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Abstract
Knowledge of phonon mean free path (MFP) distribution is critically
important to engineering size effects. Phenomenological models of phonon
relaxation times can give us some sense about the mean free path distribution,
but they are not accurate. Further improvement of thermoelectric
performance requires the phonon MFP to be known. In this thesis, we
improve recently developed thermal conductivity spectroscopy technique to
experimentally measure MFPs using ultrafast transient thermoreflectance
method. By optically heating lithographically patterned metallic nanodot
arrays, we are able to probe heat transfer at length scales down to 100 nm, far
below the diffraction limit for visible light. We demonstrate the new
implementation by measuring MFPs in sapphire at room temperature. A
multidimensional transport model based on the grey phonon Boltzmann
equation is developed and solved to study the quasi-ballistic transport
occurring in the spectroscopy experiments. To account for the nonlinear
dispersion relation, we present a variance reduced Monte Carlo scheme to
solve the full Boltzmann transport equation and compare the simulation
results with experimental data on silicon.
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Chapter 1

Introduction

The ever increasing need for sustainable energy sources has motivated extensive research

on different energy technologies. Among them, thermoelectrics [1-3], capable of

converting heat directly into electricity without any intermediate process, has made

significant progress in terms of the energy conversion efficiency within the last two

decades. The increase in efficiency mainly results from significant reductions in the lattice

thermal conductivity due to enhanced phonon scattering introduced by either interfaces or

boundaries in nanostructured materials, such as nanocomposites, superlattices, and

nanowires [4-8]. Such low dimensional materials effectively scatter phonons and lead to

dramatic reductions in the lattice thermal conductivity, therefore greatly improving

material's performance [9-11]. Further reductions in the thermal conductivity calls for

better understanding of the phonon mean free path (MFP) distribution in thermoelectric

materials [12-14]. On the other hand, almost all of the established thermal conductivity

techniques measure the contributions of integrated effects of all phonons with different

MFPs to heat transfer [15-17]. However, a single thermal conductivity value masks the

important spectral distribution information of the phonon MFPs, the knowledge of which

is critical for engineering size effects in materials to further reduce the lattice thermal

conductivity. In this thesis, a thermal conductivity spectroscopy technique [13] combined
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with variance reduced Monte Carlo modeling method will be implemented to study

phonon MFPs at the nanoscale. This chapter outlines some fundamentals about

thermoelectrics, the importance of phonon MFP distribution, and the general idea behind

the thermal conductivity spectroscopy technique with nanometer spatial resolution.

1.1 Thermoelectrics

Thermoelectric materials [1] are well known for their capability to convert thermal

energy directly into electricity without any intermediate process. The conversion process is

based upon the Seebeck effect, observed by Thomas Johann Seebeck in 1821. Seebeck

discovered that an applied temperature gradient across the two ends of certain materials

generates a voltage difference, which can be used to produce electrical power upon

forming a closed circuit. Since thermoelectric devices are solid state and only need a

temperature gradient to operate, they have seen applications in spacecraft power

generation and waste heat recovery [3].

The efficiency governing the energy conversion in thermoelectric devices is

characterized by the dimensionless thermoelectric figure of merit of materials used in the

devices defined as ZT = T, where S is the Seebeck coefficient, a is the electrical
k

conductivity, K is the thermal conductivity consisting of both the electronic and lattice

contributions, and T is the absolute temperature at which the properties are evaluated [18].

The efficiency increases as the ZT increases. Based on the figure of merit, good

thermoelectric materials should have high Seebeck coefficient and electrical conductivity,

and low thermal conductivity. Succinctly put, candidate materials should behave as

'Phonon-Glass-Electron-Crystal' [19], which refers to the materials with glass-like thermal

properties and crystal-like electrical properties. Unfortunately, materials with such

desirable properties are not often discovered in nature.

Figure 1-1 shows state-of-the-art ZT through a wide range of temperatures for various

materials [12]. Even though the best reported ZT value approaches 1.5, the overall value is
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still approximately unity. The challenge to improve ZT stems from the fact that material

properties are strongly inter-correlated [18, 20, 21]. To increase ZT, one might try to

increase the electrical conductivity of a material. However, this will simultaneously cause

the Seebeck coefficient to decrease and the electronic thermal conductivity to increase.

These collateral effects are both detrimental to ZT. Fortunately, nanotechnology provides

possibilities to decouple the transport properties in such a way they can be modified

separately.

2.0
Na0 9Pb 20 SbTe22

Nano-BiSbTe bTe/PbS

1.5 b T0 Te

N Pb Sb Te
1+x y

Nano n-S!Ge
- 1.0 -- - -- - - --

PbTe
SBiSbTe

ca - n-SIGe
ir doNano p-SiGe

0.5 -

n n-SIGe

0.0
0 200 400 600 800 1000

Temperature (C)

Figure 1-1 State-of-the-art ZT values of different materials as a function of temperature [12].

In 1993, Hicks and Dresselhaus [22] proposed a method to selectively modify the

material transport properties so that the overall device performance can be improved. They

found that low dimensional materials, such as quantum wells and superlattices, can

outperform bulk materials and have the potential to enhance ZT significantly through

electron quantization and enhanced phonon scattering at interfaces. Later, people

experimentally demonstrated that nanostructured materials (bulk materials with
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incorporation of nanometer scale structures) can significantly increase the thermoelectric

efficiency. Poudel et al. [4] reported that p-type nanocrystalline BiSbTe alloy can achieve

a maximum ZT around 1.4 at 100 *C. Hochbaum ei al. [5] found greatly reduced lattice

thermal conductivity of rough silicon nanowires with diameters between 20-300 nm

while the Seebeck coefficient and electrical conductivity were almost unaffected. Under

room temperature operation Hochbaum achieved ZT of ~0.6. Boukai et al. [6] compared

ZT values of silicon nanowires of varying sizes and doping levels with that of bulk silicon

over a wide range of temperatures. They demonstrated approximately 100-fold

improvement in ZT from silicon nanowires compared with their bulk counterpart and

attributed the enhancement to the phonon effects introduced by the small nanowires.

Venkatasubramanian el al. [7] reported significant enhancement in ZT from Bi2Te3/Sb 2Te3

thin-film thermoelectric devices by fine-tuning the phonon and electron transport in those

devices.

Typically, nanostructured materials have higher densities of grain boundaries and

interfaces, which more effectively scatter the heat carriers, i.e. phonons, resulting in a

much lower lattice thermal conductivity compared to their bulk counterparts. Phonons are

quantized lattice vibrations, which carry certain amount of heat energy while propagating

through a material [18, 20, 21]. During their travelling, phonons are subject to various

kinds of scatterings, including phonon-boundary scattering, phonon-impurity scattering,

and phonon-phonon scattering. The phonon mean free path (MFP) and lifetime describe

the average travelling distance and time between two successive scattering events,

respectively. The additional scattering introduced by grain boundaries and interfaces in

nanostructured materials reduces the effective phonon MFPs and thus their capability to

transfer heat [23-25]. Further progress on the nanostructuring approach to improve

thermoelectric materials calls for solid understanding of the phonon MFP distribution.

However, even though nanostructured materials have a substantially reduced thermal

conductivity, the MFP distributions are still unknown. Except for some recent simulation
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studies, knowledge of phonon MFP distribution is limited even for most bulk materials

and warrants further investigations [13, 26-29]. With known MFP distributions, we can

potentially engineer materials to have much lower thermal conductivity and therefore

significantly improve thermoelectric materials' performance.

1.2 Importance of Phonon MFPs

As a statistical concept, the phonon MFP measures the average travelling distance

between two consecutive phonon scattering events. By definition, the MFP for each

phonon mode is the product of the spectral phonon group velocity and lifetime:

AW,, = VCO,p Te,, 11

where & is the angular vibrational frequency, A,, is the spectral MFP, Ve,p is the

spectral group velocity, 1,, is the mode dependent lifetime, and p represents different

polarizations. Equation (1-1) indicates that MFPs strongly depend upon the phonon modes

and scattering details. Contributions of phonons with different MFPs to heat transfer can

be examined through the lattice thermal conductivity predicted by the kinetic transport

theory [2]:

kiattice = f ax CVp A,pdw (1-2)

where C, is the mode specific heat [18], and Aep is the spectral phonon MFP. Many

semi-empirical phonon lifetime correlations have been developed by matching the model

thermal conductivity with experimentally measured data to roughly infer the spectral MFP

distribution [30, 31]. However, these empirical correlations do not accurately determine

MFPs.

Normally, for a given material, phonon MFP spans several orders of magnitude.
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Cumulative thermal conductivity is used to describe the integral contributions of phonons

with MFP below a cut-off length scale to heat transfer. The room temperature normalized

cumulative thermal conductivity as a function of MFP calculated from first-principles

based density functional theory (DFT) is shown in Fig. 1-2 for several different materials

[14]. This graph shows the contributions of different phonon MFPs to the total thermal

conductivity. For PbTe, approximately 80% contribution to the total thermal conductivity

originates from phonons with MFP below 100 nm. For silicon, those phonons only

contribute roughly 25% to the total thermal conductivity. Silicon phonon MFP has a very

broadly distributed spectrum (varies from several nanometers up to ten micrometers), yet

50% of the total thermal conductivity comes from phonons with MFPs below 500 nm. It is

clear that a single averaged MFP number of all phonon modes cannot accurately represent

the MFP distribution of a material.

0.0

GaAs
0.8

0.7-

0.0 PbTe ZrCoSb SIcon

0 0.5

30.3.

-0.2
o01o

10 10 10 10 10
MFP (nm)

Figure 1-2 Normalized cumulative thermal conductivity vs. MFP [ 14].
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A material's thermal conductivity, as shown in Eq. (1-2), combines the spectral

phonon MFP distribution in an integral. When the integral thermal conductivity is

measured, all the spectral MFP information is lost. However, engineering size effects

requires the MFP knowledge, which helps future efforts into engineering materials that

selectively scatter phonons for lower thermal conductivity. Therefore, new strategies must

be created to quantify the MFP distribution.

1.3 Thermal Conductivity Spectroscopy

Figure 1-2 indicates that measuring phonon MFPs experimentally requires the study

of heat transport at the scales of the heat carriers. In the diffusive transport regime, where

the characteristic length scales are much longer than the phonon MFPs, phonons have

relaxed to a near local-equilibrium state. Therefore, property measurement in the diffusive

regime returns the material's bulk thermal conductivity. However, in the ballistic transport

regime, where the characteristic length scales are much shorter than the phonon MFPs, no

scattering occurs and phonons have not had a chance to relax to local-equilibrium. Fourier

diffusive theory cannot be applied due to the violation of the assumption of massive

scattering. Chen [32] showed that the heat flux from a nanoparticle whose dimension is

comparable with or smaller than the phonon MFP in the host medium is significantly

suppressed compared to the prediction of the Fourier diffusion theory. The reduction of

heat flux in the ballistic picture stems from an additional ballistic thermal resistance,

whose magnitude depends upon the size of the nanoparticle relative to the phonon MFPs

[32, 33]. Since MFPs have a broad spectrum in real materials, the transport becomes

quasi-ballistic whenever the length scale falls in the range of MFPs, meaning that some

heat carriers with MFPs shorter than the characteristic length (called 'diffusive phonons')

travel diffusively while the remaining heat carriers (called 'ballistic phonons') propagate

ballistically. Siemens el al. [27] confirmed the ballistic resistance in a transient grating
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experiment by patterning nanometer scale nickel lines on top of a sapphire substrate and

found that the ballistic resistance increases substantially with decreasing contact sizes

between the metal nanoline and the sapphire substrate.

An effective thermal conductivity below the bulk value needs to be used in order for

Fourier's law to predict correct quasi-ballistic heat transport. The ballistic resistance is

inversely correlated with the effective thermal conductivity: the higher the ballistic

resistance, the lower the effective thermal conductivity. Since the magnitude of the

ballistic resistance depends upon the characteristic length scale relative to the phonon

MFPs, so does the effective thermal conductivity. Typically, in quasi-ballistic transport, the

shorter the characteristic length scale, the lower the effective thermal conductivity [32].

This indicates that study of quasi-ballistic phonon transport helps extract carrier MFP

distribution. Suppose the effective thermal conductivity ki is measured at one

characteristic length scale L1. Then we reduce the length scale to L2 and again measure the

effective thermal conductivity k2 . If a big change in the measured effective thermal

conductivity is observed, we can conclude that those phonon MFPs within the interval (L],

L2) contribute a lot to heat transfer. Otherwise, those phonon MFPs within that length

range contribute little to heat transfer. Therefore, measuring the effective thermal

conductivities at different length scales in the quasi-ballistic regime yields the

contributions of different phonon MFPs to heat transfer in the material being studied.

In practice, quasi-ballistic heat transport can be probed by varying either time scale or

length scale. Time domain thermoreflectance (TDTR) [34] and transient thermal grating

(TTG) [35] methods are the major tools to map out the spectrum dependent MFPs, mainly

at the micrometer scale. In a TDTR experiment Koh and Cahill [26] observed that the

thermal conductivity of semiconductor alloys depends strongly on the modulation

frequency, which determines the thermal penetration depth and thus affects the transport

regime in the alloy sample. They inferred the MFP distribution in those materials by

neglecting the contributions of phonons with MFPs longer than the thermal penetration
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depth to heat transport. Siemens el al. [27] quantified the thermal resistance between

lithographically patterned nickel nanolines and a sapphire substrate using ultrafast

coherent soft X ray beams. The ballistic thermal resistance in the sapphire substrate was

confirmed in the quasi-ballistic regime and found to increase with decreasing contact size

when the contact size is below 1 pm. Minnich el al. [13] developed a thermal

conductivity spectroscopy technique to study phonon MFP distribution for a wide range of

length scales using TDTR and demonstrated it through measurements of silicon effective

thermal conductivity by systematically varying the heater dimensions (pump laser spot

size). It was found that there is a large discrepancy between the measured apparent thermal

conductivity and literature bulk thermal conductivity data at low temperatures where

phonon MFPs are long. They measured an even lower thermal conductivity with a smaller

laser spot size, which again confirmed that ballistic resistance increases with decreasing

length scales. In a subsequent TTG experiment Johnson el al. [28] reported the deviations

of thermal transport in two 400 nm thick freestanding silicon membranes from the

prediction of Fourier diffusion theory. The measured effective thermal conductivities on

the two Si membranes were significantly lower than the bulk thermal conductivity of Si

and also decreased with decreasing the period of the thermal grating due to the transition

from diffusive to ballistic transport of low-frequency phonons. These studies opened the

way to uncover the mystery of phonon MFPs for many materials.

As discussed before, we desire thermoelectric materials to have low thermal

conductivity and therefore short MFPs. For most thermoelectric materials of interest,

MFPs are in the range of tens to hundreds of nanometers around room temperature [14].

To probe their MFP distribution, a spectroscopy technique with nanometer spatial

resolution is needed. The thermal conductivity spectroscopy technique introduced by

Minnich el al. cannot be applied directly to probe MFPs at the nanoscale since the highest

modulation frequency is around 100 MHz (corresponding to roughly a 500 nm thermal

penetration depth for crystalline silicon) and the smallest length scale which can be created
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optically is approximately 1 prm for visible light due to diffraction.

To extend the thermal conductivity technique developed by Minnich el al. [13] to the

nanoscale, the experimental structures were slightly modified [33]. Instead of optically

heating a continuous metal film, nanoscale dot arrays are created to act as the heaters.

Figure 1-3 shows the nanostructures used in the experiments. A single crystalline sapphire

is chosen as the substrate since it is transparent to the laser wavelengths used in our TDTR

setup. When pulsed laser beams are applied to heat up the sample, only the metallic dots

absorb the laser energy while the substrate is non-absorbing. By illuminating the entire dot

array and observing the heat transfer from the dots, the effective length scale becomes the

small dot diameter rather than the big laser spot size. Through electron beam lithography

(EBL), the heated area size can be systematically varied from tens of microns down to tens

of nanometers, thus allowing us to probe much shorter length scales.

