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ABSTRACT

The NV center is becoming a very hot topic in many areas of science, including, Physics,

Chemistry, Biology, and Quantum Information. The Degen group has focused on a specific

application of the NV center, namely scanning magnetometry. In my time in the group, I focused

on building a microscope and studying NV centers in bulk and nanocrystalline diamond.

I began by building a confocal microscope which was capable of observing and

determine single NV centers. I made measurements on the photon statistics of different defects to

determine if they were single emitters or multiple emitters. I also made microwave frequency

magnetic measurements to determine the spin properties of single NV centers by measuring their

couplings to neighboring paramagnetic nuclei as well as to a spin bath. Through these efforts, I

was able to successfully confirm that the microscope was capable of identifying and measuring

single NV centers and their properties.

Lastly, I worked on the first steps of improving our understanding of NV centers in bulk

diamond crystals. The goal of magnetometry involves putting the NV center as close to the

diamond surface as possible. I made measurements that were aimed at studying the spin and

coherence properties of the NV when it was within 10 nm of the diamond surface. These studies

provided insight into the interactions of the NV center with the diamond surface.

Thesis Supervisor: Christian Degen
Title: Assistant Professor of Chemistry
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Chapter 1: Introduction and Background

The development of new kinds of spectroscopy and microscopy has been an ongoing

challenge in science. The advances that have come from new spectroscopic techniques have

allowed us to probe systems on a more fundamental level. Magnetic resonance spectroscopy in

particular has become a powerful tool for analyzing molecules because of its high sensitivity to

different nuclei and different chemical environments.

This thesis is the result of an early attempt at developing a new technology, namely

diamond based nanoscale magnetometry, through the combination of different older

spectroscopic methods. It will be broken up into three chapters. This first one discusses the

background of the NV center and lays out a formalism for describing it's electronic and spin

states. The next chapter describes the optical setup and also presents the early work that I did to

characterize my setup and to find and distinguish NV centers. The last chapter focuses on the

work that I did to study very shallow NV centers in bulk diamond

1.1 Background of the nitrogen-vacancy center

The nitrogen-vancancy (NV) center has recently become a high profile candidate for

many different solid state applications, ranging from solid state quantum computing to

magnetometry. It falls into a class of point defects in diamond. It is generated by removing two

adjacent carbon atoms and replacing one of them with a nitrogen while leaving the other site

vacant. The NV defect has been known for quite some time [Davies1976]. Its electronic

properties have been studied in bulk diamond where the concentration of nitrogen is quite high.

Only recently has it been possible to study single NV centers and study the two different charge

states because of the increase in the prominence of different optical microscopies [Gruber1997,

Mainwood1997, Gaebel2005, Rittweger2009].

The NV center comes in different varieties [Mital996]. The most often studied forms are

the negatively charged NV center, usually referred to as NV or just the NV center, and the

neutral form the NV center, referred to as NV0 . When the defect forms, the three carbon atoms

adjacent to the vacancy donate one electron each into the vacancy, the nitrogen donates two

electrons coming from the non-bonding pair for a total of 5 electrons. In the case of the NV, the

extra electron comes from another site in the lattice, often coming from other nitrogen impurities
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that are present in the lattice [Manson2006]. There are other positively charged forms in addition

to these, but they will not be mentioned here.

1.2 Physical Structure

The Nitrogen-Vacancy (NV) center is a point defect in the diamond crystal structure. The

pure diamond crystal structure is a slightly modified version of the of a face-centered cubic

(FCC) lattice. Unlike the FCC lattice, the diamond lattice has a two atom basis, meaning that

each lattice point actually references two atoms. Mathematically this is done by placing one of

the atoms directly at each lattice point and displacing the other atom by a- in the x, y, and z
4

direction, where a is the lattice constant of diamond, 0.357 nm [AshcroftMermin1976]

Physically, this gives two FCC lattices, which are offset by one another by exactly a- in x, y and
4

z. The NV defect in diamond is generated by removing two adjacent carbon atoms in the lattice

and replacing one of them with nitrogen and leaving the other site vacant.

N
I

I

I
1

1.~~~~

1.

- 1.

94

Figure 1.1 A cartoon of the NV center. The dashed lines represent dangling bonds which all
overlap in the vacancy. The carbon atoms each contribute one electron, the nitrogen atom
contributes two electrons, and one more electron comes from other lattice defects to generate the
negatively charged NV center.
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As mentioned above, the NV center has been shown to exist in two different electronic

forms [Mital996]. One form is the neutral form, referred to in the literature as NV0 , and a

negatively charged form, referred to as NV-. In almost all cases in this work, the term NV or NV

center will be used to refer to its negatively charged form, and when necessary a distinction will

be made between the two. The electrons in the NV center come from the dangling sp3 bonds of

the carbon atoms and from the lone pair of electrons located on the nitrogen. The neutral form

contains 5 electrons and the negative charged state has 6. In the case of the negatively charged

form, the extra electron may come from other nitrogen atoms found in the lattice, as well as other

defect sites [Gali2008, Gali2009]. The wavefunctions are highly localized around the defect and

as such it is possible to think about the NV as an artificial atom within the diamond host.

1.3 Group Theory Treatment of Electronic Orbitals

When describing molecular and solid state systems, it is useful to consider the symmetry

of the system in determining its quantum mechanical properties. The reason is because if a

molecule posses some kind of symmetry element that means it can be rotated or reflected in such

a way as to look unchanged. Consequently, characteristics of that molecule must also transform

in ways that make it appear as though nothing has changed. Knowing what symmetry elements a

specific system has can provide useful information in determining whether or not certain

spectroscopic transitions can be observed. Two of the most commonly used examples are bond

vibrations and electronic structure. By considering the symmetry of a given molecule, it is

possible to determine that certain vibrational modes will be Raman active and that other modes

will be IR active. Group theory can also be used to determine electronic structure, because the

wavefunctions for a molecule must also transform with the appropriate symmetry.

The formalism for this analysis comes from group theory. [Cottonl990, Kettlel995,

Bernath2005]. In group theory, molecular systems are described by the symmetry elements that

system has. There are 5 symmetry elements that a given system can possess, each of which is

represented by a different symbol: a mirror plane (-), an n-fold rotation axis (Cn), an n-fold

improper rotation axis (Sn), an inversion center (i), and finally the identity (E). A given system

possesses one or more of these elements, and the set of all symmetry elements that a system

possesses defines its point group. Point groups are represented by different symbols that indicate

something about the number and type of symmetry elements that make up the point group.
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Although there are an extremely large number of molecules and systems, the total number of

point groups in 3D is finite and can be tabulated. Once the point group of a system is known, a

character table can be used to learn what unique symmetry elements it has.

Symmetry elements can also be represented mathematically using matrices. This can be

thought of intuitively because symmetry elements transform one point in 3D space to another

point. For example, a mirror reflection across the xy-plane will take a point at +z to -z. This

naturally lends itself to writing down

1 0 0
o7 = 0 1 0

0 0 -1-

Matrices for all symmetry elements can be generated by carefully tracking how the points move

under the corresponding symmetry operation. When considering molecules with multiple atoms,

it is not sufficient to consider only how the coordinates change -- one must also be aware of how

the atoms move as well. This means that for a molecule with N atoms, the matrix for a symmetry

transformation will be 3N x 3N in dimension. While this might seem like it adds complexity to

the group theory formalism, there is a simple way of keeping track of everything will be

described later.

The ideal diamond lattice depicted above has tetrahedral symmetry, and belongs to the

point group Td. The Td point group has a number of symmetry elements, such as C3 axes, mirror

planes, and improper rotation axes. At the NV center, the substitution of the nitrogen and the

presence of the adjacent vacancy breaks the tetrahedral symmetry of the diamond lattice.

Consequently, its symmetry is reduced changing the point group from Td to C3v, which also

reduces the number of symmetry elements. The character table for C3, is shown below:

Table 1.1: Character Table for C3, Point Group

E 2C 3  3Gv
A1  1 1 1 z x2+y2
A2  1 1 -1 Rz
E 2 -1 0 (x,y). (Rx, R) (x2+y2, xy) (xz yz)

The top row of the character table shows the symmetry elements for the point group. In this case

they are the identity, two three-fold rotations, and three mirror planes. The subscript v on the
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mirror planes signifies that the mirror planes are parallel to the highest n-fold rotation, in this

case the C3 axis. Note that in this case there is only one C3 axis. The 2 represents the fact that the

rotation around this axis can be either clockwise or counter-clockwise. Additional C3 axes would

be marked as C3 ', C3", etc. The other rows give the irreducible representations for the C3, point

group. The irreducible representations in essence make up the basis set for a particular point

group. Properties like the dipole moment must transform like irreducible representations. The

general mathematics that are used to formalize them can be found in the references listed above,

and will be omitted here. Instead, I will describe how the irreducible representations work for

this particular case. In short, there are 3 representations that describe the C3v basis. The A1

representation has a character of 1 under each E, C3 , and a,. This means that the A1

representation is symmetric with respect to the molecule. Consequently anything in the NV

center that transforms like Ai must be this way as well. For example, if there is a wavefunction

that has Ai character, it must be symmetric with respect to all three transformations in C3v. In

this case, such a wavefunction would be cylindrically symmetric. The A2 representation has a

character of 1 under E, and C3, but has a character of -l under av. This means that it is symmetric

under the E and C3 transforms, but changes sign under mirror reflection. Examples of shapes that

transform like A1 and A2 are shown in figure 1.2.

(a) (b)

Figure 1.2: Examples of shapes that possess all the symmetry elements of C3v. The signs of the
shapes are given by the blue and red colors. Red indicates a positive sign while blue indicates a
negative sign. (a) In this situation, the sign of the shapes remains unchanged under each of the
symmetry operations of C3, and consequently this has the A1 type symmetry. (b) Here, there is
no sign change under the C3 rotations, but because half of each oval is now of opposite sign, the
mirror reflections now cause a sign change to occur, meaning that this structure now possess A2

symmetry.

The E representation is very different from either the A1 or the A2 representations. The

fact that is has a character of 2 under the E symmetry element means that it possesses a double-
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degeneracy, and anything that transforms like E will be doubly degenerate. This degeneracy can

be lifted by distorting the lattice in some way as to break the C3, symmetry.

Having discussed that, we can now use what we know to get a picture of what the single-

electron orbitals for the NV center look like. To do this, we first realize that these orbitals are

going to be constructed from the dangling bonds that go into the NV center. Next, we pose the

following question: for each of the symmetry operations in C32, how many of the bonds stay in

exactly the same place? Another way to think of this is as follows: if we could somehow tag each

of the dangling bonds with a label -- a, b, c, and d -- under each symmetry operation how many

of the labels stay the same? For E, all four stay the same. For the C3 rotation, only one of them

will stay the same, and for the Tv, 2 remain the same. From this, we can say that the

wavefunctions for NV have a representation, F, which has characters of 4, 1, and 2, for E, C3,

and av.

