
PARTE: Automatic Program Partitioning for Efficient

Computation over Encrypted Data

by

MSSARH9VS T

AN,"o s

Meelap Shah

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2013

@ Massachusetts Institute of Technology 2013. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

February 1, 2013

Certifiedby............................/....
Nickolai Zeldovich
Associate Professor

Thesis Supervisor

A ccepted by- v. -r

slie .iiolodziejski
Chairman, Department Committee on Graduate Students

PARTE: Automatic Program Partitioning for Efficient Computation
over Encrypted Data

by
Meelap Shah

Submitted to the Department of Electrical Engineering and Computer Science
on February 1, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Many modern applications outsource their data storage and computation needs to third
parties. Although this lifts many infrastructure burdens from the application developer, he
must deal with an increased risk of data leakage (i.e. there are more distributed copies
of the data, the third party may be insecure and/or untrustworthy). Oftentimes, the most
practical option is to tolerate this risk. This is far from ideal and in case of highly sensitive
data (e.g. medical records, location history) it is unacceptable. We present PARTE, a
tool to aid application developers in lowering the risk of data leakage. PARTE statically
analyzes a program's source, annotated to indicate types which will hold sensitive data
(i.e. data that should not be leaked), and outputs a partitioned version of the source. One
partition will operate only on encrypted copies of sensitive data to lower the risk of data
leakage and can safely be run by a third party or otherwise untrusted environment. The
second partition must have plaintext access to sensitive data and therefore should be run
in a trusted environment. Program execution will flow between the partitions, levaraging
third party resources when data leakage risk is low. Further, we identify operations which,
if efficiently supported by some encryption scheme, would improve the performance of
partitioned execution. To demonstrate the feasiblity of these ideas, we implement PARTE in
Haskell and run it on a web application, hpaste, which allows users to upload and share text
snippets. The partitioned hpaste services web request 1.2 - 2.5 x slower than the original
hpaste. We find this overhead to be moderately high. Moreover, the partitioning does not
allow much code to run on encrypted data. We discuss why we feel our techniques did not
produce an attractive partitioning and offer insight on new research directions which could
yield better results.

Thesis Supervisor: Nickolai Zeldovich
Title: Associate Professor

2

Acknowledgments

Many people have helped and motivated me through this project.

First my advisor, Professor Nickolai Zeldovich, whose patience and willingness to help

seem inexhaustible. Ramesh has been a great friend and inspiration. Casual conversations

with him often result in interesting ideas; this project is just one example. Austin is an

endless source of ideas and information. He is very naturally able to explain arcane de-

tails of complex systems in fantastically simple ways. Raluca has been a solid source of

support and snacks to encourage me to complete this project. Emily wrote the first lines

of Haskell to concretize this project and get it rolling. Professor Adam Chlipala saved me

countless hours of work by introducing me to some simple techniques in program analysis

that heavily shaped this project. Elette was an amazing source of energy and drive. Thank

you all.

3

4

Contents

1 Introduction 11

2 Related Work 15
2.1 Computation Over Encrypted Data . 15
2.2 Program Partitioning . 16
2.3 Program Analysis Techniques . 17

3 System Design 19
3.1 Overview . 19
3.2 Differentiating Sensitive From Non-Sensitive Data 21
3.3 Identifying Suitable Encryption Schemes 22
3.4 Determining Sensitive Dataflow . 23
3.5 Partitioning the Application . 24

4 Implementation 29

5 Evaluation 31
5.1 H paste . 3 1
5.2 Performance . 33
5.3 Security . 35
5.4 Motivating New Cryptosystems . 35

6 Discussion 39
6.1 Performance. 39
6.2 Improvements 40

6.3 Similar Systems... ... 40
6.4 Future Work. 41

7 Conclusion 43

5

6

List of Figures

3-1 Haskell code representing an application to compute some simple statistics

about employee salaries within a company 20

3-2 PARTE defines SensitiveInt as a wrapper around an Int. 21

3-3 Type signatures are modified to work with wrapped types. 22

3-4 PARTE adds a phantom parameter to wrapped types and parametrizes it

w ith unique types. 26
3-5 The data flow graph for our example application. Each oval is a function

and the arrows indicate the flow of sensitive data. 27

5-1 A part of hpaste's dataflow graph and PARTE's partitioning of it. 36

5-2 PARTE's partitioning of our example employee application. 38

7

8

List of Tables

5.1 Time breakdown of running PARTE on hpaste. 32
5.2 Time taken for hpaste to serve one request 34
5.3 Bytes sent across the network to serve one request. 34

9

10

Chapter 1

Introduction

Many modern applications collect and use sensitive user data. For example, search engines

might track browsing history to improve the quality of search results; smartphone applica-

tions might track location history to present timely traffic information; social network sites

might collect personal information to help users stay up to date with their friends.

These applications need to maintain their own infrastructure or leverage third parties to

meet their data storage and processing needs (e.g. Yelp [5] and foursquare [1] use Ama-

zon's S3 and Elastic MapReduce services). Unfortunately, this means that there are more

entrypoints through which an attacker can gain illicit access to user data. As a result, end

users must trust their sensitive data with the application as well as third party servers.

Ideally, a user would be able to benefit from the services provided by an application

while maintaining the confidentiality of his sensitive data. To achieve this, the user should

need to trust only components that are under his control (such as his own computer). This

requires eliminating the application and other third party servers from the trusted comput-

ing base (TCB).

One way in which the user can reduce the TCB is by storing all his sensitive data

locally and never disclosing it to remote servers. In order to use an application, the user

would have to receive the application code and run it locally over his data. This is very

similar to an installed desktop application and is unsuitable in many scenarios: the user

loses mobility since he can use the application only from a computer that has a copy of his

data; existing applications would need to be rewritten to work in the user's environment;

the user may have limited resources (CPU, storage, power). Alternatively, a trusted third

party could receive data from the user and code from the application server, run the code

over the data and return the result. However, this model offers little protection for users'

data if the trusted third party is compromised by an attacker.

Another option is to use a fully homomorphic encryption (FHE) scheme [13]. An FHE

scheme allows arbitrary computations over enrypted data. In this model, the user would

encrypt all sensitive data under an FHE scheme locally before sending it to the application.

The application code would need to be modified to work over encrypted data (for example,

+ would be replaced with some other operation that can add two ciphertexts). The user

would never reveal his data in the clear to the applcation or any third party in this model,

protecting him from both malicious applications as well as compromises of remote servers.

However, FHE schemes today incur too high of a space and time overhead to be usable for

11

most applications [14].
The paper presents the design of PARTE, a tool to aid in modifying an existing ap-

plication to work efficiently over encrypted data. PARTE builds on the idea proposed in
CryptDB [16] of using various encryption schemes to enable executing code over encrypted
data. CryptDB used various encryption schemes to build a SQL database in which queries
could be executed over encrypted data-the DBMS never sees plaintext data; PARTE applies
this idea to general applications. Rather than using FHE which allows any computation but
is slow, PARTE will make use of a variety of encryption schemes that allow limited com-
putation but are efficient so that the resulting application remains efficient enough to be
practical.

A random (RND) encryption scheme (such as AES in CBC mode with a random initial-
ization vector) does not allow any computation to be performed efficiently over ciphertexts.
A deterministic (DET) encryption scheme (such as AES in a variant of CMC mode, details
in [16]) allows two ciphertexts to be efficiently compared for equality. An order preserving
(OPE) encryption scheme (such as [6]) allows comparisons (<, >) to be computed be-
tween two ciphertexts. A homomorphic (HOM) encryption scheme (such as Paillier [15])
allows addition of two ciphertexts or multiplication of a ciphertext with a plaintext. Vari-
ous schemes exist to allow searching for a keyword in a body of text (such as [18]). Other
specialized encryption schemes can potentially be developed to support other operations
performed by an application.