W Metal absorbers

Ponon MFP >> w
Quasi-ballistic

(1 a) (1b)
Figure 1-3 Schematic of the nanodots structures used to probe MFPs at the nanoscale: (1 a) side view,

(lb) top down view. Three important length scales occur in this experiment: the heater size w, the

period L, and the phonon MFP in the substrate. When d becomes much smaller than L and the MFP,

quasi-ballistic transport in the substrate occurs and heat flow across the interface would be significantly

suppressed. When d approaches the period L, transport becomes diffusive due to the presence of

sufficient scattering around the interfacial region in the substrate [32, 33].

The periodic heating induced by the pulsed pump beams excites electrons in the
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metallic dots, which in turn emit phonons after diffusion through the dots within tens of

picoseconds. Subsequently, the excited phonons diffuse through the dots and transmit

across the interface between the dots and the substrate, resulting in heat flow through and

in the substrate. The scattering probability of the transmitted heat carriers depends upon

the heater dimension relative to the phonon MFPs in the substrate [33]. In the limit of

large heater size, the transmitted phonons scatter sufficiently and relax to a near

equilibrium state, thus diffusive transport occurs and we expect to measure the bulk

thermal conductivity of the substrate. When the heater size becomes comparable with a

significant fraction of the phonon MFPs, the transmitted phonons with MFPs longer than

the heater dimension do not scatter and no local thermodynamic equilibrium can be

defined around the interfacial region inside the substrate. In such cases, quasi-ballistic

transport dominates the heat transfer process and the presence of an additional ballistic

thermal resistance leads to measurement of an effective thermal conductivity lower than

the bulk value [32]. Systematically varying the heater dimension across a wide range of

length scales produces the effective thermal conductivity distribution, which contains

carrier MFP information we need. Minnich el al. achieved length scales as low as 400 nm

[33]. In this thesis we continue their work to further push the length scale down to 170 nm.

The introduced thermal conductivity spectroscopy method paves the way to measure

the phonon MFP distribution with nanometer spatial resolution. However, to determine the

MFPs precisely is still challenging since the measured effective thermal conductivities are

not the cumulative thermal conductivities consisting of contribution of phonons with

MFPs below the heater size. Phonon modes with MFPs above the heater size can also

carry a significant amount of heat compared with phonons having short MFPs relative to

the heater size, thus contributing to thermal transport. In a recent work, Minnich [36]

developed a roadmap to reconstruct the MFPs from the spectroscopy data by solving an

integral equation which contains the cumulative MFP distribution function in the integrand.

To achieve that, a suppression function which gives the suppression of heat flux for each
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phonon mode and is geometry dependent must be known. Minnich demonstrated the

technique by inverting the transient grating experimental data on a silicon membrane [28]

to obtain the silicon MFPs. A universal suppression function exists for the transient grating

geometry [37]. Unfortunately, the suppression function corresponding to each

experimental structure in the TDTR thermal conductivity spectroscopy experiments must

be found to perform the inversion process to reconstruct the MFPs, which significantly

complicates the reconstruction of MFPs in the material being measured.

In addition, we investigate the size dependence of thermal interface conductance

[38-40] between aluminum metallic dots and sapphire substrate. Thermal interface

conductance is defined as the heat flux across interface divided by the temperature

difference on either side of the interface being studied:

G = q/AT (1-3)

where G is the defined interface conductance, or inverse of interface resistance, q is the

heat flux, and AT is the temperature difference. The interface conductance characterizes

the heat flow rate across the interface of interest. Similar to the substrate thermal

conductivity, we simply treat interface conductance as another fitting parameter in the

TDTR experiments and study the effect of different length scales on interface conductance

in the quasi-ballistic transport regime.

1.4 Organization of this Thesis

This thesis is organized as follows: the first chapter introduced some fundamental concepts
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about phonon MFP distribution and its importance to enhancing thermoelectric

performance and described the current techniques to measure the MFP distribution.

Chapter 2 introduces the developed thermal conductivity spectroscopy technique along

with time domain thermoreflectance (TDTR) to measure phonon MFPs and presents the

experimentally measured effective thermal conductivity on a sapphire substrate. Chapter 3

develops and solves a multidimensional grey transport model based on the phonon

Boltzmann equation for heat transport in structures consisting of periodic nanometer scale

metallic lines on top of a generic substrate to study the classical size effects. Chapter 4

describes the use of variance reduced Monte Carlo simulation strategy to investigate the

quasi-ballistic transport in the spectroscopy experiments by accounting for the full phonon

dispersion relation and spectral lifetimes. Chapter 5 summarizes this thesis and describes

the future work.
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Chapter 2

Thermal Conductivity Spectroscopy:
Probing Phonon MFPs at Nanoscale

2.1 Introduction on Pump-and-Probe Experiments

In chapter one, we emphasized the importance of the phonon MFP distribution in materials

of interest for engineering size effects. In this chapter, a thermal conductivity spectroscopy

technique combined with the time domain thermoreflectance (TDTR, also called

'pump-and-probe') method [33, 34, 41] is described to investigate phonon MFPs at the

nanoscale.

The TDTR technique is a non-contact and non-invasive method which fits well in

thermal measurements, especially for layered structures such as thin films and

superlattices [41]. Normally the sample consists of two layers: a very thin (-100 nm)

optical-thermal transducer metal film sitting on top of the substrate of interest. During the

experiment, a periodic laser pulse known as the 'pump' pulse impinges onto the surface of

the sample transducer and is partially reflected and partially absorbed. Since electronic

heat capacity is very small compared with lattice heat capacity, electrons around the metal

film surface are excited to higher energy levels by the pump beam and thus the electronic

temperature increases up to several thousand degree Kelvins within hundreds of

28



femtoseconds [42-45]. The excited electrons quickly thermalize and diffuse through the

metal film [46, 47]. The interaction between electrons and phonons transfers the absorbed

laser energy from electrons to crystal lattice, raising the lattice temperature. This

electron-phonon interaction time is on the order of tens of picoseconds. Excited phonons

in the film traverse the metal-substrate interface and interact with phonons in the substrate

[48, 49]. Heat transport occurs along with the phonon transmission process.

A second time delayed laser beam known as the 'probe' pulse is used to detect the

thermal transport induced by the periodic heating. The time delay is regulated by varying

the optical path length of the probe arm through a mechanical stage. The reflectance

change at the sample surface is measured versus the delay time between pump and probe

beams. A change in the surface reflectance is linearly related to a change in the transducer

surface temperature through the thermoreflectance coefficient [50]. Thus, measuring the

reflectance change is essentially equivalent to measuring the change in surface

temperature history. Lock-in amplification is used to detect the reflected probe signal. The

effective thermal properties of interest can be extracted by matching the measured

reflectance data to the solution predicted by diffusive heat transfer model. In particular, we

are interested in the quasi-ballistic heat transport in the substrate, thus the thermal

properties of the substrate [33]. Since Fourier's law is not applicable in the quasi-ballistic

regime, an effective substrate thermal conductivity is used when matching the Fourier

solution with the measured reflectance data. The distribution of the effective thermal

conductivity as a function of different length scales allows us to infer phonon MFP

distribution in the substrate being studied. The adoption of effective thermal conductivity

is a reasonable approximation, as will be shown by phonon Boltzmann transport equation

(BTE) calculations in chapter 3 and variance reduced Monte Carlo models in chapter 4. In

this chapter, we introduce the TDTR experimental system and discuss the diffusive

thermal model used in the spectroscopy technique to extract the transport properties. Then

we proceed to a discussion of the details of sample fabrication. At the end of this chapter,
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the measured sapphire thermal conductivity is presented and a summary is given after a

discussion of the data.

2.2 TDTR Setup

Researchers have long been taking advantage of optical techniques to perform

thermal property measurements. The first pump-and-probe setup was built by Paddock and

Eesley in 1986 at the General Motors Research Lab [17]. They used an argon-ion laser to

synchronize two ring dye lasers, one with a wavelength of 633 nm and a pulse width of

approximately 8ps and the other with a wavelength of 595 nm and a pulse width around 6

ps, which yielded picosecond temporal resolution. In 1996 Capinski and Maris [51]

incorporated an optical fiber to direct the probe arm onto the sample. This solved the

alignment issue introduced by the mechanical stage used to time delay the probe beam

relative to the pump arm. In this way they effectively fixed the probe beam size and

position on the sample surface regardless of the probe arm's variable path length. Capinski

and Maris also enhanced the experimental time resolution by splitting one laser beam into

both the pump and the probe arms. Cahill and coworkers [49] then greatly improved the

technique in terms of increasing the signal to noise ratio (SNR) through an introduction of

an inductive resonator between the photodetector and lock-in amplifier. The resonator only

allows the signal at the resonator frequency to pass and be amplified since the pump beam

was also modulated at that frequency. They also made the choosing of measurement spots

and focus easier by introducing a CCD camera to visualize the sample on the micrometer

stage.

The pump-and-probe setup in the Rohsenow Kendall Heat Transfer Laboratory in the

Mechanical Engineering Department at MIT was constructed by a previous PhD student,

Dr. Aaron Schmidt, now a professor at Boston University. Our system borrows most of the

features of the setup in Professor Cahill's group at University of Illinois at
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Urbana-Champaign (UTUC). A very brief description about the setup is given below since

others have done that extensively [33, 52-54].
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Fig. 2-1 Schematic diagram of the pump-and-probe setup constructed by Dr. Aaron Schmidt. Figure

adapted from [52].

A schematic of our experimental setup is shown in Fig. 2-1. The mode locked

Ti:Sapphire laser outputs pulses with a wavelength centered around 800 nm and a pulse

width of approximately 150 fs at an 80 MHz repetition rate. Such a short pulse width

enables us to probe ultrafast transient thermal transport with sub-picosecond temporal

resolution. Typically the power per pulse coming out of the laser cavity is approximately

15 nJ and the average power is around 1.3 W. From the Tsunami cavity which generates

laser pulses through mode locking, the laser beam passes through an optical isolator to

avoid possible reflections to destabilize the laser. The combination of a half wave-plate
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(HWP) and a polarizing beam splitter forms an adjustable beam splitter that controls the

power going into each arm. Generally around 95% of the power from the isolator is sent

into the pump arm while the remaining 5% goes into the probe arm. The absolute power

level impinging on the sample surface varies widely but is typically around 100 mW from

the pump and 15 mW from the probe. The steady temperature rise of the transducer is

estimated to be only several Kelvins, which validates the assumption of linear invariant

system [52, 53].

The pump beam is modulated by an analog electro-optic modulator (EOM) amplifier

(Conoptics 25A) to enable lock-in detection, which chops the pump with a sinusoidal

wave [33]. The sinusoidal modulation effectively removes the odd harmonics in the pump

beam, therefore removing the need for a resonant filter and significantly enhancing the

SNR. The modulation frequency is controlled by a function generator connected to the

EOM and normally varies from 1 MHz to 12 MHz. We use a bismuth triborate (BIBO)

crystal to frequency double the wavelength of the pump beam from 800 nm to 400 nm.

This allows us to use color filters to prevent any scattered pump-light from reaching the

detector. A telescope placed after the BIBO crystal adjusts the size of the pump spot on the

sample. To zero the noise when the pump beam is blocked completely, an automated beam

blocker is placed after the telescope to null the constant offset noise. Then the pump passes

through a lOx microscope objective and is focused onto the sample surface.

After passing through the beam splitter, the probe goes through a 4x expander to

reduce the beam divergence along the optical path. The variable probe path length is

dynamically regulated by a mechanical stage placed after the expander. In our

experimental setup, the maximum delay time is around 7 ns. The probe is recompressed to

its original size and passes through two cylindrical lenses to correct the inherent

astigmatism of the laser spot. The two cylindrical lenses are introduced to correct the beam

divergence angle and beam waist position in one dimension so that it matches with the

other dimension, thus reducing the spot's astigmatism. Then the probe is focused onto the
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sample surface coaxially with the pump arm through a 1 Ox microscope telescope. The

pump size is allowed to vary while the focused probe spot size is fixed to be

approximately I1 tm. Complete overlap between the pump and probe arms is critically

important in this experiment to satisfy the model assumptions and for a high SNR. To

achieve a good overlap between the two arms, we fix the position of the probe beam and

adjust the position of the pump beam until the maximum reflectance signal is obtained.

The periodic pump beam results in oscillations of the sample surface temperature

(and its reflectance) in the time domain. The reflectance is encoded in the time-delayed

probe beam at the driving frequency. However, since the absolute reflectance of the

sample is already very high, the reflected signal also contains components at multiples of

the laser repetition rate (80 MHz) from the pump and probe beams that are much stronger

than the small changing reflectance signal we wish to extract. The reflected pump beam

can easily overwhelm the detector. To avoid this, color filters with selective surfaces are

used to separate these two reflected beams of different colors. The reflected probe light

carries the transport information and goes through a color filter which effectively blocks

the unwanted reflected pump beam. Next, the reflected probe signal is detected by a

silicon diode photodetector, whose current depends upon the intensity of the incoming

light. Since the generated current from the reflected probe light is typically extremely

small (on the order of 1 pA), a trans-impedance amplifier is used to amplify the signal to a

usable voltage [33]. Before the signal is sent to the lock-in amplifier, it passes through a

low frequency band-pass filter to eliminate the higher-frequency components of the probe

arm stemming from the laser repetition rate. The band-pass filter only passes light around

the modulation frequency with an adjustable band width which can be set by tuning the

time constant in the lock-in amplifier [55]. In our setup, the time constant is typically set

to be 30 ms, giving a 10 Hz band width. In addition, the cable length between lock-in

amplifier, function generator, and the analog amplifier is shortened to minimize the

electromagnetic interference effect introduced by the electrical cables.
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During the measurement, a Labview program records the voltage signal from the

lock-in amplifier. This signal is directly related to the change in reflectance and

temperature of the sample surface. A non-linear least square minimization technique is

used to match the Fourier solution with the experimental cooling rate, thus extracting the

effective thermal properties being measured. The properties of interest are usually the

thermal interface conductance between the transducer film and the substrate and the

apparent thermal conductivity of the substrate.

In the following section, we briefly review the diffusive heat transfer model used to

extract the transport properties from the experimentally measured reflectance data. We

refer interested readers to Dr. Aaron Schmidt's Ph.D thesis [52], Dr. Austin Minnich's

Ph.D thesis [33], Kimberlee Collins' master thesis [53], and Maria N. Luckyanova's

master thesis [54] for a complete derivation.

2.3 Heat Transport Model

We first review the heat transfer model for heat flow across continuous layered

structures and then generalize that to account for the discontinuous nature of the nanodot

array structure. The thermal properties of interest are treated as free parameters which are

adjusted until the Fourier solution matched with the experimentally retrieved data through

a multidimensional nonlinear least squares algorithm.

The thermal response of the sample is described by a thermal transfer function

defined as follows [52]:

Z(w 0 ) = PQQProbe Zoo H(o + kws)eik"osr (2-1)

where fl is the thermoreflectance coefficient of the transducer film, Q and Qprobe are

the absorbed pump and probe power, respectively, wo is the pump modulation frequency
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set by the function generator, w, is the laser sampling frequency (80 MHz), T is the

laser repetition period, 'r is the delay time, and H(co) is the sample frequency response.

The thermal transfer function Z(wo) is related to the output of the lock-in amplifier

through:

Reot+) = Z(oo)eiwot (2-2)

where R and # are the signal amplitude and phase, respectively. Equation (2-2) simply

states that the amplitude of the signal is given by the magnitude of the response and the

phase of signal is given by the phase offset of the sample response. The real and imaginary

parts of the transfer function relate respectively to the in-phase component, X, and

out-of-phase component, Y, returned by the lock-in amplifier. The input signal to the

lock-in from the photodetector is mixed with a sinusoid to generate those two signal

components, which yield the signal amplitude and phase through:

R = N1X 2 + y 2  (2-3)

# = tan-(Y/X) (2-4)

The following three sub-sections outline the procedure to obtain the thermal

frequency response H(w) for three different sample structures: continuous film,

single dot, and dot array.

