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Abstract

Physiological control systems involve multiple interacting variables operating in feedback loops
that enhance an organism's ability to self-regulate and respond to internal and external disturbances.
The resulting multivariate time-series often exhibit rich dynamical patterns, which are altered under
pathological conditions. However, model identification for physiological systems is complicated by
measurement artifacts and changes between operating regimes. The overall aim of this thesis is to
develop and validate computational tools for identification and analysis of structured multivariate
models of physiological dynamics in individual and cohort time-series.

We first address the identification and stability of the respiratory chemoreflex system, which
is key to the pathogenesis of sleep-induced periodic breathing and apnea. Using data from both
an animal model of periodic breathing, as well as human recordings from clinical sleep studies,
we demonstrate that model-based analysis of the interactions involved in spontaneous breathing can
characterize the dynamics of the respiratory control system, and provide a useful tool for quantifying
the contribution of various dynamic factors to ventilatory instability. The techniques have suggested
novel approaches to titration of combination therapies, and clinical evaluations are now underway.

We then study shared multivariate dynamics in physiological cohort time-series, assuming that
the time-series are generated by switching among a finite collection of physiologically constrained
dynamical models. Patients whose time-series exhibit similar dynamics may be grouped for mon-
itoring and outcome prediction. We develop a novel parallelizable machine-learning algorithm
for outcome-discriminative identification of the switching dynamics, using a probabilistic dynamic
Bayesian network to initialize a deterministic neural network classifier. In validation studies involv-
ing simulated data and human laboratory recordings, the new technique significantly outperforms
the standard expectation-maximization approach for identification of switching dynamics. In a clin-
ical application, we show the prognostic value of assessing evolving dynamics in blood pressure
time-series to predict mortality in a cohort of intensive care unit patients.

A better understanding of the dynamics of physiological systems in both health and disease may
enable clinicians to direct therapeutic interventions targeted to specific underlying mechanisms. The
techniques developed in this thesis are general, and can be extended to other domains involving
multi-dimensional cohort time-series.

Thesis Supervisor: George C. Verghese
Title: Professor, EECS, MIT

Thesis Supervisor: Atul Malhotra
Title: Associate Professor, Medicine, Harvard

3



4



Acknowledgments

To my Parents,
For their Uncompromising Dedication to

the Cause of Education in the Face of Adversity.
And to Andre,

For his Pure Heart and Curious Mind!

I wish to acknowledge those individuals who have been an indispensable source of support to

me throughout the years. First and foremost, I would like to acknowledge members of my commit-

tee for trusting me with my endless explorations, and providing the crucial guidance when needed:

Professor Atul Malhotra's friendly guidance, generous support, and constant encouragement have

made this thesis possible, and I am forever grateful to him.
Professor George Verghese has been an excellent mentor and a truly compassionate individual. His

legendary dedication to education and caring for students, at a very personal level, is one of the

greatest treasures the EECS department at MIT has to offer.
Professor Roger Mark provided me with a research group and an office ("a second home"), when

I most needed one. Roger's door was always open for help, whether it was for academic advising

or for student's personal issues. Roger and Dottie were the most caring housemasters at the Sidney

Pacific graduate residence, where I spent my first two years at MIT. Dr. Mark's passion for physiol-

ogy inspired many students, including myself, to pursue a career in biomedical research.

Professor James Butler was simply inspirational! I learned more than a few things about "critical

thinking" from him, which I will cherish for the rest of my life. Jim's expertise in pulmonary phys-

iology has been invaluable to the design and implementation of several of the studies presented in

this thesis.

I am very grateful to two very special individuals- Farah Flaugher and Terry Flaugher- my

dear aunt and uncle, for their unconditional support and love; that I will treasure for the rest of my

life! I also would like to thank my brother, Shaya, for being my greatest source of support as we

embarked on a risky journey to the United States over a decade ago.

I would like to thank the many teachers and professors who have graciously provided me with

their guidance and wisdom throughout my life:
I'm very grateful to my first teacher, Mr. Askhari, who taught me the Persian alphabet, and basic

arithmetic. Upon our arrival in the United States, my brother and I both benefited greatly from the

teachers and professors at the University of Central Oklahoma (UCO). In particular, Professor Dan

Endres was.a great source of encouragement and support. His mathematics competitions and en-

couragement set me on a path to majoring in mathematics as an undergrad. Professor Mark Yeary,
at the University of Oklahoma (OU), was my first true academic role model. I was extremely priv-

ileged to have him as my mentor. With his encouragement and support, I wrote my first academic

paper, and that set me on a path to pursue a career in academics. I am also very grateful to Pro-

fessor Murad Ozaydin, from the Department of Mathematics at OU, for mentoring me through

a special postgraduate program in signal processing and computational and applied mathematics

(SIGCAM). My most heartfelt gratitude goes to Dr. Gari Clifford for introducing me to the field

of physiological signal processing. Gari was a highly enthusiastic teacher and a great insightful

communicator. His willingness to sit down and discuss career paths and projects with students from

all walks of life, and his philosophical disposition towards openness and sharing in scientific collab-

orations, made him an invaluable asset for MIT and a great mentor for the students in our lab and

5



beyond. I also would like to thank Professor Ary Goldberger and Dr. Madalena Costa (of Beth
Israel Deaconess Medical Center) for their openness to discuss ideas and provide guidance. Again
I'm grateful to Gari for introducing me to such amazing individuals in the MIT and Harvard arenas,
and at scientific conferences. Professor Ryan Adams, Harvard School of Engineering, has been
instrumental in shaping my research direction towards the last year of my PhD. I benefited greatly
from his willingness to meet on a regular basis to discuss the application of machine-learning to
computational physiology.

I also would like to acknowledge those colleagues without whose help this work could not have
been possible:
I am grateful to Dr. Thomas Heldt, for kindly providing the tilt-table data and his willingness
to explain difficult physiological concepts. I would also like to thank Dr. Faisal Kashif for his
insightful discussions and his encouragements. Special thanks are due to Dr. Brad Edwards for
patiently teaching me about respiratory physiology, and his openness to share data (in particular, for
his amazing experiments on a lamb model of apnea). It has been a great privilege to work with Dr.
Edwards, and to get to know him at a personal level. I learned so much from Brad and Dr. Scott
Sands about how to prepare scientific manuscripts and communicate abstruse scientific ideas. I'm
also very thankful to the other members of the Malhotra Lab at the Harvard Medical School, Drs.
Andrew Wellman, Robert Owens, Lisa Campana, Julian Saboisky, and others. I would like to
specially acknowledge Pam DeYoung for her encouraging words and acts of kindness. I have also
truly enjoyed and benefited from the mathematics and neuroscience-related discussions with Drs.
Ben Polletta and Bob Schafer, and look forward to continuing collaborations in the coming years.

I am very thankful to the members of the LCP group at MIT-HST: Drs. Leo Celli, Joon Lee,
Li-wei Lehman, Dan Scott, Ikaro Silva, and George Moody, as well as, Mauricio Villarroel and
Ken Pierce, for all the efforts they have put into the MIMIC and the Physionet databases, and for
their philosophy of sharing and their readiness to provide help whenever needed. I have enormously
benefited from all of their knowledge and expertise in Linux, Matlab, as well as their knowledge of
sailing and life!

My friends have kept me going all these years, making my life more interesting and fun, and for
that I am so grateful to:
Special thanks go to my dear friend, Ibon Santiago: "Les amis sont des compagnons de voyage, qui
nous aident a avancer sur le chemin d'une vie plus heureuse." Ibon's commitment to human beings,

loving, and forgiving is one of the most precious sources of inspiration that I will take away from

my time at MIT. Igor Iwanek was and always will be a breath of fresh air; thank you for all the
Salsa outings! I would also like to take this opportunity to sincerely thank my other friends: Mona
Khabazan, Gina Marciano, Dr. Manjola Ujkaj, Dr. Cosette Chichirau, Dr. Hila Hashemi,
Rene Lucena, Dr. Dimitris Baltzis, Kevin Brokish, and so many other wonderful friends at MIT
and Harvard whose names may have escaped me temporarily.

This research was partially made possible by the National Institutes of Health (NIH) T32 train-

ing grant (HL07901). The contents of this thesis are solely my responsibility and do not represent

the views of NIH or any other legal entity.

"Alas", said the mouse, "the whole world is growing smaller every day. At the beginning it was so big
that I was afraid, I kept running and running, and I was glad when I saw walls far away to the right and left,

but these long walls have narrowed so quickly that I am in the last chamber already, and there in the corner

stands the trap that I must run into." "You only need to change your direction," said the cat, and ate it up.
-Kafka little fable

6



Contents

1 Introduction

1.1 Motivations for Study of Dynamics in Physiological Systems . . . . . . . . . . . .

1.1.1 Chemoreflex Feedback Loop and Ventilatory Instability . . . . . . . . . .

1.1.2 Baroreflex Feedback Loop and Control of Heart Rate and Blood Pressure .

1.1.3 Clinical Decision Support and Mortality Prediction . . . . . ..

1.2 Dynamical Systems in Physiology . . . . . . . . . . . . . . . . . . .

1.2.1 Time-series Modeling in Patient Cohorts . . . . . . . . . . .

1.2.2 Switching Dynamical Systems and Cohort Time-series . . . .

1.3 Document Outline and Thesis Contributions . . . . . . . . . . . . . .

2 Closed-loop Identification and Analysis of Physiological Control Systems

2.1 Introduction....................................

2.2 Multivariate Autoregressive Modeling . . . . . . . . . . . . . . . . .

2.2.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . .

2.2.2 Transfer Path Functions . . . . . . . . . . . . . . . . . . . .

2.2.3 Fluctuation Transfer Functions . . . . . . . . . . . . . . . .

2.2.4 Parametric Power Spectra . . . . . . . . . . . . . . . . . . .

2.3 Linear Dynamical Systems and State-Space Representation . . . . . .

2.3.1 Inference in Linear Dynamical Systems . . . . . . . . . . . .

2.3.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . .

2.3.3 Selective Modal Analysis . . . . . . . . . . . . . . . . . . . .

2.4 Modeling Nonstationary Dynamics and Measurement Artifacts . . . .

2.4.1

2.4.2

Kalman Filtering for Modeling Nonstationary MVAR Processes

Signal Quality Indices . . . . . . . . . . . . . . . . . . . . .

. . . . . . 18

. . . . . . . 19

. . . . . . . 20

. . . . . . . 21

. . . . . . . 22

25

. ...... 25

. . . . . . . 25

. . . . . . . 27

. . . . . . . 27

. . . . . . . 28

. . . . . . . 29

. . . . . . . 30

. . . . . . . 31

. . . . . . . 32

. . . . . . . 32

. . . . . . . 34

. . . . . . 34

. . . . . . . 35

7

15

15

17

18



2.5 A ppendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.1 Derivation of the Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.2 Notes on Stability and Effective Memory of the Kalman Filter . . . . . . . 38

2.5.3 Constrained Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . 39

2.5.4 Eigenvalue Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . 40

3 Closed-loop Identification of the Respiratory Control System 41

3.1 PART I: Modeling Stationary Dynamics in a Lamb Model of Periodic Breathing . 41

3.1.1 Methods and Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Trivariate Autoregressive Modeling . . . . . . . . . . . . . . . . . . . . . 46

3.1.3 Calculation of Controller, Plant, and Loop Gain . . . . . . . . . . . . . . . 47

3.1.4 Impact of External Disturbances on Ventilatory Variability: Role of Loop

Gain... ... ....... ...... .............. ..... . . .. 47

3.1.5 Selective Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.6 Signal Power as a Measure of Variability . . . . . . . . . . . . . . . . . . 48

3.1.7 Data Analysis and Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.8 Respiratory Variables and Experimentally Derived System Properties . . . 49

3.1.9 Trivariate Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.10 D iscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Part II: Modeling Nonstationary Dynamics in Human Research Polysomnography

R ecordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 Experimental Setup and Methods . . . . . . . . . . . . . . . . . . . . . . 63

3.2.2 Adaptive Calculations of Controller, Plant, and Loop Gain . . . . . . . . . 66

3.2.3 Respiratory Variables and Experimentally Derived System Properties . . . 69

3.2.4 Effect of PAV on Controller, Plant, and Loop Gain . . . . . . . . . . . . . 69

3.2.5 Baseline Controller, Plant, and Loop Gain in OSA vs. Controls . . . . . . 70

3.2.6 D iscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 A ppendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.1 Model Order Selection and Data Segmentation . . . . . . . . . . . . . . . 72

3.3.2 Window Size Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Discovery of Shared Dynamics in Multivariate Cohort Time Series 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8



4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Modeling Switching Dynamics in Cohort Time Series . . . . . . . . . . . . . .

4.2.1 Switching Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . .

4.2.2 EM for Parameter Learning in Switching Dynamical Systems . . . . .

4.2.3 Switching Dynamical Systems for Feature Extraction and Prediction . .

4.3 D atasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3.1 Cardiovascular Simulation . . . . . . . . . . . . . . . . . . . . . . . .

4.3.2 Tilt-Table Experiment . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3.3 MIMIC Database of Intensive Care Unit Patients . . . . . . . . . . . .

4.3.4 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4 R esults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.1 A Simulated Illustrative Example . . . . . . . . . . . . . . . . . . . .

4.4.2 Tilt-Table Experiment . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.3 Time-series Dynamics and Hospital Mortality . . . . . . . . . . . . . .

4.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Learning Outcome-Discriminative Dynamics in (

5.1 Introduction . . . . . . . . . . . . . . . . . .

5.2 Outcome-Discriminative Learning . . . . . .

5.3 Derivatives of the Regression Layer . . . . .

5.3.1 Binary Outcomes . . . . . . . . . . .

5.3.2 Multinomial Outcomes . . . . . . . .

5.4 Derivatives of the Switching Kalman Filter

5.4.1 Filtering Step . . . . . . . . . . . . .

5.4.2 Smoothing Step . . . . . . . . . . . .

5.5 Error Gradient Calculations . . . . . . . . . .

ohort Time Series

5.5.1 Error Gradient with Respect to Smoothed Switching Variables

5.5.2 Error Gradient with Respect to Filtered Switching Variables .

5.5.3 Error Gradient with Respect to Filtered State Variables . . . . .

5.5.4 Error Gradient with Respect to Model Parameters . . . . . . . .

5.6 Optim ization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.6.1 EM-based Initialization . . . . . . . . . . . . . . . . . . . . . .

9

75

77

78

78

79

79

79

79

82

82

84

84

84

84

86

89

. . . . . 89

. . . . . 89

. . . . . 92

. . . . . 92

. . . . . 93

. . . . . 94

. . . . . 94

. . . . . 95

. . . . . 96

. . . . . 96

. . . . . 97

. . . . . 97

. . . . . 98

. . . . . 98

. . . . . 99

. . . . . . . . . . . . . .



5.6.2 Notes on Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Some Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7.1 Simulated Time-Series with Multinomial Outcomes . . . . . . . . . . . . . 100

5.7.2 Multinomial Decoding of Posture: Tilt-Table experiment . . . . . . . . . . 102

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.9 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.9.1 Analytical Derivatives of the Kalman Filter . . . . . . . . . . . . . . . . . 106

5.9.2 Analytical Derivatives of the Filtered Switching Variables . . . . . . . . . 109

5.9.3 Analytical Derivatives of the Collapse Function . . . . . . . . . . . . . . . 110

5.10 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.10.1 Details of the Simulated Time-series . . . . . . . . . . . . . . . . . . . . . 110

6 Conclusion and Future Work

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . .

113

113

114

10



List of Figures

1-1 Sleep-induced periodic breathing in a human subject. . . . . . . . . . . . . . . . . 16

1-2 Dynamic regulation of heart rate and blood pressure. . . . . . . . . . . . . . . . . 17

2-1 A fully connected three-node network. . . . . . . . . . . . . . . . . . . . . . . . . 28

3-1 Schematic diagram of the closed-loop respiratory control system. . . . . . . . . . . 42

3-2 Emergence of periodic breathing post-hyperventilation, before (A) and after (B)

administration of domperidone. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3-3 Transfer path analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3-4 Comparison of average transfer path gain magnitudes within the MF band between

the control and domperidone studies. . . . . . . . . . . . . . . . . . . . . . . . . 52

3-5 Comparison of experimental results and model-based findings using spontaneous

breathing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3-6 fluctuation transfer function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3-7 Power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3-8 Selective modal analysis results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3-9 Effect of PAV on the chemoreflex feedback loop. . . . . . . . . . . . . . . . . . . 65

3-10 Example of recorded waveforms and derived time-series. . . . . . . . . . . . . . . 66

3-11 Signal quality index for CO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3-12 Adaptive estimation of controller, plant, and loop gain of the proposed chemoreflex

model. ........ ......................... .... ....... . . 68

3-13 Group comparisons of controller, plant, and loop gain (mixed control and OSA

subjects). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3-14 Polysomnographic waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

11



3-15 Group averages and standard deviations of the identified model parameters for the

control (white) and domperidone (grey) conditions. . . . . . . . . . . . . . . . . . 73

4-1 Graphical model representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4-2 Simulation study of the cardiovascular system . . . . . . . . . . . . . . . . . . . . 80

4-3 Tilt-table study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4-4 Example time-series from the tilt-table experiment. . . . . . . . . . . . . . . . . . 83

5-1 Example simulated time-series from four different categories. . . . . . . . . . . . . 90

5-2 Information flow in a switching linear dynamic system with an added logistic re-

gression layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5-3 Transition diagram for the four categories . . . . . . . . . . . . . . . . . . . . . . 101

5-4 Comparison of EM and supervised-learning. . . . . . . . . . . . . . . . . . . . . . 101

5-5 10 fold cross-validation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5-6 Average confusion matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5-7 Physiological interpretation of learned dynamics . . . . . . . . . . . . . . . . . . . 105

12



List of Tables

3.1 Baseline variables and experimentally derived system parameters. . . . . . . . . . 55

3.2 Subject-by-subject comparison of loop gain magnitudes and cycle-durations . . . . 56

3.3 Break-down of respiratory variables for control and OSA subgroups. . . . . . . . . 69

4.1 In-hospital mortality prediction (10 fold cross-validated). . . . . . . . . . . . . . . 85

4.2 In-hospital mortality prediction, broken down by care unit. . . . . . . . . . . . . . 85

4.3 Thirty-day mortality prediction (10 fold cross-validated). . . . . . . . . . . . . . . 86

4.4 Thirty days mortality prediction, broken down by care unit. . . . . . . . . . . . . . 86

13



14



Chapter 1

Introduction

1.1 Motivations for Study of Dynamics in Physiological Systems

Feedback and adaptation are key characteristics of physiological systems, which are confronted by

the task of operating under the influence of continuously changing internal and external factors.

For instance, the human respiratory system has to adapt to extreme changes in metabolic demand

that spans a wide spectrum between quiet sleeping and active exercise. To maintain adaptabil-

ity, physiological systems have to integrate sensory inputs of varying modality and across multiple

time-scales, to produce timely and appropriate responses. For example, afferent feedback to the

respiratory centers in the brainstem include signals from the chest and lung stretch receptors (with

delays of the order of a few hundred milliseconds), and the carotid body and the brainstem chemore-

ceptors (with delays of the order of a few seconds to minutes, respectively). As a consequence of

complex feedback interactions among physiological variables, physiological systems exhibit rich

dynamical patterns, ranging from periodic oscillations (for an example see Fig. 1-1), to rhythms

with differing periodicities, to chaotic and noise-like fluctuations. These patterns are altered under

pathological conditions, with the appearance of, for example, periodic oscillations at time-scales

that are not typically present in normal subjects (e.g., Cheyne-Stokes breathing in congestive heart

failure patients), or the loss of rhythmicity in normally rhythmic processes (e.g., atrial or ventricular

fibrillation replacing normal sinus rhythm) [1].

A central premise of mathematical modeling in "systems physiology" is the idea that patho-

logical dynamics result from an otherwise intact physiological control system operating within an

undesirable region of its parameter space [1]. For instance, the periodic breathing pattern shown

in Fig. 1-1 is generally attributed to a chemoreflex feedback loop with hypersensitive chemosen-

15
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Figure 1-1: Sleep-induced periodic breathing in a human subject.
Measurements of respiratory flow (A), tidal volume (B), chest movements (C), partial pressure of
CO 2 in exhaled air (D), oxygen saturation (E). The waxing and waning pattern of breathing
followed by apnea, apparent in the tidal-volume signal, is accompanied by a drop in blood oxygen,
rise in blood CO 2 concentration, and often an arousal at the end of each bout of apnea. These
arousals are generally marked by an increase in sympathetic activity and an increase in blood
pressure that often carries over to the daytime. The remarkable periodicity of the breathing patterns
depicted above is generally attributed to a hypersensitive or unstable chemoreflex control system.

sors [2]. Therefore, understanding the mechanisms involved in healthy and unhealthy dynamics

enables clinicians to direct therapeutic interventions at the specific underlying causes. A primary

goal of systems physiology is to understand the physiological changes in system dynamics that oc-

cur as a result of administration of drugs, mechanical interventions in the function of organs, or

due to physiological changes that accompany aging and disease. Therefore, given measurements

of physiological variables, a system physiologist aims to identify the dynamics governing their in-

teraction, for example to quantify the effects of interventions on unobserved system variables (e.g.,

"drug X enhances chemosensitivity"), or to predict system response to interventions (e.g., "patient

Y will likely exhibit unstable breathing if exposed to a hypoxic gas mixture").

We now briefly discuss three illustrative examples of dynamical patterns in physiological time-

series, which we will use as our motivation for development and validation of computational tools

throughout this thesis.
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Figure 1-2: Dynamic regulation of heart rate and blood pressure.
Time series of of heart rate (HR; black) and mean arterial blood pressure (MAP; blue), measured at
the level of the heart, are shown for a 30 minute recording from a tilt-table experiment (Heldt et
al. [16]). The timings of three tilting events- slow tilt up and back to supine (green to cyan), fast
tilt up and back to supine (red to magenta), and standing and back to supine (yellow)- are marked
in sequence. Tilting is accompanied by a temporary drop in blood pressure, which gradually
returns to its baseline value, due to the compensatory response of the baroreflex control system.

1.1.1 Chemoreflex Feedback Loop and Ventilatory Instability

As a first example, let us consider breathing instabilities in the form of cyclic apnea or periodic

breathing (see Fig. 1-1). Periodic breathing is commonly observed in both preterm and term in-

fants [3-6], as well as in adult subjects at altitude [7-10], and in patients with congestive heart

failure [11-14]. Although the specific mechanisms underlying each condition may vary, ventilatory

instability can result from increases in the ventilatory sensitivity to hypoxia/hypercapnia (controller

gain), in the efficiency of gas exchange (plant gain), or in the circulatory delay between lungs and

chemoreceptors [8,12,13,15]; these together define the dynamic loop gain of the respiratory control

system. The concept of dynamic loop gain has been increasingly emphasized because it integrates

each of these physiological components into a single function of frequency that describes the stabil-

ity of the respiratory control system in the presence of delays in the loop. High loop gain generally

describes a system that is intrinsically less stable, whereas a low loop gain describes a more stable

system. Analysis of the underlying mechanism involved in periodic breathing is crucial for eluci-

dating the primary causes of instability, as well as predicting the response to therapies in individual

patients.
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1.1.2 Baroreflex Feedback Loop and Control of Heart Rate and Blood Pressure

In mammals, beat-to-beat values of heart rate (HR) and blood pressure (BP) are highly coupled

[17]. Baroreceptors- sensors located in the aortic arch and the carotid sinuses- are responsible for

sensing pressure changes of the arterial blood delivered to the systemic circulation and the brain,

and relaying the information to the autonomic centers in the brainstem. The term "baroreflex" refers

to the negative feedback mechanisms that counteract a drop (or an increase) in arterial BP with an

increase (or a decrease) in heart rate, peripheral resistance and venous tone. These changes in turn

are reflected in BP due to the mechanical properties (mainly, the capacitance and resistance) of the

aorta and large arteries via the so-called Windkessel effect of the systemic vasculature, and other

effects related to the cardiac filling [18].

