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Abstract

DNA conformation within cells has many important biological implications, but there

are challenges both in modeling DNA due to the need for specialized techniques, and

experimentally since tracing out in vivo conformations is currently impossible. This

thesis contributes two computational projects to these efforts. The first project is

a set of online and offline calculators of conformational statistics using a variety

of published and unpublished methods, addressing the current lack of DNA model-

building tools intended for general use. The second project is a reconstructive analysis

that could enable in vivo mapping of DNA conformation at high resolution with

current experimental technology.
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Chapter 1

Introduction

The goal of structural biology is to build an engineering blueprint of an organism that

catalogs all of its molecular parts, where they reside and how they fit together to form

a cell. Of all these molecules, none is more famous or (arguably) more important than

the double strands of DNA called chromosomes whose base-pair sequences control the

cell. Owing to the central role of DNA and the accumulating lines of evidence that

DNA structure plays a large factor in many biological processes, a major research

effort is now devoted to understanding how chromosomes are arranged inside of the

cell. The importance of this effort was captured in the closing paragraph of a recent

commentary on epigenomics[7], which christened the task of uncovering chromosome

structure the 'Fourth Era' in the genomics revolution.

The sheer size of a chromosome gives it a structure unlike that of any other

molecule. A single chromosome can sprawl from one end of its cell to the other

a thousand times, forming an unfathomable tangle that is apparently organized in

biologically important ways. Modeling this enormous and complex structure is com-

plicated by the fact that the small-scale mechanics are poorly understood, and that

a wide range of length and energy scales are important for various biological pro-

cesses. Experimentally photographing the structure of a chromosome in a single cell

is quite impossible with current technology, although coarse-grained and cell-averaged

structural data are now becoming available.

This thesis contributes two computational tools to the current effort to understand
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chromosome structure. The first of these, called the 'Wormulator', bundles a suite

of methods for calculating conformational statistics into a usable modeling tool for

the scientific community. Chapter 2 describes the Wormulator and demonstrates how

it can be applied to refine models of DNA bending. In Chapter 3 we propose an

experiment that could obtain extended high-resolution, single-cell conformations of

DNA. The proposed experiment requires a '3d-alignment' data analysis which we

demonstrate with our second tool.

The remainder of Chapter 1 briefly reviews the current state of knowledge of

DNA mechanics, the in vivo conformation of chromosomes, and relevant experimental

techniques with an emphasis on super-resolution fluorescence imaging.

1.1 DNA mechanics

A general goal of DNA structure models is to determine the free energy required

to impose certain conformational constraints on the DNA molecule. For example,

the cell may wish to bring together a gene and an enhancer, or wrap 150 base pairs

around a nucleosome, or supercoil a topological domain. These activities are typical

of those involved in chromosome packaging and segregation, gene regulation and other

essential cellular activities. The energetics of these processes help determine when and

to what extent they happen in a live cell, and those energetics are in turn determined

by basic mechanical properties of DNA.

1.1.1 DNA mechanical parameters

The starting point for any model of large-scale chromosome structure is a fine-scale

DNA model which specifies mechanical properties such as stiffness. Measurements of

these properties have typically fallen into two classes: those related to the consecutive

base pairs that form a dinucleotide step, and bulk properties such as the persistence

length that average over many bases.

A standard reference frame has been developed[31, 101] for specifying the posi-

tions and orientations of single DNA base pairs. Within this frame, the x axis points
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along the major groove, the y axis runs along the sequence strand, and z is defined

by x x y. Translations along x, y and z are called shift, slide and rise respectively;

rotations about those axes are tilt, roll and twist respectively. In accordance with

these definitions, both the mean values and variances of each of these six variables

have been determined between each possible pair of base sequences, based on X-ray

crystallographic structures of DNA-protein complexes[102]. The mean values deter-

mine the unstressed conformation of a DNA contour, while the variances determine

the stiffnesses in various degrees of freedom. An alternative convention is to define the

base steps relative to a helical axis rather than a body-fixed axis. A full description

of a base pair involves the relative position and orientation of one of the two bases

with respect to the other: these translations and rotations are called shear, stretch,

stagger, buckle, propeller, and opening.

Over the span of many subunits, any relaxed polymer of identical subunits takes

the shape of a helix (or, in limiting cases, a line or a circle). Coarse-grained descrip-

tions of DNA describe the mechanics of DNA in terms of the rate of bending of, and

twisting about, the helical axis, rather than the translations and rotations of individ-

ual subunits. The mean bend angle of a stretch of DNA about any perpendicular axis

is zero because the helicity makes the bending isotropic (i.e. it is as likely to bend

left as right, forwards or backwards). However, the mean twist is nonzero: relaxed

DNA twists in the right-handed sense about its helical axis on average once per every

10.5 base pairs. Over- and under-twisting are referred to as positive and negative

supercoiling respectively.

In a thermal environment the bending and twisting profile of a polymer will differ

from that of the unstressed conformation, depending on the polymer stiffness and

temperature of the thermal bath. The expected deviations in bending and twisting

are parametrized by the bending and twisting persistence lengths. The mean dot

product of the helical axis vectors between two loci decays exponentially with the

interlocus spacing, and the length scale for this decay is the (bending) persistence

length. Likewise the twist persistence length determines the mean decay of corre-

lations in the rotation angle about the tangent, after having adjusted for the mean

13



twist. By convention the term 'persistence length' refers to the bending persistence

length.

The bending persistence length of double-stranded DNA has been experimentally

measured using many methods, with the consensus being that it is at about 50 nm

in vitro (reviewed in [52]). An early technique for measuring the bending persistence

length relied on the absorbance of a DNA solution where the DNA molecules had

been aligned by an electric field, then allowed to relax diffusively for a short time.

The degree of relaxation was then measured by measuring the opacity of the solution

to light polarized along the electric field. The relaxation rate in turn depends on

the stiffness of the molecule[147], yielding a persistence length[111]. Translational

diffusion can also be used to measure the persistence length. The persistence length

of single-stranded DNA at electrophoresis conditions was measured to be about 4

nm[146] using fluorescence recovery after photobleaching (FRAP), in which a solution

of fluorescently-labeled DNA is bleached by overexposure within a small region of the

solution, and the subsequent rate of recovery of fluorescence in that region is measured

to determine the diffusion rate of the DNA and indirectly the persistence length.

A technique for measuring DNA persistence length that is very sensitive to highly-

bent conformations is to measure the cyclization rate of short (~ 100 base pair)

oligonucleotides[131]. In this assay a dilute mixture of DNA is ligated, and the ratio

of intermolecular ligations to cyclizations gives the effective concentration of one end

relative to the other, which is called the J factor. From the J factor one can determine

the persistence length[161, 129]. The single-stranded DNA persistence length has been

measured using the proximity of the two ends, rather than cyclization which requires

strict matching of the two ends' orientations[92]. The single-stranded measurement

used F6rster resonance energy transfer (FRET), a fluorescence method whereby an

excited donor fluorophore on one end of the DNA transfers some of its energy to

an acceptor fluorophore on the other end, causing the latter to emit a photon. The

persistence length of single-stranded DNA was measured by FRET to be only 1.25 - 3

nm, depending on NaCl concentration, which indicates that the mutual support of the

complementary strands contributes considerably to the stiffness of double-stranded
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DNA.

The stiffness of DNA has been probed more directly by pulling on it with optical

tweezers[6, 154], in a setup in which one end of a DNA oligo is fixed to a surface while

the other is attached to a transparent bead in an optical trap. The optical trap is

a converging beam of light refracts through, and thereby imparts momentum to, the

bead thus creating a force on the bead towards the focus of the beam. The displace-

ment of the bead from the center of the beam indicates a net external force which

can be determined from the magnitude of the displacement. From the force required

to pull the two ends of a given length of DNA to a given separation distance, one

can obtain the persistence length[100, 85]. There are non-optical ways of stretching

DNA as well. One experiment fixed one end of a DNA oligo, pulled the other end

with an atomic force microscope, and inferred the pulling force from the deflection of

the tip[117]. Finally, bending-force measurements were made by pulling DNA oligos

between a bead caught in a pipette and the tip of a perpendicular optical fiber; the

displacement of the fiber was imprinted on an optical beam passing through it and

recorded by a photodetector[25].

Electron microscopy has also been used to measure the DNA persistence length

by directly imaging DNA contours in two[40] and three[8] dimensions. By measuring

the tangents along the contour at various locations on a DNA sample, and tracing

out the contour distances between those points, one can measure the decay constant

in tangent correlations that defines the bending persistence length. A correction has

to be made for dimensionality: DNA prepared on electron microscope slides that has

equilibrated in two dimensions will have a larger persistence length by a factor of 2

than a three-dimensional contour, although the extent to which the samples are truly

two-dimensional on a microscope slide can be unclear.

The twist persistence length It has been estimated in a number of ways. One type

of measurement exploits the fact that fluorophores have nonisotropic polarization

cross sections for excitation and emission; exciting fluorescently labeled DNA with

polarized light and measuring the rate at which the polarization of emission decays

to isotropic can be used to find the twist persistence length[65] (this method can
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also measure bending stiffness). Another estimate[90] of the twist persistence length

comes from fixing one end of a stretch of DNA, attaching a magnetic bead to the

other end, rotating the bead by an external magnet and measuring the fluctuations

of the bead at different torsional angles[143]: this measurement yielded it = 120 nm.

Other measurement methods compare the cyclization efficiency of DNA oligos differ-

ing slightly in length[130], or the efficiency of cyclizing at various linking numbers[29].

The various estimates of l are generally close to 100 nm.

1.1.2 Modeling DNA Conformation

The most accurate computational models of molecules are those that compute the

trajectories of each bonded atom in the molecule from first principles, a technique

which is called molecular dynamics (MD)[12]. Using MD to model DNA requires

simulation not just of the DNA oligonucleotide but also of the surrounding solution

consisting of water molecules and ions, since the solvent interacts strongly with the

negatively-charged DNA backbone. In order to initialize a MD simulation the system

is first brought to a minimum-energy state close to a known structural conformation

of the system, then evolved in time until the initial state is forgotten. MD can

resolve dynamical processes such as the structural transition from A-form DNA to B-

form[19], equilibrium conformational properties such as mean bending between base

pairs[165], and mechanical properties that depend on thermal fluctuations such as

the bending and twisting stiffnesses[77, 99, 108]. Simulations by MD usually require

a lot of computation time.

Coarse-grained models of DNA omit the details of the individual atoms, and

instead resolve the contour of either the helix or the helical axis. These models

fall into two classes: discrete and continuous[160]. In a discrete model the contour is

represented as a series of rigid line segments connected by joints (the segments may or

may not correspond to individual base pairs). In a continuous model the DNA contour

is represented as a mathematically smooth curve in space. Within these categories

the various models differ in how rotations and twists occur between adjacent segments

along the contour. Some models treat only bending, by parametrizing each segment
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with a tangent vector pointing along the contour; other models use both a tangent

vector and a normal vector which establishes a twist sense. Different models treat

polymers as inextensible by fixing each segment length, or extensible in which the

segment length varies according to some distribution. A final distinction is between

models that consider non-adjacent interactions between segments, such as excluded

volume, and those that ignore them which makes most analyses much more tractable.

Excluded volume is often ignorable if either: the interactions between segments are

either very rare, or (paradoxically) if they are so common that very long range,

isotropic interactions dominate[33]. Models that ignore excluded volume are called

phantom-chain models.

Common discrete polymer models are the freely-jointed chain model, the freely-

rotating chain model, and the rotational isomeric state model[160], in order of in-

creasing complexity. In the freely-jointed chain model each segment is free to rotate

arbitrarily with no energy penalty with respect to its neighbors. In the freely-rotating

chain model the bend angle 0 of each joint is fixed but the direction of bending # may

freely take any value from 0 to 2-r. The rotational isomeric state model fixes not only

0 but also # to one or several values. Both of these models deal with inextensible

polymers. Unlike the first two models the rotational isomeric state model cannot

ignore twisting, since the twist angle defines the allowed bending directions between

each segment.

A popular continuous polymer model is the wormlike chain model (WLC)[75],

in which the bending energy is given by the function E = (lp/2) f(du/dl) 2 dl. The

WLC can be understood as the limit of a discrete polymer divided into infinitesimal

segments connected by infinitely stiff springs, where the limits are taken so that the

overall bending scale is the persistence length lp. The most common wormlike chain

models are isotropic in bending and may or may not deal with twist. An extended

model called the helical wormlike chain[160] includes twist and allows for a mean

bending angle relative to the twist vector, so that the minimum energy configuration

is a helix rather than a straight line.

Linear models such as the wormlike chain work well by definition for small de-

17



viations of the DNA contour from the minimum-energy configuration, but are not

necessarily correct for sharply bent or twisted contours. Indeed, sharp bends or kinks

may form in DNA at a much higher rate than a linear model would predict[24], al-

though this is controversial [35]. That kinks would form more easily than linear theory

predicts is perhaps not surprising given that DNA is often very sharply bent in vivo.

One way to incorporate kinking into polymer models is to assume a smooth worm-

like chain contour with a quadratic bending energy that is punctuated by a number

of kinks, where each kink has an energetic cost that is independent of, or weakly

dependent on, bending angle[162, 110, 115, 157, 156].

Over many persistence lengths a polymer effectively performs a random walk in

steps of the Kuhn length aK 21p, resulting in a near-Gaussian probability distri-

bution between the two ends. This fact inspires the Gaussian chain model, which

imagines replacing a length-L polymer having persistence length l with a polymer

having length L/a and persistence length la while taking the limit a -+ 0, such that

the end-to-end distribution becomes exactly Gaussian whose decay constant converges

to a finite value. The Gaussian chain model predicts only the relative displacements of

the two ends, not the intermediate contour. The relative twist between the two ends

is completely uniform (because the length is effectively infinite), and the probability

distribution for the end-to-end displacement R is determined only be the separation

distance R by the formula p(R) = (a/7)3 / 2 exp (-aR2), where a = 3/IL for the freely

jointed chain (I is the segment length) and a = 3/aKL for a wormlike chain.

One structural phenomenon of DNA in vivo for which excluded volume cannot

be neglected is supercoiling. A supercoiled polymer is subjected to torsion, which is

relieved by a mixture of twist and writhe (coiled bending). Analytically, it is possible

to impose some small amount of twist and writhe within the framework of phantom

chain models[15] as long the configuration is not destabilized much from the unstressed

conformation. However, strong supercoiling causes forward-and-back excursions of

the contour called plectonemes, in which the forward and backwards halves coil around

and support one another. A proper model of a plectoneme thus requires modeling of

the support interactions between nonadjacent parts of the polymer; generally this is
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done numerically (for example see [17]).

1.1.3 Solution methods for conformational statistics

Starting from a given model of the local mechanical properties of a polymer, a variety

of analytical and computational techniques can generate statistics relating to large-

scale conformation. These statistics relate to biologically-important quantities such

as the rates of DNA looping and cyclization (end-to-end joining of an oligo with

matching tangents and twists), and the free energies of supercoiling, compacting and

packaging DNA. Each calculational technique is generally tailored to a certain DNA

model or class of models, either discrete or continuous, and works best in a certain

regime of DNA length (relative to the persistence length) and the degree of bending

and twisting (relative to thermal fluctuations).

The conformational statistic we will be most concerned with is the end-to-end

probability distribution of a DNA segment. This is the probability density for find-

ing the two ends of a length-L polymer segment in a given relative position and/or

orientation. For example, suppose we would like to know the free-energy cost paid

by a DNA-bridging protein when it binds two locations on the DNA and holds them

together. If, for simplicity, we ignore crowding effects between different parts of the

polymer (as we will do consistently here), then the free-energy penalty is entirely due

to the fact that the protein restricts the allowed configurations of the intervening

segment between the two binding sites; the remainder of the polymer does not affect

the free energy and can thus be ignored. Specifically, we can find the free energy

penalty by integrating the length-L end-to-end distribution over the positions and

orientations that satisfy the boundary conditions of the protein's binding sites. The

particular distribution of interest depends on the boundary conditions. For a rigid

bridging protein, the two bound spots are essentially fixed relative to one another,

and we need to work with a probability density that accounts for both relative po-

sition and orientation. If a sufficiently flexible linker in the protein connects its two

binding sites, then the relative orientation may be considered free, so it is simpler

to integrate, up to the maximum spacing of the linker length, a reduced distribution
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that is only a function of the separation distance of the two ends.