2.3.1 Continuous Film Model

The frequency response H(o) can be obtained by solving the transient radial heat

conduction equation in cylindrical coordinates for a layered structure. The detailed

mathematical derivation is given in reference [56] by Carslaw and Jager. Figure 2-2 shows

a schematic of the sample, modeled as a multi-layer stack, used in the TDTR experiments.
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Figure 2-2 Diagram of layered structures used in pump-and-probe experiments [52].

We assign an index to each layer in the stack with the top layer numbered 1 and the

bottom layer numbered n. The solution from solving the anisotropic heat equation yields a

transfer matrix equation which relates the top surface temperature 6 t,n and heat flux ft,n

of the nh layer to the bottom surface temperature 6 b,n and heat flux fb,n of that layer,

where t and b denote the top and bottom surfaces, respectively. The relationship is given

as:

Ob,n ( cosh(qd) sinh(qd) [t,n
f~az q (2-5)

fb,fn -zqsinh(qd) cosh(qd) ft,n

where az is the layer cross-plane thermal conductivity, d is the thickness of that layer, and

az is the cross-plane thermal conductivity. In Eq. (2-5), q is given by q = ozk2+ic.>

where to is the periodic laser heating frequency, a,. is the in-plane thermal conductivity,

C, is the volumetric specific heat capacity, and k is the Hankel transform variable. The

effect of radial conduction effect is accounted for in the matrix equation (2-5) through the
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introduction of the variable q. Each layer is characterized by three independent properties

important to thermal transport: thermal conductivity, heat capacity, and layer thickness.

Note that we have omitted the periodic factor eiat while assuming periodic heat

transport through the stack.

The transfer matrix for multiple layers with different material properties can be

integrated into a single matrix M by simply multiplying the matrix for each layer, as

shown by Eq. (2-6) [52]:

M = MnMn_1 --- M2 M1  (2-6)

Interfaces between two adjacent layers are incorporated into the matrix formula by noting

that the heat flux on either side of each interface should be continuous:

Abn-1 = ft,n (2-7)

as required by the energy conservation law. Interfaces can be modeled as an imaginary

material layer with zero heat capacity and zero thickness. In that limit, Equation (2-5)

reduces to:

I Ob,n-1 _ G- 1t,n) (2-8)
fa,n-11 0 1 ft, n

where G is the thermal interface conductance (the inverse of thermal boundary resistance).

The interface conductance is defined as the heat flux across the interface divided by the

temperature difference across it.

Typically the sample consists of three 'layers': the optical-thermal transducer on top,

the interface, and the substrate being studied. Combining the three layers relates the

temperature and heat flux at the top surface of the sample to the same quantities at the

bottom surface of the sample through:
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Ob}={ {} B) 10,1(2-9)

where the subscripts b and I denote the very bottom and top boundaries, and the matrix

elements A, B, C, and D are determined by the material properties of each layer through

the product of individual material matrices, as given in Eq. (2-6). Two boundary

conditions are needed to solve for the surface temperature. Normally the periodic heating

at the top boundary is given by the modulated pump beam and the very bottom surface is

assumed to be adiabatic since we approximate the substrate as a semi-infinite body. The

latter assumption can be easily verified by estimating the thermal penetration depth of the

laser beam, which is given roughly by Ltp ~ where a is the substrate thermal
2W)'

diffusivity and wo is the pump modulation frequency. In the TDTR setup, the modulation

frequency typically varies between 1-15 MHz and the thermal diffusivity is typically on

the order of 10~ 5 m2/s. Under these conditions, we estimate the thermal wave

penetration depth to be approximately tens of micrometers for common substrates.

Substrate thickness is usually on the order of 0.5 mm, far exceeding the laser penetration

depth, which validates the use of the adiabatic condition at the sample bottom boundary.

Equation (2-9) together with the two boundary conditions gives the surface temperature of

the sample as:

t ft (2-10)

In the Hankel transformed domain, the heat flux boundary condition at the top surface

accounting for the Gaussian intensity distribution of the pump beam is given by:

ft = A exp(-k)(2-11)

where AO and wo are the absorbed pump power and pump beam width, respectively

Substituting ft into Eq. (2- 10) gives the surface temperature in the Hankel transform
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domain:

8t = -AO exp(- 4--) (2-12)

Weighting this surface temperature with the Gaussian probing profile and performing an

inverse Hankel transform results in the final frequency response of the sample in real

space:

H (w) = Of cok( -)exp(- 2 )) (2-13)
21r 0o

where w is the 1le 2 probe radius.

To probe phonon MFPs at the nanoscale, instead of a continuous metal film, we use

an array of metal nanodots as our optical-thermal transducer. By illuminating the entire dot

array and observing the resulting heat transfer, the effective heat transfer length scale

becomes the dot diameter rather than the optical laser diameter. That is, we effectively

confine the heated area to be within the nanodots. This allows us to probe much shorter

length scales, far below the diffraction limit. However, the dot array structure also

significantly complicates the heat transfer analysis. In the following two subsections, we

briefly review the single dot heat transfer model and the dot array transport model,

separately. Interested readers are referred to reference [33] for a detailed derivation.

2.3.2 Single Dot Heat Transfer Model

A schematic of the nanodot array structure used in the spectroscopy experiments is

shown in Figure 2-3. In the limit that the dots are far apart from each other, we can

approximate that thermal interactions between different dots are negligible. In this single

dot picture, the heating and probing profiles are both modeled as a radial step function of

the dot diameter w [33]. Carrying out the zero-order Hankel transform of a circular step
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function results in Ji(wk)/k, where Ji(k) is the first-order Bessel function of the first

kind [57]. After replacing the exponential function in Eq. (2-13) with Ji(wk), the final

frequency response becomes:

H () fo k (- D)Jl(wk)2dk
27r C

(2-14)

This is the sample response without accounting for the thermal interactions between

neighboring dots, which means it is accurate only when the dot separation is large and the

dot diameter is small compared with the focused laser spot size.

Figure 2-3 Diagram of the dot array structure illuminated by a pump beam with a large diameter [33].

2.3.3 Dot Array Heat Transfer Model

When the separation between neighboring dots is small, the discontinuous nature of

the dots and thermal interactions between the dots must be accounted for to yield the

correct heat transfer solution. Given the periodicity of the dot array structure, it is easier to

perform Fourier transform instead of Hankel transform. Hence a Fourier transform is taken,
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which requires the use of square dots rather than circular dots since the former allows us to

obtain analytic Fourier series solutions [33]. The dot size in our designed pattern varies in

a wide range of length scales and is typically much smaller than the laser spot diameter,

resulting in two simplifying approximations. First, heat conduction along the radial

direction within the metal dots is assumed to be negligible compared with that along the

cross-plane direction. Equivalently, heat is approximated to diffuse only in the cross-plane

direction [33]. In addition, the heating and probing laser profiles are approximated as

square waves, mimicking the shape of the dot array structure. In reality, the heating and

probing profiles are both Gaussian in shape, differing from the square waves. Fortunately,

the pump and probe laser diameters in our TDTR setup are approximately 30 pm and

11 pm, respectively, much larger than the dot array period (normally below 2 pm) in the

patterned structure. This sharp size contrast between the laser spots and the dots allows us

to assume infinitely large laser diameters with uniform intensity distribution [33]. Since

the sapphire substrate is non-absorbing to the laser wavelength used in the TDTR system,

the approximation of square wave heating and probing profiles is reasonable.

Under these approximations, we repeat the heat transfer derivation process by

performing a Fourier transform of the heat equation in the Cartesian coordinates.

Compared with the solution in cylindrical coordinates, the difference is mainly in the

definition of the parameter q which now becomes [33]:

q rX = (k 2+ k 2 )+ic~w(21q (2-15)
oSz

where oxy and az are the in-plane and cross-plane thermal conductivities, respectively,

and k, and ky are the Fourier transform variables. After Fourier transforming a square

wave heating profile, substituting it into Eq. (2-10), and weighting the surface temperature

by another square wave probing profile, the sample's final frequency response becomes

[33]:
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H(>) = En Em|Xnm2(-D)n,m (2-16)

where n and m denote the frequencies kx = nflo and ky = mfo (1 0 = is the spatialY L

frequency of the dot array structure, where L is the nanodot array period), and Xnm are

the Fourier coefficients of the square heating wave and are given by [33]:

w2/0 n=m=0
w1L (1 - exp(-jmflo)) n = 0, m # 0

Xnm =L w. (1 - exp(-jnflo)) n # O,m = (2-17)
27rnj

(1-exp(-jmno))(1-exp(-jnno)) n #, m # 0
4r 2 mn

where w is the dot size andj is the imaginary number j = V1 . Note that those constants

in Eq. (2-16) have been omitted since the data is normalized when we do the fitting.

We have analyzed the heat transfer model to extract the transport properties for a

single dot and a dot array structure. Different shapes of dots are used due to mathematical

convenience in those two heat transfer models. However, as pointed out in reference [33],

the shape of the dots does not significantly affect the experimental data as long as the dot

size is the same. The following section outlines the sample fabrication details, followed by

the metal dots thickness calibration. In section 2.6 experimental data of the apparent

thermal conductivity of a sapphire substrate is analyzed in detail.

2.4 Sample Fabrication

We used a standard metal lift-off technique to pattern metallic nanodot arrays onto a

sapphire substrate. The crystalline sapphire wafers purchased from the MTI Corporation

have an area of 12.5 mm 2, and are single-side polished with a c-plane crystalline axis.

Sapphire is chosen as the substrate because it is transparent to the laser wavelengths we
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use in the TDTR experiment. The bulk thermal conductivity of sapphire at room

temperature is around 35 W/mK and the estimated MFPs are in the range of hundreds of

nanometers. We lithographically deposit aluminum metallic dots onto the sapphire

substrate because aluminum has a high thermoreflectance coefficient. The dots are squares

of varying sizes from tens of micrometers down to tens of nanometers, which enable us to

probe heat transfer at nanometer length scales.

All the fabrication is done in the Microsystems Technology Laboratory at MIT. To

fabricate the sample, deionized water is first used to rinse the original sapphire wafer,

followed by a complete blow-dry with nitrogen. After that, we spin-coat a thin layer of the

electron beam resist 950K A4 PMMA (polymethyl methacrylate) on top of the wafer at a

spin speed of 3500 rpm and a spin time of 50 seconds. This yields an approximately 220

nm thick resist. Following the deposition of the resist, the sample is immediately prebaked

on a hot plate preset at 180 *C for about 2 minutes.

The resist needs to be exposed after prebaking so that the designed pattern can be

transferred onto the wafer. Before exposure, since sapphire is inherently electrically

insulating, we deposit a very thin layer of a conductive metal (either 5 nm Ti or Cr) to

avoid the issue of charge accumulation during the lithography process. The ebeam

machine Elionix at MIT is used to expose the resist at 125 KeV. The entire pattern,

spanning 0.5 mrn x 1 mm, consists of closely packed arrays of square dots of different size

and spacing.

Since the Elionix automatically does dosage correction, different locations on the

pattern are assigned different dosages. Normally the central part of the array has a smaller

dosage than the preset, and vice versa for the outer part. PMMA is a positive resist,

meaning that the parts exposed by the e-bearn are removed after development. After

lithography, the thin conductive metal layer is stripped with a 20:1:1 H20:HF:H20 2

solvent bath. Several seconds are enough to remove around 5 nm Ti film. Then we use a

3:1 MIBK:IPA solution to develop the resist for about 2 minutes, followed by an IPA
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(isopropyl alcohol) rinse and blow-dry with nitrogen. The pattern is checked under an

optical microscope to verify the quality of the lithography process.

Then we deposit a thin aluminum film (around 70 nm) onto the sapphire wafer using

e-beam evaporation. The deposition rate is controlled to be approximately 1 A/sec and the

set point of the vacuum pressure is 10-6 torr. By analyzing the heat transfer model, we

know that the thickness of the transducer film must be within a certain range (usually

between 70 nm and 120 nm). The vacuum pressure in the e-beam machine chamber

controls the quality of the interface between the metal dots and the sapphire substrate.

Higher vacuum (lower pressure) usually gives much better interfaces and vice versa. Thus

the deposition process is delayed until the vacuum pressure is at or below 10-6 torr. While

there is some non-uniformity in the film thickness across the wafer, this non-uniformity is

minimal due to both the 0.8 m distance between the crucible containing the desired metal

and the wafer and the rotation of the sample holder around the chamber.

S0 0 a 0 it
200 nm

Figure 2-4 Sample SEM image of the fabricated nanostructures (dot size = 90 nm).

Following metal deposition, we use acetone to strip the remaining resist off the

sapphire wafer. Soaking the sample in acetone for several hours completely removes all

the remaining resist. Finally the wafer is rinsed by IPA after the lift-off process and blown

dry with nitrogen. A SEM image of the fabricated nanostructure (heater size = 90 nm) is
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shown in Fig. (2-4).

Normally the nanodot array period is twice that of the dot diameter in the fabricated

pattern. In the large length scale limit, the dots cool down independently without influence

from neighboring dots due to the diffusive nature of thermal transport. Both single dot and

dot array heat transfer models are expected to return the same results. However, in another

limit where the dot diameter and separation between dots are small, coupling between

different dots should be accounted for. This can be easily assessed by estimating the

thermal wave penetration depth, which is given by Ltp ~-[33, 52-54]. A simple

analysis yields a penetration depth of approximately 1 pm in sapphire, which implies that

the dot array heat transfer model must be used when length scales become smaller than 1

ptm. The dot array model automatically accounts for the interactions between neighboring

dots and returns the correct solution when strong coupling is present.

2.5 Thickness Calibration

In the TDTR experiments, knowledge of the metal thickness is critical. 5 nm

variation in the thickness would lead to around 5%-10% variation in the apparent thermal

conductivity. Quite commonly, the real thickness is a little bit larger than the set point

during the metal deposition process. Thus we cannot trust the preset thickness and instead

have to determine it independently.

There are several ways to characterize the metal thickness. One useful tool is the

Dektak, located in the Exploratory Materials Laboratory (EML) at MIT, a contact surface

profilometer which uses a mechanical stylus to determine surface profiles. The resolution

of the Dektak reading depends upon the metal film thickness itself. For our nanodot

structure the resolution is approximately I nm. Since smaller dots would be vulnerable to

the force exerted by the mechanical stylus, typically we use the Dektak to determine the

thickness of large dots (90 pm). The sample is assumed to have uniform thickness for all
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the dots of varying sizes, which is validated by the very small pattern area (0.5 mm x 1

mm).

Another way of determining the thickness is by conducting a TDTR measurement on

a known film to achieve self-consistent results. For very large dots (90 pm), we expect to

recover the bulk substrate thermal conductivity from the measurements when the metal

thickness is correct. Thus the thickness can be determined by varying input thickness in

the fitting program until the bulk value is obtained. It is also possible to use acoustic echos

to determine the metal thickness [52].

2.6 Experimental Results

We lithographically patterned square aluminum metal dots of varying sizes onto a

sapphire substrate and determined the metal thickness using a contact surface profilometer.

Ideally, the measurement of the varying reflectance signal from an individual dot of

different sizes would yield the most convincing claim of the presence of size effects.

However, the signal from a single dot is so small as to be undetectable. Thus, square dot

arrays are employed to increase the signal. In the patterns used herein, the metal dots

occupy only 25% of the sapphire substrate surface area. Since sapphire is nearly

transparent to visible light spectrum, any reflectance signal must come from the dots. To

offset the small fractional occupation, we increased the pump intensity a bit while

decreasing the spot size to 30 pm and slightly increased the power going into the probe

arm [33]. This gave us at least 10x SNR for probing the thermal properties. The

measurement was done on two different samples at two different modulation frequencies

(3 MHz and 12 MHz).