As an illustrative example, consider the time-series of HR and mean arterial pressure (MAP)

from a tilt-table experiment [16] shown in Fig. 1-2. Note that the drop in MAP that follows tilting

(due to the transfer of blood towards the lower extremities) is followed by a subsequent increase

in HR, due to the baroreflex compensatory mechanisms. Moreover, closer visual inspection reveals

that the HR time-series exhibits slower oscillations during the tilting events, which are qualitatively

similar to the oscillations in the MAP time-series. The tilt-table test has been used by researchers

to study orthostatic stress (postural hypotension) [17, 19] and by clinicians to diagnose syncope (or

fainting due to low BP) [20]. Beat-to-beat models of HR and BP interactions have been used by

researchers to quantify the baroreflex sensitivity and its modifications in response to drugs, and as a

consequence of diseases and aging [21].

1.1.3 Clinical Decision Support and Mortality Prediction

Modern clinical data acquisition systems are capable of continuously monitoring and storing mea-

surements of vital signs, such as HR, BP, and respiration (sampled once per second or once per

minute), over multiple days of patient hospital stay. As noted previously, the time-series of vital

signs exhibit rich dynamical patterns of interaction in response to external perturbations (e.g., ad-

ministration of drugs or mechanical ventilation) and with onset of disease and pathological states

(e.g., sepsis and hypotension). Thus, one would expect to observe a diverse set of dynamical pat-

terns in time-series of vital signs, as the patients go through their course of treatment. However, the

large volume and the multidimensional nature of these time-series complicate the task of informa-

tion integration and assessment of patient progress by clinicians. The current patient acuity scores

18



(e.g., simplified acute physiology score or SAPS) only include single snap-shot measurements of

the vital signs.

Therefore, it is desirable to automatically identify the set of dynamical rules (or simply "dy-

namics") that govern the interactions among the vital signs within a patient cohort. Each of these

dynamics may be categorized as "healthy" or "unhealthy", and may reflect a common phenotypic

response to interventions. As such, the discovered dynamics may be useful for prognosis of patient

outcome (survival vs. mortality), or for predicting the onset of pathological states. Moreover, if the

identified dynamics are constrained to include physiological models of the underlying systems, they

may provide clinicians with a mechanistic explanation of the corresponding dynamical patterns, and

therefore may suggest personalized treatments to restore healthy dynamics.

1.2 Dynamical Systems in Physiology

In all three examples above, modeling efforts start by identifying some changing properties or at-

tributes of the system that are (1) deemed "important" to the underlying physics, or physiology, of a

phenomenon of interest (e.g., periodic breathing), and/or (2) are reflective of the system's response

to external (e.g., tilting and drop in BP) or internal perturbations (e.g., onset of sepsis and hypoten-

sion). Next, one either acquires measurements of those attributes (or system "variables") or infers

their values, and tracks them through time. For instance, in the case of the respiratory control sys-

tem previously discussed, a researcher may obtain measurements of volume of inspired air, as well

as the concentration of CO 2 and 02 in the inspired and expired air (see Fig. 1-1). Depending on the

characteristic time-scale of the underlying mechanisms contributing to the phenomenon of interest,

the researcher may extract auxiliary system attributes at coarser levels; for example, via averaging

the volume of air over a breath cycle to obtain cycle-averaged time-series of ventilation (also known

as minute ventilation).

A mechanistic understanding of the system requires understanding the patterns of interaction

among the system variables, and often implies the ability to make predictions about their future

values. Therefore, the task of learning in system identification is to reveal the time-dependent

rules or dynamics that describe how the future state of a system evolves from its current values,

where by "state" we mean a set of (observed or latent) attributes of the system that summarize all

we need to know about the system to predict its evolution through time. Then, the problem of

inference in system identification is to estimate the system state, given the system dynamics and
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observations/measurements of the system variables.

1.2.1 Time-series Modeling in Patient Cohorts

While the examples discussed in the previous sections illustrate the role that the dynamics of in-

teractions among the vital signs play in maintaining a healthy cardiovascular function, more subtle

changes to the healthy dynamics of the vital signs may act as an early sign of adverse cardiovascular

outcomes. For instance, traditional and nonlinear indices of HR variability (i.e., beat-to-beat fluctu-

ations in heart rate) have been shown to be associated with mortality after myocardial infarction in

large cohort studies (several hundred to thousands of patients) [22]. However, these studies fall short

of assessing the multivariate dynamics of the vital signs, and do not yield any mechanistic hypothe-

sis for the observed deteriorations of normal variability (that is, they are solely phenomenological).

This is partially due to the inherent difficulty of parameter estimation in physiological time-series,

where one is confronted by nonlinearities (including rapid regime changes), and measurement arti-

facts and/or missing data, which are particularly prominent in ambulatory recordings (due to patient

movements) and bedside monitoring (due to equipment malfunction). Therefore, in preparation for

system identification and parameter fitting, the current paradigm is to isolate stationary segments of

the time-series, either by using heuristic rules or statistical tests of stationarity. Next, the researcher

may (1) assume simple linear relationships among the system variables and use well-established

tools from linear system theory for system identification and parameter fitting [23-26], or (2 use

phenomenological/descriptive indices of complexity (e.g., entropy) to quantify the effects of inter-

ventions [27,28]. The linear techniques commonly used have the advantage of providing a more

mechanistic description of the system (e.g., using heart rate and blood pressure time-series to infer

the baroreflex sensitivity), while the nonlinear descriptors are capable of capturing a richer set of

dynamical behaviors, but often lack physiological interpretability in terms of specific underlying

mechanisms.

While traditional system identification techniques typically rely on a system's response to ex-

ternal excitations for parameter estimation, external interventions can often alter a subject's physio-

logical state and inadvertently affect the outcomes of physiological experiments. However, due to a

large body of accumulated physiological research literature, system identification in physiology has

the advantage of having access to informative priors. For instance, when modeling the chemoreflex

system, we know that the arterial 02 and ventilation are tightly coupled (an increase in ventilation

results in an increase in arterial 02 and a decrease in arterial 02 is typically followed by an increase
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in ventilation). Moreover, similar but inverse relationships exist between arterial CO 2 and ventila-

tion. As a result, arterial 02 and CO 2 are highly anti-correlated, but due to indirect causes (they're

both influenced by ventilation). In physiological system identification, a researcher may include

such prior knowledge of physiology in the system identification and parameter estimation process,

by fixing the coefficients of interactions among arterial 02 and CO 2 at zeros (or within the Bayesian

framework the researcher may place a prior distribution that is highly peaked around zero on the

CO 2-0 2 interaction terms).

1.2.2 Switching Dynamical Systems and Cohort Time-series

A central aim of the current work is to develop a framework for automated discovery of evolving

dynamics in multivariate physiological time-series from large patient cohorts, such as the Multi-

parameter Intelligent Monitoring for the Intensive Care II (MIMIC II) database of over 30000 pa-

tients [29]. A central premise of our approach is that even within heterogeneous cohorts (with

respect to demographic and genetic factors) there are common phenotypic dynamics, corresponding

to "healthy" and "unhealthy" physiological states, that influence patient outcomes. Therefore, we

define two patients to be "similar" if the multivariate time-series of their vital signs exhibit similar

dynamics as the patients go through the course of their treatments, and are subjected to external and

internal perturbations (e.g., drugs, or sepsis-induced hypotension).

Specifically, we propose a framework based on the switching linear dynamical systems (SLDS)

literature, which allows for piecewise-linear approximation of nonlinear dynamics, as the under-

lying systems traverse through the various regions within their parameter space. These regions

may correspond to different equilibrium points within the phase-space of the underlying dynamical

systems, and/or may reflect a common phenotypic response to interventions. Importantly, the frame-

work allows for incorporation of physiologically constrained linear models (e.g., via linearization

of the nonlinear dynamics around equilibrium points of interest) to derive mechanistic explanations

of the observed dynamical patterns, for instance, in terms of directional influences among the inter-

acting variables (e.g., baroreflex gain or chemoreflex sensitivity), and their individual contributions

to the observed system oscillations and/or instability.
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1.3 Document Outline and Thesis Contributions

In this thesis, I present a series of techniques for identification and analysis of physiological control

systems:

* Chapter 2 presents a linear closed-loop technique for identification and analysis of physio-

logical control systems. The formulation includes multivariate autoregressive modeling and

its extensions to the state-space framework. The techniques developed in this Chapter are use-

ful for stability analysis and identification of sources of oscillations in complex physiological

systems involving multiple feedback loops. An extension of the technique to the case of non-

stationary systems is also discussed. A signal quality-based technique for robust parameter

estimation in the presence of recording artifacts is presented.

" In Chapter 3 we investigate the feasibility of using fluctuations in multivariate physiological

time-series to characterize (oscillatory) behaviors of the underlying systems about their rest-

ing stationary equilibrium points. Furthermore, we explore the utility of such characterization

to quantify system properties such as stability and the propensity to exhibit oscillatory outputs

in response to external disturbances. Using experimental data from an anesthetized, upper-

airway bypassed animal model of apnea, we develop a multivariate autoregressive model of

the respiratory chemoreflex control system, and use the identification techniques described in

Chapter 2 to infer the values of a number of latent factors contributing to breathing instability.

Furthermore, we show that together these factors are predictive of the animal's propensity for

unstable breathing (or periodic respiration) when subjected to experimental manipulations.

We then extend our chemoreflex characterization technique to the study of human subjects in

a clinical sleep study, where the presence of rapidly changing physiological states that occur

during sleep (e.g., sleep-wake transitions, arousal from sleep, changes in controller features

with sleeping position, etc.) requires modeling of nonstationary dynamics. We develop an

adaptive chemoreflex identification technique that incorporates measures of the quality of ex-

perimentally recorded signals into the parameter estimation step, thus mitigating the influence

of recording artifacts on the estimated model parameters. We validate our modified chemore-

flex identification technique in 21 human subjects, by demonstrating that the technique can

detect an increase in ventilatory controller gain produced via an experimental protocol; in-

volving a specialized form of ventilator support. The potential clinical significance of this
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work includes the ability to assess respiratory instability in patients with sleep disordered

breathing (e.g., Cheyne-Stokes breathing in congestive heart failure, obstructive sleep apnea

in adults, and neonatal apnea), and evaluation of weaning from mechanical ventilation in

critically ill patients.

* With the goal of modeling dynamical regime transitions in physiological time-series within a

patient cohort, Chapter 4 introduces the switching linear dynamical systems (SLDS) frame-

work. We then present an extension of the framework to incorporate physiological models of

the underlying systems, and to discover similar dynamical patterns across a patient cohort. We

validate our algorithms using human laboratory recording of HR and BP from a tilt-table ex-

periment, where multiple dynamical patterns are known to exist within the individual subject

time-series, as well as across the entire cohort (due to similar maneuvers involving postural

changes). Our results demonstrate that the SLDS technique can correctly detect the switching

dynamics in time-series of HR and BP, corresponding to various postural changes. Next, we

apply the technique to a subset of patients from the MIMIC II intensive care unit database

(including ~480 patients with minute-by-minute invasive BP measurements), with the goal

of predicting patient outcome variables of interest. We demonstrate that the evolving dynam-

ics of time-series contain information pertaining to survival and mortality of patients, both in

hospital as well as up to 30 days after hospital release.

* Chapter 5 describes an advanced machine-learning technique for outcome-discriminative

learning of dynamics within a patient cohort. The main idea of our approach is to present

the learning algorithm with the outcomes (or labels) corresponding to each time-series (e.g.,

survived vs. expired), and to learn time-series dynamics that are most relevant to the discrimi-

native task of distinguishing among the labels. Using the proposed algorithm we demonstrate

a significant improvement in decoding postural changes involved in the tilt-table experiment,

using the multivariate switching dynamics of HR and BP time-series.
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Chapter 2

Closed-loop Identification and Analysis

of Physiological Control Systems

2.1 Introduction

A central purpose of mathematical modeling in physiology is to link measurements of physiological

variables to the underlying mechanisms. This involves estimating the parameters or the state of the

system from multichannel recordings of the system variables. Here we provide an overview of the

class of multivariate autoregressive (MVAR) and state-space linear models for closed-loop identifi-

cation and analysis of physiological control systems. We present a set of tools for stability analysis,

as well as for identification of sources of instability and oscillations in physiological systems in-

volving multiple feedback loops. More specifically, the analysis tools will allow us to (1) determine

the characteristics of the individual pathways (or directional links) connecting two or more physi-

ological variables, and (2) assess the contributions of the individual system variables and links to

an observed phenomenon of interest (e.g., periodic oscillations within a certain frequency band).

Finally, we discuss a nonstationary extension of the MVAR models, and propose a robust parameter

estimation technique that weights each incoming measurement in proportion to a measure of signal

quality.

2.2 Multivariate Autoregressive Modeling

An MVAR model with maximal lag of P that describes the interactions among K physiological

variables can be represented by the following matrix equation:
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P

yt =L a~py-p + Wt ,(2.1)
p= 1

where yt is a column vector of size K x 1, the K x K matrices a(p) contain the autoregressive coef-

ficients, and w, is a K x 1 vector of unexplained residuals, generally defined to have zero mean and

covariance E. The integer subscript t is usually a time index, but could be (and in our work typically

is) a cycle index, e.g., for a cardiac or respiratory cycle. Models of this type have been successfully

used by researchers to model the cardiovascular [24,30,31] and respiratory [32,33] control systems,

with appropriate physiological constraints imposed on the model coefficients.

Example 1. A trivariate model that describes the interactions among three modeled ventilatory

measurements V, PCO2 and P02, which we shall discuss in more detail later in connection

with Fig. 3-1, is given by the following specifications:

VV avv (p) av,PCO2(p) av,PO2(p) W

y= PC02 , a(p) = aPCO2,V(p) aPC02,PC02(p) 0 Wt WPCO2

P02 ap 0 2 ,f(p) 0 aPO2,PO2(p) WP02

The index t here denotes the t-th respiratory cycle, and the indicated variables are the time

averages over the corresponding breaths. The matrices a(p) for p = 1 - --P represent the static

gains that relate yt-_ to yt; wt represents the variations in V, PCO2 and P02 that are not

explained by the chemical control system properties, and are therefore considered to be the

result of external stochastic disturbances to the system, i.e. noise. With these definitions, Eq.

(2.1) states that the values of V, PC02 and P02 at any respiratory cycle t are linear functions

of their values at P previous cycles, plus an independent random term w. Each variable is

therefore broken down into 4 components, incorporating the additive influence of its own

history, the histories of the other two variables, and noise. We assume that the residual vector

w is uncorrelated (i.e., is so-called white noise) across different breaths. We also assume

the individual elements are uncorrelated with each other and at each t, have mean value zero

and constant variances , okco, and aro2 , respectively. Thus, or is diagonal (although this

assumption can be relaxed). (In Chapter 3 we use this model to understand the mechanism of

ventilatory instability in a lamb model of periodic breathing.)
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2.2.1 Parameter Estimation

Least-square-error parameter estimation techniques for the class of MVAR models are well estab-

lished [34], and are implemented in computational packages such as MatlabTM (see Matlab func-

tion arx.m). A comparison of the various parameter estimation techniques is presented in Schlbgl

(2006) [35]. Moreover, constrained parameter estimation in Matlab is handled by simply passing a

list of fixed model coefficients to the arx function.

2.2.2 Transfer Path Functions

Using an identified MVAR model, one may seek to characterize the directional pathways con-

necting two variables. Equation (2.1) is a discrete convolution; in the frequency domain, this

becomes simply multiplicative. Define the Fourier transform of a time signal q(k) by Q(f) =

Ekq(k)exp(-2:r T-fk); here k indexes the time domain, and f indexes the frequency domain.

Our convention is to denote time domain variables in lower case, and transformed variables in up-

per case. Under the assumption that the signals involved are Fourier Transformable, the Fourier

transform of Eq. ((2.1)) is given by:

Y(f) = A(f)Y(f) + W(f). (2.2)

where from now on the dependence on frequency f will be omitted for notational simplicity. Note

that the summation over time in defining A(f) = EP a(p) exp(-2:r T- fp) includes only the

first P points, where P is the maximal lag or memory in the model of Eq. (2.1). The i-th row, j-th

column entry of A is denoted by Aij.

We now can write an expression for the individual components of the Y in Eq. (2.2):

Yi = TiYj] + Ti- iWi, (2.3)
j/i

where T i, the transfer path (TP) function from the j-th signal to the i-th signal, is defined as

Ai j.

Tjt= 1-A(2.4)

1 i, i = j.

The TP functions have physical units; for instance, if j has units of mmHg and i has units of Lmin-

then Tjei has the units of Lmin 1 (mmHg)' (which is the unit used to quantify chemosensitivity).
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Figure 2-1: A fully connected three-node network.
A physiological system (e.g., the chemoreflex feedback loop) can often conveniently be
represented as a network, where the nodes represent the physiological variables (e.g., ventilation,
arterial CO 2 and 02), and the connecting links represent the interactions between the variables (for
instance, the link connecting CO 2 to ventilation may represent the sensitivity of the chemosensors;
see also Fig. 3-1).

2.2.3 Fluctuation Transfer Functions

Solving for Y in Eq. (2.2) yields:

Y = (I -A)-'W -= HW, (2.5)

where H = (I-A) 1 is a K x K matrix of functions relating the fluctuations in the measured variables

to the sources of fluctuation, as defined in Eq. (2.1). Note that the individual components of H can

be written in terms of the TP functions defined in Eq. (2.4). For instance, for the three node network

shown in Fig. 2-1 we have:

Hji Hi,;

TjjT-i+T-+jT kT
I -LG( LG2

) -LG 3
) -LG~l) LG(2 )

- 1 1 2 2

I -LG ') -LG( 2
) -LG( 3

) _LG~l) -LG(2
1 1 1 2 2

ij;

j ,
(2.6)

where LG -= T Ti_>;, LG = Ti-4kT* j, LG = Ti_ kT 4 i, LG2 T Ti-kTk_+j, and LG 2

Ti_,;TjTkTi. Note that Mason's Rule [36] generalizes this expression to an arbitrary number of

nodes.

Example 2. For the chemoreflex example above, the components of H pertinent to the influence of
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external disturbances on V are given by

Hw _, = TVypV/(1-LG) [(Lmin-')/(Lmin-1)] (2.7)

HWCo02 (TPCO2-+PC2TPCO2 -)/(l-LG) [Lmin-'mmHg- 1] (2.8)

Hw _2 =-+ (TPO2--+PO2TP02-+9)l-LG) [Lmin-immHg-1] (2.9)

where

LG = Tv -+PcO 2TPco2-+V + Tf1_+PO2TPO2 -- = LGc0 2 + LGO2  (2.10)

Note that, this simplification is a result of the assumed absence of interaction between PCO2

and P02 (aPcO2,PO2 = aPO2,PCO2 = 0), which implies TPCO2-PO2 = TpO2->PCO2 = 0.

These equations show clearly that a loop gain near 1 amplifies the influence of the noise terms

WV, WPCO2 and WP02.

A measure of the maximum possible amplification achievable by any combination of external

disturbances entering the chemoreflex feedback loop is given by the matrix 2-norm of the H matrix

(denoted by |IH(f) |2). It is frequency-dependent, which implies that the system may selectively

amplify certain frequencies in the input disturbances. The location of these frequencies is deter-

mined by the poles of the H matrix which determine the natural frequencies of the system. For the

system under study the poles are given simply by the roots of the denominator 1 -LG in Eq. (2.6).

In general, the system poles are complex numbers of the form r exp(iO), with magnitude r > 0 and

angle 6. The system is stable if and only if all r < 1, i.e., if and only if all poles have magnitude

< 1.

2.2.4 Parametric Power Spectra

The fluctuation transfer functions are the building blocks that characterize the contribution of dif-

ferent sources of fluctuation to the power spectra of the individual signals. The power spectrum of

the vector time-series y, for the case of white noise residual and covariance E at each t, is given in

the frequency domain by [37]:

S HEHT, (2.11)
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where T denotes matrix or vector transpose.

Example 3. Under the assumption that the fluctuations are uncorrelated across the variables, the

covariance matrix E has zero off-diagonal elements and diagonal elements {af, , T} =

{ , 'Gc 2 1 UP02}. The diagonal elements of S give the power spectra of the corresponding

variables. For instance, the power spectrum of the fluctuations in ventilation is given by

S+__ = +HWPCcn Gk02 + IHwPC02-4V '90 2. (2.12)

This is a weighted combination of the powers due to each individual source of fluctuation,

with weights given by the squared magnitudes of the fluctuation transfer functions. Similarly,

the off-diagonal elements of the power spectral matrix S give the cross-power term between

each pair of variables in the V, PCO2 and P0 2 triple. Other derived quantities such as coher-

ence [37] can be similarly calculated from the entries of the S matrix.

2.3 Linear Dynamical Systems and State-Space Representation

State-space representations provide a compact and powerful framework for system modeling and

analyses; in particular, for characterizing the system response to perturbations in model parameters,

for instance as a result of drug administration or physiological state changes. The state-space ap-

proach provides a convenient framework for it allows us to quantify the influence of such parameter

changes on oscillations of interest and the overall system instability. Moreover, the framework has

the advantage of allowing us to conveniently model measurement noise and recording artifacts.

Every MVAR model can be described in a state-space form [38]. For example, one possible

state-space representation of Eq. (2.1) is given by:

xt+1 = Axt +et , (2.13)

yI = Cxt +vt, (2.14)

where the state variables x, state noise term e, transition matrix A and observation matrix C are
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defined as:

yt_ Iwt a(1) a(2) ... a(P) I

yt-2 0 0 .. 0 0

and vt represents a measurement noise process that is usually not present in the MVAR model. Un-

der the assumption that wt and vt are (white) Gaussian processes we have e ~ N(O, Q), with the

upper-right corner elements of Q equal to E and zero elsewhere, and v, ~ N(0, R). Eq. (2.13) repre-

sents a linear dynamical system (LDS). More generally, the state-space representation may include

nonlinear models of dynamics, and/or observation, as well as non-Gaussian state and measurement

noise [39].

2.3.1 Inference in Linear Dynamical Systems

The objective of inference is typically to make optimal estimates (in the minimum mean square

error sense) of the state of the system at every point in time, which requires determining state

conditional mean p, It and conditional covariance V,1, (Note, the subscript notation t It is a short-hand

for the estimate at time t, given all the observations up to and including time t). The solution to this

problem of inference is provided by the celebrated Kalman filter when only data up to current time

are used for inference, and the Rauch-Tung-Striebel algorithm (RTS; also known as the Kalman

smoother) when all the data are used for inference [40,41].