E 2 C3  3 av
F 4 1 2

Looking at this we can see that it does not match up with any of the irreducible

representations for C3, encountered before. This just means that F itself is not an irreducible

representation, but that it can be described as a sum of irreducible representations. Checking

which irreducible representations are present is done by taking the characters of those irreducible

representations and seeing that they sum to the representation that was generated. In this case,

F=2A1+E, as can be seen through the following

E 2 C3  3 av
2A 1  2 2 2

E 2 -1 0
F 4 1 2

This analysis shows that there are 4 different single-electron state, two of which

transform with Ai symmetry, labeled as a1(l) and ai(2), and a doubly-degenerate set of states

that possesses E symmetry, which are labeled ex and ey. Through the use of DFT calculations

[Gali2008, Goss1996], as well as through considerations of the electron-ion interactions

[Lannoo 198 1], the states can be ordered from lowest to highest as follows: a1(1) < a1(2) < (ex,ey).
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The last step of our analysis is to see what the multi-electron states look like. To do this,

we must first populate the single electron states and determine the representation of that state. In

the ground state, the six electrons of the NV center will occupy the the orbitals as

[a1( 1)]2[ai(2)]2 (exe) 2. The overall representation of this new state is obtained by multiplying the

characters of the partially filled states, in this case ex and ey. This means that for the multi-

electron state, the representation, Fm, is given by

E 2C 3 3ca,
Fm 4 1 0

This can be broken down into irreducible representations as before.

A1
A2

E
FM

E 2 C3
1 1
1 1
2 -1
4 1

3 av
1

-1
0
0

From this analysis, we conclude that the there are four possible multi-electron states, one

of which transforms as A1, one which transforms as A2, and a doubly-degenerate pair that

transforms as E [Manson2006]. Also of interest is the excited state configuration of the NV

center. The first excited state is obtained by promoting an electron from the ai(2) single electron

state to either the ex or ey states, generating the following configuration: [a1(l)] 2[ai(2)] 1(ex,ey) 3.

The representation of this state is E, as the partially filled states are of A1 and E type.

(a)

(ex, ey)

a,(2)

a(1)

(b)

a.(2)

a.(1)
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Figure 1.3: Filled orbitals for the (a) ground state and (b) first excited state of the NV center.



Finally, we consider the electrons themselves, which have thus far been omitted from the

discussion. The spin states for this effectively two-electron system can be described as being

either singlet states or triplet states:

r, Ia 2a ) m , = -
T)= |aj1p2)+ pI/a2 ) M, =0

pip1,2) M, = +1

S)= I ap 2 ) - 1 a 2 ) mS =0

The two electrons in this system couple together to from either triplet or singlet states. The

ground state configuration can be deduced by considering the effect of the Coulomb interaction

between the electronic states [Maze201 1]. By applying the Hund's Rule of maximum spin

multiplicity, which states that the ground state is the state with the highest spin multiplicity

(2S+1), the ground state is determined to be a triplet state. In addition, because the overall

wavefunction must be antisymmetric, since the electrons are fermions, the spatial configuration

of the electrons should be antisymmetric. This predicts that the NV ground state is overall 3A2.

For the work I will discuss, the most relevant states for discussing throughout this work are the

ground state, which is represented as a 3A2 state, and the first excited state which is a 3E state

[LenefBrownl996, LenefRandl996]. Additionally, there are singlet levels that are present

between the ground and excited states. However, there is currently much contention over the

ordering of the energies between them, and such discussions are beyond the scope of this thesis. I

therefore assume that there is one 'A1 state between the ground and excited state. The full energy

level diagram is given below.
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Chapter 2 Optical Set-up Details and Preliminary NV

Experiments

2.1.1 Background of Confocal Microscopy

Since the late 1980s [Minskeyl988], the use of confocal microscopy has led to the

growth and development of many different fields in science. In a sense, confocal microscopy can

be thought of as the most inefficient way of taking a picture. A confocal image is built by going

to a certain spot and shining light onto that one spot. If something in that spot is excited and

fluoresces, the microscope collects the light from that one particular place and records the

amount of light. Next, the sample is moved a tiny amount and light is collected from this new

point. By continuously moving, a confocal image is built. The use of high quality optical

elements, high precision stages, as well as spatial and spectral filters enables confocal

microscopy to generate very nice, high resolution images. This technique has found many

different applications in biology, chemistry, and physics [Moerner2002], and of course on NV

centers [Gruberl997].

The theory of confocal microscopy can be thought of from a ray optics perspective or a

fourier optics perspective. The explanations that I give here borrow from both and utilize

different formalisms developed in Born and Wolf [BornWolfl999], Saleh and Teich

[SalehTeich2007], Goodman [Goodman2004], and Haus [Hausl984]. There are four major

components to the confocal microscope: the coherent light source, the objective lens, the

dichroic mirror, and the pinhole in the image plane. The light source, in my case a laser, provides

optical excitation to a small portion of the sample. The objective, which can be thought of as a

lens with a very high numerical aperture, or NA, focuses the incident light to a very small region

of space where the sample is located. The dichroic mirror reflects light of a specified wavelength

while transmitting light of a different wavelength. Finally, the pinhole in the image plane

spatially isolates the light that comes back from the sample.

A general schematic of the confocal microscope that I used in my experiments is show in

figure 2.1. In this case, light from the laser was directed into the back of the objective. As stated

above, the objective can be thought of as a lens with a very high NA. The NA of a lens is given

by the following formula:
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NA = n sin arctan (2.1

In this case, n is the index of refraction of the medium, f is the focal length of the lens, and D is

the diameter of the beam when it passes through the lens, which obviously cannot exceed the

diameter of the lens itself. In the limit that the focal length of the lens is much larger than the

diameter of the beam, the final part of the previous equation can be simplified to read

NA = n sin arctan ( D )n
2f) 2f

(2.2)

From Laser

High NA Lens

To Detector

Fluorescent
Sample

Dic h roic
Mirror Pinhole

Figure 2.1. Cartoon representation of confocal microscope used in NV experiments. This figure
also serves to illustrate the essential features of a confocal microscope.The light from the laser
is reflected off the dichroic mirror and focued using the high NA (ie. objective) lens. The
sample sits at the focus and when excited, fluoresces. This fluorescence is collected by the lens,
and passes through the dichroic mirror, because the wavelength of the emitted light is shifted in
frequency from the excitation. It is this focused through a pinhole to spatially filter the beam

20
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The use of a high NA lens is important because the NA it is related to the minimum spot

size of the beam after it has been focused through the objective. For light with wavelength {, the

minimum spot size of the beam, do is given by

do = 0.61A (2.3)
NA

and so consequently the larger the NA, the smaller the spot size.

The sample itself is ideally placed on some kind of substrate - glass, for example - and

sits at the focal plane of the objective. In order for the sample to be detected through the

microscope, it must fluoresce after absorbing light from the excitation source. Typically, the

emitted light is at a longer wavelength than the excitation, and can be spectrally separated by the

dichroic mirror. In the experiments that I will discuss, the dichroic mirror reflected the excitation

beam and transmitted the reflected light, but obviously this need not be the case.

The emitted light is then focused through another pinhole to spatially filter light that is in

the focal plane of the objective. A rigorous explanation of this can be understood through the use

of Fourier optics, but a simple way of understanding what is going on here is by thinking of this

as a two-lens imaging system. Such an imaging system consists of two lens with focal lengths f,

and f2 that are spaced apart by fi + f2. The reason that this is defined as an imaging system is

because if you place a point at height h, a distance f, away from the first lens, that point will be

mapped onto a point with height h2 = hI at a distance f2 away from the second lens. A

cartoon representation is shown in figure 2.2. In this way, the focal plane of objective and the

focal plane of the lens focusing the emission are said to be equivalent or conjugate planes. There

are two important cases to consider: light that is coming the focus of the objective and light that

is not. Light that is at the focus is directly in the middle of the lens, and effectively this means

that hi = 0. This means its height, h2, at a distance f2 from the second lens is also zero. If the

pinhole is correctly aligned, it lies along the center of the lens, and so only light from the focus

makes it through.
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Figure 2.2. (a) Illustration of a two lens, 4f imaging system using ray-tracing optics. In this case,
hf

the red spot at height hz is mapped onto a height h2. The ratio -2 = 12 = M is the magnification
hi f,

of the imaging system (b) When the rays originate right along the center axis of the imaging
system, there is no change in height at all. Consequently, when the pinhole is aligned properly,
this beam passes through the open aperture. (c). When the rays originate off-axis, the
corresponding spot after the second lens is not in the open aperture and the beam is blocked.

The resolution of the microscope can be quantified through the point spread function,

PSF, of the imaging system. The point spread function is a measure of the spatial intensity

distribution of the beam, and this function varies both laterally, along the beam propagation axis,

and radially, in the plane perpendicular to the beam propagation axis, depending on the input.

For the case of a collimated beam entering the back of the of the objective, the radial distribution

of the point spread function is given by

PSF = P(r) = 2 (2.4)
a cr
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4,iNA
where a = and the function J(x) is the Bessel function of the first kind. To build an

intuition for what the point spread function is, think of it as the response of the imaging system

to an infinitely small emitter at the focal point of the objective. In the ideal world an infinitely

small emitter maps on to an infinitely small point. However, because a lens with a finite NA

cannot collect all the emitted light, this turns out to not be the case. In this case, an infinitely

small emitter returns an intensity distribution given by the equation above. The confocal image,

I(x,y), that is actually obtained by scanning over the sample can be determined by taking the

convolution of the PSF with the sample. In math, this would be represented as

I(x,y)= JJP(x - xO,y - yo)f(x0,yO)dxOdyO (2.5)

where f(x0 ,y0) represent the spatial distribution of the fluorescent spots on the slide. For the case

of the NV center in the confocal microscope, the NV center itself is much smaller than

dimensions of the PSF, and consequently, it can be approximated as a Dirac delta function.

Using this, the above equation can be simplified to say

I(x,y) = P(xo,yo) (2.6)

which is equivalent to shifting the point spread function to the location of the NV center.

There are a few experimental considerations that should be discussed before continuing.

In the ideal case, the dichroic mirror does a perfect job of reflecting some wavelengths and

transmitting others, but this is obviously not so. There is always some imperfection in the

dichroic mirror and some amount of excitation light which makes it to the detector. While

dichroic mirrors can be designed to have an optical density of 6, meaning that for every 106

photons that hits it only 1 gets through, the fact remains that often there are many photons at the

excitation wavelength that are reflected and do pass back through the dichroic mirror.

Additionally, the detectors used in these measurements are often sensitive to single photon

numbers, and so these can be measured. Although this seems like it should be a huge problem, it

turns out not to be the case. When aligning the microscope, I often used a spike in counts that
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came from the reflections at the interface between glass slide and air to determine whether or not

I was close to where I expected there to be NV centers.

2.1.2 Stationary beam version

During the course of these experiments, two different versions of the microscope were

used. Both of these versions are represented schematically in figure 2.3. In both cases, the set up

can be described in three different regions. The first region was used for beam modulation and

beam control. A continuous wave, CW, diode laser which emitted 532 nm (CNI DPSS MGL-III-

532 LD Pumped All-Solid-State Green Laser) light provided a source of optical excitation. The

laser works by using the emission from a neodymium yittrium-aluminum-garnet (Nd:YAG)

crystal and frequency doubling it. This produced a CW 532 beam. An Omega Optical laser line

filter (XLK 08) which passes only 532 nm light and blocks any stray 1064 nm light was placed

after the output of the laser to make sure that no 1064 got through. When the beam exits the laser

it was reflected off several mirrors and eventually focused into the acousto-optic modulator, or

AOM (Crystal Technologies AOMO 3200-144). As discussed later, there were a set of

experiments that required the laser to be pulsed on and off on the nanosecond timescale, and for

this reason it was necessary to modulate the beam intensity using the AOM, which has a rise

time of 10 ns. When the AOM was turned on, the input beam was diffracted and the first-order

diffraction could be spatially selected with the use of a circular aperture, as shown in figure 2.3.