These schemes are not all equally secure. For example, a RND ciphertext leaks no bits
about its corresponding plaintext wheres an OPE ciphertext leaks half of the bits of the
plaintext. It is important to choose the most secure encryption scheme that supports the
needed operations to minimize data leakage.

With so many encryption schemes supporting different sets of operations, it can be
tricky for the application developer to know how to apply them to his application. PARTE
can aid the developer by analyzing the application and determining which scheme (if any)
can be used and where. At a high level, this will work as follows. The developer first
annotates data structures in the application code that will hold sensitive user data. PARTE

will find all functions that use these data structures. For each such function, PARTE will
determine what operations it applies to sensitive data and which encryption schemes (if
any) support these operations. If at least one such encryption scheme exists, PARTE will
output a modified version of the function that works on encrypted data structures as well
as a wrapper function to encrypt data before invoking this modified function. If no en-
cryption scheme exists, the function will need access to plaintext data. This partitions the
application's functions into two groups: one group can operate on data encrypted under
some scheme; the other must operate on plaintext. PARTE can partition the execution of
the application (by inserting RPCs) so that functions that work on encrypted data run on
the application/third party's servers and the remaining functions run in some trusted envi-
ronment such as the user's local machine.

One point to note is that we do not want to depend on any changes to the runtime or the
application's environment. We restrict PARTE to only change application source code. The
reason for this is that since part of the application will run in an untrusted environment, we
do not want to make any assumptions about that environment.

A second point to note is that PARTE must run statically. PARTE must know the code

12

path particular inputs will follow ahead of time so it can encrypt those inputs with appro-

priate schemes.

For many applications, we believe that this partitioned execution is better than simply

running the entire application on the user's machine. The application can still leverage

the computing resources of the application/third party servers. In many cases, data can

be stored encrypted on the application server and need not be transferred to the client in

order to run the application. Allowing the application servers to store data grants the user

mobility since he no longer needs to sync his data across all computers from which he might

use the application. Moreover, different users can share data on the application server.

The high level challenges in making partitioned execution work are:

1. Identifying and distinguishing sensitive data from non-sensitive data in the applica-

tion.

2. Identifying and separating application code that can operate on encrypted data from

the code that must operate on plaintext.

3. Insert code to allow program execution to flow between the two partitions of the

application code, encrypting data as necessary.

One challenge not addressed is how partitioned execution would work in multi-principal

applications. If users encrypt their data with different keys, then it is not obvious how an

application can compute on data from different users. One user may need to encrypt his

data with another's key, but this might require that users trust each other. Or encryption

schemes may need to support converting ciphertexts from one key to another, or operations

on ciphertexts encrypted under different keys. It is unclear which approaches will work;

multi-principal applications raises several important challenges which are left to future

work.
We built a prototype of PARTE in Haskell, levaraging several features of the language to

address the challenges listed above. We approximate identifying sensitive data by identify-

ing sensitive data structures-structures that may hold sensitive data at runtime. We identify

code that can operate on encrypted data by pairing encryption schemes with Haskell type

classes. These techniques are described in detail in Chapter 3.

We run our prototype on several applications to demonstrate its feasiblity. We use a

web appplication, hpaste [3], and a log analysis tool that we wrote. The results show

that although the partitioned application works, the overhead is moderately high and the

majority of the application needs to run on plaintext. We discuss why our results leave

much to be desired in terms of performance, but also indicate where computations not

supported efficiently by some encryption scheme occur in the application.

The rest of this thesis is organized as follows. Chapter 2 discusses related work address-

ing computation over encrypted data, program partitioning, and relevant program analysis

techniques. Chapter 3 discusses the design of PARTE in detail and in particular how each of

the challenges listed above is solved. Chapter 4 discusses a few implementation details of

PARTE. Chapter 5 presents some results of running our prototype of PARTE on a few appli-

cations. Chapter 6 discusses why those results were observed and offers insight as to how

they can be improved as well as directions for future work. Finally, Chapter 7 concludes.

13

14

Chapter 2

Related Work

Many systems have been built to address the issue of user data confidentiality. We break the

related work down into three categories. Section 2.1 discusses work that encrypts sensitive

data to ensure that it is not leaked. Section 2.2 discusses work that partitions applications

so that senstive data and the code that operates on it remain in a trusted environment.

Section 2.3 discusses work that uses techniques from program analysis to ensure that data

is not revealed to unintended recipients.

2.1 Computation Over Encrypted Data

CryptDB [16] is a SQL database that only stores encrypted copies of data. It makes use of

a variety of encryption schemes that each efficiently supports a small set of operations to

execute many common types of SQL queries over encrypted data. Some queries need to

perform operations that no crypto-scheme efficiently supports (e.g. matching text against

a regular expression). In these cases, CryptDB transfers data to a trusted environment in

which the data can be safely decrypted and computed upon.

A common pattern among applications that do use a SQL datastore is to perform several

sequential, dependent database reads. In these cases, the application usually does some

filtering (e.g. sort the results of one query and restrict the next query to just the top n

items) or transformations (e.g. convert data to lower case) in between these database reads.

While most logic of this type could be expressed in the SQL query, this is often not done in

practice because complex SQL queries are difficult to understand and write. PARTE could

enable application logic, such as code that runs between database queries, to run in the

same, untrusted environment as the database. If the application and datastore share locality

(which is often the case), this could significantly reduce the amount of data transferred

between an application and its users.

Monomi [19] is a system that builds on CryptDB's approach by introducing split clien-

t/server query execution. For queries that involve computation not efficiently supported by

some encryption scheme, CryptDB would incur a high overhead. Monomi alleviates this

by splitting the execution of the query so that some of it executes on the database server

over encrypted data and the rest of the query finishes executing on the client. However,

Monomi assumes a certain type of workload and includes many optimizations to support

15

this specific workload. One way in which our work is different is that we target general
purpose programs so we cannot make any assumptions about the types of computation we
will need to support.

Silverline [17] presents a system that aims to allow arbitrary programs to compute on
sensitive data while maintaining confidentiality in untrusted environments. One limitation
of Silverline is that it only considers programs that can work with data encrypted under a
randomized scheme which fundamentally limits the types of programs Silverline can suc-
cessfully work with. Moreover, Silverline's approach is to determine what data can be
encrypted and encrypt just that; this may still expose sensitive data in clear while unneces-
sarily incurring overhead by encrypting non-sensitive data. PARTE's approach is to force
sensitive data to remain in a trusted environment and allow it to leave only if it can first be
encrypted; all non-sensitive data remains unencrypted and requires no extra processing.

Sporc [11] enables multiple users to collaboratively use an application hosted by an
untrusted server. This system never exposes sensitive user data in plaintext to untrusted
servers, thereby maintaining confidentiality. However, in Sporc the untrusted servers are
only used to order, store, and broadcast client-generated operations. PARTE instead pushes
as much of the application logic onto the untrusted server as possible to leverage its re-
sources. Moreover, applications need to be specifically designed and written to take advan-
tage of the Sporc framework whereas PARTE can work on a general class of applications.