A very general method for obtaining statistics of discrete conformations is Monte

Carlo sampling. A Monte Carlo algorithm draws representative values for the free

parameters of a contour (for example the bending and twisting angle between each

pair of consecutive segments) based on some prior distribution that comes from the

DNA model being used, then generates conformations using those parameters and

uses those conformations to obtain the statistics of interest. Monte Carlo can ac-

commodate very general polymer models, which may or may not involve extension of

the contour, nonharmonic energy functions, sequence dependence along the contour,

etc.. Since the common form of Monte Carlo samples conformations in proportion

to their occurrence in a random thermal environment, and because computational

sampling is usually much slower than the thermal sampling performed by a physical

system, it can be difficult to sample very rare conformations, implying that Monte

Carlo generally works best in the low-energy regime.

A variant of Monte Carlo, called the Metropolis method[89], constructs confor-

mations by a series of iterative perturbations on a starting conformation. The con-

formation at each iterative step n is subjected to some permutation in an attempt to

generate the next conformation at step n + 1. The new conformation is accepted if:

the new conformation satisfies any user-imposed constraints; and if the ratio of statis-

tical weights Pn+1/p, is either greater than one or greater than a randomly-generated

number on the uniform interval [0, 1], a rule which ensures the proper weighting of

samples. If any of these tests fails then the n + ith conformation must be resampled

using a different permutation of the conformation at step n. Only a well-separated

subset of conformations form the sample set, in order to ensure that the samples are

relatively uncorrelated. Metropolis sampling is good for enforcing constraints that

would rarely be satisfied by the basic Monte Carlo method.

Several techniques have been developed to deal with conformations of discrete

polymers that are rare because they are sharply bent or twisted relative to the size

of thermal fluctuations. These methods take advantage of the fact that such con-

formations tend to be sharply clustered around the minimum-energy conformation
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that satisfies a set of constraints. The general method is to find this minimum-energy

conformation and calculate the end statistics by perturbation. The original method

by Zhang and Crothers[166] took a quadratic expansion in the energy about the

minimum energy configuration, and integrated them exactly along with the Fourier-

transformed constraint functions; this method can accommodate sequence-dependent

models since every joint is accounted for separately. A later technique by Wilson

and coworkers[158] calculates the normal modes of the polymer about the minimum-

energy conformation, subject to endpoint constraints, and integrates over the ampli-

tudes of these modes. The normal-mode analysis is similar to an earlier approximate

analytical treatment of cyclized DNA[129]. The methods of Zhang and Crothers dis-

agreed somewhat with those of Wilson et. al., and although the latter claim to be in

better agreement with earlier work[129] it is still unclear which is the more accurate.

Both techniques fail outside of the high-bending regime.

A transfer matrix technique exists[163, 164, 162] that can calculate end statistics

in both high- and low-energy regimes, using a formalism that discretizes not only the

chain contour but also the orientation of each segment. Each element of a transfer

matrix T.f~(klj contains the statistical weight for evolving segment n at orientation i

to segment n + 1 at orientation j; each matrix also absorbs the Fourier-transformed

positional end constraint as denoted by the wavenumber k. Any bending and twisting

energy functions may be used, and by interposing different transfer matrices sequence-

dependent models can be accommodated.

The end statistics of continuous model polymers can be calculated using formal

methods that were originally developed for quantum mechanics. The partition func-

tion that integrates over the bending and twisting angles along the DNA length is

formally equivalent (up to an imaginary factor) with a path integral over the rotations

of a quantum spinor in time. Converting the path integral of the orientation-only par-

tition function into a Schr6dinger equation allows one to borrow the solution from

quantum mechanics, which is an eigenbasis of Wigner functions[160]. The perturba-

tive method of Spakowitz[139, 140, 138, 88] extends the method to include a relative

position constraint, by adding off-diagonal terms to the orientation-only Hamiltonian,
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which a perturbative analysis reduces to a solution in terms of continued fractions

weighting the eigenstates. This work has been extended beyond the wormlike chain

by Wiggins et. al., who developed the continuous kinkable wormlike chain model[157]

in which each kink pays a fixed energy penalty regardless of the discontinuous bend

angle it imposes, and the subelastic chain model[156] which incorporates an energy

that is first-order in the bend angle.

1.2 DNA conformation in vivo

In all organisms the physical length of genetic material (~ 0.3 - 300 mm) greatly

exceeds the dimensions of the cell (- 1 - 100pm). Compacting and arranging the

genetic material is a necessary chore that every cell must perform. Furthermore, the

genetic material must be faithfully untangled and segregated with each cell division

cycle. Maintaining such a lengthy genome is a necessary hassle, but many cells (mostly

eukaryotes) exploit the rich palette of possible conformational states to aid various

cellular processes.

Cells compact their DNA using a variety of DNA-condensing proteins[83]. In bac-

teria, H-NS and Lrp are proteins containing both DNA-binding domains and dimer-

ization (H-NS) or multimerization (Lrp) domains; these associate in vivo to form

protein complexes with multiple DNA-binding sites that may help compact the DNA

by bringing distal regions together. Lrp forms either octomeric or hexadecameric

complexes depending on the leucine concentration, indicating that this amino acid

sensor may transduce a chemical signal into a physical rearrangement of the chromo-

some. Various structural maintenance of chromosome (SMC) proteins such as MukB

in E. coli are believed to form dimers that loop around DNA, tying multiple DNA

strands together either within a single dimer or through the association of dimers

into multimeric 'rosettes'. The proteins IHF, HA and Fis introduce bends into the

DNA, leading to an effective shortening of the persistence length and compaction of

the chromosome. Fis may also help compact the genome by multimerizing.

Nucleoid-associated proteins cause higher-order structures in bacterial chromo-
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somes at a variety of scales. Electron microscopy of extracted bacterial chromosomes

reveals them as supercoiled loops emanating from a dense central core[72, 112] likely

composed of RNA and protein, although the exact picture depends strongly on the

preparation. The most recent estimate[112] gives the loop lengths roughly an ex-

ponential distribution with a mean of 10 kb. Experiments measuring the level of

supercoiling in different parts of the genome suggest that the chromosome is divided

into topological domains, where the level of supercoiling equilibrates throughout each

domain but cannot propagate beyond the two flanking domain walls. The size of

the topological domains in E. coli was originally estimated at 100 kb [72], but newer

studies have argued for smaller domains of 10 kb [112], consistent with the sizes of the

DNA loops. On larger scales, recombination experiments[149] and FISH[96] suggest

that the E. coli genome may organize into 2-4 larger 'macrodomain' structures.

On the global scale, many prokaryotic genomes seem to be arranged in an orderly

way down the length of the cell. For example, the E. co/i genome is packaged linearly

along the long axis of the cell, with the origin located at mid-cell and the two arms

spreading towards opposite poles[155]. Because the E. coli genomne seems to be a

closed loop, as are most bacterial chromosomes (though there is some controversy

about this-see [9]), it seems that the terminus region of the genome must stretch

tightly from one end of the cell to the other in order to connect the two arms, although

this has not yet been seen directly. The arrangement of the Caulobacter genome is

also linear at the global scale[152], except that the terminus is at one cell pole, the

origin of replication is at the other, and the two arms between origin and terminus

are both stretched in parallel along the full length of the cell. Less is known about

radial positioning; one very recent study found that loci encoding membrane proteins

in the E. coli genome are apparently pulled to the cell periphery when those genes

are expressed[81], affecting the positioning of loci up to 100 kb away.

In both E. co/i and Caulobacter, newly-replicated genomic loci are segregated

rapidly to their appropriate locations within the two daughter clls[152]. There are

two replisomes (replication machines) per parent chromosome in E. coli. Both repli-

somes begin their work at the middle of the parent cell where the origin of replication
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is located, but soon thereafter follow the two replication forks out towards the op-

posite poles, then come back again to the center of the parent cell as the replication

forks meet again at the terminus[116].

The linear arrangement of DNA in F. coli[155] and Caulobacter[152] suggests that

in these organisms, and perhaps in the majority of prokaryotes, genetic material is

simply arranged for convenient packaging and not organized for higher-order control

over processes such as transcription. However, nature does exploit the fact that gene

copy number and therefore transcription levels correlate with genomic position in

dividing cells[137], since origin-proximal regions are replicated first and are therefore

present in higher numbers during DNA replication. Genomic position in turn corre-

lates with physical position along the long axis of the cell in many species[155, 1521.

Genomic compaction in eukaryotes relies largely on histone proteins which form oc-

tameric spool-like complexes called nucleosomes[74]. Each nucleosome tightly wraps

146 base pairs of supercoiled DNA around its outside, corresponding to about l 3

4

complete turns of the DNA around the nucleosome particle. Nucleosomes are sepa-

rated by 'linker' stretches of DNA of random lengths averaging around 50 base pairs:

due to their tight packing the mass of nucleosomes approximately equals the mass

of DNA. Protruding tails from the individual histone proteins interact with the tails

of other nucleosome particles, causing them to aggregate into higher-order structures

and leading to compaction of the DNA.

Nucleosome-bound DNA, called chromatin, has different mechanical properties

from bare DNA. It seems that short lengths of chromatin are more flexible than

bare DNA[118]. At longer lengths it is believed that nucleosomes bind one another

and arrange the DNA into a thicker fiber whose structure is still controversial. The

traditional view is that nucleosomes package DNA into a regular '30-nm fiber'[26],

although newer measurements suggest that the fiber may under some conditions be-

come about 50% thicker[120], and others indicate that such a fiber is nonexistent[37]

which would imply a disordered arrangement of eukaryotic DNA.

Nucleosome-bound DNA exists in one of two forms: transcriptionally-active eu-

chromatin, and repressed heterochromatin. While both forms of chromatin may fold
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into a 30-nm fiber, heterochromatin is further compacted on larger scales[45] causing

steric exclusion of DNA-binding factors required for transcription and thus preventing

expression of genes within that region. Chemical modifications to the nucleosomes

nucleate heterochromatic regions, which then spread along open DNA through the

action of proteins such those encoded by the silent information regulator (Sir) genes

in yeast. The boundaries between euchromatic and heterochromatic regions are de-

marcated by 'boundary elements' that in some or all cases are associated with CCTF

and cohesin[51]. Cohesin is a member of the SMC protein family, and like MukB

is believed to dimerize to form a ring that can ensnare several strands of DNA at

a time, thereby bringing them together[64]. It seems likely that CCTF recruits co-

hesin to boundary elements, and that cohesin in turn somehow prevents the spread

of heterochromatin.

Cohesin also plays a role in activating the transcription of eukaryotic genes by

altering the conformation of the chromosome. Transcription initiation requires the

assembly of a number of protein factors, some of which bind at the gene promoter

and some of which bind to distal enhancer elements which can be up to hundreds

of kilobases away. A protein complex containing both cohesin and the mediator

complex forms contacts between enhancer elements and gene promoters[97, 71] in

order to activate transcription. Other elements termed insulators block the action of

enhancers. Insulators are associated with CTCF and cohesin, and it is thought that

the cohesin complex tethers DNA in a way that blocks the enhancers from looping

over to their target promoters[1]. Cohesin thus upregulates or downregulates gene

expression, depending on which protein partners it associates with.

Transcribed genomic loci frequently associate in the cell in DNA-protein complexes

called 'transcription factories'[68, 103]. Actively dividing HeLa cells are estimated to

have several thousand transcription factories at any given time. It is not clear whether

the colocalization of genes has a purpose or is just a byproduct of active transcription,

but a recent experiment[79] discovered numerous interacting promoters in human cells

whose gene expression levels were both correlated and affected by the presence of the

nearby promoters. The authors suggested that the physical coupling of genes during
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transcription is involved in the combinatorial regulation of gene expression.

In some cases the positioning of genomic loci relative to the nuclear envelope coor-

dinates gene expression and DNA maintenance. Repressed genes are often associated

with the nuclear envelope in yeast[1] or the nuclear lamina in mammalian cells[46].

In yeast, association with the nuclear pores can, paradoxically, increase the expres-

sion levels of certain genes[1], and damaged DNA has been shown to be recruited to

nuclear pores for repair[931.

Recombination, both intentional and accidental, is influenced by the mutual acces-

sibility of the recombining genomic regions. Examples of intentional recombination in

mammals are the generation of unique immunoglobulins (which include antibodies) in

mammalian B cells, and of T cell receptors in T cells, in which recombination involves

the looping of the recombinant regions[70]. Unintentional, mutagenic recombination

usually occurs between genomic regions that are nearby in physical space[87], a fact

which likely implicates DNA conformation in a cell's predisposition to certain types

of cancer.

Eukaryotic chromosomes are organized into megabase-scale domains bounded by

CTCF-enriched boundary elements[32, 98]. A given locus associates much more of-

ten with chromatin within its own domain than loci residing outside the domain, and

gene expression level is strongly correlated within each domain. On the largest scales,

individual interphase chromosomes of higher eukaryotes tend to arrange in distinct,

non-overlapping chromosomal territories[87], although the territory occupied by each

chromosome depends partly on cell type and state and varies considerably between

cells. During mitosis and meiosis the chromosomes condense with the aid of con-

densins, which are members of the SMC protein and operate similarly to cohesin.

Kinetochore motors walking along microtubule spindles partition daughter chromo-

somes between dividing daughter cells. The large-scale organization of interphase

chromosomes after mitosis is somewhat consistent between cells, but the mechanisms

behind, and significance of, this organization are still unknown.
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1.3 Experimental techniques for measuring DNA

conformation

A number of experiments have probed conformation in an indirect way, without re-

solving explicit genomic interactions or positions. Information about the compactness

of DNA comes from studying the permeability of different cellular regions; high per-

meability presumably corresponds to low DNA packing density and vice versa. The

permeability can be mapped out directly on the micrometer scale by measuring the

mobility of diffusing fluorescent molecules using pair-correlation analysis[63]. An-

other method of probing cellular permeability is to measure the frequency with which

transposons jump or copy to various genomic loci; this maps density as a function

of genomic position rather than density as a function of spatial position. A num-

ber of transposon systems have been used for this purpose: recombination between

the ')6 transposon[62], self-inhibition of transposition by the Tn7 transposon[27], and

recombination between the phage A attL/R sites[43, 149], and there have been a

number of incidental reports on transposition frequencies from studies of IS1-flanked

transposons, Tn1O, and bacteriophage Mu (referenced in the Discussion of [27]).

1.3.1 Chromosome conformation capture

One of the biologically important effects of DNA conformation is that physical con-

tact tend to happen between pairs of nearby genomic loci that are close in space.

The standard technique for measuring the frequencies of these interactions between

genomic regions is called Chromosome Conformation Capture (CCC or 3C)[28]. The

first step in the 3C protocol is to fix cells with formaldehyde, which binds DNA to

protein and hence can indirectly couple proximal DNA segments. Then the DNA is

extracted from the cell and digested with a restriction enzyme, yielding many single

oligonucleotides of DNA along with pairs of oligos bound together by protein. This

DNA-protein mix is then diluted and self-ligated using a DNA ligase. Upon ligation

most single oligonucleotides will simply circularize; however pairs A and B of oligonu-
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cleotides that are bound together by protein will sometimes join end-to-end to form a

single circular strand of DNA with a hybrid sequence A - B. In the final steps of the

3C protocol, the crosslinking is reversed, and qPCR is performed with one primer for

each pair of loci that one is interested in. The interaction frequency between any two

loci should be proportional to the strength of the PCR signal for that pair of primers.

Each qPCR reaction is compared to a control reaction containing all A - B hybrid

sequences in equal amounts, produced by random ligation of digested chromosomal

DNA, in order to normalize the PCR signals. Both reactions can be conducted over

a range of template concentrations to determine the linear range over which product

is proportional to template; over this linear range the relative fold enrichment over

the control can be accurately measured.

A disadvantage of the original 3C technique was the need to run a separate qPCR

reaction for each pair of loci whose interactions were to be measured. Thus to com-

pletely map out the interactions between N loci required O(N 2 ) separate PCR re-

actiQns. A sequence of improvements to the protocol has reduced the number of

separate PCR reactions that need to be performed, allowing large contact maps to

be produced with much higher throughput.

The original improved protocols, made independently by two research teams which

were each called 4C (Circular CCC[167] or CCC-on-Chip[136]), allow the interaction

frequencies of all genomic regions with a given target locus A to be measured in a

single experimental step. The 4C protocols crosslink and digest the chromosome as

in 3C, and then ligate separate crosslinked DNA strands into a circular DNA loop.

The methods differ from each other in the way the circular loop is produced: in one

case the digested chromosome is ligated extensively to directly circularize the long

fragments[167], and in the other the fragmented DNA is further digested using a 4-

cutter (DpnI) to speed the ligation[136]. The final steps in both methods are to isolate

any fragment B that has bound to target locus A (and thus incorporated into the

circular DNA loop) by quantitative inverse PCR where both outward-facing primers

reside within locus A, and then to identify those PCR fragments using a microarray.

