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Abstract

This thesis presents a numerical study of the effects of radial image distortion and
spherical aberration on reconstruction quality of synthetic aperture particle image
velocimetry (SAPIV) measurements. A simulated SAPIV system is used to image
a synthetic particle volume. An idealized pinhole camera model is used for image
formation with distortion and spherical aberration being added with a polynomial
model and a Fourier waveform model, respectively. Images from a simulated 5 x 5
camera array are taken, distorted and/or aberrated, realigned and averaged to form
synthetic aperture images at a set of depths within the particle volume. These images
are thresholded to recover three-dimensional particle locations and a reconstructed
three-dimensional intensity field is formed. This reconstructed field is then evaluated
according to intensity data and a signal-to-noise ratio (SNR). Results show that even
small amounts of image distortion and spherical aberration can lead to degradation
of SNR and information loss.

Thesis Supervisor: Douglas P. Hart
Title: Professor of Mechanical Engineering






Acknowledgments

e Professor Doug Hart for providing the inspiration, encouragement and tutelage

for this thesis.

e Tom Milnes for technical guidance and for having the best fashion sense in the

Department.

e Jesse Belden for technical support and for building the tool that made this work

possible.

e Eric Shields for guidance on implementing spherical aberration in MATLAB,

saving several weeks of my life.

e Professor Alex Techet, Barry Scharfman and Leah Mendelson for technical guid-
ance, support and for showing me just how difficult (and fun!) experimental

work can be.
e The Bubs and Bubettes for preserving sanity and destroying it.
e Rodzice za wszystko, nawet jesli nie zrozumiecie nic z tego.

e Kris and Mark for being the giants you are and for always making me feel that

I’m in the middle.

e Sophie for severely diminishing my productivity and sneakily eating my food.



THIS PAGE INTENTIONALLY LEFT BLANK



Contents

Contents

List of Figures

List of Tables

1 Introduction

1.1 Particle image velocimetry methods . . . . . . ... .. ... ... ..
1.1.1 TomographicPIV . . . . . . .. ... ... oL,
1.1.2 Holographic PIV . . . . . .. ... ... ... ..
1.1.3 Defocusing digital PIV . . . . . ... .. ..o oL
1.1.4 Particle tracking velocimetry . . . . . .. ... ..o
1.1.5 Synthetic aperture particle image velocimetry . . .. ... ..

1.2 Accuracy of PIVsystems . . . . . . .. .. ... .. ... ...,

Synthetic aperture fundamentals

2.1 History . . . . . . . . e e

2.2.1 Image acquisition . . . . . . .. ... ... Lo
2.2.2 Imagerefocusing . . . ... .. ... ...
2.2.3 Three-dimensional reconstruction . . . . .. .. ... ... ..
2.3 Implementation ina PIVsystem. . . . . . ... ... ... ......
2.3.1 Equipment. . ... .. ... ... ... oo
2.3.2 Calibration . . .. .. .. ... .. ... e

15

17
19
20
21
22
23
24
27



2.3.3 Image acquisition, refocusing and thresholding . . . . . . . .. 40

3 Implementation of distortion and spherical aberration in a SAPIV

system 49
3.1 Radial image distortion . . . . .. ... .. ... ... ... 50
3.2 Spherical aberration . . ... ... L oL 52
3.3 Simulated SAPIVsystem . . . ... ... ... ... .......... 55
4 Results 61
41 Correlation . . .. ... ... ... ..o 61
4.2 Rank correlation . . . ... ... .. ... ... .. 66
4.3 Histogram analysis . . . .. ... ... ... ... .. ......... 67
5 Conclusion T
Bibliography 79
A Distortion parameter calculation 83
B Point spread function derivation 87



List of Figures

1-1

1-2

1-3

1-5

1-6

A flow visualization—similar to those of Prandtl’s—of separation past

a wing using tracer particlesin water. . . . . .. ... ... L.

A common two-dimensional PIV experimental setup with a single cam-
era imaging particle displacement with two images at different times
(t & t'). Note how laser sheet illumination determines the plane of

particles which are visible in the image. . . . . . . .. .. ... ...

A two-dimensional schematic of tomographic reconstruction. Given
enough views of an object space an accurate reconstruction can be de-
termined from the intensity summation along each line on a particular

Image SENSOT. . . . . . . . . ..o e e e e

A simple schematic of a holographic PIV system. Spatially coher-
ent light generates predictable diffraction patterns (hologram) that are

modified to reconstruct objects at different depths. . . . . .. .. ..

Comparison of a typical optical system (a), and a defocusing optical
system (b) used to determine the depth of objects along the optical
axis. Notice that light rays from B focus at C but generate a defocused

blur at the image plane. The size of this blur and how it varies with

placement of the reference plane can allow for determination of depth.

A schematic of an experimental PTV system. Cameras are mounted

in different positions and orientation to obtain a stereoscopic effect.

9

18

19

21

22

23

24



1-7

1-8

1-9

2-1

2-4

2-5

A schematic of an experimental setup of a synthetic aperture PIV

system. Cameras are typically confined to one side of volume of interest

such that their perspectives overlap enough to compare when refocusing. 25

A schematic of how synthetic aperture refocusing works. Since both
objects in the volume of interest are visible to at least four out of the
five cameras, both objects can be clearly seen after refocusing. Objects

at different depths fade out as they are located well outside the narrow

depthoffield. . . . . . . . . . .. ... ... ...

A simple example of how a synthetic aperture PIV system can image
objects that are partially occluded. The unobstructed object (left) is
difficult to make out when occluded (center) with a conventional image

but becomes much clearer after refocusing (right). . . . . . .. . ...

A unique perspective of a simple light field. The viewpoint, (X;,Y;, Z;),
and the UV -plane define a bundle of light rays which are sampled to
generate an image.If an entire light field is known, then any image from

any perspective can be generated. . . . . ... .. ..o 0oL

The effect of parallax when using multiple viewpoints (eyes or cam-
eras). Nearby objects require the viewpoints to converge more than

objects located further away (ie. 8>a). . . . . . . ... .. ... ..

A schematic showing how image views can be shifted using a homogra-

phy, H. The object of interest, z,, is viewable by both camera views,

Cand C'. . . . . ..

An image of a nine-camera array along with the supporting 80/20®
structure and camera mounts. The orientation of the cameras is such
that their respective fields of view intersect at the volume of interest.
Two images of planar calibration grids used in SAPIV experiments.
Calibration grids are typically made up of a consistent geometrical
pattern, whether it be an alternating two-dimensional checkerboard

(a) or an evenly-spaced grid of circles (b). . . . . . . . ... ... ...

10

26

27

33

34

36

39



2-8

A sampling of four images from a camera array at a specific point in
time. The experiment sought to better understand turbulent flow sheet

breakup for waterinair. . . . . .. .. ... ... ... L.,

An example of a raw SAPIV image from a vortex ring quantification
experiment. The section of particles being illuminated by the laser is

clearly visible. . . . . . .. ...

A refocused view of the multiphase flow experiment in figure 2-6. The
ligament in the lower-left quadrant of the image is the only identifiable

object in focus at thisplane. . . . . . . . .. .. ... ... .. ...,

A refocused view of the PIV experiment from figure 2-7. An underlying
low-intensity blur makes up most of the image but many particles of

high intensity and high contrast are visible. . . .. ... ... .. ..

2-10 A normalized intensity histogram of an individual refocused image.

2-11

3-2

Due to the large number of out-of-focus particles, the distribution of
intensity in any particular refocused image converges towards a normal

distribution at the low-intensity range of the distribution. . . . . . . .

A thresholded refocused PIV image. This image represents a best
estimate as to which particles are located where at this particular focal

plane. . . . . ..

Radial image distortion in synthetic images of a rectangular particle
volume with a square front face. An undistorted view (a) produces an
image which accurately depicts a symmetric square. A view distorted
with 25% barrel distortion (b) shifts pixel intensity values radially in-
ward relative to their undistorted pixel locations. A view distorted
with 25% pincushion distortion (c¢) shifts pixel intensity values radially

outward relative to their undistorted pixel locations. . . . . . . . . ..

Lens with spherical aberration focusing incident, non-paraxial rays
(red) along a range of points. The imperfect focusing of rays causes an

image point to spread and reduce its peak intensity. . . . . .. .. ..

11

42

42

43

44

46

47

52



3-5

3-6

4-2

An unaberrated, diffraction-limited PSF (a) with higher concentrated
intensity pattern and an aberrated PSF (b) (RMS = 0.15) showing
intensity spread away from the central peak to the second annular

lobe. Assumes a point source of light with unit intensity. . . . . . . .

A non-aberrated image (a) of a simulated calibration target and an
aberrated image (b) of a simulated calibration target. Note the resolu-
tion degradation and loss of high spatial frequency information in the

aberrated image. . . . . . .. ..ol

Synthetic images taken of 50mm x 50mm x 10mm particle volume from
four corner cameras of the square 5 x 5 array. Image from top-left
camera (a); image from top right-camera (b); image from bottom-left

camera (c); image from bottom-right camera (d). . . ... ... ...

Refocused synthetic image of a particular depth within the imaged vol-
ume. The low-intensity background blur is due to unfocused particles

at various other depths in the volume. . . . .. ... ... ... ...

Thresholded version of image 3-6 retaining only pixels of relatively
high intensity. Finding the proper threshold is critical for maximizing
inclusion of desired, at-depth particles and minimizing inclusion of false

particles. . . . . . L.

Reconstruction quality as provided by correlation as a function of seed-

‘ ing density and distortion D. It shows that significant reduction in

reconstruction quality occurs with more than a few tenths of a percent

of radial image distortion. . . .. ... .. ... ... ... ... ..

Reconstruction quality as provided by correlation as a function of seed-
ing density and spherical aberration SA. It shows that a much smaller
reduction in reconstruction quality occurs with the inclusion of spher-

ical aberration effects than with distortion effects. . . . . . . . . . ..

12

56

99

63

64



4-7

Reconstruction quality as provided by correlation as a function of seed-

ing density, distortion D and spherical aberration SA. It shows that

the effects of distortion and spherical aberration are mostly independent. 65

Reconstruction quality as provided by rank correlation as a function
of seeding density and distortion D. Results show that distortion has
only a small effect at 2.0% and a negligible effect for distortions below
that. The range of correlation values is greater than 0.97, which is

much higher than the values given for standard correlation. . . . . . .

Reconstruction quality as provided by rank correlation as a function
of seeding density and spherical aberration SA. Results show that

spherical aberration has no discernible effect. . . . . . . ... ... ..