Frientegrity [12] is a system similar to Sporc - it enables many users to form a social
network in which data is encrypted and stored in an untrusted central server. This system
is designed for a specific application which is reflected in the types of computation the
untrusted server is allowed to do. In contrast, our work aims to support arbitrary programs
and tries to make as much use of the untrusted server's resources as possible.

Some applications implement custom techniques to preserve data confidentiality. For
example, http: //Obin.net and http: //defuse. ca/pastebin.htm are web
applications that allow users to upload and share text snippets, but first encrypt these snip-
pets on the client-side. Any client that wishes to view a stored snippet must have received
the decryption key out of band. This approach does not generalize and requires much
manual effort.

2.2 Program Partitioning

Jif/split [23] and Swift [10] are systems that partition application code to ensure data confi-
dentiality. Sensitive data and application code that operates on it are pinned to one partition.
Because these systems do not make use of encryption or other tools, sensitive data cannot
leave the trusted environment without being leaked. These systems also require the devel-
oper to write the application in a Java-like language and specify information flow policies.
They use both static and runtime techniques to ensure that these policies hold. PARTE also
partitions applications, but differes in that it leverages cryptography to allow sensitive data
to move between partitions while minimizing data leakage, and works with general purpose
existing applications.

As mentioned in Section 2.1, Monomi also makes use of program partitioning. How-
ever, Monomi only partitions SQL queries whereas we support partitioning arbitrary appli-

16

cations.
Program partitioning has been used to solve a number of other problems. For example,

Pyxis [7] improves the performance of database applications by partitioning to achieve
better locality and reduce data transfer. Our goal of reducing the risk of data leakage is
quite different and we take a different approach towards partitioning. However, it would be
interesting to see if their static analysis techniques could be reworked to help realize our
goal.

2.3 Program Analysis Techniques

Jeeves [21] is a programming language designed to give the developer control over how
data is disclosed. The developer specifies a privacy policy that defines how data should
be output in a given environment. This policy is enforced by the language runtime. Our
work differs in that we maintain data confidentiality not just when data is being output but
throughout the execution of the program. This allows us to run certain parts of the program
in untrusted environments while preserving confidentiality.

Ur/Web [9] and UrFlow [8] provide a system that statically checks security policies for
database backed web applications. The policies can control who is allowed to learn what
information. This allows the system to prevent leaking data to untrusted users. Our work
differs in that we trust the user but do not trust the application server.

Resin [22] is a language runtime that tracks data flow allows application developers to
specify assertions that must check before the data is allowed to move across flow bound-
aries. This system could be used to track sensitive data and prevent it from flowing into
untrusted environments. However, one way in which our work differs in that one of our
goals is to enable safely transmitting sensitive data into untrusted environments to take
advantage of that environments computational resources.

17

18

Chapter 3

System Design

In this chapter, we describe the design of PARTE.

3.1 Overview

The only input PARTE takes is the application's unmodified source code and annotations
identifying data structures that will hold sensitive data. It outputs modified source code that

enables parts of the application to execute over encrypted data. To achieve this, we must

address the following problems.

1. Sensitive data must be differentiated from non-sensitive data throughout the appli-
cation. Since our tool must work statically, we cannot rely on the value of data.

Moreover, our tool has no sense as to what data should be considered sensitive. As a

result, we approximate identifying sensitive data by having the application developer

identify sensitive data structures. We assume that sensitive data is only ever stored

in one of these data structures.

2. We must identify blocks of application code that operate on sensitive data struc-

tures. Functions serve as a natural way to break a well written application into log-

ical chunks. We look at a function's type signature to determine if it operates on a

sensitive data structure.

3. Each function in the application that operates on sensitive data structures must be

analyzed to determine whether it can work on encrypted versions of that data. We

use type classes to determine the operations the function performs.

A type class defines a set of functions that a type can implement to support certain

computation. For example, an Int type can implement an Eq type class to support

== and f. See [20] for more details about type classes.

We match operations provided by type classes with operations efficiently supported

by some encryption scheme. If there is a match, then we know that the function can

be modified to work on encrypted data. If there is no match, we must run the function

on plaintext.

19

4. The application must be partitioned into two pieces. The first piece should contain
only function that can work over encrypted data and can therefore be safely run in an
untrusted environment. The remaining functions need to run on plaintext in a trusted
environment. We use a data flow graph in conjunction with the analyses from the
previous challenges to determine just how to partition the functions.

We chose to implement a prototype of PARTE in Haskell because its static, implicit type
system facilitates the analyses required to solve the challenges just described. Nevertheless,
the ideas we describe here can be implemented in any other suitable language.

We use the code in Figure 3-1 as a running example throughout the following sections
to illustrate how PARTE works. Suppose a company represents information about each
employee in the Employee abstract data type (ADT). The application is run on a central
server, but each employee's salary is considered sensitive information so we would like to
avoid revealing it to the server in case it is compromised by an outside attacker. The follow-
ing sections describe how PARTE can help us achieve this goal. Specifically, Section 3.2
describes how to differentiate sensitive from non-sensitive data; Section 3.3 describes how
to find suitable encryption schemes for each function; Section 3.4 describes how to identify
functions that operate on sensitive data; finally, Section 3.5 describes how to partition the
application.

Figure 3-1: Haskell code representing an application to compute some simple statistics
about employee salaries within a company.

20

data Employee = Employee {

name :: String,

salary Int,

highestPaid [Employee] -> (String,Int)

highestPaid employees = head . sort2 $
[(name e, salary e) I e <- employees]

sort2 :: [(String,Int)] -> [(String,Int)]

sort2 s = case s of

[1 -> []
(a:b) -> let p = snd a

1 = filter ((<=p) . snd) b
h = filter ((> p) . snd) b

in (sort2 h)++[a]++(sort2 1)

averageSalary [Employee] -> Int

averageSalary e = average (map salary e)

average :: [Int] -> Int

average s = quot (sum s) (length s)

3.2 Differentiating Sensitive From Non-Sensitive Data

The application developer needs to specify which data structures will hold sensitive data. In

the example application, he would specify the tuple ("Employee","salary"). This tuple

identifies the ADT and field which will represent a salary. It has type Int. To distinguish

this from other data of type Int , we create a new type SensitiveInt that is simply a

wrapper around an I nt (Figure 3-2).

data SensitiveInt = MkSensitiveInt
unSensitiveInt :: Int

data Employee = Employee {

name :: String,
salary :: SensitiveInt,

Figure 3-2: PARTE defines SensitiveInt as a wrapper around an Int.

Certain data structures may at times hold sensitive data and at other times hold non-

sensitive data. For example, an application may define a generic Bu f fe r data type that is

sometimes used to hold sensitive data but also used to hold non-sensitive data. We do not

distinguish between these cases and treat all data of type Buf fer as sensitive.

After wrapping the sensitive data in a unique type, the types of other functions in the

application may need to change. For example, some functions that originally took an I nt

as input should now expect a Sensitive Int. Figure 3-3 shows what our example ap-

plication looks like after making all such changes. We identify all functions that need to be

changed as functions that operate on sensitive data.

More concretely, consider the call to average made from averageSalary. After

changing the type of the salary field, averageSalary will now pass alistof SensitiveInts

to average. This is a type mismatch since average expects a list of Ints. From this

type mismatch we can conclude that averageSalary and average operate on sensi-

tive data.
Polymorphic functions will not produce a type mismatch like this. For example, sup-

pose average had type signature Fractional a => [a] -> a. We need some other

way to determine that this average operates on sensitive data. When we wrapped Int to

create Sensitive Int, we did not make it an instance of any type class. As a result, the

call to polymorphic average will not typecheck since there is no instance of Fract ional

for type Sens itiveInt. Errors such as this allow us to determine whether polymorphic

functions ever operate on sensitive data.