The next improvement, called 5C (3C-Carbon Copy) [34], allowed all pairwise

28



interactions between a set of defined loci to be measured in a single experimental

step. The 5C protocol follows the 3C protocol up through the construction of the

3C library (the mix of religated oligos whose crosslinks have been removed). At

this point the 5C library is constructed from the 3C library using multiplex ligation-

mediated amplification (MLMA) [124]. The first step in MLMA is to anneal a mixture

of oligonucleotides to the 3C library, where one end of each oligo is complementary

to one of the target sequences, and the other end is an adaptor for PCR. Any pair

of crosslinked loci in the 3C library will allow two oligos to bind, directly abutting

one other without a single base pair gap. Ligation is then performed to tie abutting

oligos into a single strand of DNA containing both target sequences, and these ligated

oligo pairs are amplified by PCR using the flanking adaptor sequences. The target

sequences in the amplified 5C library are assayed by microarray or sequencing.

Whereas in 3C each pair of potentially interacting loci must be separately queried,

4C finds all interacting partners B of the single query locus A, and 5C obtains all

interactions within a set of query loci. In contrast, Hi-C[82] enables query-free inter-

rogation of the entire genome. In High-C, the ends of the DNA are labeled with biotin

prior to (circular) ligation, generating a library identical to the 3C library except that

each circularized DNA fragment has biotin tags at the ligated junctions. The arms

of each circularized fragment containing the interacting sequences are generally too

long to sequence with high-throughput methods, so their length is reduced by shear-

ing the 5C library and purifying the junction regions using streptavidin. Adaptors

are ligated to the ends of these sheared and purified fragments, and those fragments

are PCR-amplified and sequenced with a high-throughput machine (Illumina). This

allows a comprehensive interaction map of an entire genome to be made in a single

experimental step.

A method called Chromatin Interaction Analysis by Paired-End Tag sequenc-

ing method (Chia-PET)[41, 79] is a cousin to the 3C techniques that measures the

frequency of interaction between genetic loci and a target protein of interest. The

Chia-PET protocol initially follows that of 3C: the cells are crosslinked, and their

DNA is fragmented. The DNA fragments bound to the protein of interest are en-
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riched by immunoprecipitation, in which an antibody specific to that protein is used

to isolate the protein from the cell lysate. At this point a dilute mixture of the

protein-DNA complexes are ligated to adaptors which are then ligated to each other.

The adaptors have inverted restriction sites for an enzyme (MmeI) that cuts 18 base

pairs away from the restriction sequence; digestion with Mmel therefore releases the

restriction site along with enough of either flanking sequence that they can generally

be uniquely mapped to the genome using high-throughput sequencing. Each piece of

DNA is either a single sequence interrupted by a restriction site, indicating a simple

DNA-protein binding event, or else two genomic loci separated by the MmeI site,

indicating that the protein must have bound, or at least been very close to, two or

more genomic regions simultaneously. The sequences thus reveal all single and pair-

wise DNA interactions at the locus of the target protein or protein assembly, in a

single experimental step.

1.3.2 Electron microscopy

Electron microscopy has been used to study chromosomes in vivo and ex vivo at

high resolution[72, 112]. The ex vivo preparations involve lysing the cell, transferring

the chromosome onto a flat grid and imaging it in two dimensions using a transmis-

sion electron microscope (TEM). Using this approach researchers have traced short

stretches of the E. coli chromosome, enabling estimates of the sizes of the loops com-

ing out of the central core. There are a number of problems with the use of this

method to map out full conformations. First, although it is easy to trace regions of

the chromosomal contour that are well separated from other DNA in TEM images, a

large part of the nucleoid exists in a dense mass that makes tracing the contour very

difficult. A second problem is that labeling techniques for EM are primitive, so it is

extremely difficult to identify individual genetic loci. Third, the ex vivo preparation

collapses the native 3-dimensional conformation onto a 2-D surface, which hugely

perturbs the structure and erases out-of-plane conformational information. Finally,

positioning information relative to other cellular structures is lost.

TEM has also been performed in vivo[38], by vitrification (ice-free cooling) of a
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live sample, followed by sectioning and imaging. This method can resolve general

questions about the ordering of DNA in the nucleoid. Unfortunately, due to the

thickness of the sections most images show overlapping DNA contours that in general

cannot be separated, limiting the usefulness for following individual DNA contours.

Furthermore, in order to follow a contour over long distances one would have to

capture most or all sections and coniputationally align their images, while accounting

for distortions of each section. As with the ex vivo preparations, genomic regions are

difficult to label, and the monochromatic images preclude multichannel labeling.

1.3.3 Fluorescence microscopy

Optical microscopy is routinely used to image chromosomes with the aid of DNA-

binding fluorescent labels or dyes. Fluorescent dyes absorb light of one wavelength

to become excited, then radiate part of that excitation energy as photons of a longer

wavelength. The wavelength difference is critical for microscopy as it allows the

emission to be cleanly distinguished from scattered light by means of highly-selective

color filters. One popular fluorescent molecule is the UV-to-blue fluorophore called

DAPI (4',6-diamidino-2-phenylindole) which stains all of the genetic material of a

cell. DAPI passes freely through cellular membranes and nonspecifically binds DNA.

Other nonspecific DNA stains are ethidium bromide (usually used in vitro) and the

various Hoescht stains. The DNA inside cells that have been fluorescently labeled

using these nonspecific dyes generally shows up in an image as a single mass taking

up the volume of the chromosome, due to the high cellular density of genetic material.

These images are useful for measuring the bulk shape of genetic material in the cell,

but cannot be used to resolve the DNA contour.

DNA labeling methods

More sophisticated fluorescent labeling schemes target only certain genetic loci as op-

posed to the entire chromosome. All these methods involve a fluorescent molecule or

molecular domain which is fused to a molecule or domain that binds a certain genomic
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region, or set of genomic regions. There are two main techniques for accomplishing

targeted fluorescent labeling of genetic loci in vivo: fluorescent repressor-operator sys-

tems (FROS) and fluorescent in situ hybridization (FISH). These methods differ in

the molecule used to target the genetic loci, in the need for fixation and permeabiliza-

tion (which kills the cell) and in their ability to target endogenous versus exogenous

DNA sequences.

Using the FROS method, a protein fusion is engineered that connects a fluorescent

protein such as GFP to a DNA-binding protein that binds some defined sequence in

live cells. To create a cell line that can be used for FROS imaging, one first clones

an array of repeats of the binding sequence (so that enough fluorescent proteins will

bind for easy imaging) into a defined genomic locus in the cell of interest. Then,

the fluorescent-fusion protein is introduced into the cell, typically by introducing a

plasmid bearing the gene for the fusion protein which can be inducibly expressed

at high levels. Upon induction, the cell produces the fluorescent fusion proteins

which then bind to the exogenous binding array. To date, FROS has been performed

with both the lacI-lacO and tetR-tetO combinations of binding protein and DNA se-

quence. The related parB-parS system[80] involves the spontaneous polymerization of

a (fluorophore-conjugated) ParB protein from a single 286-bp parS locus. These two

techniques have been used to image genetic loci in live bacteria[152, 155], yeast[142]

and mammals[119], often for visualizing dynamics (chromosome and plasmid segrega-

tion) in the live cells. For example, FROS studies have revealed that the mechanism

by which E. coli positions the F-plasmid is different than its mechanism for posi-

tioning its centromere, because the centromere initially gets pushed to the poles of

the dividing cell whereas the F-plasmid localizes to their quarter-points (the mid-

points of the future daughters)[44]. An advantage of FROS is that it doesn't involve

any physical perturbation to the cells once the cell lines have been produced; the

main disadvantage is that it requires a genetic perturbation (insertion of an operator

sequence). Common protein fluorophores include GFP[18), CFP[56], YFP[94] and

mCherry[126] (green, cyan, yellow and red respectively).

The FISH technique uses fluorescent dyes conjugated to oligonucleotides that are
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complementary to the genomic sequences of interest. Cells are fixed prior to visu-

alization, their membranes are permeabilized, the chromosomes are denatured (i.e.

their strands made to separate), and the probes (oligos) are allowed to enter the cell

and anneal to the target DNA region. Competitor DNA is also introduced and sub-

sequently removed, in order to remove most of the nonspecifically-bound probes and

reduce background. FISH has been used to systematically map a number of genomic

loci in E. coli[96] and in Caulobacter[152]; in both organisms the chromosome was

found to be packed linearly along the axis of the cell. FISH has also been used to

locate plasmids within the cell[95]. A major advantage of FISH is that it can target

endogenous loci in virtually any type of cell. The disadvantages are that the fixation

kills the cell, precluding measurements of dynamic processes, and that the denatura-

tion may perturb the native structure of the DNA. FISH is compatible with many

small-molecule organic fluorophores; commonly-used fluorophores are the cyanine and

Alexa[105] series of dyes, and fluorescein and rhodamine.

There are ways to convert the nucleic acids themeselves into fluorophores, with

possible applications to DNA labeling. One approach[104] uses a single-stranded nu-

cleic acid (RNA) as a scaffold that binds the central amino acid ring in GFP and

maintains it in a fluorescent state, by preventing non-fluorescent decay channels. An-

other technique[47] replaces DNA nucleotide bases with organic fluorophores, which

interact via FRET to collectively fluoresce with unique excitation and emission spec-

tra that depend on the arrangement of individual fluorophores.

Superresolution fluorescence microscopy

A major limitation of optical microscopy is fact that, for realistic microscopes, an

infinitesimal emitter in the sample will produce an image of finite size, called a point

spread function (PSF). The intensity profile of the PSF is nearly Gaussian, centered

about the true position of the point source, and for optical wavelengths and standard

microscopes the width of the Gaussian is on the order of 100 nm. A single emitter can

be localized much more accurately than the width of the PSF by numerically fitting

the profile of the PSF (usually approximated by a Gaussian) to the observed PSF and
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finding its center; in this way the position of the emitter can theoretically be found

to arbitrary accuracy with unlimited photons. However, there is a problem when two

or more emission sources have PSFs that overlap heavily, as the two sources become

nearly indistinguishable and are very hard to localize. This phenomenon has been

termed the diffraction limit of light microscopy, as the size of the PSF has historically

been the resolution limit that can be attained in most practical situations where the

emitters are closely spaced.

A number of recent techniques have broken the diffraction limit of fluorescence

microscopy[58]. These 'superresolution' ('subdiffraction') methods fall into three cat-

egories. The first category is of methods that reduce the size of the PSF. The second

class is composed of methods that control the position of the emitters very precisely by

suppressing fluorescent emission outside of a small subdiffraction target region. Meth-

ods falling in the third category build up a dense fluorescence image (containing many

emitters within a given PSF volume) from many sparse images with well-separated

fluorophores that can be localized precisely, by turning most of the emitters off each

imaging cycle. Methods falling into the second and third categories apply only to

fluorescence microscopy.

There are several ways to reduce the size of the PSF, which break one or another

of the assumptions that mathematically imply a wavelength-sized PSF. One of these

assumptions is that the detector is located in the optical far field of the emitter. A

conceivable way to reduce the size of the PSF is therefore to position the detectors

very close to the sample (< 1 wavelength) and scan it. In practice, it is not the

detector but rather a pinhole aperture that is placed near the sample and scanned

over the sample surface; at every step in the scan the mechanically-controlled location

of this element is used to assign a location to the corresponding point in the image[78].

This method, which is a type of near-field microscopy, can in principle reduce the PSF

arbitrarily but the proximity requirement is severely limiting: for example, one cannot

perform near-field imaging far from the sample surface.

The size of the PSF also depends upon the range of solid angles that emitted

photons are collected from. If light could be collected from all 47r steradians then
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the PSF would shrink to zero size even when imaging in the far field. Two methods,

called 4Pi microscopy[49] and 15M microscopy[50], collect light using lenses both in

front of and behind the sample, thereby doubling the collecting area and increasing

resolution by a factor of about 3 to 7. The disadvantages are that these methods

requires a more complex experimental setup, and that in many cases deconvolution

is required after image acquisition.

The size of the PSF is limiting only because emitters are typically localized by

finding their location in an image. If the emitters have been localized prior to imaging

then the diffraction limit no longer applies. One way to do this is with a second type

of near-field microscopy, similar to the method we discussed earlier except that the

excitation light is scanned in the near field over the sample rather than an aperture

in front of the detector[10]. As before, the resolution is now determined by the

precision with which the excitation light can be delivered, which depends on both the

mechanical accuracy with which the excitation fiber is positioned as well as the size

of the collecting area as determined by the proximity of the excitation beam to the

sample.

An alternative to activating certain emitters within a small region is to activate

the emitters within a large (PSF-sized) region and then turn all of them off again

except for a small group in a very small (sub-PSF) sub-region. This class of methods

is generically termed RESOLFT[57], although there are many specific implementa-

tions. The original RESOLFT method is called stimulated emission depletion (STED)

microscopy[60, 731. STED constrains the excitation volume to far below the wave-

length limit (~ 20 nm) by surrounding the excitation laser beam by an inactivating

beam in the shape of a doughnut. Sub-wavelength resolution is possible because the

point-spread function becomes relatively steeper in the fringes; thus by turning the

inactivating laser to high power the edge of the doughnut becomes very sharp and

the activating volume can be squeezed very tight. In STED, the depletion beam

causes fluorophores in the excited state to fall into a near-ground state, which rapidly

decays into the true ground state so that the depletion beam cannot repopulate the

excited state. A related method called ground-state-depletion (GSD) microscopy[59]
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makes use of a third intermediate metastable state, and has the advantage that the

depletion can be done using a low-power continuous laser rather than a high-power

pulsed picosecond laser.

A variation on the RESOLFT concept is saturated structured illumination mi-

croscopy (SSIM)[48], in which stripes of excitation cover the image and the dark

unexcited regions in between are localized to subdiffraction resolution. Superresolu-

tion is obtained in the direction perpendicular to the stripes. Acquiring an image

involves rotating the stripes in many directions, and at each rotation step translating

the stripes so that the dark regions cover the entire field of view. Image processing

is required to generate a SSIM image from the fluorescence data.

The final way to beat the diffraction limit is to image only a few fluorophores at

a time, so that each fluorophore's PSF is unlikely to overlap that of another. Every

fluorophore can then be localized to high (subdiffraction) accuracy by fitting a PSF to

the image of that spot and measuring its centroid. After the first image is produced,

the fluorophores are turned off, and an independent set of fluorophores is turned on;

then another image is taken. By repeating this process of localizing fluorophores, a

superresolution image is gradually built up. The crucial technology for this method

is fluorescent molecules whose on-off state can be controlled by the experimenter.

Three groups independently developed photoswitching systems and applied them

to superresolution imaging, under the names PALM[11], FPALM[61] and STORM[123]

The three implementations are very similar, the main difference being that STORM

uses photoswitchable pairs of inorganic fluorescent dyes[4] whereas PALM and FPALM

use photoswitchable fluorescent proteins. (A variant of STORM, called direct STORM

or dSTORM[55], switches inorganic dyes directly without the need for a proximal ac-

tivator dye.) The techniques are complementary: inorganic dyes are bright but must

be delivered exogenously, whereas photoswitchable proteins can be produced in vivo

and fused to other proteins but they are bulky and relatively dim. Typical resolution

with the PALM/STORM methods has been on the order of 20 nm, but by careful

calibration, in particular correcting for the variable efficiency of pixels in the CCD

array, a resolution of ~1 nm seems within reach[109].
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The original PALM, FPALM and STORM methods imaged only one type of flu-

orophore, but improvements soon enabled 'multicolor' imaging in which each color in

the image represents one type of fluorophore. Multicolor imaging is complicated by

the fact that fluorophores are typically photoswitched by one wavelength of light, ac-

tivated in the fluorescent state by another wavelength and emit in a third wavelength;

due to the width of the emission and absorption spectra each fluorophore is thus in-

volved with a significant part of the optical spectrum and separating the channels

is difficult. Nevertheless PALM imaging was soon demonstrated in 2 colors[132] and

STORM imaging in three[5]. The different colors are typically imaged sequentially,

by selectively activating, exciting and/or imaging one particular type of fluorophore

very exclusively using appropriate lasers and filters. However, it is possible to discrim-

inate between several types of fluorescent proteins in single image[14] by collecting

the fluorophore emission in two or more different color channels and comparing the

amounts of light collected in each channel. This method can relax the separation

requirement for the various emission, activation and excitation spectra, which is a

serious impediment to multicolor superresolution imaging.