Appendix A (Section 2.5.1) provides a short derivation of the Kalman filter algorithm. In oper-

ator notation the Kalman filter can be represented as follows [41,42]:

(pt,, V,, V 1 |,1 1t) = KalmanFilter(p1,_1 |, 1, V_1It 1, yt; A, C, Q, R); (2.15)

for t=1 .. .T. Therefore, given the previous state mean and covariance (with initial values pol, V0 10),

a new measurement (y,), and the model parameters ({A, C, Q, R}), the Kalman filter operator

produces the optimal estimates, namely the conditional state mean, covariance, and (optionally) the

cross-covariance of the current and the previous state (the latter is used in the backward recursion

and by the parameter estimation procedure discussed in the next section). Similarly, the backward

recursion step of the Kalman smoother algorithm (or simply the Kalman smoother) in operator
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notation is given by [41,42]:

(9pT7, VtIr , Vt+1,t|7 ) = KalmanSmoother(Ap+1|r , Vt+I~ A1 , g Vt y , Vt+1|t+1, Vt+1,tlt+1 ; A, Q) ;

(2.16)

fort = T - 1.-- 1, and with the initial values (prir, VTiT, Vrr 1 7) given by the Kalman filter Eq.

(2.15).

2.3.2 Parameter Estimation

There are several classes of algorithms available for estimation of the parameters of an LDS

({A, C, Q, R, polo, Voio }), including the Stochastic Subspace Realization algorithm [43,44] and the

expectation-maximization (EM) algorithm [41,45]. In this work, we focus on the EM algorithm,

since it can be easily extended to the class of switching linear dynamical systems that we will discuss

later in this chapter.

EM is a two-pass iterative algorithm: (1) in the expectation (E) step we obtain the expected

values of the latent variables (or the state variables in the case of a LDS), and (2) in the maximization

(M) step we solve for the set of model parameters that maximizes the complete data log-likelihood.

The M-step for a LDS involves solving a series of least-squares problems involving matrices A, C,

Q, R. Note that, if the matrix of dynamics A is physiologically constrained, we will need to solve

a constrained least squares optimization problem, as discussed in the Appendix (Section 2.5.3).

Iteration through several cycles of the EM algorithm is guaranteed to yield the unique maximum

likelihood model parameters [45]. A Matlab implementation of the EM algorithm for parameter

learning in LDS is available at:

http://www.cs.ubc.ca/-murphyk/Software/Kalman/kalman.html.

2.3.3 Selective Modal Analysis

When the physiological system under study can be approximated using a LDS model, and the

system is not externally driven, the technique of selective modal analysis (SMA) [46] can be used to

assess the relative contributions of the individual state variables to the observed system oscillations.

In practice, SMA exploits the information embedded in the eigenvectors and eigenvalues of the

system to untangle the respective contributions of the various state variables to each oscillatory

mode of the system.
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From dynamical systems theory we know that the eigenvalues of the A matrix provide us with the

complete set of modes (or oscillatory frequencies) of the system. We shall assume the J eigenvalues

are distinct. It is straightforward to show that, for a given eigenvalue, the absolute value of the

component-wise product of its left and right eigenvectors quantify the relative contributions of each

state variable to the corresponding system mode [47]. Let li (row vector) and ri (column vector) be,

respectively, the j-th left and right eigenvectors of A, corresponding to the eigenvalue kj, defined

by:

Ar = Ajr, (2.17)

lIA = Aylj , (2.18)

for j = 1, 2, , J. Note that the eigenvectors are such that li r = 0 if i J j, and we shall assume

they are normalized such that l ri 1 . These eigenvectors allow us to write the undriven solution

to Eq. (2.13) as:

J

x, = Axo = E2L4(l'xo)rJ. (2.19)
j=1

(Note, t indexes discrete time steps, and in modal form we have x, = Atxo (Ej Ajr l)xo). The

Generalized Participation Factor matrix (P) for the j-th mode is defined as [46,47]:

P ,k, - rjlk,. (2.20)

We note the following interpretation of the participation factors:

" If xO = ri (i.e., starting in the subspace corresponding to the j-th mode) then from Eq. (2.19)

we have

x, Aj,(l'ri)ri = AIJ(lIr')rJ = ( X j. (2.21)
f'=1 k=1

Therefore, P measures the relative participation of the k-th state available in building the

time-response of the j-th mode. A large P value indicates that the j-th mode is very sensi-

tive to local feedback around the k-th state variable.

" The rate of change of any given eigenvalue Aj with respect to the apq element of the A matrix
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is given by

p= ril = Pq]p. (2.22)
pq

(for a proof see Appendix (Section 2.5.4).) Therefore, Pq ,pis a measure of the sensitivity of

the j-th system mode to variations in the apq element of the A matrix.

2.4 Modeling Nonstationary Dynamics and Measurement Artifacts

The modeling and analysis tools discussed so far assume that the underlying system parameters

and/or the characteristics of the state noise and the measurement noise do not change over time.

Next we discuss a nonstationary (or adaptive) extension of the (constrained) MVAR model discussed

in Section 2.2.

2.4.1 Kalman Filtering for Modeling Nonstationary MVAR Processes

To accommodate nonstationarity, we may let the autoregressive coefficients vary gradually over

time by imposing a random walk on the AR model coefficients [48]:

at41 = at + dt (2.23)

where a is a column vector of vectorized AR model coefficients: a = vec(a(1), - . a(P)). Then

the observation equation will take the following form:

yj = HtaI +wt , (2.24)

where yt is a K x 1 vector of modeled variables as defined in Eq. (2.1), Ht is a matrix of the

previous values of y (y,_1,...,y p) structured such that the multiplication of Ht by a, is equivalent

to the summation term in Eq. (2.1). The white-noise term d, is zero mean with covariance Dt, and

controls the degree of smoothness imposed on the at+, coefficients. The AR noise term wt is also

zero mean with covariance Et. Together Eqs. (2.23), (2.24) define a time-varying MVAR model

(in state-space form), and therefore the Kalman filter and smoother algorithms discussed in Section

2.3.1 can be used to solve for the AR coefficients a t = 1, -. , T

Note that in practice the covariance matrices Et and D, have to be set either a priori by the user
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or must be learned from the data. Assuming stationary noise, Cassidy and Penny [49] used the EM

algorithm discussed in Section 2.3.2 to learn the covariance matrices. In the case of non-stationary

noise, various heuristics have been proposed by researchers to update the covariance matrices (see

for instance [50]).

2.4.2 Signal Quality Indices

Note that, in contrast to the state-space formulation of the static MVAR process in Eq. (2.13),

the state-space formulation in Eqs. (2.23), (2.24) does not include separate noise terms for the

autoregressive noise and the measurement noise. Therefore, this formulation cannot distinguish

between nonstationary dynamics and nonstationarities that may occur due to measurement artifacts.

We propose a technique here to explicitly include information about the quality of measurements

within the inference step of the Kalman filter.

With a slight abuse of notation let -t denote the expected value of the AR coefficients given

the measurement stream y1, - - , yr. The Kalman filter estimate -t is given by (see Eq. (2.32) in

Appendix 2.5.1):

fi - i- 1 +Gr rr , (2.25)

where Gr is a weighting factor (also known as, Kalman gain) which is inversely related to the AR

noise covariance matrix E (note, the dependence on time is dropped, since for simplicity we assume

stationary noise), and r, = yt - Hta-1 is known as the prediction error. Intuitively, Eq. (2.25) states

that our best estimate at is a weighted combination of our previous estimate -t-1 and a second term

related to the discrepancy between our model prediction and the actual measurement.

Let us assume that we are given an index of quality for each measurement yt, denoted by SQIt

(SQI stands for signal quality index), which is a number between between zero (very poor mea-

surement quality) and one (excellent signal quality). We make the Kalman gain Gr to be directly

(although nonlinearly) proportional to SQIr, by modifying the E as follows [51]:

S=Eexp(1/SQI, - 1), (2.26)

E' is a monotonically decreasing function of the SQIt. The nonlinear weighting function that mul-

tiplies E approaches one for good quality measurements, at which point the modified covariance

matrix E' will be equal to Et. Note that, if separate signal quality measures are available for each of

the K measurements then the diagonal elements of the Et can be individually modified. For the sake
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of completeness, we summarize the modified Kalman smoother algorithm:

Initialization

Initialize 55l and V1l0, E, D and

Forward-Pass (Kalman Filter)

1. For t from I to T

2. Construct the data history matrix Ht

3. Compute: one step prediction of observation: Y = Ht-t-IIt-1

4. Compute residuals: rr = yt - Y t

5. Update E' according to Eq. (2.26)

6. Compute Kalman gain: Gt = V _H {HV i-1HT + E't)

7. Compute state estimate: ahr = ar-1|r-1 + Gr r

8. Compute estimated state covariance: V = (I -KH)Vir_1

10. Calculate a-priori estimated state covariance: V, I = Vtir + D,

END

Backward-Pass (Kalman Smoother)

Fort from T-1 to 1

Let Jt = VtltVt+1lt

1. Compute smoothed estimated state covariance:

VtIr = VtI + Jt(V+1|r -Vt )JT

2. Compute smoothed state estimate: a I = I +J(1 - ,

END

Note, the initial smoothed estimates at step T for the backward-pass are the final state

estimates for the forward-pass.

As noted earlier, the covariance matrices E and D can be learned from data using the EM algo-

rithm [49]. Given the state sequence from the inference step, the EM solution for E and D involves

solving two least squares problems [49]. However, inclusion of the SQIs slightly modifies the solu-

tion for E, since now less importance must be placed on noisy measurements, yielding a weighted

least squares problem, with the weight matrix taking the form of a T x T diagonal matrix with the

diagonal elements given by the SQIi.

One may show that the Kalman estimator effectively weights the past measurements in an ex-

ponentially decreasing manner (see Appendix, Section 2.5.2), with a rate inversely related to the
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covariance matrix D. Therefore, matrix D controls the degree of smoothness of the sequence of

estimated parameters. As such, if we have a priori knowledge of the time-scale of model parameter

variations, this information can be incorporated into the estimation procedure. In practice, this is

done by putting a Wishart prior on D [45,49].

2.5 Appendix

2.5.1 Derivation of the Kalman Filter

The Kalman filter provides recursive estimates of the state of a LDS as given by Eqs. (2.13), 2.14).

A simple derivation of the Kalman filter (under the assumption of Gaussian system variables) is

given by Brown and Hwang (1992) [40], and is summarized here. Our objective is to find the

optimal estimate of the state, given all the measurements up to and including time t; we denote this

estimate by xt ly,Y-1' , yo. With a slight abuse of notation let x, denote the state x conditioned

on the measurement stream Yt-1, Yt-2,- ,yo. Then the problem of state estimation is equivalent to

finding the probability distribution function (pdf) P(xt lyt). From Bayes rule we have:

P(yt Ixt)P(xt)P(x,|yr ) = .1  (2.27 )
P(y, )

Therefore, the task of estimating the state of the system at time t is reduced to finding the three pdfs

on the right-hand-side of Eq. (2.27). The Kalman filter starts by assuming we have an optimal prior

estimate, given all the observations up to time t - 1:

P(xt) ~ N(Xpr -1, Vt|1-1) (2.28)

It follows from Eq. (2.13) that p'ti,_1 = Atp 1 -lIt 1 and V 1 1 = A1V l- 1AJTQt. Next, given Eq.

(2.14) we arrive at the following pdf for yt:

P(yt) ~ N(Ci pty1, CtVt\t_1Cr + Ri). (2.29)

Finally, P(y xtIt_1) follows from the fact that if xt1t 1 is given, then the conditional pdf of yr is given

by

P(yt Ix,)~- N(CX pt- y 1, Rt). (2.30)
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Substituting Eqs. (2.28,2.29, and 2.31) into Eq. (2.27) yields the desired posterior distribution:

P(t lyr) ~N(CyIRt)N iC,.V ,1 C7-,) (2.31)
N(Cj I t _1,CtVt_1C|+ Rt)

This pdf has the mean and covariance:

XIt = IiIt-1+Gt(y-C,\A,_1), (2.32)

V = [(Vtlt_1)-' +CtTR,--Ct]-l

(I -G.C)V t- (2.33)

where G, is a weighting factor (also known as, Kalman Gain) and in given by

Gt = V,- 1Ct(CIV~t,t" +R)-1. (2.34)

Notice that according to Eq. (2.34) the gain factor Gr and the measurement noise covariance R are

inversely proportional. Thus, for large measurements noise (as R, goes to infinity) the gain factor

decreases (G, approaches zero). Therefore, in the presence of reliable observations of the state of

the system, the optimal estimator blends the new information with the a priori estimate with more

weighs given to the observation. Conversely, if credible observations are not available the optimal

estimate using all the data up to the current time is accepted as the new estimate of the state of the

system.

2.5.2 Notes on Stability and Effective Memory of the Kalman Filter

Assuming that the Kalman filter has reached a constant Gain condition (G, - G), Eq. (2.32) for the

mean of the estimated state can be alternatively expressed as follows:

pilt = (A - GCA) p-I I1 + Gyt, (2.35)

= Ft-| I t-+Gyt, (2.36)

= T29t-2|t- 2 +FGy-1 +Gy, (2.37)

-. -(2.38)
b-1

= Tbpt-b~I-b+G E Tyt-j, (2.39)
j=0

b-1

~ G ( iyt-ji (2.40)
j=0
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where F = (A - GCA). The approximation of the last step is justified as follows: for the Kalman

filter to be stable, the eigenvalues of the F matrix (the roots of the characteristic polynomial for

the Kalman filter) must all be less than one in absolute value [40]. The closer to zero these eigen-

values are, the less temporal information is used in the prediction process. This is evident from

Eq. (2.40) by observing that the older observations are weighted by progressively smaller weights,

since, |II|| > ||1||1 > ... > |F b-I11, where 11.f| refers to a the spectral norm.

2.5.3 Constrained Parameter Estimation

The following Matlab code solves a constrained least squares problem of the form minx | XA - BI 22

where X, A, and B are K x K matrices, and some of elements of the matrix X are assumed known

(typically set to zero). This type of problems are commonly encountered within the Maximization

step of the EM algorithm for the class of linear dynamical systems.

function X = ClampedLinearSolver(A, B, FixedList, FixedVals)

% solves minx 1/21 X A - B 122 subject to fixed entries given by FixedList and FixedVals.

% A and B are square matrices.
% X is assumed of the form (given a 3 x 3 matrix): [Xi X2 X3;X4 X5 X6 ;X7 X8 X9]

% FixedList: elements of X matrix that are assumed fixed
% FixedVals: values that the fixed elements of X assume.

BigA = kron(eye(size(A,l)),A');
B= B';

vecB = B(:) - sum(BigA(:,FixedList) .* repmat(FixedVals,size(BigA,1),1),2);

BigA(:,FixedList)= [];
X = ones(size(BigA,1),1);
Xind = 1:size(BigA,1);
Xind(FixedList)= [];
X(Xind) = BigA \ vecB;
X(FixedList)= FixedVals;
X = reshape(X,size(B,1),size(A,1))';
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2.5.4 Eigenvalue Sensitivity Analysis

Here we provide a proof of the equality relationship in Eq. (2.22). Note from Eq. (2.17) we have

Ar = )vr'. Therefore,

dA dri ;dx dri
- r'+A -- -- i~;

dapq dapq dapq dapq

Rearranging the terms we get:

dA dX; drI- ri 1- rJ-= (XjI -A) .r
dapq dapq dapq

Pre-multiplying by Ii causes right-hand-side of the above equality to vanish, yielding:

d2 r dA
dapq dapq

d, j lir =Ii dA rj
dapq dapq

pq r =Pip.
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Chapter 3

Closed-loop Identification of the

Respiratory Control System

The part I of this chapter uses data from an animal experiment, involving a lamb model of apnea

[52]. The part II of this chapter extends the analysis techniques used in part I to the study of human

subjects in a clinical sleep study.

3.1 PART I: Modeling Stationary Dynamics in a Lamb Model of Pe-

riodic Breathing

Ventilatory control instabilities in the form of cyclic apnea or periodic breathing are important in

a variety of pathological conditions, including Cheyne-Stokes breathing in congestive heart failure

[11-14], obstructive sleep apnea in adult humans [53-55], adult breathing at altitude [7-10] and in

neonates [3-6]. Although the specific mechanisms underlying each condition may vary, ventilatory

instability can result from increases in the ventilatory sensitivity to hypoxia/hypercapnia (controller

gain), in the efficiency of gas exchange (plant gain), or in the circulatory delay between lungs

and chemoreceptors [8, 12, 13, 15]. The concept of loop gain has been increasingly emphasized

because it integrates each of these physiological components into a single function of frequency

that describes the stability of the respiratory control system (see Fig. 3-1(A)). When there are

delays in the feedback loop, a high loop gain generally describes a system that is intrinsically less

stable, whereas a low loop gain describes a more stable system.

The role of loop gain in understanding respiratory control (and in particular, its link to instabil-
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A.

Ventil

Figure 3-1: Schematic diagram of the closed-loop respiratory control system.
A. The plant represents the gas-exchange dynamics of the lung. Inputs to the plant are the gas
tensions in mixed pulmonary capillary blood as well as the level of ventilation, and the outputs are
the alveolar/arterial gas tensions. The controller represents the aggregate response of the
respiratory pattern generator (RPG) to its inputs (including chemoreceptor outputs, wakefulness
drive, etc.). The disturbance term WVE represents random fluctuations in ventilation, for instance as
a by-product of noisy neural signal transmission from RPG, variations in upper airway/lung
compartment resistance and elastance, variations in the wakefulness drive, and higher cortical
inputs [5.6-58]. The disturbance terms WPCo2 and wPo2 signify other factors influencing
fluctuations in the blood gases, such as changes in metabolic rate, cardiac output, etc. The
frequency-dependent product of the plant, the controller gains, and the circulatory delay (not
shown here) characteristic is known as the loop gain of the system.
B. Closed-loop trivariate model of the ventilatory control system in the frequency domain,
modeling the relationships among the measured variables: V, PCO2 and P0 2 . For instance,

TPco2-+ represents the transfer gain of the pathway involving the C0 2 -specific chemoreflexes,
responding to fluctuations in PaCO2 by a (frequency-dependent) proportional change in minute
ventilation; and TVPco2 likewise specifies the action of CO2 exchange in the lung compartment.
Similarly, TV-+P 0 2 and Tp02-+ specify the feedforward and feedback components of the

0 2-specific loop. All modeled variables are subject to their own source of fluctuation (indicated by
the wiggly arrows). Chapter 2 (Section 2.2.2) describes a technique based on autoregressive
modeling for characterization of the individual transfer path functions.
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ity) has been recognized for many years [15,59]. However, the clinical potential of loop gain has

been limited by the fact that it depends upon complex dynamic interactions of central and peripheral

chemoreceptor control loops, circulatory delays, and the efficiency of CO 2 and 02 exchange in the

lung. These individual factors are cumbersome and impractical to measure directly [2]. Indirect

measures for assessing the risk of periodic breathing include proportional assist ventilation [60],

pressure support ventilation [61], and pseudorandom binary stimulation using CO 2 [32]. All exist-

ing techniques to characterize the loop gain of the respiratory control system require interventions

that alter breathing patterns and blood gases during either quiet wakefulness or sleep. By contrast,

in our study the same goal is achieved by taking advantage of spontaneous fluctuations in ventilation

V, and in respiratory gas tensions PCO2 and P0 2 [62,63].

The current study, also presented in [33], assessed spontaneous fluctuations in ventilation, end-

tidal CO 2 and end-tidal 02 using a trivariate autoregressive modeling technique, in order to derive

estimates of controller and plant gains for the feedback loops controlling both CO 2 and 02, and thus

the overall loop gain of the control system. We tested our method using data from spontaneously

breathing anesthetized lambs, before and after administration of domperidone, a drug previously

shown to increase the dynamic hypercapnic and hypoxic ventilatory responses, i.e., the associated

controller gains [52]. Crucially, if our method has validity, it must yield controller gains that are

comparable to published estimates of dynamic hypercapnic and hypoxic ventilatory responses in

the lamb. Further, the method would need to reveal an increase in overall loop gain, driven pre-

dominantly by an increase in the 0 2 -specific loop gain, following domperidone administration. In

addition to passing these tests, we show that spontaneous fluctuations in ventilation are determined

by the loop gain of the respiratory control system [53, 64, 65] and that our analysis closely pre-

dicts the cycle-duration of experimentally induced periodic breathing in lambs. Thus the concept

of loop gain provides a unifying framework that links the natural variability in ventilation during

spontaneous breathing to the cycle-duration of experimentally induced periodic breathing.

3.1.1 Methods and Experimental Setup

Chemoreflex Model Overview

Our model quantifies the inter-relationships among spontaneous fluctuations in breath-to-breath val-

ues of ventilation, end-tidal CO 2 , and end-tidal 02 by characterizing the transfer path between each

pair of variables (see Fig. 3-1 (B)). The transfer path between 02 and ventilation defines the con-

43



troller gain for 02, and similarly for CO 2 . Likewise, the 02 and CO 2 plant gains are equal to the

transfer path functions between ventilation and 02 and CO2 respectively. The product of controller

and plant gains for 02, and similarly for C0 2 , are the respective loop gains (LG0 2 and LGc0 2 ). Thus,

our model quantifies the two individual feedback loops, one for the feedback control of 02 and one

for control of CO 2 . The overall loop gain of the system is equal to the sum of LG0 2 and LGco2 (as

demonstrated in Chapter 2, Section 2.2.3). We note that loop gain is a frequency-dependent quan-

tity [15]. In the current study, where rather than a time index we use a breath index, so duration is

represented by the number of breaths, the cycle frequency is described in units of cycles per breath.

For example, an oscillation with cycle-duration (or period) of 10 breaths corresponds to frequency

of 0.1 cycles/breath.

Using our model, we quantified the impact of the administration of domperidone, a dopamine

D2-receptor antagonist that increases carotid body sensitivity to 02 and CO 2 [52]. The impact on

the control system transfer paths, and thus on loop gain, were assessed using direct measurement

of the respiratory variables associated with spontaneous breathing in newborn lambs. Animal data

were obtained from previous experiments performed at Monash University, Australia, by Edwards

et al. [52]. All surgical and experimental procedures conformed to the guidelines of the National

Health and Medical Research Council of Australia and had the approval of the Standing Committee

in Ethics in Animal Experimentation of Monash University.

Protocol

The surgical preparation of the animals, and the variables measured and derived in this study,

have been described in a previous publication by Edwards et al. [52]. Briefly, 15 newborn lambs

(aged 10-20 days) were given a loading dose of ketamine hydrochloride (5mg kg-I Ketamil 100mg

ml-1, ILEUM Veterinary Products) via a non-occlusive catheter (Becton and Dickinson, Intracath

19GA) inserted percutaneously into the left jugular vein. A bolus of a-chloralose (80mg kg- 1)

was then given, followed by a continuous infusion at 20mg kg- h 1 . The adequacy of anesthesia

was checked by regular stimulation of the inner and outer canthus of the eye and by monitoring

heart rate and blood pressure. If needed, supplemental doses of a-chloralose were delivered. Once

anesthetized, measurements of respiratory flow, end-tidal PCo2 and end-tidal P0 2 (PCO2 and P02)

were made. Respiratory flow was measured using a Hans Rudolph (3500A) pneumotachograph.