Figure 2-5 shows the measured reflectance signal as a function of the delay times for

two different heater sizes. The reflectance amplitude (Fig. 2-5(a)) decays monotonically

with respect to the delay between pump and probe after 500 ps. Information about the
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transport properties of the substrate are contained within this thermal decay which

represents the cooling of the dots due to heat flow into and through the substrate.
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Figure 2-6 Examples of experimental data and fittings based on the Fourier's law.
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Figure 2-6 shows experimental data and model solutions for three different length

scales (90 pm, 600 nm, and 170 nm). The red dots represent measured data and the blue

curves represent the model best fits. The red and green curves are obtained by offsetting

the thermal conductivity by ±10%. The agreement between the experimental data and

the model fits is quite good for all cases. For large heat source (90 pim), the measured

apparent thermal conductivity is around 35 W/mK, the bulk thermal conductivity of

sapphire along c-axis at room temperature. This indicates that the transport is in the

diffusive regime since the heater size is much larger compared with the phonon MFPs. The

presence of size effects is evident for the other two cases. The measured effective thermal

conductivities are approximately 27 W/mK and 23 W/mK for the 600 nm dot size and 170

nm dot size, respectively. These values are much lower than the bulk value, indicating the

experiments measured an additional thermal resistance for those two length scales.
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Figure 2-7 Scatter plots of measured sapphire thermal conductivity as a function of heater size at two

different modulation frequencies.

Scatter plots of the measured sapphire apparent thermal conductivity as a function of

heater size (90 pm and 170 nm) at two different modulation frequencies (3 MHz and 12

MHz) is shown in Fig. 2-7. It is clear that the effective thermal conductivity decreases as

the length scale is reduced. In addition, no significant frequency dependence in the
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measured thermal conductivity was observed in the experiments.
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Figure 2-8 Measured sapphire thermal conductivity vs. heater size. Quasi-ballistic transport occurs

when the heater size is below 1 sm, which indicates that phonon MFPs in sapphire are in the range of

hundreds of nanometers.

The experimentally retrieved average sapphire thermal conductivities over 40

measurements for different length scales are shown in Fig. 2-8. The error bars represent

the standard deviations in the measurements. The bulk thermal conductivity of sapphire at

room temperature is recovered when the heater size is above 1 pm. In this length scale,

diffusive transport dominates the heat transfer process and coupling between neighboring

dots is weak. Deviations from the Fourier theory occur when the heater size drops below 1

gm and the heat transfer model retums an effective thermal conductivity much lower than

the bulk value, which indicates that the transport becomes quasi-ballistic. The effective

thermal conductivity decreases constantly with decreasing heater dimension due to the
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increase in the ballistic resistance. Thus we conclude that phonon MFPs in sapphire are in

the range of hundreds of nanometers, consistent with measurements made by other

investigators [27]. Additionally, phonons with MFPs between 170 nm and 1 pm

contribute slightly lower than 50% to the total sapphire thermal conductivity.
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Figure 2-9 Measured interface conductance vs. heater length scales.

Heat transport across the Al-sapphire interface is mainly determined by the unknown

thermal interface conductance, G. Thus, we treat the interface conductance as another

fitting parameter in the experiments. Figure 2-9 shows the measured interface conductance

as a function of length scales for two different samples, for which the metal film was

deposited under different vacuum conditions. There is a strong dependence of the interface

conductance on fabrication. Generally, the lower the baseline vacuum chamber pressure,

the higher the interface conductance. This is expected since lower vacuum pressure

usually gives better quality interface. It is observed that the measured data shows a slight
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increase in G with respect to decreasing length scales. The variation in G is found to be

larger with lower vacuum chamber pressure, which indicates that the non-uniformity of

the interface quality is higher under better vacuum conditions.
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Figure 2-10 Comparison of substrate effective thermal conductivity distribution by fitting both k and G
(blue squares) and fitting k only (pink circles).

To examine the impact of the variation in the measured interface conductance on the

substrate effective thermal conductivities, the experimentally retrieved reflectance data

was fit again to the heat transfer model with a fixed interface conductance measured on the

90 pm dots. This allows us to separate the effect of interface conductance and

quasi-ballistic transport in the substrate on the measured substrate effective thermal

conductivity [33]. The comparison is shown in Fig. 2-10. The blue squares represent the

substrate effective thermal conductivities by treating both the substrate thermal

conductivity and interface conductance as fitting parameters, and the pink circles represent
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the extracted data by fitting only the substrate thermal conductivity.

For large heater sizes, the effective thermal conductivity does not change

significantly after fixing G during the fitting. For small heater sizes, the increase in the

effective thermal conductivity implies that the impact of variation in G becomes more

pronounced with decreasing length scales. However, the extracted sapphire thermal

conductivity with fixed G is still much lower than the bulk value at small heater size (170

nm), which confirms that the size effect is caused by the quasi-ballistic transport in the

substrate.

2.7 Summary

In this chapter, we described a new implementation of the time-domain thermoreflectance

thermal conductivity spectroscopy technique that enables the experimental study of

materials with short MFPs. By optically heating lithographically patterned metallic

nanodot arrays, we probed thermal transport properties at length scales down to

approximately 100 nm, far below the diffraction limit for visible light. We demonstrated

the new implementation by measuring the effective thermal conductivities in sapphire at

room temperature using the new technique. The experimentally measured thermal

conductivities suggest that MFPs in sapphire are in the range of hundreds of nanometers,

consistent with previously reported measurements. The spectroscopy technique confirmed

that observations of quasiballistic heat transport contain carrier relaxation information,

thus phonon MFP information.
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Chapter 3

Multidimensional Modeling using
Boltzmann Transport Theory

Knowledge of phonon mean free path (MFP) distribution is critically important for

engineering heat transfer at the nanoscale. In chapter 2 we presented the recently

developed thermal conductivity spectroscopy technique which can be used to probe MFP

distribution down to nanometer scale and demonstrated its potential by measuring the

cumulative thermal conductivity of sapphire at room temperature. The observations of

quasi-ballistic phonon transport in the experiments allowed us to extract information about

phonon MFP distribution in the material being studied. In this chapter, we develop a

transport model based on the frequency independent phonon Boltzmann transport equation

(BTE) to better understand the effects of different length scales on the heat transport in the

quasi-ballistic regime. The simulation geometry, a double-layer structure shown in Fig. 3-1,

consists of periodic metallic nanowires sitting on top of a generic substrate. Although the

simulation geometry is slightly different from the dot array structure used in the

spectroscopy experiments, similar size effects is observed. Two characteristic length scales

affecting the thermal transport occur: the heater size w and the array period L. The change

in heat transfer is observed by systematically varying these two length scales. Numerical

data on the apparent thermal conductivity of a generic substrate at room temperature is
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reported by solving the 2D grey transport model under the relaxation time approximation

(RTA). The dependence of the thermal interface conductance on the contact size of the

nanowire and the substrate is also studied and discussed.

Quasi-ballistic transport
when MFPs >> w

Figure 3-1 Illustration of the simulation domain.

3.1 Background on phonon Boltzmann equation

The phonon Boltzmann transport equation is a differential equation which governs

phonon transport by predicting the evolution of the phonon number distribution f in the

phase space [18]. Phonons, or quantized lattice vibrations [20, 21], are simulated as

individual particles with their phase information completely neglected in the BTE picture.

The phonon BTE captures classical size effects precisely when characteristic length scales

are much longer than phonon wavelengths (typically on the order of 1-10 nm).

Fourier heat conduction theory captures the transport features in the diffusive

transport regime where characteristic length scales are much longer than phonon MFPs.

However, in the classical size effect regime where phonon MFPs are comparable with or

longer than the characteristic length scales, no phonon scattering occurs and no local

thermal equilibrium can be defined [32]. To include the effects of ballistic heat transport,

the general phonon BTE needs to be solved. Since the distribution functionfdepends upon
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several variables in the phase space, analytic solutions to the BTE can be found only for

some simple cases.

Classical size effects have long been examined. Casimir [58] found that the thermal

conductivities of crystals have a strong size dependence due to enhanced boundary

scattering when the phonon mean free paths are long compared to the characteristic length

scale of a finite specimen. Good agreement between his numerical data and reported

experimental result by de Haas and Biermasz [59] was observed.

Given the difficulty of obtaining analytic solutions, the phonon BTE has been solved

extensively using various numerical methods, including both deterministic and stochastic

techniques [60-62], to study phonon size effects. Based on the analogy to photons,

Majumdar el al. [60, 63] derived an equation of phonon radiative transfer (EPRT) to

describe thermal transport in dielectric thin films, which serves as a good starting point in

terms of applying the BTE to heat transfer at short length scales. The EPRT was solved to

study phonon transport in thin films of diamond for a wide range of Knudsen numbers

(A/Lc, MFP divided by film thickness) and an expression of the thin film effective thermal

conductivity was obtained for the Fourier diffusion theory to be mathematically applicable.

Chen [32] predicted that the heat transfer from a nanoparticle into its surrounding host

medium is significantly suppressed compared to the solution of the Fourier law-based heat

conduction equation. Based on the phonon BTE, Chen el al. [64-66] developed models for

both the in-plane and cross-plane superlattice (periodic stacks of constituting thin films)

thermal conductivity and studied the effects of film thickness and interface conditions on

the thermophysical properties of superlattices. He observed that partially specular and

partially diffuse interfaces gave good agreement between the BTE solution and

experimental data on GaAs/AlAs superlattices.

To reduce the huge computational expense required to solve the BTE, Chen [67, 68]

proposed to decompose phonons into diffusive and ballistic groups and derived the

Ballistic-Diffusive-equation (BDE). The phonon BDE substantially improves the

56



computational efficiency and better approximates the phonon BTE compared with heat

conduction equation and Cattaneo equation in the quasi-ballistic transport regime. In a

subsequent work, Narumanchi el al. [69] examined the effects of boundary scattering and

heat source localization on the thermal transport around an unsteady small hot spot by

solving the grey phonon BTE with a finite volume method (FVM). They found significant

discrepancies in the prediction of peak temperature rise and thermal response time from

the BTE and Fourier's diffusion theory. Another study by Murthy el al. [70] substantially

improved the accuracy of the FVM through decomposition of phonon intensities into a

ballistic component and an in-scattering component, where the former was solved by a

ray-tracing scheme and the latter was solved by an unstructured FVM, respectively.

The phonon BTE also allowed systems of greater complexity to be studied, such as

nanocomposites, i.e. complex solid materials which include structures with nanoscale

dimensions. Nanocomposites have been shown to have significantly reduced lattice

thermal conductivities, thus enabling us to potentially improve thermoelectric performance.

Yang et al. [71] studied the size and volumetric fraction dependence of the thermal

conductivity of periodic two-dimensional nanocomposites consisting of silicon nanowires

embedded in germanium host medium. Following that work, Yang et a/. [72, 73] applied

the phonon BTE to explore the transport property of silicon-germanium nanocomposites

with silicon nanowires and tubular nanowires in a germanium matrix. They found that the

additionally introduced surface scattering by the tubular nanowires results an even lower

effective thermal conductivity compared with simple nanowires. The phonon BDE was

further developed to account for multidimensional thermal transport by Yang et al. [74]

and applied to study the effects of boundary conditions and nanoscale heat source size on

the heat transport of a 2D rectangular structure. Results of the phonon BDE were

compared with predictions from both the multidimensional phonon BTE and Fourier

diffusion theory. To simplify the calculations, many studies assumed frequency averaged

properties. Unfortunately, phonon MFPs depend strongly upon the vibrational frequency
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and polarization.

To account for the non-linear phonon dispersion and frequency dependent phonon

MFPs, Minnich el al. solved the one-dimensional spectrum dependent phonon BTE for a

double-layer structure composed of aluminum metal film on top of a silicon substrate to

validate observations of quasi-ballistic transport help extract information about the MFP

distribution [75]. Frequency dependent interface properties were incorporated to take into

consideration the difference in dispersion relation of the two constituting materials [75]. In

the following section, we develop a multidimensional transport model based upon the

phonon BTE to simulate heat transport in a periodic nanostructure composed of nanowire

array sitting on a generic substrate and observe the effects of different length scales on the

effective thermal conductivity of the substrate when characteristic length scale approaches

phonon MFPs. Our multidimensional model follows the derivation in reference [75] and is

detailed in the next section.

3.2 Multidimensional Transport Model

The full, spectrum dependent phonon Boltzmann transport equation is shown as [18]:

+ V& -Vfk = fcouision (3-1)
at

where f, is the spectral phonon number distribution function, l is the group velocity,

and fcouision is the collision term. The distribution function f" depends upon the

particle frequency w, position r, and propagation direction (0, <P). The difficulty

associated with solving the BTE stems from the high dimensionality of the distribution

function f, in the phase space. At each spatial point, f, is a function of the local

phonon propagation direction, which spans the whole 4Tr solid angle. Therefore, in order

to numerically solve the BTE, both the simulation domain and the local solid angle need to
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be discretized separately. The term foision accounts for various phonon scattering

mechanisms during thermal transport and typically consists of nested integrals with

unknown distribution function f inside the integrand, and poses additional difficulties for

solving the governing BTE.

In reality, transport properties, including group velocity, density of states, and phonon

lifetimes, are strong functions of phonon modes and polarizations [29]. Due to

computational limitations, frequency averaged properties (or grey properties) are used in

multidimensional simulations. In this study we solve the grey phonon BTE under the

relaxation time approximation (RTA) [76], which can be written as:

+V -fVf = - (3-2)
at +VT

where fo is the local equilibrium distribution function, and T is the averaged phonon

lifetime over all the phonon modes. The negative sign indicates that thermal system tends

to equilibrium states after being perturbed. For a system at equilibrium, the temperature is

well-defined and fo follows the Bose-Einstein distribution [18]:

1
fo = hw/1 (3-3)

exp( /kBT-

where h is Planck's constant divided by 2n, w is the phonon frequency, kB is the

Boltzmann constant, and T is the absolute temperature. The chemical potential is neglected

in Eq. (3-3) since it is zero for phonons. The RTA significantly reduces the computational

complexity associated with the scattering term. The following several sub-sections

proceed with the RTA to develop a multidimensional grey BTE model used to simulate

quasi-ballistic phonon transport in the proposed structure shown in Fig. 3-1.
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3.2.1 Phonon Intensity

Instead of solving the distribution function directly, we solve the directional phonon

intensity defined as [60]:

I = , I" hwf)D(w, p)Vdw (3-4)

where hw is the phonon quanta energy, D(w, p) the density of states at a particular

frequency, V is the spectral group velocity, and the summation is over all polarizations p.

If we multiply the original BTE by hwfsD(w, p)V, integrate over all the phonon

frequencies, and sum over all the branches, the phonon intensity I then bears the same

form as f(:

aI+1-10 (5+ V - VI = - T(3-5)

Similar to the frequency-averaged phonon number distribution function f, the phonon

intensity I strongly depends upon position, time, and angle of propagation. As discussed

before, different methods have been applied to solve the BTE, including discrete ordinate

method, Monte Carlo technique, and the Finite Volume approach, to solve the phonon

BTE. In this study the discrete ordinate method is chosen to solve the 2D phonon BTE

together with Gauss-Quadrature to integrate properties over the 4T1 solid angle. Finite

difference method is implemented to perform both temporal and spatial discretization in

the BTE. Due to the restriction posed by the boundary conditions, the discretized BTE

form depends upon the phonon propagation direction and is sketched in Fig. 3-2, where 0

and <p are the polar and azimuthal angles, respectively, p = cosO is the directional

cosine, and 17 is defined as i = sin~cosTp.

Generally backward difference is taken when phonons travel along the positive

direction, and vice versa. For example, the discretized equation for the quadrant p <
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0, i > 0 is given by:

k1 k.k k k kA k -ki,t,j~m,n,m +V+ _,n,n _,n,n '.J,n,m Lj-i,n,m ,n,mn ,o (3-6)
At Ax sy T

where i, j, n, m, k are the x, y, y, r7, time indices, respectively, Iij,n, is the phonon

intensity at a specific point (i, j, n, m) in the phase space and time k, and 1&0 is the

equivalent equilibrium intensity at time k. The discretized transport equation for other

propagation directions can be written down similarly. This explicit scheme is used to

propagate in time until the expected simulation time is reached.