Since publication of the original methods, there has been considerable effort on

methods that enable axial localization (perpendicular to the imaging plane), as well as

lateral (in-plane) localization. The STORM group accomplished three-dimensional

imaging[67] by placing a cylindrical lens in the beam path which caused the PSF

to elongate horizontally when the fluorophore is above the imaging plane, and the

vertically when the fluorophore is below the imaging plane. The axial resolution in

3D STORM is about half the resolution in the lateral directions (~ 50 - 60 nm),

although it should be possible to improve this by a better-shaped PSF[114]. Similar

axial resolution has been obtained by scanning over optical sections, using a two-

photon process for fluorophore activation where the photon density is highest in a

single imaging plane[150]. An advantage of the sectioning technique is the large

depth of field (~ 10 pm). A third method, applied to a PALM microscope, is to

insert a 45-degree mirror that reflects a side view of the sample onto the imaging

plane along with the face-on image[145]; this results in an axial resolution that is
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essentially the same as the lateral resolution (- 20 nm). A fourth technique splits

the PSF into two spots, where axial position is encoded as the relative rotation of

these spots[107]. The axial resolution using this double-helical PSF technique is as

good as or better than the lateral resolution (- 10 - 20 nm). A final approach is to

use interferometry to axially localize emitters. Interferometric PALM (iPALM)[135]

has yielded an axial resolution about twice that in the lateral directions (~ 10 nm)

with high photon-collection efficiency, although the depth of field is limited.

Other methods exist for stochastically switching sparse subsets of fluorophores for

high-precision localization. Ground state depletion microscopy followed by individual

molecule return (GSDIM)[39] exploits a metastable dark state present in nearly all

fluorescent molecules to temporarily inactivate most fluorphores in the image. The

advantage of GSDIM is that it allows nearly any conventional fluorophore to be

used[141]. A method called points accumulation for imaging in nanoscale topography

(PAINT)[128] images fluorophores that are bound to a target of interest in a bath

of freely-diffusing fluorescent molecules. The unbound fluorophores do not produce a

sharp PSF in the image and so are not visible, so there is no need for photoactivation

and conventional fluorophores can be used.

Several methods perform superresolution imaging by exploiting the blinking, bleach-

ing, or photoswitching of individual fluorophores that may have overlapping PSFs.

Super-resolution optical fluctuation imaging (SOFI)[30] computes higher powers of

the PSF to reduce the size of the PSF and thereby localize individual fluorescent

molecules whose PSFs overlap. Disadvantages of SOFI are that the contrast is en-

hanced, so the dynamic range in brightness is quite limited, and it can be computa-

tionally intensive. Another technique, called bleaching/blinking assisted localization

microscopy (BaLM)[16], simply subtracts successive images from a movie, looking for

single blinking or bleaching events which can be localized using the subtracted images.

Both SOFI and BaLM require no photoactivation and thus no special fluorophores.

The resolution of both of these methods is ~ 50 nm. Finally, there exist nonlinear

deconvolution techniques[66, 91] that estimate centroids of overlapping PSFs while

introducing less noise than linear deconvolution.
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Most superresolution methods that rely on photoactivation require special photo-

switchable fluorophores[53], most of which are either organic dyes as used in STORM

or photoswitchable protein fluorophores as used in PALM. Most of these molecules

convert from a dark state to an active state when exposed to light of a particular

range of activation energies; fluoresce for a time when exposed to excitation light;

then stochastically enter a dark state (bleach). A reversible fluorophore is one for

which the dark state can be converted back into the active state again by the ac-

tivation laser. For some fluorophores the activation laser causes a photoconversion

between two fluorescent states that are distinguished by their excitation and/or enis-

sion spectra, rather than a transition from a strictly dark state to an active state.

The original STORM method[123] involved activator/emitter pairs of organic cya-

nine dyes held together either by linker DNA or by an antibody. The fluorophores

interact via a FRET-like mechanism[4] to enable activation of the emitter dye by

light of a wavelength outside of its normal excitation band. Common organic fluo-

rophores are Cy3, Cy5, Cy7, and Alexa647 and Alexa680. The dSTORM technique

subsequently showed that some single cyanine dyes, namely Cy5 and Alexa647, can

photoswitch without the need for a proximal activator dye[54, 55]. Advantages of

these organic dyes are that they are small and can therefore position very close to

their targets, and that they emit many photons before bleaching which allows high-

precision localization.

A number of monomeric protein fluorophores[84] have been engineered to be pho-

toswitchable: PA-GFP[106], PA-CFP[23] and PA-mRFP1[151] having green (G), cyan

(C) or red (R) fluorescence; PAmCherry (red)[144]; and Dronpa-3[2], mEos2[86], and

bsDronpa and Padron[3] which all fluoresce green. A number of other proteins, such

as Kaede[76] and KFP1 (kindling fluorescent protein)[22], form tetramers. Dronpa

and KFP1 are both reversible fluorophores. The unmodified EYFP fluorophore fre-

quently used for standard-resolution yellow-fluorescence imaging has been used as an

accident ally-photoswitchable fluorophore for superresolution[13].
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Chapter 2

End Statistics Calculator

Here we present our modeling tool, named the Wormulator from a contraction of

"wormlike-chain calculator" (although the discrete-chain calculations can work with

any DNA model that ignores excluded volume, not just the wormlike chain model).

This program computes end-to-end distributions of DNA, under the phantom-chain

approximation whereby excluded-volume interactions are ignored. These statistics

govern many important biological processes, such as DNA-looping free energies for

transcription factors, and the constraints they impose on genomic sequences([125]),

etc. Our goal in writing the Wormulator was to provide a comprehensive and user-

friendly tool for computing end-to-end statistics of DNA, addressing the current lack

of a such a tool written for the scientific public. Although the Wormulator was

designed with DNA in mind, the program can equally be applied to any polymer

whatsoever, as long as the phantom chain approximation can be used.

Our calculator can use three complementary methods. The eigenfunction-based

method, due to Spakowitz and Wang[140][138], is best-suited for cases in which the

end-to-end separation is much greater than the bending scale of the DNA. The nu-

merical Monte Carlo method efficiently computes statistics of shorter DNA contours.

Finally, the method of Zhang and Crothers[166] handles polymers that are sharply

deformed due to positional and/or orientational constraints. The program can be ei-

ther downloaded and run on a personal computer, or accessed via the web. The online

calculator has a straightforward and intuitive interface but is somewhat restricted in
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what it can do. The offline program uses a command-prompt interface, but has the

full range of capabilities and can be used for intensive calculations.

2.1 End-to-end distribution

The mathematical form of the full end-to-end distribution can be formally written

as[160]:

p(R2, Q2|IR1, 7 1; L).

R denotes the position of one end, Q denotes its orientation, and L is the length

of intervening DNA. The meaning of this expression is a probability density, per

unit of space and orientation, for a length-L polymer whose first end lies at position

R1 and orientation Q1 to have the second end at position R 2 and orientation Q 2,

assuming that the configuration was randomly sampled in a thermal environment.

Each orientation Q consists of a tangent vector u which points in some positive

sense parallel to the contour, and a twist angle. Various reduced distributions can be

obtained by integrating (averaging) the full distribution over variables before (after)

the conditional bar. For example, p(R 2, u2 |R1 , ui; L) ignores the relative end twists,

and p(R 2 R1 ; L) considers only distances between the ends.

If we ignore excluded volume, then the end-to-end distribution completely deter-

mines all of the conformational properties of a polymer. The only forces acting on

each monomer are those of its immediate neighbors, so the influence of some segment

of a polymer on the conformation of the rest of the polymer is mediated by the posi-

tions and orientations of its two endpoints, which are determined by the end-to-end

distribution. Compounding this logic, one can reconstruct the probability distribu-

tions of the positions and orientations of any number of points along the polymer,

using only the pairwise end-to-end statistics of adjacent segments.

Neglecting excluded volume makes calculation of end-to-end statistics much more
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tractable, and this approximation is justifiable in several situations. One such situa-

tion occurs when the density of DNA in the surrounding medium is low, in which case

contacts between distal segments are rare and contribute little to the distributions.

Short and highly-stressed polymer configurations are usually quite stiff and may not

form distal contacts at an appreciable frequency. Surprisingly, in the opposite case of

a very high DNA density, excluded volume is also ignorable[33], because the effective

external pressure is isotropic and equal over all regions of the polymer. One notable

phenomenon for which excluded volume is not possible to ignore is supercoiling: the

two individual strands of a supercoiled plectoneme cannot be resolved separately un-

der the phantom-chain approximation, because their conformations are supported by

contact with their neighbors. However, if one is willing to treat the two strands of

a plectoneme together as a single effective polymer with altered material properties,

then the phantom chain model can be applied. Supercoiled DNA tends to branch,

although we do not treat branched polymers in our work.

2.2 Method

2.2.1 Gaussian chain

The intrinsic length scale for DNA bending is its (bending) persistence length lp[160],

which is roughly 50 nm for naked DNA[52]. For this reason we will call segments

of DNA 'long' or 'short' if the ratio of the contour length to the persistence length

is significantly greater or less than one. An analogous quantity, called the twist

persistence length and which we shall denote it, sets the length scale for computing

statistics of DNA twist. Various measurements of the twist persistence length of DNA

give roughly 100-120 nm[52].

In the limit of very long contours, the DNA essentially performs a random walk

in which the step taken over any individual persistence length is much smaller than

the total distance traversed. In this situation the end-to-end distribution approaches

the Gaussian chain distribution[160]:
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_ e-3(AR) 2 /4pL (2.1)

(47lL

where the orientational distributions are uniform. This long-chain limit is trivial to

calculate and is included in our program.

2.2.2 Eigenfunction method

A more accurate long-chain model than the simple Gaussian distribution was obtained

by Spakowitz and Wang[140, 138]. They computed the complete distribution as a

perturbation series about the Gaussian, summed into the following expression:

p(R 2 , Q 2 R 1, Q1 ; L) =7-1 [L-1 {fmo (Q1, Q2,.k) -G9j4 (k, p)} . (2.2)
lolf ,ml,j

Here F 1 is the inverse Fourier operator that converts the variable k (having mag-

nitude k and direction k) into R 2 - R 1 ; and L-1 is the inverse Laplace operator

which converts p to L. The functions f (a product of Wigner functions[160]) and g

(a product of continued fractions in the dummy variable 'I') are given explicitly in

[140, 138]. The variables lo and If technically range from 0 to infinity in both the

sums and the continued fractions, but because the contributions of the higher terms

tend towards zero, in practice we drop all terms above some cutoff Imax in order to

perform a real calculation. The shorter the contour (relative to a persistence length),

the higher 1
max must be to achieve a given accuracy.

One difficulty with this perturbative expression is that it explicitly involves eight

nested iterations: the four sums over 10, If, m and j; the three inverse Fourier inte-

grals; and the inverse Laplace transform. In order to speed up the calculation, our

implementation pre-computes and stores the roots of the continued-fraction polyno-

mials that contribute to the residues of the inverse Laplace transform. Effectively, we

compute the following:
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1. g7'f (k, L) = L-' {ggf (k, p)}

2. p(R 2 , Q 2 |RI, 1 ;L) = F 1fi ([ 1 , I 2,l) - g' (k, L)
lo,lf,m,j

The limiting step 2 now involves only seven nested sums, which is still intensive but

much faster than the original expression. The memory required to store the results

of step 1 can be significant, but overall we have found this tradeoff to be worthwhile.

We obtain further boosts in speed by exploiting symmetries of the perturbation

series that arise in various distributions. For the full distribution (2.2) we can take

advantage of the fact that the continued fractions are nearly symmetric with respect

to m and j. The only exception is a term a that can be removed by changing to the

Laplace variable P = p + oz in step 1 above, and factoring it back in at step 2 after

the transform. Thus we only have to compute terms for j < m.

To obtain the reduced distribution p(R 2 , u2 |R1, ui; L) that ignores the relative

twist of the two ends, one integrates the full distribution over the twist component of

Q2. Since the dependence on fi" on Q2 is of the form eV), where i is the imaginary

constant and # is the relative twist, all terms vanish except for those where j 0;

thus we can avoid the sum over j and just set it to zero. To obtain the distribution

p(R 2 IR1; L) which completely ignores the orientations of the two ends, we integrate

over both the relative tangents and twists, which eliminates both the n and j sums

and we simply set m =j = 0. These reduced distributions are much faster to evaluate

than the full distribution.

To obtain the orientation-only distribution p([ 2 |I,; L) one integrates over all

R 2. Equivalently, we replace the inverse-Fourier operation with a simple evaluation at

k = 0 in the program, thereby removing the three nested Fourier integrations from the

evaluation and (due to the form of g) restricting lo = If. This calculation involves only

three nested iterations and is very fast. One can also obtain the distribution involving

only the separation distance between the two ends of the polymer, p(R 2, Q2 R 1, Q 1; L),

by integrating out the relative direction of the two ends R from the full distribution.
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These two integrals can be done analytically, as they act only on the inverse Fourier

factor, so the distance distribution requires the same calculational cost as the full

distribution in Eq. (2.2).

One final interesting special case is that of cyclization, where the contour loops

back on itself so that R 2 = R1 and Q2 = Q1. In this case the two angular Fourier

integrals (in a spherical basis) act only on the Wigner functions in fM, which, due

to the properties of the Wigner functions[160], restricts 1o = If. Thus we can both

ignore the angular integrals and replace the two sums over io and If with a single sum

over 1. We then exploit the fact that g is symmetric with respect to m and j, and

with m and -m modulo a complex conjugation, to restrict the ranges of the other

two sums to 0 < m < 1 and 0 < j < m while multiplying by prefactors of 2 and 4

and manually effecting the complex conjugations.

Our inverse-Laplace solver uses (with permission) a C++ implementation of the

complex-valued Jenkins-Traub root-finding algorithm written by Henrik Vestermark

(http://www.hvks.com/Numerical/ports. html). A root-polisher using Newton's

method ensures that the roots are at machine precision.

2.2.3 Monte Carlo

Our calculator also employs the sampling-based method called Monte Carlo for cal-

culating the end-to-end distribution function. The Monte Carlo prescription is to

computationally generate a large number of representative random polymer config-

urations that all begin from (R 1, 1), and to derive end-to-end statistics just by

counting the number of chains whose other end lies within some finite window of the

desired (R 2 , Q2). The distribution function evaluated at p(R 2 , Q2) is then approxi-

mately the fraction of chains falling within the window divided by the window size.

In order to generate representative conformations, the algorithm must be given the

end-to-end distribution for a single segment; in other words, Monte Carlo constructs

p(R 2, Q1| R 1, Q2; L) from p(R 2, Q2|R 1 , Q1; ls) where i, is the segment length. A typi-

cal ensemble of chains generated by our calculator is shown in Figure 2-1. This Monte

Carlo method works best at short contour lengths, because short polymers are fast
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2.5

2

Figure 2-1: Monte Carlo-generated conformations. Simulated chains have a
segment length of i = 0.ll, and a total length of L = 51,.

to evolve, and have close end-to-end spacing which allows high-resolution sampling

of the distribution. It is therefore complementary to the eigenfunction technique of

Spakowitz, which works best at long contour lengths.

The first step in Monte Carlo is to define the single-step end-to-end distribution

p(R 2, Q2 R 1, i1; 1,) which defines the polymer model. Using translational and rota-

tional invariance we recast this quantity as p(x; l) where x ={Ar1j, Ar1, Arx, 0, #, ,}

describes translations and rotations using axes affixed to the polymer. Here 0 is the

bending angle, # the azimuthal angle of the bending axis, and 0 is the twist angle.

In our Monte Carlo implementation p(x; l,) can be specified arbitrarily: the user pro-

vides an energy function E(x) for bending/twisting/translating assuming a contour

length i, and a discretized probability function is computed using the Boltzmann

factor p o J(x)e- E(x) where J(x) is the volume factor appropriate to the system.

Note that this is still considerably more general than the single-parameter wormlike-

chain model, as it allows for nonharmonic energy functions, extensible polymers, and

coupling between translations, bending and/or torsion.
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In order to accommodate arbitrary single-step distributions, our program precom-

putes p(x; l) at discrete values of each xi when the model is defined, then upon chain-

generation approximates the function at arbitrary x by linearly interpolating between

those values. One difficulty is that the memory and the computation time required to

generate an interpolation table both increase exponentially with the dimensionality

of that table. For this reason, we will want to factorize the tables as much as possible.

The wormlike-chain model factorizes as p(x) = p(ri)p(r2)p(r3 )p()p(#)p(0), which is

convenient because six one-dimensional tables are computationally far less expensive

than a single six-dimensional table. Couplings between different degrees of freedom

must be described with multi-dimensional single-segment distributions; for example,

accounting for twist/roll coupling involves the three-dimensional function p(O, #, @b).
Our Monte Carlo method supports practically any way of factorizing the single-joint

distribution, and so can accommodate all of these models.