Gas concentrations were measured using a Morgan 901 MK2 CO 2 analyzer and an Ametek S-3A/I

02 analyzer. Non-occlusive catheters (Datamasters, Victoria, Australia) placed in the right carotid
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and start of apnea

Figure 3-2: Emergence of periodic breathing post-hyperventilation, before (A) and after (B) admin-

istration of domperidone.
Cycle-duration was defined as the time between the start of the first breath in a cluster until the

start of the first breath in the next cluster, with at least a 5 seconds apnea in between two

consecutive clusters [52]. Epoch-duration was defined as the time (in seconds) from
commencement of breathing following post-hyperventilation apnea to the end of the last apneic

pause of periodic breathing. Here, the number of cycles of periodic breathing within an epoch

under the control (A) and domperidone (B) conditions is 1 and 12, respectively. An increase in the

number of cycles of periodic breathing was previously used as a surrogate measure of an increased

loop gain [52,68]. The average cycle-duration (in units of breaths) for each subject (see Table 3.2)

was calculated as: epoch-duration (in seconds) / [number of cycles x average breath duration over

the epoch (in seconds/breath)].

artery and jugular vein were used for blood gas sampling. Flow and gas tension signals were ac-

quired at a sampling frequency of 400 Hz. In this study, we used 5-10 minutes of spontaneous

breathing data (V, PCO2 and P02) before and at least 10 minute following the intravenous admin-

istration of domperidone.

In a previous study Edwards et al. [52] experimentally measured the ventilatory sensitivity to

both 02 and CO 2 (the respective controller gains for 02 and CO2 ) by manipulating inspired 02 and

CO 2 under baseline conditions and again under the influence of domperidone [52]. Additionally, the

risk for ventilatory instability under both conditions was characterized using an established model

of hyperventilation-induced periodic breathing [66, 67] (see Fig. 3-2). All lambs were sacrificed

at the end of the experiment using an overdose of anaesthetic (Lethabarb, Sodium Pentobarbitone,

150mg kg- 1 ; Virbac, Sydney, Australia).

Preprocessing

All data were low-pass filtered at a cut-off frequency of 40 Hz. Respiratory flow recordings were

corrected for drift and were integrated breath-by-breath to obtain a continuous tidal volume signal.
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The start and end of inspiration were determined by detecting local maxima and minima of the tidal

volume signal, and were confirmed visually. Minute ventilation (V) was calculated for each breath

as T, where VT is the tidal volume and T, is the duration of that breath. To minimize the influence

of noise, PCO2 and P02 values were calculated by taking the mean of the last quarter of the relevant

waveform during expiration . The breath-to-breath time-series data were further high-pass filtered

to remove the steady-state baseline and any oscillation in the signals slower than 50 breaths/cycle

(using a 7 th order Butterworth digital filter with cutoff frequency of 0.02 cycles/breath). The re-

sulting breath-to-breath V, PCO2 and P02 time-series, representing deviations from a steady-state

baseline during spontaneous breathing, were used for subsequent analysis.

3.1.2 Trivariate Autoregressive Modeling

Our model represents the three key variables (V, PCO2 and P02), denoting deviations from steady

state values, as linear functions of their history (hence the label 'autoregressive'), and random fluctu-

ations. The deterministic component represents the chemical control, including chemoreflexes and

gas exchange, while the stochastic component describes how external random fluctuations propa-

gate through the system. The parameters that characterize this system can be utilized to describe the

pairwise interactions between the model components [25,30,31,69], and to derive the frequency-

domain and stability characteristics of the underlying system. A trivariate model that describes the

interactions among the three modeled ventilatory measurements V, PCO2 and P02 can be repre-

sented by the following matrix equation (presented earlier in Example 1 of Section 2.2):

P

y1 = a(p)yt-p+wt , (3.1)
P=1

V(av (p) avPc0 2 ( p) av,P0 2(p) WV

Yt= PCO2 a(p) aPCo2,V(p) apcO2,PCo2(p) 0 , Wt WPCo2

P02 apo2, (p) 0 apO2,PO2(p) WPO2 t

The vector yt comprises V, PCO2 and P02 at breath index t; the matrices a(p) for p = 1... , P

represent the static gains that relate yt-p to yt; wt represents the variations in V, PCO2 and P02

that are not explained by the chemical control system properties, and are therefore considered to be

the result of external stochastic disturbances to the system, i.e. noise. With these parameters, Eq.

(3.1) states that the values of V, PCO2 and P02 at any breath t are a linear functions of their P
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previous values, plus an independent random term w. Each variable is therefore broken down into

4 components, incorporating the additive influence of its own history, the histories of the other two

variables, and noise. We assume that the individual elements of w are uncorrelated with each other

at any breath, and across different breaths; we also assume they have mean value zero and constant

variances , a~co2, and Upo2 , respectively.

In this work, we fixed the analysis window at 125 breaths and utilized a least-square-error based

identification technique [34] to identify the model parameters (see Appendix, Section 3.3.1 for a

discussion on model order and window size selection).

3.1.3 Calculation of Controller, Plant, and Loop Gain

The transfer path functions of the control system (controller and plant gains for CO 2 and 02) de-

scribe the direct effect of one variable in the system on another [30]. These functions are derived

from the model coefficients aij (see Chapter 2, Section 2.2.2). Each such function is frequency-

dependent (in units of cycles per breath), and is characterized by a magnitude and phase. We denote

by Tyji(f) the frequency-dependent characteristic of the direct pathway connecting the j-th signal

to the i-th signal (see Fig. 3-1 B). For instance, I TPCo2,V (f) (units of Lmin- ImmHg 1) describes

the magnitude of the change in the component of Vof frequency f per change in the corresponding

frequency component of PCO2 (controller gain for CO2 at frequency f). Similarly, I TPc2 (f) I

characterizes the magnitude of the change in the component of PCO2 at frequency f per change

in the corresponding frequency component of V (plant gain for CO2 at frequency f). The CO 2

and 02 loop gains (denoted by LGc0 2 (f) and LGo 2 (f), respectively, or with frequency depen-

dence understood) are defined as the product of their respective plant and controller gains (i.e.,

LGc0 2 = TV-Pco2TPco2-g and LGo 2 =TV-Po2TPo2,g). Finally, the overall loop gain (LG) turns

out to be the sum of CO 2 and 02 loop gains: LG = LGco 2 + LGo 2 (see Chapter 2, Section 2.2.3).

3.1.4 Impact of External Disturbances on Ventilatory Variability: Role of Loop Gain

Our model-based characterization of the ventilatory control system allows for the quantification of

the degree to which fluctuations in ventilation result from external fluctuations in PCO2, P02, or

V, namely the 'noise' component of these variables that is not explained by the chemical control

system (i.e., the w term in Eq. (3.1)). By characterizing the size of the fluctuations in ventila-

tion with respect to the external noise, we can interpret how external disturbances in PCO2, P02,

or V propagate through the feedback loops, resulting in the emergence of oscillatory patterns in
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ventilation. This is achieved by using the fluctuation transfer function (Chapter 2, Section 2.2.3),

denoted by Hw i(f), whereby random disturbances in signal j contribute to the power in signal i.

For example, IHWPc02 'V 2 (units of (Lmin lmmHg-1)2) quantifies the power (i.e., time average of

the squared magnitude) of fluctuations in V at a given frequency contributed per unit power in the

external random disturbance in wPC02 at the same frequency.

The dependence of Hw i on the overall loop gain and the transfer path functions within the var-

ious system loops can be described explicitly (see chapter 2, Eq. (2.6)). For instance, we show that

the ventilatory response to noise in PCO2 is given by HwPc02-> = (TPCO2-+PCO2TPCO2-g)/(1-LG).

As expected, a smaller noise-buffering effect for PCO2 (greater TPCO2-+PCO2 ) or a greater controller

gain for PCO2 (TpCO 2 ,g) contributes to a greater impact of noise in PCO2 on ventilation. Notably,

the finding that Hwpco2 -> is dependent on the overall loop gain (LG=LGCO 2 +LGO2), and specifically

on how close the loop gain is to 1, demonstrates that a given extrinsic disturbance in CO 2 results in

greater ventilatory variability in a higher gain system, even if overall loop gain is dominated by the

02 control loop. Thus, if the overall loop gain increases with domperidone, one expects from the

analysis that Hwv, Hwpco2 -v, and Hw,0 2 g will increase in magnitude, and will exhibit a max-

imal amplitude at the frequency at which periodic breathing is expected to occur (i.e., the natural

frequency of the system). To obtain the natural frequency of the system, we therefore calculated the

frequency at the peak amplitude of the H-matrix within the medium frequency range (see Chapter

2, Section 2.2.3) and compared it to the measured cycle-duration of periodic breathing in individual

animals, both before and after domperidone.

3.1.5 Selective Modal Analysis

While the transfer path functions allow us to characterize the directional pathways among two vari-

ables, selective modal analysis (SMA) quantifies contribution of the individual system variables to

an observed system oscillation (see Chapter 2, Section 2.3.3). Here the variables of interest are V,

PCO2 and P02 at the different lags. To accomplish this, we convert our trivariate model in Eq. (3.1)

to an equivalent state-space form using Eqs. (2.13-2.14), and calculate the participation matrix Pi

for the j-th system mode.

3.1.6 Signal Power as a Measure of Variability

The power spectrum of a signal i (denoted Sii) describes the frequency-dependent variability of

the signal, where a prominent peak in the power spectrum indicates the existence of a dominant
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oscillatory component. Similarly, the cross-power between two signals i and j (denoted Sij) is a

frequency-dependent function that quantifies their cross-correlation properties. From our model,

analytical forms for Sii and Si, are derived (and given in Chapter 2, Section 2.2.4). An empirical

estimate of the power spectrum of a signal, for comparison with the analytical expression, can be

obtained by using the periodogram averaging technique, computed via the fast Fourier transform

of the signal [65]. A close match between the model-based and the periodogram-based spectra

indicates that the model provides an adequate description of the periodic components of the data.

3.1.7 Data Analysis and Statistics

To facilitate comparison between control and domperidone conditions, we considered three dis-

tinct frequency bands: low frequency (LF) oscillations with periods 16-50 breaths/cycle, medium

frequency (MF) oscillations of 5-15 breaths/cycle, and high frequency (HF) oscillations from 2-4

breaths/cycle. Within each frequency band the magnitude of the derived quantities (controller gains,

plant gains, loop gains, Si,j, etc.) were averaged, and the resulting indices compared between the

control and domperidone studies, using the Wilcoxon signed rank test with significance level p <

0.05. Data are presented as medians and interquartile ranges. Since the MF band spans the range of

cycle-durations of periodic breathing observed experimentally [32], we focus on the values of con-

troller and plant gain, and the overall loop gain, measured in this band. For the purpose of predicting

the predisposition to ventilatory instability, we consider loop gain magnitude in the MF band to be

an indicator of nearness to instability, with a value >1 suggesting an unstable system, and a value

< 1 suggesting a stable system. This indicator attempts to capture in a simple way, suited to our

purpose, the essence of the Nyquist criterion [15].

Results

3.1.8 Respiratory Variables and Experimentally Derived System Properties

The average baseline respiratory variables derived from the breath-by-breath time-series are shown

in Table 3.1. The administration of domperidone resulted in a slight increase in V, mainly due to

a decrease in T (p < 0.05) and a near significant decrease in T,, (p = 0.09). These changes were

accompanied by a decrease in PCO2 (p < 0.05), and an increase in P02 (p < 0.05).
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3.1.9 Trivariate Analysis Results

Controller, Plant, and Loop Gain

Transfer path analysis revealed a significant increase in the magnitude of 02 chemosensitivity

(|Tpo2 -f1g) across the LF and MF bands following administration of domperidone (see Fig. 3-

3). Figure 3-4 shows the comparison of the control and domperidone studies for the average gain

magnitudes within the MF range for each subject. We found a significant increase in the median

value of the average MF band gains in 1Tpo2,f l. Although the median value of the average MF band

gain in |Tpco2 ,V was increased with domperidone, this failed to reach statistical significance. The

complete analysis results for the C0 2 - and 0 2 -specific loop gains, and the overall LG, are presented

in Table 3.2; both the LG0 2 magnitude and the overall LG magnitude increased significantly in the

LF and MF regions. Notably, the LG0 2 magnitude under both control and domperidone conditions

was greater than LGco 2 magnitude, and the overall LG was comparable to the LG0 2. Moreover, a

two-fold increase in the overall LG magnitude with domperidone was observed in conjunction with

the greater propensity towards periodic breathing (1/15 vs. 13/15 animals exhibited periodic breath-

ing; see Table 3.2). Fig. 3-6A shows that the model-based CO 2 and 02 controller sensitivities in the

MF band compared favorably with the experimentally measured ventilatory sensitivity to CO 2 and

02, respectively (p < 0.05).

Impact of External Disturbances on Ventilatory Variability: Role of Loop Gain

Figure 3-6 shows the average fluctuation transfer function (H) spectra that quantify the influence of

external disturbances on V. Note the increase in the amplitude of the spectra and emergence of a

sharp peak in the medium frequency (MF) band after administration of domperidone. Figure 3-5B

is a plot of the cycle-duration of experimentally induced periodic breathing vs. the cycle-duration of

these dominant MF band peaks, showing good agreement between the predicted and experimentally

measured cycle-durations (predicted: 7.9 [7.0, 9.2], measured: 7.5 [7.2, 9.1] breaths). Moreover,

Fig. 3-6C demonstrates a significant increase in the number of experimentally observed periodic

breathing cycles with an increase in the overall LG (r 2 = 0.50, p < 0.05).

Power and Cross-Power

Fig. 3-7 shows the model-based power spectra of the individual signals overlaid on their periodogram-

based power spectra. Before the administration of domperidone the V spectrum (Fig. 3-7A) shows
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Figure 3-3: Transfer path analysis results

Group averages and standard deviations for the transfer path functions between various

components of the system (Panel A: CO2 controller gain, B: CO 2 plant gain, C: 02 controller gain,

D: 02 plant gain, E, F, and G: self-influencing transfer paths for V, PCO2 and P02, respectively.

Corresponding plots for the control (dashed black lines) and domperidone (solid grey lines) studies

are subperimposed on the same panel. In each case, the bottom horizontal axis represents the

frequency in units of cycles/breath, the top horizontal axis represents the cycle-duration (or period)

in units of breaths/cycle. The boundaries of the LF, MF, and HF bands are marked by the vertical

lines. Noteworthy is the marked increase in 02 controller gain magnitudes (I Tpo 2 _V) within the

MF region after the administration of domperidone. For each subject, the average values of the

gain magnitudes for each transfer path function within the MF frequency bands were calculated for

assessment of the influence of domperidone (see Fig. 3-4).
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Figure 3-4: Comparison of average transfer path gain magnitudes within the MF band between the
control and domperidone studies.
Each black closed circle signifies one of the 15 subjects. Within each panel results from the control
and domperidone studies are pooled together and the associated box-plot is displayed next to each
group. The group median controller gain for CO2 (panel A) did not change significantly between
control and domperidone studies (0.045 [0.032, 0.079] vs. 0.054 [0.028, 0.137] Lmin 1mmHg-1)
while the median gain for 02 (panel C) increased significantly (0.058 [0.032, 0.090] vs. 0.093
[0.077 0.132] Lmin- mmHg- , p < 0.05). Furthermore, the CO 2 plant gain (panel B) changed
from 0.76 [0.296, 1.945] to 1.157 [0.590, 1.348] mmHgL- 1min and the 02 plant gain (panel D)
changed from 3.759 [1.872, 6.053] to 3.962 [2.273, 5.576] mmHg L-- min.
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Figure 3-5: Comparison of experimental results and model-based findings using spontaneous
breathing.
A. Comparison of the experimentally measured [52] and calculated sensitivities for CO2 (triangles)
and 02 (circles) in both control (filled) and domperidone conditions (open). The line of identity
(dashed) and the regression line (solid) are superimposed on the graph (r 2= 0.43, p < 0.05). B.
Comparison of the predicted (or estimated) and measured cycle-durations under control (closed
circle) and domperidone conditions (open circles). The slope a = 0.96 of the fitted line (heavy
black) did not differ significantly from the line of identity (thin grey). C. Plot of the measured
number of cycles of periodic breathing vs. the estimated overall LG, indicating a significant
increase in the number of periodic breathing cycles with an increase in the overall LG (r2 = 0.5, p
< 0.05). In panels B and C the arrow indicates post-domperidone cycle-duration and number of
cycles of the only subject that exhibited periodic breathing under the control study (see also Table
3.2).
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Figure 3-6: fluctuation transfer function.
Group averages and standard deviations for the fluctuation transfer function magnitudes for minute
ventilation, for the control (dashed black) and domperidone (solid grey) studies (top three panels).
Noteworthy is the strong peak around 8 breaths/cycle after administration of domperidone in
panels A, B, and C, indicating that fluctuations in any of the variables may induce periodic
variability in minute ventilation, with a cycle-duration of approximately 8 breaths/cycle. The
cycle-duration of this medium frequency peak for the individual subjects is compared against the
experimentally measured cycle-durations in Fig. 3-5.
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Figure 3-7: Power spectrum.

Group averages and standard deviations for the power spectrum of the individual time-series for
the control (black plots in panels A, B and C) and domperidone (grey plots in panels, D, E and F)
studies. In each case, the dashed-lines are the periodogram-based power spectra (using a
rectangular window of size 100 samples with 25 samples overlap) and the bold solid lines are the
model-based power spectra. Note that the frequencies of the dominant peaks are consistent with
reports [65] in resting human subjects.
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Variable Control Domperidone

VT (mL) 71.38 [66.28, 79.69] 74.32 [63.6319, 77.95]
T, (sec) 0.62 [0.57, 0.69] 0.60 [0.54, 0.62] t

TTOT (sec) 1.65 [1.49, 1.82] 1.58 [1.38, 1.70]
V (L/min) 2.61 [2.22, 3.40] 3.13 [2.66, 3.84]

PCO2 (mmHg) 42.50 [40.00, 46.55] 38.46 [36.29, 39.07] t
P02 (mmHg) 99.69 [96.36, 104.60] 103.71 [100.99, 105.47] t

Table 3.1: Baseline variables and experimentally derived system parameters.

Median and first and third quartiles (inside the brackets) of tidal volume (VT), inspiratory time (T),

total breath duration (TTOT), minute ventilation (Vr/Tror), end-tidal carbon dioxide (PCO2), and

end-tidal oxygen (P02). The t indicates a statistically significant change in the median values

between the control and domperidone studies (p < 0.05).

a peak around the cycle-duration of 5.5 breaths/cycle, although the signal power is relatively low.

After the administration of domperidone (Figs. 3-7D-F) all three signals exhibit marked period-

icity around the cycle-duration of 8 breaths/cycle. Moreover, under domperidone (Fig. 3-7D) the

model-based and the empirical power spectra of V closely match.

Selective Modal Analysis

Figure 3-8 summarizes the application of the SMA technique to the spontaneous breathing time-

series recording before and after domperidone administration. Application of the Wilcoxon signed

rank test (with false discover rate correction for multiple comparison) revealed a significant increase

in contribution of P02 at lags one and two to the MF band natural frequency. This result confirms

and explains the experimental observation that only administration of supplemental 02 (not CO 2)

resulted in abolishment of periodic breathing-under the Domperidone protocol- in these lambs.

3.1.10 Discussion

The major finding of our study is that there is sufficient information in the natural fluctuations in

V, PCO2, and P02 during spontaneous breathing to 1) estimate, through the use of a physiolog-

ically based dynamic model, the magnitude of the dynamic hypercapnic and hypoxic ventilatory

responses, and 2) predict the propensity to periodic breathing (associated with high loop gain), and

the corresponding cycle-duration of periodic breathing, should it occur. The power of our analytical

method is that it permits quantitative determination of controller and plant gains for both CO 2 and

02, and thus overall loop gain of the respiratory control system, without the need for externally
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Subject Control Domperidone

LGco2 LG 0 2  LG| LGCo2| LGo 2 \ LG|
1 0.02 0.02 0.02 (-, -) 0.01 0.41 0.40 (6.8, 7.0)
2 0.06 0.12 0.18 (-, -) 0.18 0.31 0.41 (8.4, 7.3)
3 0.00 0.02 0.02 (-, -) 0.01 0.35 0.36 (6.1, 10.4)
4 0.02 0.07 0.06 (-, -) 0.02 0.08 0.09 (6.7, 11.0)
5 0.04 0.16 0.14 (-, -) 0.00 0.05 0.05 (8.8, 8.1)
6 0.18 0.37 0.21 (-, -) 0.09 0.49 0.49 (-, -)
7 0.1 0.29 0.22 (8.1, 7.1) 0.22 0.75 0.84 (8.5, 7.2)
8 0.07 0.17 0.13 (-, -) 0.02 0.3 0.31 (10.5, 8.6)
9 0.01 0.13 0.14(-,-) 0.00 0.08 0.08(-,-)
10 0.02 0.24 0.22 (-, -) 0.00 0.1 0.10 (13.4, 13.1)

11 0.01 0.34 0.34 (-, -) 0.09 0.62 0.65 (7.1, 6.4)
12 0.21 0.18 0.37 (-, -) 0.27 0.62 0.59 (10.4, 7.1)
13 0.28 0.57 0.47 (-, -) 0.12 0.77 0.83 (7.5, 7.3)
14 0.06 0.16 0.14 (-, -) 0.38 0.6 0.51 (7.9, 7.5)
15 0.00 0.11 0.11 (-,-) 0.04 0.26 0.30 (7.4, 7.7)

Median 0.04 0.16 0.14 0.04 0.35 tt 0.40tt
Gains [0.01, 0.09] [0.11, 0.28] [0.12, 0.22] [0.01, 0.17] [0.14, 0.62] [0.15, 0.57]

Cycle-durations (8.1, 7.1) (7.9 [7.0, 9.2], 7.5 [7.2, 9.1])

Table 3.2: Subject-by-subject comparison of loop gain magnitudes and cycle-durations.
The magnitude of LGCo2, LG 0 2 and overall LG in the MF band, in addition to predicted and experimentally
observed cycle-durations (in units of breaths), for the control and domperidone studies. Both the LG0 2 and

the overall LG increased significantly with domperidone in the MF as well as LF band (although, the latter

are not presented here). The tt indicates a statistically significant increase in LG with domperidone (p <
0.005). For each subject, the first number inside the parenthesis is the predicted cycle-duration of periodic
breathing (in units of breaths) and the second number is the experimentally observed cycle-duration (in units

of breaths), with the dashed lines (-) indicating that either the subject had no peak in the MF band or that the

subject did not exhibit periodic breathing under the hyperventilation protocol. The first and the third
quartiles associated with the median values are given inside the brackets.

56



A.

25

15-

10 -

0I
B

30-

2
5

-

20 - T__

0

Figure 3-8: Selective modal analysis results.
The first four lags of each of the three ventilatory variables constitute the 12 state-variables shown
on the horizontal axis. Panels A and B show the percent participation of each state-variable
(pooled across all 15 subjects and presented as a boxplot) to the natural frequency of the system
within the medium frequency (MF) band, before and after administration of domperidone.

applied perturbations of the respiratory system. Our results are consistent with earlier findings in

newborn lambs, that administration of domperidone increases the loop gain, predominantly by an

increase in the 02 controller gain, making the respiratory control system more prone to instabil-

ity [52]. We have demonstrated quantitatively that the controller gains for 02 and CO2 in the lamb

have comparable magnitudes, but a higher plant gain for 02 results in the overall loop gain being

dominated by the 02 feedback path rather than that for CO2. Application of selective modal anal-

ysis also confirms the major contribution of 02 to the observed system oscillations. This finding is

consistent with experimental observation in the same animals, that stabilizing the 02 feedback path

during periodic breathing, but not the CO2 feedback path, stabilizes ventilation [70]. By virtue of

being based entirely on non-invasive measures of spontaneous breathing, our approach represents a

new methodology to 1) assess the risk of ventilatory instability in vulnerable populations, 2) iden-

tify the primary causes of instability in individual patients and design appropriate treatment, and 3)

follow patient progress in response to therapeutic interventions.

