation . 71

7 Conclusion 73

7.1 Future W ork. 73

8

List of Figures

1-1 Outline of algorithm . 17

3-1 The ASUS Xtion (top), and Microsoft Kinect (bottom). 24

3-2 Envoy robot guiding a person. 26

4-1 Segmentation Outline. 31

4-2 Input and output diagram for the build graph module. 31

4-3 Pixel layout showing a the eight neighboring pixels to the center pixel,

with the four-connected edges shown as black lines. 32

4-4 Input and output diagram for the contour filtering module. 32

4-5 Input and output diagram for the Initial Segmentation module. The

labels of the superpixels are arbitrary, but unique identifying integers. 33

4-6 Example of the Felzenszwalb algorithm super pixels showing two differ-

ent parameter settings. The top left favors smaller super pixels while

the bottom right favors larger super pixels. Source: Radhakrishna

A chanta et al. [1]. 34

4-7 Input and output diagram for the Superpixel Joining module. The

labels of the segments are arbitrary, but unique identifying integers. . 35

4-8 Input and output diagram for the Segment Feature Extraction module. 36

4-9 Example of PCA. The black dots are data points and the red axes show

the major and minor axis representing the data. 38

5-1 Individual feature scoring . 43

9

5-2 An RGB-D image with the unstable (or cluttered) regions highlighted

in red. The areas not highlighted in red are deemed stable. 45

5-3 Initial RGB-D image for supervised learning on a chair. 47

5-4 Segmentation of RGB-D image from Figure 5-3 colored by unique

segm ent ID 48

5-5 Seeded object selected by user from segmentation in Figure 5-4. The

object consists of two separate segments that have been set to the

pre-set tracking color . 49

5-6 Later view of the chair in the sequence from a different viewpoint. . . 49

5-7 Temporal segment labeling still tracking seeded segmentation from Fig-

ure 5-5. 50

5-8 Matching Example. Given an object Object_1 with two STs, and one

ET, the algorithm looks through each frame to find SFVs that match

each ST. In this example, SFV_1, SFV-14 and SFV_23 all match STA,

and SFV_13 matches ST_2. Then the edges (in red) are defined between

the STA and ST_2 candidates and every edge is compared against

ET_1 to determine if the SFVs are part of the object. Not all edge

comparisons are shown. 51

6-1 RGB Image of a tabletop scene. 56

6-2 Segmentation output of the RGB image in Figure 6-1. Note the shad-

ows and light reflections that segmented separately, with the former

being unstable due to the small color gradient. The crumpled metal

soda can is half labeled as inconsistent since the odd angles and shiny

surface do not provide stable values in the depth image. 57

6-3 RGB Image of a corridor in the Stata Center during Hallway Traverse 2. 59

6-4 Example segmented image of Figure 6-3. 59

6-5 RGB Image of a door. 61

6-6 Segmented image of Figure 6-5. 61

6-7 Matched door segment of Figure 6-6. 62

10

6-8

6-9

6-10

6-11

6-12

6-13

6-14

6-15

6-16

6-17

6-18

RGB image of a far cabinet.

Segmented image of Figure 6-8.

Matched cabinet from Figure 6-9.....

RGB image of a close cabinet

Segmented image of Figure 6-11

Matched cabinet from Figure 6-12. . . .

RGB image of a different, wider cabinet.

Segmented image of Figure 6-14

Matched cabinet from Figure 6-15. . . .

RGB image of false positive segments. .

Segmented image of Figure 6-17

6-19 Potential matches highlighted from Figure 6-18, but the edges do not

match up, so they are not colored the object category color blue. . . .

6-20 A labeled trajectory (in red) around the third floor of the Stata building

of the Envoy robot highlighting detected objects. Green triangles are

detected doors, blue diamonds are detected file cabinets, and black

circles are detected chairs. A false positive on the door detector is

highlighted as a red triangle and shown in Figure 6-22.

6-21 RGB image of detected cabinets during the traverse shown in Figure

6-2 0. .

6-22 RGB image of a false positive detection for a door from the traverse

shown in Figure 6-20. .

11

. 6 2

. 6 3

. 6 3

. 6 4

. 6 4

. 6 5

. 6 5

. 6 6

. 6 6

. 6 7

. 6 7

68

69

70

70

12

List of Tables

4.1 Table of features in a Segment Feature Vector (SFV) 38

5.1 Table of features in the particle data structure 42

6.1 Table of similarity scores averaged over 25 video sequences. 56

6.2 Table of the average number of label changes per segment over the

length. Larger segments (defined here to have a principle axis longer

than 12 inches) have more stable IDs over time than smaller segments. 58

6.3 Table of the false positives and false negatives. False positives are the

number of frames a false detection occurred in divided by the total

number of frames there was a detection for that object. The false

negative percentage is the number of frames the object was in the

camera's FOV and range, and there was no positive detection. 60

6.4 Table of each module's average time over all traverses. 71

13

14

Chapter 1

Introduction

Robotic systems are pervasive in labs, factories, and other well-structured environ-

ments, but are limited by their ability to interpret their surroundings. For robots to

function within new and dynamic settings, they must be able to effectively sense their

environment. Robots must be able to distinguish objects around them so that they

can interact with, avoid, or learn from objects. Humans effectively understand their

environments using only sight in many cases; the human eye gathers light through a

lens and the human brain combines these optic nerve firings to sense its surroundings

with stereo vision. While cameras also gather light through a lens, the abstraction

from individual camera pixels to meaningful object representations on a computer is

vastly inferior to the brain. How can we use pixels to detect categories of objects so

they may be utilized by a robot?

The problem is that by themselves, pixels carry relatively little information about

the world. A blue pixel from the ocean or the sky is impossible to distinguish between

if the RGB values are the same. A single depth point is just as ambiguous. As such,

it is intuitive to look not just at individual pixels, but to look at many of them at

once - ideally all the pixels that make up the object of interest. However, identifying

those pixels is a difficult problem. Take a chair for example. Chairs come in many

different colors, shapes, and sizes so trying to match a pixel based model is difficult

(as seen in the Pascal VOC Challenge [2], [3]), and trying to do an exhaustive search

across all combinations of RGB-D pixels is intractable. Higher level representations

15

are needed to decrease the search space. One simple approach is to use a bounding

box (a rectangular box of pixels) to give a region of an image that an object may be

in. However, not all objects can be represented by a box; even varying the size of

the bounding box won't necessarily lead to correct results. Our chair, for example,

does not fit well in a rectangular box for many viewpoints. Also, for our end goal of

utilizing category detection on a robot, a bounding box is less useful than the pixel-

accurate object. Rough knowledge of where a doorknob is may not be useful when a

robot needs to grasp the doorknob and not merely move its arm into the vicinity of

the knob. This motivates our goal of recognizing categories of objects and accurately

determining their pixel masks.

1.1 Problem Description and Approach

The research task undertaken in this project aims to address some of the technological

challenges in object category recognition such as scale invariance, computation time,

and consistency of features (each described below). An object recognition system is

scale invariant if it can recognize an object from many scales. If an object is im

away or 3m away, the object recognition system should be invariant to the distance.

A recognition system running on a robot should be computational fast, i.e. run in

real-time for the robot to be timely in its actions relating to objects. Lastly, feature

consistency is having features remain persistent and repeatable between frames with

minimal movement and noise. The end result of this research is a real-time large'

object category recognition system that produces a pixel-accurate mask of ob-

jects based off of RGB-D segment features. We validate our method by measuring

error rates on real-world datasets and populating a map with objects seen on a tour

of a building containing several categories of objects previously learned.

Our solution addresses the constraints autonomous robots put on computer vision

algorithms so that robots can perceive their environments. Robotic systems rarely

'Large is defined as either a collection of multiple feature vectors, or a single feature vector with
features distinguishable from noise.

16

Filtering

(I

"Jill

I
p

Figure 1-1: Outline of algorithm.

run object category recognition algorithms online due to their computational time

and error rates. Exceptions being tabletop object recognition since it is a constrained

environment, and large outdoor vehicles with abundant computation power. We

demonstrate progress toward real-time object category recognition for robots using

the algorithm in Figure 1-1.