The arrangement of dinucleotides has traditionally been described using local axes

attached to the DNA labeled (k, y, i)[31], where i x y = i and i is the direction

of base pair stacking. Unfortunately, (i, y, z) are also generally used for fixed axes,

which we need in order to measure the absolute position and orientation of the base

pairs. In our program we reserve (i, y, i) for the fixed axes, and instead use the

triad (ii, b, i) to denote the local DNA-attached axes, where n x = i and n
points along base pair stacking. In wormlike-chain terminology[160] these latter axes

are respectively termed the normal, binormal and tangent unit vectors. We shall

however use traditional dinucleotide terminology[36] in speaking about translations

and rotations: translations in ii, b and n are respectively termed 'shift', 'slide' and

'rise'; and rotations about those axes are 'tilt' (0 sin #), 'roll' (0 cos #) and 'twist' (@)

in the same order, using the definitions of [36].

Once a set of interpolation tables describing the single-joint distribution have been

generated, they can be repeatedly sampled to specify representative trajectories of

displacements, bends and twists between subunits that determines a polymer con-

formation. To facilitate sampling, our program normalizes and then integrates each

distribution, so that the interpolation tables contain (normalized) cumulative distri-
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bution functions. If the table is one-dimensional then the sampling procedure is to

draw a uniform random number on the interval 0 < r < 1, then solve C(xi) = r for

xi using our numerical table C(xi) = f_ p(yi)dyi. For general n-dimensional tables

we store a cumulative distribution function for each variable i to be sampled, where

each function consists of i - 1 one-dimensional tables (one for each discretized choice

of prior variables); and integrates over the n - i subsequent variables. For example,

to sample p(Xi, xz) we would first solve Ci(xi) r1 for xi, then linearly interpolate x

between the solutions of CJ (xj) = r2 and C±(zy) = r2 using the bracketing tables

at ai < xi < ai + 1.

The procedure for evolving the polymer given its trajectory follows the convention

outlined in Ref. [36], which we will summarize briefly. Define Q as the twist angle

about i; F as the total bend angle (root-sum-of-squares of roll and tilt angles); and let

# be the direction of the 'total bending' axis as an angle from b towards the direction

of n (note that this is opposite the direction of positive twist). Given the orientation

of polymer segment n and a set of bend/twist angles, we compute the orientation of

the following segment n + 1 by rotating the local axes at step n as follows: 1) rotation

by Q/2 - # about i; 2) rotation by F about the new b from step (1); 3) rotation by

Q/2 +# about the new n from step (2). Translations are performed in the directions

of either the initial or final axes, or the 'middle' axes; the last of which are obtained

from the initial axes by: a) rotation by Q/2 - # about i; b) rotation by F/2 about

the new b from step (a); c) rotation by # about the new n from step (b).

Most of the computational expense of Monte Carlo is in generating the simulated

polymers, so runtime is proportional to the number of simulated chains N and in-

versely proportional to the discretization length 1. Since the sampling the statistics

is much faster than generating the polymers, it makes sense to decouple these two

processes in some cases. Our implementation therefore first generates the chains,

selecting (based on user criteria) certain chains for which the positions and the orien-

tations of select mid/endpoints are stored; then, in subsequent steps, mine the table of

selected chains to recover various statistics such as the end-to-end distributions. The

tables require some memory, but they allow one to rapidly draw multiple statistics
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from one set of simulated data without having to specify the criteria a-priori.

The three sources of Monte Carlo error are: the discretization of the polymer chain,

1/1/N sampling error, and the averaging of the distribution over a finite sampling

window. The discretization error is due to the fact that we typically discount internal

structure of each segment which is often impractical to resolve in the single-segment

distributions the user provides. Discretization error can be brought to tolerable levels

by taking I to a few times smaller than a persistence length. The remainder of the

error implies a tradeoff between the resolution one can obtain from the distribution,

and the density of sampling and hence cost of the simulation. If we sample at a given

(R 2, Q2), then the counting error in terms of the distribution density p, the number

of samples N and the window volume V is Ac ~ fp/NV. Capping Ac at a tolerable

maximum value thus implies that the best resolution we can get at that point in

the distribution is V = p/(NA2). Of course this can be improved by increasing

the number of samples N. If we are sampling the full distribution in position and

orientation, V is a volume window in both R 2 and Q2, so one can trade positional

resolution for angular resolution and vice versa.

For short polymers, many endpoint configurations are sampled sparsely or not at

all because they require the polymer to be sharply bent and energetically disfavored.

Since thermal sampling on molecular scales happens so fast, some of these sparse

regions may be relevant to biology despite being hard to access numerically. To

improve the results, our Monte Carlo code has the ability to bias its sampling towards

certain conformations by sampling from a different single-segment distribution which

is somewhat different from the distribution that defines the model. The bias is then

corrected for by post-weighting. This generic name for this technique is 'importance

sampling'.

In order to see how the post-weighting procedure works, we collect all the variables

that parameterize the conformation (bend and twist angles, extensions of the contour,

etc. of every polymer segment) into a vector y. Each scalar parameter y will be drawn

from a Boltzmann distribution of an unconstrained polymer pi(yi) =- e y giving
us p(y) = Hlpi(y) which is the overall multiplier for the entire conformation. This
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distribution must be reflected somehow in the Monte Carlo method. For example,

one could draw all yj uniformly, and post-weight each sample n by H p .

p = p(y)(f(y))dy

~P p(yn) of (y) < E)

1
I (p(y)o-(f(y) < ))

V

Traditional unbiased Monte Carlo samples yj in proportion to p(y1 ), rather than

explicitly multiplying by that factor.

1
PMC (o (f(y) <E)yEp

Our biased sampling method splits the difference between these two alternatives. We

factor pi(yi) = sj(yj)wj(yj), where so is also normalized; use sj(yj) as the sampling

bias and retain w(y) = H wj(yj) as the explicit weight.

1

Our Monte Carlo method estimates the sampling error of a general biased sample

by binning the weighting factors and estimating the counting error in each bin b:

N 2v 2 (6p 2 ) ( 2) _ Krb) 2)

b

If we take these bins to be very small so that nb) < 1, then nb is almost certain to

be zero or one, in which case n2 = nb. Then
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b

We can estimate the error using the expression 6p ~ Ei w/NV using the sample

set wm. In the special case of an unweighted sample this reduces to 6p p/n-hit,

but in this case we explicitly use 6p i pnhits - 1 to remove the bias of having

estimated the mean from the same sample set.

In addition to the various end-to-end distributions, we include routines for measur-

ing the various moments of the distribution: the mean end-to-end distance function

(R 2 n ), and the mean of ((R - uo)n) for any n, where R is the end-to-end displacement

and uO is the initial tangent vector. These functions complement analytical results

of these same quantities[160], as those can be difficult to evaluate. To estimate the

error in the moments, the program divides the set of N conformations into m disjoint

subsets, computes the moment separately using each subset, and then estimates the

error based on the variance in the moments of the subsets.

2.2.4 Harmonic approximation method

The eigenfunction and Monte Carlo methods described above are most accurate when

there are low-energy polymer conformations that satisfy the end-to-end constraints.

To complement these, we have also implemented the 'harmonic approximation' (HA)

method of Zhang and Crothers[166 which works best in the regime of high-energy,

sharply-bent conformations. The HA method estimates the probability function by

integrating about the minimum-energy configuration of the polymer that satisfies the

given constraints. When the polymer is sharply bent, the energy trough tends to be

steep, fluctuations are small and approximations made in the perturbative integral

become ignorable. As in the case of Monte Carlo, the HA method can incorporate
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any number of positional and/or orientational constraints along the length of the

polymer.

Our HA calculator is essentially an extension of our Monte Carlo calculator, so

it can be applied to the same variety of DNA models as Monte Carlo deals with.

Sequence-dependence, extensibility, coupled degrees of freedom and non-harmonic

energy functions can all be accounted for using HA. The HA method itself is described

in detail in [166], although because the details of our implementation differ slightly

we briefly rederive the result below.

The objective is to approximate the constrained partition function

Z = dxdX2 ... dXN (C E/kBT 6 (f (1)) 6 (f (2)) ... 6(f()) (2.3)

by integrating over a 2nd-order expansion of the argument of the exponential in

the degrees of freedom and the Lagrange multipliers that arise from enforcing the

constraints. The degrees of freedom xi are the translations and rotations at each

segment of the polymer, given that the initial position and orientation of the first

segment are fixed. The calculation proceeds in two steps: first, a minimum-energy

configuration is found that satisfies the constraints along with a set of Lagrange

multipliers; secondly, the derivatives of the energy function about the minimum-

energy configuration allow us to approximate Zc. By integrating over the interpolation

tables we find the unconstrained Z, which allows us to calculate the probability

function p = Ze|Z.

We find the minimum-energy conformation of the polymer by simultaneously sat-

isfying the constraints and a set of force-balance equations, with Lagrange multipliers

transmitting the constraint forces. Borrowing the terminology of Zhang and Crothers,

E is the configuration energy, fi) denotes the ith scalar constraint function, m is the

number of constraints, and N is the total number of degrees of freedom. At equilib-

rium these variables satisfy:
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dE m df(3)1

y + d= =.j 0. (2.4)
f(i)

To find the x0 and Aj that give the minimum-energy configuration y = 0, we use

a general-purpose multi-dimensional root finder from the GNU Scientific Library

(GSL) [42].

If a minimum-energy configuration is found, the probability density function p,
which is the ratio of the constrained to full partition functions Zc/Z, is found by the

technique which is explained carefully in [166]. The constrained partition function

evaluates to Zc = e-Es wN-m/jA'||F'l, where E, is the energy of the configuration

found in the first step, and the matrices A' and F' are defined by:

1d2 E 1 m d2 f(i)
A'ik =Id 2 E 6 ik + I ZA~d dj

dx 2 dxidxk

N N=A'_ df i) df (1)

i~ 1k-i dxi dxk

Meanwhile, we calculate the unconstrained partition function by summing the nu-

merical interpolation tables. Taking the ratio of the two partition functions gives:

Ze- e-Es gN-m

Z Z |A'||F'|

2.2.5 Finite-width delta function

For some purposes we would like to know the normal modes of a constrained poly-

mer. Unfortunately, real-valued normal modes do not come directly out of the Zhang

and Crothers analysis, because the delta-function constraints are made tractable for

integration by Fourier-transforming them into complex space. However, if we replace

the singular delta-functions with a narrow Gaussian, then both the energy and the
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constraint appear straightforwardly within an exponential, which we can expand to

second order and straightforwardly convert to real-valued normal modes.

As before, let N be the number of degrees of freedom and m the number of scalar-

valued constraints. The constrained partition function with Gaussian constraints is:

Ze = dxidx2 -

KclI
(27)m f

E kf2k2 f2
- dxN (e

dNxexp -E -

dNxexp E -

where the third line introduced a general constraint stiffness matrix Kc. Expanding

the energy E and constraint functions fi to second order in x about the minimum-

energy configuration gives:

I NAx exp
[-Eo - (VxE) - (Ax) - - (Ax)T

2
- (VxVxE) - (Ax)

- 1 fTK fo - fOTKc (Vxf - AX)
2
1 r
2 (V xf. AX)T
2

. Kc - (Vxf - Ax)

IfoKc . ((Ax) T . (VxVxf) . (Ax))4

(2.8)

The first-order terms cancel:

(VxE) - (Ax) + fOTKc - (Vxf - Ax) = 0

- fOTKc (Vxf) = -VxE
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(2.10)

fw 2

kf 

2

(2.5)

(2.6)

(2.7)

Z ~ Kcl(2x-mI

-I ((Ax)T - (VxVxf) - (Ax))T - Kcfo .



and Zc reduces to:

Ze () -E dN Axexp _jAX)T. M. (Ax) (2.11)

= (2 r)(N-m)/2 cI-E
Me 0 (2.12)

where

1
E = Eo + IfoKcfo (2.13)

2

and

Mg = xE + (f)T Ke (a f) -- [(aioxyf) Kefo + foKe (Ox,8 f

(2.14)

= 8xi8 (E + A -f) + (&xif)T Kc (&8 f) . (2.15)

The last step follows from the identification A = Kcfo from the Zhang-Crothers anal-

ysis. Force balance implies that f IKl-1, so in the delta-function limit where

|KI -+ oc the energy reduces to EO - E0 .

The eigenmodes of the constrained polymer are useful because they can form a

basis for biased Monte Carlo sampling. For good sampling statistics, we want to

choose Kc so that the variances in the fi will be of the same order as the respective

sampling window sizes. Specifically, we will dial in Kc such that the projection of

M into f-space is diagonal with entries (PMPT) = = 1/on, where o-i is the

window size of constraint i. Projections between Ax and f are effected by f = 3Ax

and Ax = Pf, where /i3 , - 8=, and P = (#T) 3 T. Writing M in the form

M = Mo + /3KcJT, we find our desired constraint stiffness matrix to be Kc -

T - (3 T /) 1 3T Mo3(3 T 3)-1.
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2.3 Implementation

The core program described here is a text-based tool, in which the user types con-

mands and obtains results on the screen or in output files. This program can be

downloaded and run on a desktop computer. For convenience, we have also provided

an online calculator with a web interface, which has much of the capability of the

command-line tool. The URL containing both the online calculator and the download

for the command-line tool is:

http://mtshasta.phys.washington.edu/wormulator/

Web-based documentation supports the online calculator, while the command-line

tool comes with a help file that explains its use and provides examples.

2.3.1 Web interface

The online calculator allows the user to measure the full end-to-end distribution

p(R 2 , Q 2 |R 1 , QI; L) for single values of {AR, 1 ,2, L} by providing a polymer

length, endpoint tangents and relative displacement and twist. The wormlike chain

model is used for all calculations. By default the material parameters (bending/twist

persistence lengths and intrinsic twist) are those of DNA, although one can change

these to model other polymers. Checkbox options to sum over R, tangents and/or

twists allow the various reduced distributions to be computed. One convenience, not

present in the command-line tool, is that the program supports several length units

(nanometers, persistence lengths, base pairs of DNA, etc.) which may differ between

the various input fields and the program's output. Online computations may be

performed using the eigenfunction and Monte Carlo methods.

The output of the basic computation outlined above is a single number: a proba-

bility density (probability per unit volume and/or unit angular volume) for the poly-

mer's second end to be in the given position and/or orientation relative to the first

end. Frequently, the user would like to map this distribution over a range of values
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in some parameter - for example, to predict the efficiency of cyclization over a range

of polymer lengths. It would be tedious to do these multiple evaluations manually,

so the online calculator incorporates a 'counter' for accomplishing this automatically:

given a range of values of the counter variable, the program will evaluate multiple

times, once for each value of the counter. To set up unique conditions for every run

the user writes the counter variable 'c' into the input fields: for example the twist

field might read sin((pi/8)*c), or the length may be e--c. If the counter is used,

then the output of the calculator will be a table, where the values of the counter are

displayed alongside the outputs of each evaluation of the distribution.

It is easy for the user to request a calculation that will either require too much

memory or run practically forever, especially when using the eigenfunction method

which involves many nested loops. In order to avoid overtaxing the server, the online

calculator restricts the permitted ranges of those parameters that affect memory

usage and computation time: the maximum I-value and the number of integration

steps in the eigenfunction calculation, the number of samples and discrete segments

that Monte Carlo generates, and the range of the counter variable. Because of these

restrictions, intensive calculations can only be done using the command-line tool.

2.3.2 Command-line tool

To perform a calculation using the command-line tool, the user may enter commands

directly into the interactive prompt, or else place those commands into a file and

have the program execute them all at once. A basic calculation takes two or three

commands; the help file includes examples demonstrating how to perform each type of

calculation. Additional commands allow the user to generate and save tables, inspect

intermediate stages of the calculation, control the random sequences, and measure

computation time and memory usage.

The Monte Carlo component of the command-line tool has several capabilities

that are not available from the web site. One is the ability to use very general 2D

or 3D polymer models, including those with non-harmonic energy functions, coupled

degrees of freedom, sequence dependence and extensible segments, along with the trick
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of biased sampling. Additionally, only the command-line tool has the perturbative

method of Zhang and Crothers. The command-line tool can perform very lengthy

calculations that are forbidden online. Finally, the ability to export tables is useful

for storing results, making plots, and troubleshooting.

2.4 Results and Discussion

2.4.1 Validation

In order to validate our program, we performed a number of calculations that could

be checked either explicitly or against a different method. For the perturbative cal-

culation, we compared selected computations of Euler angles and Wigner functions

with hand-derived results, verified that the distribution asymptotically approaches

the expected Gaussian for long chains, and reproduced the cyclization plot given in

ref. [138]. We also compared probability densities given by our implementation of the

perturbative method with equivalent calculations performed using a symbolic calcu-

lator (Mathematica[159]), drawing test cases from the full distribution and from the

orientation-only and cyclization distributions. Tests of the Monte Carlo method in-

cluded explicit checks on the propagation and rotation of individual segments, on the

sampling of the bending/twisting energy functions (see Figure 2-2 for wormlike chain,

biased distribution where Ebias = E/4), and evaluations of (R -uo) which as expected

approach l, (1 - e-L/Lp). In all cases the results agreed with the predictions within

numerical precision, as long as the parameters controlling accuracy (Imax, Kmav, etc.

for the perturbative method; segment length and number of runs for Monte Carlo)

were made stringent enough.