Sensitive data may sometimes be passed to a function through a higher order function.

For example, suppose somewhere in our application we have the statement (isWealthy

. salary) (e : : Employee) where isWealthy has type signature Int -> Bool.

In this case, the function composition (.) causes a type error. It has type (.) (b->c

) -> (a->b) ->a->c. When the compiler type checks this call, salary causes b to unify

21

highestPaid :: [Employee] -> (String,SensitiveInt)

highestPaid employees = head . sort2 $

[(name e, salary e) I e <- employees]

sort2 :: [(String,SensitiveInt)] -> [(String,SensitiveInt)]

sort2 s = case s of

[] -> [1
(a:b) -> let p = snd a

1 = filter ((<=p) . snd) b
h = filter ((> p) . snd) b

in (sort2 h)++[a]++(sort2 1)

averageSalary [Employee] -> Int

averageSalary e = average (map salary e)

average :: [SensitiveInt] -> Int

average s = quot (sum s) (length s)

Figure 3-3: Type signatures are modified to work with wrapped types.

with SensitiveInt but isWealthy causes it to unify with Int. This tells us that
a function passed to (.) operates on sensitive data. To determine what this function is,
we need to fix the type of (.) so that it typechecks and that its argument that operates
on sensitive data does not typecheck. We take the error caused by (.) and use it to add
an explicit type signature so that it checks. In this case, we get (.) (SensitiveInt
->c) - (a->SensitiveInt) ->a->c. Now isWealthy causes a type mismatch since

it expected an Int but got a SensitiveInt and we can conclude that isWealthy
operates on sensitive data. Adding explicit type signatures on higher order functions give
us visibility into their functional arguments.

3.3 Identifying Suitable Encryption Schemes

Section 3.2 showed how to determine which functions operate on sensitive data. For each
such function, we must determine if it can be modified to operate on encrypted data. To do
this, we first determine the set of operations the function performs on the sensitive data and
then match this set against operations supported by a variety of encryption schemes.

We determine the set of operations a function performs by representing classes of com-
putation with Haskell type classes. For example, equality (== and / =) operations are
represented by the builtin Eq type class and comparison (<, <, >, >) operations are repre-
sented by the builtin Ord type class. We can represent addition by defining an Addable
type class and keyword search over text by defining a Sear chable type class.

Each of these type classes maps directly onto the operations efficiently supported by
some encryption scheme. Eq maps to a deterministic scheme, Ord maps to an order pre-
serving scheme [6], Addable maps to a homomorphic scheme [15], and Searchable

22

maps to a text search scheme [18].

Application developers can easily take advantage of their own encryption schemes.
They simply need to define and use a type class capturing the operations their schemes sup-
port, and provide PARTE with functions to encrypt and decrypt data using those schemes.

Haskell's type inference system allows us to automatically determine type class con-
straints on the arguments to a function. If a function has no explicit type signature, then
Haskell will infer the most general signature that works. We can then unify type variables
in the inferred signature with the concrete types in the explicit signature to determine which
type class constraints apply to the sensitive inputs to the function.

Consider sort 2 from Figure 3-1. If we remove the explicit type declaration, its in-
ferred signature will be sort2 : : Ord b =>[(a, b)] -> [(a, b) I. By matching the
type variable b in the inferred signature with the Sens it ive Int from the original, we
can determine that sort2 performs operations in Ord on SensitiveInt. Ord maps
to an OPE scheme, so we can conclude that sort2 can be modified to work on OPE
encrypted sensitive data.

If there are multiple type class constraints on a sensitive data type, we intersect the set
of schemes that suport each class. If there is such a scheme. we can modify the function
to operate on sensitive data encrypted with that scheme. If there is no such scheme, the
function must run on plaintext. We cannot simply send multiple copies of the sensitive data
encrypted under different schemes that support each type class constraint because we do
not know how the function uses these different operations. We would need to look inside
the function to determine when to use each encryption, but our analysis does not see deeper
than the function level. However, we can inform the application developer that if he can
break the function into smaller functions each with fewer type class restrictions, they may
be modifiable to work on encrypted data. Alternatively, if we used a different analysis that
worked at a finer grain than the function level, then we might be able to automatically break
a function into smaller pieces or use multiple schemes to encrypt sensitive data.

If there are no type class constraints on a sensitive data type, then we assume that the
function does not poke at the data but treats it like a blackbox (i.e. performs no operations
dependent on the value of the sensitive data). An example is taking the length of a list -
this operation needs to know nothing about the type of elements in the list. As a result, we
conclude that functions like this can be modified to work with data encrypted under any
scheme.

Finally, there may be a type class constraint on a sensitive data type that does not
map to any encryption scheme. In this case, we assume that the operations represented
by the type class require access to plaintext data. For example, the developer may define
a RegexSearchable type class to do regular expression matching against a type. We
know of no efficient encryption scheme that would allow full regular expression search, so
we conclude that the function cannot be modified to operate on encrypted data.

3.4 Determining Sensitive Dataflow

We saw how to determine suitable encryption schemes for individual functions in Sec-
tion 3.3. Now we determine how sensitive data is passed between functions so that we

23

know where to insert RPC and encryption functions. For example, if f oo operates on
plaintext but invokes bar which operates on OPE encrypted data, we must insert code to
encrypt the data before ba r is invoked.

To determine how sensitive data is passed between functions, we must first find all func-
tions that operate on sensitive data. Section 3.2 showed how to find functions that directly
take a sensitive data type as input. However, the application may define other ADTs which
include sensitive data. In our running example, Employee includes a Sens itiveInt.
We can imagine defining another ADT Divi s ion containing a field of type [Employee]
which contains Sensitive Ints. We scan the entire program source to find all ADTs
which contain a field of a sensitive type.

Now that we know all ADTs that contain sensitive data, we use phantom types to de-
termine how they are passed between functions. First, a phantom parameter is added to the
definition of every ADT containing sensitive information. In our example, we add the pa-
rameter p to ADT definitions. Next, a unique type is used to parametrize each occurrence
of each ADT. The final result would look like Figure 3-4.

Now we look for type mismatch errors. For example, highestPaid passes a list
of (String, SensitiveInt SensitiveInt1) to sort2 which expects a list

of (String, SensitiveInt SensitiveInt3). The phantom parameters of the

Sens it ive Ints do not match, resulting in an error which we can interpret as sensitive
data flowing from highestPaid to sort2.

By interpreting all such type mismatches as data flow, we build a complete picture of
a how a sensitive data type flows through an application. For our example application, we
might get a picture as in Figure 3-5.

3.5 Partitioning the Application

Section 3.3 showed how to identify suitable encryption schemes for each function, and
Section 3.4 showed how to determine the paths data takes through the application. We now
combine this information to output a partitioned application.

We name the two partitions Trusted and Untrusted. Functions in the Trusted partition
will have access to plaintext data while functions in the Untrusted partition will have access
to only encrypted versions. This way, we can run functions in the Untrusted partition in an
untrusted environment since they never operate on sensitive data in plaintext. The Trusted
partition should be run in a trusted environment since sensitive data will be accessible in
the clear.

Now we address the issue of assigning each function to a partition. We observe that the
same sensitive data may be represented by different types throughout the execution of the
program. For example, sensitive user input may initially be stored as a St r ing until some
function parses and constructs a developer-designated sensitive ADT with it. Similarly,
sensitive data may be read out of one these ADTs into a different type. For example,
showing an ADT might return a string containing the sensitive data.