On a high level, our method in Figure 1-1 takes a live RGB-D video stream and a

set of previously learned object templates as input. For every frame, the algorithm

builds a pixel-based graph, then filters out large depth discontinuities. The algorithm

then over-segments the RGB-D image, and selectively joins segments together based

on their similarity. Then the algorithm creates a feature vector from the segment

properties. Next, the segment features are associated between frames and unstable

segments are filtered out. Finally, the algorithm matches groups of segments against

17

Labeled
RGS-D Pixels

object templates. The result is a pixel-accurate labeled object mask.

1.2 Thesis Overview

The organization of this thesis is as follows.:

Chapter 2 gives the background of the current problem domain and current ways

others have approached the issue. It also describes relevant research that has influ-

enced our work.

Chapter 3 covers the RGB-D camera options currently available, along with the

relevant software packages and robotics systems utilized.

Chapter 4 describes how the system segments the RGB-D frames robustly through

an initial contour filtering, then segmentation, and finally creation of segment feature

descriptors.

Chapter 5 describes data association between frames, longer-term matching of

objects, and learning of new objects.

Chapter 6 shows results from a series of trials of image sequences.

Chapter 7 summarizes our approach and discusses possible future work.

18

Chapter 2

Related Work

Object category recognition is a longstanding and ongoing field in computer vision

[4]. As discussed in Chapter 1, classifying an object within an image based on indi-

vidual pixels is intractable. As a result, many current object recognition algorithms

represent objects with an object model, segmentation, or collection of features' to

match against an object database [4]. In this chapter we will first describe different

feature representations used in object recognition. Then we will discuss popular ob-

ject recognition algorithms. Finally, we will discuss segmentation algorithms relevant

to our feature representation.

2.1 Feature Descriptors

Feature detectors have been used successfully for object recognition [5] - in computer

vision, features are based on the RGB values of pixels. Generally, features can be

sub-divided into two classes: local, and global [4]. Global features, such as GIST [6],
describe an entire image and, thus, do not offer the desirable pixel-level granularity

so they will not be looked at in this thesis.

A local feature is a representation of a simple, but ideally distinctive property of a

part of an image. While a local feature can be as simple as the average color of a pre-

determined region, such simple representations are not invariant to subtle changes,

'A feature is part or all of a set of data

19

such as scaling or illumination. Lowe [7] developed the more advanced Scale Invariant

Feature Transform (SIFT) descriptor, which is mostly invariant to uniform scaling,

orientation, and partially invariant to affine distortion and illumination changes. Bay

et al. [8] developed the Speeded Up Robust Feature (SURF) descriptor; a faster,

though less accurate, version of the SIFT feature. Features are not specific to RGB

space, but to other datasets as well, such as 3D point clouds. Johnson [9] created

spin images to describe a point on a surface in 3D by looking at the surface normal

and the radially surrounding 3D points.

Local features can have larger neighborhoods that provide more information about

regions of an image. A common example is a sliding window, which Viola & Jones

[10] used in their real-time object detector. Dalal et al. [11] developed Histogram of

Oriented Gradients (HOG) descriptors which, when used for object category detec-

tion, rank high in the Pascal challenge [3]. Forssen et al. [12], [13] created features by

modeling similarly colored regions in an image as ellipses. These methods, however,

are limited in that they provide only regions and not pixel-level granularity.

2.2 Object Recognition

Many object recognition methods are built upon local features [4]. Many of the

features described in Section 2.1 were validated, at least in part, on object recognition

datasets [7], [8], [10], [11], [12]. Lowe [14] used a SIFT matching framework to do

robust object instance recognition. Walter et al.[15] also used SIFT features to build

multiple feature-based descriptions for varying viewpoint object instance recognition.

Lai et al. [16], using an RGB-D camera [17], combined RGB and depth features

in a recognition framework to increase performance over just RGB feature methods.

Felzenszwalb et al. [18] useed HOG features in their deformable part models to

match parts of an object, thus being more robust to occlusions and variance in the

object model as evidenced in the Pascal Challenge [3]. Since these methods are based

off of underlying region features, they too only provide regions and not pixel-level

granularity of the objects.

20

2.3 Segmentation

Segmentation is the process of partitioning a set of data into a condensed representa-

tion that is more meaningful and easier to analyze than the raw data - in computer

vision, segmentation groups individual pixels that go together. Deciding what is

meaningful or what pixels go together is task dependent and difficult to define,

therefore generic segmentation is an under constrained problem [19]. In this section

we look at unsupervised segmentation methods (no training or human in the loop)

that run in near real-time for segmenting RGB images, 3D point clouds, and RGB

videos.

2.3.1 RGB

Segmentation algorithms for RGB images has been a research area within computer

vision for over four decades [20], and remains an active research area today. There are

a multitude of algorithms for the segmentation problem [19], [21]. We will discuss two

of the most widely used. Comaniciu et al. [22] introduced the mean-shift segmentation

technique that first does a mean shift filtering of the original data and the clusters

the filtered data points. Felzenszwalb et al. [23] developed an efficient graph-based

segmentation algorithm based on grouping pixels based on dynamic thresholds. We

use the latter in our feature implementation detailed in Chapter 4.

2.3.2 Point Cloud

In addition to RGB images, segmentation is used in 3D point clouds as well. Holz

et al. [24] developed a real-time plane segmentation method based on using a point's

surface normal and Felzenszwalb's segmentation algorithm [23]. Holz and Behnke [25]

furthered Holz's point cloud segmentation method [24] by taking the plane segmen-

tation and running RANSAC [26] to find geometric primitives (planes, spheres, or

cylinders) in real-time for down-sampled images. Both segmentation methods specif-

ically look for simplestic shapes, but do not account for other shapes besides planes

[24] or geometric primitives [25]. Shotton et al. [27] introduced a robust, real-time

21

human body part segmentation method on dense 3D point clouds using a decision

tree that, while not general enough to use for generic objects, is effective. Strom

et al. [28] introduced a combined RGB and 3D segmentation approach that uses a

local surface normal, depth, and color features to segment an RGB-D image, but due

to the individual threshold for each feature, the algorithm is sensitive to the chosen

parameter values. Lai et al. [29] developed a detection-based object labeling algo-

rithm using sliding window detectors to determine the probability of a pixel belonging

to a previously learned object class, and then using the pixel probabilities to label

previously learned objects in a point cloud.

2.3.3 Video

Video segmentation methods differ from image segmentation by using segmentations

from multiple frames to create a temporally consistent segmentation result. Grund-

mann et al. [30] built upon the single image segmentation work done in [23] by

creating multiple segmentations from different parameters, and then, using a hier-

archical method, combining the segmentations temporally. While the method gives

robust results, it takes on order of twenty minutes to process forty seconds of 25

frames/second video. Abramov et al. [31] combined depth information with RGB to

create a more robust and faster segmentation than just RGB alone. However, this

work requires full RGB-D videos and, as such, does not take in each frame as it is

received.

22

Chapter 3

Infrastructure

The work in this thesis would not be possible without the recent advances in RGB-D

cameras [17]. These cameras can and have been incorporated into robotic platforms

in order to greatly increase their capabilities. The cameras can be used by robots to

recognize their surroundings, but due to the generality of cameras, the systems can be

applied to many situations and/or datasets. In this chapter we will describe RGB-D

cameras, the platform on which our system was tested, and the packages utilized in

this work.

3.1 RGB-D Cameras

Historically, stereo cameras have been the primary source of RGB-D images, however

active lighting RGB-D cameras have become commonplace in robotics due to their

relative inexpensiveness and ease of use. While the most popular RGB-D camera in

use is the Microsoft Kinect [17], there are other options available with different pros

and cons for this application and others as discussed below.

3.1.1 Primesense

The most popular RGB-D camera is the Microsoft Kinect (see Figure 3-1) [17] devel-

oped by Primesense which brought to market an affordable depth sensor. The camera

23

Figure 3-1: The ASUS Xtion (top), and Microsoft Kinect (bottom).

uses an RGB camera, along with an infrared (IR) projector and IR camera that to-

gether determine depth. The depth system works by projecting a pseudo random set

of IR laser points into a scene, which the IR camera sees. Then using image based

3D reconstruction methods, such as Zhang et. al. [32], the system can estimate the

depth accurately between 0.5m and 4m away from the camera. The benefit of active

lighting cameras is that they offer a dense point cloud that works even on feature-

less surfaces such as walls. Two major drawbacks are, first, the IR points are easily

washed out due to IR interference such as sunlight and, second, the rolling shutter

on these cameras causes scene warping when the camera is in motion [33].

