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Abstract
Quantifying uncertainty and error bounds is a key outstanding challenge in ocean state
estimation and climate research. It is particularly difficult due to the large dimensionality
of this nonlinear estimation problem and the number of uncertain variables involved. The
"Estimating the Circulation and Climate of the Oceans" (ECCO) consortium has
developed a scalable system for dynamically consistent estimation of global time-
evolving ocean state by optimal combination of ocean general circulation model (GCM)
with diverse ocean observations. The estimation system is based on the "adjoint method"
solution of an unconstrained least-squares optimization problem formulated with the
method of Lagrange multipliers for fitting the dynamical ocean model to observations.
The dynamical consistency requirement of ocean state estimation necessitates this
approach over sequential data assimilation and reanalysis smoothing techniques. In
addition, it is computationally advantageous because calculation and storage of large
covariance matrices is not required. However, this is also a drawback of the adjoint
method, which lacks a native formalism for error propagation and quantification of
assimilated uncertainty. The objective of this dissertation is to resolve that limitation by
developing a feasible computational methodology for uncertainty analysis in dynamically
consistent state estimation, applicable to the large dimensionality of global ocean models.

Hessian (second derivative-based) methodology is developed for Uncertainty
Quantification (UQ) in large-scale ocean state estimation, extending the gradient-based
adjoint method to employ the second order geometry information of the model-data
misfit function in a high-dimensional control space. Large error covariance matrices are
evaluated by inverting the Hessian matrix with the developed scalable matrix-free
numerical linear algebra algorithms. Hessian-vector product and Jacobian derivative
codes of the MIT general circulation model (MITgcm) are generated by means of
algorithmic differentiation (AD). Computational complexity of the Hessian code is
reduced by tangent linear differentiation of the adjoint code, which preserves the speedup
of adjoint checkpointing schemes in the second derivative calculation. A Lanczos
algorithm is applied for extracting the leading rank eigenvectors and eigenvalues of the
Hessian matrix. The eigenvectors represent the constrained uncertainty patterns. The
inverse eigenvalues are the corresponding uncertainties. The dimensionality of UQ
calculations is reduced by eliminating the uncertainty null-space unconstrained by the
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supplied observations. Inverse and forward uncertainty propagation schemes are designed
for assimilating observation and control variable uncertainties, and for projecting these
uncertainties onto oceanographic target quantities. Two versions of these schemes are
developed: one evaluates reduction of prior uncertainties, while another does not require
prior assumptions. The analysis of uncertainty propagation in the ocean model is time-
resolving. It captures the dynamics of uncertainty evolution and reveals transient and
stationary uncertainty regimes.

The system is applied to quantifying uncertainties of Antarctic Circumpolar Current
(ACC) transport in a global barotropic configuration of the MITgcm. The model is
constrained by synthetic observations of sea surface height and velocities. The control
space consists of two-dimensional maps of initial and boundary conditions and model
parameters. The size of the Hessian matrix is 0(1010) elements, which would require
0(60GB) of uncompressed storage. It is demonstrated how the choice of observations
and their geographic coverage determines the reduction in uncertainties of the estimated
transport. The system also yields information on how well the control fields are
constrained by the observations. The effects of controls uncertainty reduction due to
decrease of diagonal covariance terms are compared to dynamical coupling of controls
through off-diagonal covariance terms. The correlations of controls introduced by
observation uncertainty assimilation are found to dominate the reduction of uncertainty of
transport. An idealized analytical model of ACC guides a detailed time-resolving
understanding of uncertainty dynamics.

Keywords: Adjoint model uncertainty, sensitivity, posterior error reduction, reduced rank
Hessian matrix, Automatic Differentiation, ocean state estimation, barotropic model,
Drake Passage transport.

Thesis Supervisor: Patrick Heimbach
Title: Principal Research Scientist, MIT

Thesis Co-Supervisor: Carl Wunsch
Title: Cecil and Ida Green Professor of Physical Oceanography, MIT
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"All measurements, however careful and scientific, are subject
to some uncertainties. Error analysis is the study and
evaluation of these uncertainties, its two main functions being
to allow the scientist to estimate how large his uncertainties
are, and to help him to reduce them when necessary."
J. R. Taylor, 1982. An Introduction to Error Analysis: The
Study of Uncertainties in Physical Measurements.

I Introduction

1.1 Uncertainty quantification in ocean state estimation

Any quantitative description of ocean physics is subject to an inherent uncertainty since

physical oceanography, being one of empirical physical sciences, is fundamentally based

on measurement of the real oceans. Just as in any other branch of physics (Taylor 1982),

analyzing the errors of ocean measurements and their effects on the uncertainty of the

derived oceanographic description is a critical task. The ability to measure the actual

ocean fields is limited not only by properties of a particular instrument but, importantly,

due to the vast size of the observed system, spanning enormously large number of

degrees of freedom. Additionally, oceanographic theory involves uncertainties due to

inability to resolve the full spectrum of physical mechanisms involved as well as the

fundamentally stochastic nature of the turbulent processes in the ocean. All quantitative

ocean models, numerical and analytical, involve approximations or parameterizations,

introducing uncertainty by selection of scales and parameters whose numerical value can

be somewhat ambiguous. The computational methodologies involved in ocean modeling

contribute to uncertainty due to truncation, finite precision and round-off errors.

Furthermore, the applications of quantitative ocean description increasingly rely on the

numerical values of computed physical variables, those range of validity must be

understood. One of the primary such applications is the oceanic state estimation problem.

It involves many of the sources of the uncertainty listed above. Therefore, quantification

of this uncertainty and its effects on the confidence in the numerical values of the

estimated ocean state is one of the primary tasks in applied oceanography.