" = sin6cosp

Backward discretization Backward discretization
in y, forward in x in x and y

) p =cos6

Forward discretization Forward discretization in y,
in x and y backward in x

Figure 3-2 Choice of the finite difference method for different phonon traveling directions.

Following the discretization of the phonon BTE using finite difference, interface and

boundary conditions need to be specified. The interface and boundary conditions used in

the simulations are consistent with experimental conditions in the spectroscopy

experiments discussed in chapter 2 and outlined in the following two sub-sections.

3.2.2 Interface Condition

Calculating heat transport across interfaces requires knowledge of interface properties,

including the interface transmittance and reflectance. Practically, phonons are very
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sensitive to interface qualities, which can greatly affect phonon transmittance across an

interface. Currently, no generic model to compute the interface properties exists for

arbitrary interfaces. Swartz et al. [38] gave a thorough review of thermal boundary

resistance studies. Both diffuse mismatch model (DMM) [38, 77] and acoustic mismatch

model (AMM) [38, 78] have been developed, but neither of them capture the physics of

thermal transport across generic interfaces completely. The AMM assumes that no

scattering but specular reflection occurs around the interface while the DMM postulates

that any phonon incident on the interface experience diffuse scattering. The DMM model

further assumes that phonons leaving the interface have no relation to where they came

from. Generally, the AMM applies better to clean and defect free interfaces while the

DMM is a better approximation for rough, imperfect interfaces. In this simulation, we

implement the DMM to describe the thermal transport across the nanowire/substrate

interface.

Phonons incident on an interface have finite probabilities to either transmit the

interface or being reflected by the interface. On either side of the interface, three groups of

phonons are present: the incident component, the reflected component, and the transmitted

component. To calculate the interface transmittance, energy conservation needs to be

satisfied. The first law of thermodynamics ensures that:

R + T = 1 (3-7)

where R and T are the reflectance and transmittance on either side of an interface,

respectively. Under thermal equilibrium, the net heat flux across an interface is zero, as

required by detailed balance [18]. The detailed balance relates the transmittances on both

sides to be:

T2 1 = T12 (3-8)
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where T12 is the transmittance from side I to side 2, T21 is the transmittance from side 2 to

side 1, and C, and V (i=1, 2) are the volumetric specific heat capacities and speed of sound,

respectively. Phonon coupling around interfaces may be very strong. Fox example, a

transverse acoustic (TA) phonon on side 1 might become a longitudinal acoustic (LA)

phonon on side 2 after transmission. In this study mode conversion is suppressed when

treating heat transport across the interface to simplify calculations.

We first assign one reasonable number to the reflectance of phonons from side 1 back

to side 1 R12. The energy conservation Eq. (3-7) yields the transmittance from side I to

side 2 T12. Once T12 is obtained, the DMM gives the transmittance from side 2 to side 1 T21.

Similarly, R2 1 is computed from energy conservation through (3-7): R2 1 = 1 - T2 1. With

the given interface reflectance and transmittance, boundary conditions are discussed in the

next section.

3.2.3 Boundary Conditions

The periodicity of the simulation geometry significantly simplifies the calculation by

allowing us to simulate one period of the nanostructure. Given the periodicity of the

structure, periodic boundary conditions are used for the two sides of the substrate. To

implement that, we use specular reflection boundary condition. The substrate is

sufficiently thick and is modeled as a semi-infinite body, which indicates adiabatic wall

boundary condition is applied. All the other boundaries are modeled as adiabatic walls,

consistent with experimental conditions in the TDTR spectroscopy experiments [75].

Particularly, specular reflection is used to satisfy the adiabatic wall requirement. To

summarize, all the boundaries are modeled adiabatic with specular reflection.
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3.2.4 Equivalent Equilibrium Intensity, Temperature, and Heat Flux

The term Io in the BTE corresponds to a locally thermalized state in the transport

and is referred to as 'equivalent equilibrium intensity'. The thermalized state is an

imaginary state which is reached by adiabatically relaxing phonons to a virtual equilibrium

state. The equivalent equilibrium intensity adds difficulty to solving the BTE since it

couples different phonon modes. The highly non-equilibrium quasi-ballistic transport

poses challenge to define local thermodynamic temperature. Instead of computing the

local equilibrium temperature which does not exist, the equivalent equilibrium temperature

is calculated based on the equivalent equilibrium phonon intensity, which is a measure of

the local phonon intensity averaged in all directions.

Numerically, a two dimensional Gaussian quadrature is used to discretize the 4T

(0, #) solid angle into many angle points and obtain the corresponding weights for each

discretized direction. In particular, we discretize the polar angle 0 into n points and the

azimuthal angle # into m points. Then the relevant weights w and to* are calculated

for each discretized direction and satisfy E m nw,,*n = 2Tr [74]. The equivalent

equilibrium intensity is computed by averaging the intensities over the solid angle:

I(xy, t) = 1 YnE Ik x, y, 0, #, t)wn,* (3-9)

where Ik(x, y, 0, #, t) is the directional phonon intensity at (x, y) along the direction (0, #)

at time t. As a measure of the local energy density, the equivalent equilibrium temperature

(or thermalized temperature) is defined as:

T (x, y, t) = Ik (X, Y, t) (3-10)

The local heat flux is obtained by simply integrating and weighting the component of

phonon intensities along the desired direction. For example, if the cross-plane direction is
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defined as x, the heat flux along this direction is given by:

q,(x,y,t) = 1EnEm I (X1 yo,Pt) * P * W *4 (3-11)

where p is the polar angle. Similarly, the heat flux distribution along the in-plane

direction can be written down as:

qy (x, y, t) = Z 7n jEm I k(xp 60)40 t) * j -- p2 * COS (<pmI) *n* rn (3-12)

3.2.5 Stability Issue

We use an explicit scheme to march in time during the simulation. As a result,

stability issue needs to be considered. To ensure stability, the time step needs to be

sufficiently small and is restricted by the following relation [74]:

At < (3-13)
V

where Ax is the minimum spatial step size, and V is the phonon propagation speed. The

spatial step is normally chosen to be one tenth of the minimum phonon MFP, as required

by the accuracy of the simulation results. This poses a big challenge in solving the spectral

phonon BTE because typically the minimum MFP in real materials is approximately 1 nm,

which requires the spatial step to be extremely small (on the order of 0.1 nm). The

computational cost associated with such small spatial step is very large, resulting in

frequency averaged properties to be used in the BTE model. To guarantee both stability

and accuracy, the time step given by Eq. (3-13) is typically divided by a safety factor

which is specified to be much greater than unity.
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3.2.6 Simulation Details

The periodicity of the proposed structure in Fig. 3-1 reduces the simulation domain to

consist of one metal nanowire heater on a generic substrate. Initially a temperature pulse is

applied onto the heater to approximate the heating effect induced by laser pulses in the

ultrafast optical experiments. This driving force excites phonons in the heater which

gradually traverse the interface, resulting in heat transport in the underlying substrate. To

simplify the calculation, the electron-phonon interaction is neglected in the simulation.

After initialization, the transient 2D BTE is solved with specular reflection boundary

condition and diffuse scattering interface condition at the dot-substrate interface. The

surface cooling rate of the heater is recorded during the simulation. The effective thermal

conductivity of the substrate is fitted by matching the Fourier solution with the BTE data.

This gives the effective thermal conductivity distribution vs. length scales. The size and

temporal dependence of the interface conductance G are also studied from the BTE

simulation. The sensitivity of the surface temperature to both the substrate thermal

conductivity and the interface conductance was carried out. We observed that the surface

temperature is more sensitive to the substrate thermal conductivity if the bulk thermal

conductivity of the substrate is low. Therefore, a generic substrate with a low bulk thermal

conductivity is used in this study. Table 3-1 lists the material properties of both layers used

in the simulation. To compromise computational cost, the input phonon MFP of the

generic substrate is averaged over the entire phonon spectrum and chosen to be 100 nm.

Table 3-1 Material properties used for the nanowire and the generic substrate.

Material Thermal Conductivity Volumetric Heat Speed of Sound Phonon MFP

(W/mK) Capacity (J/m 3K) (m/s) (nm)

Nanowire 100 2.35E6 3000 42

Substrate 50 1.0E6 1500 100
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3.3 Results and Discussion

Figure 3-3(a) shows the size and temporal dependence of the averaged thermal

interface conductance for a variety of heater sizes at two different array periods: 100 nm

and 1000 nm. The reference interface conductance Gbull is predicted from the DMM

model. Under a fixed period, G is reduced with decreasing heater size. When the heater

size becomes extremely small under a large period compared with the phonon MFP, the

calculated G from the BTE approaches the solution of the DMM model. In addition, G

increases slowly with time, which is not yet fully understood. The overall variation of G

from Fig. 3-3(a) is within 7% for all the simulated length scales. Thus, we consider the

interface conductance to be constant and only fit the substrate thermal conductivity. The

spatial dependence of G for heater size 80 nm and period 100 nm at two different

simulation times is shown in Fig. 3-3(b). The local interface conductance peaks around the

center of the interface.

Figure 3-4(a) shows some sample fittings of the heater surface temperature for

several different geometric configurations. As expected, the effective conductivity
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becomes smaller while gradually reducing the heater size under a constant array period.

This decrease in the apparent thermal conductivity results from the increase in the ballistic

resistance of the quasi-ballistic transport at shorter length scales [27, 32].
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Fig. 3-4 (a) Sample fitting curves; (b) normalized effective thermal conductivity vs. nanoline width and
period.

The normalized effective thermal conductivity as a function of length scales is

displayed in Fig. 3-4(b). The x coordinate is the inverse of Knudsen number which is

defined as K, = A/LC, where A and Lc are the substrate phonon MFP and the heater

size specifically for our applications here. To better understand the transport, we start with

a simple case where the period is long compared with the phonon MFP (period/MFP = 10).

When the heater size equals the period, it is effectively a continuous film covering the

substrate, which indicates the heater size can be considered to be infinitely large.

Sufficient scattering occurs after phonon transmission from the heater into the substrate,

thus resulting in diffusive transport in the substrate [32, 33]. In such case the fitting

recovers the bulk thermal conductivity of the substrate. Then we gradually reduce the

heater size but keep the period unchanged. At some point, the heater size d becomes

comparable to the phonon MFP and quasi-ballistic transport around the interfacial region

starts contributing to the transport in the substrate [33]. The ballistic resistance at this point
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is relatively small, though. Consequently, the fitting returns an effective thermal

conductivity which is only slightly lower than the bulk value. As we further reduce the

heater size such that the heater dimension becomes much smaller than the substrate

phonon MFP, ballistic transport starts to dominate, resulting in a significantly increased

ballistic thermal resistance, which in turn leads to a substantially decreased effective

thermal conductivity compared with the bulk thermal conductivity. When the heater size

approaches zero, the effective thermal conductivity asymptotes zero.

Practically two important length scales are present in the nanoline-substrate structure:

the heater size and array period. Transport becomes more complicated in the limit that the

period becomes comparable or even shorter than the phonon MFP (for example,

period/MFP = 1). This implies naturally that the heater size must also be comparable with

the MFP. For the film case (i.e. heater size = array period), the transport is still diffusive,

which again returns the bulk thermal conductivity. When the heater size becomes small

relative to the period, we compare two different cases: same heater size with two different

periods (a short period and a long period). Figure 3-4(b) shows that the effective thermal

conductivity is lower for a longer period, which suggests phonon scattering in the

substrate be less effective in the case where the period is much longer compared with the

MFP. Under the same heater size, the ballistic resistance associated with a short period

turns out to be lower than that associated with a long period. As a result, the effective

thermal conductivity is in general higher for a shorter period with the same heater

dimension.
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3.4 Summary

In this chapter, we studied the quasi-ballistic transport numerically by solving the

multidimensional grey phonon Boltzmann transport equation using discrete ordinate

method. Frequency averaged properties were used as input into the BTE and interface

properties were addressed by the diffuse mismatch model. We found that two geometrical

length scales (i.e. heater size and array period) significantly affect the heat transport in the

substrate, and consequently the effective thermal conductivity of the substrate. The model

routinely predicted a lower interface conductance for a smaller heater dimension, but the

overall variation of the interface conductance across a wide range of length scales was

found to be very small (within 7%).
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Chapter 4

Simulating Heat Transport with
Monte Carlo Method

Chapter 3 developed a multidimensional thermal transport model based on the phonon

Boltzmann transport equation (BTE) to study heat transport at the nanoscale. Through

simulations across a range of length scales, we observed the effects of quasi-ballistic

transport on the effective thermal conductivities of a generic substrate. Frequency

averaged phonon MFP was used to reduce the computational cost in the 2D calculation.

However, in real materials, the phonon MFPs span several orders of magnitude and cannot

be represented by any single averaged number. In this chapter we incorporate frequency

dependent phonon properties by solving the general BTE using a stochastic "variance

reduced Monte Carlo" (VRMC) [79, 80] method. Compared to the conventional MC

technique, variance reduced MC method allows us to extract very small signals from the

numerical simulations. The developed multidimensional spectrum dependent heat transfer

model is applied to the nanostructure composed of metallic nanodot array on a silicon

substrate, mimicking the experimental structure. Ensemble average is implemented to

obtain clean and smooth signals from the calculations. While in this chapter phonon

lifetimes from empirical correlations are utilized, future work will incorporate lifetime
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data calculated from first-principles density functional theory (DFT) [29].

Another motivation for this study originates from inverting the experimental

spectroscopy data to precisely reconstruct the phonon MFP distribution [36]. In the

spectroscopy experiments, effective thermal conductivities were measured as functions of

characteristic length scales, i.e. heater sizes. MFPs are roughly inferred by assuming

phonons with MFPs longer than heater size do not contribute to heat transport [13, 26].

Unfortunately, the heater size is not an accurate cutoff length scale. Accurate

reconstruction of MFPs from experimental data requires a spectral heat flux suppression

function which can be obtained from quasi-ballistic phonon transport simulation [36].

In the following two sections, a short review of the applications of MC method to

heat transport and the details of implementing variance reduced MC simulation are

outlined. Preliminary simulation results and relevant discussions are presented in section

4.3.

4.1 MC Background

As shown in chapter 3, the phonon distribution function depends upon several

variables in the phase space and is generally difficult to solve. Solving the full Boltzmann

transport equation numerically by a deterministic approach requires huge amount of time

and computer memory, and thus is not practical. Nonetheless, phonon MFPs depend

strongly on phonon modes [29, 81, 82] and frequency dependent properties must be used

to correctly predict and understand the strong size effects which occur in real transport

processes.

In the past, direct simulation Monte Carlo (DSMC) methods incorporating the

phonon spectrum [83-85] have been used to solve the full phonon BTE. In the DSMC

method, a large number of phonons are simulated as individual particles each with their

own transport properties and their phase information is completely neglected in this
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particle picture. Compared with directly solving the BTE, MC simulations can easily

account for real phonon dispersion relations and are more favorable for simulating

arbitrary structures. The results of MC method approach those of the BTE when large

numbers of phonons are simulated in the structures of interest. By comparing MC results

to low temperature experimental data, Klitsner et al. [83] analyzed the impact of surface

specularity and the effect of thermometers placement on measurements of heat flow and

thermal conductivity of polished single crystalline silicon in the ballistic limit. When

modeling heat conduction along 1D linear array of cells, Peterson [84] accounted for the

spectrum-dependent phonon properties by assuming a Debye dispersion relation. He found

that solutions from the MC method matched well with analytic predictions. Although the

dependence of phonon MFP on frequency is neglected in his study, this serves as a good

starting point to incorporate spectral properties in MC calculations. Mazumdar and

Majumdar [85] presented a more comprehensive transport model based on the MC method

that considered the nonlinear phonon dispersion and interactions between longitudinal and

transverse acoustic phonons. For silicon thin films with and without doping, the simulation

results agreed well with experimental data.