Mean of the normal fit of the intensity distribution as a function of
seeding density and distortion D. No significant effect is evident; this
agrees with the theoretical prediction that the mean intensity of dis-
torted images should not vary. . . . . .. ... .. ... .. ... ..

Mean of the normal fit of the intensity distribution as a function of
seeding density and spherical aberration SA. No significant effect is
evident; this agrees with the theoretical prediction that the mean in-

tensity of aberrated images should not vary. . . . .. ... ......

Standard deviation of the normal fit of intensity data as a function of
distortion D and particle density. The standard deviation decreases for
distortion percentages 0.5% and above and also increases with higher
particle density as more particles create much more non-uniform back-

ground noOiSe. . . . ... ..ol

Standard deviation of the normal fit of intensity data as a function
of spherical aberration SA and particle density. The standard devi-
ation decreases for SA values 0.02 and above and also increases with
higher particle density as more particles create much more non-uniform

background noise. . . . . . . . ...

68

69

70

71

72



4-10 Normalized signal-to-noise (nSNR) ratio as a function of distortion D

4-11

and particle density. All SNR values are normalized with respect to
the zero-distortion (D =0%) case.. . . . . ... ... ... ......
Normalized signal-to-noise (nSNR) ratio as a function of spherical
aberration SA and particle density. All SNR values are normalized

with respect to the zero-aberration (SA=0)case. . . . . . ... ...

A schematic of how pixel intensity value shift according to the amount
of distortion applied to an image. Positive distortion represents a
radially-inward shift while negative distortion represents a radially-

outward shift. . . . . . . . . . .. e

The front half of the optical system collimates the incoming wavefronts
scattered off the object into plane waves (ideally). This is where the
wavefront takes on the aberrated form seen in equation 3.3 since it can

deviate from a strict plane wave. . . . . .. . ... ... ... ...

14

74

75

84



List of Tables

3.1

3.2

3.3

Pixel shift for various distortion values at various normalized image
radii for a 1,000 x 1,000 pixel image. The normalized radius r, is
defined as the image radius divided by the maximum image radius for
arectangularimage. . . . . . .. .. ... ...
A representation of how the intensity distribution from the diffraction-
limited, aberration-free PSF from figure 3-3a would be measured on an
image sensor with 10 um pixel pitch. This assumes unit input intensity;
the sum of all valuesequals 1. . . . . . . ... ... ... .......

Comparison of PSFs from each of the four RM S values used to generate

PSF with different amounts of spherical aberration. As the amount of

the spherical aberration increases, intensity moves away from the center

pixel, where all intensity should be localized, to the first and second

15

33

56



THIS PAGE INTENTIONALLY LEFT BLANK

16



Chapter 1

Introduction

The study of fluid flow visualization was born in 1904 when Ludwig Prandtl, a Ger-
man fluid mechanician, inserted a suspension of mica particles into the water flowing
through his experimental fluid tunnel. An example of flow visualization can be seen
in figure 1-1. Although only able to analyze qualitative changes in flow properties,
Prandtl founded the modern method of flow visualization known as particle image
velocimetry (PIV). [1]

Particle image velocimetry is an optical imaging method of fluid flow visualiza-
tion and is used to characterize and quantify relevant flow properties such as velocity,
vorticity and turbulence. To visualize a fluid continuum, discrete tracer particles are
seeded within the flow. These particles are small enough such that their characteris-
tic inertial force is relatively small compared to the dynamic forces of the fluid flow.
As a result, these fluid particles follow the flow field as they move through the fluid
volume of interest. High-intensity illumination is often applied to the fluid volume to
enhance contrast between tracer particles and the fluid. Images are typically taken
with digital cameras that utilize high-quality, photographic lenses and light-sensitive
image sensors to record intensity information about the scene. Because the intensity
information stored in these images is recorded digitally, images can be analyzed com-
putationally to determine fluid flow properties. An example experimental setup is
shown in figure 1-2. Typically, cross-correlation methods are used to compare images

of the fluid volume in two time steps separated by a small fraction of a second. The
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Figure 1-1: A flow visualization—similar to those of Prandtl’s—of separation past a
wing using tracer particles in water [1].

peak fit of the cross-correlation between two images corresponds to the most likely
displacement in a set of tracer particles. Given the difference in time from when the
first and second images were taken as well as the most likely distance traveled by the
particle, the fluid flow velocity can be determined for either two or three spatial di-
mensions. PIV is advantageous to other methods such as hot wire anemometry [2] or
laser doppler velocimetry [3]. Unlike hot wire anemometry, PIV is almost completely
non-obtrusive to the fluid flow. Measurements are taken visually on a charge-coupled
device (CCD) or complementary metal-oxide semiconductor (CMOS) sensor from
tracer-particle-scattered electromagnetic radiation. Neither the particle nor the in-
tense illumination affect the fluid flow in any significant way. Unlike laser doppler
velocimetry, PIV has the potential to measure an entire velocity field at points in
two or three spatial dimensions with two or three velocity vector components at each
point. This has the potential to characterize all of the available kinetic information
about the flow field (three velocity vector components for each point in three spatial
dimensions). This information can allow for accurate particle trajectory estimation
as well as calculation of kinematic flow field properties like vorticity and circulation,

which cannot be measured directly.

The following subsections will provide brief descriptions of a range of PIV methods

18
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Figure 1-2: A common two-dimensional PIV experimental setup with a single camera
imaging particle displacements with two images at different times (¢ & t'). Note
how laser sheet illumination determines the plane of particles which are visible in the
image [1].

to help understand the trade-offs and limitations of PIV systems.

1.1 Particle image velocimetry methods

The system shown in figure 1-2 represents the setup for a two-dimensional PIV system.
These systems, while easy to implement and simple to operate, can typically only
image a particular planar surface within the volume. This precludes capturing a
three-dimensional velocity field without using an array of cameras focused on different
depths within the flow. Also, given that a camera’s depth of field has a discrete
thickness, it can be problematic to determine the exact depth at which particles are
located. More complex systems require use of multiple connected cameras but can
effectively image the entirety of complex flow.

PIV is an experimental technique used to characterize flows that are too complex
to model analytically. As a result, the ability to measure flows in multiple dimen-

sions with multiple components is critical. The systems described in the following
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subsections describe useful methods for carrying out three-dimensional PIV analyses.
They vary mostly in the method of visual information capture and subsequent re-
construction. The algorithms used to determine velocity fields all employ some form
of cross-correlation and require image pre- and post-processing techniques to ensure
images are normalized for exposure intensity and contrast. Understanding and mea-
suring complex three-dimensional flows is relevant in resolving complex dynamical
fluid behavior in applications ranging from fuel combustion [4] to the mechanics of

bat flight [5].

1.1.1 Tomographic PIV

Tomographic PIV is a three-dimensional PIV method that utilizes multiple views
of a volume of interest to reconstruct that three-dimensional volume using optical
tomography [6]. Tomography is an imaging technique that can visualize the cross-
section of an object by transmitting radiation through the object along a line at
varying angles. This is the same method that is used in computed tomography (CT)
scans. The intensity of the radiation is attenuated differently based on what objects
lie in the path of the radiation. By summing each of these intensity attenuation
records at every angle, a two-dimensional, cross-sectional view can be reconstructed,

as seen in figure 1-3.

Similarly, if radiation is transmitted through a volume and captured along a
plane, such as a CCD sensor, then by imaging multiple views simultaneously, a three-
dimensional volume can be reconstructed. The constituent pieces of this reconstructed
volume are known as “voxels” and can be though of as pixels with discrete thickness.
Once volumes from two different time instants are reconstructed, they can be ana-
lyzed using cross-correlation techniques of what are known as interrogation windows,
or small sub-volumes within the overall volume, that are small enough to be amenable

to the assumptions required for determination of particle displacement.

20



.
»

camera 1 (%)) l{x2.y2) camera?2

Figure 1-3: A two-dimensional schematic of tomographic reconstruction. Given
enough views of an object space an accurate reconstruction can be determined from
the intensity summation along each line on a particular image sensor [6)].

1.1.2 Holographic PIV

Holographic PIV [7, 8] is an imaging technique that can reconstruct a volume that
is generated from the interference of coherent light that has been scattered by non-
uniform objects within a volume of interest as seen in figure 1-4. The interference
pattern contains information that can reliably reconstruct the original volume by il-
luminating the interference pattern (known a hologram) with a coherent light source
that is similar to the one used to generate the interference pattern. Typically, inter-
ference patterns for arbitrary objects can be rather complex and reconstructing the
intensity field from a hologram can prove problematic. However, given the consis-
tent geometry and size of tracer particles used to seed a flow, a fairly deterministic
interference pattern emerges which is straightforward to reconstruct into the original

intensity field.

Holographic techniques typically utilize just a single camera but can still recon-

struct volumes in three spatial dimensions. Given that the size of an interference
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Figure 1-4: A simple schematic of a holographic PIV system. Spatially coherent light
generates predictable diffraction patterns (hologram) that are modified to reconstruct
objects at different depths [7].

pattern from an object varies with distance from the camera, depth information can
be encoded in just a single two-dimensional image. However, the volume must be
relatively sparse in order for reconstruction to be successful. A dense volume would
preclude reconstruction of occluded particles in the volume. Holographic PIV systems
also require a complex and delicate optical set-up and are sensitive to environmental

factors. [9]

1.1.3 Defocusing digital PIV

Defocusing digital PIV [9] is an imaging technique that uses an asymmetric non-
standard aperture, known as a mask, to obtain multiple images of an object. If the
object is in focus then it forms a clear image at the focal plane. If the object is out
of focus, then the light rays emanating from any point on the object will contact the
image sensor at different points as seen in figure 1-5. The distance between these

out-of-focus points is determined by the distance away from the plane that is in
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Figure 1-5: Comparison of a typical optical system (a), and a defocusing optical
system (b) used to determine the depth of objects along the optical axis. Notice that
light rays from B focus at C' but generate a defocused blur at the image plane. The
size of this blur and how it varies with placement of the reference plane can allow for
determination of depth [9].

focus. Thus an object that appears to be more out of focus is further away from the
focal plane. Using geometric optics, the depth of that object can be determined by

measuring how blurred it is over a range of focal planes.