When a polymer's length is on the order of a couple of persistence lengths, both

the perturbative calculation and Monte Carlo can give good answers with reasonable

computational cost, and of course their results should agree. We generated end-to-

end distributions of a 3-persistence-length stretch of DNA using these two methods,

which are compared in Figure (2-3). Each plot shows a 2-D slice of the distribution
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Figure 2-2: Monte Carlo sampling of single-segment distributions. Sam-
pled segment evolution parameters (red) are overlaid with target sampling function
(green), validating our sampling method. Left panel: shift, slide, rise distributions;
right panel: bend, azimuth, and twist.

over the spatial separation of the ends, for the given fixed end-orientations.

As our final test, we compared the probability density for cyclization of wormlike-

chain DNA between the three main calculational techniques: Spakowitz's eigenfunc-

tion method, Monte Carlo, and the Zhang-Crothers perturbative method, using a

DNA chain whose length ranged over L - 100 - 400 bp (Figure 2-4). Monte Carlo

results were computed using both an unbiased and biased sampling; in the latter

case the bias was to lower the energy by a factor of 1.5. The perturbative results

were obtained by discretizing each chain with 500 segments; by contrast the Monte

Carlo results used a much lower discretization of 20 segments in order to obtain good

statistics when using the biased sampling. A perturbative result of Yamakawa[160] is

included to compare against that of Zhang and Crothers. By convention all probabil-

ity densities are expressed as J-factors[69] defined by J = 87rp. The J-factor accounts

for overall rotations of the entire system, and is related to the looping free energy by

G = -kBT In J. The eigenfunction result for DNA, using somewhat lower tolerances

and computed over the range L = 200 - 600 bp, is also used as an example for the

online calculator.
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Figure 2-3: Comparison of distributions calculated by eigenfunction and
Monte Carlo methods. Two slices (top and bottom) through the three-dimensional
end-to-end position distributions calculated by the eigenfunction method (left panels)
and Monte Carlo (middle panels), and their difference (right panels). For this run,
L = 3, 1, - 1, t - 2.08, twist = 1.5, no = ioi = x, f = (0, -. 6,7.8), fif = (-1, 0, 0).
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Figure 2-4: Comparison of methods for calculating DNA cyclization rates.
DNA cyclization frequency J(L) in nanomolars was calculated using the eigenfunc-
tion, perturbative and Monte Carlo methods (with and without biasing).

2.4.2 Example: going beyond wormlike chain using cycliza-

tion data

We have shown that our calculator correctly constructs the multi-segment distribu-

tion po given a single-segment polymer model. We will now apply our methods to

the inverse problem: using end-to-end statistics of an extended DNA chain to learn

something about the poorly-characterized single-segment distribution. Experimental

evidence indicates that DNA bends sharply much more often than the wormlike chain

model predicts[241. Thus the energy penalty for at least some large bending angles

is probably less than Ewormlike - (lp/2 ) 2, although the amount of softening and the

range of bend angles over which this occurs is still unknown.

Here we will compare three candidate models for high-energy DNA bending, and

show using simulations how an experiment may be performed that can discriminate

between these models. Model I is the familiar wormlike chain model. Model II

differs from the wormlike chain in that its energy function remains constant beyond
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Figure 2-5: Cyclization of nicked DNA: energy functions of different models.
Models 1, 11, and III are defined by p(6) = exp (-E(O)/kBT); note that three variants
of Model III are superimposed on these plots. Part of the green line for Model II is
hidden behind the red lines of Model III.

a certain bending angle: E (0 > =max) = E (Omax). Model III has a wormlike chain

energy function for all bending angles except near a certain kinking angle where we

set the energy penalty to zero: E (10 - OkinkI < e) - 0. We note that similar models

have been studied analytically[157] and computationally in other contexts[20] [168].

The low-energy stiffnesses of the various kinking models are set slightly greater than

higher than in the wormlike chain model so that the long-chain distributions of all

three of these models converge; thus the three models would become indistinguishable

by experiments that measure end statistics over long contour lengths. The energy

functions and single-segment distributions of each model are shown in figure 2-5.

The experiment we consider is a cyclization experiment, in which linear double-

stranded DNA fragments are converted to closed circles in the presence of DNA ligase

at a rate proportional to the probability density for end-to-end looping with matching

tangents and twists: p (R 1 = R 2, Q2 = Q1). In our proposed experiment, the double-

stranded DNA contour to be cyclized bears two nicks, so that the cyclized loop will

consist of two double-stranded regions termed the long and short arms of the loop

separated by flexible nicked hinges. Similar DNA configurations have been used in

prior experiments that probed the stretching behavior of the short arm[21, 153, 148,
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Figure 2-6: Cyclization of nicked DNA: energy-minimized kinked and un-
kinked contours. (a) Energy-minimized conformation of wormlike-chain polymer
with 2 free joints. (b) Relaxed conformation with a kink angle 0 absorbing the bending
in the long arm.

113] or the distance between the ends of the short arm[133, 134]. Single-stranded

nicks are quite flexible in bending so we will assume that they are free joints. The

result of having these two joints is that the short arm will be stretched nearly taut

between the two ends of the long arm in the cyclized conformation, as shown in Figure

2-6a. We note that single-stranded nicks are also completely free to rotate in twist,

eliminating the energy penalty for relative twisting along the contour and allowing

us to apply tangent-only orientation conditions on the ends in our calculations.

In the cyclized conformation, the sharpest bending tends to be concentrated near

the midpoint of the long arm, so any kinks in the DNA will likely form there. In

one idealized scenario, a central kink absorbs all of the bending of the long arm,

forming a triangle in which the kink angle Ok is opposite the fully-extended short arm

as shown in figure 2-6b. Assuming that cyclized conformations would be variations

on this idealized triangle, we expected Model III to show an enhanced cyclization

rate when Ok is close to the model's preferred kinking angle. Model II should also

shown an enhanced cyclization rate for sharp bending relative to the wormlike chain

prediction, but over a wide range of Ok.

We used Monte Carlo to compare the predicted end distribution p (ARO, Q2 = Q1 )

between the three models, including three variants of Model III with different pre-

ferred kink angles. We measured the cyclization probability over a range of lengths of

both the long and short arms (L1 and L,), where the length of each arm was always a

multiple of 21 bp to minimize helical asymmetry. Figure 2-7 shows the results of our
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sampling, plotted by 0 = 2 arcsin (L,/L) on the horizontal axis and the total length

LI + L, on the vertical. The free energy gain in moving subunits from the long .arm

to the short arm is consistently below 1 kBT per base pair, so we do not anticipate

melting at the double-stranded ends to skew our results. Not only are the three mod-

els easily discriminated, but any preferred kink angle is clearly visible. Since twisting

does not enter into these distributions, we believe that this experiment could cleanly

extract the bending component of the energy function at high bend angles.

2.5 Appendix A: Derivatives of the constraint func-

tions

The harmonic approximation of Zhang and Crothers[166] requires efficient and accu-

rate calculation of the first and second derivatives of the constraints with respect to

each of the coordinates xi. Each vector constraint is enforced by a set of scalar f(i)

factors, each of which is the vector constraint on one of the unit vectors e' projected

along some axis ej. Let a denote the segment immediately after step xi, and c denote

the segment at which the constraint is applied; necessarily c > a or else the deriva-

tive vanishes. We will ignore the constraints on the position and orientation of the

initial segment, as our calculator does not allow those to vary. For all other scalar

constraints we calculate a first-order derivative by

Of 0) Of U) ORa 3 O )O~
= E - (2.16)

Bza OR Di Det Dz
p=1

(2.17)

where each right-hand term is a dot product of two 3-vectors. The eP are the three

orientation vectors at segment a. For simplicity the derivatives of Ra and eP with

respect to xi are evaluated numerically by two symmetric perturbations about xo0 .

Perturbing a translational degree of freedom affects only Ra, whereas a general per-

65



Model I (WLC)

1.5 2 2.5

0

p(AR = A = 0)

10-9 M

10~0 M

Model III

:1

240

200

160

120

80

1.5 2 2.5
0

1.5 2
0

2.5

Figure 2-7: Cyclization of nicked DNA: cyclization frequencies. Cyclization
frequencies were estimated for each model (including three variants of Model III hav-
ing different kink angles 0 k, indicated by a dotted line) using Monte Carlo. Horizontal
axis is the kink angle 0 needed to relax the long arm; vertical axis is the total length
of the polymer L, + L.
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turbation in a rotational degree of freedom affects Ra as well as the three orientational

unit vectors eg.

The partial derivatives of f(0) can be calculated geometrically. Positional con-

straints where a > ao have derivatives from both translation of Ra and rotation of

the intervening length of polymer between a and c. In this case we have

8f(0) Of(0)
e. (2.18)

&Ra ORc "

ej. - (e' (Rc - Ra)) ep' (2.20)

The vector Rc - Ra maintains a constant projection upon the unit vectors ea, so the

derivative operator 0Og acts only upon the second unit vector.

OfUj)
Be = ej - (epa - (Rc - Ra)) I (2.21)

= [(ep - Rc - Ra)] ej. (2.22)

Orientational constraints upon the vector e- are only affected by rotations in the ea.

Because the projections eP -e' are constant, we ignore the action of the derivative 0 e

on the component of e' in the ea basis.

Of 0)
fi= 0 (2.23)

BRc

Of 0) Of 0) Be, (2.24)
Bepa Dec Oea

e-e ' - ec) ep' (2.25)

= (eP - e") ej. (2.26)
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We calculate second derivatives of the constraint function a2 f/(j)/XiOXk in two

different ways. Let a and b correspond to the segments at which xi and xk act, where

we take a < b. When a = b there are complicated couplings between x and Xk,

so we numerically perturb both coordinates symmetrically by e/2 and calculate the

difference (f/) - f -_ f + ffi))/E2 . When a < b it is much more efficient to

evaluate second derivatives using the first derivatives already calculated, noting that

the only nonzero second derivatives when a # b involve two orientational degrees of

freedom. We first calculate the derivatives Ofr /xk for each constrained vector elj

along all three axes eb, regardless of how many components of the vector have been

constrained. We then take a further derivative in xi by noting that for both positional

and orientational constraints the constraint derivative vector co-rotates with the unit

vectors e,.

__2 f (j) Of U) (2.27)
OXiOXk Xi OXk

- ej (2.28)Oxi Oxk

(eP -e") e - -. ej (2.29)
pq a b b k j

(2.30)

2.6 Appendix B: Converting p into a density in

angular coordinates

Due to the way the angular constraints are represented, they give rise to a probability

density per unit volume in Cartesian space (for example, duaduydn) of various com-

ponents of the angular unit vectors. We want to output densities in angular space

(sin 0 -d~dod@), so we have to multiply our computed density by the Jacobian factor

between the two spaces (e.g. dn/dQ) in terms of the known parameters (fn).

The simplest case is of that of a single scalar constraint. There is no fundamental
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difference between u/n/b constraints, so we can parametrize the problem in terms of

angles any way we like as long as we express our final answer in terms of the con-

strained vector components. Without loss of generality we will take our constrained

vector to be n and choose the simple parametrization uz = cos 0.

u= cos 0

duz =|sin 0| = 4 -duG
dO smZ1u

In the case of a constraint with two scalar components, both components u, and

uz generally apply to the same angular vector. Then we have:

u, = sin 0 cos#

uz = cos 0

1 d(uzuz) 1 cos 0 cos# -sin 0 sin
=smn0 sin #

sin 9 d(0#) sin 0 - sin 0 0

For the general three-component case we can take n = (sin 0 cos #, sin 0 sin #, cos 0)

as before. Bending is effected by a rotation vector C = z x i/ sin 0 = (- sin #, cos #, 0).

In this frame two vectors orthogonal to n are io = c xi = (cos 0 cos #, cos 0 sin #, - sin 0)

and bO = ni x n = (- sin #, cos #, 0), a general linear combination of which gives

us n = (cos0 cos #cos @ - sin 5sinO, cos 0sin 5cos 0 + cos #sin V), - sin 0 cos 7P). We

have chosen a convention in which nt by angle 0 rotates into n when there is no twist

(@ = 0).

There can be only two independent constraints on a given unit vector because

normalization constrains the third component. We will assume that two of the con-

straint components apply to unit vector A and the remaining component applies to

another unit vector B. There are two possibilities: 1) either the constrained compo-
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nent of B is in the same direction as one of the constrained components of A, or else

2) the constraint components are all along different axes. Without losing generality

we will assume i corresponds to A and i to B; other combinations will have the same

result with appropriate permutations of the variable names. We compute case (1) for

constraints on us, uz and n.

1 d(uxuznx)
sin0 d(0$$)

1

sinO

cos 0 cos

- sin 0

- cos 0 cos'@

-sin0sin$

0

0

0

0

sin 0 sin V)

= |sin0sin$ $sin0sin$|

o c1 - U2 -eur/1 - U2i- n

For case (2) we constrain n , uy and nz.

1 d(uxuznx) _ 1

sin 0 d(0$$/) sin 0

cos 0 cos

cos 0 sin $

- cos 0 cos @

-sin0sin$

sin 0 cos

0

= cos0 sin sin $|

= 1- u2 - u + 2 -n
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Chapter 3

Measuring Chromosome

Conformation In Vivo

In this chapter we turn away from the prediction of DNA configurations based on ther-

modynamic models, and concentrate on how to directly measure the conformations

of chromosomes in live or intact cells. Various methods might be used for making

this measurement, which we will categorize as being either continuous or discrete.

A continuous rendering of a conformation would be some sort of traced contour, for

example as seen in some high-resolution EM images[112], coupled with information

allowing each genomic locus to be mapped to its respective region on the contour. A

discrete conformation maps a selected set of genomic loci to their locations inside the

three-dimensional space of the cell, leaving one to interpolate the contour between

these loci.

I have chosen to focus on discrete measurements of conformation, out of the belief

that they are easier to parametrize and analyze than continuous conformations, and

also because of the experimental difficulty in tracing in vivo DNA trajectories and

the relative ease of labeling discrete loci. One disadvantage is that discrete confor-

mations are inherently coarse-grained relative to continuous ones: bends of the DNA

in between adjacent loci cannot be resolved. This problem is essentially solved if the

locus spacing is comparable to or below the bending scale of DNA inside the cell,

because in that case interpolation accurately reproduces the intervening contour. A
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discrete measurement made at persistence-length resolution shows practically all ma-

jor bends of the DNA; there is little further conformational information to be gleaned

from spacing the loci closer together.

A serious difficulty in making a discrete measurement of a complex conformation

is that a large number of loci need to be not only localized but also individually

identified. Typically, the number of loci needed to discretize the contour far exceeds

the number of loci that can be uniquely distinguished ('colors' in our terminology). To

get an idea of the discrepancy, note that full chromosomes range in length from about

~ 104 to ~ 107 persistence lengths, so to resolve even 1% of a chromosome at high

resolution will involve hundreds or thousands of loci. For comparison, fluorescence

microscopy that distinguishes three colors is considered state-of-the-art. This problem

must be addressed in order to measure extensive conformations, either experimentally

by drastically increasing the number of available labeling colors into the thousands,

or computationally through techniques for inferring the identity of each locus despite

a multitude of look-alikes. In this chapter[121] we will take the latter route.

3.1 Proposed experiment

We propose to reconstruct the in vivo conformation of some long stretch of a chromo-

some in a single-cell and at high resolution, using a three step procedure. The first

step is to target a large number of predefined genetic loci using labels of only a few dis-

tinguishable colors. In the second step those labels are 'imaged' or otherwise localized

in vivo (whether by fluorescence microscopy or some other means is not important).

The final step is an analysis, described in the next section, that maps each imaged

label to its respective locus by computationally looking for low-energy conformations

connecting the imaged labels, given their known spacing and color-ordering along the

DNA contour. The original contribution in this thesis is the analysis. We will start

by outlining the sorts of experiments that could be employed for the analysis, while

emphasizing that no experiment was actually performed for this thesis.

We begin by assuming that the localization is done by fluorescence microscopy,
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because this method is routine, high-resolution (if super-resolution techniques are

employed), and because the marking of genetic loci with fluorophores is a highly-

developed art. Super- (subdiffraction) resolution is important because, as mentioned,

it allows for a close locus spacing which aids the subsequent analysis. The most

promising super-resolution methods for our purposes photoswitch and centroid-fit

discrete fluorophores (PALM[11], FPALM[61] and STORM[123]); these have already

demonstrated the ability to image in three dimensions[67][135 and in multiple color

channels [5] [132]. The resolution from these techniques (- 30 nm) implies a locus

spacing on the order of an in vitro persistence length, which is around the optimal

spacing for building a discrete conformation. One disadvantage of these imaging

methods is that they are slow, so fixation is required to prevent movement at small

scales.