The progress in modem computational ocean models and state estimation techniques has

led to emergence of oceanographic state estimation as an applied methodology for
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detailed quantitative reconstruction of physically coherent ocean fields. "Estimating the

Circulation and Climate of the Oceans" (ECCO) consortium is a large academic effort to

produce dynamically and kinematically consistent estimate of time-evolving global ocean

state by optimal combination of ocean general circulation model (GCM) with diverse

ocean observations (see http://ecco-group.org). The practical mathematical framework for

ECCO state estimation system is set up in Wunsch and Heimbach (2007). The approach

is fundamentally different from sequential reanalysis techniques, which may introduce

artificial imbalances in the time-evolving solution due to the causal form of data

assimilation filtering schemes. These imbalances are eliminated in the ECCO estimation

system by formally constraining the solution to obey the nonlinear GCM equations. The

optimal fit of dynamical ocean model to the observational data is found by solving an

unconstrained least-squares optimization problem formulated by the method of Lagrange

multipliers. Gradient based iterative optimization schemes are implemented by recursive

execution of forward and adjoint ocean models - a procedure known as the "adjoint

method" solution. The major computational advantage of the adjoint state estimation

methodology over sequential reanalysis is the elimination of the need to calculate and

store large covariance matrices of the state vector. The computationally prohibitive size

of covariance matrices in realistic ocean models is a key implementation weakness of

sequential filtering and smoothing techniques, which must resort to approximate

processing of covariances. However, the lack of covariance representation in the adjoint

estimation procedure is a critical weakness of the Lagrange multipliers method. The

implemented adjoint ocean state estimation systems (e.g. Losch and Heimbach 2007,

Mazloff et al. 2010) lack error estimates or confidence bounds calculations, and do not

currently allow to quantify the effects of observation uncertainty on the estimation.

The primary objective of this thesis is to advance the ECCO effort and improve ocean

state estimation models by development of a feasible and scalable computational

methodology for formal uncertainty quantification (UQ) for determination of model

confidence and posterior error estimates. The need for formal uncertainty analysis in

ocean state estimation is a well known outstanding challenge (e.g. Wunsch 2006).

Mazloff et al. (2010) leave this effort for future work and instead base their quantitative

measure of the estimated ocean state uncertainty on its resolved temporal standard
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deviations. While applicable to uncertainty estimation of steady state parameters

perturbed by ergodic stationary random fluctuations, such approach imposes an

unwarranted ergodicity on the estimated nonstationary ocean state (Forget and Wunsch

2007). Equating the temporal variability to the uncertainty of a nonstationary process

discards the physics responsible for the dynamical evolution of the time-varying ocean

state and it is not applicable for uncertainty quantification of time resolving ocean state

estimation. Moreover, some confusion between the variability and the error statistics of

ocean state estimates has led to controversies (Lermusiaux and Robinson 1999). The

uncertainty of the estimated ocean state is a combination of dynamics predictability

errors, assimilation of observations' uncertainty, and random model noise (Lermusiaux

and Robinson 1999). A formal analysis of uncertainty in 4-dimensional state estimation

should firstly provide a quantitative measure of the confidence in the computed state

estimate. The goals of the developed UQ methodology also include: a quantitative insight

into the underlying physical mechanisms of uncertainty, allowing an improved physical

understanding of the dynamics of the estimated ocean state; and a procedure of posterior

uncertainty analysis to combine the effects of assumed prior climatological uncertainties

and the assimilated uncertainties of observations. Assimilating observation uncertainties

into the ocean model allows model calibration by constraining its parameterizations and

initial and boundary conditions. Furthermore, the analysis may be used in reverse to infer

the required coverage and precision of observations needed to constrain the state

estimation, leading to an objective procedure for future observation systems design.

Formal analysis of uncertainty estimates is possible in control theoretic framework

(Wunsch and Heimbach 2007) through the Hessian of model-data misfit cost function,

i.e. the matrix of second derivatives with respect to the model control parameters. The

Hessian eigenvalues determine the principal curvature structures of the cost function. The

curvature at the minimum point of the cost function is indicative of the uncertainty in the

location of this point. Large curvatures indicate small posterior uncertainties and vise

versa. Thus, the curvature information provides posterior error bounds through second

order approximation of the control space geometry of the cost function. The idea to use

the Hessians of model-data misfits to quantify the estimation uncertainty is not new and

is standard in the field of nonlinear regression (e.g. Seber and Wild 2003). In the
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oceanographic context this idea was introduced by Thacker (1989), who described the

application of the Hessian matrix for estimation of the precision of fitting linear

oceanographic models to observations. He also heuristically suggested that "as long as

the model is not too nonlinear, the inverse of the Hessian should provide a good

approximation to the error-covariance matrix even in the nonlinear case". This heuristic

linearized approach was continued in the nonlinear oceanographic uncertainty studies by

Gunson and Malanotte-Rizzoli (1996) and Losch and Wunsch (2003). In the linearized

framework of variational data assimilation (Moore et al. 2011) the inverse of the Hessian

of the strictly quadratic misfit function can be formally related to the estimated error

covariance matrix (see Section 2.2). Although it was also suggested (Lea et al. 2000) that

for highly nonlinear chaotic systems these local derivatives based methods may not be

appropriate, such situations have not been met so far in real oceanographic systems

(Wunsch and Heimbach 2007).