Later Chen el al. [86] developed a genetic algorithm to treat both the normal and

umklapp phonon scattering in the MC model and applied it to the calculation of silicon

nanowire thermal conductivities. When the nanowire diameter drops below 20 nm, there

were significant differences from the calculations using the bulk dispersion and those

using the nanowires' dispersions solved from elastic wave theory, and the results using the

nanowire dispersion yielded better agreement with experimental data. Tian el al. [87]

found the thermal conductivity of the compacted nanocomposites consisting of silicon and

germanium nanowire mixtures were reduced to half the value of silicon nanowire

embedded in a germanium host. Jeng et al. [88] focused on implementation of periodic

boundary conditions in the DSMC model and applied it to calculate the properties of

Si-Ge nanocomposites. The calculated thermal conductivity was below the alloy limit and
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qualitatively agreed with experimental data on Si-Ge nanocomposites. Hao el al. [62]

investigated size effects of a 2D porous silicon with aligned pores by applying periodic

boundary condition and accounting for the frequency and temperature dependence of the

phonon lifetimes. The size effects were significant even when the pore size was larger than

the averaged silicon phonon MFP, which points out the importance of considering the

phonon spectrum to yield accurate results.

Although the DSMC method is a suitable technique to solve the general phonon BTE,

some limitations which restrict its use exist. When the temperature difference across the

simulation domain is large, DSMC normally gives a good signal to noise ratio (SNR).

Unfortunately, if the temperature difference is extremely small, results from DSMC

typically become very noisy. In this case, large numbers of ensemble averages are required

to produce reliable data. Another limitation of the DSMC models is the computational

efficiency. For a typical micrometer scale simulation box, calculation takes at least several

days to converge. In addition, it is difficult to accurately conserve energy and momentum

at the phonon level in DSMC models. Considering these major limitations, in this work we

use the variance reduced MC (VRMC) scheme developed by Professor Nicolas G.

Hadjiconstantinou's group [79, 80, 89] at MIT. The VRMC models are described briefly in

the following section, followed by some preliminary data on a silicon substrate covered

with metallic nanodot heaters.

4.2 Variance Reduced MC Simulation

The details of the VRMC method can be found in reference [89] and are briefly

reviewed here. The phonon BTE in its general form is shown in Eq. (3-1). Under the

relaxation time approximation (RTA), the scattering term is simplified substantially and

the BTE then becomes:
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fco + -oVfe = - f~" (4-1)at T,

where f, is the spectral distribution function, V is the frequency dependent group

velocity, foo is the locally thermalized distribution, and rT is the frequency and

temperature dependent lifetime. Since all the derivatives in Eq. (4-1) are not with respect

to phonon frequency, we can multiply that equation by the phonon energy hw and

subtract a reference state to give:

+, -V e* =-(4-2)at Tw,T

where e* = hof. - fa4) is the deviational phonon energy distribution, and e0 =

hw(foo - feg) is the locally thermalized deviational energy distribution. The reference

distribution function feq is the Bose-Einstein distribution evaluated at a reference

temperature Teq. Instead of solving the original BTE, VRMC models solve the deviational

energy based BTE (i.e. Eq. (4-2)). By introducing a reference state, only the deviational

part is stochastically simulated and the reference part can be exactly determined

theoretically. This dramatically reduces the variance which occurs in DSMC simulations.

By carefully choosing the reference state, VRMC simulation yields very clean signals

even when temperature difference across the simulation domain is extremely small [80].

Due to the high SNR, the VRMC scheme enables us to simulate fewer particles and

still yields reliable data, which consequently improves the computational efficiency. In

addition to the enhanced efficiency, VRMC is advantageous over DSMC in terms of

energy conservation. Phonons are simulated as energy particles, all of which represent

some effective number of phonons and carry the same amount of energy. The uniform

particle energy is determined by the total deviational energy divided by the particle

number. For a simulation domain with Et*ot (the total deviational energy) and N particles,

each bundle carries the same amount of energy, ef = E*t/N, and represents some finite

76



number of real phonons, Neff = Eeff/e*. This highlights the difference between DSMC

and VRMC. Specifically, in DSMC the number of phonons per particle Neff remains

constant while for VRMC the effective energy per particle eff is constant. Therefore,

energy conservation in VRMC is quite easy and straightforward: conserving the number of

particles automatically conserves the energy.

To carry out transport calculation, the simulation domain is discretized into a number

of spatial cells. Each cell has its own local energy density and thus temperature. When the

cell temperature To is below the reference temperature Teq, the deviational particle has

negative energy since e* = - f"4) is below zero. To account for this, we assign

each particle a sign s(i) with it, where i is the particle index. Positive particles have

positive signs s(i) = 1 while negative particles have negative signs s(i) = -1 [89].

The magnitude of the energy carried by each bundle is constant, but can be either positive

or negative depending upon the local temperature relative to the reference temperature.

The following subsections discuss how to initialize the simulation, move particles,

sample the local energy levels, and account for internal scattering.

4.2.1 Phonon Initialization

In VRMC models, phonons are initialized according to the initial temperature

distribution across the simulation domain. Several approximations are needed to initialize

the phonon particles. Due to the huge phonon number density and the computational

limitation, we can simulate only a finite number of phonon particles. Effectively, one

phonon bundle represents a bunch of physical phonons with the same transport properties,

including the position r, frequency o, branch p, travelling velocity V, and propagation

direction k. These phonon properties must be initialized individually for all the particles

to be simulated. The following paragraphs describe the details of how each phonon

property is assigned.
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* Position

Since the simulation domain is discretized, particles' initial positions are randomly

assigned within each spatial cell. Specifically, for each drawn particle in cell (ij, k), we

generate three random numbers Rx E (0,1), Ry E (0,1), and Rz E (0,1) and assign the

positions as:

x = xe + (Rx - ')Ax (4-3)
2

y = yc + (Ry - )Ay (4-4)

z = zc + (Rz - )Az (4-5)
2

where (xe, yc, zc) is the center of mass in the cell under study, and Ax, Ay, and Az are

the cell dimensions in x, y, z directions, respectively. All the generated particles in that cell

are assigned positions in this way and this process is repeated for all the discretized cells.

Therefore, phonon particles are populated randomly within the simulation domain.

* Frequency

After phonons are randomly placed in each spatial bin, the particles' frequencies are

determined through a cumulative distribution function defined as:

Fn = E=1 E, D(wi, p)e* (4-6)

where D(w, p) is the density of states (DOS) at a discretized angular frequency o; for a

given polarization p. To initialize phonon frequencies, the material phonon dispersion is

discretized uniformly into a set of frequency points Nb and the DOS for all the

polarizations must be known. A random number R is drawn for each particle and compared

with the cumulative distribution function F to generate the particle frequency. If R falls

into the interval: F"1 < R < F, the frequency is set to be:
FNb FNb
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W = (On + (2R - 1) (4-7)

where Aw is the angular frequency interval. The random nature of R guarantees the

randomness of w assigned within that interval.

Note that temperature enters the cumulative function through the deviational energy

e*. In addition, if the local cell temperature To is below the reference temperature Teq,

the cumulative distribution function carries negative sign. In this case, we use the

normalized distribution function IF I/|IFNbJ to initialize phonon frequencies and other

procedures are kept the same. As discussed before, the generated particle has a negative

sign when To < Teq.

* Polarization

To determine the branch information, another random number R, is drawn for each

particle and compared to DOS ratios. Here we only consider acoustic phonons to simplify

the description, but optical phonons can be processed in the same manner. The selected

phonon falls into longitudinal branch if R, < D(o,LA) where TA1, TA2,P D(w,TA1)+D(&w,TA2)+D(co,LA)'

and LA denote two transverse acoustic branches and one longitudinal branch, respectively.

Otherwise, a new random number Rpp is generated and again compared with another

DOS ratio. The particle is assigned to TA] branch if R < D(TA) otherwise itPP D(co,TA1)+D(ow,TA2)'

is assigned to TA2 branch. Typically particles are assigned to branches with higher DOS.

* Velocity and direction

Once frequency and branch are determined, the velocity is computed from the phonon

dispersion relation V = c. The particle propagation angle is assigned randomly by

generating two random numbers R E (-1,1) and 4 E (0,2Tr) as:

kx = 1 -R 2 cos(#) (4-8)
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ky= V1 - R2sin(<p) (4-9)

kz = R (4-10)

After all the computational particles are assigned transport properties, they are

allowed to move subject to the required boundary and interface conditions. Again, the total

number of computational particles depends upon the deviational energy and the particle

energy. Boundary and interface conditions are discussed in the following two subsections.

4.2.2 Advection & Boundary Scattering

In the advection step, only boundary and interface scattering are processed

numerically. Within each time step, we follow the trajectory of all the particles and

determine whether they collide with physical boundaries or interfaces. If the phonons

collide with the physical walls, either the transport properties are reset or the phonons are

removed from the domain, depending upon the boundary conditions (BCs). Methods for

considering several different types of boundary conditions, including isothermal wall BC,

periodic BC, and adiabatic wall BC, have been developed elsewhere [89] for use. Here we

describe only two types of BCs in detail. Interested readers are referred to literature

publications for the treatment of other BCs.

e Isothermal wall BC

In this case, consider a wall (for example at x = 0) at constant temperature T" during

the simulation. The wall is simulated as a phononic 'blackbody', which means that

phonons colliding with the wall are absorbed and subsequently removed from the

simulation domain. This boundary condition can be written as:

e* [x = 0+,k,p] = e [x = 0+,k,p] - e, [a>(k, p)] (4-11)
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where eT and eT are the deviational energy distributions evaluated at the wallaW eq

temperature and the reference temperature, respectively. For the absorption, phonons

incident on the isothermal wall are simply removed from the simulation domain. We can

visualize the emission part by considering the wall as a heat reservoir, which constantly

emits some number of phonons within each time step [89]. The number of phonon

particles to be emitted is determined as follows:

Nw = E, Co"p D (w, p) V(a), p) e* doat /E(4-12)

where At is the time step. Computationally, phonons are emitted at the end of each

advection step. The emission process is similar to the initialization step except that the

cumulative distribution function is replaced by F = Z 1 E, D(wi, p)Vg(w, p)e*,. In

addition, the travelling direction is assigned by generating two random numbers.

Re E (0, 1) and q5 E (0, 27r) and computing the direction as:

k, = Re (4-13)

Y= 1 - Rsin(#) (4-14)

kz= 1 - R2cos(q) (4-15)

* Periodic BC

Prediction of the properties of devices with periodic structures (for example,

nanocomposites, comprised of two different periodically arranged materials) is critically

important for practical applications. To simulate thermal transport in periodic structures,

the use of periodic boundary condition significantly reduces the complexity and enhances

the computational efficiency by simulating one period of the periodic structure. For
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phonon transport in periodic systems, the heat flux is periodic, not the temperature, since

the temperature gradient drives the heat flow. Here we derive the treatment of periodic

boundary condition following reference [62].

ff>

Heat f

Hot wall Cold wall

x - 0 x - L,

Figure 4-1 Diagram of periodic boundary condition [62].

Heat flux is generated by the deviation between the distribution function and an

isotropic equilibrium distribution. As shown in Figure 4-1, the periodicity of heat flux can

be expressed in terms of the distribution functions as:

fi - f( 2* f 4 (4-16)

fi- f = f2~ -q (4-17)

where fi+, f17, [2+, f2 are the forward and backward distribution functions at the

periodic boundaries 1 and 2, respectively, and feq and feq are the isotropic equilibrium

distributions associated with two different equilibrium boundary temperatures T1 and T2 ,

respectively. Equations (4-16) and (4-17) show that the periodic heat flux is equivalent to

the periodicity of the deviations in distribution functions. These expressions can also be

written in terms of the deviational energy distribution as:

e+ _ e q = e+ _ 4q (4-18)
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e - - e = e - eq (4-19)e1eT = 2  T2

We further rewrite Eqs. (4-18) and (4-19) in terms of the heat flux:

N= Nj + EfP" D(w, p)Vg(w, p)(e - eT )dwat /reff (4-20)

N= NT + Ep fe7" D (a), p) Vg (w, p) (e - e )doAt /Eeff (4-21)

where N+, N2, NT, Ni are the number of deviational particles that enter either the

boundaries ('+') or the system ('-') of interest, respectively. Typically NT and N+ are

known distributions from the simulation since they represent the phonons incident on

either boundary (absorption part). The emission part, however, must be solved according

to Eqs. (4-20) and (4-21). With VRMC, this can be done quite easily as follows:

i) In the advection step, particles traversing a periodic boundary are translated by one

period in that direction to another corresponding periodic boundary where they are

reinjected and continue moving until the end of the time step;

ii) At the end of each time step, we draw exactly 1 fEp "" D(w, p)V(wp)(e e -

e2 )dwAt /Eeff deviational particles by pairs on both the hot and cold periodic

boundaries and inject them into the simulation domain. Note that the injected particles

from the hot wall carry positive signs while those emitted from the cold wall carry

negative signs. In addition to the sign difference, the emitted phonon pairs from both

boundaries have opposite travelling directions. In this way, we ensure the periodicity and

conserve the energy in the simulation.

4.2.3 Internal Scattering

In addition to boundary and interface scattering, phonons also experience internal
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scattering, including impurity and anharmonic scattering. The treatment of internal

scattering follows reference [62]. In VRMC models, internal scattering is processed after

each advection step. As discussed in reference [62], impurity scattering only randomizes

the particle travelling direction and keeps other particle properties unchanged. However,

anharmonic scattering resets all the phonon states and helps restore thermodynamic

equilibrium. In general, anharmonic scattering includes the Normal process (N process)

which conserves both energy and crystal momentum, and Umklapp process (U process)

which only conserves energy [18, 20, 21].

The internal scattering event is treated as a probabilistic process in the VRMC models.

Each scattering mechanism is described by a relaxation time, which depends upon phonon

frequency and temperature and is an important input in the spectral VRMC calculations.

Callaway [30] fit the thermal conductivity data of germanium at low temperatures to a

phenomenological model for thermal conductivity including spectral phonon lifetimes in

order to determine the strength of different scattering mechanisms which best reproduced

the experimental data. A correction term to thermal conductivity was added in the model to

account for the difference between the momentum-conserving N process and

momentum-nonconserving U process. Unlike the treatment Callaway used for N process,

Holland [31] treated N and U processes similarly, but differentiated the transverse and

longitudinal branches to find the contributions from both polarizations. The combined

phonon lifetime accounting for impurity scattering as well as both N and U processes is

computed using Matthiessen's rule:

T_ = '(to, T) + T 1(w, T) + T 1 (W) (4-22)

where TN, TU, and T1 are the relaxation time for N process, U process, and impurity

scattering, respectively, at some frequency and temperature. To simplify the calculation,

we combine the lifetime for N and U processes into a single lifetime rNU, where

TN = r + T-1, and do not differentiate those two scattering events.
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To determine whether phonons experience internal scattering during each time step,

we draw a random number R for each particle and compare it with p(o) = 1 -
se

exp(- -), where w is the particle frequency, and At is the time step. Internal
TCUT

scattering occurs if R is less than p(w). If internal scattering shows up, another random

number RNU is generated and compared with the scattering rate ratio PNU(w) -N -

The deviational particle experiences anharmonic scattering if RNU is less than PNU(W) and

all the particle states are subsequently reset according to the corresponding cell

temperature and pseudo-temperature. Otherwise, the particle is scattered by an impurity

which only randomizes its propagation direction. The strategy to reset the phonons states

as well as the concepts of cell temperature and pseudo-temperature are discussed in the

following section.

4.2.4 Cell Temperature and Pseudo-temperature

To obtain the temperature distribution across the simulation domain, the phonon

energy must be sampled in each spatial cell. Normally the energy is sampled immediately

after the advection step. In the diffusive transport regime where the characteristic length

scales are long compared to the phonon MFPs, a well-defined thermodynamic temperature

exists under the assumption of local equilibrium. Nevertheless, in highly non-equilibrium

or ballistic transport regime where scattering events are rare, the temperature cannot be

defined since it is an equilibrium concept. In such case, the 'temperature' is known as the

equivalent equilibrium temperature which is only a measure of the local energy density

[18].