There are a number of ways to fluorescently label the genome in vivo. A standard

method for targeting loci in fixed cells is fluorescence in-situ hybridization (FISH). A

FISH labeling experiment would probably use end-labeled probes, in order to sharply

define the locus and because the aforementioned super-resolution techniques are inher-

ently single-molecule. An alternative to FISH is FROS (fluorescent repressor-operator

system) [119], which would require the cloning of operator binding sites into the re-

gion of the chromosome to be mapped. Finally, if we are willing to consider ex vivo

experiments such as the imaging of flat DNA spreads, one could target restriction

sites using fluorescently-fused DNA-binding proteins such as restriction enzymes; un-

bound, freely-diffusing enzymes are hard to detect by PALM/STORM. If the probes

can be replaced during the experiment then different 'colors' can be imaged sequen-

tially, obviating the need for multiple fluorescence channels.

It is important to use an irregular label spacing and color ordering, so that ev-

ery region of DNA can be uniquely identified. For short DNA contours it is easy

to engineer each individual probe or binding site to satisfy this requirement. For

longer contours, various barcoding techniques might be used that exploit the ran-

dom distribution of restriction sites to heterogenously label the DNA in a single step.

One advantage of an ex vivo experiment using labeled restriction enzymes is that

73



barcoding is automatic without any extra experimental steps.

If the FISH labeling method is employed, one can automatically generate barcoded

probe templates where each restriction site corresponds to a spot of a unique color

in the labeling scheme. The probe templates are generated by serial genomic digests

with several different restriction enzymes. Both ends of each probe are then ligated

to adaptors, with a unique adaptor sequence corresponding to each unique restriction

overhang. The final probes are produced by PCR using end-labeled primers comple-

mentary to the adaptor sequences. This protocol guarantees that each fluorophore

color is conjugated to only one primer sequence, which matches one type of adaptor,

which ligates to one restriction site, thus mapping each restriction site to a unique

color. Note that this will method double-label every restriction site in a perfect ex-

periment, since each restriction site will contact two probes at the 5' end and two

probes at the 3' end, and each probe is (singly) labeled at the 5' end. Double-labeling

would have to be accounted for in a preprocessing step (or else one can accept a high

false-positive rate); however, it could considerably suppress the false negative rate

which we have found to be a more harmful source of error for the final analysis.

Automated barcoding using a FROS method involves generating a genomic array

of different operator binding sites, in random order and separated by random-length

spacer sequences. This can be done automatically using digested DNA for the spacers

using a three-step process. First, digested DNA of random lengths is ligated to

the operator sequences to form a library of operator-spacer fusions. In the second

step, operator-spacer fusions are serially stitched together to form progressively longer

arrays; this step is repeated until a suitably long array is produced. The third step is

to sequence the final array and insert it onto the genome. The length of the binding

array will be limited by cloning capacity (probably about 10 kb).

3.2 Analysis: the 3D-alignment method

The computational method we will present in this section infers probabilistic confor-

mations from a) the genomic position and label color of each locus, and b) the physical
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position and color of each imaged label. The constraint that potentially allows such

conformations to be identified is that labels close together along the genomic con-

tour must also be close in physical space; the closer the label spacing the tighter the

constraints. False positives (nonspecifically-bound labels) and false negatives (unde-

tected labels) are both taken into account by our method, as is localization error.

Our method makes an approximation that lowers the accuracy but greatly speeds

up the analysis, so that reconstructions involving ~ 1000 labeled loci (~ 100 kb at

persistence-length resolution) are completely feasible.

Our algorithm outputs a table of probabilities for mapping genomic loci to imaged

spots. In order to properly construct these probabilities one should consider only

conformations in which no two genomic loci map to the same spot in the image;

unfortunately, enforcing this rule exactly makes the problem intractable when more

than a handful of loci are involved. Our method ignores this 'no-overlap rule' except

between adjacent mappings (i.e. two loci that are consecutive or separated only by

false negatives), thereby making the solution much more tractable but introducing

considerable error into the probability table. In order to recover some of this error we

associate a binding energy with every spot in the image, and iteratively recompute

the probabilities while adjusting the binding energies in order to minimize a cost

function C. The cost function establishes two constraints on the probability table:

1) the expected number of mapped loci (excluding false negatives) should match

the estimated number of spots in the image that are not false positives; and 2) the

normalization condition pi; < 1 must hold for each spot in the image. Details of

the algorithm are given in the Analysis section.

In order to evaluate the quality of a locus-to-spot mapping, we measure the Shan-

non information[127] per locus needed to specify the unique conformation, given the

partial information already contained in the mapping probabilities. Shannon infor-

mation is a positive number that is inversely related to the probability assigned to the

correct mapping; a final information score of zero implies a perfect mapping (p = 1

for the correct conformation). A probabilistic mapping lacks this amount of infornia-

tion relative to the perfect mapping, so the objective of our algorithm is to recover
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as much of this missing information as possible and thereby minimize the informa-

tion measure. This information score can be measured in simulations for which the

correct mapping is known, but unfortunately not in a real experiment. To estimate

the mapping quality in a real experiment, we average the information metric over all

possible mappings weighted by the mapping probabilities, obtaining a score we term

'entropy'. Entropy is therefore an estimate of the information score that does not

require knowledge of the true mapping; the entropy and information scores should be

nearly equal if the mapping probabilities accurately reflect their likelihoods of being

correct (see Figure 3-1). Note that accurate mapping probabilities are a necessary,

but not sufficient, condition for a good mapping: a state of uniform probabilities is

accurate but uninformative, and consequently scores high on both information and

entropy.

3.2.1 The partition function Z

A particular conformation is determined by a set of mapping variables {ai, a 2 , ... , aN},

where each a, either indexes the spot in the image corresponding to the ith locus along

the contour, or else ai = 0 in the case of a false negative. For example, '{3, 0, 2}'

denotes the conformation where the first contour locus maps to spot 3 in the image,

the third contour locus maps to spot 2 in the image, the second contour locus was not

imaged at all, and the presumed spot 1 in the image must have been a false positive.

The statistical weight of a given mapping between two loci a and b is a simple

product of terms connecting each pair of loci along the contour, where each term is

the statistical weight required to stretch the length of intervening DNA between the

two loci by the separation distance of the two spots in the image. We sum over all

conformations between loci a and b, and multiply each conformation by 'no-overlap'

terms which remove conformations that reuse one or more spots:
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Ja/f -b~ 11 ,inE;ii j (3.2)
i=a j<i

Here 1i is the distance of locus i from one end of the DNA, measured along the contour;

R., is the location in three-dimensional space of imaged spot a; and o +" is the

statistical weight corresponding to the stretching of two loci i and i + n between the

locations of spots ao and ai+n in the image. We have associated an unphysical free

parameter fi;ai with each mapping i -+ a 0, and an unbinding penalty w with

each false-negative j -+ a = 0. The summation index i ranges only over mappings

where a, # 0, so each mapped locus i is separated from the next mapped locus by

n - 1 intervening false negatives. We enforce the no-overlap condition by the EC.a

factors which are 1 if a, / a3 and zero if ai = aj.

If we ignore correlations between non-adjacent ao, the only overlap terms are

E ai+,n which can be absorbed into the o "'+" by setting those to zero when

ai = an+i. In that case the partition function simplifies to:

e-F(a) a;aafb;a 7 fic F(li+ni -li,Rai, ) ,i+n;a i (
i=a

b-nf

i-a

We will use the approximate partition function (3.4) in our 3d-alignment algorithm

which we describe below. After that we will consider how to add some of the non-

adjacent ej into the calculation to improve the accuracy.

We have opted to model the statistical weighting factor o(R; L) using the Gaussian

chain distribution[160], where o(R; L) = (27rs 2 )-3/2 exp(-R 2/2s 2) and s2 = 2lL/3.

(The Gaussian chain fails definitively at short contour lengths, so for L < 21p we
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set S2 = L2 /3.) There are several reasons to use a Gaussian model. 1) The true

form of o() is unfortunately poorly-constrained in vivo, and almost certainly differs

between and within organisms. Since the Gaussian chain model is a smooth diffusive

distribution, it should not fail sharply if the in vivo polymer bends in unexpected

ways. 2) There is only one free parameter: the persistence length lP, which is the

bending length scale of the polymer (approximately 50 nm ~ 150 bp for in vitro

DNA). 3) Convolving the localization error of the two loci (usually assumed Gaussian,

having variances s2 and s2) against a Gaussian o-() simply results in a new Gaussian

or'() having s'2 =2 + s9 + S.

It turns out that nearly every quantity that depends upon a contour locus i also

depends on the corresponding mapping variable aj. For notational convenience, we

will henceforth omit the explicit dependences of most quantities on the ai variables.

As a general rule, every superscripted or subscripted index attached to a quantity

implies that it is also a function of the respective mapping variable 'a' corresponding

to that index: f0 is shorthand faoaa, o +" is shorthand for ofl"%*", e stands for c ,

etc.

3.2.2 Step 1: calculate Z

Consider the quantity Zb (shorthand for Zlb) that sums all possible mappings of a

stretch of consecutive loci bounded by a < i < b, where the endpoints are fixed by

the implicit aa and ab but each intervening a, is summed over all imaged spots of

the appropriate color.

b-n5

Zb =o+ni (3.5)
0a+1---U6-1 i=a

By setting a to the first mapped locus on the entire chain and summing over a,

we obtain the 'half-partition function' Zb which accounts for all mappings that end

at (b, ab). Because we have relaxed the no-overlap condition, Zb can be efficiently

calculated using a recursive rule.
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Zb wa- ' faZb (3.6)
a<b aa

b-1

m 1 a b-Z>I 'rnZb-m+ W b 1 Vfb. (3.7)
rn- =ICcb m,,

The boundary terms can be absorbed by imagining that all chains begin from some

outside locus 0, having Z 0 10 = 1 and or = wb- fb.

b

Zb = (_Zb-ni (3.8)
m=1 Ob-mn

In like manner we obtain the second half-partition function Za, which accounts for all

mappings beginning at (a, aa). We account for the boundary terms by considering

all chains to end at an imaginary N + 1 locus having the properties ZN+= 1,

N -a N+i N
01a lWN f~aanduao w

Za Z( Z bwN-b (39)
b>a ab

N -a+I

- S S o-7nZa+n (3.10)
n=1 aa+n

Finally, the full partition function Z, which contains all possible mappings of the

entire chain, is the summation of Z over both endpoints. In practice Z is best

calculated by choosing a locus x, summing over all possible mappings of that locus

and adding terms arising from ax = 0.
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ZZ wa-1 fZa fwN()-b

a=1 Oa b=a ab

x N-x+1

=ZE ZY + Z-"o x_+Zx+n (3.12)
m=1 n=1 ax-m 2+n

The various partition functions immediately give us the mapping probabilities

p(x -+ ax):

pX z (3.13)

The amount of unrecovered information associated with this probability matrix is

I = - Ej log pi;,; where the vector a' contains the true mapping; this score is used

to evaluate the algorithm on simulated inputs for which a' is known. The entropy

of the probability matrix, defined by S = - Ei Z, pi log pi, gives an estimate of the

unrecovered information when the true mapping is not known.

3.2.3 Step 2: adjust weighting factors

To enforce proper normalization of the probability array and tune the false-negative

rate, we perform gradient descent on the following cost function with respect to the

weighting parameters w = {fi, w}:

C= Z(max{0,Zpza-1} + plQ) - N) (3.14)

where N, is the estimated number of imaged spots that are not false positives. We

break up the cost-function gradient in the following way:
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Four of the six terms are straightforward:

m=ax 0 p;Cidpi
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do, Zi+n

Sn +Z
a 1 +n ~

Zi
mi0li*

(3.18)

m (3.19)

(3.20)

dC dC pi
dZi dpi Z

do- _n +n i. j 6o _,,a + 6 i+n,j0aj±4,aej

df "im 2 fj

dor- +n m + n -1i-m i+w
d W

(3.21)

(3.22)

(3.23)

The remaining step is to calculate dZI/dwk and dZi/dwk, each of which involves chains

of derivatives owing to the recursive structure of the half-partition functions. To

calculate these derivatives efficiently, we note an analogy between our computation

of Z' and Zi and the propagation of signals through neural networks, and borrow

the famous backpropagation algorithm[122] in order to compute our derivatives at
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the same order as the rest of our calculation. Consider a linear feedforward neural

network with connectivity between all layers, where the output of neuron a2 in layer

i is xi (shorthand for xi;,,), and the weight connecting neurons between two layers as

W/. To compute the xi we use the recursive rule that xi Em Z m W/_mxi-m;

this is equivalent to our calculation of Z' or Zi. The gradient si - dC/dxi, called a

sensitivity, can be propagated backwards in a second recursive step: si = &C/&xi +

Ems> E> Wisi+m. The gradient in the weights is then: dC/dW/-m = xi-msi.

The correspondence with our situation is that Z' or Zi is analogous to the output xi

of a given neuron, and or plays the role of the weight matrix Wa. Using this analogy,

we backpropagate the sensitivities using the following rule:

N-i+1
S= + +i (3.24)

M=1i aM

OC
s = + E Y in. i * (3.25)

The component of OC/uor that comes through the dependence of C on the half-

partition functions is:

b bZa + SaZb (3.26)
a Zi,Zi

so the component of &C/&fi and &C/&w coming through the half-partition functions

is:
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N-i+1

(i+n i+nZi + n i+n
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(3.27)

zii+ Zisi - I (zig0 + z. OC) (3.28)
1 ±1C OZ

Nb(Za bbaZb)
b=a+1 aa ab

(3.29)

Our derivation assumes a separate weighting factor fi for each mapping i -+ a. In

practice much better results are obtained when there is just one weighting factor per

spot in the image, which all mappings to that spot use: fi;, = fj;a = f;, for all i which

implies that dC/df;a - E dC/fi;. The gradient optimizer actually works with the

binding energies E = - log w rather than the weighting factors themselves, in order

to keep all w = {f;,, w} positive. The cost function derivatives in the weighting

energies are: dC/dE = -wi(dC/dwi).

There are roughly N 2 (Nc x Nf) elements of each array (Z', Z,, s', s,), each of

which couples to all ~ N spots of all ~ N preceding layers (due to false negatives)

in both the forward and backward steps of the calculation. We greatly shorten both

halves of the calculation by truncating the latter two sums: we ignore long runs of

consecutive false negatives, and we ignore all or factors between distant a and b,

subject to some probability threshold in either case. As a result each iteration of

our computation is roughly of order N2 - p, where p is the density (mean number of

neighboring spots).
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3.2.4 Connection to the Traveling Salesman Problem

Our spot-mapping problem is remarkably similar to the famous traveling salesman

problem (TSP), which is the problem of finding the unique shortest path connecting

a set of cities. Cities are analogous to spots in the image, and the contour connecting

the spots is the path of the traveling salesman. There are some differences between

the two problems, some trivial and some not.

" The 'distance' metric between two 'cities' (spots) in our problem is not Eu-

clidean: cr(AR, L) 4 f(AR, AR AR2). This is only a superficial difference

because it does not affect our solution method, and non-Euclidean TSP prob-

lems are well-studied in the literature.

* The cities (spots) have 'colors', and paths are constrained in the order of colors

that they connect. This is again a superficial difference because one interpreta-

tion of the color constraint is that o() = oc between any two cities where one

or both cities have the wrong color.

" We do not know exactly where the cities (spots) are due to localization error.

Again, this simply affects the metric a() so does not introduce any additional

complexity into the problem.

" The distance metric o(AR, L) between two cities/spots depends on the stop

along the tour, owing to the dependence on L which varies according to the

nonuniform spot spacing. This changes the problem significantly: we are actu-

ally working with a generalization of the TSP called the time-dependent TSP

(TDTSP).

* A realistic algorithm for an experiment will have to deal with both false positives

(cities that are not supposed to be on the tour) and false negatives (cities that

have mysteriously vanished). I have not seen (TD)TSP literature that deals

with these sources of error.

The 3D-alignment problem reduces to traditional (non-metric) TSP in the special

case of: equally spaced spots of one color, and no false positives or false negatives.
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3.2.5 General comments

There are differences between our problem and those of studied TSP-type problems,

but perhaps the more significant difference is in our approach to solving the prob-

lem. Traditionally, the (TD)TSP problems are solved for the exact unique optimum

tour (conformation). This contrasts with our 3d-alignment algorithm which sums

over ensembles of solutions, and does so most inexactly owing to the the no-overlap

approximation. Obviously, having to make no approximation is a major plus for the

traditional TSP solver. Whether the true optimal conformation is more significant

than the sum over conformations depends on whether the optimal conformation or

something similar to it is overwhelmingly likely to be correct. If the energy landscape

contains many separated basins that are each somewhat probable, then a single unique

conformation may not be very useful. One justification for obtaining a solution in

terms of mapping probabilities that consider all conformations is that the p-values

are frank about their uncertainty in the final answer.