Primesense makes several types of cameras that have distinguishing features pertinent

for robotic applications. The Microsoft Kinect sensor, while the most widely used,

has two other limitations when compared to other active lighting RGB-D cameras

such as the Primsesense ASUS Xtion. First, the Kinect RGB and depth cameras

are not synchronized. This causes errors when matching pixels from the IR to RGB

camera coordinate frames when the sensor is in motion, thus limiting the maximum

velocity at which reasonable data can be expected. The second limitation is that the

Kinect requires more power than a USB port can provide and requires an external

battery for mobile movement. The ASUS does not have these two problems, thus

providing better data and easier use. The work in this paper is based on the ASUS

24

and Kinect R.GB-D cameras.

3.1.2 SoftKinetic DepthSense

While Primesense cameras are the primary structured-light cameras on the market,

there are other technologies such as Time-Of-Flight (TOF) cameras, for example,

the SoftKinetic DepthSense [34]. This technology is promising in that it can work

in direct sunlight with similar frame rates to structured-light cameras. The current

downside of these cameras is that the resolution is 1/4th that of the Primesense

cameras discussed in Section 3.1.1. In testing, this camera was able to get depth

data in sunlight, though only on some materials (plastic and unreflective metal), and

not others (concrete, bark, grass). The camera also has the same limitations as the

Kinect in that the color and depth cameras are not synchronized, and it needs external

power.

3.1.3 Stereo

As stated above, stereo cameras have historically been the primary means of collecting

RGB-D data. Stereo camera systems, such as the PointGrey Bumblebee, while offer-

ing dense colored point clouds, have some limitations when compared to structured

lighting cameras. First, stereo pairs are generally quite expensive, and while single

cameras can be used together with additional calibration, the individualistic design

makes generalizing more difficult. Second, stereo cameras work only in scenes that

contain some texture; providing incorrect results when looking at large textureless

objects. Lastly, due in part to the previous points, there is not as large of a com-

munity supporting stereo systems as there are with structured light cameras. One

primary draw of stereo cameras is that they work outside, which is what future work

will build upon.

25

Figure 3-2: Envoy robot guiding a person.

3.2 Platform

The work for this thesis was developed for use on the CSAIL Envoy platform, a

converted robotic wheelchair [35]. The Envoy robot has numerous sensors for robotic

navigation and human interaction. As seen in Figure 3-2, a Kinect is mounted roughly

at human height on a pan-tilt mount near the top. This mount allows the camera to

view around the robot, thus offering more dynamic and varying viewpoint datasets

(used in the results later).

3.3 OpenNI

The most widely used software used for interfacing with the Kinect and ASUS Xtion is

OpenNI (Open Natural Interaction), an open source standard interface for 3D sensor

data. The stated goal of OpenNI is to provide an interface for applications that use

natural interface (humans gestures or poses) as their input [36]. Because OpenNI

26

guarantees backwards compatibility, any application can use the interface, and then

run regardless of the version of the natural interface input.

3.4 PCL

With the advent of cheap and robust depth sensors like the Microsoft Kinect, 3D

perception has become a fast growing area. The Point Cloud Library (PCL) [37]

is an advanced and extensive open source library with users and developers from

around the world. The library utilizes OpenNI, and contains advanced algorithms for

filtering, feature estimation, surface reconstruction, and additional applications. In

this work, we use the PCL point cloud framework as the base of our system.

27

28

Chapter 4

Segmentation

In order to have a pixel-accurate object segmenter, each pixel must be labeled as

belonging to an object or segment of an object. Segmentation is a well-researched

area, but remains a notoriously under constrained problem. A human segmenting

a scene uses higher-level semantics that traditional segmentation methods do not

capture. As discussed in Chapter 1, going from raw pixels to semantic objects is a

challenging problem. We define the following desirable features of a segmentation

algorithm that further constrain the problem for use in future modules.

- Robust

A segmentation is considered to be robust if it is invariant to rotation, translation,

as well as changes in scale and illumination. If a scene is viewed from a vastly different

viewpoint in either rotation, translation, scale, or any combination, but still has most

of the original scene unobscured, then the segmentation output should be similar.

- Consistent

A segmentation is considered to be consistent if there is minimal or no camera

movement, then the segments should remain persistent between frames. The RGB-D

frame should be segmented the same despite camera noise, or any other minor change

in the scene.

While the above definitions are similar, the important distinction is that robust-

ness provides a constraint for how the features should be defined (rotation, transla-

tion, and scale invariant), and consistency provides a constraint for what is a correct

29

segmentation (one that is persistently segmented the same).

One limitation to the above segmentation constraints is if the camera does not

have the actual data to distinguish the information. If, due to aliasing, motion blur, or

any other camera-based shortcoming, there is no data to influence the segmentation

method; then a segmentation algorithm cannot reasonably be expected to correctly

segment an image. We use higher-level modules to handle such problems, and other

issues that will be addressed in the next chapter.

The above definitions are useful in that they refer only to the sensor and the resulting

image and not to some higher-level semantic information. This avoids many of the

difficulties that go along with the semantic segmentation problem in the process. Now

we describe a segmentation algorithm that efficiently segments a scene while being

qualitatively robust. The outline of this algorithm is in Figure 4-1. Consistency is

handled by a higher-level module and is described in the next chapter.

4.1 Graph Building

As shown in Figure 4-2, the graph building module takes in an RGB-D frame and

outputs a graph with each pixel as a node and each edge is the Hue Saturation

Value (HSV) distance [38] between a pixel and a neighboring pixel. The pixels are

connected in a standard four-connected manner (Figure 4-3). Each pixel has eight

directly neighboring pixels in a standard camera, though since the edges in our graph

are undirected, a full eight-connected graph is redundant.

4.2 Contour Filtering

The critical problem in image segmentation is determining which pixels are part of the

same segment. To help simplify the problem, we assume an object is smooth in depth

for at least one part of the object. As shown in Figure 4-4, if there is a discontinuity

of more than 5 cm in the graph from Section 4.1, we remove the edge between the two

pixels/nodes in the graph. The 5 cm was determined as just larger than the specified

30

Figure 4-1: Segmentation Outline.

Locally-connected
pixel-based graphRGB-D Frame

Figure 4-2: Input and output diagram for the build graph module.

31

I

Figure 4-3: Pixel layout showing a the eight neighboring pixels to the center pixel,
with the four-connected edges shown as black lines.

Locally-connected Graph with depth
pixel-based graph discontinuities removed

Figure 4-4: Input and output diagram for the contour filtering module.

depth camera noise of 1-2 cm at 4 m (so 2-4 cm between two surfaces).

4.3 Initial Segmentation

We use the Felzenszwalb segmentation algorithm [23] to take the resulting graph

from the contour filtering method to create superpixels (Figure 4-5). The benefit

of this algorithm is that it runs in O(N log(N)) time with N pixels. The algorithm

provides a principled guarantee that the segmentation is neither too fine nor too

coarse (as defined within the paper) based on two parameters, T and k, where T is

the initialized threshold of every node, and k is the growth rate threshold (described

in detail below). The segmentation algorithm uses the graphical model described

above, with contour edges having already filtered out, and the edges having the HSV

distance value between the two nodes/pixels in the graph. Using the simple raw

RGB sum of absolute differences is not as robust as other popular methods such as

HSV distance [38], and as such, the latter was used in this work. Depth is ignored

in this step as segmenting based on depth and color simultaneously is an ambiguous

32

Graph with depth
discontinuities removed Labeled Superpixels

Figure 4-5: Input and output diagram for the Initial Segmentation module. The

labels of the superpixels are arbitrary, but unique identifying integers.

comparison.

Once the graph is set up, the Felzenszwalb algorithm sorts the edges by the mag-

nitude of the edge HSV distance value. A counting sort method was used for compu-

tation speed to bring the O(N log(N)) down to O(aN) for a constant a. Each node i

is initialized to threshold parameter T, and the edges are then considered from lowest

to highest HSV distances, with their corresponding differences checked against the

node threshold T. If the HSV distance between two nodes i and j is less than T

or Tj, then the nodes are joined together in a UnionFind data structure. The new

root node's threshold, say T, is then updated and used as the threshold for all nodes

unioned together.