After this, the beam was magnified using a 4x telescope before it was coupled it into a single

mode fiber using a cage system from Thorlabs (KT1 10 - Fiber Launch System). The input beam

was focused using a lOx objective (RMS1OX - 1OX Olympus Microscope Objective) into a

single mode fiber. There are two purposes for using the single mode fiber. The first is that it

effectively decouples any alignment in this area from subsequent areas of the set up.

Consequently, realignment can be done in the first part of the setup without affecting the

alignment later, making it easier to add or remove elements. The second is that the use of a single

mode fiber produces a beam with a nice spatial profile.
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Figure 2.3. Schematic of optical setup used in experiments.

The second region of the setup was where the scanning of the sample happened. In both

versions of the setup, the beam was recollimated after exiting the single mode fiber using a

recollimator (F280FC-A from Thorlabs) and pair of lenses. Next a Thorlabs (BP108 1") 8:92 ::

R:T pellicle beamsplitter was used to send 8% of the total power to a power meter to enable

simultaneous measurement of signal intensity and power if necessary. The beam then reflected

off the Omega Optical dichroic mirror (XF2016 560 DCLP) and was directed towards a 45-

degree mirror, which reflected the beam so that it is propagating perpendicular to the plane of the

optics table. A rectangular aluminum breadboard with a whole milled through its center was
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elevated using four 1.5" posts from Thorlabs (Thorlabs P8 01.5" Mounting Post, Length=8",

1/4"-20 Taps). The posts were mounted to the table and this provided a raised platform where the

sample and the objective were located. The 45-degree mirror was placed such that it was roughly

centered on the milled hole so that the beam passed through the center of the hole. To the

underside of the breadboard a Newport 3-axis stage (462-XYZ-SD) was mounted such that the

adjustable face was directed towards the opening. A custom made angle piece was mounted to

the Newport stage. One side of the angle bracket had holes drilled to match the Newport stage.

The other portion of the bracket was fitted with a lens tube with internal SMi threads. The high

NA objective lens, either an air objective (Olympus UPLSAPO 40X2, 40x air objective, NA

0.95) or an oil-immersion objective (Olympus UPLFLN 100X02, 100x oil objective, NA 1.30,

WD 0.20 mm), was screwed into the lens tube using an SMi to RMS adapter. The sample itself

sat on a custom made aluminum sample holder, which was then screwed into a 3-axis piezostage

(PI P-527.3CL) capable of translating 200 prm in X and Y and 20 pm in Z when operating in the

closed loop mode. In this configuration, the objective and the beam remained stationary while

the sample was translated in the x and y directions. The sample could be brought in and out of

focus by adjusting the objective manually using the 3-axis Newport stage, and then using the

piezostage for fine scanning.

When the focused beam hit the sample and it and fluoresced, the light traveled back along

on the same path. Instead of reflecting off the dichroic mirror the majority of fluoresence passed

through it because the wavelength has been shifted and entered the final portion of the set up

where the signal detection happened. The back-scattered beam wass split by a 45:55 :: R:T

pellicle beam splitter (Thorlabs BP145B2) . This sent 45% of the light toward one detector and

transmitted 55% to the other. The two beams were reflected off two mirrors and then focused

into single mode fibers using Fiber Port Collimators (Thorlabs PAF-X-18-B). The single mode

fibers were connected to avalanche photodiodes, or APDs, (PerkinElmer SPCM-AQRH-13-FC)

via single mode fibers. The APDs were capable of counting single photon evens and converting

them to electrical signals in the form of TTL pulses which could be detected by connecting the

output of the APDs to a National Instruments Shielded Connector Block (NI DAQ BNC 2121),

which was connected to a National Instruments Digital Counter Card (NI DAQ PCI-6602). In

some cases the transmitted beam was focused through a lens to focus onto a CCD (Waton WAT

120N+) which was used for alignment and could be used, in principle, for wide-field imaging.
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The majority of the setup was fairly straightforward to align. One particularly challenging

area was the alignment of the fiber port collimators, and so I will briefly summarize the

procedure that I used here. The first step was to align the 532 nm almost to the point of where the

objective was located. Instead, however, I would send the beam off several mirrors just to have

the beam propagate a significant distance. In order to set up the FiberPort collimators, what

worked best was to use another fiber coupled laser source at -630 nm (Thorlabs S1FC635 Fabry-

Perot Benchtop Laser Source, 635 nm, 2.5 mW, FC/PC) and plug that into the back of the fiber

port. This allowed me to correctly position the lens in the fiber port to make sure that the beam

was collimated. It also helped to guarantee that the incoming beam, which should be collimated

as well, would couple into the single mode fiber with fairly high efficiency. After that had been

done, I would then use this as a source of 630 nm light, which would pass through the dichroic,

and I would overlap the 532 nm and the 630 nm beams over a long distance. This procedure

would be done with both of the fiber ports to ensure that they were both aligned fairly accurately.

Once they were close, the 532 nm light alone was sufficient to align into the back of the

objective. Even with this, it was necessary to make fine adjustments, which I will describe in

later sections.

2.1.3 Stationary sample version

The two versions of the setup were identical in the first region. The differences come in

the last two regions where the sample was scanned and where the signal is detected. In this

version of the setup, after the beam was reflected off a dichroic mirror, it was directed to a set of

scanning galvano mirrors (Cambridge Technologies Galvano Scanning System). In order to

move the scanning mirrors, a voltage was applied to each axis separately, which was done

through the use of a National Instruments Data Acquisition Card (NI DAQ PCI-6259). When the

input to the scanning mirrors was set to zero volts, they act as a mirror which reflects the beam

90-degrees. The beam was then sent through two lenses with focal lengths of 100 mm and 150

mm, providing a magnification of 1.5x. They were separated from each other by the sum of the

two focal lengths, or 250 mm, on an aluminum block. The aluminum block was free to move

while keeping the distance between the two lenses fixed.

The purpose of the lenses was two-fold. First, they were aligned such that they directed

the beam into the back of the objective regardless of the tilt angle produced by the scanning
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mirrors. There were two ways that the alignment of this was done. First, the position of the

objective was fixed and the distance between the first lens and the scanning mirrors could be

adjusted. To make sure that proper alignment was achieved, the laser power was measured at the

position of the back of the objective with the galvo mirrors set to zero tilt on both x and y. The

galvo mirrors were then set such that the beam propagated at a different angle. The lenses were

positioned by moving the aluminum block until the power is optimized. Alternatively, if the

distance, d, between the scanning mirrors and the first lens were known, then for focal lengthsfi,

f2, and magnificaton M=f 2/f1 the distance from the back of the second mirror to the objective, d2,

could be calculated using

d2 =f2 + M(f2-Mdy) (2.7)

At this position, the beam reached the back of the objective at the same place regardless of the

tilt angle that may have been set by the scanning mirrors. Again, to ensure proper alignment, the

laser power was measured at the location of the back of the objective with the galvo mirrors set

to some position other than zero in x and y. Finally, the position of the objective would be

changed until the power was optimized. Practically, I found that the first alignment procedure

worked much better than the second. To scan the sample, a voltage would be applied to either the

x or y axis of the scanning mirrors. As mentioned above, this changed the tilt angle of the

mirrors, which in turn changed the beam angle. Consequently, the beam would reach the back of

the objective at a slightly different angle, and this would adjust the position of the spot at the

front of the objective. By changing the tilt angle of the excitation beam using the scanning

mirrors, the position of the focused beam could be moved while the sample remains stationary.

The sample was held in a similar configuration as it was before. A square breadboard was

used in place of the rectangular one, and the objective was mounted to a one-axis piezosystem

(Piezosystem Jena MIPOS 100) that allowed the objective to translate vertically a total of 100

pm. This was used for fine focusing of the objective. A large block of aluminum with holes

tapped for 1/4-20 screws was affixed to the top of the breadboard to provide stabilization and for

mounting the sample. The sample itself sat in an aluminum sample holder which was fixed to the

aluminum block and could move manually along one axis. Since the beam wass adjusted in this

configuration, it was not necessary for the sample to be mobile.

When a portion of the sample hits the beam and fluoresces, the light travels along on the

same path. Just as before, instead of reflecting off the dichroic mirror the majority of
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fluorescence passed through it and entered the final portion of the set up. In this configuration all

of the back scattered light was sent to a single Fiber Port Collimators. After focusing the beam

into a single mode fiber, the beam was split using a single-mode fiber splitter (FiberWDM -

Visible wavelength division multiplexers). This replaced the 45:55 pellicle beamsplitter that was

used in the previous version of the setup. The signal was measured using the same Perkin Elmer

APDs from before.

All of the equipment in these experiments was controlled from a desktop computer using

National Instruments LabVIEW software.

2.2.1 Initial Confocal Microscopy Measurements

In order to begin to test the confocal setup, it was necessary to use a calibration sample

rather than just trying to look for NV centers in bulk diamond or in nanodiamonds, since after the

initial alignment it was likely that things would need to be fine-tuned in order to optimize

performance. To this end, a coverslip with gold patterns deposited onto it was used as a standard

for optimizing performance. Although gold does not fluoresce in the bandwidth of the

microscope when excited with 532 nm light, it is highly reflective and the amount of extra

reflected light is more than enough to be detected above the noise floor of the images.

The standard glass slide had two different sizes of structures. The larger ones are shaped

like either a "C" or an "L". The smaller ones on the other hand are designed as unique markers.

In this way, they could be used to locate an NV center in a nanodiamond that had been found

previously, or for repositioning the slide in the case of drift during the course of an experiment.

In general, I found it useful to use these gold markers as a first step in not only measuring

images, but also doing fine adjustments to the detectors. As I mentioned above, the alignment

procedure used involved overlapping the 532 nm beam and the 630 nm beams over long

distances of the optics table. Even after all this was done, I initially found that when I went to

measure images I could improve the amount of light that was collected by making slight

adjustments to the mirrors that directed the beam into the Fiber Ports. What worked best was to

first go to one of the large gold markers and then adjust until the counts were as high as possible.

Then, move to one of the smaller markers and further optimize on those. Using only modest laser

power (< 50 mW) it was possible to get ~ 105 counts per second (CPS) on the APDs.
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After performing this optimization, the next step was to measure and identify single NV

centers in nanodiamonds. At the beginning, two different avenues were pursued for preparing

nanodiamond samples. The first was dropeasting a commercial solution onto a 25 x 25 mm glass

coverslip (Corning@ 25x25mm Square #1 /2Cover Glass Product #2870-25). The other approach

involved spin-coating at several hundred RMPs onto a glass coverslip, similar to procedures that

are done to prepare quantum dots. Initially, I was unable to find NV centers at all in my confocal

images on the spin-coated samples. The undiluted dropcast, on the other hand, often showed a

few bright spots, but the counts on these spots were quite high, and other methods for

determining if these were single NV centers (which I will describe later) all suggested that the

emission was not coming from single emitters. At the time it seemed as though there was some

form of aggregation of NV centers so that there were between > 5 NV centers in a cluster.