Two main technical challenges which had prevented implementation of the

aforementioned Hessian based uncertainty quantification system for realistic ocean state

estimation are solved in this thesis - the size of the Hessian and the methodology for its

calculation. The first technical challenge is due to the prohibitively large dimensionality

of the state estimation space and therefore the Hessian matrix. The complexity of the

multiscale ocean physics requires dynamics modeling with partial differential equations,

involving nominally an infinity of degrees of freedom. Even after appropriate

discretization the spatio-temporal ocean state comprises of a very large number of

elements, e.g. 0(109) in Wunsch and Heimbach (2007) global ECCO configuration with

one-degree and 23-level resolution, or 0(1013) in a regional eddy resolving domain with

1/6-degree and 42 layer resolution (Mazloff et al. 2010). Limiting the degrees of freedom

to model controls reduces the dimensionality, but it remains prohibitively large - 7-108

elements in (Mazloff et al. 2010) configuration. This "curse of dimensionality" (Oden et

al. 2010, Wunsch 2006) is a well known problem, it is a challenge in the linear modeling

framework and even more so in the nonlinear ocean state estimation problem. In this

thesis we analyze the dimensionality of the Hessian and propose algorithms for its

reduction.
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The second main technical challenge resolved in this thesis is computation of the

Hessian. No machinery for its direct computation was previously available for large

nonlinear ocean models. The previous efforts to calculate the Hessian were limited to

linear (Thacker 1989) or linearized (Moore et al. 2011) models, small systems and

approximate Hessian estimation techniques (Gunson and Malanotte-Rizzoli 1996, Losch

and Wunsch 2003). Here, we develop a novel computational methodology for direct

Hessian calculation of nonlinear GCMs with large dimensionality, scalable to realistic

ocean state estimation problems. The key machinery for Hessian computation via direct

differentiation of the MIT GCM code is based on the so-called automatic or algorithmic

differentiation (AD) methodology for exact, up to floating point round-off, calculation of

adjoint, Jacobian or Hessian derivative codes of arbitrary computer programs (Griewank

and Walther 2008). The primary tool is Transformation of Algorithms in Fortran system

(TAF) - a commercial successor of Tangent linear and Adjoint Model Compiler (TAMC)

by Giering and Kaminski (1998), which was developed in parallel to and specifically

targeted for the use in ECCO models. The central component of the ECCO adjoint

method based state estimation system is the first derivative adjoint code of MITgcm,

which was developed in a large collaborative effort at MIT over more than 10 years. The

key technical challenge of this thesis was further pushing the edge the applied capability

of TAF with development of a computationally feasible and scalable second derivative

Hessian code of MITgcm. The development strategy was based on progressive

application of TAF to a hierarchy of problems, starting with simple mathematically

tractable models of increasing complexity, for validation and calibration of the method.

The hierarchy of successfully implemented and analyzed models includes: generic linear

transformation, damped harmonic oscillator, analytical idealized model of circumpolar

flow, linear shallow water equations model, idealized and realistic barotropic

configurations of MITgcm.

Other aspects of uncertainty quantification in ocean state estimation are resolved in this

thesis. Sensitivity analyses have been proposed as a pathway to understanding the

uncertainty in ocean models, as sensitivity responses to perturbation of model parameters

can quantify the uncertainty of the system due to these parameters. Such uncertainty

sensitivity calculations were suggested by Heimbach et al. (2011) by multiplying the
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sensitivity fields with either the expected uncertainties or the expected variability of

model variables to quantify the contributions of these variables to the response of

selected modeled quantities (e.g. the meridional volume transport). However, this

intuitive connection of sensitivity and uncertainty was not put in a formal statistical

context and correlations of variability or uncertainty were not taken into account. Here,

we formalize the relation between sensitivity and uncertainty analysis frameworks and

clarify the role of sensitivities in forward and inverse uncertainty propagation. Another

open question raised in Heimbach et al. (2011) is the relationship between optimal

patterns of singular perturbations (Zanna et al. 2010) and expected uncertainty patterns.

The developed UQ methodology here explains this relationship in terms of eigenvectors

of the Hessian matrix.

1.2 Uncertainty of Drake Passage transport

The physical problem of interest in this thesis is the dynamics of Antarctic Circumpolar

Current (ACC), focusing on Drake Passage transport and the formal analysis of its

uncertainty. The physics of ACC is a complex problem, which is different from the

typical basin scale dynamics due to lack of continuous meridional boundaries which

constrain ocean flows in other basins. The ACC is the largest current in the global ocean

and has a unique impact on ocean and climate dynamics. Although the ACC transports

large amounts of water, heat and salt in the zonal direction, it acts as a dynamic barrier to

the meridional transport. This isolates the waters surrounding the Antarctic continent

from the global ocean and is therefore believed to explain the cold Antarctic climate. To

leading order ACC dynamics resemble that of the atmospheric jet stream - governed by

geostrophic and thermal wind balances, while the Sverdrup balance does not hold. The

physical mechanisms governing the ACC are not completely understood and are a subject

of an active debate (Rintoul et al. 2001, Olbers et al. 2004), the available observations are

scarce relative to its large geographic extent (Meredith et al. 2011) and ocean state

estimation is necessary to reconstruct its detailed structure (Mazloff et al. 2010). In this

thesis we apply the developed ocean state estimation UQ methodology to the problem of

ACC reconstruction. Our goals are twofold, to demonstrate the developed methodology
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and to attempt contributing to the understanding of ACC. We expect that quantifying the

sensitivity of ACC dynamics and the uncertainty of its estimate can shed more light on

the physics of this complex system and help better explain its effects on deep ocean

circulation and global climate.

Drake Passage is the narrowest constriction of ACC and therefore is a natural place to

quantify its strength. The rate of flow through the Passage is believed to determine water

mass budgets and circulation patterns in the global ocean (Meredith et al. 2011). The

attempts to quantify it from the available sparse and uncertain measurements lead to large

disagreements. One of the first hydrographic-section-based estimates of ACC transport

was 110 Sv (Clowes 1933). This value is believed to be relevant today (Meredith et al

2011), given the range of measured estimates from 5 Sv westward to 237 Sv eastwards

and the understanding that the transport fluctuates in response to varying forcing fields

(Whitworth and Peterson 1985, Weijer and Gille 2005). The Drake Passage transport is

also a standard diagnostic of many numerical global ocean models, with simulated values

spread over a wide range from well under 100 Sv to well over 200 Sv (Olbers et al.

2004). The reasons for this uncertainty are not fully understood but are believed to be

dependent on the uncertainty in modeling of wind forcing and thermohaline processes, as

well as on model numerics, resolution, representation of topography and parameterization

of subgrid processes. Our goal is to demonstrate the proposed UQ methodology by

analyzing the uncertainty of the modeled ACC transport. In order to keep the size of the

UQ problem and its computational requirements manageable in the early state of

methodology development, we focus on low resolution models with simplified physics.