T = T + k / N, (4.1)

Where k is the growth rate parameter described above and Ni is the number of nodes

within segment i (initially 1). Updating the threshold increases the value of the

threshold less and less, so with an increasing edge magnitude, the segment is less

likely to join another node. The algorithm is shown in Algorithm 1.

4.4 Superpixel Joining

The Felzenszwalb algorithm outputs segments made up of pixels with minimal HSV

distance between them, given the parameters k and T. However, the parameters of

the algorithm bias the super pixels to be similarly sized, thus making edges where the

33

Algorithm 1 Initial Segmentation algorithm
Initialize UnionFind nodes for nodes in filtered graph G
Initialize all node thresholds T to T V i
Sort edges E E filtered graph G

for Every ek E E do ,

/**Find root nodes of the edge nodes*/
i UnionFind.find(ek.nodel)
j = UnionFind.find(ek.node2)

/** If the HSV Distance between nodes i
thresholds T and T then join*/

if ek.dist < Ti && ek.dist < T then
UnionFind.join(i,j)

/**Update the root node's threshold*,
i = UnionFind.find(i)
T = T + k / UnionFind.size(i)

end if
end for

and j of edge ek is less than the dynamic

A

No a

Figure 4-6: Example of the Felzenszwalb algorithm super pixels showing two different
parameter settings. The top left favors smaller super pixels while the bottom right
favors larger super pixels. Source: Radhakrishna Achanta et al. [1].

34

Labeled Superpixels Labeled Segments

Figure 4-7: Input and output diagram for the Superpixel Joining module. The labels

of the segments are arbitrary, but unique identifying integers.

image is locally smooth in color (as seen in Figure 4-6). This property is useful for

superpixels if the parameters are set to favor small segments, but limits the algorithm

from being the final segmentation for our problem. Since we want the result to be

robust and consistent, as defined above, a table or any object broken up in somewhat

arbitrary segments won't work (as seen in Figure 4-6), nor will ignoring small objects

(in terms of the number of pixels), as this would not be scale invariant. We want the

super pixels to be joined to create our final segments (Figure 4-7).

Once the image is segmented into superpixels, the joining algorithm takes in the set

of edges where the edge magnitude was below Ti and T when the edge was considered

in the segmentation loop. This set is the edges between separate segments minus the

edges removed in the contour filtering method. Again using the contour filtering

described above, if the edge magnitude is below a global joining threshold A, then

the superpixels are joined together. The intuition is that superpixel algorithms find

some boundaries of objects, but do not find others, determined qualitatively. Joining

along the edges combines superpixels that have similar HSV values along the border

(suggesting the Felzenszwalb algorithm stopped joining nodes due to the growth rate

parameter), but ignores large HSV difference values (suggesting the algorithm stopped

due to the threshold parameter).

The last part of the joining method is to handle sensor noise. Due to lack of

depth returns and pixel aliasing, there are some stray pixels that are not joined into

any segment even after the joining method above. To handle these minimal errors,

every segment that has less than D nodes is joined with an arbitrary neighboring

segment. It is important to note that these errors are minimal and that this step is

35

Labeld SegentsSet of Segment
Labeld SegentsFeature Vectors

Figure 4-8: Input and output diagram for the Segment Feature Extraction module.

not required for this work to function properly. The process only cleans up images

for human viewing and is used in all images in this thesis. In practice, D is set to 30

pixels, or 0.01% of the whole image.

4.5 Segment Feature Extraction

Once the segmentation is complete, a segment feature vector (SFV) is created for

each segment and will be utilized by methods discussed in the next chapter. In order

for the SFV to be both scale and rotational invariant, the features selected are based

on coordinate independent properties of the XYZ points. The features are defined

as follows with descriptions of how each feature is computed. Principle Component

Analysis (PCA) [39], [40] on the XYZ point cloud is used for several of the features

and is described below.

36

Feature Description
Length The max distance of points projected along the first

normalized eigenvector of the segment from PCA. Each
point is turned into a vector starting from the centroid
and projected onto the first eigenvector (the major axis
of the segment). The difference of the maximum and
minimum values is the length.

Width The width along the second principle component vec-
tor, computed in the same way as the length above, but
projected onto the second normalized eigenvector.

Standard deviation The standard deviation of all the points along the first

along length eigenvector from PCA. The projection of each point on
the first eigenvector is recorded and the total standard
deviation is computed. This feature is used because the
length and width do not provide sufficient information
to uniquely determine a segment. For example, a plus
sign and a box with the same length and width have

different standard deviations.

Standard deviation The standard deviation of all the points along the second

along width eigenvector, computed similarly to the previous feature.

Curvature along The curvature along the first and second principle axises.

length and width This is computed by taking the first and second eigenval-
ues (eigenvalues of the length and width), and dividing
the first by the second. The value is strictly greater than
or equal to 1 since the eigenvalues are ordered.

Area The pseudo area of the segment, computed as the num-
ber of pixels multiplied by the squared distance from

the camera. This does not give the true area, but is
scale invariant as the number of pixels decreases by the

squared distance away from the camera. This feature is

susceptible to foreshortening, but this is accounted for

in the next chapter.

Average RGB value The average RGB value of the entire segment.

37

Feature cont. Description cont.
Surface normal: The third eigenvector from PCA, which gives the ap-

proximate surface normal of the whole segment. This
vector is defined in the camera coordinate frame. The
feature is only used with other segments within the same
frame so the local coordinate frame is irrelevant as long
as it is consistent between all segments within a frame.

Centroid The XYZ centroid of the object in the camera coordinate
frame. As with the previous feature, this camera cen-
tric coordinate frame is used only with other segments
within the same frame.

Table 4.1: Table of features in a Segment Feature Vector (SFV)

Figure 4-9: Example of PCA. The black dots are data points and the red axes show
the major and minor axis representing the data.

Each one of these features is scale and rotationally independent (except the surface

normal and centroid, used later for object matching), thus fulfilling the robustness

requirement as described at the beginning of this chapter.

4.5.1 PCA

The system uses an XYZ point cloud to determine the segment features. It is useful

to transform the XYZ space into a coordinate system specific to the segment based on

3D points. In the general case, PCA takes a set of d-dimensional vectors and assigns

a weight to each dimension based on the variance of the component [401. We use PCA

38

0
0 0

0

*~ a

in the system to determine a coordinate frame based on the variance of the input data.

Relating that to 3D, the first eigenvector from PCA corresponds to the vector with

the most variance (the major axis) in XYZ space, the second eigenvector corresponds

to the vector with the second most variance orthogonal to the first, etc... In this

work, this is the axis along the length, width, and surface normal of a segment. A 2D

example is shown in Figure 4-9. The corresponding eigenvalues of the eigenvectors

measure the variance along each axis and are used as a relative measure of curvature.

For example, a perfect circular disk will have arbitrary first and second eigenvectors

in XYZ space since the variance is equal, and their respective eigenvalues would be

approximately equal.

39

40

Chapter 5

Matching Objects

In order for an SFV to be useful, it must be consistent between frames. The seg-

mentation algorithm in Chapter 4 creates robust SFVs, though the segments may

not be consistent between frames. Consistency is achieved by doing data association

and tracking over time - filtering out any segments that are not consistent. Once the

segmentation is complete, the SFVs must be matched against learned objects, made

up of one or more segments.

5.1 Data Association

Data association is required between sequential frames in order to determine whether

a segment is consistent over time. Typically, data association refers to the task of

assigning a label et to an unlabeled example x given past example(s) xi and respective

labels ci. In this work, the examples paired with their respective labels are the the

previous M temporally consistent frames, where M is set to 4.

Data association on SFVs has its own challenges in that each segment may not be

unique to an object. There may be multiple SFVs that map to the same segment.

For example, a piece of paper is a common object and shape (solving this problem for

object matching is discussed below). Doing a simple nearest neighbors (NN) approach

in SFV space leads to incorrect associations. A NN search around the centroid in

XYZ space between frames is more robust, but fails if the segmentation is not strictly

41

Feature Description
(UV) Particle coordinates in image space.
PREV Ordered vector of previous M SFVs.
ID Ordered vector of previous M segment IDs.
L Lifetime counter

Table 5.1: Table of features in the particle data structure

consistent. Below we discuss an approach that works well in practice.