Our analysis works at the level of types rather than data. Our dataflow graph tracks only
functions dealing with sensitive types. We know nothing about the application's behavior
on sensitive data in cases where its type is not one designated as sensitive by the developer.

24

As a result, we take a conservative approach when assigning functions that are not part of

the dataflow graph and assign them all to the Trusted partition.

We can assign functions in the dataflow graph to a partition using our analysis from Sec-

tion 3.3. Each function that we can modify to run on encrypted data goes in the Untrusted

partition. The remaining functions go in the Trusted partition.

25

data SensitiveIntl

data SensitiveInt2

data SensitiveInt3

data SensitiveInt4

data SensitiveInt5

data Employeel

data Employee2

data Employee3

data SensitiveInt p = MkSensitiveInt

unSensitiveInt Int

data Employee p = Employee
name :: String,

salary :: SensitiveInt SensitiveIntl,

data Division p = Division
employees [Employee Employeell,

highestPaid [Employee Employee2] ->
(String, SensitiveInt SensitiveInt2)

highestPaid employees = head . sort2 $

[(name e, salary e) I e <- employees]

sort2 [(String,SensitiveInt SensitiveInt3)] ->

[(String,SensitiveInt SensitiveInt4)]

sort2 s = case s of

[] -> [1
(a:b) -> let p = snd a

1 = filter ((<=p) . snd) b

h = filter ((> p) . snd) b

in (sort2 h)++[a]++(sort2 1)

averageSalary [Employee Employee3] -> Int

averageSalary e = average (map salary e)

average :: [SensitiveInt SensitiveInt5] -> Int

average s = quot (sum s) (length s)

Figure 3-4: PARTE adds a phantom parameter to wrapped types and parametrizes it with
unique types.

26

Figure 3-5: The data flow graph for our example application. Each oval is a function and

the arrows indicate the flow of sensitive data.

27

28

Chapter 4

Implementation

In this chapter, we describe our prototype implementation of PARTE.

As described in Chapter 3, our design calls for an implementation that can define new

types and modify existing types in a given codebase, type check a module and inspect

any type errors. We chose to implement these capabilities in the simplest way possible

that was still sufficient to evaluate PARTE as described in Chapter 5. Haskell has libraries

available to parse and modify Haskell source code, and the Glasgow Haskell Compiler

(GHC) exposes its internals, and the type checker in particular, through a nice API. We

made use of these libraries and APIs to implement a prototype in approximately 3,500 lines

of Haskell. We used version 7.2.1 of GHC. We used a third party implementation of AES,
took the OPE implementation from CryptDB, and implemented the Paillier cryptosystem

ourselves.
The GHC API provided convenient methods to type check our modified source code.

However, it returned errors as strings, such as "Expected type: Sens itive Int Actual

type: I nt In the second argument of a call of foo". The location of the code that caused

this error is also returned. Our implementation simply parses this error message to extract

the type mismatch and determines the function that caused this error by searching for the

function at the location of the error.

Our implementation is far from robust. Parsing error messages is clearly not a desir-

able way to extract information from the compiler. A more robust approach might hook

into the compiler's type checking logic to extract precise error information. However, our

implementation was sufficient to evaluate the ideas presented in this thesis.

In order to allow execution to flow between the two partitions, PARTE embeds a remote

procedure call (RPC) server in the untrusted partition and an RPC client in the trusted par-

tition. Program execution is expected to begin in the trusted partition. Functions that can

run in the untrusted partition are invoked via RPC using the embedded client and server.

PARTE inserts code to evaluate thunks and serialize data before being transmitted via RPC.

One limitation of PARTE is that it requires all arguments and return values to be fully eval-

uated before being sent between partitions. Moreover, because Haskell has no notion of

global variables PARTE does not have to deal with synchronizing global state between par-

titions. Mutating data (such as MVars) are not supported if they are used across partitions.

These limitations could be overcome by using techiques such as those used by Pyxis [7] to

synchronize global state across program partitions.

29

30

Chapter 5

Evaluation

In this chapter we evaluate our prototype of PARTE.

Our original goal was to reduce the risk of leaking sensitive data in a way that is efficient

enough to be practical. Therefore, we evaluate our prototype along two dimensions:

1. Does PARTE actually reduce the risk of data leakage?

2. Is PARTE's output efficient enough to be practical?

To answer these questions, we run PARTE on a real application. Hpaste [3] is a web

application that allows users to upload and share text snippets called pastes. Suppose we

are using an untrusted third party to host the application. We would like to avoid leaking

our pastes to the hosting provider and any attackers who might compromise them. We use

PARTE to help us achieve this goal.

We describe the application and PARTE's partitioning of it in more detail in Section 5.1.
Then we discuss the performance in Section 5.2 and the security in Section 5.3.

We notice that PARTE is particularly useful at identifying which functions in the ap-

plication perform work that is not efficiently supported by any cryptosystems that we are

aware of. This is useful to the application developer since it identifies complex parts of

the application which, if simplified, could allow PARTE to work more effectively. It is also

useful to cryptographers since it identifies operations that developers might like cryptosys-

tems to support efficiently. We explore this idea further in Section 5.4 and demonstrate how

it can be useful on several other toy applications that we wrote ourselves.

5.1 Hpaste

5.1.1 What is hpaste?

Hpaste is a web application that allows its users to upload snippets of text, called pastes.

Each paste is accessible from the web application's home page or can be shared with a

direct URL. Hpaste is implemented in approximately 3,500 lines of Haskell. It is built on

top of the Snap [4] web framework and stores pastes in a Postgres database. A live version

of the web application is available at ht tp : / /hpast e . org.

31

5.1.2 Applying PARTE to Hpaste

PARTE requires a few pieces of input from the application developer, but otherwise parti-
tions the application automatically. We need to identify the data structures that will hold
sensitive data at runtime. In this application, we consider the contents of each paste to
be sensitive. Looking through the source code, we see that there are two data structures
that hold pastes. The first is the pastePaste field of an ADT named Paste. A paste
that is retrieved from the database to be rendered into the web page returned to the user is
stored in this structure. The second is the paste SubmitP aste field of an ADT named
PasteSubmit. A new paste submitted by the user is held in this structure while on its
way to being wrtten to the database. We just need to specify the module, ADT name, and
field name of each of these structures, so describing them to PARTE takes only two lines of
annotations.

In order for PARTE to allow program execution to flow between partitions, the applica-
tion's data structures need to be serializable. In Haskell, this can be done simply by deriving
the Read and Show type classes. However, for other purposes the application had already
defined instances of Show which could not be read back in unambiguously. Instead, we
use the Data . Binary class to define our own serialization functions for the relevant data
types in approximately 50 lines of code. Alternatively, packages like cereal-derive
can be used in conjunction with GHC's DeriveGeneric extension to automatically de-
rive serialization methods and avoid having to write any boilerplate code.

Running PARTE on hpaste to produce a partitioned application completes in 353 sec-
onds. For comparision, simply building an unmodified copy of hpaste on the same machine
takes 24 seconds. Because we iteratively compile the application, extract type error infor-
mation, and then fix the error we expect to take several orders of magnitude longer than
simply building the application. Table 5.1 breaks this time down according to each of the
phases as described in Chapter 3.

Analysis Phase Time (s)

Wrap sensitive data in unique type (Section 3.2) 62

Data flow with phantom types (Section 3.4) 158

Determine type class constraints (Section 3.3) 52

Assign functions to partitions (Section 3.5) 81

Total 353

Table 5.1: Time breakdown of running PARTE on hpaste.