1.1.4 Particle tracking velocimetry

Particle tracking velocimetry [10] is an imaging technique that utilizes a stereoscopic
recording of tracer particles to record flow paths as seen in figure 1-6. Unlike PIV
methods, PTV determines the actual trajectory that tracer particles follow. This
requires reliable identification of individual particles to ensure accurate trajectory

recording is maintained. This method is limited to relatively low particle densities
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Figure 1-6: A schematic of an experimental PTV system. Cameras are mounted in
different positions and orientation to obtain a stereoscopic effect [10].

since having too many particles can make it prohibitively difficult to track particle
between recorded images. Particle trajectories are interpolated from recorded data
via post-processing techniques.

Particle tracking velocimetry can be implemented effectively as long as particle
seeding density is relatively low. This prevents characterization of flows where high

resolution is needed [9].

1.1.5 Synthetic aperture particle image velocimetry

Synthetic aperture particle image velocimetry (SAPIV) is an imaging technique that
utilizes an array of cameras to simultaneously record multiple images of a volume of
interest as seen in figure 1-7. SAPIV is a practical and effective measurement tool for
visualizing self-occluding, densely-seeded flows [11]. An array of cameras oriented at a
volume of interest captures images from different perspectives allowing for calculation
of depth from parallax and accurate whole volume three-dimensional reconstruction.
Captured images are then digitally shifted using pre-defined calibration data that
solves for the relative position and orientation of all cameras in the array. Images
can be shifted such that they appear to have been taken from the same position and
orientation.

Two significant advantages are apparent: first, particles occluded to some cameras
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Figure 1-7: A schematic of an experimental setup of a synthetic aperture PIV sys-
tem. Cameras are typically confined to one side of volume of interest such that their
perspectives overlap enough to compare when refocusing [11].

Laser Volumsg

and imaged by others will likely be recorded in the reconstructed image as seen in
figure 1-8 and second, use of many cameras in many different positions creates a large,
effective (synthetic) aperture which drastically reduces depth of field and allows for
accurate imaging of thin slices through the volume and recording of particle depth
information. This large synthetic aperture avoids the depth of field issues that arise
in two-dimensional PIV. A real world synthetic aperture image can be seen in figure
1-9. It shows how objects that are partially occluded can be made out clearly after

computational refocusing.

SAPIV performs comparably to other three-dimensional PIV systems. An anal-
ysis by Belden [11] showed that SAPIV performed similarly to tomographic PIV,
[6] holographic PIV, [7] defocusing digital PIV [9] and particle tracking velocimetry
(PTV) [10] with respect to number of particles imaged normalized to the sum of all
pixels in the imaging system. While SAPIV typically requires 8 - 13 cameras for
optimal reconstruction and alternative techniques generally require 5 or fewer, the
ability to resolve highly-seeded, occluded flows is unique to SAPIV [11]. SAPIV has
the capability for effective functionality in confined spaces. Skupsch and Briicker [12]

showed SAPIV can be implemented using a single camera and lens array. Such com-
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Figure 1-8: A schematic of how synthetic aperture refocusing works. Since both
objects in the volume of interest are visible to four out of the five cameras, both
objects can be clearly seen after refocusing. Objects at different depths fade out as
they are located well outside the narrow depth of field.
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Figure 1-9: A simple example of how a synthetic aperture PIV system can image
objects that are partially occluded. The unobstructed object (left) is difficult to make
out when occluded (center) with a conventional image but becomes much clearer after
refocusing (right) [11].

pact setups can be advantageous, especially in applications where perspectives of the
scene are confined to small viewing windows such as portholes for nuclear reactors.
SAPIV is of particular interest for the purposes of this report. Proceeding chapters

will focus further analysis and discussion on this method alone.

1.2 Accuracy of PIV systems

Though three-dimensional PIV systems have the capability and flexibility to image a
wide range of flows they still must use real-world optics for imaging and must there-
fore be calibrated in spite of the characteristic aberrations and distortions of multi-
element glass lenses. These aberrations arise not only from manufacturing flaws but
also from the imperfect focusing performance of spherical lenses. Most high-quality
photographic lenses incorporate many individual glass elements that seek to minimize
many different forms of aberration. Ultimately, photographic lenses are very well de-
signed and manufactured but cannot achieve diffraction-limited imaging performance.

Furthermore, many PIV experimental setups have a non-air optical medium between
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the cameras and the object being imaged. These can include the glass wall of a water
tank and even the water itself. These additional optical “elements” distort light rays
through refraction and render the linear pinhole model inadequate for high-accuracy

mapping. This is especially true for off-axis light rays in wide-angle lenses [13].

Three-dimensional PIV systems typically require sub-pixel mapping accuracy and
in some cases, such as tomographic PIV, less than a tenth of a pixel [6]. Imperfect
three-to-two dimensional mapping can occur as a result of resolution-degrading aber-
rations (i.e. spherical aberration, coma) as well as image distortions. Use of the linear
pinhole model is often used to determine a camera’s defining geometric parameters
even though it fails to model aberrations and distortions. Many techniques exist to
correct for image distortion [14, 15, 16] in a single camera setup but imaging with
multiple cameras requires full volume calibration to avoid excessive mapping error
[17]. Wieneke [17] showed that full volume self-calibration can improve accuracy for
tomographic PIV systems as well as stereoscopic PIV and PTV systems. However,
volume self-calibration does not work nearly as well in densely-seeded flows and the
improved measurement accuracy seen in these systems underscores the need to im-

prove planar calibration techniques used for SAPIV [11].

Planar techniques typically involve recording many images of a planar calibration
grid— a checkerboard pattern is commonly used —at various configurations with a
volume. These configurations attempt to “fill” the volume with points that are directly
calibrated to the image planes of cameras but ultimately fall short of achieving total
volume calibration. Interpolation is required to map all points within the volume
and this interpolation is often inaccurate in light of the complex interaction of multi-

camera image distortion.

Mapping errors significantly degrade reconstruction quality and a major source of
these errors is optical aberrations. The primary set of aberrations for optical systems
is the Seidel aberrations: spherical aberration, coma, astigmatism, field curvature,
chromatic aberration and image distortion. All but image distortion are resolution-
degrading aberrations (distortion is a mapping-degrading aberration); we have chosen

to examine spherical aberration here due to its prevalence and ease of implementation
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in a simulated SAPIV system. Image distortion is also included in the analysis as
its effect on mapping accuracy has historically proven to be significant. The current
work seeks to quantify the effects of radial image distortion and spherical aberration
in terms of intensity histogram data and a signal-to-noise ratio.

This thesis focuses on an analysis of the effects of optical aberrations on the recon-
struction capability of SAPIV. Chapter 2 covers fundamentals of synthetic aperture
methods including a brief history and overview of its uses and underlying theory.
Chapter 3 focuses on the implementation of a simulated SAPIV system for investiga-
tion of spherical aberration and radial distortion. The theory of optical aberrations
and wavefront imaging will be summarized. Chapter 4 presents the simulation results
and provides analysis in light of commonly used reconstruction metrics like correla-
tion, rank correlation as well as histogram analysis. Finally, Chapter 5 will provide
discussion and conclusions on the results presented as well as direction for future

work.
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Chapter 2

Synthetic aperture fundamentals

This chapter introduces the synthetic aperture method as a form of light-field imaging
and the manner in which it was developed and is currently used. This information

will provide context for the analysis and results described in chapters 3 and 4.

2.1 History

The idea of a synthetic aperture originated at Mullard Radio Astronomy Observa-
tory at Cambridge University in the 1950s [18]. Martin Ryle, the co-winner of the
1974 Nobel Prize in Physics, developed a method to combine radio signals from dif-
ferent points of observation in what was called “aperture synthesis” [19]. The large
wavelength range of radio frequencies makes it difficult to image faint, astronomical
objects with very low angular breadth. To give a sense of scale, a human with 20/20
vision can resolve an object with angular resolution of roughly one arc-minute. The
moon is roughly 30 arc-minutes when viewed from Earth. For objects being imaged
with radio wavelengths (on the order of tens of centimeters), an angular breadth of 1
arc-minute would require a telescope with an 800 meter diameter. The cost of such
an instrument would be prohibitive for most research institutions; therefore, a clever
way to synthesize signals from many small telescopes was developed by Ryle and his
colleagues.

Radio waves emanating from distant objects reach Earth as coherent waveforms
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and the interaction of those waveforms with the atmosphere produces some scatter-
ing which gives a non-ideal interference signature [20]. Both amplitude and phase
information on the incoming wavefront is required; therefore it is imperative that the
distance between telescopes is known and calibrated. Furthermore, Ryle developed a
way to use the rotation of the Earth to generate additional perspectives; calibration
now incorporated the geometry of the telescopes as well as the rotation and geometry
of the Earth. With the use of multiple perspectives from each telescope in the system,
signal noise from the atmosphere could be reduced in the form of a more concentrated
point-spread function. In addition to reducing noise, each perspective could add a
finite amount of signal intensity which strengthens the incoming signal. The compu-
tational power to carry out advanced Fourier waveform transform methods did not
arise until the late 1960s and as a result, telescope systems with effective apertures

of 5 kilometers were developed [20].

2.2 Theory

The theory underlying the development of synthetic aperture imaging using visible
light for human and machine vision applications originated from the work of Edward
H. Adelson [21]. Adelson developed the plenoptic function which parameterizes all
the variables in a light field. A light field is a description of a spatial domain that
contains visible electromagnetic radiation traveling in varying directions at various
points in time. It describes underlying visual properties of a three-dimensional scene

like motion, color, orientation and brightness. The plenoptic function,
P=P(X,Y,Z,UV,\1t) (2.1)

describes a field of light rays and can generate unique images at each defined view
point in three-dimensional space (X,Y, Z). Each light ray can be fully defined with
three parameters for space (X,Y, Z), two parameters for orientation (U, V), one pa-

rameter for wavelength A and one parameter for time ¢t. An example derivation of
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Figure 2-1: A unique perspective of a simple light field. The viewpoint, (X;,Y;, Z;),
and the UV-plane define a bundle of light rays which are sampled to generate an
image. If an entire light field is known, then any image from any perspective can be
generated. Conversely, many images taken inside a light field could theoretically be
used to reconstruct the entire field.

a unique perspective on a simple light field is shown below in figure 2-1. In most
cases, the full set of parameters of a light field are not known and must be deter-
mined through rigorous reconstruction. The methods used in this thesis carry out

this process of light field reconstruction.