These highly idealized models capture only some essential mechanisms and simplify the

uncertainty analysis by reducing the complexity of the real oceanographic system.

Our idealized ACC models are designed to resolve the uncertainty of circumpolar

transport to complement and compare to its estimated variability. The state of the art

estimate of ACC transport and its variability is given by the Southern Ocean State

Estimation (SOSE) solution of Mazloff, Heimbach and Wunsch (2010). The fluctuations

of the transport over a period of 2 years are shown in Figure 1.1. The estimate of the

transport is 153 + 5 Sv, given by the temporal average and the temporal standard

deviation. The mean transport, the upper and the lower variability bounds are displayed
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in the figure. The variability range of 10 Sv is added to the figure as an error bar (on the

right). Note that this variability measure is constant in time and does not reflect the

changing state of the transport dynamics, which is weaker in winter months (southern

hemisphere summer) and stronger in the summer. It also does not explicitly reflect

observation and control variable uncertainties. We develop a formal uncertainty measure

which, in contrast, is rooted in the dynamics of the system and varies as function of time

evolving dynamically in response to external forcing. The figure shows that the transport

variability fluctuations appear on synoptic time scales. We wish to resolve the uncertainty

due to the mechanisms governing this variability. It has been established (Wearn and

Baker 1980, Withworth 1983, Meredith et al. 2011) that the subannual variability is

mainly barotropic. Accordingly, we will focus on the uncertainty of the barotropic ACC

mechanisms. The subannual fluctuations are driven by wind stress and steered by bottom

topography (Weijer and Gille 2005). These processes are described by the linear theory

of wind driven circumpolar transport (LaCasce and Isachsen 2010), which guides our

idealized barotropic ACC modeling framework.

170,

165r

155-.-
.150.... ....................... ....... .......................... ..... .................--

E 145

45 85 125 165 205 245 285 325 365 405 445 485 525 565 605 645 685 725

Days after Jan. 1 2005

Figure 1.1: Estimated ACC transport variability at the different meridional cross-sections from SOSE

(Mazloff, M. R., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J.

Phys. Oceanogr., 40, 880-899. (c)American Meteorological Society. Used with permission.)

The lower line (blue solid) shows the transport at the Drake Passage over the period of two years. The time

average and the standard deviation of this transport are shown with dashed and dotted lines. Error bars

corresponding to twice the standard deviation are shown on the right of the figure.

1.3 Uncertainty assimilation framework for observation system
design

The key oceanographic goals in development of uncertainty quantification methodology

for practical ocean state estimation system are: assimilation of ocean observations

uncertainty in the dynamical model, an objective physics-based evaluation of observation

system contribution to ocean monitoring and quantitative foundation for optimal ocean
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observation systems design. The sources of uncertainty in ocean state estimation system

may be separated to internal modeling errors, e.g. due to physical representation or

computational restrictions, and to external uncertainties of various model inputs

propagating through the model. The main focus of this dissertation is on the latter,

quantifying the assimilated observation uncertainty and its effects on the propagation of

the uncertainties in model's initial and boundary conditions as well as other model control

parameters.

It is important to understand the difference between traditional error propagation

calculations in forward modeling settings and the UQ requirements of the inverse

modeling framework of ocean state estimation. Unlike the traditional approach (Taylor

1982), which is based on application of the given forward model or its first derivative to

project model input perturbations to model outputs, the quantification of inverse model

uncertainty requires uncertainty assimilation machinery, which calculates the effects of

the uncertainties in the assimilated observations on the estimated ocean state. The

uncertainty assimilation machinery is based on the inverse model, which is not available

explicitly, the assimilated observations are the output of the forward model and the

estimated state is the input. Therefore, it is the perturbations of ocean model output that

need to be projected to model input, which makes UQ for inverse modeling more

complex.

Design of ocean observation systems for sustained ocean monitoring at the Drake

Passage is an important task in oceanographic and climate research where "strategic

improvements could be made concerning how this is conducted" (Meredith et al. 2011).

In this dissertation we propose a quantitative framework for optimal ocean observation

systems design, using the example of barotropic ACC transport monitoring at the Drake

Passage. The large uncertainty in the previously reported observational estimates of the

ACC transport (see Section 1.2) warrants the development of an objective methodology

for design of new ocean observation systems intended to constrain that uncertainty. An

optimally designed oceanographic monitoring system can be purposed to reduce

observation uncertainty by location of the sensors in the most sensitive points. Efficient

ocean observation system may be designed to optimally complement the existing

moorings, repeat hydrography lines and the deployed remote sensing instruments. The
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qualitative effort to design the future ocean observation systems based on understanding

of ocean dynamics, its resolution and estimation uncertainty is reflected in the objectives

of the modem Drake Passage monitoring campaigns. The World Ocean Circulation

Experiment (WOCE) primary goals included determining the "representativeness" of

WOCE data sets (Meredith et al. 2011) obtained at the Drake Passage with bottom

pressure recorders (BPRs) and repeat hydrography lines. The cDrake experiment

observations (Meredith et al. 2011) with the array of bottom-moored Current and

Pressure-Recording Inverted Echo Sounders (CPIES) spanning the Drake Passage,

intended for assimilation in SOSE and evaluation of uncertainty of dynamical estimates,

are planned to be used in guiding future monitoring systems. It is one of the goals of this

thesis to provide a quantitative framework for these efforts utilizing the UQ and the

observation uncertainty assimilation methodology designed for the ocean state estimation

system.

The idea of putting the sensors in the most sensitive locations is an intuitive one, because

large sensitivity amplifies the effects of uncertainty of the measurements on the estimated

variables and reducing this measurement uncertainty has the largest impact on

constraining the target variables. Such approach is straightforward in forward modeling

framework, where the inputs to the model can be directly measured and forward model

sensitivity is defined as the derivative of model output with respect to model inputs.