Comparison with other approaches: estimated vs. measured hypoxic/hypercapnic responses. In a

previous work, by presenting different concentrations of inhaled CO2 and 02, Edwards et al. [52]

determined the corresponding controller gains under control conditions and following domperidone
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administration. They observed that CO 2 response to three breaths of CO 2 increased with domperi-

done [52]. However, in our study, we found no statistically significant increase in CO 2 controller

gain. This disparity is likely to be due to the large perturbation used previously (14% inspired CO 2)

whereas the current method relies on spontaneous oscillations in CO 2 in order to calculate CO 2

controller gain. Nevertheless, the MF band CO2 and 02 transfer path gains were significantly cor-

related with the experimental (traditional) estimates of controller gain (see Fig. 3-6A), indicating

that our trivariate analysis sufficiently captured the measured changes. Interestingly, the experimen-

tal eupneic controller gain for 02 was not significantly different between control and domperidone

(data not shown), despite the difference previously described at hypoxic levels [52]. Importantly,

our novel method was sufficiently sensitive to detect a significant increase in MF band 02-controller

gain during spontaneous breathing with the administration of domperidone (see Fig. 3-4). As such,

our method accurately captures changes in sensitivities of the respiratory controller to 02 from spon-

taneous breathing records, obviating the need to perform labor-intensive and technically challenging

experiments.

Comparison with other approaches: independent laboratories. The link between respiratory

variability during spontaneous breathing and the chemoreflex feedback system in adult human sub-

jects has been previously investigated [53,64]. Of note is the work of Van den Aardweg and Kare-

maker [65], who observed that mean inspiratory flow time-series in healthy human subjects contains

oscillatory components with a cycle-duration of approximately 10 breaths/cycle. Based on a sim-

plified model of the CO 2 chemoreflex feedback loop, they concluded that the correlations in breath-

to-breath values of the mean inspiratory flow may reflect the response of the chemoreflex feedback

system to (uncorrelated) noisy disturbances in the partial pressure of arterial carbon dioxide (Paco2 ).

More recently, approaches using spontaneous changes in ventilation and CO 2 have been developed,

with one study demonstrating that opioid administration (remifentanil) substantially increases plant

gain but reduces controller gain [71]. These studies assume that fluctuations in 02 have negligible

impact on ventilation, and have not shown a direct link between spontaneous breathing variability

and the occurrence or cycle-duration of periodic breathing. Our work goes beyond these previous

studies in two important ways. First, the use of a trivariate analysis incorporates the influence of

P02 fluctuations as well as PCO2 fluctuations on changes in V. As such, our method has general

appliability since it does not make any prior assumptions regarding the dominance of one loop vs.

the other. Second, our study goes beyond a phenomenological description of the ventilatory vari-

ability and examines the mechanism responsible for the amplitude and frequency characteristics of
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the observed ventilatory periodicity.

Our study confirms the view [64,72] that fluctuations in breath-to-breath values of V provide in-

sight into ventilatory instability. Thus increasing the gain of the system with domperidone causes an

increase in magnitude of the ventilatory variability per unit of extraneous noise in P0 2, PCO2 and ven-

tilation (as reflected in the fluctuation transfer functions for V) within the medium frequency band.

We also show explicitly that the closer |LGlis to 1, the greater the ventilatory variability that will re-

sult from any given amplitude of external perturbation. Specifically, small random perturbations in

ventilation (i.e. noise) of amplitude A will become approximately augmented by 1/(1-LG) to exhibit

fluctuations of amplitude A/(1-LG); for example, if LG = 0.9 then an underlying variability with a

mean amplitude of 0.5 L/min will be amplified 10 fold to exhibit oscillations of mean amplitude

of 5 L/min. Hence, while periodic central apneas will consistently occur in a control system with

|LGj > 1, in the appropriate frequency band, ventilatory oscillations are also expected to occur in a

system with moderately high gain (loop gain less than 1, but close to 1) in the presence of sufficient

underlying ventilatory variability. Importantly our data demonstrate (Fig. 3-5) that the frequency

content of this ventilatory variability reflects the natural frequency of the system, as confirmed by

our finding that cycle-duration predicted from spontaneous breathing corresponds closely with the

cycle-duration of experimentally induced periodic breathing. In addition, the experimentally ob-

served number of cycles of periodic breathing increases as the estimated overall |LG| approaches 1.

Although a large ILG| is only one of the several factors contributing to an increase in the number of

cycles, the number of cycles has been previously used as a surrogate measure of an increased loop

gain [68,73], because the number of cycles is expected to increase as the damping of oscillations

decreases, i.e., as ILG| approaches 1. Our results indicate that over 50 percent of the variation in the

number of cycles of periodic breathing can be explained by the overall |LGI estimates during spon-

taneous breathing. Taken together, our evidence leads us to conclude that the periodic components

of spontaneous ventilatory variability and periodic breathing are emergent properties of a high gain

respiratory control system, amplifying the external disturbances entering the chemoreflex feedback

loop.

Methodological considerations

The model presented here is based on a number of simplifying assumptions. Firstly, it is assumed

that PCO2 and P02 are accurate proxies for their corresponding arterial values [74]. However,

arterial and end-tidal P02 can differ substantially when gas exchange is not ideal. On the basis that
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PCO2 and P02 are strongly correlated with their respective arterial values, our measures of loop

gain are not expected to be affected unduly by this assumption. However, a constant ratio of arterial

and end-tidal P02, as observed dynamically in the lamb [75], is expected to yield an underestimated

controller gain and an overestimated plant gain compared with the true arterial values.

Our second assumption was that the fluctuations in the current values of V are linearly depen-

dent on their own history and fluctuations in the previous values of PCO2, and P02, and also that

the PCO2 and P02 fluctuations are only dependent on their own respective histories along with the

previous values of V fluctuations. Thus, we assumed a negligible synergistic interaction between

PCO2 and P02 at the controller or the plant, which we considered valid for the case of small per-

turbations in P02 and PCO2 around resting levels. However, such an interaction may be important

in the case of large disturbances in the human adult, when a large hypoxic dip would be expected to

increase the controller gain for CO 2 . For our application such P02-PCO2 interaction was deemed

negligible, since the controller responses to PCO2 and P02 are additive in the lamb [70]. Thirdly,

although the calculated values for CO 2 controller gain in the mid-frequency range could be a com-

bination of both peripheral and central chemosensitivity to C0 2 , it is likely that the relatively long

brain tissue wash-in/wash-out time constants for CO 2 [76-79] limit the central chemoreceptors from

contributing significantly to rapid or transient changes resulting from breath-to-breath variability.

From a model-fitting prospective, non-stationarities may arise as a result of nonlinearly inter-

acting processes at time-scales corresponding to fluctuations in cardiac output, respiratory rate,

sleep-state or arousal-related changes in respiratory mechanics and the chemical control system,

behavioral factors, and those induced by interventions. In the current study, we addressed this issue

by using a relatively short analysis window to minimize the impact of non-stationarities. Moreover,

a strong collinearity (or high correlation) between modeled variables may be a confounding factor

in determining the true contribution of PCO2 and P02 to ventilation. In our data, the maximum

correlation coefficient between PCO2 and P02 (over the range of -4 to 4 breath lags) was -0.48

[-0.38 -0.64] under baseline conditions and -0.61 [-0.41 -0.78] after domperidone administration.

This intermediate degree of correlation between breath-by-breath fluctuations in PCO2 and P02 is

expected from respiratory system physiology, given the different buffering capacities of the body

for CO 2 and 02.

Reliability of the estimated model parameters relies on the existence of adequate perturbations

in the frequency bands of interest so that every possible pathway is sufficiently excited. Notably,

the spontaneous variability was sufficient in our study to achieve a close correspondence between
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the spectral characteristics of our model output and the experimental data (Fig. 3-7), and the cor-

respondence appeared to improve as ventilatory variability was increased following domperidone

administration. Under conditions of insufficient natural fluctuations, it may be beneficial to subject

the system to external perturbations; in principle, our autoregressive method is also applicable to

the pseudorandom binary sequence CO 2 stimulation technique [32].

We explicitly assume that the pathways in Fig. 3-1B are the dominant ones, but are mindful that

the respiratory control system could be affected by fluctuations in heart rate, blood pressure, cerebral

blood flow, and sympathetic activity. For instance, Henry et al. [80] reported a possible coupling

between the chemoreflex and baroreflex mechanism, in which case extra pathways representing the

interactions among heart-rate, blood-pressure and respiration need to be incorporated. However, this

particular effect is likely to be minimal in the current work, as the lamb data we used came from a

study in which mean arterial blood-pressure was stable [52]. Regarding other confounding factors,

we simply note that the concordance between our estimates and the experimental measurements

(in both the cycle-duration of periodic breathing and in the independent assessments of hypoxic

and hypercapnic respiratory responses) strongly suggests that the model we propose captures the

essentials of the linear feedback mechanisms of the respiratory control system.

Utility of Our Analytic Approach

Our non-invasive method for quantifying the dynamic hypercapnic and hypoxic ventilatory re-

sponses and overall loop gain potentially has widespread clinical applicability. Increased loop gain

as a phenotypic trait in obstructive sleep apnea is predictive of the response of patients to treat-

ment with supplemental oxygen [55]. An elevated hypoxic ventilatory response at high altitude is

associated with the presence of unstable breathing [7]. Moreover, heightened dynamic hypercap-

nic responses delineate heart failure patients with periodic breathing in the form of Cheyne-Stokes

respiration from those patients that do not exhibit ventilatory instability [2, 81]. Importantly, in

heart failure patients, elevated hypoxic and/or hypercapnic sensitivity [82] as well as the presence

of Cheyne-Stokes respiration itself [83] are important predictors of mortality. Thus, model-based

characterization of the respiratory control system using spontaneous breathing provides a simple

non-invasive diagnostic tool, allowing potential therapies to be directed at the dominant feedback

loop (i.e. CO 2 vs 02 loop) responsible for the instability.
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Conclusion

This study shows that it is possible to characterize and quantify the dominant feedback loops within

the respiratory control system from measurements of fluctuations in ventilation and respiratory gas

tensions during spontaneous ventilation. Consequences of this approach include the ability to assess

risk of ventilatory instabilities, cycle-duration of periodic breathing, and hypoxic and hypercapnic

ventilatory responses. The major advantages of our method are that it requires minimal subject inter-

vention and it makes no demand on subjects to comply with complex breathing protocols. Through

overall loop gain, our method promises new ways to assess the potential for respiratory instabilities,

especially important in cases of congestive heart failure or obstructive sleep apnea. Importantly,

identification of the mechanisms responsible for an increase in loop gain in such individuals would

enable clinicians to target particular therapies on an individualized basis, and to monitor patient

response to such therapies.
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3.2 Part II: Modeling Nonstationary Dynamics in Human Research

Polysomnography Recordings

The autoregressive technique discussed in the previous sections fits only a single model to the entire

dataset. However, the presence of rapidly changing physiological states that occur during sleep (e.g.,

sleep-wake transitions, arousal from sleep, changes in controller features with sleeping position

and state) requires a continuous adaptive model, as these are the times of greatest clinical and

scientific interest. The primary goal of this study is to adaptively identify a model, with an associated

adaptive measure of loop gain and its components, in human subjects in a clinical sleep study

setting. In the current study, we aimed to validate our modified loop gain measurement technique in

human subjects by testing whether it could detect an increase in loop gain produced by proportional

assist ventilation (PAV). PAV is a mode of ventilatory support that works by generating pressure

at the airway in proportion to a person's instantaneous respiratory effort; more effort yields more

support [60]. Thus, PAV amplifies the ventilatory response to a given level of C0 2, and therefore

increases controller gain and thereby loop gain (see Fig. 3-9).

To facilitate this study and to extend our technique to human subjects in a clinical setting, we

implemented several modifications to our methodology. First, we developed an adaptive loop gain

estimation technique that accounts for nonstationarity in chemoreflex system characteristics (e.g.,

as a result of changes in sleep stages, body position, etc). Second, we proposed a framework for

including measures of the quality of the experimentally recorded signals into our adaptive estimation

technique, thus mitigating the influence of recording artifacts on the estimated chemoreflex system

parameters. We show that with the proposed modifications, our method is able to track chemoreflex

system non-stationarity associated with an increase in controller gain via PAV, effectively deal with

measurement related artifacts, and provide clinically useful indices of plant, controller, and loop

gain.

3.2.1 Experimental Setup and Methods

Thirteen continuous positive air pressure (CPAP)-treated obstructive sleep apnea (OSA) subjects

(age: 45 ± 10) were recruited from the sleep laboratory at Brigham and Women's Hospital, Boston.

All OSA subjects had a history of OSA with an apnoea/hypopnoea index (AHI) >10 events/hr

during supine NREM sleep, and a documented CPAP use of >5 hours per night for at least two

months prior to the study. Eight healthy controls (age: 35 ± 10) were also recruited from adver-
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tisements. All subjects gave written, informed consent before participation in this study, which was

approved by the Human Research Committee of the Brigham and Women's Hospital. Subjects were

excluded if they were taking any medication known to influence breathing, sleep/arousal or muscle

physiology. Additionally, subjects were excluded if they had a history of renal failure, neuromuscu-

lar disease or other major neurological disorders, uncontrolled diabetes, heart failure, central sleep

apnea/Cheyne-Stokes respiration, uncontrolled hypertension, thyroid disease, or any other unstable

medical condition. Female subjects were screened to ensure that they were not pregnant.

Protocol

Subjects underwent a clinical polysomnography (PSG) to measure OSA severity, and a research

PSG to measure LG using PAV. Subjects were asked to sleep supine for the majority of the night

with the standard clinical montage that included electroencephalogram (EEG; C3/A2, 02/Al), elec-

trooculography, and submental electromyography. Oxygen saturation was monitored using a pulse-

oximeter attached to the index finger (BCI Capnograph Series 9000, Waukesha, WI), and PCO2

was sampled at the mask by using a calibrated infrared CO 2 analyzer (BCI). Data were collected

and stored using the Alice digital PSG system (Philips Respironics, Murrysville, PA). Sleep state,

arousals, and respiratory events were scored by a blinded sleep technician according to standard

AASM criteria.

For the research PSG, electrodes were attached similarly to the clinical PSG and were fitted with

a nasal mask (Gel Mask; Respironics, Murrysville, PA) attached to a pneumotachometer (model

3700A; Hans-Rudolph, Kansas City, MO) for measuring airflow. Airway pressure was measured at

the mask using a pressure transducer (Validyne, Northridge, CA). CO 2 was continuously recorded

from a catheter placed inside the nostril with a capnograph (Vacumed, Ventura, CA). The mask

was connected to a BiPAP Vision mechanical ventilator which was capable of delivering continu-

ous positive airway pressure (CPAP) alone or in combination with proportional assist ventilation

(PAV). During supine non-rapid eye movement (NREM) sleep, the tidal-volume amplification fac-

tor (VT AF) of PAV was slowly increased until periodic breathing was induced [55]. However, in

most individuals, periodic breathing could not be induced despite maximum levels of PAV and often

trials were terminated due to occurrence of an arousal.

For the analysis we only considered those portions of the PAV data before periodic breathing

or arousal was observed. We estimated loop gain and its components from 5 to 10 minute long

segments of spontaneous breathing (CPAP only) and compared them to the values measured from
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Figure 3-9: Effect of PAV on the chemoreflex feedback loop.
Proportional assist ventilation (PAV) works by generating pressure at the airway in proportion to a
person's instantaneous respiratory effort, resulting in an increase in controller gain. The
(frequency-dependent) product of the various components around the loop (plant, delay, and
controller) is known as the loop gain of the system. A high loop gain causes the system to become
unstable, whereas a low loop gain corresponds to a more stable system. The plant characteristic
depicted above is known as the "metabolic hyperbola", and represents the steady-state relationship
between ventilation (as input) and PaCO2 (as output).

segments of equal duration on PAV, when loop gain is known to be elevated [60].

Signal Preprocessing and Signal Quality Assessment

Signals for flow and PCO2 were processed according to the steps described in the previous study to

extract the breath-by-breath time-series data for minute ventilation (V) and end-tidal Po2 (PCO2);

V was calculated for each breath as, Vr'/overTot where VT is the tidal volume and Tor is the duration

of the breath. Because PCO2 can sometimes be inaccurate due to low expiratory volume and mask

leak (which would confound the estimation of loop gain), a breath-by-breath signal quality index

for PCO2 (SQICo2) was created (see Fig. 3-10 panel E and Fig. 3-11), as follows. We fit a line

through the end-tidal portion of the PCO2 waveform for each breath, and the slope (S) of the line

was recorded. A flat line (i.e., S=O) indicates that the measured end-tidal CO 2 is of high quality,

while non-zero slopes correspond to end-tidal CO 2 estimates with low signal quality. Next, for

every breath, if the corresponding PCO2 was different by more than 5 mmHg from the preceding

PCO2 then a penalty of 0.2 points was imposed; if different by more than 10 mmHg, a penalty of

0.4 points was imposed. The final value of the SQIco2 was set equal to max (0.5, 1-S-penalty). For

65



A.
S 15 -

1-04,

B.-4
10

k ---- c~ -- ~ 0 ~0 _740

C*

D

E.
0.52-

04 V 4

230 300 400 4s0

Figure 3-10: Example of recorded waveforms and derived time-series.
A. Pressure setting of PAy. This subject was breathing on 7 cmH20 CPAP until PAV was initiated
(time = 380 s) and slowly ramped up, as evident by the increasingly larger inspiratory pressures
delivered. B. Derived minute ventilation (V; open circles) and end-tidal PCO2 (PCO2; + symbols)
time-series. C. Tidal volume waveform with marked breath onset and end-inspiration. D. PCO2
waveform with marked PCO2 values. E. A derived breath-by-breath index of PCO2 signal quality
(SQIco2). Note that, due to a shallow breath at ~430 seconds, PCO2 drops suddenly to below 35
mmHg. However, since the end-expiratory portion of the waveform is not flat, the corresponding
PCO2 is a poor estimate of the alveolar PCO2 level. The associated SQIco2 for this breath is 0.5,
indicating that this breath should be trusted less when estimating the chemoreflex system
parameters.

example, a slope of S=0. 15, and a 6 mmHg change in PCO2 (penalty= 0.2), results in an SQIco2 of

1-0.15-0.2 = 0.65.

3.2.2 Adaptive Calculations of Controller, Plant, and Loop Gain

A nonstationary time-series is one whose statistics (e.g., mean, variance) change over time. This is

relevant to the current study in which PAy, and therefore loop gain, was slowly increased over time.

Furthermore, during spontaneous breathing, non-stationarities may arise as a result of nonlinearly

interacting processes at time-scales corresponding to fluctuations in cardiac output, sleep-state, body

position, etc. Thus, an adaptive (or time-varying) model would be desirable, not only for the PAV

data presented here, but also for the spontaneous breathing as well.

66



A.

B.

r

69
M.

-- -- ------ -------- --- - ------ ---- - ------

S0.5~

0 I -----

425 430 435 440 445

Time (seconds)

Figure 3-11: Signal quality index for CO 2 .
Panel A shows a flow signal (dark, dotted line) and the corresponding tidal-volume signal (blue,
solid line) with marked inspiratory onsets and ends. Note that the PCO2 corresponding to breath
#4 is about 28 mmHg. Such a sudden drop in PaCO2 is physiologically infeasible. As one can see
in panel A, the low value of PCO2 is likely due to an incomplete emptying of the lungs. Panel C
shows the calculated signal quality for each breath (+ marks).

To obtain an adaptive estimation of the chemoreflex system parameters, we used the time-

varying analog of the constrained chemoreflex model presented in Section 3.1.2, by converting Eq.

(3.1) to its equivalent state-space form using the methods discussed in Chapter 2, Section 2.4. In

order to minimize the deleterious effects of end-tidal PCO2 artifacts (which occurs due to shallow

or hypopneic breathing), we used our breath-by-breath indices of signal quality for PCO2 to lower

the contribution of poor signal quality breaths in our estimation procedure (as discussed in Chapter

2, Section 2.4.2). Figure 3-12 shows an example PAV trial (panel A), breath-by-breath signal CO 2

signal quality time-series (panel B), and the corresponding adaptive estimates of controller, plant

and loop gain, before (panel C) and after (panel D) including signal quality indices.

We initialized the initial state estimates a0i0 and V110 , and the autoregressive noise covariance

matrix E by fitting (static) autoregressive models to the first fifty breaths from each of the subjects

and then averaging the resulting parameters to obtain a single set of initial values that were used for

all the subjects. Next, we used the EM algorithm to learn the covariance matrices E and D from

the data, where the latter covariance determines how fast the parameters are adapted, see Section

2.4. Given the identified model parameters, and the smoothed state estimates (ajT, t - 1, .. , T,

for each t we derived estimates of controller, plant, and loop gain using the methods described in

Section 3.1.9.
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Figure 3-12: Adaptive estimation of controller, plant, and loop gain of the proposed chemoreflex
model.
Starting around 400 seconds, the PAV tidal-volume amplification factor (VTAF) was progressively
increased (panel A). Our derived breath-by-breath index of PCO2 quality (SQIco2) is shown in
panel B. Adaptive estimation of the controller, plant, and loop gain of the system before and after
including the SQIco2 are presented in panels C and D, respectively (the confidence bounds
associated with individual estimates are omitted for clarity). The gains are all computed as average
over the MF range, as in the previous study. Inclusion of the SQIco2 in panel D resulted in a better
estimate of the plant gain and the loop gain around the 430 seconds mark (note that the controller
gain drops to zero in panel C due to artifactual measurements of end-tidal CO2 around the 430
seconds time mark). As expected, application of the PAV resulted in a progressively larger value of

the controller gain, which resulted in progressive increase in system loop gain.
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Subjects Baseline PAV

Control (N=8) OSA (N=13) Overall (N=21) Control (N=8) OSA(N=13) Overall (N=21)

VT (L) 0.39 ± 0.07 0.43 + 0.09 0.42 ± 0.08 0.42 ± 0.08 0.47 ± 0.09 0.45 ± 0.09t
T (sec) 1.77 ± 0.20 1.77 ± 0.31 1.77 ± 0.27 1.82 ± 0.28 1.73 ± 0.31 1.76 ± 0.29

TTOT (sec) 4.30 ± 0.53 4.20 ± 0.72 4.24 ± 0.64 4.37 ± 0.65 4.30 ± 0.71 4.33 ± 0.67t

V (L/min) 5.43 ± 0.59 6.27 ± 1.03* 5.96 ± 0.96 5.77 ± 0.74 6.71 ± 1.22* 6.35 ± 1.14t

PCO2 (mmHg) 39.92 ± 3.77 40.68 ± 2.92 40.39 ± 3.20 38.83 ± 3.56 39.40 ± 3.14 39.18 ± 3.2t

Table 3.3: Break-down of respiratory variables for control and OSA subgroups.
* p<0.05 between OSA and Controls t p<0.05 between baseline and PAV

Statistical Analysis

Paired t-tests were used to compare the baseline CPAP only against CPAP+PAV on controller, plant

and loop gain within individuals and were performed using Matlab. Furthermore, unpaired t-tests

were used to compare controller, plant and loop gain between healthy controls and OSA subjects.