5.1.1 Temporal Filtering

We implement data association in this work by using a weighted random particle

voting scheme, where a particle is defined in Table 5.1. For every frame, a set of

particles, P, is instantiated in image space at random locations within a grid cell, with

a single particle per grid location. The location within the grid is random and changes

frame to frame to account for thin segments, thus allowing for a sparser particle

distribution. For computational efficiency with minimal degradation in performance,

|Pf| is set to be 1/64th of the image, so for a 640x480 RGB-D image, that is 4800

8x8 grids. Each grid stores the following particle features.

The particles are initialized to the first frame's SFV and given unique integer IDs

-y. With each new frame, every particle votes for a different ID with one vote per

previous SFV weighted by the age of that SFV (at most M) and the similarity between

that SFV and the current unlabeled SFV. To determine the similarity of two SFVs,

we use a comparison-scoring function which returns 1 if the same SFVs are compared

and the function is strictly monotonically decreasing for larger differences between

any individual feature. To obtain these properties, the value of the i-th feature within

the j-th SFV of PREV (higher j values are older) is modeled as a normal distribution

with pi and - = u * pi. The score of a feature is chosen to be (1 - Al), where Ai is

the area under the normal distribution from the pi - 6 to pi + 6 where 6 = |pi - Kil

and si is the i-th feature of the unlabeled SFV (see Figure 5-1). The total score for

a particle p and age j, Wpj, is all feature scores multiplied together and the result is

weighted by a-, with a determining how influential older votes are. This is done

42

A,

1elo

Figure 5-1: Individual feature scoring

for all M SFVs in all particles P, within a segment s and the final label is the ID

with the maximum vote. Values for a and # of 0.5 and 0.05 respectively work well in

practice. Equation 5.1 shows this in detail.

Vs E S

= argmax,(E, EMi(W, * I(ID,[j] ==)).1)

W,,y = aj-1 l (1 - Aj)

Ai /h+62 IT*/ * e 2 dx

Where I(...) is an indicator variable expressing whether the weight is included or not

for a specific -y and S is the set of all segments. Intuitively, the individual feature

weights in equation 5.1 can be thought of as measures of how similar two features

are. The weighted vote Wp,, which is the product of the feature weights, means that

if any one feature is significantly different, then the vote is small. The new ID of

segment s, -y, is determined to be the ID -y with the largest total vote across all

weighted votes, i.e. the current segment that overlaps the previous segment best as

determined by the scoring function. While Equation 5.1 uses the area of a normal

distribution which suggests Ai is a probability, it is not a true probability since # is a

parameter. As an optimization, each SFV pair is stored in a table and checked before

every new computation since many of these calculations are duplicated.

Once every particle has voted, it may be the case that due to motion or a flawed

43

segmentation, that segment ID bleeding occurs (i.e. many segments are given the

same ID). The segments are assigned IDs in order from largest to smallest, with each

segment taking the maximum vote count, and if that ID has not been taken, choosing

the corresponding ID and updating every particle within the segment. If the ID has

been taken, a new ID is set, and the particles are updated. This handles the case

where, due to camera or dynamic object motion, new segments come into frame.

5.2 Consistent Segment Filtering

In order to produce a consistent segmentation, non-consistent segments need to be

filtered out, i.e. all SFVs that are not stable over short periods of time. The lifetime

counter in each particle is initialized to 1 at the start, and is incremented every time

the same ID is assigned to a particle. Whenever a particle is reassigned, the counter

is set to 1. Also, if the maximum value of the weighted voting normalized by the

number of votes is below a threshold T, the lifetime counter is set to 1. T is set to

10- in practice and accounts for segments that are scored quite differently from the

previous segments.

Consistency is now determined simply as having an average lifetime counter

greater than L over all particles within the segment. This implies that quickly moving

to a new scene will take L frames for the consistent segments to be declared salient.

When the scene is not moving, the algorithm filters out unstable segmentations since

either the lifetime of the segments will be less than L, or the segment changes greatly

between frames and is reset because of T (Figure 5-2). L is set to 3 in practice.

5.3 Objects

To fully utilize the segmentation feature method, it must be used not just for consis-

tency between frames, but also for recognizing objects. For that, objects must first be

defined in a general model or template to learn. We use a segment template (ST) and

edge template (ET) to describe part or the entire object. STs store learned statistics

44

Figure 5-2: An RGB-D image with the unstable (or cluttered) regions
red. The areas not highlighted in red are deemed stable.

45

highlighted in

of an object so that SFVs can be matched against the STs in real time. STs are fea-

ture vectors including all the features in a SFV except the coordinate-based features

(surface normal and centroid), but with also including the standard deviation of the

feature. So each feature in the ST has a mean and standard deviation. ETs store

the L 2 distance between two SFV centroids and the magnitude of the dot product

between the two SFV surface normal vectors along with their respective standard de-

viations. The mean and standard deviation are both calculated during the learning

stage described in Section 5.3.1. The intuition is that an object can be made up of

one ST and no ETs (ex. a single piece of paper), or can be made up of multiple STs

and ETs (ex. a file cabinet with multiple drawers). An object model is as follows:

" Set of STs consisting of the entire object.

" Set of corresponding ETs between every ST.

Since the centroid positions and normal vectors require the same coordinate frame

between SFVs, only comparisons that have the segments in the same reference frame

are allowed (i.e. both segments have to be detected in the same frame). As with the

STs, both the average and standard deviation of the edge features are recorded.

5.3.1 Learning Objects

An object is defined by a set of connected segment(s). This definition can include

other segmentations that semantically are not paired together depending on whether

segments are grouped together while they are being learned. We use supervised

learning over labeled video sequences to fill in the object template described in Section

5.3. Through a video sequence (Figure 5-3), the segmentation from the image is shown

to a user (Figure 5-4), who labels one or more segments that represent an object by

selecting it in a frame (Figure 5-5). The segments are tracked through the video by

their labels and statistics are gathered on each segment until one of the segments is

outside the frame or is inconsistent. The average value of the feature and the standard

deviation are recorded into the template. For every frame with all labeled segments in

46

Figure 5-3: Initial RGB-D image for supervised learning on a chair.

view, the statistics on the fully connected edges are recorded by also fitting Gaussian

distributions. Overfitting is a problem if only a few frames are available from the same

viewpoint, thus having tight matching requirements, but the input training data has

been collected to provide multiple angles as seen in Figures 5-3 and 5-6.

The result of this module, run off-line, is a set of object templates. Each object

template is made up of N STs and 0.5 * N * (N - 1) ETs for N > 0 (an edge between

every ST).

47

Figure 5-4: Segmentation of RGB-D image from Figure 5-3 colored by unique segment
ID.

5.4 Matching

Once the segmentation is complete, the matching module has to check it against

the learned models from Section 5.3.1. The outputs of this module are the matched

SFVs with their corresponding object labels. The naive way of matching against

the object model is by comparing every pair of segments in a frame, every pair of

STs in the model, and every edge for every object (O(O * S' * E|), with Oj being

the j-th segment in the object, Sk being the k-th segment in the frame, and IE|

being the magnitude of all the edges). One constraint is that Sk is limited to only

segments not along the border of the frame since border segments are not fully visible,

and thus not useful for matching full objects. For efficiency, we used the following

algorithm to match objects (O(O * Sk + O * sety|* setJ) where setj and set, are

the sets of segments from a frame that match the j-th and l-th object model STs

respectively). The matching algorithm for each object is detailed in Algorithm 2 and

an example is shown in Figure 5-8. 0 is the set of STs in the object model, and

48

Figure 5-5: Seeded object selected by user from segmentation in Figure 5-4. The
object consists of two separate segments that have been set to the pre-set tracking
color.

Figure 5-6: Later view of the chair in the sequence from a different viewpoint.

49

Figure 5-7: Temporal segment labeling still tracking seeded segmentation from Figure
5-5.

countero is the counter for how many edges between matching segments match for

an object. SegmentMatch and EdgeMatch are described below in sections 5.4.1 and

5.4.2 respectively.