However, if a quantitative estimate of the achieved uncertainty reduction is required, one

must remember that uncertainties add up not linearly but in quadrature (Taylor 1982) and

need to account for sensitivity coupling due to uncertainty correlation. Moreover, the

algebra of uncertainty quantification in the inverse modeling framework of ocean state

estimation is considerably more complicated. The sensitivities still play a central role but

involve nonlinear combinations of derivatives of two separate models. In the inverse

modeling framework the measurements are the output of the ocean model, while the

model inputs are given by adjustable model controls, which are not directly observed but

are constrained to minimize the misfit between the model outputs and the observations.

The calculation of the sensitivity of the estimated oceanographic variables to the

observations requires, then, evaluation of the sensitivity of model inputs (controls) to

model outputs (observations) and its combination with the sensitivity of a second ocean
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model, projecting the observations-constrained model controls to the estimated

oceanographic target variables. Although the first step of the above is possible for fully

observable and invertible systems by application of inverse function theorem, the

inversion of the sensitivity matrix is not generally possible for the non-observable non-

invertible ocean models. More elaborate analysis is required for quantification of the

reduction of uncertainty in ocean observation system design, which can be placed in the

framework of observation uncertainty assimilation developed in this dissertation. It will

be shown how the different sensitivities represented by the derivatives of the two separate

models are combined in quadratic structures extending the notion of the quadrature rule

for uncertainties. For nonlinear systems, the first derivative sensitivities are

complemented by the second derivative fields representing the sensitivities of

sensitivities. These "second order sensitivities" represent the curvature of the ocean

model in its range space. Both, the quadratic sensitivity structures and the second order

sensitivities are the consequences of the proposed Hessian UQ and uncertainty

assimilation methodology. The thesis below formalizes all these statements and develops

quantitative foundations for objective observation system design.
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2 Uncertainty Quantification Methodology

2.1 Inverse-predictive framework for ocean state estimation

We develop a unified inverse-predictive state estimation methodology for large ocean

models by combination of inverse and predictive modeling frameworks'. The inverse

model estimates the ocean state variables and the uncertainty of these estimates from

supplied observational data and observation uncertainty. In a dynamical systems setting

the inverse model estimates the variables that control the state of the ocean as computed

by a forward model. The vector of the estimated state or control variables, denoted x, can

include physical ocean variables, geometrical system parameters, any combination of

initial and boundary conditions and forcing fields, or other parameters of models

describing the dynamical system2 . We define a forward model M, generally nonlinear,

that maps these control variables to model counterparts of the observed data vector y

y = M(x) . (2.1.1)

If model M is invertible the solution to the inverse problem can be written as

X = M-A(Y). (2.1.2)

In general when the overall modeling goal is to estimate some target quantities which are

not among the model control variables x, then another nonlinear forward model N, either

prognostic or diagnostic, can be used to map the estimated ocean state controls to the

desired target quantities z

z = N(x). (2.1.3)

Our inverse-predictive two-step state estimation method first applies inverse modeling to

assimilate observations in a dynamical ocean model to find optimal model controls and to

constrain their a priori known or assumed uncertainties. Then, the optimized model is

used to evaluate the target quantities z and the a posteriori estimated uncertainty of the

Similar approach was introduced by Kaminski et al. (2010) in Gaussian statistical setting in the context of
quantitative network design and implemented for only 57 control variables.

2 To simplify the derivation here we do not explicitly distinguish between the state x(t), initial conditions
x(0) and unknown controls u(t) in the notation of Wunsch and Heimbach (2007) and as suggested therein
absorb them all in a generalized control vector x. We also disregard the explicit time dependence of the
state x(t), considering the entire time domain all at once in the state vector x. This notation allows single
derivation to apply for both static (time-independent) and time-evolving models.
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controls is propagated forward to obtain the posterior uncertainty estimate for the target

model predictions. The developed framework also allows comparing the posterior and the

prior uncertainty estimates of the target variables z, which quantifies the constraint of

target uncertainties by assimilation of observation uncertainty.

For invertible model M the inverse-predictive process for the estimated quantities can be

written formally as

z = N(M-1 (y)). (2.1.4)

Schematically, the workflow of the inverse-predictive algorithm can be expressed for the

estimated quantities and their uncertainties (here marked temporarily by symbol A) as

y -+ x -* z (2.1.5)

Ay -* Ax -+ Az (2.1.6)

The following sections formulate the algebra and the computational machinery for

implementation of such inverse-predictive procedure for large ocean state estimation

problems. Formal definitions for uncertainty of multivariate variables are introduced in

Section 2.3.

2.2 Nonlinear inverse problem

A general nonlinear forward model is not always formally invertible or its inverse is not

directly available, preventing application of (2.1.2). Therefore, we frame solution of the

inverse problem as minimization a quadratic cost function given by a weighted L2 norm

of model-data misfit vector in the range space of the forward model M. The value of the

optimal argument of the cost function in model's domain, denoted i, is the estimate of

the solution to the inverse problem. For fully invertible models with adequate data the

value of the misfit function at this optimum is expected to be zero. Explicitly, we define

the cost function

J (x)= (M(x)- y)T W-1 (M(x) - y) (2.2.1)

where y represents the measured data and W is a symmetric and positive-definite

weighting matrix, such that for x satisfying Jl(i)= 0, necessarily M(i) = y .
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In practice, the available data will typically be noisy and we have to rewrite the data

equation (2.1.1) with an additive3 noise vector n

y = M(x)+n (2.2.2)

When noisy data is substituted into the cost function, its minimum may not reach zero

and is interpreted as the least (weighted) sum of squares of model-data misfits. The

optimum £ is then the least-squares solution of the inverse problem. This method of

solution of nonlinear inverse problem is known as the "method of total inversion"

(Wunsch 2006 p. 173) and is a specific case of the general least-squares method. In

general least-squares the weighting in the quadratic cost function can be any matrix, not

necessarily symmetric and positive-definite (Wunsch 2006 p. 54). Also, in least-squares

methods it is customary to add to the cost function a weighted regularization term

Jo(x)=}(x -xO) T S- 1(x -xO) (2.2.3)

nudging the solution towards some a priori prescribed value xO. The effect of adding the

regularization term is improving conditioning of the inversion and reducing variance of

the solution at the expense of introducing some bias (Wunsch 2006 p. 55).