PARTE partitioned the application into two pieces such that one piece sees only en-
crypted pastes. This piece primarily consists of the functions that read and write to the
database and totalled approximately 800 lines of code. These functions do not transform
the pastes at all, so a randomized encryption scheme (AES in CBC mode with a random
initialization vector) is used to encrypt pastes before they are passed to these functions.
We replace the server side code with this piece. We note that the application does not is-

32

sue any SQL queries that depend on the content of pastes, and that the original pastes and
encrypted pastes have the same type (strings) so we were able to use a standard Postgres
backend without having to make any changes to the schema. If this were not the case,
we would need to use a database that supports SQL queries over encrypted data such as
CryptDB [16] or Monomi [19].

The other partition consists of the rest of the application which formats pastes and
generates HTML to return to the client and consists of approximately 2,700 lines of code.
It requires access to plaintext pastes because of the complex transformations it performs
on pastes (e.g. syntax highlighting), so it must be run in a trusted environment. In this
case, that environment is the client's machine. One way to preserve the user experience
is to run the trusted partition in a browser extension on the client. The extension can
transparently intercept all requests to the hpaste server and redirect them to the trusted
partition. However, we instead run the trusted partition as an HTTP server on the client's
machine and have the client's browser connect to this server. This is much simpler and
sufficient to evaluate the performance and security of the partitioning.

5.2 Performance

In this section, we ask if PARTE's partitioning of hpaste is performant enough to still be
practical. To answer this question, we compare the partitioned hpaste with the original
hpaste. More specifically, we look at how partitioning has affected the application's re-
sponse time (Section 5.2.1) and network usage (Section 5.2.2).

5.2.1 Processing Performance

To measure the time to service one request, we manually instrument both the unmodified
and the partitioned version of the application to record the time when processing starts and
ends. For the unmodified application, we measure the time elapsed between receiving a
request and returning a response. The time to send the request for the application and the
time for the end user to receive the response is covered in the next section on network
performance. For the partitioned appliction, we measure the time elapsed in both the client
and server side code. We do not include the time taken to perform RPCs since this is
network performance which we cover in the next section.

We measure processing time for two types of requests: storing a paste and fetching
a paste. We use the code in Figure 3-1 as the contents of the paste. We run each type of
request 1,000 times and average the results in Table 5.2. We can see that partitioning causes
a 1.2 x slowdown for stores and a 2.5 x slowdown for fetches.

There are two things of note here. The first is that the original unmodified application
is quite slow to begin with. This is because of a bug in the Haskell library used by hpaste to
communicate with Postgres that causes a delay of approximately 40 milliseconds for every
database call. The second is that reading a past out of the database is slower than writing
a paste. This is because the reading a paste performs more database calls and therefore
induces more of the 40 millisecond delays. The rest of the overhead is attributable to the
encryption and serialization overhead.

33

Request type Unmodified hpaste (ms) Partitioned hpaste (ms)

Store paste 168 214 (client 123, server 91)

Fetch paste 199 499 (client 162, server 337)

Table 5.2: Time taken for hpaste to serve one request.

5.2.2 Network Performance

To evaluate network performance, we measure the total number of bytes transferred over
the network. In the unmodified application, the two components talking over a network are
the web application's server and the end user's browser. In the partitioned application, the
only network activity is between the two partitions. The trusted partition has locality with
the end user's browser so we assume that incurs no additional network overhead. More-
over, we asusme the the backing database has locatity with the application server/untrusted
partition so we assume communication with the database does not incur additional network
overhead.

Table 5.3 shows the results. We can see that partitioning incurs no overhead in storing a
paste but fetching a paste is almost twice as slow with partitioning. There are several things
going on here. First, we note that in the unmodified version of hpaste, the client is a web
browser making HTTP requests to the server. In the partitioned version of hpaste, the client
is making RPCs to the server. In both cases, the content of the paste is transferred between
client and server. Storing a paste takes roughly the same number of bytes in both cases
because AES in CBC mode has minimal ciphertext expansion so the data is roughly the
same number of bytes and the overhead of HTTP is roughly the same as the overhead for
our RPCs. Fetching a paste shows markedly different numbers. In the unmodified version
of hpaste, the client receives the paste in an HTTP response sent by the Snap server that
hpaste is built on. The Snap server compresses its response which the client's browser
decompresses which is why fetching a paste in the unmodified hpaste is smaller than both
storing a paste in unmodified hpaste and fetching a paste in partitioned hpaste. Fetching a
paste in partitioned hpaste is much larger because the RPC client receives a response from
the RPC server which is not compressed. In fact, compression would not reduce the size
anyways because the response largely consists of encrypted data.

Request type Unmodified hpaste (bytes) Partitioned hpaste (bytes)

Store paste 1861 1854

Fetch paste 1067 1758

Table 5.3: Bytes sent across the network to serve one request.

34

5.3 Security

In this section, we ask if PARTE's partitioning of hpaste has reduced the risk of data leak-

age. To answer this question, we manually audit and compare the partitioned hpaste with

the original hpaste.

There are many ways in which sensitive user data can be leaked with the unmodified

hpaste running on an untrusted server. Anyone who has compromised the server or other-

wise has access to it can simply dump the database tables and read the pastes. They could

also replace the application binary to forward all new pastes to interested third parties.

In the partitioned application, pastes are always encrypted under some encryption scheme

before being sent to the untrusted server. In this case, anyone who has compromised the

server or otherwise has access to it cannot read the pastes by dumping the tables because

the pastes are encrypted. They also cannot learn the contents of the pastes by replacing the

server binary because the server only sees encrypted pastes and never receives the decryp-

tion key. However, some information is leaked. For example, some encryption schemes

leak some fraction of bits of the plaintext. The order preserving scheme we use leaks half

of the bits of the original text. This may be enough for the attacker to learn useful infor-

mation about the sensitive data or it may not. The amount of data leaked in this way is

application dependent since it depends on the encryption schemes used. An application

developer using PARTE on his application would have to manually audit the partitioning to

determine the security benefit to his application.

Generally, we believe that the partitioned application greatly reduces the risk of leak-

ing data since it only ever reveals encrypted data while the original application deals in

plaintext.

5.4 Motivating New Cryptosystems

In this section, we discuss how PARTE can provide interesting insight as to what the com-

plex functions in an application are and what types of encryption schemes, if developed,

would be useful.

We notice that the functions that run in the trusted partition must do so because there

is some operation that they perform which is not efficiently supported by any encryption

scheme that we are aware of. It would be useful to know what these operations are because

the application developer could possibly rewrite the logic to do something simpler that is

efficiently supported by an existing encryption scheme. Even if this is not possible, it sug-

gests operations that would be useful for encryption schemes to efficiently support so that

applications that operate on sensitive data would no longer need to trust the environment in

which they run.

It can be difficult to manually analyze an application to determine what these operations

are. Without being intimately familiar with a codebase, searching for places where sensitive

data is computed on and tracing how it is passed between functions poses quite a challenge.

Without this knowledge, determining the precise set of operations which you would like an

encryption scheme to efficiently support can be very difficult.

The data flow graph produced by PARTE can greatly simplify this task. We begin by

35

looking at the line that PARTE draws through the data flow graph to partition the applica-
tion's functions. We would like to move this line so that more functions fall in the partition

to be executed by the untrusted party. In order to move this line, we look at the operations

performed by functions that fall along the boundary but on the trusted side. These are the
operations which we would like some encryption scheme to efficiently support.