A p value of less than 0.05 was considered significant. Values are presented as means ± S.D.

Results

3.2.3 Respiratory Variables and Experimentally Derived System Properties

The average respiratory variables during spontaneous breathing (CPAP only) and PAV are shown in

Table 3.3. PAV induced a small increase in VT and TTOT with the net effect of a slight increase in

V and decrease in PCO2. Table 3.3 also shows a break down of the respiratory variables according

to the patient population (control vs. OSA). OSA subjects exhibited a significantly higher V, both

during baseline and on PAV.

3.2.4 Effect of PAV on Controller, Plant, and Loop Gain

Figure 3-13 provides a comparison of loop gain (panel A), controller gain (panel B) and plant gain

(panel C), for the individual subjects between baseline CPAP and CPAP+PAV. The autoregressive

technique revealed a statistically significant increase in loop gain (p<0.05), predominantly driven

by an increase in controller gain (p<0.005). The final value of VTAF was in general lower in

OSA (3.2±0.8) vs. control (3.9±0.9), although the difference did not reach statistical significance

(p=O.16).
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Figure 3-13: Group comparisons of controller, plant, and loop gain (mixed control and OSA sub-
jects).
Baseline CPAP and CPAP+PAV loop gains (panel A), controller gains (panel B), and plant gains
(panel C). The group average of the loop gain increased from 0.140. 10 to 0.210.13, predominantly
due to a significant increase in controller gain from 0.355 ± 0.145 to 0.536 ± 0.145
Lmin - mmHg- 1 . The group average of the plant gain did not change significantly (from
0.35 ± 0.13 to 0.33 ± 0.14 mmHgL-lmin). The t and tt indicate a statistically significant
difference (p<0.05 and p<0.005, respectively).

3.2.5 Baseline Controller, Plant, and Loop Gain in OSA vs. Controls

Compared to controls, OSA subjects had an elevated controller gain (control 0.24 ± 0.04 vs. OSA

0.36 ± 0.15; p<0.05) and a higher loop gain (control 0.07 ± 0.04 vs. OSA 0.14 ± 0.10; p<0.05).

No significant differences between plant gains were observed (control 0.28 ± 0.12 vs. OSA 0.35 t

0.13).

3.2.6 Discussion

The major contribution of the current study is the introduction of a chemoreflex system identifica-

tion technique capable of adapting to changes in controller gain, plant gain, and loop gain. The

proposed framework is non-invasive (i.e., based on spontaneous breathing). Through the use of a

signal quality index, the deleterious effects of recording artifacts on the parameter estimation pro-

cedure are mitigated. The estimation technique tracked changes in chemoreflex parameters during

physiological recordings of human subjects during sleep, where the controller gain was mechani-

cally increased via PAV.

Breath-to-breath variability in ventilation has been studied extensively [63, 84], with the pe-

riodic component of variability generally attributed to the chemoreflex feedback mechanism, and

the nonperiodic component ascribed to neural, vagal, behavioral, and other factors external to the

chemoreflex feedback loop. Several authors have employed system identification techniques based
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on autoregressive modeling that make use of the breath-to-breath dependence of ventilation on ar-

terial blood gas tensions (via chemoreceptors) and dependence of O2/CO2 on ventilation (due to

gas exchange) [33,53,71]. Other researchers used the autoregressive modeling in the presence of

exogenous stimulations (e.g., pseudorandom binary sequences of inhaled C0 2) [32,64,85]. How-

ever, recordings of respiratory variables are subject to measurement artifacts, and the presence of

hypopnea and apnea can result in degradation or loss of end-tidal CO 2 measurements. Moreover,

externally administered gases can interfere with the subject's sleep pattern, thus complicating the

theoretically appealing features of pseudorandom binary stimulation technique [86]. The proposed

technique makes it possible to track the state of the control system under different experimental

condition, or as a result of changes due to sleep state or body position.

OSA and Ventilatory Stability

Our findings suggest that OSA subjects have elevated controller gain compared to healthy controls,

but no difference in plant gain, with an overall less stable control system, i.e., higher loop gain in

OSA. Of note, Loewen et al. [87] and Salloum et al. [88] suggested that in untreated OSA patients

a high LG is predominantly driven by an elevated controller gain. However, our observation of the

differences between the two groups is confounded by the fact that our subjects were not BMI- and

age-matched. Moreover, the OSA subjects were placed on a higher level of CPAP; however, CPAP

is known to reduce plant gain by increasing lung volume, and therefore its overall effect would be

a reduction in loop gain [70,89] . Thus, we cannot conclude with certainty that OSA per se had

higher loop gain in our sample, but our purpose was to assess our newer technique rather than to

confirm the known elevation of loop gain seen in OSA.

Methodological Considerations

Although we selected periods of stable NREM sleep without evidence of clinical arousals, we can-

not discount the influence of more subtle EEG changes. Future work should either model the influ-

ence of arousals on ventilation or include signal quality indices that minimize the contribution of

large arousal-related ventilation on the estimation procedure.

Conclusion

Our results demonstrate that 1) the proposed autoregressive model is able to detect the expected

increase in controller gain and overall LG with PAV and 2) that OSA subjects may have an elevated
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controller and thus LG when compared to healthy controls. Such work strengthens the importance

of LG in the pathogenesis of OSA and highlights that our model is an easy tool that could be used

clinically for the identification of those who may benefit from interventions that lower LG (e.g.,

acetazolamide).

3.3 Appendix

3.3.1 Model Order Selection and Data Segmentation

Choice of Model Order

In autoregressive modeling, the optimal model order is typically estimated from the data through

evaluation of Akaike's information criterion (AIC) [90]. The AIC selects a model that optimizes the

trade-off between a parsimonious model (lowest model order) and one that provides the best predic-

tive power (minimizing prediction error). The use of AIC is based on the assumption that no prior

information concerning the model structure is available. Note that our proposed model is physiolog-

ically structured, based upon our current understanding of the physiology of the respiratory control

system. Dependence of the key variables on their own history captures the notion of memory in the

system. In the case of ventilation this memory is neural [91], while in the case of blood gases this

memory may reflect the buffering effect of the functional residual capacity and lung tissue [65].

In this work, the orders of the autoregressive terms associated with the dynamics of the plant,

the terms aPC02,V, apCO2,PCO2, apO2 ,g, apO2,PO2 in Eq. (3.1, were set equal to 1 in accordance with

earlier studies [32, 65, 92]. Moreover, the terms aPCO2,PO2 (p) and aPO2,PCO2 (p) were set to zero

for all p, since we assumed a negligible interdependence of PCO2 and P02. Such an assumption

vastly simplifies the model analysis. This is justified because our model deals with small ls'-order

fluctuations about nominal resting values; the interaction term is 2 "d order, and can therefore have

only a minor effect on the measured ventilatory control variables. Although these choices of model

parameters for the plant resulted in 9 out of 15 nonwhite residuals (that is, model residuals with

statistically significant correlation with respect to the variable being estimated for lags 1 or 2),

the identified plant dynamics is physiologically sound. Increasing the model order by up to two

additional lags eliminated the issue of whiteness of residuals, but made the results harder to interpret,

so those results are not discussed in this work.

To achieve a minimal model capturing the chemoreflex dynamics, the model order associated
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Figure 3-14: Polysomnographic waveforms.
An example of tidal volume, PCO2 and P02 waveforms with marked fiducial points (o). The
indices n, n - 1, n - 2, - - reflect the breath-to-breath time-series alignment convention adopted
for the purpose of this study. The double-ended arrow below the PCO2 waveform indicates the
expiratory region for the associated breath. The mean over the last quarter segment of this region
(indicated by a + sign) was taken as the end-tidal PCO2 value for that breath. Panel D graphically
shows which values of PCO2 influence the current value of ventilation (green arrows), and
similarly which PCO2 measurement is influenced by the current value of ventilation (blue arrow).
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Figure 3-15: Group averages and standard deviations of the identified model parameters for the
control (white) and domperidone (grey) conditions.
In each case, the horizontal axis represents the lag (the k index in Eq. 3.1) and the vertical axis is
the amplitude of the regression between the associated signals. For example, the lag-2 coefficients
avPC02[2] (panel A) represents the influence of PCO2 three breaths earlier (2 lags and an extra lag
due to the particular waveform alignment convention adopted in this work, see Fig. 3-14) on V at
the current breath. This lag represents the convective delay for pulmonary capillary blood to reach
the carotid chemoreceptors.
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with the autoregressive terms agVg, aVPco 2, and af,Po2 in Eq. (3.1) was increased sequentially

from 2 to 10 breaths, and the lowest AIC order which resulted in white residuals was selected [34].

The obtained model orders varied between 2 and 5 time lags across subjects. From a physiological

point of view, it takes at least 2-3 breaths for a change in blood gases at the alveolar level to reach

the peripheral chemoreceptors. Therefore, to have a model that is physiologically sound and to

facilitate intersubject comparison and group averaging, we set the model order equal to 4 for all the

subjects and across different protocols. The model order utilized here is well within the bounds of

the orders reported in univariate analysis of the chemoreflexes in Khoo and Marmarelis [53], also by

Ghazanshahi and Khoo [32], who used autoregressive and moving average of order 1 (ARMA 1), and

1-3 pure lags representing the convective delay for pulmonary capillary blood to reach the carotid

chemoreceptors (thus considering signal history up to 4 lags); and the order reported by Clement

and Robbins [93], who estimated a median lag of 2 breaths to carotid body chemoreceptors. Fig.

3-15 shows the averages and standard deviations of the model parameter values between each pair

of variables.

3.3.2 Window Size Selection

The influence of window size on model fitting was studied by varying the window size (75, 100,

125, 150 breaths), and a window size of 125 breaths was selected based on the smallest AIC and

loss function. The loss function is defined as the determinant of the residual covariance matrix Y.

The AIC is related to the loss function, model order (P), and window size (N) via the relationship

AIC = log(det(E)) + 2P/N. In general, it is recommended to have several times as many data points

as the number of model parameters (here we have 16 parameters to fit, so 125/16~ 8). On the other

hand, the window size has to be kept small enough to ensure appropriate stationarity of the joint

time-series [94]. The choice of 125 breaths as the window size resulted in 1-5 non-overlapping

windows of spontaneous breathing data across different subjects. For each subject the window

with the largest power in the medium frequency band of V (assessed via periodogram-based power

spectral estimation) was selected for model fitting purposes. Our rationale behind this choice of data

segment selection was to enhance model identification by choosing a segment of data with sufficient

variability (see Mthodological Considerations under Discussion) and to characterize the system at

its most variable (or unstable) observed state during spontaneous breathing.
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Chapter 4

Discovery of Shared Dynamics in

Multivariate Cohort Time Series

4.1 Introduction

This chapter examines the problem of segmenting physiological time-series within a patient cohort

into stereotypical (or phenotypical) dynamics, with the objective of extracting informative features

for predicting patient outcome variables of interest. We present the class of switching linear dynami-

cal systems (SLDS), as an alternative approach to modeling nonlinear and nonstationary time-series,

when the system can be assumed to be piecewise linear in time. We provide a high-level overview

of the the expectation-maximization (EM) algorithm for parameter estimation of the SLDS models,

and point out some of the shortcomings of EM, depending on the objectives of time-series mod-

eling. An alternative "outcome-discriminative" learning algorithm in presented in the next chapter

for the case when SLDS models are used for extraction of useful features from the data with the

aim of making predictions. A preliminary version of this chapter was presented at the 34th annual

international conference of the IEEE engineering in medicine and biology society (EMBC'12) [95].

4.1.1 Background

Multivariate autoregressive (MVAR) models of physiological time-series have been used by several

authors to infer properties (e.g., transfer functions) of the underlying dynamical systems [25,30,33].

For instance, several authors have used the time-series of heart rate (HR) and blood pressure (BP)

to obtain estimates of baroreflex gain [26,96,97], or more generally to characterize the feedback
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control system regulating the cardiovascular variables [24]. The linear techniques commonly used

(often based on variants of autoregressive modeling) have the advantage of revealing the individ-

ual relationships among the observed variables (e.g., the baroreflex gain describes the relationship

between HR and BP, excluding the possible influence of respiration). On the other hand, nonlinear

indices of complexity are capable of capturing a richer set of dynamical behavior [28,98], but often

lack physiological interpretability in terms of specific underlying mechanisms.

In this work, we assume that although the underlying dynamical system may be nonlinear and

the stochastic noise components can be non-Gaussian, the dynamics can be well approximated by

a mixture of linear dynamical systems. We will refer to the components of such a mixture as

"modes". Specifically, we present a technique based on a switching linear dynamical system [42]

that is: (i) sufficiently simple to allow for a physiologically-interpretable model of the interaction

between HR and BP, (ii) sufficiently complex to provide a realistic representation of the underlying

physiology, and (iii) provides a framework for defining a measure of similarity among multiple or

cohort multivariate physiological time-series based on their underlying shared dynamics.

The mixture modeling approach provides a framework for automatic segmentation of time-

series into regions with similar dynamics (i.e., time-dependent rules describing how the future state

of the system evolves from the current state). Furthermore, we assume that similar subjects re-

spond similarly to perturbations (such as tilting), and therefore share dynamical modes. The latter

assumption allows us to define a notion of similarity across segments from multiple time-series.

This approach provides a potential improvement over time-series similarity measures that are based

on symbolic representations [99] or simple trend detection [100]. These measures often ignore the

joint temporal information that is embedded in the dynamics of interaction among physiological

variables.

A central aim of the current work is to develop a framework for automated discovery of evolving

dynamics in multivariate physiological time-series from large patient cohorts, such as the Multi-

parameter Intelligent Monitoring for Intensive Care 1I (MIMIC II) database of over 30000 pa-

tients [29]. Intensive care units (ICUs) are some of the most important components of the health

care system. With the ubiquity of inexpensive high-capacity recording and storage devices, it is

becoming possible to continuously record and archive patient vital signs, such as heart rate (HR)

and blood pressure (PB) [29]. Despite this continuous feed of data, the commonly used acuity

scores, such as APACHE and SAPS, are based on snap-shot observations of the patient [101-103].

However, physiologic systems generate complex dynamics in their output signals that reflect the

76



-1 Y1 J+

.yI1 yI y,+.

Figure 4-1: Graphical model representation.
Panels A and B show the graphical model representations of the state-space and the switching
state-space models, respectively. The round nodes are continuous and Gaussian, and the square
nodes are discrete. Shaded nodes are observed and the rest are hidden. Arrows denote the
conditional dependencies among the random variables. A time-unrolled detailed representation of
the switching state-space model of panel B is shown in Fig. 5-2.

changing state of the underlying control systems [27,28,33]. For instance, time-series of BP can

exhibit oscillations on the order of seconds (e.g., due to the variations in sympathovagal balance), to

minutes (e.g., as a consequence of fever, blood loss), to hours (e.g., due to sleep-wake cycle and cir-

cadian effects). Discovering and understanding these dynamical behaviors are of both fundamental

and clinical importance [104].

4.2 Modeling Switching Dynamics in Cohort Time Series

The time-varying MVAR identification approach discussed in Chapters 2 and 3 (Part II) re-

quires estimating as many model coefficients as the number of observations, although the adja-

cent estimates are generally highly correlated (depending on settings of the D matrix). This over-

parametrization may result in a large estimation variance. An alternative approach is to assume a

small set of linear models, and either switch between them or to use a weighted combination of

them (i.e., a mixture model) to explain the evolving dynamics of the system. The switching linear

dynamical systems (SLDS) framework [42] utilizes a bank of J different linear dynamical models,

along with a set of switching variables with a Markov transition dynamic that model the probability

of belonging to any one of the J modes (see Fig. 4-1). In particular, when the objective of time-

series modeling is feature extraction with the aim of predicting outcome variables of interest, the

SLDS approach requires fewer parameters (and therefore, allows a more compact representation of

the dynamics).
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4.2.1 Switching Kalman Filter

Let us define a mode (or dynamic) as a set of model parameters 0 - {A, C, Q, R} (also known as

a dynamical mode). We further assume a set of (switching) variables St that specify the respective

probabilities of each of the J modes being active at any given time t. The switching Kalman filter

(SKF) algorithm [42] assumes S follows a Markov chain with (J x J) transition matrix Z and (I x J)

initial distribution vector 7.

4.2.2 EM for Parameter Learning in Switching Dynamical Systems

In practice, we neither know the set of switching variables (i.e., segmentation of the time-series)

nor the modes. The EM algorithm for finding the maximum-likelihood set of model parameters has

been briefly discussed in Chapter 2, Section 2.3.2; for a more comprehensive treatment of EM in the

context of SLDS models see Murphy (1998) [42]. Here we highlight the main intuition behind the

EM algorithm, as well as our modifications (1) to impose physiological constraints on the dynamics

for each mode, and (2) to learn shared modes across all the time-series within a patient cohort.

Consider a set of N patients with time-series y" of length Tn. We choose a random initialization

of 8U) as well as xW, VP), Z, z. The E-step of the EM algorithm involves constructing an ap-

proximating distribution over the hidden states x and the corresponding switching variables S"

using a modified Kalman smoother [42]. We run the E-step separately on each of the N time-series.

Next, given the observations y "), and the approximate distributions over x" and S, the M-step

maximizes the expected complete data log-likelihood by adjusting the model parameters across all

the modes (via constrained least-squares optimization to maintain the structure of the A matrices,

as discussed in Chapter 2, Section 2.5.3), as well as the Markov chain parameters Z and 7r. This

learning of the model parameters is done by pooling together all the observed and inferred hidden

variables across all the subjects. Iteration through several steps of the EM algorithm will result

in learning a set of J shared modes and a global transition matrix Z for all the patients. In addi-

tion, to minimize the influence of initialization on the final learned parameters and to reduce the

chance of trapping in local minima, one may implement a deterministic annealing step within the

EM algorithm [42]. Hereafter, for simplicity, we assume that the Q and R matrices are diagonal.
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4.2.3 Switching Dynamical Systems for Feature Extraction and Prediction

Let us define a "mode proportion" (denoted by 7j) as the proportion of time a time-series (or a

patient) spends within the j-th mode. Given the maximum expected log-likelihood estimates of the

switching variables St from the EM algorithm (for each time-series/patient), we have

nj= 1 T Mjj) (4.1)
t=1

where Ms(j) = Prob(S, = jly1:T). Note that, Ej7j = 1. For subsequent classification and pre-

diction purposes, we replace each time-series with its corresponding mode proportion (a compact

1 x J feature-vector), and use a logistic regression classifier to make predictions about the outcome

variables of interest.

4.3 Datasets

4.3.1 Cardiovascular Simulation

We simulated time-series of cardiovascular control system variables based on a delay recruitment

model of the cardiovascular control system, as described in Fowler and McGuinness [105] and

McSharry et al. [106]. The model included a coupled system of nonlinear delayed differential

equations, controlling HR and BP, with respiration as an exogenous input. We simulated 10 different

multivariate time-series of HR and mean arterial BP (MAP), each including three different dynamics

that become dominant in a random order and last for a variable length of time. The three dynamics

(color-coded as red, blue, and black, respectively, in Fig. 4-2) approximate aging-related autonomic

changes: a progressive reduction in parasympathetic gain (from 0.40 to 0.13 to 0.07 in normalized

units, see [105]) and an increase in sympathetic delay (from 3 to 5 seconds).

4.3.2 Tilt-Table Experiment

Time-series of HR and MAP were acquired from 10 healthy subjects undergoing a tilt-table exper-

iment. The details of the protocol are described in Heldt et al. [16]. Briefly, subjects were placed

in the supine position and secured to the table. Tilting was performed from the horizontal position

to the vertical position and back to supine. Examples of the resulting time-series are shown in Fig.

4-3.
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Figure 4-2: Simulation study of the cardiovascular system.
Three examples (out of the 10 simulated time-series) of HR and MAP (after filtering) are shown in
panels A, B and C. In each case, the actual dynamics are color coded. The horizontal gray lines
show the inferred most likely segmentations based on the switching Kalman filter (SKF). Note
that, the SKF consistently assigned modes 2, 3 and 4 to the dynamics color-coded as black, blue
and red, across all the simulated time-series.
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Figure 4-3: Tilt-table study.
Two examples out of the 10 recordings of HR and MAP from the tilt-table experiment are shown in

panels A, B. Within each panel, from top to bottom, HR and MAP (actual values in gray and

filtered values in black), and SKF-based segmentation are shown. In each case, the actual true

dynamics are color coded (green to cyan: slow tilt up and down to supine; red to pink: rapid tilt up

and down to supine; yellow: standing up and back to supine). Note that the SKF consistently

assigns the modes 1 and 2 to the supine and non-supine states, respectively. The other two modes

seem to capture the high-frequency noise components of the time-series.
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4.3.3 MIMIC Database of Intensive Care Unit Patients

The MIMIC II waveform database (version 2) [29] includes approximately 4,000 sets of high reso-

lution physiological waveforms with associated minute-by-minute vital sign trends. This study used

only the adult patients from the MIMIC II waveform database with clinical information, and with

at least 8 hours of continuous minute-by-minute invasive BP trends during the first 24 hours of their

ICU stays. Patients with more than 15% of missing or invalid (i.e., outside physiologically plausi-

ble bounds of 20 to 200 mmHg for mean pressures) BP samples were excluded, yielding a total of

479 patients. The remaining missing or invalid values were replaced with random Gaussian noise

(zero mean, and variance one), which should correspond to a single mode in the final learned model

. Of all the patients within the selected cohort, 16% died before hospital discharge. The dataset

contained approximately 9,700 hours of minute-by-minute systolic BP measurements (20.2 hours

per patient on average). In order to compare with the SAPS-I score, we restricted our regression

analysis to 452 patients whose records included SAPS-I score during the first 24 hours of their ICU

stays. SAPS-I uses a weighted combination of several medical attributes to assess patient mortality.

These attributes include the most extreme values of systolic blood pressure, heart rate, tempera-

ture, blood urea nitrogen, white blood count, serum potassium, serum sodium, serum bicarbonate,

serum bilirubin, as well as age, presence/absence of leukocytosis, presence/absence of acidosis and

presence/absence of oliguria.

4.3.4 Data Pre-processing

Since we are interested, for both the simulated data and the tilt-table experiment, in the dynamics

of interaction between HR and MAP in the frequency range pertinent to sympathetic and parasym-

pathetic regulation [107], the time-series of HR and MAP were high-pass filtered in both studies to

remove the steady-state baseline and any oscillation in the time-series with a period slower than 100

beats. This filtering was done using a 7th order Butterworth digital filter with cutoff frequency of

0.01 cycles/beat. In the case of the MIMIC II database, the minute-by-minute time-series of blood

pressure were filtered to remove linear trends.
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Figure 4-4: Example time-series from the tilt-table experiment.
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4.4 Results

4.4.1 A Simulated Illustrative Example

Fig. 4-2 A-C shows three examples of simulated time-series with the inferred SKF-based segmen-

tations. In all 10 simulated cases the SKF algorithm was able to find the correct segmentation of

each time-series, as well as the sharing of the dynamics across multiple time-series.

4.4.2 Tilt-Table Experiment

Figure 4-3 shows time-series of HR and MAP from two subjects, as they undergo the different

tilting protocols. 4-4 shows sample time-series corresponding to the slow (panel A), fast (panel B),

and standing (panel C) dynamics of HR and MAP.