To calculate the temperature, we simply compute the energy density in each cell and

invert it to obtain the corresponding cell temperature distribution. Energy sampling is

made quite straightforward in VRMC since each deviational particle carries the same

amount of energy. Thus we simply count the number of phonon particles within each cell
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and add it to the reference energy density. The temperature is computed by comparing the

local energy density to a pre-prepared Energy-Temperature table, which is calculated from

the dispersion relation and DOS under different temperatures. The cell temperature

distribution gives a sense of how 'hot' the region of interest is.

Another concept related to anharmonic phonon-phonon scattering is the

pseudo-temperature, which is used to assist in resetting phonon states once anharmonic

scattering occurs. Integrating Eq. (4-2) over all the phonon modes gives [62]:

Ep fWmax,(e+ V - Ve*)D ()dw = - p fwmax,p e*-eo D(o)do (4-23)
EP f, tTcij,T

where Womax,p is the maximum phonon frequency for branch p, and T is the cell

temperature. The first law of thermodynamics requires the left hand side of Eq. (4-23) to

be exactly zero, which reduces Eq. (4-23) to become:

p fC'max~P e* D(o)do = Ep fjomaxP _ ei-D(,)do (4-24)
Tf)o,T T (o,T

The pseudo-temperature for the anharmonically scattered phonons is contained in the

locally thermalized distribution function eo = ho(fo - feo). Computationally, the local

pseudo-temperature for each spatial cell is determined by inverting the local

pseudo-energy density [89]:

Ei,j,k = rET + 2  Eq s(q) (4-25)eq Vi,j,k T O,p,Ti,j,k

where Pr = f emp heD~ pTp) 1 dw is the reference pseudo-energy at
eq ~ exp kBTeq )- '~OPTijk

pseudo-temperature Teq, (i, j, k) is the cell index, Tij,k is the corresponding cell

temperature, Vi,j,k is the cell volume, q is the particle index, and s(q) is the sign

carried by each deviational particle. The summation in Eq. (4-25) is over all the particles
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in cell (i, j, k). Similarly, the inversion process is done by comparing the local

pseudo-energy to a pre-computed Pseudo-energy-Pseudo-temperature table.

If one computational particle experiences anharmonic scattering, all the phonon

travelling states associated with that particle must be redrawn [62]. To reset the phonon

properties and automatically satisfy the energy conservation, we use the new cumulative

distribution function #p = Ep "% ' 1 - 1 ), where iT,j,k is the
P-Tjik exp( kBtij,k -1 epkBTeq)

pseudo-temperature in the cell (i, j, k), and Tw,pjk is the phonon lifetime evaluated at

the cell temperature Ti,j,k [62].

4.2.5 Interface Conditions

Phonons incident on an interface are either reflected back or transmitted across the

interface. Interface properties, including reflectivity and transmissivity, play an important

role in determining heat flow across the interfaces. The reflectance and transmittance

describe the probability of a phonon being reflected and transmitted at an interface,

respectively. To evaluate interface transmissivities, we follow the transmission model

presented in reference [75]. Energy must be conserved at the interface being studied. By

simply linearizing the phonon distribution function and using the detailed balance [18, 75],

the transmissivity T12 (W) from side I to side 2 of an interface follows as:

(T12 (o>)C 1 V1 ) = 1-+ 1 + (4-26)
(CVh 1 (c 2 2G

where C and V are the mode specific heat and group velocity, respectively, (-) denotes

an integral over the phonon modes, and G is the interface conductance. To simplify the

analysis, we assume that T12 (w) does not have any frequency dependence, and thus:
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T12 = 2/(cV1)* 1(4-27)
(CV)+ (CV) 2 2G

where (C1V1)* denotes integration over the shared phonon frequencies in materials 1 and

2. The transmissivity T2 1 (w) from side 2 to side 1 follows directly from detailed balance:

T2 1 (c) = D1(W)V1(() T12 (4-28)
D2 (W)V2(()

where Di(w) and Vi(w) (i=1, 2) are the mode dependent density of states and group

velocity, respectively. Even if T1 2 is constant for common frequencies and zero otherwise,

T21, in general, bears a strong frequency dependence caused by the principle of detailed

balance at each frequency. Note that mode conversion across the interface is suppressed to

simply the transmission model.

4.2.6 Input Data and Assumptions

The required input data into the VRMC models include the phonon lifetimes, DOS,

and dispersion relation for different phonon branches in addition to the interface

transmissivities. For aluminum, heat is primarily carried by electrons. To simplify the

calculations, we do not account for the electron phonon interaction in the metal film and

only simulate the phonon transport. A constant relaxation time (10 ps) for all aluminum

phonon modes is assumed and yields the desired phononic thermal conductivity 34 W/mK.

Experimental dispersion relation for aluminum along [100] direction is used in this

simulation [90].

For silicon, we input phonon lifetimes from empirical correlations to obtain some

preliminary results [75, 81]. The silicon phonon lifetimes are listed below:

TLI = 2 * 10- 9 * 6 2 T '-49exp(- 0/T) (4-29)
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TT = 1.2 * 10~' 9 * w2 T1.65exp(- 0IT)

T1 = 3 * 10-4s , W4 (4-31)

TB1 = 1.2 * 10-6 (4-32)

where TL1 and TT' are the anharmonic phonon scattering rates for longitudinal and

transverse branches, respectively, and T' and rT' are the impurity and boundary

scattering rates, respectively. For the anharmonic scattering rates, an exponential term is

used to extend the lifetimes to low temperatures [81]. For optical phonons, Einstein model

which assumes a constant vibration frequency and zero travelling group velocity is used.

Although optical phonons do not travel in a medium, they affect the transient thermal

transport through the impact of heat capacity. The experimental dispersion relation along

[100] crystal direction [91] is incorporated in the calculations.

4.3 Results and Discussion

The variance reduced Monte Carlo technique developed in the last section is applied

to quantitatively study heat transport in the nanodot array spectroscopy experiments.

Experimentally we lithographically deposit an array of square metallic dots of varying

sizes onto the substrate of interest and observe heat transfer from the dots by illuminating

the entire dot array with ultrafast lasers. The apparent substrate thermal conductivity is

extracted by fitting the measured reflectance data with Fourier heat transfer model.

In this study, the Boltzmann transport equation in its most general form is solved with

VRMC to compute the effective thermal conductivities for the three-dimensional complex

structure shown in Fig. 2-3. The periodicity significantly simplifies the calculation by

allowing us to simulate one period of the array. For the substrate, the four sides of the unit

structure are assumed to be periodic boundaries. The top surface and four sides of the
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metallic dot are approximated as diffuse adiabatic boundaries. Since the substrate is thick

enough to be modeled as semi-infinite, the bottom surface of the substrate is considered to

be isothermal with temperature fixed at the ambient level. In reality, as long as the

substrate is sufficiently thick, we confirmed that the bottom boundary condition has little

impact on the simulation results.

For the interface between the metallic dots and the silicon substrate, we use the model

developed in section 4.2.6 to estimate the transmissivities across the interface. The

interface conductance G is set to be approximately 1. 1x 108 W/m 2K, consistent with

experimentally measured value. The interface transmission is crucially important in this

simulation since it determines the heat flow rate from the heater to the substrate, and thus

the cooling rate of the heater.

We start the simulation by launching several million deviational particles as an

imposed temperature pulse in the heater. Those particles are allowed to move subject to

the specified boundary conditions and also experience internal scattering. Gradually

phonons in the heater traverse the interface into the substrate, thus cooling down the heater.

The heater surface temperature is recorded as a function of the simulation time. Solutions

from Fourier diffusive transport theory are fit to the VRMC results by varying the

substrate thermal conductivity as a free fitting parameter in order to obtain the apparent

thermal conductivity of the substrate as the heater size is systematically reduced.

The simulation is conducted for a silicon substrate with heaters at several different

length scales. Figure 4-2 shows the calculated effective thermal conductivity data as a

function of heater length scale. The silicon bulk thermal conductivity is approximately 145

W/mK at room temperature. For all the studied length scales, the effective thermal

conductivities are below the bulk value. As discussed in previous chapters, this indicates

that an additional ballistic resistance is observed [27, 32, 33] and the transport is

quasi-ballistic. In addition, as the heater size is reduced, the calculated thermal

conductivity drops steadily, which implies stronger size effects at shorter length scales.

90



160 - . - -

E
140-

0 dot size = 170 nm period = 400 nm
. 120 0 dot size = 400 nm period = 800 nm

0 dot size = 600 nm period = 1.2 um
8 100 0 dot size = 800 nm period = 1.6 um

0 dot size = 1 um period= 2 um
E 80-

o 60 0
0

tt40- 0
uJ 0
0 0
2 20-

10'1 100 101
Heater Size [um]

Figure 4-2 Calculated effective silicon thermal conductivity vs. heater length scales.

Physically, phonons with different MFPs in the heater transmit across the

heater-substrate interface and experience scatterings depending on their MFPs relative to

the heater dimension. We split the transmitted phonons into two groups [67]: a diffusive

group (A, > D) and a ballistic group (A, < D), where A, and D are the spectral phonon

MFP and heater size, respectively. The diffusive phonons scatter sufficiently and help

restore thermodynamic equilibrium after transmission while the opposite is true for

ballistic phonons [33]. Both components carry heat energy, but heat is dominantly

transported via the diffusive phonons. Ballistic phonons rarely scatter around the

interfacial region after transmission, thus they generate significantly less heat flux

compared with the diffusive phonons [33]. The ballistic thermal resistance originates from

ballistic phonons and increases with decreasing length scales, which is consistent with the

lower calculated thermal conductivity at shorter length scales.
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4.4 Summary

This chapter discusses a multidimensional spectrum dependent heat transfer model based

upon a recently developed variance reduced Monte Carlo simulation technique. The model

is applied to the study of quasi-ballistic transport in silicon by mimicking the spectroscopy

experiments. Periodic and diffuse adiabatic boundary conditions are implemented to the

boundaries of the simulation domain as required to model the spectroscopy experiments.

Spectral interface properties are estimated from detailed balance by suppressing mode

conversion at the interface. The calculated effective thermal conductivity shows a steady

decrease with decreasing heater length scales, which is expected due to the increase in

ballistic resistance at shorter characteristic length scales.
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Chapter 5

Summary and Future Work

5.1 Summary

Nanotechnology offers a potential way to further enhance the thermoelectric figure of

merit ZT by substantially reducing the material lattice thermal conductivity. Engineering

better nanostructured thermoelectric materials demands better knowledge of the phonon

mean free path (MFP) distribution in the materials of interest. In this thesis we have

presented an experimental study of phonon MFPs in sapphire and two numerical studies to

understand the quasi-ballistic phonon transport in the thermal conductivity spectroscopy

experiments which are capable of determining the phonon MFPs down to nanoscale.

A thermal conductivity spectroscopy technique which has nanometer scale spatial

resolution was combined with ultrafast TDTR experimental platform to study the phonon

MFPs in sapphire, a non-absorbing material to the laser wavelength of our TDTR setup.

By lithographically patterning nanometer scale metallic dot arrays on sapphire substrate,

we probed the heat transfer down to 170 nm, far below the diffraction limit. The

experimental observations of the quasi-ballistic phonon transport give information on the

MFP distribution. The measured effective sapphire thermal conductivities at different

heater length scales suggest phonon MFPs in sapphire are in the hundreds of nanometer
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range, which is consistent with other measurements [27].

In the quasi-ballistic regime, heat transport is described by the general, spectral

phonon Boltzmann transport equation (BTE) which determines the evolution of the

phonon distribution function in phase space. In the first numerical study, a

multidimensional thermal transport model based on the grey phonon BTE was developed.

The diffuse mismatch model (DMM) was used to address the interface properties. Heat

transfer in the structures of periodic nanowires on top of a generic substrate was studied

using the developed grey transport model. Through simulations across a wide range of

length scales, we found that two length scales (heater size and array period) significantly

affected the apparent substrate thermal conductivity. Size effects were observed when the

heater size was below half of the array period. In addition, the simulation data suggested

different characteristic length scales in the quasi-ballistic transport have little impact on

the thermal interface conductance.

In the second numerical study, we constructed another multidimensional frequency

dependent heat transport model based on the recently developed variance reduced Monte

Carlo (VRMC) method to account for the dispersive phonon spectrum. Variance reduced

Monte Carlo method enables small signal detection in the simulations by introducing a

reference state and solving only the deviational part. The interface transmissivities were

estimated through a simple transmission model based on detailed balance. Quasi-ballistic

phonon transport in the thermal conductivity spectroscopy experiments was studied using

the constructed transport model. For each calculated heater length scale, solution of

Fourier diffusive transport theory was fit to match the VRMC results by varying the

substrate thermal conductivity. We observed the calculated effective silicon thermal

conductivities dropped constantly with decreasing heater length scales. This suggested an

increase in the ballistic thermal resistances as the heater length scale was reduced [27, 32,

33].
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5.2 Future Research

Experimentally we plan to extend the developed thermal conductivity spectroscopy

technique to probe the MFPs in thermoelectric materials. This is challenging since

thermoelectric materials are in general non-transparent. A possible solution is to use hybrid

nanostructures, which consists of periodically arranged light blocker dots and aluminum

metallic dots sitting on substrate of interest. The light blocker dots have low absorptivity

and low thermal conductivity. In this way the heated area is again effectively confined to

the highly absorbing metallic dots. This allows phonon MFPs to be probed across wide

ranges of length scales even for absorbing substrate materials. This structure has been

recently developed by Dr. Yongjie Hu in Professor Chen's group.

In addition, accurate phonon MFP distribution cannot be quantified directly through

the measurements of effective thermal conductivities at different heater length scales. To

find the precise cumulative MFP distribution requires a heat flux suppression function [36,

37], which describes the heat flux generated by phonons with different MFPs relative to

the prediction of diffusion theory. The suppression function can be found through Variance

reduced Monte Carlo simulations across various length scales. The phonon MFPs can be

reconstructed precisely from the spectroscopy measurement data and the suppression

function.

Nanocomposites exhibit potential for high thermoelectric performance by introducing

additional phonon scattering at interfaces. We also plan to apply the developed VRMC

models to study the transport properties of complex nanocomposites. Molecular dynamics

(MD) combined with Green-Kubo formula have been used to calculate lattice thermal

conductivity under equilibrium conditions where no temperature gradient is imposed

[92-94]. In such equilibrium transport, heat carriers move randomly with a zero averaged

net heat flow rate. Motivated by equilibrium MD simulation, we will consider computing

the thermal transport properties of materials of interest by applying the VRMC method at

equilibrium state. This would also answer the question what information the heat carriers'
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random motion contains.

97



98



Bibliography

[1] G. S. Nolas, J. Sharp, and H. J. Goldsmid. Thermoelectrics: Basic Principles and New
Materials Developments. Springer, New York, 2001.

[2] C. Dames and G. Chen. Thermal conductivity of nanostructured thermoelectric
materials. CRC Handbook, edited by M. Rowe, pp. 42-1 to 42-16, 2006, Taylor and
Francis, Boca Raton.

[3] J. Yang. Potential applications of thermoelectric waste heat recovery in the
automotive industry. In 24th International Conference on Thermoelectrics, pp. 170-
174, 2005.

[4] B. Poudel, Q. Hao,Y. Ma, Y. Lan, A. J. Minnich, B. Yu, X. Yan, D. Wang, A. Muto,
D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. F. Ren.
High-thermoelectric performance of nanostructured bismuth antimony telluride bulk
alloys. Science, 320(5876):634-638, 2008.

[5] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A.
Majumdar, and P. Yang. Enhanced thermoelectric performance of rough silicon
nanowires. Nature, 451(7175):163-167, 2008.

[6] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. Yu, W. A. Goddard III, and J. R.
Heath. Silicon nanowires as efficient thermoelectric materials. Nature,
451(7175):168-171, 2008.

[7] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn. Thin film
thermoelectric devices with high room-temperature figures of merit. Nature,
413(6856):597-602, 2001.

[8] S. Yamaguchi, T. Matsumoto, J. Yamazaki, N. Kaiwa, and A. Yamamoto.
Thermoelectric properties and figure of merit of a Te-doped InSb bulk single crystal.
Applied Physics Letters, 87(20):201902 - 3, 2005.