In many applications it is customary to put a deterministic inverse problem in a statistical

setting and render the least-squares solution in the form of linear minimum variance

estimation by choosing the above weighting matrices be a priori assumed dispersion

covariance matrices of noise and control vectors. Specifically, model-data misfits are

weighted by second moment matrix of noise

W = R (nn ) (2.2.4)

which is equal the covariance matrix of noise, i.e. C. ((n -<n>)(n - <n>)T) if noise is

assumed zero mean process (> =0. The regularization term is weighted by the

dispersion covariance of controls x around the prior assumed controls value xo

3 We note that the assumption of additive noise, as the explicit notation suggests here, appears to be only a
special case for a general nonlinear estimation problem. In simple linear regression it is customary to assign
the model-data misfits a meaning of additive observation noise. More general linear regression allows also
"errors in variables" (Wunsch 2006 p. 171), leading to a nonlinear estimation problem and its solution by
the method of total least-squares. However, in nonlinear regression the formalism of the method of total
inversion allows combining parameterized model errors with model-data misfits and augmenting the
regressors vector to form a generalized solution vector x. Thus, our framework includes both - the additive
measurement noise and other noise represented by the model errors, without contradicting the derivation of
the quadratic cost function term (2.2.1) weighting only the additive noise components (see Wunsch 2006
eq. 3.62).
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PO ((X-_x)(X-_xo) (2.2.5)

This dispersion covariance matrix is equal to the prior covariance of the controls if their

prior value is also the mean x = <x. The combined cost function is written as

J(x) = ,!(M(x) -y)'R-'(M(x)-_y) + (X-_xo)TP-1 (X-_X0)] (2.2.6)

If the forward model M is only weakly nonlinear and its first order Taylor expansion is a

valid approximation throughout the optimization domain, the model can be expressed in

terms of its Jacobian transformation4 3M / axT

M(x) = M(xO)+am (x- x)+0(||x - X0|12) (2.2.7)

which is known as tangent linear approximation. Within the tangent linear region the

inverse problem is solved by a linear transformation given by a closed form analytical

expression. To derive it, note that at the minimum of the cost function its gradient is zero

VJ(i)= R- (M(i)- y)+PO-j (i - x0 )=0. (2.2.8)

Substituting the tangent linear expansion (2.2.7) into (2.2.8) and neglecting higher than

first order terms yields

L r T R-1 (x + PO- xe = R-1 (y - M(xo)) (2.2.9)

which can be rearranged to form the linear inversion operator

X=XO + R- +Po- R-1(y -M(xo)). (2.2.10)

This solves the linearized inverse problem in the tangent linear domain.

Another combination of the same two equations (2.2.7) and (2.2.8) yields an expression

for the error covariance matrix of the solution - the dispersion of estimate i around its

unknown true value x, defined

P =( (2.2.11)

4 We define the Jacobian transformation as the linear transformation given by the Jacobian matrix (Rogers
1980, p. 35). Its transpose is called the gradient (Magnus and Neudecker 1988, p. 87), expressed in the
standard notation (Seber and Wild 2003) VM(x)= aM / ax = (aM / in agreement with Wunsch

(2006, p. 27).
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This requires rewriting (2.2.7) by expanding the forward model at the solution M(i)

around the true value x. Substituting the modified tangent linear expansion into zero

gradient (2.2.8) condition yields

rT) R-1  T)+Po-l (K-x)= D R-(y-M(x))+P- (xo-x)(2.2.12)

Multiplying (2.2.12) on the right by its transpose and taking the expectation yields

(, T I)+p- ,_X XT(, T -rM -M iT

r R-1 + PM R1 )(+) R +PO -
- X -X - X X (2.2.13)

R-M 1 (y -- M(X))(y -- M(x))T R-PT (x -) x(xo - x) Po-

where two additional cross terms proportional to ((xO - x) (Y - M (x)) ) and its transpose

were cancelled out by assuming that observation noise is not correlated with prior

dispersion of the controls. Using definitions (2.2.4) and (2.2.5) and the symmetry of the

matrices, the right hand side of (2.2.13) simplifies to

RM RR T  + I =(,T R-1+MT -+M (2.2.14)I\aXT) R'RR KX a o0

which can be cancelled out with the left hand side of (2.2.13) to yield

P = R +-1 - (2.2.15)

Both results (2.2.10) and (2.2.15) can be equivalently derived by application of the

Gauss-Markov theorem, as shown explicitly by Gunson and Malanotte-Rizzoli (1996)

and discussed further by Wunsch (2006, p. 129) for the case of a linear forward model.

Note, that while the results are identical, the derivations differ - the Gauss-Markov

theorem minimizes the dispersion of the solution, while we minimize the model-

observation misfits. The advantage of the Gauss-Markov minimum variance estimation

approach is that the resulting error covariance of the solution (2.2.15) is ensured to be

minimal among all possible linear inversion operators. The disadvantages, however, stem

from the assumptions of the Gauss-Markov theorem, limited to only linear inversion

operators and the tangent linear domain of the forward model. We focus instead on a

more general nonlinear inverse problem framework of the method of total inversion. The
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nonlinear least-squares problem is solved with the adjoint method by iterative gradient

based minimization of the cost function, which is not limited by the domain of local

tangent linear approximation. The uncertainty of the nonlinear solution is quantified with

the Hessian method, based on the quadratic expansion of the cost function at the solution

point (Wunsch 2006, eq. 3.68; see also Thacker 1989). We have shown above that in the

tangent linear limit (2.2.15) our method is equivalent to the linear (Gauss-Markov) error

estimate. Nonetheless, the method extends also to the nonlinear case and provides a local

quantitative error measure. For details of the adjoint method for solution of nonlinear

inverse problem we refer the reader to Wunsch and Heimbach (2007) and Heimbach

(2008) MITgcm user guide. The focus of this thesis is on uncertainty quantification and

propagation methodology accompanying the adjoint method.