In the following subsections, we identify desirable encryption schemes for hpaste and
another simple application which we wrote but which performs computations that are com-

mon amongst real applications that leverage third party infrastructure [2].

5.4.1 hpaste

At a high level, the partitioning of hpaste described in Section 5.1 results in the untrusted

server being able to do a minimal amount of work-reading pastes out of and writing pastes

into the database-leaving the trusted client to do the rest. We would like for the server to
do more of work to remove the burden from the client's resources.

From the dataflow graph, we can identify functions in the client's partition along the
boundary separating the client from the server's partition. Quickly scanning these, two in

particular stand out.

Figure 5-1: A part of hpaste's dataflow graph and PARTE's partitioning of it.

FirstisthefunctionLanguage.Haskell.HsColour.CSS.hscolour. Ifapaste
contains source code written in one of several programming languages, hpaste will colorize

36

language keywords. Figure 5-1 shows a part of hpaste's dataflow graph and PARTE's parti-
tioning of it. We see that just along the boundary on the trusted client's side is hs c ol our.
To move the partitioning line so that the untrusted server does more work, we need an en-
cryption scheme that supports the operations performed by hs colour. Looking at the
body of this function, we see that it uses substring matching to identify language keywords
and substring insertion to markup the paste so that those keywords are colorized. This sug-
gests that an encryption scheme that supports text matching and insertion would be useful.

The second function that stands out is Ame l ie .View .viewDi f f. As its name sug-
gests, it takes two pastes as input and computes the diff between them. As a result, an
encryption scheme that supports computing the diff between two strings would be useful.

5.4.2 Log Analysis

Third party resources are often used for log storage and analysis [2]. Stored logs are usually
very large and need to be filtered to find relevant entries. A common way to filter is to match
a pattern, such as "error", against each log entry. This is type of filtering is well suited to
MapReduce style computation if the logs are distributed across a cluster of machines.

We wrote a simple Haskell application to do pattern based log filtering. We want to
find out which operations limit what computation the untrusted party is able to do. As with
hpaste, we use PARTE to generate a dataflow graph and we immediately see that the limiting
function, mat ch, compares a pattern against a log entry along the partition boundary. As
a result, an encryption scheme that efficiently supports pattern matching could be useful to
partition analytical workloads such as this.

5.4.3 Employee Application

We augmented our example application that dealt with employee salaries as shown in Fig-

ure 3-1 to take a set of employee records as input and output the name of the employee
with the highest salary as well as the average salary. We used PARTE on this application
which produced the partitioning shown in Figure 5-2. An order preserving scheme is used

to encrypt the salary before sending it to the highestPaid function. average must

remain in the trusted partition because it imposes the Integral type class restriction on

its argument because of its use of quot, and this type class does not map to any encryption

scheme that we know of. This suggests that the operations defined by the Int egr al type

class which include integer division, quotient, and remainder functions might be useful for

an encryption scheme to efficiently support.

37

Figure 5-2: PARTE's partitioning of our example employee application.

38

Chapter 6

Discussion

In this chapter, we discuss why we observed the results that we did when evaluating PARTE,
how we might do better, and compare and contrast PARTE's approach with those of other
systems with similar goals.

The partitionings that PARTE produced on hpaste and several other toy applications
we wrote included only minimal computation in the untrusted partition. This is far from
optimal because untrusted parties (such as third party hosting services like Amazon EC2)
are generally used for the resources that they provide. However, if PARTE only allows
minimal computation to occur in the untrusted partition and forces the trusted partition to
do the bulk of the work, then applications cannot take advantage of third party resources.
In Section 6.1 we discuss why the untrusted partition was delegated a minimal amount of
computation. In Section 6.2 we discuss approaches PARTE might use to produce more
desirable partitionings. In Section 6.3 we discuss why CryptDB and Monomi, the most
similar works in terms of goals and approaches, are able to perform much better. Finally,
in Section 6.4, we discuss directions for future work.

6.1 Performance

In this section, we discus why we observed the partitionings that we did in Chapter 5. We
believe that there are three main reasons why the untrusted partition was able to do so little
computation.

1. As far as we know, only a very limited number of operations are efficiently supported
by some encryption scheme. This fundamentally limits what PARTE can allow to run
in the untrusted partition.

2. PARTE's function level analysis may be too coarse. Functions consist of many oper-
ations, some of which we can perform efficiently on encrypted data and some which
we cannot. However, the presence of a single operation that we cannot perform ef-
ficiently on encrypted data causes PARTE to place the entire function in the trusted
partition. This may unnecessarily place computation in the trusted partition when it
could be safe to run in the untrusted partition.

39

3. Approximating sensitive data with sensitive data structures that may hold sensitive
data at runtime severly limits PARTE's efficacy in placing functions in a partition.
Sensitive data may change types at runtime (e.g., through a toSt ring method).
After such a type change, PARTE cannot trace the code path that the sensitive data
follows. As a result, PARTE must be conservative and place all functions that do not
explicitly deal with a sensitive data structure in the trusted partition. If such a function
does not in fact interact with sensitive data, then this placement is unnecessary.

6.2 Improvements

In this section, we discuss how the three main problems identified with PARTE in Sec-
tion 6.1 could be alleviated.

1. An efficient FHE scheme would certainly solve many problems since it would make
any operation efficient to perform over encrypted data. In fact, such a development
would likely give rise to more elegant solutions that solve the problem of data leak-
age. Next best would be more encryption schemes that efficiently support a limited
set of operations. This would allow PARTE to place more application code in the un-
trusted partition. In fact, as discussed in Section 5.4, given an application PARTE can
identify which operations an encryption scheme should be developed to efficiently
supprt in order for the application to benefit more from partitioning.

2. Analyzing an application at a finer grain than the function level would allow PARTE
to separate individual functions across the two partitions. Whereas before a function
that performed lots of simple computations and one complex computation would
have to run in the trusted partition, a finer grained analysis might allow the simple
computations to be moved to the untrusted partition. This, however, may pose its
own challenges if statements within a function depend on each other. However, these
challenges have been addressed by previous works ([7, 23]).

3. Precisely tracking sensitive data instead of approximating this by tracking sensitive
data structures would allow PARTE to be much less conservative when placing code
in a partition. If PARTE could be sure that a piece of code did not operate on sensitive
data, then it could place that code in the untrusted partition. However, the current
approach has many false positives. A different approach might perform dynamic
analysis offline in a trusted environment to taint sensitive data and observe the code
paths it traverses. In this way, code that operate on sensitive data could be learned
and the application could potentially be more effectively partitioned.

6.3 Similar Systems

In this section, we compare and contrast PARTE with two systems which we feel are most
similar in approach and goal: CryptDB [16] and Monomi [19]. These two systems enable
the execution of SQL queries over encrypted data. They pre-encrypt multiple copies of

40

data using different encryptions schemes in what they refer to as onions. Monomi further

precomputes certain values in anticipation of specific query types. Incoming queries are

analyzed and based on the operations they perform, the data encrypted under the appro-

priate scheme is exposed. If a plaintext version of the data is required, CryptDB pulls all

the data into a trusted environment, decrypts it and executes the query. Monomi partitions

the query so that only the operations that need plaintext access to the data run in a trusted

environment; the rest of the query runs in the untrusted database server.

These systems are similar in that both reduce the risk of data leakage in untrusted envi-

ronments by computing over encrypted data. Monomi is further similar in that it partitions

query execution for efficiency for specific workloads.