[9] J. K. Yu, S. Mitrovic, D. Tham, J. Varghese, and J. R. Heath. Reduction of thermal

99



conductivity in phononic nanomesh structures. Nature Nanotechnology,
5(10):718-721, 2010.

[10] G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J.
Schumann, U. Denker, I. M6nch, Ch. Deneke, 0. G. Schmidt, J. M. Rampnoux, S.
Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo. Precise control of
thermal conductivity at the nanoscale through individual phonon-scattering barriers.
Nature Materials, 9(6):491-495, 2010.

[11] M. S. Dresselhaus, G. Chen, Z. F. Ren, J.-P. Fleurial, P. Gogna, M.Y. Tang, D.
Vashaee, H. Lee, X. Wang, G. Joshi, G. Zhu, D. Wang, R. Blair, S. Bux, and R.
Kaner. Nanocomposites to enhance ZT in thermoelectrics. In Proceedings of the MRS
Fall Meeting, page U3.4, Boston, 2007.

[12] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen. Bulk nanostructured
thermoelectric, materials: Current research and future prospects. Energy and
Environmental Science, 2(5):466-479, 2009.

[13] A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A.
Nelson, and G. Chen. Thermal conductivity spectroscopy technique to measure
phonon mean free paths. Physical Review Letters, 107(9):095901, 2011.

[14] M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren, and G. Chen. Perspectives
on thermoelectrics: from fundamentals to device applications. Energy and
Environmental Science, 5(1):5147-5162, 2012.

[15] W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott. Flash method of
determining thermal conductivity, heat capacity, and thermal conductivity. Journal of
Applied Physics, 32(9):1679, 1961.

[16] D. G. Cahill. Thermal conductivity measurement from 30K to 750K: the 3w method.
Review of Scientific Instruments, 61(2):802, 1990.

[17] C. A. Paddock and G. L. Eesley. Transient thermoreflectance from thin metal films.
Journal of Applied Physics, 60(1 ):285, 1986.

[18] G. Chen. Nanoscale Energy Transport and Conversion. Oxford University Press,
New York, 2005.

[19] G. A. Slack. CRC Handbook of Thermoelectrics, edited by DM Rowe (CRC Press,
Boca Raton, FL, 1995).

100



[20] M. Lundstrom. Fundamentals of Carrier Transport. Cambridge University Press,
2000.

[21] N. W. Ashcroft and N. D. Mermin. Solid Slate Physics. Saunders college publishers,
Fort Worth, TX, 1976.

[22] L. D. Hicks and M. S. Dresselhaus. Effect of quantum-well structures on the
thermoelectric figure of merit. Physical Review B, 47(19):12727-12731, 1993.

[23] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R.
Merlin, and S. R. Phillpot. Nanoscale thermal transport. Journal of Applied Physics,
93(2):793-818, 2003.

[24] G. Chen. Phonon transport in low-dimensional structures. In Recent Trends in
Thermoelectric Materials Research III, volume 71 of Semiconductors and
Semimetals, pages 203-259, 2001.

[25] G. Chen and A. Shakouri. Heat transfer in nanostructures for solid-state energy
conversion. Journal of Heat Transfer, 124(2):242-252, 2002.

[26] Y. K. Koh and D. G. Cahill. Frequency dependence of the thermal conductivity of
semiconductor alloys. Physical Review B, 76(7):075207, 2007.

[27] M. E. Siemens, Q. Li, R. Yang, K. A. Nelson, E. H. Anderson, M. M. Murnane, and
H. C. Kapteyn. Quasi-ballistic thermal transport from nanoscale interfaces observed
using ultrafast coherent soft X-ray beams. Nature Materials, 9(1):26-30, 2009.

[28] J. A. Johnson, A. A. Maznev, J. Cuffe, J. K. Eliason, A. J. Austin, T. Kehoe, C. M.
Sotomayor Torres, G. Chen, and K. A. Nelson. Direct measurement of
room-temperature nondiffusive thermal transport over micron distances in a silicon
membrane. Physical Review Letters, 110(2):025901, 2013.

[29] K. Esfarjani, G. Chen, and H. T. Stokes. Heat transport in silicon from first-
principles calculations. Physical Review B, 84(8):085204, 2011.

[30] J. Callaway. Model for lattice thermal conductivity at low temperatures. Physical
Review, 113(4):1046, 1959.

[31] M. G. Holland. Analysis of lattice thermal conductivity. Physical Review,
132(6):2461, 1963.

101



[32] G. Chen. Nonlocal and nonequilibrium heat conduction in the vicinity of
nanoparticles. Journal of Heat Transfer, 118(3):539-545, 1996.

[33] A. J. Minnich. Exploring Electron and Phonon Transport at the Nanoscale for
Thermoelectric Energy Conversion. PhD Thesis, Massachusetts Institute of
Technology, 2011.

[34] A. J. Schmidt, X. Chen, and G. Chen. Pulse accumulation, radial heat conduction,
and anisotropic thermal conductivity in pump-probe transient thermoreflectance.
Review of Scientific Instruments, 79(11):114902, 2008.

[35] J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson. Optical generation and
characterization of acoustic waves in thin films: fundamentals and applications.
Annual Review of Materials Science, 30(1):117-157, 2000.

[36] A. J. Minnich. Determining phonon mean free paths from observations of
quasiballistic thermal transport. Physical Review Letters, 109(20):205901, 2012.

[37] A. A. Maznev, J. A. Johnson, and K. A. Nelson. Onset of non-diffusive phonon
transport in transient thermal grating decay. Physical Review B, 84(19):195206, 2011.

[38] E. T. Swartz and R. 0. Pohl. Thermal boundary resistance. Review of Modern Physics,
61(3):605-668, 1989.

[39] P. M. Norris and P. E. Hopkins. Examining interfacial diffuse phonon scattering
through transient thermoreflectance measurements of thermal boundary conductance.
Journal ofHeat Transfer, 131(4):043207-043217, 2009.

[40] K.C. Collins, S. Chen, and G. Chen. Effects of surface chemistry on thermal
conductance at aluminum-diamond interfaces. Applied Physics Letters, 97(8):083102,
2010.

[41] D. G. Cahill. Analysis of heat flow in layered structures for time-domain
thermoreflectance. Review of Scientific Instruments, 75(12):5119, 2004.

[42] T. Q. Qiu and C. L. Tien. Short-pulse laser heating on metals. International Journal
of Heat and Mass Transfer, 35(3):719-726, 1992.

[43] T. Q. Qiu and C. L. Tien. Heat transfer mechanisms during short-pulse laser heating
of metals. Journal of Heat Transfer, 115(4):835 - 841, 1993.

102



[44] T. Q. Qiu and C. L. Tien. Femtosecond laser heating of multi-layer metals - i.
analysis. International Journal of Heat and Mass Transfer, 37(17):2789 - 2797,
1994.

[45] T. Q. Qiu, T. Juhasz, C. Suarez, W. E. Bron, and C. L. Tien. Femtosecond laser
heating of multi-layer metals - ii. experiments. International Journal of Heat and

Mass Transfer, 37(17):2799 - 2808, 1994.

[46] R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley. Femtosecond studies
of nonequilibrium electronic processes in metals. Physical Review Letters,
58(16):1680 - 1683, 1987.

[47] S. D. Brorson, J. G. Fujimoto, and E. P. Ippen. Femtosecond electronic heat transport
dynamics in thin gold films. Physical Review Letters, 59(17):1962 - 1965, 1987.

[48] A. Majumdar and P. Reddy. Role of electron-phonon coupling in thermal
conductance of metal-nonmetal interfaces. Applied Physics Letters, 84(23):4768,
2004.

[49] D. G. Cahill, K. Goodson, and A. Majumdar. Thermometry and thermal transport in
micro/nanoscale solid-state devices and structures. Journal of Heat Transfer,
124(2):223 - 241, 2002.

[50] Y. Wang, J. Y. Park, Y. K. Koh, and D. G. Cahill. Thermoreflectance of metal
transducers for time-domain thermoreflectance. Journal of Applied Physics,
108(4):043507, 2010.

[51] W. S. Capinski and H. J. Maris. Improved apparatus for picosecond pump-and-probe
optical measurements. Review of Scientific Instruments, 67(8):2720, 1986.

[52] A. J. Schmidt. Optical characterization of thermal transport from the nanoscale to

the macroscale. PhD thesis, Massachusetts Institute of Technology, 2008.

[53] K. C. Collins. Experimental Investigations of Solid-Solid Thermal Iterface

Conductance. Master thesis, Massachusetts Institute of Technology, 2010.

[54] M. N. Luckyanova. Detecting Coherent Phonon Wave E ects in Superlattices Using

Time-Domain Thermoreectance. Master thesis, Massachusetts Institute of

Technology, 2012.

[55] Stanford Research Systems, "User's manual: Model SR844 RF lock-in amplifier",

103



2003.

[56] H. Carslaw and J. Jaeger. Conduction of Heat in Solids, pp. 64-70, 109-112. Oxford
University Press, 1959.

[57] L. C. Andrews and B. K. Shivamoggi. Integral Transformsfor Engineers. SPIE Optical
Engineering Press, 1999.

[58] H.B.G. Casimir. Note on the conduction of heat in crystals. Physica, 5(6):495-500,
1938.

[59] W. J. de Haas and Th. Biermasz. The dependence on thickness of the thermal
resistance of crystals at low temperatures. Physica 5(7), pp. 619-624, 1938.

[60] A. Majumdar. Microscale heat conduction in dielectric thin films. Journal of Heat
Transfer, 115(1):7-16, 1993.

[61] S. V. J. Narumanchi, J. Y. Murthy, and C. H. Amon. Submicron heat transport model
in silicon accounting for phonon dispersion and polarization. Journal of Heat
Transfer 126(6):946-955, 2004.

[62] Q. Hao, G. Chen, and M.-S. Jeng. Frequency-dependent Monte Carlo simulations of
phonon transport in two-dimensional porous silicon with aligned pores. Journal of
Applied Physics, 106(11):114321, 2009.

[63] A. A. Joshi and A. Majumdar. Transient ballistic and diffusive phonon heat transport
in thin films. Journal ofApplied Physics, 74(1):31, 1993.

[64] G. Chen. Size and interface effects on thermal conductivity of superlattices and
periodic thin-film structures. Journal of Heat Transfer, 119(2):220-229, 1997.

[65] G. Chen. Thermal conductivity and ballistic phonon transport in cross-plane direction
of superlattices. Physical Review B, 57(23):14958-14973, 1998.

[66] G. Chen and T. Zeng. Nonequilibrium phonon and electron transport in
heterostructures and superlattices. Nanoscale and Microscale Thermophysical
Engineering, 5(2):71-88, 2001.

[67] G. Chen. Ballistic-diffusive heat conduction equations. Physical Review Letters,
86(11):2279-2300, 2001.

104



[68] G. Chen. Ballistic-diffusive equations for transient heat conduction from Nano- to
Macroscales. Journal of Heal Transfer, 124(2):320-328, 2002.

[69] S. V. J. Narumanchi, J. Y. Murthy, and C. H. Amon. Simulation of unsteady small
heat source effects in sub-micron heat conduction. Journal of Heat Transfer,
125(5):896-903, 2003.

[70] J. Y. Murthy and S. R. Mathur. An improved computational procedure for

sub-micron heat conduction. Journal of Heal Transfer, 125(5):904-910, 2003.

[71] R. Yang and G. Chen. Thermal conductivity modeling of periodic two dimensional

nanocomposites. Physical Review B, 69(19):195316, 2004.

[72] R. Yang, G. Chen, and M. S. Dresselhaus. Thermal conductivity of simple and

tubular nanowire composites in longitudinal direction. Physical Review B,
72(12):125418, 2005.

[73] R. Yang, G. Chen, and M. S. Dresselhaus. Thermal conductivity modeling of

core-shell and tubular nanowires. Nano Letters, 5(6):1111-1115, 2005.

[74] R. Yang, G. Chen, M. Laroche, and Y. Taur. Simulation of nanoscale

multidimensional transient heat conduction problems using Ballistic-diffusive

equations and phonon Boltzmann equation. Journal of Heat Transfer, 127(3):298-306,
March 2005.

[75] A. J. Minnich, G. Chen, S. Mansoor, and B. S. Yilbas. Quasiballistic heat transfer
studied using the frequency-dependent Boltzmann transport equation. Physical

Review B, 84(23):235207, 2011.

[76] J. M. Ziman. Electrons and Phonons. Clarendon Press, Oxford, 1960.

[77] P. Reddy, K. Castelino, and A. Majumdar. Diffuse mismatch model of thermal

boundary conductance using exact phonon dispersion. Applied Physics Letters,
87(21):211908, 2005.

[78] L. J. Challis. Kapitza resistance and acoustic transmission across boundaries at high

frequencies. Journal of Physic C, 7(3):481-495, 1974.

[79] N. G. Hadjiconstantinou, G. A. Radtke, and L. L. Baker. On variance-reduced

simulations of the Boltzmann transport equation for small-scale heat transfer

applications. Journal ofHeat Transfer, 132(11):112401-112408, 2010.

105



[80] J. M. Peraud and N.G. Hadjiconstantinou. Efficient simulation of multi- dimensional
phonon transport using energy-based variance-reduced Monte Carlo formulations.
Physical Review B, 84(20):205331, 2011.

[81] A. S. Henry and G. Chen. Spectral phonon transport properties of silicon based on
molecular dynamics simulations and lattice dynamics. Journal of Computational and
Theoretical Nanoscience, 5(2):141-152, 2008.

[82] A. Ward and D. A. Broido. Intrinsic phonon relaxation times from first principles
studies of the thermal conductivities of Si and Ge. Physical Review B, 81(8):085205,
2010.

[83] T. Klitsner, J. E. VanCleve, H. E. Fischer, and R. 0. Pohl. Phonon radiative heat
transfer and surface scattering. Physical Review B, 38(11):7576-7594 (1988).

[84] R. B. Peterson. Direct simulation of phonon-mediated heat transfer in a Debye crystal.
Journal of Heat Transfer, 116(4):815-822, 1994.

[85] S. Mazumder and A. Majumdar. Monte Carlo study of phonon transport in solid thin
films including dispersion and polarization. Journal of Heat Transfer,
123(4):749-759, 2001.

[86] Y. Chen, D. Li, J. R. Lukes, and A. Majumdar. Monte Carlo simulation of silicon
nanowire thermal conductivity. Journal of Heat Transfer, 127(10):1129-1137, 2005.

[87] W. Tian and R. Yang. Thermal conductivity modeling of compacted nanowire
composites. Journal ofApplied Physics, 101(1): 054320, 2007.

[88] M.-S. Jeng, R. Yang, D. Song, and G. Chen. Modeling the thermal conductivity and
phonon transport in nanoparticle composites using Monte Carlo simulation. Journal
of Heat Transfer, 130(4):042410-11, 2008.

[89] J. M. Peraud. Low Variance Methods for Monte Carlo Simulation of Phonon
Transport. Master thesis, Massachusetts Institute of Technology, 2011.

[90] R. Stedman and G. Nilsson. Dispersion relations for phonons in aluminum at 80 and
300'K. Physical Review B, 145(2):492-500, 1966.

[91] B. N. Brockhouse. Lattice vibrations in silicon and germanium. Physical Review
Letters, 2(6):256-258, 1959.

106



[92] M. S. Green. Markoff random processes and the statistical mechanics of
time-dependent phenomena. 1I. Irreversible processes in fluids. Journal of (hemical
Physics, 22(3):398-413, 1954.

[93] R. Kubo. Statistical-mechanical theory of irreversible processes. I. General theory
and simple applications to magnetic and conduction problems. Journal of the
Physical Society of Japan, 12(6):570-586, 1957.

[94] S. G. Volz and G. Chen. Molecular-dynamics simulation of thermal conductivity of
silicon crystals. Physical Review B, 61(4):2651-2656, 2000.

107