2.3 Uncertainty propagation

We define uncertainty of a solution estimate i by its error covariance matrix (2.2.11),

i.e. its dispersion matrix around its unknown true value x. For linear invertible models

both forward and inverse propagation of uncertainty have closed form expressions and

are straightforward to derive. Consider a linear model given by matrix M

y = Mx (2.3.1)
The model input uncertainty is

P ((i-x)(i-x) (2.3.2)

which can be projected to the model output by forward transformation

P,, =((y - y)(Ayy) = ((MiMx)(Mi-Mx))= MPM T  (2.3.3)

known as matrix congruence for invertible models5 . The backward transformation is

derived by direct inversion of (2.3.3)

PXX = M-IMP MTM-T = M-PM -T = (MTP,,'M) (2.3.4)

Note, that the last RHS form is convenient because it does not require explicit use of the

inverse model M-, but only of two matrix inverse operations. The inverse of error

5 Matrix congruence is a change of basis transformation and it preserves the number of positive, negative
and zero eigenvalues of the matrix. The definition of congruence depends on the existence of the inverse
matrix M . Congruence transformation is a generalization of a similarity transformation for matrices M
which are not necessarily unitary.
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covariance or uncertainty matrix can be termed information matrix. Accordingly, we

interpret the inverse uncertainty propagation transformation as a backward projection of

the information matrix and then its inversion. This form is also interesting because it

suggests extending the framework of inverse uncertainty propagation to models which

are not formally invertible. Since only the adjoint of the model is required for back

projection of the information matrix, it can be applied even if the matrix M' does not

exist.

For linear invertible models the forward and inverse propagation transformations (2.3.3)

and (2.3.4) can be combined in our inverse-predictive state estimation framework. The

solution equation for target variables (2.1.4) rewritten for the linear models M and N is

z = NM'y (2.3.5)

The accompanying uncertainty propagation formula is

PZ, =N (M TP M) N  (2.3.6)

These two expressions complete the formulation of our UQ algorithm (2.1.5) and (2.1.6)

for the linear invertible case. The general case with models that may be not invertible or

nonlinear is more complex.

If the linear forward model M is not invertible the back projected information matrix

M TP 1 M iss ingular. The matrix cannot be inverted, which prevents the application of

the RHS of (2.3.4) for inverse propagation of uncertainty. In practice even for an

invertible model M the information matrix may be nearly singular and the required

matrix inversion be poorly conditioned. Such singularity or high matrix condition number

frequently arise if some components of the solution vector x are poorly determined by the

data or there is high disparity between levels of uncertainty in different components. A

standard solution in both ill-conditioned cases is to add a small regularization matrix Q to
ensure the well-posedness of the matrix inversion, which leads to approximation of the

uncertainty of the solution:

PU ~ (MT PY-M+ Q-) (2.3.7)

The resulting form is identical to the uncertainty of the regularized least-squares solution

(2.2.15). Thus, the addition of the regularization term (2.2.3) has two related but separate
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meanings: nudging the solution to a prior value and controlling the matrix inversion in

uncertainty back-propagation. In the Bayesian estimation framework6 under the Gaussian

assumption, this regularization term has a formal interpretation as the negative logarithm

of the prior probability of the forward model inputs x. In that framework the

regularization matrix Q is the prior covariance of the inputs x, denoted P0 . Moreover, the

application of the non-regularized uncertainty assimilation formula (2.3.4) quantifies the

error dispersion of maximum likelihood estimates, while the regularized version (2.3.7)

calculates the posterior covariance of inputs x. Therefore, the application of (2.3.7) can

be considered a prior-to-posterior transformation of uncertainty, which is also consistent

with the least-squares result (2.2.15).

For proper positive-definite covariance matrices, this transformation of prior uncertainty

to posterior uncertainty is always an uncertainty reduction. To show this we rewrite the

RHS of (2.3.7) utilizing the matrix inversion lemma7

(MTPM+Q-1) =Q -QM T (P,,+MQMT) MQ (2.3.8)

The second term on the RHS is the difference between the prior and the posterior

covariances. It is a positive-definite matrix, called the posterior uncertainty reduction

matrix IF in Chapter 4. This posterior uncertainty reduction is interpreted as constraining

the uncertainty of model inputs by the observations y and their uncertainty Pyy. In fact,

(2.3.8) shows that for linear models this uncertainty reduction calculation is independent

of the values of the observed data and thus can be performed before the actual data is

available. This decoupling of data and uncertainty assimilation calculations suggest using

data independent UQ analysis for design of observational systems with desired

uncertainty properties of the estimated state. Extending such UQ based experimental

design approach to nonlinear ocean models requires extending the presented uncertainty

propagation algebra to nonlinear models, as discussed below. Decoupling of data and

uncertainty assimilation calculations for nonlinear models is considered in Section 2.10.

6 Details of the equivalent derivation in the Bayesian framework are given in Appendix A.

7 The matrix inversion lemma, also known as Woodbury matrix identity or Sherman-Morrison-Woodbury

formula, is the exact matrix identity (A + UCV)' = A- 1- A-U(C + VA-'U) VA 1
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For nonlinear forward models, when the input uncertainty is not too large relative to the

range of validity of its tangent linear expansion, the uncertainty can be propagated

forward by the tangent linear model. Consider the nonlinear target model N(x) (2.1.3),

which we expand about the true value of model controls

3JN
N(i) = N(x) + (i - x) + O(|i - x|2) (2.3.9)

X

and substitute the expansion into the definition of target variable uncertainty, neglecting

higher than first order terms:

I ~ ~ T \ _ (N 3 (N
PZ = (N(( ) N(x))(N() N(x)) 2  P ( 'N (2.3.10)

The resulting forward uncertainty transformation is identical to (2.3.3), with the linear

forward model replaced by the tangent linear model given by the Jacobian matrix

DN / x'. It is important to note, that the range of validity of (2.3.10) depends on the

range of the tangent linear approximation of the target model (2.3.9) and needs to be

tested in applications.