However, it seemed statistically unlikely that this would keep happening. Methods such as

sonication were pursued to try to reduce the amount of aggregation, but these did not appear to

be successful. Another issue was that the when the sample was dropcast onto the slide, it would

not spread uniformly over the coverslip.

In order to resolve these issues, a new procedure was developed for preparing

nanodiamond samples. First, the commercial solution was diluted 100:1, as it was noticed that

looking at a smaller region of a confocal image also showed discernible spots that were dimmer

than the ones in the large scans. Additionally, it was necessary to clean the cover glass using

soapy water, then drying it with air from the hood, and finally, cleaning the slide with ozone for

~10 minutes. This was done by placing the cover glass into a machine that ionized the air using

UV light. The ionized air generated ozone, which would react with the surface of the glass and

leave a cleanly terminated surface. Once all of these steps had been completed, nice

nanodiamond samples were routinely prepared by dropcasting the diluted nanodiamond solution

onto the clean cover glass. Representative images of the dropcast films before and after dilution

are shown in figure 2.4. Using the bright NV Centers in the confocal images, it was possible to

further optimize the system. When the system was well optimized, bright single NV centers in

nanodiamonds produced count rates of approximately ~ 2 x 104.
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11040 Figure 2.4. Confocal images of dropcast
-nanodiamond solutions. (a) 25x25 pm2 image.

Here the solution is undiluted, and only a few
bright spots are visible. However, the spots are
too large and the counts seem too high to be
single NV centers. (b) A 4x4 pm2 image, that
is a zoomed in version the lower left corner of

- (a). After rescaling it is apparent that there are
bright centers visible. (c) A 25 x 25 pm image
after diluting the commercial solution 100:1 in
water. Here there are many bright NV centers
which much lower counts, suggesting that they
are single NV centers.

2.2.2 Single Emitter Determination

After being able to find bright spots in the confocal images, these spots had to be

identified as NV centers. The search began by first identifying if the light that was being detected

came as the emission from some kind of emitter or if it was just a reflection off of some dirt.

This was done by measuring an antibunching trace [Kurtsiefer2000, Beveratos2001,

Brouri2000].

Antibunching is a phenomenon of single emitters which have a finite emission lifetime.

The way that it can be thought of is as follows: When you first excite an NV center, it absorbs

the light and goes into some excited state. It then lives in that state for some time and later

fluoresces and relaxes to its ground state. Only after this process can it absorb another photon
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and later fluoresce. Consequently, if you were to watch the photon stream that comes back from

a single emitter and look at the number of emission events spaced apart by some interval T, you

would find that you never get emission events that are spaced apart by T = 0. However, if you

waited until T = 1 ns, you would see that there are some very small number of photon events that

are spaced apart by that amount of time. As you get to larger and larger T, the number of photon

events that are spaced apart by increases. In general the amount of signal, g(), that is detected

goes as

g(r) oc 1- exp(- r /tfl (2.8)

where tfl is the fluorescence lifetime of the emitter. After a while it doesn't matter how long you

wait, and the number of photon events is always the same. This can be converted to a probability

by normalizing to the long time behavior, and it is very intuitive to think of it this way. The fact

that the probability goes to zero is the phenomenon of "antibunching."

Measuring an antibunching trace is the same thing as making the measurement that I just

described. Since the APDs are sensitive to single-photon events, these were used to register the

time of the photon arrivals. The NI DAQ card is too slow to time the photon events, and so the

PicoHarp (PicoQuant PicoHarp 300) was used to make this measurement. The Pico-Harp tags

the time difference between successive photon events and is capable of tagging single photon

events on the picoseconds timescale. It then builds a histogram of the number of events that are

separated by certain time intervals. This time resolution is faster than is needed for us, as the

fluorescence lifetime of the NV center is -10 ns [Collins1983]. The signature of a single emitter

is its response at T = 0 should be zero. If the emitter is a single emitter, then the probability of

there being events spaced apart by T = 0 be zero. If there are two emitters, then it is possible that

you could have two emission events spaced apart by T = 0, however, it is half as likely as having

photon events spaced apart by much longer times. Consequently if you have two emitters then

g(T = 0) = 0.5. In general, the T = 0 behavior for n emitters is given as

g( 0)= (2.9)
n

Several examples of antibunching traces are shown in figure 2.5. It is worth nothing that

because of the background reflection and the fact that there is some noise to the APDs, the signal
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at t= 0 is not exactly zero. Instead, it is sufficient to notice that for single emitters the signal is

<< 0.5 at T = 0. In this regime the NV center follows sub-Poissonian statistics because the

probability of detecting photon events is less than 1.
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Figure 2.5. Antibunching traces.
The number of NV centers at
each spot increases from top to
bottom, as evidenced by the
increase in the dip relative to the
dashed line at 0.5. The top trace
drops well below, indicating a
single emitter, the middle trace is
at approximately 0.5, while the
bottom trace is clearly above it,
indicating more than 2 emitters.
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While the antibunching traces of the NV center show the typical t = 0 and long time

behavior, the behavior right after t= 0 is quite different. Indeed, when normalized the behavior

after around 50 ns exceeds unity and the NV center is following super-Poissionian statistics. This

behavior is known as "bunching" and intuitively what it means is that the NV center is more

likely to emit at slightly longer times than its fluorescence lifetime than in the long-time limit.
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The reason for this is because there are two mechanisms by which the NV center can relax to

ground state. One of them, the faster one, is by fluorescence and is radiative, meaning that it

leads to the emission of a photon. The other pathway is non-radiative, and does not lead to the

emission of a photon. For each time the NV center is excited, in the short time limit any

relaxation that happens is almost guaranteed to be happening because of fluorescence since the

fluorescence pathway is much faster (10s of nanoseconds versus microseconds). In the longer

time limit the NV center has two options - either emit a photon or not. This means that the

number of photons emitted after 1 ps is going to be less than the number of photon events that

are emitted with in the first 15 ns. A example showing a clear example of this behavior is shown

in figure 2.6.

1.4 ' ' ' I 1 ' Figure 2.6. Antibuncing traces.

1.2. (top) This trace shows clear sub-
Poissionian statics at t = 0 which
indicates that the signals are
coming from a single emitter.
(bottom) This trace shows strong

* 0super-Poissionian statistics right
after t 0.
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2.2.3 Continuous Wave Microwave Experiments

The previous measurements were used to identify fluorescent single emitters that were

likely single NV centers. While these experiments were sufficient to see that, measuring the spin

properties of the emitter was necessary to confirm that the signal was coming from an NV center.
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This was accomplished by measuring the Optically Detected Magnetic Resonance spectrum, or

ODMR spectrum, of the NV center [Loubser1978, Balasubramanian2008].

Before describing the microwave experiments on the NV center, it is worth it to first

examine its spin Hamiltonian. Although there are many terms, the relevant ones for this analysis

written in reduced units are

HNv =D$+E($ -5)+yZ, +5AI (2.10)

The first term DS2 describes the zero-field, or crystal field, splitting of the NV center. This

represents the splitting of the energies of the spin states in the absence of any field, electric or

magnetic. The next them, E(S - S), is related to the energy splitting due to an electric field,

which is also known as the Stark-Splitting. This field can be caused by either an external field

[VanOortl990], or also caused by internal strain due to the lattice. The next term rBzS

represents the Zeeman-Splitting, which is the change in the energy levels due to an applied

magnetic field. The final term is the hyperfine splitting. This includes information on how the

energies of the spin states change in the presence of nearby paramagnetic nuclei, such as 13c,

14N, or 1N.

As described in chapter 1, there are various electronic levels to the NV center. The spin

states of ground and first excited states are both triplet states, meaning that the allowed values for

ms = { 0,+ 1,- 1}. Because the NV center is not spherically symmetric, it turns out that spin states

are not all degenerate. The ms = 0 lies lower in energy than the ms = +1 or ms = -1 levels. These

two levels are degenerate, however, in the absence of an applied electric or magnetic field, and

so using an microwave field that is tuned to the resonant frequency of the transition it is possible

to drive a transition between the ms = 0 and the ms = +1 state, for example. While this might not

appear to make any difference, it turns out that the NV center has different fluorescent rates

depending on whether or not it is in the ms = 0 state or not. The reason is because in the

electronic excited state, the ms = +1 or ms = -1 states have increased probability of undergoing an

intersystem crossing to a near-lying singlet state via spin-orbit coupling [Stoneham200l]. This

singlet state does not relax via fluorescence, but rather non-radiatively. The ms = 0 state also

undergoes a similar non-radiative relaxation, but at a slower rate. Incidentally, it is this process
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that causes a decrease in the photon count rate at long times which leads to the super-Poissionian

statistics that are observed in the antibunching traces.

Measuring an ODMR trace begins by first locating a single emitter using the

antibunching measurement described above. The next step was to sit on the single NV center and

apply an AC magnetic field over the sample. When the frequency of the magnetic field matched

the transition frequency, the spin state of the NV center would change from ms = 0 to ms = ± 1.

Measuring ODMR signals proved to be quite a challenging endeavor. The way that eventually

worked for me was the following: a piece of cover glass with nanodiamonds on it was placed

onto a piece of PCB board. This board had been custom designed such that a small (~ 25im

diameter) wire could be paid overtop of the cover glass. An AC current could then be passed

through the wire, and this current in turn generates an AC magnetic field. Changing the

frequency of the AC sources changes the frequency of the magnetic field, and so it was possible

to tune the applied frequency. In the actual experiments, the current source was a Hittite Signal

Generator (Hittite HMC-T2100) capable of generating signals with frequencies ranging from 10

MHz to 20 GHz. The output was amplified by a power amplifier (Minicircuits) and then

connected to the PCB board using SMA connectors.

In order to detect signals that were induced by the presence of the magnetic field, the

fields had to be gated in some controlled way. This was done through the use of a mixer and the

output of the DAQ counter card. The DAQ card is capable of putting out a square wave signal at

a well defined frequency and duty cycle. The mixer takes the input from the DAQ card and from

the HMC-T2100 before amplification and multiplies them. When the voltage coming out of the

DAQ card is low, the mixer does not pass any current through, and consequently there is no AC

field at the sample. When the voltage coming out of the DAQ card is high, then current is passed

through and there is an AC field at the sample. In these experiments, the frequency of the square

wave from the DAQ card was set to 1 kHz and had a duty cycle of 0.5, meaning that for 500 Ps

there was no AC field at the sample and for 500 ps an AC field was present. The fluorescence

was measured during these two different time periods and the ODMR signal was computed as

Signal = 1w / AC field

'no AC field
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Figure 2.7. (a) Picture of experimental setup for measuring ODMR signals. The magnet above
the sample is used to apply a static B-field to split the ms = +1 and ms = -1 states of the NV
Center. (b) A schematic illustration of the way the electrical signals flow through the mixer and
to the sample. The output is shown on the right. When there is an AC magnetic field tuned to the
resonant frequency of the NV center, this causes a spin-flip transition which leads to a reduction
in fluorescence. (c,d) Examples of ODMR traces taken with no static field applied. Here, (c) is
an example of an ODMR trace of a single NV Center in bulk diamond while (d) is a trace taken
of an NV in a nanodiamond. The reduction of noise in the nanodiamond case is due to the
increased amount of fluorescence in the NV center.