Use of the plenoptic function [21] spawned a great deal of research into capturing
light fields as well as rendering from three-dimensional animations. Adelson and Wang
developed the first known light field camera by using a thin multi-lens array positioned
in front of a camera’s image sensor [22|. This allowed for analysis of multiple visual
perspectives from within the housing of a single camera body. Typical cameras with
a circularly-symmetric aperture behave like a single human eye: able to focus on
objects over a great range of distances but not easily able to perceive depth. Adelson
and Wang’s camera behaved like a two-dimensional array of low-resolution eyes, able
to perceive depth through the parallax effect as in figure 2-2. Humans can perceive
depth because the angle of convergence of human eyes determines the distance from
a viewable object. Objects located an effectively infinite distance away—stars, for
example—orient a pair of eyes in a parallel configuration such that the angle of
convergence is zero. Others have also developed image-based rendering systems for

digital animation of visually-rich, three-dimensional environments [23, 24].

The application of aperture synthesis to plenoptic imaging for applications us-
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Figure 2-2: The effect of parallax when using multiple viewpoints (eyes or cameras).
Nearby objects require the viewpoints to converge more than objects located further
away (i.e. B8 > «). If the distance d between the center of the two viewpoints is
known, then distance from the viewpoints to the objects can be determined. This
effect allows cameras with multiple perspectives, or systems of multiple cameras, to
image objects and reconstruct their geometry and location in three-dimensional space.

ing visible light was first explored by Marc Levoy and has been further developed
by numerous colleagues including Aaron Isaksen and Ramesh Raskar. The driving
principle behind the synthetic aperture method is the same as that which drove the
development of aperture synthesis for radio telescopes: the extension of an imaging
aperture to access more information while avoiding prohibitively large imaging in-
struments and their associated costs. Therefore, an array of traditional cameras with
overlapping fields of view can be used to image a particular object or volume of inter-
est to drastically increase the visual information provided relative to a single typical
camera. However, use of many cameras requires a method of linking the cameras such
that their relative positions and orientations are known as well as the computational
software to make this link and modify images to achieve a desired reconstruction
effect [25, 26, 27, 28].

The process of the application of a synthetic aperture can be broken up into three

components:
e Image acquisition
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e Image refocusing

o Three-dimensional reconstruction

2.2.1 Image acquisition

Image acquisition, as seen in figure 1-8 can be carried out using common, off-the-shelf
imaging equipment including consumer-level photographic cameras and optics. It is
critical that the images taken of the object of interest have a wide enough depth-of-
field such that the entire object is in focus. Reconstruction results will be suboptimal
if parts of the objects are not in focus in any of the raw images. High-resolution
images will enhance the information throughput in the refocusing and reconstruction
phase. Typically, if the object being imaged is time-varying, these images are taken
at the same instant in time using electronic triggering equipment. However, a single
moving camera imaging the same static object at multiple points in time can achieve
the same effect. Maintaining consistency is critical for comparing images of the same
object in the refocusing phase. Before images can be recombined, the camera array
must be calibrated. Calibration can take many forms including imaging an object of
known geometry [25, 27, 28], calibrating from the object itself [17] or controlling the
position and orientation of the cameras using electronic sensors and/or mechanical

stops such that calibration need not require image information.

2.2.2 Image refocusing

Image refocusing, as seen in figure 1-8, takes the raw images from the acquisition phase
and along with an accurate calibration, reorients and averages the images together
along a particular focal plane [25, 27, 28]. The first step, reorientation, requires an
image transformation known as a homography [29]. Figure 2-3 shows schematically
how an image reorientation is carried out. A homography is defined by a square

matrix, h;;, which maps image coordinates from one view to another
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Figure 2-3: A schematic showing how image views can be shifted using a homography,
H. The object of interest, z, is viewable by both camera views, C and C’ [29].

!
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where z and y represent pixel coordinates in the raw images and z" and 3 represent
the shifted pixel coordinates. A unique homography is required for each unique view
that is shifted to the reference view. The reference view is the perspective of the
final refocused image and is the view to which all raw images are shifted to. The
scalar b represents a scaling factor that allows for magnification of the shifted view
relative to that of the original view. The values in the homography matrix h;; are
obtained through calibration. The reference view is the single view to which all of
the raw images are shifted to generate a single refocused view. The reference view
can have arbitrary orientation such that it could be at an arbitrary angle, translation
or magnification to any of the views of the cameras [30]. This refocused view has
the benefit of the large effective aperture of the multi-camera system: it can visualize
objects occluded to some cameras and it can focus on a very thin plane within the

volume with significantly reduced out-of-focus noise as seen in figure 1-9.
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Once united in the reference view, the images can be combined to yield the re-
focused image [25, 27, 28]. The simplest method for image combination is additive

averaging [31]
N
1
In, = % > I, (2.3)
i=1

where I, is the refocused image combined from all  shifted images I, , at a particular
focal plane k. The focal plane that is imaged is specified beforehand and based on
the mapping derived from the calibration, the relevant pixels are picked from the raw
image and shifted to the perspective of the reference view (25, 27, 28]. Objects which
fall along the focal plane should generate a high intensity value as that object should
show up in all or most of the shifted images. After averaging, that object should retain
all or most of its original intensity. Items which are not located at the focal plane will
form an out-of-focus blur but because the orientation of each view is different, the blur
between images should be mostly uncorrelated and will thus generate a relatively low
intensity value relative to the in-focus, on-plane objects. Other methods for combining

images exist; a commendable alternative is multiplicative averaging [31].

N
I, = ([[Is.)", 0<n<1 (2.4)
=1

where multiplicative averaging retains an additional degree-of-freedom in the expo-
nent, n. The value set for the exponent will vary between systems depending the
quality of object-to-scene mapping, the visual layout of the object of interest, the
number of cameras in the system and other factors. In theory, the exponent should
take on the value of —11\—, but systems with imperfect calibration will require a larger ex-
ponent to retain information. Multiplicative refocusing yields a higher signal-to-noise

ratio than additive refocusing provided that the system is well-calibrated. [31]

2.2.3 Three-dimensional reconstruction

Refocused images can be filtered using a variety of techniques to eliminate out-of-

focus noise while avoiding elimination of in-focus objects. Once filtering of refocused
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images is complete, the set of refocused images can be brought together to form a
reconstructed volume where each refocused image represents a “slice” through the
volume at a discrete plane. This set of discrete images can be combined into volume
through three-dimensional smoothing and post-processing to form continuous three-

dimensional solids.

2.3 Implementation in a PIV system

2.3.1 Equipment

An experimental synthetic aperture PIV (SAPIV) system generally requires the fol-

lowing equipment:
e Camera array
e Trigger and wiring
e High-intensity illumination
e Computer with image processor

A camera array, seen in figure 2-4, can contain any number of cameras. Arrrays for
synthetic aperture methods have had up to 100 cameras [32]. Cameras are typically
selected to have focal lengths in the 50-110 mm range which provides an effective
combination of zoom and field of view. Shorter focal length lenses also tend to induce
more distortions and aberrations. Cameras are mounted on adjustable mounts such
that all relevant spatial degrees-of-freedom can be controllably modified including
pitch, yaw and horizontal /vertical translation. Camera mounts must be able to be
locked securely to eliminate any camera movement during calibration and experimen-
tation. Any movement, even a minimal change in orientation of a single camera or
a slight nudge of the camera array structure, can completely ruin a data set and re-
quire the calibration process to be redone. Electronic triggering is required to sync all

cameras together such that they take images at the same point in time. Cameras are
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Figure 2-4: An image of a nine-camera array along with the supporting 80/20®
structure and camera mounts. The orientation of the cameras is such that their
respective fields of view intersect at the volume of interest.

typically wired into a computer and a software program enables in-sync camera ac-
tions. However, focusing as well as lens zoom and orientation adjustment is typically

done by hand.

High-intensity illumination is typically synced with the image exposure of cameras
in the array. Illumination is typically supplied by a laser or light-bank pulse. The
duration of the pulse is much shorter than the duration of the image exposure; this
allows for a much smaller effective exposure time. Laser illumination is used more
frequently for PIV applications [11] where resolution of fine tracer particles is critical.
Experiments using light-banks of LEDs tend to have larger volumes of interest and

are more interested in bubbly flows and bubble size characterization [33].

A computer is necessary to facilitate high-speed image capture and processing.
Cameras used for PIV tend to be small to maximize mounting flexibility and thus
outsource processing duties to the mainframe processor from which the experiment is
being run. This avoids the hassle of having n distinct processors and memory cards

in each camera and then having to download all those images onto a single machine.
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Use of a single computer also allows for real-time visualization of the camera feeds

which can be useful for diagnosing problems and debugging.

2.3.2 Calibration

Multi-camera calibration is necessary to identify the relative location and orientation
of all cameras within an array which allows object-to-image correspondences to be
derived between cameras. This process is carried out with an object of strictly-defined
geometry in the location at which the volume of interest is to be imaged. This means
that if a volume of interest is inside of a water-filled glass tank then the calibration
object needs to be put in that tank at the location which is to be imaged by all of
the cameras. If it is a planar calibration object, as seen in figure 2-5, then multiple
images from each camera must be taken. The planar grid must be swept through the
volume at varying depths and orientations to “fill” the volume with points of known
correspondence. The grid spacing is well-defined and used to determine dimensions of
objects throughout the volume. This is especially useful for identifying bubble sizes
in multi-phase flows or in measuring displacements between images.
Auto-calibration helps speed up the calibration process significantly. The grid in
figure 2-5a is used for auto-calibration whereas the grid in figure 2-5b requires manual
selection of calibration points in each calibration image. Manual point correspondence
is time consuming as every image from every camera (sometimes over 100 images in
total) in the calibration process must have an operator select 4-6 points (typically
corners or the center of circles) to map points between images. Auto-calibration
requires no manual selection and allows for quick evaluation and optimization of the

calibration process.

2.3.3 Image acquisition, refocusing and thresholding

Images are acquired of a volume of interest that is supplied with pulses of high-
intensity illumination. Most of the content in these images overlap but some does

not; typically, cameras are oriented such that their field of view is large enough

40



Figure 2-5: Two images of planar calibration grids used in SAPIV experiments. Cali-
bration grids are typically made up of a consistent geometrical pattern, whether it be
an alternating two-dimensional checkerboard (a) or an evenly-spaced grid of circles
(b). Because the entirety of the grid is visible in (a), the pattern can be uniform as
any point on the grid can be considered a known origin. The grid in (b) has a square
and a triangle which can both act as origins.

to image beyond the volume of interest. Example images from a multiphase flow
experiment are shown in figure 2-6 and an image from a SAPIV experiment with
laser-illuminated tracer particles are shown in figure 2-7.