Now the question arises of when to decide whether an object is found. Requir-

ing every part to match might not allow for partial occlusions or vastly different

viewpoints, conversely, requiring only one segment to match might might lead to

many false positives. Also, it is not enough to define a global threshold since objects

vary greatly in the number of segments. If an object model has multiple segments,

then countero will be large, while if the object matched has only one segment, then

countero will be 0. As such, the Object-Match function depends on the number

of segments in the object 0 in addition to countero. We say an object is found if

countero >= ||01 - 1, which has the convenient property that it returns 0 if there

is 1 segment in the object, 1 if there are 2 segments in the object (a single edge),

and beyond 2, offers a relaxing requirement for countero. The intuition is that larger

50

Compare

Figure 5-8: Matching Example. Given an object ObjectI with two STs, and one ET,
the algorithm looks through each frame to find SFVs that match each ST. In this
example, SFV_1, SFV_14 and SFV_23 all match ST1, and SFV_13 matches ST_2.
Then the edges (in red) are defined between the ST_ and ST_2 candidates and every
edge is compared against ET_1 to determine if the SFVs are part of the object. Not
all edge comparisons are shown.

51

Algorithm 2 Object matching algorithm

/** for every ST in the current object template O*/
for Every ST stj C 0 do

/** for every SFV in the current frame *7
for Every SFV sfvi E Frame do

/** If the SFV matches ST, add it to a matching set for that ST */
if SegmentMatch(stj, sfvi) > T 1 then

set; = setj U sfvi
end if

end for
end for
countero = 0

/** for every ST in the current object template and every matching SFV in the
matching set for the current st9 *
for Every ST stj E 0 do

for Every j C setj do

/** for every other ST in the current object template and every matching SFV
in the matching set for the new st, (could be the same ST as stj) *7
for Every ST sti C 0 do

for Every I C set, do
if (j == 1) then

continue
end if

/** Define the edge between SFVs j and 1*/
Edge Ej,l = edge between j and 1

/** If the edges match, increment the counter *7
if EdgeMatch(Ej,i, ModelEdgest ,st1) then

countero++
Add j, 1 to matching-objects

end if
end for

end for
end for

end for

/** If enough of the edges match, return the set of object SFVs, otherwise, return
null */
if (!ObjectMatch(O, countero)) then

exit
end if
return matching-objects

52

clusters of segments are far more unique than matching a few segments, so matching

a subset is acceptable.

5.4.1 Segment Matching

The SegmentMatch function in Algorithm 2 is a similar problem to determining sim-

ilar segments in the temporal filtering module (Section 5.1.1). The new comparison

scoring function is normalized so that the new function returns 1 when the same

segment is compared to itself and the function is strictly monotonically decreasing

for any difference from the mean. For this scoring function, we define i as the index

within the feature vector, j as an ST within an object model, k is the SFV of the

segment within the frame, and 6 ij,k is ||p,3 - Ki,|k , where si,k is the value of the i-th

feature in k. Again using a normal distribution, when a feature value si is compared

against an ST feature, the score of a single feature is the area under the normal

distribution defined by pij and o-i, from p,3 - 6 ij,k to piJ + 6 ij,k.

SCOrCj,k = ~ H(1 - Aijk)
(x)(5.2)

Ai = ti,j+6iJ*,k e 2 dx

If the value of scorej,k is greater than a threshold T (0.25), then the segment is

stored into a set set specific to the segment with ST j. The score is calculated

and the segments sorted between every SFV k and every ST j. It is reasonable to

compare SFVs and STs since every feature i in an ST is the same feature i in an SFV

for iC 0,..., ST|

5.4.2 Edge Matching

Once the set of segments within an object are picked out from the frame, the edges are

then checked in a similar manner. Every segment within setj is paired with another

segment from within set, for all I / j. The edge feature vector (the L2 distance

between centroids, and dot product of surface normal vectors) between j and I is

calculated and compared to the ET as in equation 5.2, with i E 0, ..., JET|, j as the

53

ET, k as the edge feature vector, and r as 0.75.

The edge matching leaves ambiguities in 3D space due to only constraining seg-

ments to a sphere around the centroid of a segment with a cone of surface normals

along the sphere. While this has the potential for false positives, the uniqueness of

the segments combined with edges makes it a minor problem in practice for objects

with edges. A more detailed analysis is in the next chapter.

54

Chapter 6

Results

The implemented system allows a robot to recognize categories of objects in real-

time. All of the details discussed in the previous sections have been implemented

and merged into a working prototype. The RGB-D video sequences used to evaluate

this work were collected in three scenarios: a stationary camera above a table top, a

handheld camera taken through an office, and a robot mounted camera driven through

a building. The next several sections describe the results of the segmentation and

object matching method.

6.1 Segmentation

To evaluate the segmentation algorithm, some form of 'ground-truth' labeling is gen-

erally needed. However, defining a 'correct' segmentation is subjective, so there is

no such ground-truth measure. Instead, we measure the consistency of the objects

between frames. In our first scenario, an RGB-D camera is placed looking at a table

top scene with variously shaped and colored objects, as seen in Figure 6-1. The

segmentation output fi for some frame i is recorded and all future segmentations are

compared against fi (for example, Figure 6-2). The comparison is done by taking the

largest consistent segment sm E f j > i that intersects the segment s, E f, (for all m

and n segments in f2 and fi respectively) and computing the similarity between pixel

masks the two segments using the Jaccard Similarity Index an [41]. The similarity

55

Figure 6-1: RGB Image of a tabletop scene.

j Similarity score Similarity score

(all segments) (labeled objects)

i 1.0 1.0
i-+ 1 0.85 0.95
i + 5 0.85 0.93
i+15 0.83 0.94
i+30 0.84 0.93
i+90 0.82 0.93

Table 6.1: Table of similarity scores averaged over 25 video sequences.

measure returns 1 if two regions are exactly overlaid and 0 if the two regions have

no overlapping consistent segment. This is done for 25 choices of i and j was chosen

as i + 1, i + 5, i + 15, i + 30, i + 90 for every i. The results of the segmentations were

averaged over all i and n, and put into Table 6.1 for both the entire segmentation and

a set of human-labeled object segments across 8 varying object positions and cam-

era orientations. The human-labeled objects were recorded by having a user select

pre-segmented objects from our method at a starting frame rather than selecting all

segments.

The values in Table 6.1 are dependent on the objects used in Figure 6-1 and the

56

Figure 6-2: Segmentation output of the RGB image in Figure 6-1. Note the shadows
and light reflections that segmented separately, with the former being unstable due to
the small color gradient. The crumpled metal soda can is half labeled as inconsistent
since the odd angles and shiny surface do not provide stable values in the depth
image.

57

Units: Office 1 Office 2 Hallway Tra- Hallway Tra-
changes per (36 sec) (55 sec) verse 1 (83 verse 2 (54
segment sec) sec)
All segments 7.3 8.5 5.1 4.9

Segments longer 1.6 1.9 0.9 1.4
than 12 inches

Table 6.2: Table of the average number of label changes per segment over the length.

Larger segments (defined here to have a principle axis longer than 12 inches) have
more stable IDs over time than smaller segments.

viewing scene, but since the segmentation method is independent of previous frames,

the similarity values show little difference between the following j frames. The pri-

mary source of variance in segment consistency in the data was in the shadows of

the objects, which helps to explain why the labeled-object results are comparatively

higher. The rest of the variance is from the sensor noise and randomness in the under-

lying segmentation method. Performance decreases as clutter in the scene increases,

since aliasing occurs and the segmentation method breaks down.

Determining the consistency of the segmentations from the handheld and robot-

driven datasets are difficult to determine quantitatively since the viewpoint is always

changing, so raw pixel masks will not work. We indirectly determine consistency by

using the consistency module described in Chapter 5 and measuring the number of

segment ID changes within the range and FOV of the sensor. The intuition is that

segments that are consistent will have fewer ID changes. The results are averaged

over all segments in each data set listed in Table 6.1. Due to variations in motion

and time (listed in seconds), we show the results from multiple data sets separately.

6.2 Object Matching

The object category matching method was tested by first learning a set of objects

(chair, file cabinet, door, 11"x8.5" paper, and refrigerator) and then matching them

against a labeled data set. The objects were learned using a single training example

and collecting statistics on its features from different angles (as described in Sec-

tion 5.3.1). The data sets contained objects qualitatively similar, but not identical,

58

Figure 6-3: RGB Image of a corridor in the Stata Center during Hallway Traverse 2.

Figure 6-4: Example segmented image of Figure 6-3.