We constructed a binary classification problem of determining supine vs. non-supine segments

(see Fig. 4-3). There were a total of seven supine positions and six non-supine positions per subject

(total of 13 x 10=130 binary outcomes). We used the average probability of belonging to each of

the four SKF states (J=4) as our feature-vector (i.e., average value of P(S) within each position),

resulting in a 130x4 input matrix. Application of logistic regression with 10 fold cross-validation

yielded an AUC of 0.97±0.01, indicating an excellent discriminatory power.

4.4.3 Time-series Dynamics and Hospital Mortality

In the case of the MIMIC II dataset our aim was to use the mode proportions associated with the

minute-by-minute mean blood pressure time-series dynamics to predict probabilities of in-hospital

patient mortality. The performance of the proposed classification task is reported using 10 fold

cross-validated AUC (median [interquartiles]) as follows. For each fold the cohort was divided into

a training dataset (90% of the subjects) and a testing dataset (10% of the subjects) with a similar

proportion of survived and expired patients. The results presented here are based on using 20 modes,

with the subsequent addition of two more features: SAPS-I score and ICU care unit.

In-Hospital Mortality Prediction

Table 4.1 summarizes the performance of the SAPS-I acuity score, the mode proportions, as

well as their combined performance with the addition of the ICU care unit. The median hospital
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SAPS-I MP MP&SAPS-I CU&SAPS-I MP&CU MP&SAPS-I&CU

AUC 0.66 0.67 0.73 0.69 0.72 0.77

[0.62 0.70] [0.64 0.70] [0.69 0.75] [0.56 0.73] [0.68 0.74] [0.74 0.78]

Table 4.1: In-hospital mortality prediction (10 fold cross-validated).

Blood pressure dynamics (MP), SAPS-I score, and care unit (CU) were used as feature vectors.

These results indicate that SAPS-I score and MP have independent predictive value.

N (Mort %) SAPS-I MP MP & SAPS-I

CCU 97(16.5%) 0.68 0.72 0.76
CSRU 208 (4.3%) 0.58 0.75 0.75
MICU 119 (30.3%) 0.59 0.58 0.61
SICU 55 (21.8%) 0.86 0.57 0.75

Table 4.2: In-hospital mortality prediction, broken down by care unit.

CCU (coronary care unit), CSRU (cardiac surgery recovery unit), MICU (medical intensive care

unit), SICU (surgical intensive care unit).

mortality prediction using the mode proportions was similar to the SAPS-I score (0.67 vs. 0.66).

Moreover, combining features from the mode proportions and SAPS-I score resulted in a significant

improvement in performance (0.73). Notably, adding the care unit as a feature improved the per-

formance of both SAPS-I and mode proportions, suggesting that the two features may have a more

robust performance in certain care units.

To further explore these observations, we pooled together all the subjects in the testing sets of all

10 folds, and calculated the care unit-specific AUCs. The results presented in Table 4.2 demonstrate

a better performance of the mode proportions in two of the care units (CCU, CSRU), while the SAPS

score performs exceptionally well in the SICU. (A possible explanation for the latter observation

is that in preparation for surgery accurate lab and other measurements are obtained, which could

enhance the performance of the SAPS-I score. However, further studies on the entire MIMIC cohort

are needed to confirm this finding.) In summary, these results suggest that within three out of the

four care units the addition of mode information may improve the ability to assess patient risk and

mortality. Moreover, the superior performance of the mode proportions within the CCU and CSRU

may be due to fact that patients within these units suffer primarily from cardiac related illnesses,

and therefore their blood pressure dynamics is informative of the state of their health.
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SAPS-I MP MP&SAPS-I CU&SAPS-I MP&CU MP&SAPS-I&CU
AUC 0.59 0.70 0.71 0.68 0.72 0.73

[0.56 0.66] [0.63 0.73] [0.69 0.77] [0.53 0.73] [0.69 0.73] [0.70 0.78]

Table 4.3: Thirty-day mortality prediction (10 fold cross-validated).
Blood pressure dynamics (MP), SAPS-I score, and care unit (CU) were used as feature vectors.
These results indicate that SAPS-I score and MP have independent predictive value.

N (Mort %) SAPS-I MP MP & SAPS-I
CCU 97 (21.6 %) 0.62 0.81 0.84

CSRU 208 (4.3 %) 0.57 0.77 0.76
MICU 119 (37.8 %) 0.56 0.61 0.63
SICU 55 (25.45 %) 0.86 0.41 0.58

Table 4.4: Thirty days mortality prediction, broken down by care unit.

Thirty-Day Mortality Prediction

To explore the utility of blood pressure dynamics for long-term prognosis of survival and mortality,

we repeated the study of the previous section using a 30-day mortality window. Out-of-hospital

mortality was assessed by looking up social security records. Tables 4.3 and 4.4 summarize the

results of 30-day mortality prediction. Notably, the mode proportions alone achieve 81% accu-

racy within the CCU. These result suggest that the dynamics of blood pressure within the cardiac

intensive care unit are a significant predictor of a patient's overall well-being.

4.5 Discussion and Conclusion

We presented a technique for extracting shared physiological dynamics within a cohort. It was

shown that discrete regime changes in the dynamics of HR and BP, either as a result of an altered

underlying control system (e.g., increased sympathetic regulation with tilting) or due to external

perturbations (e.g., response to drugs and interventions in ICU), can be captured in an automated

fashion. We showed that the discovered dynamics can be used for prediction and tracking of a

patient's propensity to survive the ICU stay. Interestingly, the BP time-series dynamics alone had

a comparable performance to that of the SAPS-I score, although the latter included 14 lab mea-

surements and demographic information. Moreover, our results indicate that the dynamics of the

BP time-series, when combined with traditional patient acuity scores and information regarding the

care units, provides a more accurate assessment of patient survival/mortality in the ICU. Notably,
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we observed that within two cardiac care units (CCU and CSRU) the blood pressure dynamics

alone were a significant predictor of outcomes for both in-hospital and 30-day out-of-hospital mor-

tality. There results are complementary to the observations of Celi et al. [108], who reported that

customization of mortality prediction techniques to acute kidney injury patients may result in sig-

nificant improvement in prognostic performance.

Since an AR model of HR and BP regulation was used, the proposed framework allows us to

extract useful indices of baroreflex activity from the learned AR coefficients [24, 33]. Therefore,

the discovered dynamical patterns are physiologically interpretable. Future work should involve

exploring the full potential of the SLDS framework to model nonlinear dynamics and non-Gaussian

physiological and measurement-related noise. The technique is most useful in modeling systems

with rapid transition among physiological states (e.g., study of changes in autonomic regulation

with sleep stages).

Other approaches to inference and learning within the switching dynamical system frame work

include the nonparametric Bayesian approach and other sampling based methods [109, 110]. The

current framework has two main advantages. First, the inference (i.e., latent state estimation) step

of the algorithm can be parallelized (i.e., performed separately for each patient) and processed on a

cluster computer, thus allowing the technique to scale up to thousands of patient time-series. (Note,

the nonparametric BP-AR-HMM technique of Fox et al. (2009) [109] is not amenable to paral-

lel processing due to the way inference is performed in the conventional implementation of the

beta-process). Secondly, the switching Kalman filter technique for inference within the switching

linear dynamical system framework has the added advantage of having a closed-form (approximate)

analytical solution. This in turn allows for designing an efficient outcome-discriminative (or super-

vised) learning algorithm, where the learning of dynamics can be done with the goal of making

predictions about outcome variables of interest, as will be discussed in the next chapter.
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Chapter 5

Learning Outcome-Discriminative

Dynamics in Cohort Time Series

5.1 Introduction

Extending the switching linear dynamical systems (SLDS) framework discussed in the previous

chapter, we propose a new class of learning algorithms for "outcome-discriminative" discovery of

dynamics within cohort time-series. An example will help to motivate the need for an alternative

approach for learning SLDS differently than via the traditional maximum likelihood-based tech-

niques (such as the EM algorithm). Consider the simulated time-series shown in Fig. 5-1, where

four bivariate time-series, each having different proportions of four different modes, are shown. Let

us assume that we are given a collection of such time-series, and asked to classify the time-series

into four categories. Common to all time-series is the presence of two randomly placed large am-

plitude artifacts (uniform random noise). A maximum likelihood-based learning algorithm may use

one or more modes to explain such artifacts. However, since the artifacts are common to all four

categories, and thus are not relevant to the outcomes, learning of these artifactual patterns will not

improve our classification performance.

5.2 Outcome-Discriminative Learning

The objective of the development in this chapter is to design an outcome-discriminative learning

algorithm that discovers time-series features relevant to outcome variables of interest. The approach

we take is based on exploiting a relationship between probabilistic dynamic Bayesian networks
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Figure 5-1: Example simulated time-series from four different categories.
Four example bivariate time-series corresponding to four latent categories A, B, C, and D (see
Section 5.7.1 for simulation details) are shown in their respective panels. Each category includes
different proportions of four different modes. The four modes are color-coded (red= 1; blue=2;
green=3; black=4). All four categories include two randomly placed large amplitude artifacts
(uniform random noise in the interval of [0 15]) of 10 samples duration. (Note, we introduced an
offset of 2 in one of the channels of each time-series to improve visibility.)

(such as the SKF) and deterministic neural networks, to perform efficient error gradient calculations

for supervised learning of dynamics. Figure 5-2 presents a schematic diagram of a neural network

representation of the switching state-space model presented in Fig. 4-1, augmented with a binary

logistic classification layer. In general, the classification layer may take the form of a multinomial

Logit or any multi-layer neural network, and the associated cost functions may include additional

regularization terms. In addition, one may construct more general feature vectors, based on the

marginal distributions of the latent variables.

Given the representation of Fig. 5-2, one may learn the marginal distributions (corresponding

to the nodes) and the model parameters using the standard backpropagation technique for neural

networks, with the goal of maximizing the probability of outcomes (or minimizing the prediction

error). The objective of error backpropagation is to calculate the sensitivity of a given error function

with respect to small variations in the model parameters. To accomplish this, the backpropagation

technique uses the chain rule (from calculus) to efficiently calculate the error gradients with respect
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Outcome

Figure 5-2: Information flow in a switching linear dynamic system with an added logistic regression
layer.
The x nodes contain M continuous Gaussian random variables, representing the state of M different
modes. The ,i nodes contain M2 intermediate continuous Gaussian random variables, which are
subsequently collapsed to M Gaussian random variable via moment matching [42]. Note that
according to the SKF approximate inference algorithm, the smoothed switching variables (and
therefore the mode proportions 7) are independent of the smoothed state estimates (grey circled
nodes x).
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to all the marginal distributions and the model parameters. For the continuous Gaussian nodes we

will need to calculate the gradients with respect to the means and covariances of each node.

Here we provide the analytical expressions for the involved derivatives, which allows a two-

pass algorithm for calculating the exact gradients. The forward pass is equivalent to the inference

step of the SKF, where we also estimate the partial derivatives of each node output with respect

to its inputs. The backward pass uses the chain rule to recursively estimate the gradient of the

error function with respect to the marginal distributions at each node, and the model parameters.

Note that numerical estimation of gradients involves tweaking each of the model parameters and

observing the change in the error function. For a model with hundreds to thousands of parameters,

this amounts to running the inference step of the SKF many times. This approach is impractical for

cohorts including hundreds to thousands of time-series, with hundreds to thousands of samples per

time-series.

In what follows, we start with the regression layer shown in Fig. 5-2, and recursively estimate

the error gradients all the way down to the filtering layer, and ultimately calculate the error gradient

with respect to the parameters of the dynamical modes.

5.3 Derivatives of the Regression Layer

Logistic regression is commonly used for predicting outcomes of categorical variable. For instance,

each of the N time-series within a cohort may be associated with an outcome (or label) denoted by

{Ore}_1 ). In this work, we use the logistic and multinomial regression methods to map the mode

proportions to the outcome variables of interest. Therefore, we provide the analytic gradients of the

corresponding error functions with respect to the regression parameters and the mode proportions.

5.3.1 Binary Outcomes

Given a set of predictor variables (taken to be the mode proportions here), the binary logit function

takes the following form:

(W )=(5.1)1 +exp(-)

with +1 = # 171 - --y7'j. In Eq. (5.1), or(i) can be interpreted as the probability of a

positive outcome, given the mode proportions (or more generally, model parameters). The Bernoulli

92



probability of a given outcome 0 true (E {0, 1}) is then parameterized by a(77) we follows:

p(Orrue .(f)) = y r"e( _ ,_( rue (5.2)

The objective of parameter fitting (finding the #3 coefficients) is to minimize the negative log-

likelihood of the outcomes, given the predictor variables:

E = -logProb(Orrue; _) (otruelog(o.( )) + (1 -- Otrue)log(l - u(i))). (5.3)

Note that the overall error is the sum over the individual errors, that is: Eai - - E= logProb(O0irue; j (n)).

Error Gradient

The derivative of the error function in Eq. (5.3) with respect to i is given by

dE

dn
Otrue 1 - Orrue exp(-)
a() 1-cy(p) (1+exp(- ))2

(5.4)

Moreover, it follows from the Chain Rule that

dE dE

A- d-#'.
dE. = dE

j d

(5.5)

(5.6)

5.3.2 Multinomial Outcomes

The multinomial probability of a given outcome Orrue (E { - - , K}), parameterized by pk, is given

by

Prob(Orue ''" truelogyrue K
_k= k=1 uel gr )

k=1 k=1
(5.7)

where yk = exp(e,) and ek = #k,o + E =1 I k,j 7j.

We take the error function to be the negative log-likelihood of the probability of an outcome given

K

E = -logProb(O0re\) = - ( Oruelog(pl).
k=1

(5.8)
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Note that the overall error is Eau1= - E=1 logProb(OIrre 11)

Error Gradient

The error gradients with respect to the parameters #k*j of the multinomial regression and the mode

proportions 7b are given by

diE _diE

d# - 71j (5.9)dI~k, d Ok

d E K d E
di dE ' (5.10)

where

diE K
{_ O'"(- r- i.(5.11)

5.4 Derivatives of the Switching Kalman Filter

Some Notation

Hereafter we will use parentheses to index individual modes, and we will use brackets to indicate

the individual elements of a vector or a matrix. Thus, A(i) [m, n] refers to the m-th row, n-th column

element of the matrix of state dynamics for the i-th mode. We will use the symbol 0 to denote the

Frobenius inner product of two matrices (or vectors) defined as A ® B - i Ej AijBij. Moreover, for a

matrix B, indexed by i, j, the colon notation B(i,:) denotes entries ranging over all j values. All the

exponentiations involving matrices are element-wise. Finally, &n, denotes a conformable matrix

with the (m, n)-th element equal to one and zero elsewhere. Similarly, 8,nZ denotes a conformable

matrix with ones at the (m, n)-th and (n, m)-th elements and zero elsewhere.

5.4.1 Filtering Step

For completeness we summarize the essential equations (pertinent to error backpropagation) of the

filtering and smoothing steps of the SKF algorithm, as described in Murphy (1998) [42].

The filtering step of the SKF algorithm takes the following form [41,42]:
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(A (it (iJ) Vt (i, j),L, (ij)) KalmanFilter(p, iir _ (i), V,-11,- (i),y,(i);A(j),C(j), Q(j),R(j))

y,,_t1 = Ay,-1l,-1 , (5.12)

V,-_ = AV_I\,1AT +Q, (5.13)

et = yt -Cyit- 1 , (5.14)

Yt = CVt\,CT+R, (5.15)

VI t1 CT , 1 , (5.16)

At\, = yi\,_ +Gte, (5.17 )

VI, (I -GtC)V,_1 , (5.18)

L, N(e,; 0, YI) . (5.19)

(Mf(j), W|(i, j)) ForwardSwitchFilter(M_1 , Z, Lt)

a/(i, j) = M/_ (i)Lf (i, j)Z(i, j) , (5.20)

af (j) = Eaf (i',j (5.21)

Mtf (j) = atf(j) (5.22)
E j'af(j')

W (i, j) = atf(i, j) /Mtf(j). (5.23)
Ej' af( j')

{ y, ,( j), V,t( j)) = CollapseAt, f~i, W|}

y,1,(j) = W (ij)A,\-(i'j) (5.24)

Vtit(j) = W (i, j)(f?,I,(ij) + (Ftit(ij) - p,1,(j))(Ptlt(i, j) - pt1,(j))T) ,(5.25)

For t 1,.- , T. Note, Mf (i) = Prob(St = ilyi:,), with the initial condition Mo =r.

The analytical partial derivatives of the three operators above are presented in Appendix A, sections

5.9.1, 5.9.2, and 5.9.3.

5.4.2 Smoothing Step

The smoothing step of the SKF algorithm for the switching variables takes the following form [42]:
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(MY(i)) - BackwardSwitchSmooth(M/, Mt+1, Z)

as(ij) Mf(i)Z(ij) , (5.26)
as (i, P)

bs(i, j) = a(ij) (5.27)t Eg, as (i', j)
M7 (i) = bs(i, j')M, 1(f') , (5.28)

for t = T - 1,- , 1. Note, Mts(i) = Prob(St = ilyi:T), with the initial condition

MS = Mf.

5.5 Error Gradient Calculations

We start from the filtering step of the SKF algorithm and calculate the analytical partial derivatives

of each node output(s) with respect to its input(s), as we move forward in time. Next, smoothing

of the switching variables is performed and the corresponding analytical gradients are calculated.

The back-propagation algorithm starts from the reverse direction (from the output of the smoothed

switching variables or the mode proportions) and propagates the gradient information backward

(starting from time T) through the smoothed switching variables, and finally the filtered variables

(end ing in time t=1).

5.5.1 Error Gradient with Respect to Smoothed Switching Variables

Derivatives of the error with respect to the mode proportions rii are given by Eq. (5.6) (in the

case of binary outcomes) and Eq. (5.10) (in the case of multinomial outcomes). Next, the error is

backpropagated through the smoothed switching variables, as follows:

dE I dE
dM (i) T dii'

dE 1 dE dE[ b _(', i), t =2...T (5.29)
dM7(i) Tdr , dM+ _ Ll(j')

We also compute the following derivatives:

dE M+dE 1)[ , t = -.. T - 1 (5.30)
das(i, j) E jMt (k') E( , as (i', j) (Ei a(
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5.5.2 Error Gradient with Respect to Filtered Switching Variables

Next, derivatives of the error with respect to the filtered switching variables can be calculated as

follows:

dE
dM+(i)

E adE Z(i,
i da(ijf)

dE dW
W')±+ f F- iO Wf+I dMf(i)

dE

+M+ 1

dM 1

dtM|i t=T
dMf(i)

= 0,Vi,j,

dE

dytf(j)
0dyfj)

dWtf(i,j)

dE

S V/(j) 
®

dVfj) ,t=T

dW/f(i, j)
1...l .

5.5.3 Error Gradient with Respect to Filtered State Variables

Although the marginal distributions of the state variable are Gaussian random variables, during the

error back-propagation they can be treated as real-valued means (vectors) and covariances (matri-

ces). The following gradients of the error with respect to the state variables are recursively calcu-

lated:

dE

dpf(i) [m]

dE

d pI (i) [m]

dE

dVf(i) [m,n]

dE dLqf) dE andf)
OF OtfI(i~j') OF C TjID ij'
OFdLinti,f) dpf i)[m] dyf d i(f) dyj(i)'[m]

dE d{+11,$3 t =T -1 I
yd~i L I(i, j1) dpl(i)[m]

(5.33)

dE di1(i,f)

t+ d 1(i, j') dV/i)mn)
dE dLI(i,j')

if dLg I(i, f) dV 1 (i)[m,n]

Y, dE

yf dfptj(ijf)

dE

d V/(i) [m,n]

where

t+1 t ) , I .T-2,
d V/f(i) [m, n]

(5.34)dE dL+ 1(i, j') T -

y dLf (i,) dVf(i)[m,n]

dE

dL{(i, A

dE dWj

dW/ dL{ (i,j)

dE 0 (dMfj)t
dMtf dLft{i, j)

(5.35)

and
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OMj(i)

dE

dM/(i)

where
dE

d Wrf(ij)

dE

dW/(i,j)
(5.32)

1-...1 (5.31)



dE

dft(i, j) [m]

dE

d V|f(i, j) [m]

dE dpf(j)
-o 0
dp/(j) def/(i, j)[mn]

dE

IV-fj)f
dV|(j)

d P/ i, j) [m]
(5.36)

(5.37)
dE dVi(j)

dV4(j) dX<|(i, j)[m,n) , 1- *T- 1.

Note that, dVtf,(i,')/pdf (i) - 0 for all i, j, and dpf(j )/dVf (i,j) = 0 for all i, j.

5.5.4 Error Gradient with Respect to Model Parameters

We finally arrive at the error gradients with respect to the model parameters. The derivatives with
respect to the Markov switching state transition matrix are given by:

T dE d Mfj)

t=1 /(j dZ(i, j)

T -1
dE jM/(i)

das (i, j) (5.38)

For the other model parameters the error gradients are as follows:

dE T-1 dE p/(i',j)

dA (j)[m, n) ,7 of(il~j) dA(j)[m,n] (5.39)

dE d?|(i' ,) T dE dLf{i',j)

+ 1i dV(i',j) dA(j)[m,n] t .dLf(i',j) dA(j)[m,n]
T-1 dE _f_(i',j)

Sdfif(ij) dC(j)[m,n]
(5.40)

T-' dE dV?| (i', j) T

+ 1 di',,j) dC( )[m,n] t-1
Ti-1 dE dfif(i',j)

- 7[1 dpf(i ,j)dQ(j)[m,n]
T-1 dE d?|j(i',j) T

+ L 0+L
1 dVi (i', j) dQ(j)[m,n] t.

T-d E d/(i',j) (j)
i ot= f (i ) d R(j) [m, n]

dE dLf(i', j)

dL{ (i',j) dC(j)[m,n]

dE dL{(i',j)

dLf(i', j) dQ(j)[m, n]

Ti dE dV'(i',j)
dR(j) [m, n]

dE dLf(i', j)

SdL{(i',j) dR(j)[m,n]

5.6 Optimization

Our objective is to minimize the cost function in Eqs. (5.3) or (5.8), subject to the constraints that

all Q and R covariance matrices must remain positive-definite, and elements of Z must be positive
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dZ(i, j)

dE

dC(j)[m,n]

dE
dQ(j)[m,n]

dE
dR(j)[m,n]

(5.41)

(5.42)



and add up to one. This problem is equivalent to solving the unconstrained optimization problem:

Minimize E{A(j), Q(j). C(j), R(j), 2,#}j1.--, (5.43)

where the # are the regression coefficients, Q(j) = exp(Q(j)) and R(j) exp(R(j)) (both assumed

diagonal for simplicity), with the following gradients:

dE Q(j)m, n] dE (5.44)
dQ(j)[m,n] dQ(j)[m,n]

dE - dE(5)=E R (j) [m, n] .E (5.45)
dR(j)([m, n] dR(j) [m, n]

Moreover, Z(i, I) exp(j)=,) which results in the following gradient for 2:

dE _ dE dZ (5.46)

d2(ij) d2 d2(i,j )

where

dZ(k, 1)
dz(k ) = 3i,kZ(i, j)( 8j, - Z(k,l )). (5.47)

5.6.1 EM-based Initialization

Let us assuming a binary outcome classification problem, with diagonal matrices Q, R, and a con-

stant C matrix for an MVAR model of order P. The optimization problem in Eq. (5.43) will have

J x (M 2 x P+M+M)+ J2 + J free parameters, where J is the number of modes. As an example,

for J= 4, P = 2 and M = 2 (a second order bivariate AR) we will have 68 parameters to adjust. In

the case of the MIMIC 1I example in the previous section (J = 20, P = 3, M = 1) the number of free

parameters is 520.