Generating a set of refocused images allows for “stepping through” the volume of
interest by viewing each image in an ordered sequence. Theoretically, only objects
located at a specific focal plane will come into focus. Figure 2-8 shows a water
ligament that is in focus separate from the rest of the fluid volume. The in-focus
object is identified by its higher contrast with the surrounding image. Objects not in
focus are noticeably more blurred. Figure 2-9 shows the volume seen in figure 2-7 but
refocused at a particular focal plane. As a result, there are far fewer discrete objects
visible since the effective depth-of-field is much smaller in refocused images.

For PIV experiments, refocusing image post-processing is typically necessary. The
goal of post-processing is to remove false objects known as “ghost particles” to leave
only the objects in the image which were actually located at the particular focal
plane’s depth. To filter out the background out-of-focus blur, Gaussian thresholding

is used to separate noise from the signal. In this case, “noise” is really just out-of-
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Figure 2-6: A sampling of four images from a camera array at a specific point in time.
The experiment sought to better understand turbulent flow sheet breakup for water
in air. Common features such as water droplets and water ligaments are seen in some
or all of the images.

Figure 2-7: An example of a raw SAPIV image from a vortex ring quantification
experiment. The section of particles being illuminated by the laser is clearly visible.
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Figure 2-8: A refocused view of the multiphase flow experiment in figure 2-6. The
ligament in the lower-left quadrant of the image is the only identifiable object in focus
at this plane. Its high contrast makes it easy to spot against the low-intensity blur
that surrounds it.
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Figure 2-9: A refocused view of the PIV experiment from figure 2-7. An underlying
low-intensity blur makes up most of the image but many particles of high intensity
and high contrast are visible.
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focus particles and not random noise. However, this blur degrades refocused image
quality just the same. Volumes with higher density of tracer particles will have greater
noise due to the increased ratio of out-of-focus to in-focus particles. Thresholding is
carried out by fitting a Gaussian normal distribution to the normalized intensity
distribution as seen in figure 2-10. The fit generates two parameters: a mean and a
standard deviation. The intensity cutoff for what are considered “signal” particles is
three standard deviations—a heuristic derived from optimization of reconstruction of
refocused images in previous experiments [11].

Applying this thresholding to the refocused PIV image in figure 2-9 yields the
thresholded image in figure 2-11. The inherent trade-off in thresholding is to try to
reduce noise while avoiding the loss of information of objects in the volume. If the
thresholding limit is set too high, then real particles which may have been occluded
could be lost. However, if the limit is set too low then false particles will be included in
the reconstruction. There is no particular limit which ideally separates false and real
particles, both will be present at any reasonable thresholding limit set. The critical

objective is to maximize the ratio of signal to noise in the volume reconstruction.
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Figure 2-10: A normalized intensity histogram of an individual refocused image.
Due to the large number of out-of-focus particles, the distribution of intensity in
any particular refocused image converges towards a normal distribution at the low-
intensity range of the distribution. These intensity buckets are considered to be
“noise”. Particles with high intensity located sufficiently far enough away from this
distribution are considered to be statistically significant. These particles make up the
“signal” portion of the distribution. A typical thresholding limit is three standard
deviations; in this case, that limit corresponds to a normalized intensity of 0.32. Any
pixels having a normalized intensity greater than this value are retained in the image,
pixels below this value are considered noise and set to zero.
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Figure 2-11: A thresholded refocused PIV image. This image represents a best esti-
mate as to which particles are located where at this particular focal plane. A set of
these images constitutes a reconstructed volume and can be compared to the images
taken of the actual volume—given the known geometry of the volume of interest—to
assess reconstruction quality.
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Chapter 3

Implementation of distortion and
spherical aberration in a SAPIV

system

This chapter describes models that approximate radial distortion and spherical aber-
ration effects in real optical systems. These models are then implemented in a simu-
lated SAPIV system in order to determine their effect on reconstruction quality.

SAPIV systems require accurate, sub-pixel calibration to reconstruct 3D volumes.
Calibration is often based on an idealized, pinhole model that fails to incorporate
the error-inducing effects of optical aberrations. In order to quantify the effects of
these aberrations in a SAPIV system, we select radial distortion and spherical aber-
ration and try to replicate their detrimental effects via mathematical models. Radial
distortion is chosen because it is typically the most common type of distortion in pho-
tographic optics [34] and spherical aberration is chosen because it is among the first
order of optical aberrations (known as Seidel aberrations) and is typically more sig-
nificant than others [35]. Its symmetrical form also allows for intuitive understanding
and relatively simple implementation.

They are modeled in a simulated SAPIV system to measure how each affects the
accuracy of volume reconstruction. A simulated system is chosen because it allows

for precise application of different amounts of radial distortion and spherical aberra-
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tion and it can directly compare the reconstructed volume with the true synthetic
volume. The MATLAB computing environment is used because of its image pro-
cessing capability as well as ease of use in programming. All synthetic images are
generated with a pinhole camera model with distortion and/or spherical aberration
then applied according to models given in sections 3.1 and 3.2, respectively. These
distorted/aberrated images are used for calibration and reconstruction of the imaged
volume. Reconstruction accuracy is then evaluated in light of the amount of distor-
tion/aberration applied.

Knowledge about how distortion and spherical aberration affect the imaging ca-
pability of a single camera have been well-cataloged in the literature, but how they
affect an entire camera system is a problem which has yet to be explored. Given
that each camera in a typical system has a unique perspective on the volume being
imaged, how distortions and aberrations propagate to refocused images and the final

reconstructed volume is a complex and non-trivial problem.

3.1 Radial image distortion

Radial distortion is applied to sets of synthetically-generated images. This includes
images generated of synthetic calibration targets during calibration which are used to
determine the three-to-two dimensional mapping function as well as synthetic images
generated of the particle volume which are ultimately used for reconstruction. The
distortion should have two degrading effects; first, the calibration will be inaccurate
because pixel locations from the calibration targets will not be consistent among
the images taken which will give erroneous object-to-image mappings. Second, the
images taken of the particle volume will not line up as well as they would without
image distortion. In both cases, this mode of imperfect alignment will result because
images are distorted in each respective image plane, but the orientation of each image
taken of the volume is different. Therefore, the image distortion will affect each image
differently and hence will make it seem as if each image taken is of a slightly different

particle volume.

50



Image distortion is a mapping aberration and therefore only degrades the location
at which light rays focus without degrading the focus itself. Essentially, this means
the distortion does not induce blur but rather warping. No image resolution is lost
due to distortion but rather the relative shapes of objects are warped as a result of the
process of mapping a spherical wavefront to a planar image sensor [36]. This leads to
variable magnification that is the result of imperfect optics, distortion from the fluid
medium and any non-optical glass surface between the volume of interest and the
camera (such as a tank wall). Specifically, radial image distortion is mostly a product
of radially-symmetric optical elements. Images can be distorted in modes other than
radial, including tangential distortion, but radial distortion typically dominates and
has incited a flurry of research for its correction [14, 15, 16]. A polynomial model for

radial distortion correction [14] is given as
Tw = ra(1 + K173 + Kor}) (3.1)

where r, denotes the undistorted image point and r4 denotes the distorted image
point and K; and K, are the second and fourth-order radial distortion coefficients.
For this investigation, we drop the fourth-order term as it is typically only required

for wide-angle lenses [37].

Radial distortion can be positive (barrel distortion) or negative (pincushion dis-
tortion) as seen in figure 3-1. A second-order radial distortion model can also be
parameterized by denoting the distortion of the furthest radial points in percentage
terms relative to their undistorted location. This has the added benefit of non-
dimensionalizing the amount of distortion within an image. Typical “portrait” style
lenses, which are often used for PIV applications and have focal lengths between

50-110 mm, will have distortion on the order of 0 - 1% [34].

All radially-distorted images, including calibration images, used in these simula-
tions are distorted according to a certain percent value within a reasonable range for
lenses that are typically used for fluid imaging applications. Distortion of individual

images was carried out over a range of 0% - 2% percent distortion (where percent
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Figure 3-1: Radial image distortion in synthetic images of a rectangular particle
volume with a square front face. An undistorted view (a) produces an image which
accurately depicts a symmetric square. A view distorted with 25% barrel distortion
(b) shifts pixel intensity values radially inward relative to their undistorted pixel
locations. A view distorted with 25% pincushion distortion (c¢) shifts pixel intensity
values radially outward relative to their undistorted pixel locations. It should be noted
that 25% distortion is exceptionally large and used here simply for demonstration.
Distortions in lenses used for PIV will be significantly smaller; distortions of this scale
are typically seen only in very short focal length “fisheye” lenses.

distortion corresponds to the movement of pixel values located at the image extrema
(corners for rectangular images)). For example, at 2 percent positive image distortion
the corner pixel of an image with 1,000 x 1,000 pixels (located at images coordinates
u = 500, v = 500) has a pixel radius (r?> = u? + v?) of 707 pixels, so 2% distortion
will correspond to an inward shift of that pixel’s intensity value of about 14 pixels.
All other pixels are shifted according to equation 3.1 with K; determined from the
given percent distortion at the maximum image radius. A sampling of pixel shifts in
images at various image radii with various amounts of distortion is shown in table
3.1. A derivation of the second-order radial distortion parameter (K;) in terms of

percent distortion is shown in Appendix A.

3.2 Spherical aberration

Spherical aberration is applied to a set of synthetically-generated images. This in-

cludes images generated of synthetic calibration targets during calibration which are
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Pixel Shift
Percent Distortion || r, =0.1|r, =05 |7, =1.0
0% 0 0 0
0.1% 0.01 0.18 0.71
0.5% 0.03 0.88 3.54
1.0% 0.07 1.77 7.07
2.0% 0.14 3.54 14.14

Table 3.1: Pixel shift for various distortion values at various normalized image radii
for a 1,000 x 1,000 pixel image. The normalized radius 7, is defined as the image
radius divided by the maximum image radius for a rectangular image. Even at 0.1%
distortion, a distortion amount not visually recognizable, pixel shift is large enough to
induce pixel errors that are significant for accurate multi-camera calibration. Distor-
tions on the order of 1-2% can generate very significant shifts towards the periphery
of images that can significantly degrade mapping accuracy.

used to determine the object-to-image mapping function as well as synthetic images

generated of the particle volume which are ultimately used for reconstruction.