Figure 2.7 shows images of the experimental setup as well as ODMR traces that were

collected on single NV centers. For NV centers found in bulk diamond, a single signature dip in

fluorescence occurred in the microwave, or RF, regime right at 2.87 GHz in excellent agreement

with literature values [Balasubramanian2008]. In nanodiamonds this was almost never the case,

and the ODMR spectra did not have just one resonance. Unlike bulk diamonds where the lattice

is considerably large, nanodiamonds experience much larger strain due to their relatively small
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size. This strain breaks the symmetry of the NV center and this splits the ms = +1 and m, = -1

lines. An alternate way of thinking of this is that the strain causes the electronic wavefunctions to

become asymmetric, and this leads to an electric field developing around the NV center. This

electric field then, through the Stark effect, splits the ODMR lines. In the example shown in

figure 2.7, this splitting is not visible because of the high power of the RF field because of power

broadening. As shown in figure 2.8, reducing the microwave power leads to a narrowing of the

ODMR lines and with sufficiently low-power the individual ODMR lines can be resolved.

2.8 2.84 2.88
MW Frequency (GHz)

2.92

Figure 2.8. Traces showing the
narrowing of the ODMR lines in an NV
in a nanodiamond as a function of
microwave power. The unit of power is
dBm, which represents the power of the
current prior to being amplified. At
near the maximum value of 7 dBm, the
individual lines in the trace are too
broad to be resolved, even with such a
large splitting. As the power is
decreased, the splitting becomes
apparent.

I

i

Strain is one mechanism by which the ODMR lines in the NV center can be split. The

other mechanisms include the Zeeman-effect and hyperfine coupling. In the case of the Zeeman-

effect, a static B-field (nominally alingned along the NV axis) couples to the NV-dipole moment.

Thinking classically, the NV dipole is a magnetic dipole and so it wants to align itself to the

applied magnetic field. The three spin states, ms = +1, 0, and -1 correspond to the dipole being

oriented directly along, perpendicular to, and directly against, the NV axis. Consequently, the
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energy of the +1 spin state would increase and that of the -1 state would decreas in energy, while

the zero state remains unchanged. This leads to a reduction in the frequency for the ms = 0 -+ -1

transition and in an increase in the frequency for the ms = 0 --+ +1 transition. The magnitude of

the change depends on the strength of the applied field and is scaled by the constant, y = 2.8

MHz/Gauss. Examples are shown in figure 2.9.

mS=+1

mS=O

ms=0

m =±1

mS=O 2.4 2.6 2.8 3 3.2 3.4

MW Frequency (GHz)
Figure 2.9. ODMR traces of NV centers in nanodiamonds with various B-fields. As the applied
field gets stronger and stronger, the splitting between the ms = +1 and ms = -1 lines increases.
This also manifests itself in the separation between the transitions in the ODMR traces
themselves. At zero field (blue trace) the splitting is due to strain in the nanodimaond.

The last mechanism for splitting the ODMR lines that I will discuss is hyperfine

coupling. Hyperfine coupling is caused by nearby paramagnetic nuclei. Again, thinking

classically, these nearby nuclei produce a local magnetic field which is felt by the NV center, and

consequently changes the energy levels of the spin states. The amount of the change in the

energy levels depends on the nuclei causing the change and the proximity from the NV center to

that nucleus. In all cases for the NV center, since nitrogen is a paramagnetic nucleus there is

always going to be a splitting of the ODMR lines because of it. The amount of the splitting and
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the number of additional lines depends on whether or not this is caused by N or 14N. The

number of additional lines for a nucleus with nuclear spin I is 21±1, or the spin-multiplicity of

that nucleus. For 14N, which has I = 1, each ODMR line is split into a triplet with the spacing of

-2 MHz, while for 15N, which has I = 1/2, the ODMR lines are split into doublets with a spacing

of - 3MHz [He1993(1), Hel993(2)]. This offers a unique ability to identify the type of nitrogen

atom that is used to form the NV center. The other major nucleus of interest in this is '3 C, which

also has I = 1/2. This also splits the signals into doubles, but by a much larger amount than 15N.

For 13C that are directly in the NV center, the splitting is on the order of -130 MHz and drops as

the 13C gets further and further from the NV site.

CC

0 0
U-

2.7 2.75 2.8 2.85 2.9 2.95 2.82 2.825 2.83 2.835
MW Frequency (GHz)

MW Frequency (GHz)

Figure 2.10. Examples of ODMR spectra which are split due to the hyperfine interaction. (left)
The smaller splitting, indicated by the blue lines, is caused by an a plied field, while the large
splitting, indicated with the red lines, is caused by the presence of a C in the NV center. (right)
A much smaller splitting due to the 15N in the NV center.

2.2.4 Pulsed Microwave Experiments
The last set of experiments that I performed were pulsed microwave, or RF experiments.

Unlike the previous measurements that I made, the pulsed RF experiments all focused on

studying to coherence properties of the NV center. They involved preparing and measuring how

populations and coherences interact with each other and with their perturbing environment.

[Zhang2004, Windsor1998, Holmstrom1997, Manson1996].

The first of these experiments is the classic Rabi-cycling experiment. In this experiment,

a coupling, V, is artificially introduced which couples two different eigenstates states of the zero-

order Hamiltonian, with energies Eo and E1. Effectively, this means that the Hamiltonian for the

system can be written as H = HO + . In the limit of large coupling (ie. when V - JE1 - Eol) it is

no longer reasonable to think of these two states as eigenstates anymore, and the true eigenstates
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of the system become some mixture of the two. However, once the coupling turns off, the system

can adequately be described by the initial eigenstates.

It is much easier to develop an intuition for what is going on by first going through the

math and then analyzing the results [Bernath2005, Griffiths2005]. Here, we have two eigenstates

which in the case of the NV center are the ms = 0 and m, = 1 states. In this case, the energies of

the ms = +1 and ms = -1 states have been split by a DC magnetic field so that it is possible to

address only one transition. These states have energy Eo and Ei along with corresponding

frequencies oo and oi. Initially, the state of the NV center is given by a superposition of these

two states

T) = a,(t) O)e-o' + a,(t)|1)e-"' (2.11)

In the absence of the coupling, the coefficients in this problem would be time-independent since

the states 10) and 1) are eigenstates of the original Hamiltonian. This superposition is required

to satisfy the Time-Dependent Schrodinger Equation.

HVT) = ih akI) (2.12)at

Multiplying both the left hand side and right hand side of equation 2.12 by (T I, the time

evolution of the coefficients can be shown to satisfy the following coupled differential equations

ih60 = a(01 V 0) + ai(O V|1)e'"1a' (2.13a)

ihla , = ai(1|V 1) + a,(1| VO)e'"c1o0 (2.13b)

where oio = coi - oo. In the case of the NV center, the coupling is caused by an off-axis magnetic

field interacting with the NV dipole moment, ,uNV. Hence, we can write

V =-ANvBcos(ot)= ,-PNvB(e- + e'") (2.14)
2

The important thing to know about the dipole operator in this case is that (i ul j) =0 when i f j

and otherwise the product can be written as My. This quantity is known as the transition dipole

moment. Continuing along, the equations for the coefficients can be written as
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2iai R i -io)t + eli()+)10)t)
2 (2.15a)

ai= i IaooR -i(e -O)t + ei(O)+mOio)t (2.15b)
2

where cR B is the Rabi frequency. In order to solve this, we first invoke the rotating-wave
h

approximation which allows us to throw away terms that contain o+Coio in the exponent. The

physical reason for this is because these represent waves that are oscillating too quickly to drive

the transition efficiently. By doing this and defining the detuning frequency, A= (o-oio, the

equations can be solved by plugging the derivative of the first into the second one. Rather than

going through all the details here, I present the result of solving the above two equations

WR2 2 2 ~ /ao = cos -FCO+ A s m co t eAt 2 (2.16)
2 c± 2  +A 2  2

al = i. CR 2 2[-) -ie"/2 (.7

In order to get to this point, I assumed that initially all of the population was in the ms = 0 state.

The more interesting consideration here is the time dependent probabilities of these states, which

is obtained by taking the square modulus of each of these terms. This gives

2( R 2 + 2

ao =- 2sin R2  (2.18a)
(Oi +A ~ 2

2 2 2
a,= 2 sin R t (2.18b)

of +A 2

Looking at these results, we see that the states have a conveniently simple form. The

2  
2

populations in the states all oscillate with a frequency .OR2 . Depending on the value of A,
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the amount of population that can be moved from one state to the other changes significantly.

When A is very large, the coefficient in front of the sin term is very small, and so only a little

population transfer can happen. When A = 0, meaning that the applied field is directly on

resonance, the solutions become

a I2 = cos2rwR t (2.19a)

ail2 =sin2 jt (2.19b)

In this case, it is possible to do a full population transfer from one state to another as long as the

field is applied for t = p/OR. This is known as a 2-pulse. If the field is turned off at that point, the

state has all of the population in the ms = 1 state. Should the field be applied for half that amount

of time, known as a n/2 pulse, the system will be in a coherent superposition of these two states.

For the NV center, the relative populations in the ms = 0 and Imsl = 1 states can be

determined by measuring the fluorescence after applying a B-field for a certain amount of time.

This was accomplished by gating both the laser source as well as the microwave source. Both

sources were controlled using a Spin-Core Pulseblaster card (SpinCore PulseBlaster ESR). The

Pulseblaster has 4 output channels, which can output TTL pulses of various durations with a

resolution of -2 ns. One of the output channels was connected to the AOM, and was used to turn

the AOM on for a duration of 1 ps. During this time, the fluorescence was measured and the

amount of fluorescence was recorded as a reference value. Following this, another channel

output a signal that was connected to the same mixer that was used for the ODMR

measurements. This made it possible to apply a RF field that was resonant with the NV transition

for a controllable amount of time, r. After that duration, the laser was fired again for 1 ps and the

fluorescence was collected again, this time storing the value as the signal. The final optical pulse

also serves to reset the NV spin back into ms = 0 state. This was only possible because the NV

center is known to be spin-polarized when it is excited optically. [Harrison2004] This experiment

was repeated approximately 105 times for a specific time delay, which was stepped. The change

in fluorescence was measured as

= ref (2.20)
Ing
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and plotted as a function of delay time, T. The pulse sequence and an example of a typical rabi

trace is shown in figure 2.11.

laser (532 nm) PS1S
polarization detection

microwaves T

1 ps 1PS
photon counter (637 nm) reference signal

Rabi Oscilations with O= 67.96 MHz

IL

50 100 150 200 250 30 350 400 450 500
MicrowAe duration t (ns)

Figure 2.11. (top) Pulse sequence for Rabi-Cycling experiment. The laser pulse is fired before
and after the measurement to collect the reference and signal traces, as well as to reset the NV
center back to the zero state. The microwave field is applied in between for a variable number of
nanoseconds. (bottom). An example of a Rabi-cycling trace, clearly showing oscillations in
fluorescence.