The large number of free parameters prohibits the use of standard optimization techniques, due

to overfitting, convergence issues, and stability of the Kalman filter. In practice, we initialize the

switching Kalman filter using a few iterations of EM (10-15 iterations), and then switch to a gra-

dient descent-based optimizer such as the LBFGS method (for Limited-Memory low-rank Hessian

approximation). The efficiency of the LBFGS technique is due to using an approximation of the

Hessian (second order partial derivatives required by the Newton's optimization method) by accu-

mulating information contained in the gradient and error function values during optimization. A

Matlab implementation of the LBFGS algorithm can be found in the minFunc optimization pack-
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aged (available at: http://www.di.ens. fr/-mschmidt/Software/minFunc.html).

The intuition behind the EM-based initialization step is as follows. We are assuming that all the

information needed for making a prediction (or classification) is within certain dynamical features

of the time-series. However, the optimization surface may include many local minima, and therefore

is sensitive to initialization. By maximizing the expected log-likelihood of data (with no labels), EM

attempts to learn the different dynamical features that are present within the time-series. However,

certain features (such as artifacts) may not be relevant to the outcomes of interest. Nevertheless,

early stopping of the EM mitigates the problem of learning uninformative features through overfit-

ting, and puts the parameter values in the appropriate place (within the parameter space) for further

supervised learning. At this point, outcome-discriminative (or supervised) learning can be used to

allocate more resources (in terms of modes and their associated eigenvalues or poles) to predictive

features of the time-series.

5.6.2 Notes on Implementation

Note that both the E-step of the EM algorithm and the gradient computation-step of the supervised

learning can be done in parallel for each time-series. Therefore, in problems involving hundreds to

thousands of time-series, one may run these steps on a computer cluster, for instance using Matlab's

Parallel Computing toolbox.

5.7 Some Illustrative Examples

5.7.1 Simulated Time-Series with Multinomial Outcomes

We simulated 200 bivariate (M - 2) AR time-series of model order P = 2, consisting of J = 4

different modes (for the detail of the simulation see Appendix 5.10.1). The time-series were di-

vided into four categories, according to the proportion of time spent within each mode, with the

mode transition probabilities as shown in Fig. 5-3. Additionally, when generating each time-series,

the dynamics matrices A 1 , -- - , A 4 were individually perturbed by adding a white Gaussian noise

of standard deviation of 0.05 to each of their elements; this in effect creates some dissimilarities

between the modes across the different time-series. Additionally, two 10-sample-long artifactual

segments (uniform random noise in the interval of [0, 15]) were inserted at random locations within

each time-series. Four sample time-series from each of the four categories are shown in Fig. 5-1.
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Figure 5-3: Transition diagram for the four categories
The time-series were divided into 4 categories (A, B, C, D), each statistically having different
proportions of four modes (M1 , -. - , M4). Specifically, the stationary distribution of the four

categories were [0.67, 0.10, 0.10, 0.13], [0.14, 0.57, 0.19, 0.10, [0.08, 0.16, 0.54, 0.22], and
[0.09, 0.09 , 0.23, 0.59]. Note that only the important transition links are shown; the actual

transition matrices were fully connected.
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Figure 5-4: Comparison of EM and supervised-learning.

Panels A-C show the influence of EM initialization on the performance of the supervised learning
(BP). In each case, 30 iterations of the LBFGS optimizer followed the EM runs. The presented

results are based on 10 fold cross-validated classification performance (represented with closed

circles); each boxplot is constructed using the classification performance on 10 testing folds.
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Fig. 5-4 (panels A-E) summarizes the simulation study results. The classification performance

using EM alone slightly improves between 10 and 20 iterations; however, further iterations of the

EM do not result in improved performance on the testing sets. Notably, the figure demonstrates the

dependence of the proposed outcome-discriminative (or supervised) learning on the EM initializa-

tion step. With only 10 iterations of EM (panel A), occasionally the supervised learning algorithm

results in a lower performance on the testing data. However, after 20 iterations of EM (panel B,

EM median accuracy = -74%) the supervised learning produces consistent improvement in perfor-

mance (BP median accuracy = ~83%, p<0.05; signed-rank test). Additional EM steps, up to 50

iterations, marginally improve the supervised learning performance (BP median accuracy = ~87).

However, higher iterations of the EM seems to lower the performance of the supervised learning

(presumably due to overfitting of artifacts, making it harder may be harder for the optimizer to

escape the corresponding local minima).

5.7.2 Multinomial Decoding of Posture: Tilt-Table experiment

Let us return to the tilt-table example of Chapter 4, Section 4.3.2. Here we construct a substan-

tially more difficult multinomial classification task involving the four maneuvers depicted in Fig.

4-3, that is, supine, slow tilt, rapid tilt, and standing up. This task can be viewed as a sequence la-

beling problem, where variable-length segments of a time-series need to be labeled. Such sequence

labeling problems are common in speech recognition.

The results presented in Fig. 5-5 are based on 10 fold cross-validated performance on the testing

data. Similar to Chapter 4, we used four modes, each corresponding to an AR model of order three,

to model the bivariate time-series of heart rate and blood pressure. We initialized the supervised

learning algorithm using 50 iterations of EM, followed by 30 iterations of supervised learning.

Figure 5-5 panel A shows a comparison of the EM-based classification vs. supervised learning.

The EM-based classification achieves an accuracy of 80.8 [71.1 84.6]; however, the performance

is quite varied across the different testing folds. In comparison, application of supervised learning

yields a median accuracy of 84.6 {84.6 90.4] with smaller interquartile range.

Figure 5-5 panel B shows the multinomial probability of the observed outcomes, given the

learned model parameters, before and after supervised learning. Note that this is the quantity we try

to maximize by supervised learning, although on the training data. Notably, where the probability

of the outcomes under the model is the worst (bottom three folds), the application of supervised
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Figure 5-5: 10 fold cross-validation results.

Each closed-circle represents the classification performance on the testing data for one out of the

10 folds. Panel A shows a comparison of the accuracy achieved using EM vs. BP on the testing

data: EM Accuracy 80.8 [71.1 84.6] percent (median [Interquartile ]) vs. BP Accuracy

84.6 [84.6 90.4] percent. Panel B shows a comparison of the two techniques in terms of

multinomial probability of observed outcomes (on the testing data) based on the model: EM

testing prob 0.69 [0.35 0.74] vs. BP testing prob 0.70 [0.64 0.76]. These results indicate that the

supervised algorithm is especially effective where the EM performance is poor.

learning yields the largest improvement in performance.

Figure 5-6 presents a comparison of the two techniques in terms of the individual classification

tasks. As shown in panel A, the EM-based classification incurs the largest error in distinguishing

between the fast tilt and standing up. Panel B shows that the supervised learning improves the dis-

tinction between fast tilting and standing-up. Notably, in almost all cases it classifies the standing-up

category correctly, and yields a small improvement on classification of slow-tilt events.

Physiological Interpretation of the Discovered Dynamics

As extensively discussed in Chapter 2, the AR coefficients corresponding to each of the dynamical

modes can be used to untangle the directional relationships among the modeled variables. Addi-

tionally, useful descriptive indices of the individual time-series can be obtained from the dynamical

modes. For instance, the ratio of the low-frequency power (LF: corresponding to periods of 6-20

beats, mainly a function of sympathetic activity) to high-frequency power (HF: corresponding to

periods of 2-5 beats, mainly reflecting parasympathetic or vagal activation) of the RR interval time-

series is considered to mirror sympathovagal balance or to reflect the sympathetic modulations. The

results presented in Fig. 5-7 show a reduction in HF band power during each of the three tilting
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Figure 5-6: Average confusion matrices.
Panel A shows the average confusion matrix for the EM-based classification. Panel B shows the
average confusion matrix for the supervised classification. Accuracy is defined as the sum of the
diagonal elements of the confusion matrix divided by the sum total of all the elements of the
matrix.

events, which results in an increased LF/HF ratio, indicating increased sympathetic modulations.

These results were obtained by (1) calculating the power spectrum of each mode, and (2) calculat-

ing a weighted average of the spectra within each segment, where the weights were given by the

mode proportions.

5.8 Discussion

We presented a technique for outcome-discriminative learning of dynamics within a cohort time-

series. The main idea of our approach was to present the learning algorithm with the outcomes

(or labels) corresponding to each time-series, in order to learn time-series features that are most

relevant to the discriminative task of distinguishing among the labels. The utility of the technique

was demonstrated using both simulated data and time-series recordings from a human laboratory

tilt-table study.

Using simulated time-series, we showed that the supervised learning algorithm provides a sig-

nificant improvement over EM, given proper EM-based initialization. Notably, the proposed EM-

based initialization step is qualitatively similar to the unsupervised learning step used for training

Deep Belief Networks (DBN) [11.], where the unsupervised learning step is known to significantly

improve the predictive performance of these algorithms [112].

Although we developed our outcome-discriminative learning algorithm in the context of switch-

ing linear dynamical systems (SLDS), one can apply a similar technique to the problem of learning
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Figure 5-7: Physiological interpretation of learned dynamics

Average parametric power of the RR intervals with the HF (period of 2-5 beats) and LF (periods of
6-20 beats) bands are shown in panels A and B, respectively. Panel C shows the LF/HF ratio. The
* symbol indicates a significant change from baseline (p<0.05; Kruskal-Wallis nonparametric

ANOVA test).

marginal distributions and model parameters in a variety of other probabilistic dynamic Bayesian

networks (defined on directed acyclic graphs, including the SLDS as special case). Leaming could

be done using an equivalent neural network representation to directly optimize a cost function on

the inferred marginals.

The approach presented here has a similar flavor as the works of Memisevic (2006) [113],

Eaton (2009) [114], Stoyanov (2011) [115] and Domke (2012) [116] in the context of learning

and inference in Markov random fields. All the previous works in this area have focused on discrete

models, and used direct optimization to minimize an empirical risk (or cost) function of the inferred

marginal distributions.

As demonstrated through the tilt-table example, the proposed approach has the added advantage

of having physiological interpretability. Since the features used for prediction are based on the

dynamics of the underlying time-series, one can link back the most predictive features for a given

outcome of interest to the underlying physiology. For instance, tilting is known to disrupt the

sympathovagal balance in the direction of increased sympathetic activation. Notably, modes that

were most predictive of the tilting events had a larger LF/HF ratio, indicating increased sympathetic

modulations.
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Given the sheer volume of multivariate time-series recorded in modem clinical databases, one of

the advantages of the proposed technique is its scalability, due to the parallel implementation of the

inference step of the SKF algorithm (and thus the gradient calculations). Therefore, the learning of

the dynamical modes, and the Markov transition matrix, can be performed efficiently by exploiting

the modem multi-core processing units (CPU cores) and cluster computation.

5.9 Appendix A

5.9.1 Analytical Derivatives of the Kalman Filter

Recall the Kalman filter operator is defined as:

(Ptir(ij),V rt(ij),Lt(ij)) = KalmanFilter(pl-ilt-1(i), Vt y-1(i),y, (i);A(j),C(j), Q(j),R(j))

The analytical derivatives of the Kalman filter operator is given by

ditl-

dA[m,n] = mn -- |A-

d~tt-IA&m
dyt-I I-y (M)

d'Vtlt- 1

dA[m,n]

dQ[m,n]

dV,y [m,n]

= 3
rnnVt-1|j-1AT +AV- 8, ,

= 3nm
An"AT

det
dA[m,n]

det
dC[m,n]

de'

dy-,_1y[m]

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

= 3 m,nAy,_i,__1

- -CAS.m

(5.53)

(5.54)

(5.55)
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d2'
dA[m,n]
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dQ[m,n]
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d 1 dG t de,
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dGt et
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(5.57)

(5.58)

(5.59)

(5.60)

1 (5.61)act
dA[m,n]

dGt
dC[m, n]

dG
dQ[m, n]

dGt
dR[m,n]

dG,

dV_1i,_1[m,n]

dA[m,n]

daP,
dC[m,n]

dQ[m,n]

dR[m,n]

d 1,,]
dyt-_I|t-_1[m]

dV ,_1- I[m, n]

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

(5.69)

(5.70)

(5.71)

I

_ - d 1tt- CT --Gt~ _ ,-j
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d t It d Gt ~'tl I
dA[m,n] dA[m,n] V1li +IGtC) (5.72)

dV tj dGt C+ (573)),
dC[m,n] dC[m,n] CGmnYi (5.73)

d____ _ dG+ dYV 1  1

dQ~mn] dQ[m,n] (I-GtC)dQ[m,n]

d___ t dG
dR[m,n] dR[m,n]CV _1 (5.75)

d f/ I I - - CitI1 + (I - GtC) d ' (5.76)
dV,_ I,- [m, n] dV - 1 t-I[m, n] dV-_I t-_1[m, n]

d = -Ltf- e t (5.77)

- L2f - ,-Y, -e e/Y-) (5.78)

dL, dLt det dLt dfY (5.79)
dA[m,n] det dA[m,n] +dt dA[m, n]

dL dLt det dL dt(.
dC[m,n] det dC[m,n] + d, dC[m,n] 5.80)

dLt dLt dYt
dQ[m,n] d Y dQ[m,n] (5.81)

dL dLt d Yt
dR[m,n] d Yt 0dR[m,n] (5.82)

dL _ dL det (5.83)
t 1t-1[m] - det d ,-lt- 1 [in]

di,, dLt ________

d~i de di(5.84)
dV, l-1[m,n] d$Y dV,-1| I[m,n]
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5.9.2 Analytical Derivatives of the Filtered Switching Variables

The analytic derivatives of the forward filtering operator:

(M(j), W/(i, j)) = ForwardSwitchFilter(Mr ,Z, L,), is given as follows:

dM/(i)

dMf_ I (j)

dM/(k)
dZ(i, j)

dMf(k)
dL(i, j)

dW/f(i, j)
dM/_ (k)

=ELfuji)Z(j'i)13i 
'

Ei af (i')

= M (i)Lf(i, j)[ akf 

E a{(k')

= M (i)Z/(i, j)[ (k',J
E kr a{(k' )

a,"(i) _] , t = .T.

af(k)

(E' af'(k))2

af(k)

(E. a, a( k')) 2

= (3ikL(ij)Z(ij)

W (i, j) [Eaf(f')
if

dM/(j)

M_ I(k)
+ M/ (j) Lf (k, j')Z(k, j')])/(Mf

J

(3i,k~j,ILt(ij)MtI(i)

- W (i,j)[af(j) k + M/_ (k)L(k,l)M/'(j)])/(M/(j) Ea(j')).

(3i,k3jIZ(i, j)Mf_ (i)

- W/(i,j) [ af(j') +M/i 1 (k)Zf(k, l)M/(j)])/(Mf(j) af (')).
if L(k,1) i
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dWtf (i, j)
dZ(k) 

aw,f (i, j)
dL(k, 1)

(j) Eaf (f)).

(5.89)
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5.9.3 Analytical Derivatives of the Collapse Function

Recall the collapse operator: (pI(j),V1,(j))

The corresponding derivatives are:

daptl,(i, j)_
dftti,[m]

dg~l (i, j)
dWt [i]

dVt (i, j)

dVtit(i, J)
dVtl [in, n]

dV 11(i, j)
dW[i]

= W(ij)31,m

- '(ij)

+ (P It (i, j) - yIt(j))( 3 m - W(i, j)3n)T]

+ EW(k,j)[(-W(i,j)3m)(Ptt(k,j) -pi(j))T

k#i

+ (P I(k,j) - y1 ,(j))(-W(i, j)3m)T]

= 1' W(i, j)

5.10 Appendix B

5.10.1 Details of the Simulated Time-series

We simulated four different modes with the following parameters:

Mode 1:

A = [[[0.3, 0.5; -0.5, 0.5],[-0.4, 0.1;

C1 =[1, 0, 0, 0; 0, 1, 0, 0]

Qi = [v2, 0, 0, 0; 0, 0, 0, 0; 0, 0, le

R - [0.05, 0; 0, 1]

Mode 2:

A 2 - [[[-0.3, - 0.6; 0.4, -

C2 - [1, 0, 0, 0; 0, 1, 0, 0]

0.2, 0.2]]; [eye(2, 2), zeros(2,2)]]

3, 0; 0, 0, 0, le 3]

0.4], [0.3, -0.3; 0.4, -0.3]]; [zeros(2, 2), zeros(2, 2)]]

Q2 = [V/2, 0, 0, 0; 0, V, 0, 0, ; 0, 0, le -

R2 = [0.05, 0; 0, 1]

Mode 3:

(5.91)

(5.92)

(5.93)

(5.94)

(5.95)

3, 0; 0, 0, 0, le - 3]
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A3 = [[[-0.5, 0.2; 0.2, 0.5], [-0.4, 0.3; -0.4, 0.2]]; [eye(2,2), zeros(2,2)]]

C3  [1, 0, 0, 0; 0, 1, 0, 0,]

Q3 =[/, 0, 0, 0; 0 , V2, 0, 0; 0, 0, le - 3, 0; 0, 0, 0, le - 3]

R3 = [1, 0; 0, 0.05]

Mode 4:

A4 = [[[-0.4, 0.2; 0.2, - 0.6], [0.5, - 0.3; 0.4, - 0.2]]; [eye(2,2), zeros(2,2)]]

C4 = [1, 0, 0, 0; 0, 1, 0, 0]

Q4 = [,0, 0, 0; 0, V2, 0, 0 ; 0, 0, le - 3, 0; 0, 0, 0, 1e - 3]

R4 = [1, 0; 0, 0.05]

The following four different mode transition matrices corresponding to four categories (A, B, C,

and D) were defined (see Fig. 5-3):

Category A: Z1 = [0.98, 0.005, 0.005, 0.01; 0.04, 0.92, 0.02, 0.02; 0.04, 0.02, 0.92, 0.02; 0.04, 0.02, 0.02, 0.92]

Category B: Z2 = [0.92, 0.04, 0.02, 0.02; 0.01, 0.98, 0.005, 0.005; 0.01, 0.02, 0.96, 0.01; 0.04, 0.02, 0.02, 0.92]

Category C: Z3 = [0.92, 0.02, 0.04, 0.02; 0.01, 0.96, 0.02, 0.01; 0.005, 0.005, 0.98, 0.01; 0.01, 0.01, 0.02, 0.96]

Category D: Z4 = [0.92, 0.02, 0.02, 0.04; 0.02, 0.92, 0.02, 0.04; 0.01, 0.01, 0.96, 0.02; 0.005, 0.005, 0.01, 0.98]

All four models where initialized at [0; 0]. Fig. 5-1 shows example time-series from each of the four

categories. Using the parameters defined above, we simulated 200 time-series, with equal number

per category. For each of the time-series, we simulated 600 samples and discarded the first 100

samples (to remove transients), resulting in 500 samples per time-series. Additionally, within each

of the 200 simulated time-series, the upper block elements (corresponding to the AR coefficients) of

the dynamics matrices A1 , . -- , A4 were perturbed by adding a white Gaussian noise with standard

deviation of 0.05 to each of the elements. Therefore, although all the time-series shared the same

modes, there were slight differences in dynamics.
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Chapter 6

Conclusion and Future Work

Identification and analysis of physiological dynamical systems, in healthy and pathological states,

may assist physiologists with better understanding of the etiology of complex diseases, and may

aid clinicians with the development and titration of new treatments. As new patient monitoring and

prognostic tools inspired by nonlinear dynamics are making their ways into the clinic (e.g., based on

heart-rate entropy [117]), a systems physiology approach will require tools from multivariate non-

linear dynamical systems, where the interactions among physiological variables can be translated

into a mechanistic description of the pathological state. The work presented in this thesis consti-

tutes a step in bridging the gap between mathematical models of physiological control systems and

the clinical utilization of such techniques, with the goal of improved patient state monitoring and

clinical decision support.

6.1 Summary of Contributions

In chapter 3 we investigated the feasibility of using fluctuations in multivariate physiological time-

series to characterize (oscillatory) behaviors of the underlying systems around their resting station-

ary equilibrium points. Furthermore, we explored the utility of such characterization in quantifying

system properties such as stability and the propensity to exhibit oscillatory outputs in response to

external disturbances. We then developed an adaptive chemoreflex identification technique that in-

corporated measures of quality of experimentally recorded signals into the parameter estimation

step, thus mitigating the influence of recording artifacts on the estimated model parameters. The

potential clinical significance of this work includes the ability to assess respiratory instability in

patients with sleep disordered breathing (e.g., Cheyne-Stokes breathing in congestive heart failure,
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obstructive sleep apnea in adults, and neonatal apnea), and evaluation of weaning from mechanical

ventilation in critically ill patients.

With the goal of modeling dynamical regime transitions in physiological time-series within a

patient cohort, Chapter 4 introduced the switching linear dynamical systems (SLDS) framework.

We then presented an extension of the framework to incorporate physiological models of the under-

lying systems, and to discover similar dynamical patterns across a patient cohort. Our results from

the tilt-table experiment demonstrated that the SLDS technique can correctly detect the switching

dynamics in time-series of HR and BP, corresponding to various postural changes. Next, we ap-

plied the technique to a subset of patients from the MIMIC II intensive care unit database, where

we showed that the evolving dynamics of time-series contain information pertaining to mortality of

patients, both in-hospital as well as up to thirty days after hospital release.

In Chapter 5 we developed an advanced machine-learning technique for outcome-discriminative

learning of dynamics within a patient cohort. The main idea of our approach was to present the

learning algorithm with the outcomes (or labels), corresponding to each time-series (e.g., survived

vs. expired), and to learn time-series dynamics that are most relevant to the discriminative task

of distinguishing among the labels. Using the proposed algorithm, we demonstrated a significant

improvement in decoding postural changes involved in the tilt-table experiment, using the multi-

variate switching dynamics of HR and BP time-series. The technique developed in this chapter

is also significant from a theoretical point of view, since we demonstrated that one may apply a

backpropagation-based learning algorithm to the class of dynamic Bayesian networks if the goal

of inference and learning is to use the learned marginal distributions for prediction or classification

purposes.

6.2 Suggestions for Future Work

The techniques developed in this thesis allow for searching large physiological cohort time-series

for dynamical patterns relevant to outcome variables of interest. Extending the work presented in

this thesis, one may design efficient dynamics-based search algorithms for multivariate physiolog-

ical time-series. Such tools will not only be useful for retrospective cohort studies (e.g., finding

pathological dynamics in heart rate and blood pressure of patients at risk for hypotension) but also

for online monitoring of patients and detection/prediction of significant clinical events (e.g., sepsis

and onset of hypotension). A search tool customized for physiological time-series will have two
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main components. First, offline algorithms for learning of multivariate dynamics, where the con-

cept of "dynamics" is either defined by the user (e.g., based on constrained physiological models of

the underlying systems) or is discovered by automated algorithms (i.e., system identification). This

step will yield segmentation and indexing of time-series within the database. Next, given a bank

of possible dynamical behaviors, the inference step will involve segmentation and assignment of

newly presented patient time-series to the most likely dynamics, with the aim of event classification

and predictive monitoring. Ultimately, tools from real-time monitoring of nonlinear dynamics in

physiological time-series must be integrated with tools from the "-omics", bioimaging and other

disciplines in order to develop comprehensive risk scores personalized to the individual patients.
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