59

Object Category False Positives False Negatives
Chair 5% 68%
File Cabinet 7% 27%
Door 0% 60%
Paper 53% 14%

Refrigerator 0% 22%

Table 6.3: Table of the false positives and false negatives. False positives are the

number of frames a false detection occurred in divided by the total number of frames

there was a detection for that object. The false negative percentage is the number
of frames the object was in the camera's FOV and range, and there was no positive

detection.

features, as seen in Figure 6-8 and Figure 6-14.

Across multiple handheld and robotic traverses, we collected data on the false

positive and false negative percentages for each of the objects. We did this by counting

the number of detections against our human-labeled data sets for every frame. We

only counted objects that were within the camera's FOV since our algorithm throws

out all segment features touching the edge. The results are listed in Table 6.2 for over

15 minutes of traverses.

The percentages for paper listed in Table 6.2 are particularly bad since the size

and shape of paper is common. Many graphs on posters, or rats' nests of cables

may be segmented in such a way that it passes the detection threshold. For the

chairs, the amount of variance between different chairs is significant and thus the

single training example is not general enough. When trained on four chairs of wide

variance, the false positive rate increased to 37% and the false negative rate dropped

to 42%. For qualitative evaluation, Figures 6-5, 6-6, and 6-7 show an example of

a door being detected. Figures 6-8, 6-9, and 6-10 show the scale invariance of the

segment matching method when compared to Figures 6-11, 6-12, and 6-13. Figures

6-14, 6-15, and 6-16 show a different cabinet being matched. Figures 6-17, 6-18, and

6-19 show matches for drawers of a file cabinet, but the edges between the drawers

do not match so the drawers are not labeled as a file cabinet. All examples shown

and discussed use one object category template for all object matches.

60

Figure 6-5: RGB Image of a door.

Figure 6-6: Segmented image of Figure 6-5.

61

Figure 6-7: Matched door segment of Figure 6-6.

Figure 6-8: RGB image of a far cabinet.

62

Figure 6-9: Segmented image of Figure 6-8.

Figure 6-10: Matched cabinet from Figure 6-9.

63

Figure 6-11: RGB image of a close cabinet

Figure 6-12: Segmented image of Figure 6-11.

64

Figure 6-13: Matched cabinet from Figure 6-12.

Figure 6-14: RGB image of a different, wider cabinet.

65

Figure 6-15: Segmented image of Figure 6-14.

Figure 6-16: Matched cabinet from Figure 6-15.

66

Figure 6-17: RGB image of false positive segments.

Figure 6-18: Segmented image of Figure 6-17.

67

Figure 6-19: Potential matches highlighted from Figure 6-18, but the edges do not
match up, so they are not colored the object category color blue.

The system was further tested by driving a robot around an office building with

the object category detectors running. One of the paths taken is shown in Figure 6-

20. In these trials, a robot was manually driven around with a forward facing kinect

sensor. Figure 6-21 shows an example of a detected file cabinet. Figure 6-22 shows

an image of a false positive detection for a door, but the cubicle wall has roughly the

same dimensions as standard door.

68

False Positive

Figure 6-20: A labeled trajectory (in red) around the third floor of the Stata building
of the Envoy robot highlighting detected objects. Green triangles are detected doors,
blue diamonds are detected file cabinets, and black circles are detected chairs. A false
positive on the door detector is highlighted as a red triangle and shown in Figure 6-22.

69

Figure 6-21: RGB image of detected cabinets during the traverse shown in Figure
6-20.

Figure 6-22: RGB image of a false positive detection for a door from the traverse
shown in Figure 6-20.

70

Module Time (ms)
Build Graph 5
Contour Filtering 3
Initial Segmentation 35
Segment Joining 17
Feature Creation 29
Temporal Filtering 41
Consistent Segment Filtering <1
Match Segments <1
Match Edges <1
Total 133

Table 6.4: Table of each module's average time over all traverses.

6.3 Run-Time Evaluation

The run time for the algorithm is listed in Table 6.4 for 640x480 resolution RGB-D

images. The matching algorithm is fast since each feature vector is 47 bytes, so an

entire image can be represented in a compressed format and therefore quickly compute

object model comparisons across a whole image. In practice, the run-time of each

method is consistent and the whole system outputs labeled object categories at 7-8

Hz on a 2.54 GHz quad-core Dell laptop.

71

72

Chapter 7

Conclusion

This thesis has presented a new approach to object category recognition that provides

robust, real-time performance in complex indoor environments. The algorithm pro-

vides real-time RGB-D features using a segmentation-based feature creation method.

The feature descriptor in this thesis is particularly useful due to its generalizability

that encodes the approximate shape of an object. The features detected within an

image are scale and rotationally invariant, and robust across wide changes in view-

point. Their computation is efficient, running in real-time on a standard laptop. This

thesis also presented a method using the described RGB-D segmentation features for

object category recognition. The general feature descriptors and edges between them

make category recognition possible for objects that are similarly shaped. The object

category recognition approach we described runs in real-time and was validated on

multiple real world data sets containing several categories of objects.

'7.1 Future Work

Although the algorithm performed well for detecting object categories, it still has

limitations due to occlusions, inconsistent segmentations, and computation speed

that future work will address.

Handling occlusions within the camera FOV and along the border of the frame

would increase the robustness of the matching algorithm. Currently, the object match-

73

ing algorithm only works if the complete object is unobscured and within the FOV

of the camera. We envision two higher level modules to handle such scenarios. First,

each segment label keeps an additional SFV stored that records the maximum feature

values of the SFV and the object templates are matched against the maximum SFV

instead of the current SFV. The idea is that once the camera has seen the full seg-

ment, the system can remember the feature until the segment label is lost. Second,

each frame can have multiple landmark segments to which all other segments are

connected. Each landmark would store the relative location of the other segments

and remember the other segment's SFVs to match against. There can be multiple

landmarks per frame to handle occlusions of any subset of the landmarks. One metric

for determining which segments are landmarks is the lifetime of the segment. The

idea behind this module is that not all segments will be occluded so a few landmarks

can remember the whole scene.

This work relies on a consistent segmentation algorithm to determine the SFVs,

however the segments are not always consistent. Currently, most inconsistent seg-

ments are filtered out in the consistency filter module in the algorithm, but some are

consistent for slightly longer than the thresholded number of frames and change their

labels afterwards. These errors come out of both the segmentation and super-pixel

joining modules. For the segmentation module, more sophisticated segmentation

algorithms can be tested to compare consistency against the current implemented al-

gorithm, however many segmentation algorithms do not run in real-time. Also, using

a weighted smoothness term within the RGB segmentation algorithm could lead to

improved results. The HSV distance in Section 4 could be augmented with an XYZ

distance value and combined using some a- weighting parameter. For the segment

joining, currently if one pair of pixels has an HSV distance less than a global thresh-

old, then the super-pixels are joined. A more advanced and principled approach could

be taken instead of the current global binary joining threshold. One such way would

be to run a new Felzenszwalb algorithm on only the edges of the super-pixels. The

decision to join two segments can be made by computing the ratio of the number of

edge segments to the number of total pixel edges between the two segments. The

74

proof of whether the edge segments are too fine or too course would follow from

Felzenszwalb's paper [23]. The intuition behind this is that super-pixels with high

color variation along their borders will have more edge segments than super-pixels

with little color variation along their borders so the ratio of edge segments to the

number of pixel edges would be greater.

While the current system runs at 7-8 Hz on a standard laptop, the temporal fil-

tering module could be improved by having a faster frame rate since there would be

less motion between frames. Smaller objects change labels more frequently because

there are fewer particles voting for them when the camera is in motion. The cur-

rent implementation is on a CPU, however, all parts of the algorithm can be run in

parallel except for the segmentation module (which has dynamic thresholds that can

be changed every iteration). Implementing most of the algorithm on a GPU could

speed the algorithm up to the camera's 30 Hz. From Section 6.3, the segmentation

algorithm runs at approximated 30 Hz, however, that is under 100% CPU load with

other processes competing.

In addition to the limitations of the current system, we will also discuss extensions

of the system that will be done in future work.

The small size of each SFV (47 bytes) and the number of SFVs per frame (50

SFVs/frame on average) mean that a frame can be easily compressed into a simplistic

format. Even if the algorithm ran at 30 Hz, the amount of data would be 4 7 bgte *SFV

50 SFV * 3 0 frame 70 kB. This can be used to stream a SFV feed from a mobilef rame second r"'second~

robot over an intermittent wifi connection to a server for more extensive computation.