The rabi-cycling experiment shows the ability to coherently control the NV center. For

example, as I mentioned above it is possible to put the NV spin into a coherent superposition of

two different spin states. Using various different pulse sequences that have been developed in the

NMR community, it is possible to use the NV center to learn about its local environment. One of

the simplest ways to do this is through a spin echo experiment.

The NV spin echo experiment is a slightly modified version of the Hahn Echo experiment

that is commonly used in the NMR community [Hahnl950]. When doing this experiment on NV

centers, a similar microwave pulse sequence is used in order to measure the coherence time, T2 ,

of the NV spin. One of the most intuitive ways to think about what is going during these pulse

sequences is to picture the entire thing along the "Bloch Sphere." [NielsonChuang2004]

Mathematically, it is a sphere that is centered at the origin with a radius of 1. The north and south

poles of the sphere correspond to the states 10) and 11), respectively. The points on the surface
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of the sphere correspond to different coherent superpositions. For example, the quantum state

0) would be represented on the bloch sphere as the vector (0,0,1). The quantum state 1) would

be represented as (0,0,-1). The coherent superposition I 0)+ 1)) would represented as (1,0,0),

while the coherent superposition 1(20) + il 1)) is represented by the vector (0,1,0). In general,

any superposition state l y) can be written down applying the angles shown in figure 2.12 to the

following formula

= cos(jjJ 0) + (cos(#) + i sin(#))sin( )11)

z Figure 2.12. Visualization of the Bloch sphere.
Any coherent superposition of a two-level
system can be represented as a point on the
surface of the sphere through equation 2.21 and
the angles on the figure.

y

x

The spin-echo pulse sequence begins with a 7r/2 pulse, which puts the system into a

coherent superposition. After this time, the field is turned off, and the NV spin is allowed to

evolve under the field-free conditions for a time t. During this time the states 10) and 1) acquire

absolute phases at rates that are proportional to their natural oscillation frequencies, Coo and oi,

respectively. It is important to note that oi depends on the strength of the field applied, since

C9El = . In reality, the only thing that matters is the relative phase between the two states,
h h

so it is common to just talk about the phase of |1) relative to 10) . Hence, the relative phase
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between states 10) and 1) is coio', where oi)o = oi - coo. After this time duration, a n-pulse is

applied which causes a population inversion and effectively moves the phase from the 1l) state to

the 10) state. During a second waiting time, T', the 11) state again acquires a relative phase 0ioT'

relative to the 10) state. At the end, unlike with the standard Hahn-Echo sequence, a final a/2

pulse converts the coherences back into populations, and these can be measured via fluorescence.

The pulse sequence and bloch-sphere representation can be found in figure 2.13. If the amount of

phase acquired between the two wait times are identical, the final 7n/2 pulse returns the NV spin

back to the 10), yielding a large amount of fluorescence. If the amount of phase acquired is

different, the last pulse moves the system into a different superposition which has an equal

probability of emitting from either the 0) or the 11) state, and this yields less fluorescence.

(a)

Laser 300 Readout+ Polarization

Microwaves

Detection 300 ns 30n
DetctonReference Signal

(b)

r/2 Pulse Wait time T

0 ) 0)+ il1) 0)+ie 1)

Ii-Pulse
Y /2 Pulse Wait time T '

0) < Jr = or' -ie''0)+e" 1) -ie+ 0e)+i l)
Figure 2.13. (a) Pulse sequence of Spin echo experiments. As with the rabi cycling experiment,
the readout for the NV spin was via fluorescence. (b) Bloch Sphere representation of the

evolution of the NV spin during the Spin Echo sequence. Images are adapted from [Filler].
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There are two ways that the spin-echo experiment can be performed, and the two

different measurements yield different results. The first is to fix T and vary r'. In this case, the

only time that the phases are the same is when r = T'. At this point, there is a peak in the

fluorescence. This same measurement can be made for various different values of T, and the

same trend occurs. Examples are shown in figure 2.14.

(a) T =200 ns (b) T =1000 ns

0.95 0.95
00

0.9 C1 0. 9

0.85 0.85

500 1000 1500 500 1000 1500

t'(ns) '(ns)

Figure 2.14. Examples of spin echo traces where T was fixed and T' was varied. It can be seen in
both (a) and (b) that when the times are off, there is no revival. In (b) it is also noticeable that
there is a decrease in the strength of the signal even at the echo revival. This is due to the rapidly
fluctuating 13C present in the diamond lattice.

The other way that the experiment can be done is to vary both T and T' in unison and

measure the fluorescence. This ensures that you effectively sit at the top of the echo and always

measure the maximum amount of fluorescence. An example of this kind of measurement is

shown in figure 2.15. This measurement is analogous to measuring T2 in NMR.
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Figure 2.15. An example of a
spin-echo trace showing echo-
revivals. The revival time is
inversely proportional to the
strength of the applied B-field,
and is scaled by the
gyromagnetic ratio of the 13 C.
Consequently, it can be used
to accurately determine the B-
field.
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Looking at the NV measurement, there are clear and striking differences between the

classic NMR case and the one of the NV center. Here, there is a decay which happens on the

microsecond to 10s of microseconds timescale, but if one waits long enough there is a revival in

the echo signal [Childress2006]. There are a few ways to think about this, but perhaps the most

qualitative way is as follows: The bath that the NV center lives in consists of mostly diamagnetic

nuclear spins - that is 12C nuclei. However, 1% of the nuclei in the lattice are 13C spins, which

are paramagnetic. In the presence of an applied field, paramagnetic nuclei process at a rate

known as their Larmor frequency, 0 L - ycB, where B is the strength of the static field applied

which also splits the m, = +1 and -1 sates, and Yc is the gyromagnetic ratio of the 13C. Now as

these spins process, they in turn are generating a periodic, time varying magnetic field, which is

sensed by the NV spin. Since, as stated above, the free-procession frequency of the 1l) spin state,

o1, depends on the field strength, a time varying magnetic field will cause different amounts of

phase to accumulate during the two wait times, T and T'. Hence, even when the two wait times

are the same, the amount of phase acquired during those times is different and so the final n/2

pulse in the sequence does not return the NV back to the 1l) state, but leaves it in a

superposition. The reason that revivals are seen at all is because the time varying field that is

generated by the nuclear spins is periodic. This means that if the waiting times z and T' are

integer multiples of 1/OL, the effect of the time-varying field on the phase averages out, and the
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final 7r/2 pulse resets the NV spin back into the 10) state. This can be verified by changing the

static B-field. For larger fields, it is observed that the echo-revival time, techo, gets shorter.

Further confirmation of this idea comes from plotting the |B vs 1/techo. Doing this yield a straight

line relationship, with a slope of 1.071 kHz Gauss~', which precisely matches the Larmor

frequency for 13C.

Once the revival times have been accounted for, it is possible to determine T2 , the

decoherence time for the NV center. By either mapping out the entire curve or just measuring at

the revivals, the T2 for the NV center can be obtained by fitting to the function, adapted from

[Childress2006]

(2t)' 1 N (t -kVr )n2

I(t)= A exp~ x exp - )2 +C (2.23)
_ T2 _ = (2r-) _

In general I fit with the parameters ni = 3 and n2 = 2 and would usually obtain T2 values on the

order of 150 ts for NVs in bulk diamond. Using NVs in nanodiamonds yielded much lower T2

times, on the order of microseconds. This is consistent with work that had been done previously

in bulk diamond [Jelezko2004, Childress2006], as well as on nanodiamonds [Tisler2009]. The

main cause of the decoherence in the nanodiamonds comes from the interaction with the large

number of nearby spins, leading to rapid decoherence. In the same work, it was shown that

cleaning nanodiamonds to remove any residual surface spins increased T2. In addition,

generating NV centers in diamonds that have been artificially grown to significantly decrease the

amount of 13C has shown the ability to extend the T2 to the order of milliseconds

[Balasubramanian2009].

With this, I conclude the initial work that I did preparing and testing my microscope for

doing experiments. The next chapter of my thesis focuses on work that I did on shallow

implanted NV centers, and borrows heavily from the techniques that were developed in this

chapter.
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Chapter 3 Spin Properties of Shallow NV centers

Note: At the time of the writing of this thesis, the majority of this chapter is taken from "Spin
properties of very shallow nitrogen vacancy defects in diamond" by B. K. Ofori-Okai, S.
Pezzagna, K. Chang, et al., Physical Review B 86, 081406(R) (2012). Copyright 2012 by the
American Physical Society. Any reference to the supplemental refers to the supplemental to the
published work.

3.1 Introduction

Isolated defect spins in solids, such as phosphorus donors in silicon [Feher1959] or the

nitrogen-vacancy (NV) center in diamond [Jelezko2006], are considered important building

blocks to future nanoscale devices, governed by quantum mechanics. In pure materials, defects

can be so well-decoupled from their solid host that spin states approach a stability normally only

found in dilute atomic vapors, including coherence times of milliseconds to seconds

[Balasubramanian2009, Tyrshkin201 1]. Not surprisingly, atomic defects have over the last

decade attracted increasing attention motivated by their potential for spin qubits in quantum

information [Kane1998, Awschalom2007] or for ultrasensitive magnetic detectors with

nanometer spatial resolution [Degen2008, Maze2008, Balasubramanian2008].

The central challenge with many of these endeavors is to position the defect of interest in

close proximity to other circuit elements while retaining their well-defined properties known

from the bulk. On the one hand, close proximity is required for strong enough coupling. For

example, for the direct coupling to nearby spin magnetic dipoles - which scales as r3, where r is

distance - efficient coupling is only achieved at nanometer separations. Furthermore, for

scanning magnetometry applications r directly sets the attainable spatial resolution [Degen2008].

On the other hand, the coupling will almost always happen across a material interface and

defects will have to be located within nanometers from a surface, potentially destabilizing the

spin and limiting its usefulness.

Several mechanisms have been found or proposed to affect the stability of shallow

defects. For single donor spins in silicon, for example, the nearby Si/Si0 2 interface was shown to

decrease spin coherence times even for donors tens of nanometer away due to paramagnetic

impurities present at the interface [deSousa2007]. Other possible mechanisms include electric

surface charge or strain fluctuations that may disturb defects through Stark and spin-orbit effects,

or direct ionization [Hu2006, Rondin2010]. For nitrogen-vacancy centers in diamond, on the
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other hand, rather little is currently known about the spin's performance near the surface. While

functional defects have recently been reported in < 10 nm diameter nanocrystals [Tisler2009,

Bradac2010] and within 3-4 nm from bulk diamond surfaces [Grotz201 1] and coherence times,

T2 , of tens of seconds have been observed for defects at 10 nm proximity [Gaebel2006,

Maurer2010, Grinolds20 11], neither a "shallowest depth" nor the involved destabilizing

mechanisms are known. Given the fundamental importance of surface proximity for applications,

it appears imperative to experimentally explore the limits to stability of defects at very shallow

depths.

This chapter presents a systematic study of the spin resonance properties of single NV

defect centers down to a proximity of about 1 nm. Defects were produced by low energy ion

implantation (0.4-5 keV) and investigated by optically-detected magnetic resonance (ODMR)

spectroscopy. Well-behaved defects exhibiting a narrow electron spin resonance (ESR) spectrum

and coherence times exceeding 10 microseconds are observed down to the shallowest

investigated depths. Additionally, an extra line broadening for defects shallower than 2 nm is

observed. This broadening is compatible with the presence of surface magnetic impurities that

are largely decoupled from the NV spin by motional averaging.