A primary difference between PARTE and these systems is that PARTE aims to be

usable for arbitrary programs while these systems are only concerned with SQL queries

(and in the case of Monomi, only analytical workloads). Although all of these systems

have the same set of encryption schemes available for use, we believe that these SQL-
oriented systems are much more successful in achieving their goals partly because SQL
queries are much more amenable to the types of analysis needed to enable computation

over encrypted data.

To begin, PARTE has to analyze arbitrary programs rather than SQL queries. A SQL
query is easily parsed. The parse tree can be walked to determine the operations used

and the order in which they are applied to data. In the database scenario, sensitive data

is generally identified by column so there is little ambiguity as to whether a piece of data

is sensitive or not. The problem that PARTE faces of distinguishing Ints that contain

sensitive data from Ints that do not does not exist. Moreover, there are only a limited

number of ways in which a query can refer to data (i.e., column name, an alias via the

AS directive, and assignment). With little effort, a data flow graph can be extracted from

a parse tree. Overall, the very structured and predictable format of SQL queries makes it

easier to make them work over encrypted data than an arbitrary program.

6.4 Future Work

This section discuss some of the possible directions for future work. In Section 6.2 we

discussed several ways in which PARTE might be improved. These form a good starting

point for several avenues of future work.

One improvement not discussed in that section is to avoid having to fully evaluate

thunks before sending them between partitions. One advantage of Haskell, and lazily eval-

uated languages in general, is that computations are stored as thunks and are only evaluated

when needed. This allows the program to avoid performing any unnecessary computation.

By forcing thunks to be fully evaluated, we lose this benefit. However, a drawback of

thunks is that they consume a lot of memory. Therefore, while fully evaluating thunks

before sending them across the network would likely significantly reduce the number of

bytes sent across the network, it could also cause a lot of unnecessary computation to oc-

cur. Experimenting with this tradeoff to find an optimal balance is an interesting direction

of future research.

Our analyses used specific features of programming languages such as phantom types

41

and type classes. Not all programming languages support these constructs. Moreover, we
observed that analysis at the level which we performed it at was too coarse grained. It
would be interesting to further explore finer grained techniques that would work with more
popular programming languages that may not necessarily support the language constructs
that we used in this work.

Finally, we applied program partitioning to reduce the risk of data leakage. Our analysis
could perhaps be used to optimize some other metric, such as network efficiency. Other
works, such as [7], explore this. It would be interesting to see how our approach applied to
different goals might compare with existing work.

42

Chapter 7

Conclusion

This thesis presented the design of PARTE, a tool to help lower the risk of data leakage

when running applications in untrusted environments.

Our approach involves approximating the static tracking of sensitive data via sensitive

data structures as indicated by the developer, using type classes to infer operations per-

formed by functions, mapping type classes to operations efficiently supported by encryp-

tion schemes, and partitioning the application so that part of the application may safely

execute over sensitive data in an untrusted environment.

We demonstrated our prototype implementation on hpaste, a web application, as well as

two toy applications. Our evaluation showed that there is much room for improvement. We

suggested several ways we might modify our approach to achieve more satisfactory results.

We also showed how PARTE can offer insight as to what sorts of operations we would like

encryption schemes to efficiently support.

43

44

Bibliography

[1] Aws case study: foursquare. URL https: //aws. amazon. com/solutions/

case-studies/foursquare.

[2] Powered by hadoop. URL https://wiki.apache.org/hadoop/

PoweredBy. Accessed: January 16, 2013.

[3] hpaste. URL ht t p : / /www . hp a s t e . o r g. Accessed: January 16, 2013.

[4] Snap framework. URL http: / / snapf ramework. com.

[5] Aws case study: Yelp. URL https://aws.amazon.com/solutions/

case-studies/yelp.

[6] A. Boldyreva, N. Chenette, Y. Lee, and A. O'Neill. Order-preserving symmetric

encryption. In EUROCRYPT, April 2009.

[7] A. Cheung, S. Madden, 0. Arden, and A. C. Myers. Automatic partitioning of

database applications. Proc. VLDB Endow., 5(11):1471-1482, July 2012. ISSN

2150-8097. URL http://dl.acm.org/citation.cfm?id=23502
2 9.

2350262.

[8] A. Chlipala. Static checking of dynamically-varying security policies in database-

backed applications. In Proceedings of the 9th USENIX conference on Operat-

ing systems design and implementation, OSDI'10, pages 1-, Berkeley, CA, USA,

2010. USENIX Association. URL http: //dl. acm. org/citation. cfm?

id=1924 943.1924951.

[9] A. Chlipala. Ur: statically-typed metaprogramming with type-level record compu-

tation. In Proceedings of the 2010 ACM SIGPLAN conference on Programming

language design and implementation, PLDI '10, pages 122-133, New York, NY,

USA, 2010. ACM. ISBN 978-1-4503-0019-3. doi: 10.1145/1806596.1806612. URL

http://doi.acm.org/10.114
5 /18065 9 6 .18 0 6 6 12 .

[10] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng. Secure

web applications via automatic partitioning. In SOSP, October 2007.

[11] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten. SPORC: Group

collaboration using untrusted cloud resources. In Proc. of the 9th Symposium on

Operating Systems Design and Implementation, Vancouver, Canada, October 2010.

45

[12] A. J. Feldman, A. Blankstein, M. J. Freedman, and E. W. Felten. Social networking
with frientegrity: privacy and integrity with an untrusted provider. In Proceedings
of the 21st USENIX conference on Security symposium, Security'12, pages 31-31,
Berkeley, CA, USA, 2012. USENIX Association. URL http: / /dl . acm. org/
citation.cfm?id=2362793.2362824.

[13] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, May-June
2009.

[14] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the aes circuit.
Cryptology ePrint Archive, Report 2012/099, 2012. http: / /eprint . iacr.
org/.

[15] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In EUROCRYPT, May 1999.

[16] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB: Protect-
ing confidentiality with encrypted query processing. In SOSP, October 2011.

[17] K. P. N. Puttaswamy, C. Kruegel, and B. Y Zhao. Silverline: toward data confi-
dentiality in storage-intensive cloud applications. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, SOCC '11, pages 10:1-10:13, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0976-9. doi: 10.1145/2038916.2038926. URL
http://doi.acm.org/10.1145/2038916.2038926.

[18] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted
data. In Security and Privacy, 2000. S P 2000. Proceedings. 2000 IEEE Symposium
on, pages 44 -55, 2000. doi: 10.1 109/SECPRI.2000.848445.

[19] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich. Processing analytical queries
over encrypted data. In Proceedings of the 39th International Conference on Very
Large Data Bases (VLDB), August 2013.

[20] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Pro-
ceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL '89, pages 60-76, New York, NY, USA, 1989. ACM. ISBN
0-89791-294-2. doi: 10.1145/75277.75283. URL http: / /doi. acm. org/10.
1145/75277.75283.

[21] J. Yang, K. Yessenov, and A. Solar-Lezama. A language for automatically enforcing
privacy policies. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, POPL '12, pages 85-96, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1083-3. doi: 10.1145/2103656.2103669.
URLhttp://doi.acm.org/10.1145/2103656.2103669.

[22] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving application security
with data flow assertions. In Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, SOSP '09, pages 291-304, New York, NY, USA, 2009.

46

ACM. ISBN 978-1-60558-752-3. doi: 10.1145/1629575.1629604. URL http:
//doi.acm.org/10.1145/1629575.1629604.

[23] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Untrusted hosts and confi-

dentiality: Secure program partitioning. In SOSP, October 2001.

47