The second justification for using the partition-function method is that it is much

less computationally expensive than finding an optimal solution, and therefore more

easily scaled up to mapping long conformations. The exact solution to a TSP is

unfortunately believed to be an exponential problem, although heuristic algorithms

can solve typical data sets in much less time. The TDTSP is necessarily as or more

complicated compared to the TSP, and has been studied much less: solutions for

the TDTSP have been limited to very small problems (tens of cities/spots). The

obvious way of calculating the TDTSP partition function exactly-by brute-force

enumeration-unfortunately scales exponentially in the number of loci N. Using our

approximate algorithm, memory requirements and computation time (per iteration)

are both roughly proportional to N4 for the full calculation, brought down to N2

times the spot density by truncating the inner two sums.

One peculiarity of our approach is that our solution is not unique. The N1 inde-

pendent free parameters (the fi; w is not independent) are solved using Nf inequality

constraints (on the normalization of each field spot ca-) and one equality constraint
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(on the overall false-negative rate), so if the false positive rate is greater than zero the

field-normalization constraints describe a Nf-dimensional region rather than a point.

The steepest descent algorithm returns the point on the boundary of that region that

it hits when starting from its initial state. Although we always set the initial state

to the same state fi = 0 and so reproducibly obtain the same answer with every run,

the fact that the output depends on this particular choice of initial state as well as

on the vagaries of the subsequent trajectory means the final answer contains a degree

of arbitrariness that increases with the false positive rate.

3.3 Performance of 3D-alignment algorithm on sim-

ulated data

Several checks on our numerics give us confidence in our results. The part of the

program that generates random conformations is a reuse of the Monte Carlo method

in the Wormulator, which was tested as explained in Chapter 2. The feed-forward step

in our program was tested alone by comparing the half and full partition functions

with those computed by direct enumeration of all contours (which is quite doable for a

few loci), in the special case where all same-color pairs of loci are adjacent. This works

because the no-overlap condition is enforced for neighboring loci. Finally, we verified

that the numerical gradient of the cost function dC/dfi, where C is computed by

the feedforward step of the algorithm, equals (to numerical precision) the analytical

gradient computed by the backpropagation step.

For our numerical experiments we generated random conformations having the

in vitro 50 nm persistence length (the true in vivo figure almost certainly depends

on the organism, locus position, cell state, etc.). Our initial simulations generated

short 10-kb contours that were decorated at 30 random loci using 3 label colors (10

loci per color). Both the false negative and false positive rates were assumed to be

10%. False positives were randomly interspersed within the box described by the

minimum and maximum (x, y, z) of imaged spots along the contour. Localization

86



error, superimposed on the true position of each spot, was assumed Gaussian, having

a standard deviation 10+(2/15)| z nm in the xy-plane and 22+(1/15)| z in the z-plane,

where Iz represents the distance to the focal plane (depending on the superresolution

method out-of-focus spots are usually harder to localize).

In order to evaluate the quality of the p-values and the associated entropy measure,

we generated 1000 10-kb conformations, having the parameters just described, iter-

ated our algorithm, and stored the mapping probabilities for each run that converged

within 100 iterations. Figure 3-1 compares the p-values generated from simulated con-

formations to the 'hit rates' corresponding to these p-values. Ideally these would be

equal: for example a mapping variable p = 0.4 should have a roughly 40% likelihood

of being correct. The S-shape in this graph indicates that our algorithm is in truth

somewhat under-confident in driving mapping probabilities from the starting mean:

low probabilities are not low enough, and high probabilities are not high enough.

There are three possible causes of this systematic bias: 1) our use of the Gaussian

chain model for the alignment which is different from the wormlike chain model for

generating the contours; 2) the no-overlap approximation; and 3) the nonuniqueness

of our alignment solution. One ought to be able to rescale the p-values to eliminate

the bias, but doing so would introduce inconsistencies into the probability array and

so we have not used rescaling in any of the results we will present here.

Since the program will output some probability table regardless of the quality of

the data, it would be helpful for there to be some flag that an experimenter can use

to know whether the data is indeed reliable or not. To this end we generated a set of

controls in which the contour, the genomic position of every locus and color ordering

along the contour were unchanged but in which the locus colors in the control images

were scrambled. Since the expected color ordering of the spots along the contour no

longer matched the ordering used in generating the images, we expected three things

to happen in the control mappings. 1) The convergence rate of the cost function

should drop, since easy mappings converge quickly. 2) The entropy should increase.

A higher entropy corresponds to lower expected information recovery. (Ideally one

would measure information recovery which indeed reliably dropped or went negative,
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Figure 3-1: Quality of mapping probabilities. Mapping probabilities from con-
verged mappings (x-axis) versus their empirical likelihood of being a correct map-
ping (y-axis). Shaded region indicates the region of uncertainty. 1000 10-kb con-
formations were attempted (3 colors, 10 spots per label); the mapping probabilities
used here are taken from the attempted mappings which converged within 100 it-
erations of the algorithm. Localization error was Gaussian, of standard deviation
aix = o-Y = 10 + (2/15)|z| nm and o-z = 22 + (1/15)Izl, where |z| represents the

distance to the focal plane. False-positive rate and false-negative rate were both 10%.
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but that is not experimentally knowable). 3) The (logarithm of the) partition function

should decrease. The reason is that the DNA should have to be overstretched at a

high energetic cost in order to fit the more awkward arrangement of dots in the control

mappings.

The comparison of normal to control mappings was performed using 5 data sets;

each data set contained 100 conformations with the same experimental parameters

used to bin the p-values (10 kb, 3 colors, 30 spots, experimental error as before). The

five data sets tested were: a low-error set, a high microscope (MS) error set, a set

with a high false negative (FN) rate, a high false positive (FP) rate set, and a set with

a mixed FN/FP/MS error rate. For each normal mapping a set of 5 color-scrambled

control mappings were performed. The performance of the true mappings relative to

the controls is shown in Figure 3-2. The fact that we only plotted the data points for

controls which converged shows immediately that (1) convergence is indeed markedly

poorer on the controls. For example, when microscope error was high 3 out of 4 of the

normal runs converged in 100 iterations, whereas only 11/100 runs had at least 2/5

controls converge. In fact, for two of the data sets either 0 or 1 of the conformations

had two converged controls, so those were not even plotted. Secondly, the entropy (2)

was generally lower in the real mappings than in the controls, although the presence

of false negatives makes this metric less reliable. The least reliable metric was the

logarithm of the partition function (3): log Z was indeed larger in the true mapping

than the control mappings when the false negative rate was low, but for high false

negatives the reverse was true. The reasons for this are unknown but may have been

biased by the fact that we did not plot the poorly-converged controls.

We next used the short 30-spot problem for visualizing the mapping probabili-

ties. Conformations was randomly generated as before (l = 50 nm, 3 colors, error

parameters as in Figure 3-1), mapped using our algorithm, and the entropies before

and after each mapping were recorded. We repeated this procedure until we found a

mapping that would look good to an experimenter, where the entropy drop exceeded

one bit per labeled locus, and that had a significant number of false negatives for

demonstration purposes. This mapping, which came from the fifth overall conforma-
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Figure 3-2: Comparison with control mappings. (a) The entropy of simulated
contour mappings minus the entropy of color-permuted control mappings. 100 con-
formations were generated for each given set of experimental conditions; those con-
formations for which the cost function of the real mapping converged within 100
iterations formed the sample set of that experiment. For each sample, mappings were
attempted for 5 different color-scrambled controls. The sample was plotted if at least
2 of the controls converged. The title gives the experimental conditions (localization
error reduction factor, false positive rate, false negative rate). Between the two data
sets having both low localization error and a low false negative rate, only a single
sample had two controls converge, so those data sets have been omitted. (b) The
logarithm of the partition function of the simulated contours minus that of the con-
trol mappings, using the same data sets as in (A). The log Z measure is seen to be
unreliable unless the false negative rate is very low.
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tion examined, is plotted in Figure 3-3 along with the associated DNA contour and

colored labels.

To demonstrate how such an array of mapping probabilities might be used to

construct a conformation, we imagined a DNA contour in which each locus is mapped

to the imaged spot having the highest p-value for that locus; if the false negative p-

value was the largest then that spot was skipped. This conformation is shown in

Figure 3-4c. The error in this conformation is due to a combination of discretization

error, localization error in the microscopy, and mapping error, as the progression in

Figure 3-4 shows. This method of generating a conformation is rather crude, as it

allows different loci to map to the same imaged spot.

The quality of a mapping depends partly on the three experimental error param-

eters: the false positive rate, false negative rate and localization error. We generated

100 conformations of 10-kb DNA and labeled them randomly in three colors as be-

fore, except that the error parameters were varied. Figure 3-5 shows the information

recovery, entropy change and error parameters for each of the 89 runs for which the

cost function C converged near to zero, along with the conformation of Figure 3-3

shown in green. For comparison, we also generated and analyzed ensembles of con-

formations for two-dimensional 10-kb contours having the same persistence length,

along with 100 kb three-dimensional contours with the same labeling density (Figure

3-6). Encouragingly, we find that positive information is almost always recovered in

cases of low experimental error, and that entropy is generally a reasonable proxy for

information, although entropy change tends to underestimate information recovery

for good mappings.

Mean computation time was about one second for each 10-kb mapping, and

roughly 35 minutes for each 100-kb mapping. Only a few mappings converged to

our tolerances before reaching the maximum number of iterations that we set (100

iterations for the 10-kb mappings, 400 iterations for the 100-kb mappings). The av-

erage computation time per iteration was therefore about 0.01 seconds for the 10-kb

mapping and 5 seconds for the 100-kb mapping. The 5-fold difference between the

ratio Tioo/Tio = 500 and the ratio N100 /N 0 = 100 one might expect from the scaling
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Figure 3-3: Mapping of simulated 10 kb conformation. (a) Simulated 3-
dimensional 10-kb DNA contour (1, 50 nm) decorated with colored fluorophores
using the error parameters described in the text. Localization error is indicated by
the lines connecting the recorded positions of the spots to their true locations on
the contour. False positives have a four-pointed star shape; open circles indicate false
negatives. (b-c) The inputs to the mapping algorithm are the genomic (b) and imaged
(c) positions of a set of labels along with their colors. (d) A graphical representation
of the mapping probabilities output by the algorithm. Each element of the probabil-
ity array, which maps the genomic locus at 1 base pairs to the spot imaged at (x, y,
z), is represented by a circle centered at (1, z) and having an area proportional to the
probability. False negative probabilities are given by the line of pink circles along the
top. The solid line connects the correct mappings, skipping false negatives which are
instead marked with X's inside their respective pink circles. The fact that the true
conformation generally passes through the largest circle of each locus located between
0 and 8 kb indicates a good mapping within this region.
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coarse-graining (CG) error (b) CG, FP/FN/MS error ( CG, FP/FN/MS, mapping error

Figure 3-4: Discrete conformations (a) The coarse-grained approximation to the
contour that connects labels at their true positions, superimposed upon the full con-
formation (shaded line). Mismatch regions can occur where consecutive labels are

widely spaced (due the random label spacing), making it impossible to resolve the

intervening contour. (b) The coarse-grained contour connecting the imaged spots

in their proper order, taking experimental error into account. False negative errors

cause some spots to be missed, and localization error offsets the remaining spots. (c)
The coarse-grained contour that connects the imaged spots (with experimental error)
based on the maximum computed mapping probability for each locus (note that this

heuristic does not strictly enforce no-overlap).

rule r oc N2 p is partly due to the fact that the mean density p of neighboring spots

increases with increasing contour length, since distal regions can sometimes overlap.

All calculations were performed using a custom program written in C and Yazoo,

and compiled on a Macbook Pro. The gradient-optimization routines and Gaussian

random number generator used the GNU Scientific Library version 1.14[42]. Source

code and a compiled binary can be downloaded from the following URL:

www. phys. washington. edu/~pwiggins/a1ign3d/.

3.4 Conclusions and Outlook

Any future DNA-mapping experiment that is both large-scale and high-resolution will

involve hundreds or thousands of labels, far more than the number of labeling colors

currently available. Using the algorithm we have demonstrated, one can reconstruct

much of the conformational information from images of labeled DNA even when

the number of labels far exceeds the number of labeling colors, if the spacing and

color ordering of labels along the DNA strand is known to the experimenter. Our

simulations demonstrated 10-kb and 100-kb mappings using three distinguishable
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L = 10 kb; 30 spots (3 colors)
100 runs (minus 32 excluded by C < 0.001)
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Figure 3-5: Information recovery and experimental error of 3D 10 kb con-
formations. A more detailed view of the 3D 10-kb mappings shown in Figure 3-6.
Each dot is replaced by a symbol denoting the error parameters, and a 'streamer'
points from each final state one tenth of the way back to its respective initial state.
The microscope error factor m is a m-fold reduction in the localization error relative
to the error o = or, = 10 + (2/15)|zI nm and o-2 = 22 + (1/15)|zI used elsewhere in
the text. The green dots give the initial and final state of the run from Figure 3-3.

94

3.5 -

3

2.5 F-C,,

0

0

C

2

A!?

0

0i

1.5

1

0.5 F
7 ,77

7

7

7
7

7

0'
0 0.5

Microscope error FN rate FP rate

0 1/1 0 0

0 1/2 - 0.1 0.05
o 1/4 - 0.3 I 0.2

0 1/10 0.5

streamer scale: 0.1

3 3.5



10 kb 10 kb; 2D 100 kb

+.

(a) *

+

33 6

2 4 /
(b) E0

0 -0 0-
0 4 0 2 4 0 2 4 6 8

Entropy (S) S S

Figure 3-6: Information recovery from simulated conformations. Three sets
of simulated DNA conformations were generated: 3D and 2D 10-kb contours, and
3D 100-kb contours. Three labeling colors were used, at a labeling density of ap-
proximately one label per 1000 base pairs per color; however the experimental error
parameters were varied randomly with each conformation. (a) Sample contours and
labelings for each set. False positives, false negatives and microscope error are all
shown. (b) Change in entropy (S) and information scores (I) over the course of the
mapping procedure, from an initial state of uniform probabilities that enforce the
false negative rate (red) to the final state (blue). There is one red and blue dot for
each mapping in a set that converged after 100 (400) iterations for the 10 kb (100
kb) mappings. 100 conformations were generated per set. The 100 kb set converged
considerably slower, so the tolerances were relaxed; squares have looser tolerances
than circles and show poorer information recovery. The upper/lower green dots in
the 3D 10-kb plot respectively give the initial/final states of the run from Figure 3-3.
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colors, which is the current state-of-the-art in multicolor superresolution microscopy.

We wish to point out that our use of the word 'color' refers only to distinguisha-

bility, and that there are ways of distinguishing groups of labels that do not require

the use of spectrally distinct fluorophores. For example, a FISH experiment might

introduce and image several groups of probes separately from one another, and if

the experimenter knows which group each probe is in then probes in different groups

effectively have different colors even if they use the same fluorophore. An increase

in the number of effective colors not only improves the mapping quality but also re-

duces the memory requirements and speeds the analysis, by truncating the various

color-restricted sums over pairs of neighboring spots, and (we expect) by speeding

the convergence.

It should be possible to lower the experimental tolerances by improving the map-

ping algorithm. One obvious potential improvement is to enforce the no-overlap con-

straint between certain pairs of non-adjacent loci. By targeting additional no-overlap

constraints to those pairs of loci that cause the most confusion in the probability

matrix, it may be possible to improve the information recovery significantly without

undue computational overhead. One might also be able to improve the mappings by

adjusting the labeling densities of each color.

One final difficulty is in the interpretation of the probability matrix, which is not

a conformation and from which there is not even an obvious way to get an optimal

conformation. Indeed, our approach was guided by a belief that a conformation by

itself would not be a very helpful output of the analysis, since one should also like

to know about the uncertainty and the range of different conformations. There is

thus a need to develop reductions of the probability matrix that are more directly

interpretable than, but nearly as informative as, the probability matrix itself. Such a

reduced output might be helpful in comparing the error due to the experimental steps

to that from the mapping procedure (see Figure 3-4). For example, if the reduced

output is a weighted ensemble of conformations, then one can compare the (expected)

RMS deviations of the contour with and without discretization error, experimental

error and mapping error. The error metric might even be used to provide further
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constraints on the non-unique solution space of our algorithm. We expect that these

post-analysis tools will be easier to develop and much less computationally intensive

than the 3d-alignment algorithm described here, and we hope that they will make

our conformational analysis accessible to the general scientific public.
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