3.2 Sample Preparation and Characterization

A (100)-oriented single crystal of ultrapure diamond (< 5 ppb N concentration, Element

Six) was used as the sample for all experiments. One sample face was implanted with " N' or
15 N ions at a series of very low energies (0.4 -- 5 keV, in steps of 0.2 keV) and fluences (1010 -

1014 N/cm2) [Pezzagna2010] (see figure 3.1). Ion implantation was carried with a 5 keV gas-

source ion gun (SPECS) combined with a Wien mass filter (E x B). Ion beam direction was

normal to the diamond surface with a precision of better than ± 10. The use of molecular N2+

ions was necessary to access the lowest energies (< 2.4 keV). No difference has been found

between N+ or N2 + implanted defects neither in this nor in the work of [Pezzagna2010]. It is

assumed that as the N2+ ion impinges the surface the molecule breaks, sending two N atoms into

the bulk.
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Figure 3.1. (left) Spatial map of ion implantation. (right) Energies and fluences of the various
spots. The fluence is measured in nitrogen atoms/cm and was adjusted for the use of N2 versus
N

Fluence was measured via the ion current, and adjusted such that each spot received the

same number of ions. Thus, even if spots slightly vary in shape, the number of ions impacting the

larger are of the spot is the same. The advantage of ion implantation is that the depth of created

defects can be relatively accurately controlled by the implantation energy, which is important

given the current lack of a direct and precise method to measure surface proximity of individual

defects. To form NV centers, the sample was annealed for 2 h at 8000 C and p < 2 x 107 mbar. It

is expected that nitrogen atoms do not diffuse at these temperatures because the activation energy

is too high [Koga2003, Toyli2010, Ofori-Okai2012]. Diffusion coeffcients for N in diamond

have been measured at higher temperatures in the context of geology and found to follow an

Arrhenius relationship [Koga2003]

D = (9.7 x 10~8 )exp .6e m2 /s (3.1)
(kBT

At T = 1100 K, the diffusion coefficient is D=3 x 10-3 m2/s. The diffusion length for this D and

for a time t = 104 s is L = Dt =6 x10- 6 m. This is much smaller than interatomic distances

(~10~10 m). It is possible that the vacancies created around an implanted N atom will lower the

activation energy for diffusion, however, such diffusion would be confined to the local area of

the N defect and would not significantly alter the N atoms position.
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The sample was cleaned by boiling it for 24h under reflux in a 1:1:1 mixture of sulfuric,

nitric and perchloric acid and thoroughly rinsed with purified water. This procedure is known to

remove any residues (such as graphite) and to leave a well-defined, oxygen-terminated surface

[Tisler2009]. We chose acid cleaning over air-oxygen-based treatment [Koga2003, Toyli2010] to

avoid accidental removal of top diamond layers. We have performed a detailed inspection of the

prepared diamond surface to validate the sample for later spin resonance measurements. Surface

roughness was determined by atomic force microscopy and found to be very low (xrms = 0.38 nm,

over a 300 x 300 nm2 window) compared to the defect depth (> 1 nm). Angle-resolved X-ray

photo-electron spectroscopy (ARXPS) was used to confirm oxygen termination of the surface

and absence of significant graphite residue. The absence of sp 2 carbon was further corroborated

by confocal Raman spectroscopy. No difference was found between implanted and non-

implanted regions.

All photoluminescence measurements were carried out on the same home-built inverted

confocal microscope, except for curves presented in figure 3.4(c,d), which used a standard

fluorescence microscope. NV defects were excited at 532 nm and emitted photons were filtered

at an effective bandwidth of 630-800 nm and collected by an avalanche photodiode. Single

center emission was confirmed by photon autocorrelation measurements like those described in

chapter 2. A 40x, NA=0.95 air objective (Olympus) was used to focus the laser on to diamond

sample. The sample was mounted to a motorized three-axis stage (Newport M-462-XYZ-SD) to

navigate over the entire 2x2 surface of crystal. A stationary glass coverslip carrying a thin wire

was inserted between objective and diamond sample for microwave excitation. This is

represented schematically in figure. 3.2.
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Figure 3.2. A schematic of the experimental setup used for these measurements. This is a
modified version of the stationary sample geometry described in chapter 2. Here, the diamond
with implanted NVs and the magnet are attached to mounts which can be positioned using
motorized actuators. This allows the diamond to be suspended and helps keep the diamond
surface free from debris which could ruin the surface and affect the measurement

For selective measurements of NV0 and NV~ emission two different sets of filters with

bandwidths of 582-636 nm and 660-735 nm, respectively, were used. Photoluminescence spectra

were also recorded for selected implantation spots to corroborate the findings from the filter

measurements (see figure 3.3). The particular choice of filters is not entirely selective to the two

charge states, and the curves shown in figure 3.4(c,d) have been corrected for the overlap of

these filters with the excitation spectrum. Corrected intensities were calculated using the

following equation

INV )(0.44 0.11 ) 1
582 - 6 36

INV- 0.26 0.66 1660-735)

(3.2)
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where the fraction of photons passing the 582-636 nm filter is 0.44 and 0.11 for NV0 and NV,

respectively, and the fraction of photons passing the 660-735 nm filter is 0.26 and 0.66 for NV0

and NV~, respectively. Numbers are calculated from the spectra given by [Rondin2o10]

Photoluminescence versus energy curves that do not discriminate between NV0 and NV- were

also measured using the confocal setup for the fluences numbers of 8 x 10" cm-2 and 1 x 1013

cm-2 and gave similar results.

Figure 3.3. Photoluminescence spectra of
selected defects at fluence 1 x 1013 cm-2. Ion
energy is given with each curve. Spectra are

0kev vertically offset for clarity. All cases show
clear spectral signatures of both NV0 and NV~,
namely the NV ZPL at 637 nm as well as the

1. v. broad tail below that, which belongs to thef NVO.
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Figure 3.4. (a) Photoluminescence intensity map of the diamond surface. Shallowest 0.4-keV
defects are visible at the very top. Excitation wavelength was 532 nm and detection bandwidth
630-800 nm. (b) Close up of an implantation dot at 5.0 keV (white square in (a)). Some single
NV centers are encircled. (c) Luminescence intensity due to NV (full circles) and NV0 (empty
circles) as a function of ion energy at a fluence of 8 x 101 cm 2 , measured using two pairs of
filters (620-770 nm and 560-660 nm, respectively) and correcting for spectral overlap
[Rondin2010]. (d) Luminescence intensity as a function of ion fluence at an energy of 5 keV.

A photoluminescence intensity map of the sample is shown in figure 3.4. Most

prominently, there were optically bright NV centers are visible down to the lowest implantation

energy (0.4 keV). Miscalibration of the fluence is the largest error in the photoluminescence

intensities presented in figure 3.4; in particular, it is most likely responsible for the low

photoluminescence of the 1 -keV row. We have estimated the depth of these defects using

stopping range of ions in matter (SRIM) Monte Carlo simulations [Ofori-Okai2012, Ziegler], for

example, an energy of 0.4 keV corresponds to a peak depth of 1.1 ± 0.6 nm (see scale in figure
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3.4(c)). SRIM calculations were shown to give suitable results of ion implantation depths over a

wide energy range, including very low implantation energies [Honicke20 11]. A drawback of

SRIM calculations is that they are inherently statistical which is addressed below by collecting

statistics on many defects.

Other important biasing effects like aperture scattering and channeling were have

analyzed these effects for our study [Ofori-Okai2012]. This analysis shows that ion channeling,

which can lead to depth underestimation by about a factor of 2 [Toyli2010], does not occur for

1N energies below 0.6-0.7 keV and only gradually becomes more important towards higher

energies. The lowest energies, where channeling is absent, are the most relevant in this study.

Figure 3.4 provides additional photoluminescence data that further corroborates this

picture. We have quantitatively measured the total photoluminescence intensity as a function of

energy and ion fluence and determined the relative concentrations of NV and NV0 centers. In

good agreement with earlier studies carried out at higher energies [Pezzagna2010] we find a

monotonic decrease in total photoluminescence with decreasing energy. This monotonic

decrease appears to be mostly due to a reduced concentration of NV~, while the concentration in

NV centers is only slightly affected. One could argue that the reduction of NV at low energies is

due to a depth threshold below which the charge state becomes unstable [Rondin2010]. We have,

however, not observed any photobleaching and only seen a few rare cases of fluorescence

intermittency among investigated single centers [Bradac2010] that would support such a

threshold. The presence of a threshold is also incompatible with the rapid changes in the spin

resonance linewidth we see for the lowest energies (see below).

3.3 ODMR and Spin Echo Results

The next section of this chapter presents a study and analysis of the electron spin

resonance (ESR) linewidth as a function of defect depth. ESR measurements are carried out

using optically detected magnetic resonance spectroscopy. For these measurements, the

fluorescence intensity from single, isolated NV center is collected while slowly sweeping an

auxiliary continuous wave (cw) microwave field across the spin resonance (2.87 GHz) of the

electronic ground state. Resonant microwaves induce transitions between the ms = 0 and ms = +1

(or ms = 1) spin sublevels and lead to an up to 30% reduction in fluorescence. We use this feature

to map out ESR spectra of single defects and measure their linewidth and coherence properties.
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At low laser intensity (here < 1 tW) and microwave fields (a few 100 kHz Rabi frequency),

linewidths below 1 MHz can be reached that are only limited by intrinsic magnetic impurities,

such as nitrogen donor or nuclear 13C spins.

Figure 3.5(a) collects a series of representative ESR spectra taken on NV centers at

different depths. As a key feature we observe increased line broadening as NV spins are located

closer to the surface. For defects deeper than 1.8 nm (0.8 keV), there is a clear hyperfine splitting

due to the 5N nuclear spin, but for the shallower defects at 1.5 nm (0.6 keV) and 1.1 nm (0.4

keV) depths the lines become broad and the hyperfine doublet is barely visible or entirely

unresovable. This picture of broadened lines was consistent among recorded spectra (> 30 in

total); for example, none of the NV centers that were 1.1 nm from the surface showed a resolved

hyperfine splitting. Conversely, most 1.8 nm and all 7.7 nm defects showed a clear hyperfine

doublet. All presented spectra are recorded at a single fluence (8 x 101 cm-2) and on defects that

lie at the perimeter of an implantation dot, where the density is low enough to optically isolate

individual NV centers and residual dipolar broadening N donor electronic spins can be excluded

[Ofori-Okai2012]. The low density also ensures that implanted N atoms are far enough apart to

exclude line broadening by N donor electron spins. A few spectra at higher fluence (up to 1 x

1013 cm-2 ) were also measured and showed that the line broadening was consistent between

implantation spots of the same energy but different fluence.
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Figure 3.5. Electron spin resonance (ESR) measurements on shallow NV defect spins. (a)
Representative spectra (out of > 30 total) showing increased line broadening at shallow depths.
Black dots are experimental points and red solid lines are Lorentzian fits. Implanted NV
(nuclear spin I = 1/2) are distinguished from native 14NV (I = 1, 99.6% natural abundance) by the
different hyperfine manifold. (b) ESR linewidth Ao/27t (half width at half height) plotted against
surface proximity d. Black dots are experimental values obtained from many separately fitted
curves such as the ones shown in a). Error bars denote standard error. Solid and dashed red lines
are a second moment calculation with and without motional averaging taken into account,
respectively. (c) Spectra of a 1.1-nm defect at zero field (top) and at 3.5 Gauss parallel bias field
(bottom) rule out the presence of signicant surface strain or charge.