Spherical aberration is known as the first mode of the Seidel aberrations which
are the first set of optical distortions not accounted for in paraxial Gaussian optics.
Gaussian optics assumes that all light rays are paraxial and are therefore refracted at
small angles. This allows for the small-angle approximation (sin § = ) to be made in
paraxial ray-tracing analyses. While this linearization greatly simplifies calculation of
image formation it fails to adequately model Snell’s Law, which governs the refraction
of light and is given below

ny sin 01 = N2 sin 02 (32)

Under the paraxial approximation, the refraction of light at an air-lens interface on
a spherical lens is equivalent to the refraction on an elliptical lens. This is signifi-
cant because an elliptical lens theoretically focuses light to a singular point—free of
spherical aberration. A spherical lens also focuses light to a singular point, but only
in the paraxial region. Non-paraxially, light rays diverge as shown in figure 3-2. Lens

elements in photographic optics tend to be made with spherical surfaces because they
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Figure 3-2: Lens with spherical aberration focusing incident, non-paraxial rays (red)
along a range of points. The imperfect focusing of rays causes an image point to
spread and reduce its peak intensity. Note that more light rays contact the image
plane (black) close to the ideal image point than further away.

are significantly cheaper to manufacture; a spherical surface is easy to grind with a
tool that has a constant curvature whereas an elliptical surface requires much greater

effort.

Spherical aberration arises from the non-singular focus of off-axis light rays leading
to imperfect image formation of points. Spherical aberration induces a blur that is
constant over the image field and the magnitude of this blur scales with the fourth
power of the pupil size [36]. This means that doubling the diameter of the pupil will
increase the amount of aberration in the entire image by a factor of 16. The precise
formulation of spherical aberration as a distinct Zernike mode of aberration [38] is
given as

Z = (RMS)V5(6p* — 60> + 1) (3.3)

where p is the normalized pupil coordinate and RM S denotes the amount of spherical
aberration given in waves and is the root-mean-square deviation of the wavefront
from an unaberrated plane wave. This higher-order dependence highlights the strong

dependence of spherical aberration as well as other higher-order aberrations on pupil
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size. Typical values for RMS vary depending on the optical system but values usually
range from 0.01 to 0.10 [35, 39, 40, 41]. This aberration from a plane wavefront gives
a point-spread function (PSF) that is wider than one obtained from a diffraction-
limited system (where aberrations are negligible) as seen in figure 3-3 and quantified
in table 3.3. The point-spread function is a two-dimensional impulse response where
the input is a point source of light. In this case, since spherical aberration is uniform
over the image field, we can find the PSF for our given aperture and wavefront and
convolve it with the unaberrated image produced by the simulation tool, including
calibration images, as seen in figure 3-4, and images of the particle volume. For a

system with a finite circular aperture, the PSF in image coordinates (u,v) is, [42]

PSF(u,v) = / / circ(p(x, y))eZrE(P@w) g=in(usty) gy gy (3.4)
A

where the Fourier transform represents a wavefront transformation with a focusing

lens and,

1 ifp<l,
circ(p(z,y)) = (3.5)

0 ifp>1.

the ”circ” function is commonly used to describe circular apertures in pupil spatial

filtering analyses. More information on this is given in Appendix B.

3.3 Simulated SAPIV system

Radial distortion and spherical aberration are applied to synthetic images within a
simulated SAPIV system. This system, based on the work of Belden et al. [11],
creates a 50 mm x 50 mm x 10 mm volume and populates it with a randomly-
generated field of static particles at a rate specified by a particle seeding density
parameter (particles/mm?®). The MATLAB computing environment, along with the
image processing toolbox, is used for this exercise. Particles have a diameter of 20

pm. The camera array is a 5 x 5 camera grid evenly spaced in the X and Y dimensions
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Figure 3-3: An unaberrated, diffraction-limited PSF (a) with higher concentrated
intensity pattern and an aberrated PSF (b) (RM S = 0.15) showing intensity spread
away from the central peak to the second annular lobe. Assumes a point source of
light with unit intensity. There is noticeable spread in the aberration-free PSF'; this
is a result of diffraction from a finite circular aperture (here, f/2.8) and is known as
a diffraction-limited PSF.

0.002 | 0.001 | 0.003 | 0.000 | 0.002
0.001 | 0.004 | 0.012 | 0.005 | 0.001
0.003 | 0.012 | 0.908 | 0.014 | 0.003
0.000 | 0.005 | 0.014 | 0.005 | 0.001
0.002 | 0.001 | 0.003 | 0.000 | 0.002

Table 3.2: A representation of how the intensity distribution from the diffraction-
limited, aberration-free PSF from figure 3-3a would be measured on an image sensor
with 10 pm pixel pitch. Each table entry above represents a single pixel on the square
synthetic sensor. This assumes unit input intensity; the sum of all values equals 1.
As indicated by the center entry, 90.8% of all intensity would be measured by the
central pixel. Non-symmetry
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Relative Intensity

RMS || Center Pixel | First Ring | Second Ring
0 0.908 0.070 0.022
0.02 0.903 0.075 0.022
0.05 0.877 0.098 0.026
0.10 0.786 0.175 0.039

Table 3.3: Comparison of PSFs from each of the four RM S values used to generate
PSF with different amounts of spherical aberration. As the amount of the spherical
aberration increases, intensity moves away from the center pixel, where all intensity
should be localized, to the first and second rings. The first ring is the eight pixels
that surround the center pixel in table 3.2; the second ring is the remaining 16 pixels.

a b

Figure 3-4: A non-aberrated image (a) of a simulated calibration target and an
aberrated image (b) of a simulated calibration target. Note the resolution degradation
and loss of high spatial frequency information in the aberrated image. The blurring
of pixel intensities is uniform across the image; no part of the image of the calibration
target is more blurred than any other.
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with a camera spacing dimension of 15.3 cm. All camera centers of projection are
coplanar. Cameras are modeled as having square 1,000 x 1,000 pixel sensors with an
85mm focal length and magnification of -0.2. Pixels are 10 ym x 10 pm. Simulated
images are project from the synthetic object to synthetic images using a linear pinhole
camera model. Four images of the same volume from the corner cameras of the 5
x 5 array can be seen in figure 3-5. Prior to particle seeding, calibration is carried
out using pre-defined simulated calibration targets, as seen in figure 3-4 that define
the relative position and orientation of each camera in the array as well as how
each camera’s pixels map to coordinates in the object space. Since depths in the Z
dimension are defined discretely at reference planes, particle locations are found by
fitting the intensity values of calibration points to a normal distribution. The peak of
the distribution then corresponds to the voxel location of the calibration point. Once
a calibration is successful in returning the 3D locations of the calibration targets, it
can be used to reconstruct synthetic particle fields.

These particle fields are generated, as seen in figure 3-5, and are realigned with
the reference camera (central camera) with homographies obtained from the calibra-
tion process. After averaging, a synthetic image is formed at a particular focal plane
corresponding to a given depth, as seen in figure 3-6. Focal planes are spaced in 0.2
mm increments such that 201 refocused images span the 10 mm depth of the vol-
ume. To remove background noise (particles not located at the particular focal plane
of interest) thresholding is required in order to generate an accurate reconstruction.
Due to the relatively large number of particles, the background noise (when plotted
according to pixel intensity) takes on the shape of a normal distribution with a long
tail corresponding to in-focus points. The typical threshold cutoff used is three stan-
dard deviations above the normally-fitted mean for acceptable reconstruction using
a histogram just like that in figure 2-10 [11]. A thresholded image is shown in figure
3-7; these synthetic images makeup the discrete slices that form the reconstructed

volume.
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a b
c d

Figure 3-5: Synthetic images taken of 50mm x 50mm x 10mm particle volume from
four corner cameras of the square 5 x 5 array. Image from top-left camera (a); image
from top right-camera (b); image from bottom-left camera (c); image from bottom-
right camera (d).
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Figure 3-6: Refocused synthetic image of a particular depth within the imaged vol-
ume. The low-intensity background blur is due to unfocused particles at various
other depths in the volume. In-focus particles can still be seen standing out from the
background blur.

Figure 3-7: Thresholded version of image 3-6 retaining only pixels of relatively high
intensity. Finding the proper threshold is critical for maximizing inclusion of desired,
at-depth particles and minimizing inclusion of false particles.
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Chapter 4

Results

The results of the simulations described in section 3.3 are derived from the com-
parison of the “true” synthetically-generated particle volume with the reconstructed
volume which was built from the calibrated mapping of two-dimensional synthetic
images. This analysis will utilize correlation and rank correlation in sections 4.1 and
4.2, respectively. Further analysis in section 4.3 also describes the performance of
the SAPIV system in terms of a signal-to-noise ratio determined from the intensity
histogram of refocused images that make up the reconstructed volume. These re-
sults attempt to characterize how and to what extent image distortion and spherical

aberration affect a SAPIV system.

4.1 Correlation

Correlation is a measure of statistical dependence between any two sets of data.
The statistical significance of any correlation between two variables of interest is
determined by the size of the samples and the degree to which these samples agree.
This can be applied to the “true” and reconstructed particle volume to determine how
much they agree. Given that both volumes contain enormous data sets—1,000,000
pixels per refocused image and 201 refocused images gives 201,000,000 data points—
the significance of the correlation will be based on how well they agree.

A normalized three-dimensional correlation metric used in PIV experiments [6] is
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given as
ZX,Y,Z VR(X’ Y’ Z) . VS(X) Y) Z)

VxrzVEXY, 2) Ty, VE(X,Y, 2)

where @) returns a value between -1 and 1 where -1 represents a perfectly negative cor-

(4.1)

relation, 0 represents no correlation and 1 represents a perfectly positive correlation.
VR is the reconstructed volume being evaluated and Vs is the randomly-generated
synthetic particle volume with known particle locations. A value of Q = 0.75 or
above indicates an adequate reconstruction according to Elsinga et al. [6]. This
cutoff value was shown to correspond to a mapping error of 0.45 pixels in a SAPIV
system [11].

Results for reconstruction quality as given by the normalized correlation value are
presented in figures 4-1, 4-2 and 4-3 as a function of distortion, spherical aberration

and both, respectively.

Correlation presents an attractive and convenient way of evaluating reconstruc-
tion quality but certain drawbacks exist which preclude it from providing a definitive
quantification of the damaging effects of distortion and spherical aberration. Corre-
lation only has informational value when making relative comparisons between data
sets, as is done in figures 4-1, 4-2 and 4-3. However, this relative comparison only
has value if all of these data sets are being compared to a single ground truth data
set. For example, if you want to compare two reconstructions of a particle volume
(A & B) with the ground truth C then a comparison would be made between the
correlation of (A & C) with that of (B & C). However, if A and B are reconstructions
of C and D, respectively, then the comparison of the correlation of (A & C) and (B
& D) conflates the change in reconstruction parameters with the change in ground

truth parameters.