The location and 3D orientation is already stored within the SFV, so a simple blob

reconstruction of the scene can be formed for a human user to view.

Finally, the system can be extended to do unsupervised learning of structure in

indoor environments where structure is either an object or a grouping of objects. The

system currently has to learn objects from human labeled data. While this process is

simple, it would be useful for the robot to independently learn objects as it traverses a

building. One way to achieve this goal would be to take the SFVs and group them into

predetermined numbers of SFVs (say groups of two SFVs) with their corresponding

75

edges (which are the same as used in this thesis: the L 2 distance between centroids

and the dot product of the surface normals). The two SFVs and corresponding edge

between them make a Pair. Then, every Pair in a frame should be clustered in Pair

space and when enough are clustered together, a new object is spawned from that

Pair. The object would then be grown to potentially include more SFVs by searching

for other consistent SFVs in all frames which the spawned Pair was in. For example,

say a robot sees many different chairs with seats and backrests. A Pair consisting

of the seat and backrest SFVs is seen often enough to label it as an object. Then,

the algorithm searches over all frames that contain seats and backrests and SFVs for

armrests are seen nearly as often, so armrests are joined in as part of the object.

So the final object learned in this example is a chair made up of a seat, backrest,

and two armrests. This technique would find both objects and structure within an

environment. Computer monitors and keyboards would probably be grouped together

despite being separate objects. When to spawn a new object and when to grow an

existing object would be determined by some threshold.

76

Bibliography

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Ssstrunk, "Slic super-
pixels compared to state-of-the-art superpixel methods," IEEE Transactions on
Pattern Analysis and Machine Intelligence, May 2012.

[2] H. Grabner, J. Gall, and L. J. V. Gool, "What makes a chair a chair?," in CVPR,
pp. 1529-1536, 2011.

[3] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, "The
pascal visual object classes (voc) challenge," International Journal of Computer
Vision, vol. 88, pp. 303-338, June 2010.

[4] P. M. Roth and M. Winter, "Survey of Appearance-Based Methods for Object
Recognition," tech. rep., Institute for Computer Graphics and Vision, Graz Uni-
versity of Technology, 2008.

[5] British Machine Vision Conference, BMVC 2009, London, UK, September 7-10,
2009. Proceedings, British Machine Vision Association, 2009.

[6] A. Torralba, A. Oliva, M. S. Castelhano, and J. M. Henderson, "Contextual
guidance of eye movements and attention in real-world scenes: the role of global
features in object search.," Psychological Review, vol. 113, pp. 766-786, October
2006.

[7] D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J.
Comput. Vision, vol. 60, pp. 91-110, Nov. 2004.

[8] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, "Speeded-up robust features

(surf)," Comput. Vis. Image Underst., vol. 110, pp. 346-359, June 2008.

[9] A. Johnson, Spin-Images: A Representation for 3-D Surface Matching. PhD
thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, August
1997.

[10] P. Viola and M. Jones, "Robust real-time object detection," in International
Journal of Computer Vision, 2001.

[11] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection,"
in In CVPR, pp. 886-893, 2005.

77

[12] P.-E. Forssen and A. Moe, "View matching with blob features," in 2nd Canadian

'Conference on Computer and Robot Vision, (Victoria, BC, Canada), pp. 228-
235, IEEE Computer Society, May 2005.

[13] 2007 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2007), 18-23 June 2007, Minneapolis, Minnesota, USA,
IEEE Computer Society, 2007.

[14] D. Lowe, "Object recognition from local scale-invariant features," International
Conference on Computer Vision, 1999, pp. 1150-1157, 1999.

[15] M. Walter, Y. Friedman, M. Antone, and S. Teller, "Vision-based reacquisition
for task-level control," in Proceedings of the International Symposium on Exper-
imental Robotics (ISER), (New Delhi, India), December 2010.

[16] K. Lai, L. Bo, X. Ren, and D. Fox, "Sparse distance learning for object recogni-

tion combining rgb and depth information," in IEEE International Conference

on on Robotics and Automation, 2011.

[17] "Microsoft kinect. http://www.xbox.com/en-us/kinect."

[18] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, "Object
detection with discriminatively trained part-based models," IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 32, pp. 1627-1645, 2010.

[19] H. Zhang, J. E. Fritts, and S. A. Goldman, "Image segmentation evaluation:
A survey of unsupervised methods," Comput. Vis. Image Underst., vol. 110,
pp. 260-280, May 2008.

[20] C. R. Brice and C. L. Fennema, "Scene analysis using regions," Tech. Rep. 17,
Al Center, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, Apr

1970.

[21] T. Malisiewicz and A. A. Efros, "Improving spatial support for objects via multi-

ple segmentations," in British Machine Vision Conference (BMVC), September

2007.

[22] D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space

analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, pp. 603-619, May
2002.

[23] P. Felzenszwalb and D. Huttenlocher, "Efficient graph-based image segmenta-
tion," International Journal of Computer Vision, vol. 59, Sept. 2004.

[24] D. Holz, S. Holzer, and R. B. Rusu, "Real-Time Plane Segmentation using RGB-
D Cameras," in Proceedings of the RoboCup Symposium, 2011.

[25] D. Holz and S. Behnke, "Fast range image segmentation and smoothing using

approximate surface reconstruction and region growing," in International Con-

ference on Intelligent Autonomous Systems, (Jeju Island, Korea), 2012.

78

[26] M. A. Fischler and R. C. Bolles, "Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography,"
Communications of the ACM, vol. 24, no. 6, pp. 381-395, 1981.

[27] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kip-
man, and A. Blake, "Real-time human pose recognition in parts from single
depth images," in Computer Vision and Pattern Recognition, June 2011.

[28] J. Strom, A. Richardson, and E. Olson, "Graph-based segmentation for colored
3D laser point clouds," in Proceedings of the IEEE RSJ International Conference
on Intelligent Robots and Systems (IROS), October 2010.

[29] K. Lai, L. Bo, X. Ren, and D. Fox, "Detection-based object labeling in 3d scenes,"
in IEEE International Conference on on Robotics and Automation, 2012.

[30] M. Grundmann, V. Kwatra, M. Han, and I. Essa, "Efficient hierarchical graph
based video segmentation," in IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2010.

[31] A. Abramov, J. Papon, K. Pauwels, F. Wrgtter, and B. Dellen, "Depth-supported
real-time video segmentation with the kinect," in IEEE workshop on the Appli-
cations of Computer Vision (WACV), 2012.

[32] L. Zhang, B. Curless, and S. M. Seitz, "Rapid shape acquisition using color
structured light and multi-pass dynamic programming," in The 1st IEEE Inter-
national Symposium on 3D Data Processing, Visualization, and Transmission,
pp. 24-36, June 2002.

[33] C.-K. Liang, L.-W. Chang, and H. H. Chen, "Analysis and compensation of
rolling shutter effect," Trans. Img. Proc., vol. 17, pp. 1323-1330, Aug. 2008.

[34] "Softkinetic depthsense. http://www.softkinetic.com/solutions/depthsensecameras.aspx."

[35] S. Hemachandra, T. Kollar, N. Roy, and S. Teller, "Following and interpreting
narrated guided tours," in Proceedings of the IEEE International Conference on
Robotics and Automation, (Shanghai, China), 2011.

[36] "Openni. http://www.openni.org."

[37] R. B. Rusu and S. Cousins, "3d is here: Point cloud library (pcl)," in Proceed-
ings of the IEEE International Conference on Robotics and Automation (ICRA),
(Shanghai, China), May 9-13 2011.

[38] A. R. Smith, "Color gamut transform pairs," SIGGRAPH, May 1978.

[39] G. Strang, Introduction to Linear Algebra. Wellesley-Cambridge Press, sec-
ond ed., 1998.

79

[40] M. E. Wall, A. Rechtesteiner, and L. M. Rocha, Singular Value Decomposition
and Principal Component Analysis, pp. 91-109. A Practical Approach to Mi-
croarray Data Analysis, Academic Publishers, 2003.

[41] P. Jaccard, "Etude comparative de la distribution orale dans une portion des
alpes et des jura," in Bulletin del la Socit Vaudoise des Sciences Naturelles,
vol. 37, pp. 547-579, 1901.

80