We have made several control measurements to ensure that the observed linebroadening

is indeed a result of surface proximity. We have recorded a number of native 14NV spectra at

each investigated implantation spot by focusing slightly into the bulk in order to verify that broad

lines were indeed a property of the defect, and not, e.g., the sample or experimental parameters.

We have also measured a few spectra at higher fluence (up to 1 x 1013 cm 2 ) and found that the

line broadening did not change between implantation spots of the same energy but different
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fluence. Moreover, no increase in 14NV centers is seen on or near implanted areas which

eliminates the possibility that '4NV centers were formed from vacancies created in the 15N ion

tracks diffusing to 14N atoms in the diamond substrate, in accordance with previous reports

[Toyli2010]. Finally, we did not observe a line splitting at zero magnetic bias field, a signature

for the presence of electric fields [Dolde20 11] (see figure 3.5(c)), excluding the presence of

significant surface strain or charge. This points towards a magnetic origin of the line broadening

mechanism.

We have quantitatively analyzed the linewidth for the shallowest defects (where the

pronounced changes are seen) by collecting and fitting a number of individual spectra and

averaging the resultant linewidth parameter as shown in figure 3.5(b). In order to determine an

accurate mean number for the linewidth at various implantation energies, over 30 spectra were

collected and individually fitted. Line width parameters Ao (0.5 x FWHH) for the ODMR

spectra were estimated by fitting a Lorentzian to each of the hyperfine split lines. For 15NV, the

fit function used is

1 1
I(m)= I, 1 - c 2 + 2 (3.3)

0-0 +a/2 + 9- CV - a/ 2 +I

In this equation, o is the microwave frequency, and Io, c, oo, and Ao are free fit

parameters that correspond to the intensity, the contrast, the center position of the ODMR line,

and the linewidth (all in units of angular frequency). a/(2t) = 3.0 MHz is the hyperfine splitting

and was assumed a fixed parameter.

In the following we attempt to explain the surface-induced line broadening by the

presence of paramagnetic impurities. Surface impurities have been found at substantial density

for clean, oxygen-terminated nanodiamonds [Tisler2009]. These nanodiamonds underwent the

same surface cleaning procedure and are thus expected to have the same surface chemistry as our

diamond substrate. We model surface impurities by assuming a homogeneous, two-dimensional

dipolar bath of electron spins (S = 1/2) with an areal density of PA ~ 10 spins/nm2 [Tisler2009],

similar to the sketch in figure 3.6.
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Alt

Figure 3.6. Sketch of a nitrogen-vacancy defect spin near a paramagnetic surface impurity layer,
as described in the text. d and 0 denote distance and orientation of the defect spin to the interface
plane, and quantization is along N-V axis. A potential target spin, representative for sensing
applications, is also shown.

In the following we use the theory of moments developed in [Slichterl990] to analyze

our results, but note that a parallel framework has been developed for T1 and T2 values in the

context of paramagnetic impurities in the Si/SiO2 interface [deSousa2007]. The second moment

(Aw2) ((A 2 d d where Awd is the linewidth) of an electron spin S due to a quasi-

continuous, two-dimensional layer of electron spins I = 1/2 with density pA is given by

AC_2__A 2 22 s ti (3C co- 
(A2 _1  o 2,10y 2S(S+1) P( - dxdy (3.4)

d 3 4' layer

7 4h2S(S+)f PA (3cos2 o _ dxdy (3.5)
4 (4;)y ,yer r

where y1 = ys = y = 2n x 2.8 x 1010 Hz/T is the electron gyromagnetic ratio, Ro = 4 x 10-7

Vs/(Am) and r and 0 the distance and angle, respectively, between the NV axis and a surface

spin. This second moment has units of angular frequency squared. In the following it is assumed

that a small bias field Bo is applied along the NV axis and that all surface spins are aligned with

this field. By performing the following substitutions

r(x,y,z)= x 2 +2 +z2 (3.6)

cos(O) = -sin(90 )+ z cos(B)1 (3.7)
r r

where z = d is the distance between spin S and the surface layer, and 00 is the angle between NV

axis and surface normal, integration of equation 3.5 gives
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(Aw - 3 2 0 PAY x(3+2cos2(0 )+3cos4( 0)) (3.8)
)d 20487zd 4

For an NV center near a (100) surface (Oo = 54.7), 3+ 2cos2(O0)+ 3cos4 (60 )= 4. The overall

linewidth parameter Aco that can be directly compared to experimental data is given by

AC~O= [Aa +(A2)]2 = Aco1+~~ (3.9)
A0(A +(m d 2

where Acoo is the intrinsic linewidth. do is an empirical "critical distance",

d 4 = 3h2 2p 
4 / 512;r(A 2 2, that represents the separation below which the surface

contribution to the linewidth dominates. A fit to equation 3.9 yields do =1.3 ± 0.2 nm and

Ao/(2iu)=1.1 ± 0.1 MHz. The error in do both contains the fit error and straggling uncertainty.

The calculated linewidth Ao and the corresponding experimental values are compared in

figure 3.5(b). The linewidth predicted by the model (dashed line) is about 30 larger than the one

experimentally observed. In fact, the second moment calculation suggests that substantial line

broadening would already be expected for defects deeper than 10 nm. This is clearly not the case.

One could try and attribute the discrepancy to a lower defect density (requires about 1000 x

lower pA), or a miscalibration of implantation depth (by 5.5). Given the order of magnitude

difference, either assumption or even a combination of them appears unlikely.

An alternative argument which can be made is that the reduced linewidth is caused by

motional averaging through fast reorientations of surface spins. Rapid fluctuations within the

spin bath are known to suppress the line broadening as (Aw)' = ((At2)d c where

rT <<(Aw2 )d is the correlation time of fluctuations and (Aw2) is the static linewidth given

by Eq. (1) [Kubol954]. In order to interpret the experimental data of figure 3.5(b) using this

modified dynamic linewidth one needs to assume a correlation time of about Z~ 10 ns (solid line

in the figure). This correlation time is in good agreement with spin-lattice relaxation times T1

observed for paramagnetic centers in amorphous carbon [Barklie2000], sintered detonation

nanodiamonds [Baranov201 1] and in the typical range of spin-lattice relaxation times T1

observed for free radicals.
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Finally, we have also measured echo decay times of several 0.4 keV (1.1 nm) defects to

establish a lower bound for the coherence times T2 of very shallow spins. Coherence times were

measured using a Hahn echo sequence with equal free evolution times r'=r before and after the

central n pulse. This pulse sequence produces the decay of the echo maximum. The echo decay

curves were fitted by the equation following equation (adapted from [Childress2006]),

(2t)"n (t - klr )n2 (3.10)I(t)= A exp (2 exp - )2 +C (3.10)
L_ T2' k-OL (2rz) 2  (2.23)

where re describes the fast initial decay caused by the fluctuating 13C nuclear spin bath, and T2

reflects the slower decay of the "echo revivals" appearing at the periodicity 'r of the 13C Larmor

precession. Here, ni = 3 and n2 = 2 while A, C, rc, Zr, and T2 are free fit parameters. N was

adjusted to match the number of revivals seen. Additionally, fitting with arbitrary values for ni

and n2 was also attempted, but fits would either not converge or yielded the same values for re

and T2 within experimental error. Thus, no conclusion can be drawn on the exponent. In

principle, the T2 decay exponential will change from ni = 3 to ni = 1 for a rapidly fluctuating

environment (such as caused by fast reorientation of surface spins), but from the present data we

cannot favor one over the other.

1.1-nm 15NV
1.00

S15NT 2 = 40.4O.8 ps

naive 14NV
T2= 128±10 ps

0 5 10 15 2D 25 3D 35
Fre prceson tm 21 (ps) - a a M 0 to M

Figure 3.7 Hahn-echo decay of a 1.1-nm NV center and, for comparison, for a 7.7-nm and a
native defect. Black curves are experimental data and red lines are t according to [Childress2006]

A representative Hahn echo decay curve with an echo decay time of r = 12 ps is shown in

figure 3.7; other defects at the same depth showed values between 7 and 12 ps. Given the

Gaussian decay profile we suspect that the echo decay is, however, dominated by the slowly

fluctuating 13 C nuclear spin environment intrinsic to diamond [Childress2006] rather than by
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rapidly fluctuating surface impurities, where one would expect an exponential decay.

Consequently, one can conclude that T2 > 10 ps.

Given the shallow depths of the investigated NV centers it is instructive to extrapolate

their magnetic moment sensitivity, which is the key figure of merit for the sensing of external

spins and future applications to nanoscale magnetic resonance imaging and spectroscopy

[Degen2008]. For example, taking an echo decay time 12 ps, a photon count rate of C = 0.0018

photons/shot and an optical contrast between ms = 0 and ms = 1 states of e = 7% (1.1-nm defect

in figure 3.7(a)), we find an optimal ac magnetic field sensitivity of

Bmin ~ (0.5zrys ~> 2.2uT / Hz [Taylor2008]. Here, the relevant (most susceptible) ac

frequency is set by the inverse of the echo du- ration, i.e., tens of kHz. For a magnetic moment

located directly on the surface and taking into account the angle of the NV spin, this sensitivity

equates to a minimum detectable magnetic moment of Pmin~ 4rrd3Bmin /0. 9 6 popB' ~ 0 '0 0 3
PUB / fHz

where ps is the Bohr magneton. For dc signal detection, the corresponding magnetic field and

moment sensitivities are Bmin ~8Ao 0 /(3VFyg Io )~ 19pT/,Hz and pmi ~0.0 3pB Hz

respectively, where Io = 2 x 103 photons/s is the cw photon count rate and , = 11 % taken from

the data in figure 3.5. Even if our depth calibration were off by a factor of 2, which is not likely

but possible given the large uncertainty of implantation depth, pmin would still equate to

0 0 3 B z (ac) and 0 2  (dc), respectively.

In conclusion, we have investigated spin and optical properties of single nitrogen vacancy

defects in diamond at very shallow depths. Functional defects are found down to about 1 nm, and

significant broadening of the electron spin resonance is only observed for defects < 2 nm. This

surface stability is unmatched by other solid-state spin systems, such as phosphorus donors in

silicon or semiconductor quantum dots, and a key requirement for a number of anticipated

quantum and sensing applications. In particular, we have inferred a sensitivity to outside

magnetic moments (such as surface electron and nuclear spins) that extends down to <

0 .0 1 pB /x/fz . Such a sensitivity is currently unreached by any existing magnetic sensor and

might, if combined with the imaging capabilities of a scanning probe apparatus [Degen2008,

Taylor2008], enable the direct mapping of single nuclear spins in molecules and thin films with

chemical specificity and nanometer spatial resolution.
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