Furthermore, reconstructed volumes with more particles have more data to sample
from. A high-correlation value from data sets with more particles carries more weight
than a high-correlation value from a data set with very low data. The amount of
data in the figures below varies over an order of magnitude (0.5 to 4 particles/mm3)

and thus comparing data in the same trace for a given amount of distortion makes
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Figure 4-1: Reconstruction quality as provided by correlation as a function of seeding
density and distortion D. It shows that significant reduction in reconstruction quality
occurs with more than a few tenths of a percent of radial image distortion. At 1%
and beyond, none of the simulated cases recorded a reconstruction quality above the
Q = 0.75 adequacy criterion. Such a degradation is to be expected when dealing
with three-to-two dimensional mapping systems that rely heavily on accurate ray-
tracing to generate quantitatively accurate three-dimensional reconstruction. Some
dependence between particle density and reconstruction quality is evident. Even at
zero distortion, a perfect reconstruction is not observed. This is due to the imperfect
calibration procedure, finite spacing of discrete reference planes, the probabilistic
nature of occlusions and the heuristic of thresholding. Higher reconstruction quality
can be obtained with additional computational cost. Voxels have an absolute size of
1/8000 mm?.
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Figure 4-2: Reconstruction quality as provided by correlation as a function of seed-
ing density and spherical aberration SA. It shows that a much smaller reduction in
reconstruction quality occurs with the inclusion of spherical aberration effects than
with distortion effects. Even at the highest value of spherical aberration, correspond-
ing typically to a simple, uncorrected one or two-lens system, degradation in image
quality only resulted in a reduction in Q of no more than 0.04 at the highest particle
density. Only in the worst case scenario (SA = 0.10) with the highest particle seeding
density did the quality come close to the adequacy criterion. Spherical aberration in-
duces no mapping errors, but the spreading of light intensity from a given point over a
larger area reduces the intensity of the true point and increases intensity around that
point. The results shown here indicate that spreading is not too significant relative
to the pixel size of the synthetic sensor.
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Figure 4-3: Reconstruction quality as provided by correlation as a function of seed-
ing density, distortion D and spherical aberration SA. It shows that the effects of
distortion and spherical aberration are mostly independent. Figure 4-3 mirrors figure
4-1 except for a small reduction in Q for all traces very similar to that seen in the
difference between the control (SA = 0.00) and spherically aberrated simulation sets
in figure 4-2. In light of the fact that distortion and spherical aberration are theoret-

ically independent modes of higher-order image aberrations, the results seen here are
not surprising.
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little sense. For example, imagine an image used in PIV cross-correlation contained
just one particle and was correlated with another image at a different time point
and yielding a correlation value of Q = 1. Now imagine an image with ten distinct
particles also yielding a correlation value of Q) = 1; the statistical significance of the
image (data set) with 10 points in perfect correlation is much greater than the image
with just one distinct point. The same analysis can be applied for particle volumes
of varying particle densities.

Particle size also affects the correlation value of a particular reconstruction. Two
volumes filled with small and large particles cross-correlated with themselves at a later
point in time will yield different correlations. Small particles will tend to overlap less
in a second image than large particles will, thus giving a lower correlation value. Even
though this analysis keeps particle size constant, these factors show that a correlation
value being used as a metric for reconstruction quality has significant shortcomings
in practice. Its use in this analysis may be plausible but in a less contrived, more
experimental setting, these same observations may not be as evident.

These issues can be allayed by using rank correlation which is the topic of section

4.2.

4.2 Rank correlation

Standard correlation is used to determine the quality of a reconstruction but the
ultimate objective is to accurately determine particle location and velocity. In that
sense, achieving the highest correlation value does not correspond to reconstructing
the most accurate velocity field.

Rank correlation is an alternative method of comparing data sets where the rel-
ative magnitude of data points is still important but only in an ordinal sense. Rank
correlation has been shown to successfully indicate the statistical significance of PIV
images [43]. Rank correlation takes all the elements of a data set and assigns them a
number from 1 to N where NNV represents the number of elements within a data set. In

this case, each element is a voxel in a three-dimensional volume with some intensity
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value. If each voxel in the volume V(z,y, z,I) is ranked according to its intensity
value 7 in relation to all voxels within this volume then this voxel will be assigned an
ordinal rank value J. This voxel now contains the rank value instead of the intensity
value as does the rest of the volume G(z,y,2,J). The rank number is assigned by
order of increasing magnitude; thus when correlation is carried out it is not the voxel
intensity values that are correlated but rather the rank of those intensities. Voxels
with the same intensity value receive an average of the rank they would have received

had their values been different. This gives us a rank correlation metric

 YxvzGr(X,Y,2)-Gs(X,Y, 2)
\/E:X,Y,Z G%{(Xv Y) Z) ° ZX,Y,Z G%(X,Y, Z)

Q (4.2)

where Gp is the ranked reconstructed volume being evaluated and Gy is the ranked
randomly-generated synthetic particle volume with known particle locations.

Figures 4-4 and 4-5 show that rank correlation drastically incfeases the ability to
match elements between the synthetic and reconstructed volumes.

While rank correlation provides an effective way of correlating PIV images and
volumes, it doesn’t help us better understand how image distortion and spherical
aberration affect reconstruction quality of three-dimensional volumes. What is needed
is a method of evaluation which is relevant to the method in which reconstruction is
carried out. Since the process of averaging shifted images generates distinct, high-
contrast particles (signal) and out-of-focus, low-contrast particles (noise), it would be
sensible to evaluate reconstruction according to a signal-to-noise metric. Evaluation

of such a metric is carried out in section 4.3

4.3 Histogram analysis

The quality of volume reconstruction is evaluated according the intensity histogram
data of the reconstructed volume. As seen in figure 2-10, an intensity histogram plots
the frequency of discrete ranges of voxel intensity that appear within a volume.

The normal fit of the intensity distribution yields two fitted parameters - a mean
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Figure 4-4: Reconstruction quality as provided by rank correlation as a function of
seeding density and distortion D. Results show that distortion has only a small effect
at 2.0% and a negligible effect for distortions below that. The range of correlation
values is greater than 0.97, which is much higher than the values given for standard
correlation.

68



0.995

[sA=0,002,005,0.10 |

0.985 \
Y

0.98

Rank Correlation Coefficient, Q'

0.975

__.I:
0

0.1 0.2 0.3 04 0.5 06
Particle Density (par’ciclesl103 voxels)

Figure 4-5: Reconstruction quality as provided by rank correlation as a function of
seeding density and spherical aberration SA. Results show that spherical aberration
has no discernible effect. The range of correlation values is greater than 0.97, which
is much higher than the values given for standard correlation. The lack of correla-
tion degradation can be attributed to the nature of spherical aberration. A uniform
“spreading” of intensity would affect a standard correlation as voxel intensities are
changing, but since this spreading is uniform, ranked values will not see significant
deviation.
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Figure 4-6: Mean of the normal fit of the intensity distribution as a function of
seeding density and distortion D. No significant effect is evident; this agrees with the
theoretical prediction that the mean intensity of distorted images should not vary.
Distortion does not add or remove intensity from averaged, shifted images, it simply
displaces intensity values.

and standard deviation. The mean intensity does not vary with different amounts of
distortion and spherical aberration, as seen in figures 4-6 and 4-7 but the standard
deviation does, as seen in figures 4-8 and 4-9.  Given the normal fit parameters, the
informational content of the reconstructed volumes can be compared quantitatively.
The sets of refocused images that make up each reconstruction of the imaged volume
are evaluated according to their signal-to-noise ratio,
z(1;)

1 N ma
SNR(VR) = + Z o)+ o0

+a(I;) (43)

Where Vg is the reconstructed volume with j reconstructed focal planes, I; is a

reconstructed image, p(/;) is the mean of the normal fit of the intensity histogram

and o(I;) is the standard deviation of the normal fit.

70



0.45

= 0.3
|sA=0.00,0.02,0.05,0.10 |
0.25]

0.15] / ‘‘‘‘
0.1 -
0.05! ~—~—~——~mﬂ/

L

Mean of Normal Fit
o
N

0.1 0.2 0.3 0.4 0.5 0.6
Particle Density (particles/1 o’ voxels)

Figure 4-7: Mean of the normal fit of the intensity distribution as a function of seeding
density and spherical aberration SA. No significant effect is evident; this agrees with
the theoretical prediction that the mean intensity of aberrated images should not
vary. Spherical aberration does not add or remove intensity from images, it simply
displaces intensity values.

The inclusion of the standard deviation of the normal fit adjusts for the spread of
the distribution. A distribution with more spread will mark a greater intensity range
as noise. The calculation of SNR from each reconstructed image within a volume is
meant to dampen the statistical variation in the measurement of maximum intensity.
Figures 4-10 and 4-11 show the normalized SN R as a function of distortion/spherical
aberration, respectively, and particle density. Normalized SNR (nSNR) is given as

nSNR(Va(D,7), Va(D = 0,7)) = Sigg/g(/’;i’ g,)i)) (4.4)

where D is the amount of distortion induced in the images used to reconstruct the
volume and 7y is the particle density.

This metric provides an effective comparison between volumes with different levels
of distortion and particle density. Normalization weeds out the effects of particle
density so that comparison of the signal-to-noise ratio can be made for different levels

of distortion and particle density.
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Figure 4-8: Standard deviation of the normal fit of intensity data as a function of
distortion D and particle density. The standard deviation decreases for distortion
percentages 0.5% and above and also increases with higher particle density as more
particles create much more non-uniform background noise. At low particle densities,
there is less out-of-focus particle overlap, so the distribution of noise intensities is
tighter. The tightening of the normal distribution as distortion increases corresponds
to the greater spreading of intensity in reconstructed images due to misaligned images.
Instead of a distinct, high-intensity voxel surrounded by very low or zero-intensity
voxels, distortion reduces resolution of reconstructed particles which leads to many
more non-zero, low-intensity voxels. In the limiting case where distortion is very large,
then the intensity of all voxels will converge to a single value - the mean intensity -
and all information will be lost to background noise.
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Figure 4-9: Standard deviation of the normal fit of intensity data as a function of
spherical aberration SA and particle density. The standard deviation decreases for
SA values 0.02 and above and also increases with higher particle density as more
particles create much more non-uniform background noise. As more SA is input to the
system, the standard deviation decreases. This tightening of the normal distribution
corresponds to the greater spreading of intensity in reconstructed images due to the
improper focusing from spherical aberration. Instead of a distinct, high-intensity
voxel surrounded by very low or zero-intensity voxels, spherical aberration reduces
resolution of reconstructed particles which leads to many more low-intensity voxels
and thus lower variance and standard deviation.
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Figure 4-10: Normalized signal-to-noise (nSNR) ratio as a function of distortion
D and particle density. All SNR values are normalized with respect to the zero-
distortion (D = 0%) case. Normalization removes the strong dependence of SNR
on particle density and allows for relative comparison. nSNR decreases slightly for
higher values of distortion. However, a clear trend between nS N R and particle density
is not evident thus showing that normalization is at least somewhat effective in helping
to make useful comparisons. n.SN R degradation is observed even for distortion levels
as low as 0.1%.
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Figure 4-11: Normalized signal-to-noise (nSN R) ratio as a function of spherical aber-
ration SA and particle density. All SNR values are normalized with respect to the
zero-aberration (SA = 0) case. Normalization removes the strong dependence of
SNR on particle density and allows for relative comparison. nSNR decreases for
higher values of distortion. nSN R degradation is observed even for distortion levels
as low as 0.02.
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Chapter 5

Conclusion

This thesis has shown the detrimental effects that image distortion and spherical
aberration can have on an uncompensated optical system used for synthetic aperture
applications. Chapter 1 introduced particle image velocimetry as a useful and prac-
tical measurement tool that relies on precise optical equipment for proper function.
Chapter 2 explained the fundamentals of the synthetic aperture method as applied
to making PIV measurement and the sub-pixel accuracy which is required from the
optical imaging elements in the system. Chapter 3 explained two dominant modes of
imaging aberration: image distortion and spherical aberration as well as mathemati-
cal models that explain their deleterious effects. These models were implemented in
a simulated SAPIV environment in order to observe and measure the extent of their
influence on three-dimensional volume reconstruction. Chapter 4 described three sets
of metrics for the evaluation of quality of reconstructed three-dimensional PIV vol-
umes: correlation and rank correlation of the reconstructed and “true” volumed as
well as histogram analysis that culminated in the use of a normalized signal-to-noise
ratio to weed out effects of particle density. Both distortion and spherical aberration
were shown to have significant effects on correlation values as well as the standard
deviation of the histogram normal fit and the normalized SNR. Only image distortion
showed an effect with the rank correlation metric.

Means to correct for radial as well as tangential and decentering distortion have

existed long enough to be incorporated into most 3D imaging systems, but only for
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individual cameras. Nevertheless, even a relatively small amount of uncompensated
radial distortion can have significant consequences for accurate mapping of an object
in space. Spherical aberration is just one of several Seidel aberrations and here is
shown to have a non-negligible effect on object reconstruction.

Future work will need to model additional, more complex forms of aberrations and
distortions over a wider range of optical setups—including wide-angle lenses where
distortions are much more pronounced and more difficult to model—and imaging con-
ditions. Also, inclusion of typical PIV experimental apparatuses such as glass tank
walls as well as fluid mediums with non-unity indices of refraction will illuminate dif-
ferent modes of image distortion. Further analyses that include all Seidel aberrations
as well as higher-order aberrations to fully characterize the departure of real optical
systems from ideal imaging conditions are the next logical step. Experimental work
that validates these analyses will be necessary to motivate future work on the subject
of imaging aberrations in three-dimensional systems. Furthermore, physical testing
of lenses will be required to enhance the precision of future synthetic aperture system
simulations.

Focus will need to be put on image distortion, since it has a much greater capability
for thwarting high-accuracy calibrations. Instead of correcting out distortion within a
single camera, generating a system-wide, effective point-spread function for aberrated
optical systems could lead to more effective calibration and understanding of these
multi-camera systems. Furthermore, analysis of distortions and aberrations in other
three-dimensional PIV systems could help shed light on the relative robustness of

these methods to imaging imperfections.
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Appendix A

Distortion parameter calculation

Typically, calculation of radial image distortion seeks to determine distortion coeffi-

cients in order to find undistorted image points using equation 3.1:
ro = ra(1 + K173 + Kor}) (A.1)

However, for the purposes of this analysis the converse problem is trying to be solved:
given a prescribed amount of distortion, to what image coordinates will the distorted
pixels shift? This can be visualized in figure A-1. Using the same equation form as

in equation A.1 we can find r4 from r, given K;
ra = 1o (1 + K172 + Korl) (A.2)
If we neglect the fourth-order term we are left with
rg = To(1 4+ Ky72) (A.3)

Now r4 can be solved for all pixels within a two-dimensional image if we have the
image data from the undistorted image (r,) and the distortion parameter. However,
it is more convenient and intuitive to work with percent distortion for second-order
image distortion. Percent distortion is a dimensionless parameter that does not vary

with sensor size. A photographic lens induces a certain amount of radial distortion
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Figure A-1: A schematic of how pixel intensity value shift according to the amount of
distortion applied to an image. Positive distortion represents a radially-inward shift
while negative distortion represents a radially-outward shift.

and using different camera sensors will change K, but not percent distortion. We can
define percent distortion as a parameter relating the pixel in the undistorted image

at the maximum radius with its distorted counterpart

T = Vi (1 - %) (A4)

where 7'y maz 18 the maximum image radius (located at the corner pixel of a rectangular
image) and p is the percent distortion parameter. Positive values of p corresond
to barrel radial distortion and negative values to pincushion radial distortion. The
schematic in figure A-1 shows this. For example, a 1,000 x 1,000 pixel image has
a corner pixel located at coordinates (u = 500, v = 500) with an image radius of
707. The number of pixels that the value in this pixels displaces defines the percent

distortion. Substituting equation A.4 into equation A.3 gives

Tu,max (1 - lgo) = Tu,ma:r(l + Klri,maz) (AS)
p 2
——=1+K J
1 100 + 1"y, maz (A 6)
-P _ 2
= K @A
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Y4
Ki=—"—— .
! 100T121,ma:c (A-8)

Now that K; can be specified using given input information, distorted pixel coordi-

nates can be determined.
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Appendix B

Point spread function derivation

The point spread function (PSF) given in equation 3.4 is derived using diffraction
theory. Diffraction can be defined in two regimes: near-field Fresnel diffraction and
far-field Fraunhoffer diffraction. The Fresnel number

D2

determines the regime: F > 1 corresponds to Fresnel diffraction and F' < 1 corre-
sponds to Fraunhoffer diffraction. Fraunhoffer diffraction is a subset of Fresnel diffrac-
tion where the diffraction pattern, which is the intensity pattern produced when light
is scattered by an object, is located a relatively large distance away from the ob-
ject/aperture. Fraunhoffer diffraction is determined from the electric field located a

great distance z from the aperture
I2 i
E(@,y) = —=e* = // t(z,y)E(z,y)e =@ YY) g dy (B.2)

where E(z’,y’) is the diffracted electric field, k£ is the wavenumber, A is the wave-
length, t(x,vy) is the aperture transmission function, 2 and y are the dimensions of
the transmission plane and z’ and y’ are the spatial dimensions along which the
diffraction pattern forms. However, the field that is observed on any image plane is

an intensity field and intensity is determined by the amplitude of this function, so

87



equation B.2 can be simplified to
E(@,y) = // t(z,y)E(z,y)e ==tk dr gy (B.3)
A

where k, and k, are the spatial frequencies in the z and y direction. This gives us a

spatial Fourier transform of the transmitted electric field

E(z',y) = F{t(z,y)E(z,y)} (B-4)

This shows that Fraunhoffer diffraction produces a spaital Fourier transform of an
incoming wavefront over a relatively long distance of empty space, but that distance
is on the order of tens of meters for typical aperture sizes used in cameras with visible
light. This would be highly impractical were it not for the properties of glass lenses.
Lenses can serve to bring the properties of far-field Fraunhoffer diffraction into the
near-field. This is because when an object is placed one focal length in front of a
lens an image of its spatial Fourier transform is produced at the image plane on the
other side of the lens. This allows the same result that is given in equation B.4 to
be obtained over a substantially reduced distance and also allows the use of Fourier
optics for the analytical calculation of the PSF and the characterization of optical

aberrations.

Equation B.4 can be applied for a typical optical camera system that focuses,
collimates and filters light onto an image plane as seen in figure B-1. A typical

optical system will have a circular aperture that defines the transmission function

t(z,y) = circ(p(z, y)) (B.5)

and the field being imaged onto the image sensor is not an electric field E(z,y) but
rather an intensity field I(z,y) since the incoming wavefront are spatially incoherent.
However, the relationship between the electric and intensity field is easily defined

where the intensity field is the amplitude of the electric field and does not change the

88



Object Aperture Image plane

(]

Iix,v tixvilix,y)  F{txvilixy)}

Figure B-1: The front half of the optical system collimates the incoming wavefronts
scattered off the object into plane waves (ideally). This is where the wavefront takes
on the aberrated form seen in equation 3.3 since it can deviate from a strict plane wave.
The aperture filters out parts of the wavefront and in doing so induces diffraction
effects that will materialize in a diffraction-limited PSF. Finally, the wavefront is
focused down to image point by a lens which is analytically represented by a Fourier
transform.

analytical determination of the point spread function
I(z,y) = E(z,y) - E'(z,y) = 22l (B.6)

where E'(z,y) is the complex conjugate of the electric field, E(z,y). Now for an
system with spherical aberration, equations B.5, 3.3 and B.6 are input into equation

B.3 to yield

PSF(u,v) = // cire(p(z, y))e2 2 (PEv) gmi2n(uztvy) o gy (B.7)
A

where €272(P(z.¥)) describes a wavefront of light in the aperture region of the optical
system. However, if the system is unaberrated then Z approaches zero and the

equation reduces to

PSF(u,v) =f/ cire(p(z,y))e 2= dy dy (B.8)

A
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which is simply the Fourier transform of the transmission function and is equivalent
to equation B.4. Equation B.7 can represent any number of aberrations with any
arbitrary set of relative magnitudes; we use it here simply to describe spherical aber-
ration. Any empirically-observed set of aberrations can be broken down into Zernike
components [38] and described analytically. As a result, a PSF can be generated

analytically as long as the aberrations are measured and grouped.
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