We can propagate forward either posterior or prior uncertainty of x. This allows to

compare the prior and posterior uncertainty of target variables z in our inverse-predictive

state estimation framework. Explicitly, returning to notation of (2.2.15) and restricting to

only scalar target variable z, the prior estimate of the target and its uncertainty are given

by

zo = N(xO), = JP (j T P j(2.3.11)
The posterior target estimate and its uncertainty are

(X, 2(N )P N )
z=N(x), = $ (2.3.12)

The posterior uncertainty of the target variable is always smaller than its prior

uncertainty.

Before completing the discussion of forward uncertainty propagation we note that the

matrix form of (2.3.12) can also be written out explicitly in the scalar form:

2

U2 a 1 a a" p (2.3.13)
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Here or, are the standard deviations of the controls and p; are the correlation coefficients.

The first sum includes only the contributions of the diagonal terms of the covariance of

controls, representing the propagation of the uncorrelated standard deviations. The double

summation of the off-diagonal covariance terms is the contribution of the correlations in

the uncertainties of the controls. If the correlation uncertainty terms are zero, then the

uncertainty propagation formula (2.3.13) reduces to the familiar addition in quadrature

rule for independent uncertainties (Taylor 1982).

Propagation of uncertainty in the inverse direction for nonlinear models is more involved

and is developed in the separate section below.

2.4 The Hessian method

For a linear version of the forward model M the cost function (2.2.6) is quadratic in the

control variable vector x. Its quadraticity or its convexity properties are defined by its

Hessian matrix, i.e. the matrix of second derivatives

a 2j
Hi(x - 2  (2.4.1)

The matrix is independent of the value of x where the derivative is calculated, i.e. it's a

fixed global characteristic of the estimation problem. For a nonlinear model M in general

the cost function is not necessarily globally quadratic, but for sufficiently smooth

functions there exists a local range around any x where J is approximately quadratic and

its curvature is described by the Hessian matrix. In the vicinity of its minimum X the cost

function can be approximated, to second order, by the quadratic form

J(x) ~}(x -i) H,(i)(x - i), (2.4.2)

where H. (i) is the Hessian matrix evaluated at ii and the gradient of J vanishes (2.2.8).

The analytical expression for the Hessian of (2.2.6) at i is (Thacker 1989, Seber and

Wild 2003)

,M) BM '2M)
H(i)= R-1 ( K+R-M(i)y)+PJ- (2.4.3)

The first term is the backward projection of the inverse covariance of observation

uncertainty, similar to (2.3.4) if the linear forward model M is substituted with the
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tangent linear model of M. This first term is commonly referred to as the linearized

Hessian and was calculated in the previous studies of error covariance inversion (Thacker

1989, Gunson and Malanotte-Rizzoli 1996, Losch and Wunsch 2003). The second term is

the product of the tensor of second derivatives of the multivariate model M, i.e. the

collection of the Hessian matrices of each of its scalar components (Thacker 1989), with

the inverse covariance of observations and with the residual misfits vector. This second

term is named the nonlinear term (Gunson and Malanotte-Rizzoli 1996). It appears only

for nonlinear model M, since for linear model M the tensor of its second derivatives is

zero. The third term is the contribution of the quadratic regularization term (2.2.3) and is

equal, depending on the context, to the inverse of the weighting or the regularization

matrix. In the Bayesian context it is the inverse of the prior covariance matrix.

If a perfect solution i is found, such that the vector of the residual misfits (M(i)-y)

vanishes at the solution, or if the forward model M is linear, then the second term

disappears and the Hessian matrix is equal to the inverse of the posterior error covariance

of the solution (2.2.15). In these two cases the calculation of the Hessian matrix and its

inversion complete the inverse uncertainty propagation. However, in general the residual

misfits do not vanish, in particular if the regularization term is non zero at the solution

point - as can be seen in the optimum condition equation (2.2.8), and which is leading to

regularization bias. Moreover, in the ocean state estimation problem the models of

interest are nonlinear. Therefore, the Hessian matrix in general is different from the

inverse of the linear error covariance and the difference is the nonlinear Hessian term. It

can be argued that in some problems this difference can be neglected, when the residual

misfits are small or the nonlinearity of the forward model is relatively weak. In other

cases this nonlinear term can be large and should not be ignored. These are known as

large-residual problems and are discussed in Chapter 14 of Seber and Wild (2003). In the

ocean modeling context, Gunson and Malanotte-Rizzoli (1996) attempted to estimate the

effect of this nonlinear term by separately calculating and comparing the full Hessian to

the linearized Hessian. They found that while the normalized Frobenius norm of the

difference was 7%, the nonlinear term introduced singularity to otherwise well

conditioned linearized Hessian by making its condition number a very large. They

proceeded by neglecting the nonlinear term and relating only the linearized Hessian to the
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error covariance of the solution, relying on the linear Gauss-Markov theory. Their

required assumption had to be that the nonlinear model is approximately linear globally

over the domain of optimization, which is not the case in general. Similarly, Losch and

Wunsch (2003) estimated only the linearized Hessian and interpreted its inverse as the

covariance of the estimation solution, regardless of the magnitude of residual.

To quantify the uncertainty of the solution of a nonlinear state estimation problem solved

with the adjoint method consider the local quadratic expansion of the cost function

(2.4.2). If the nonlinear model is sufficiently smooth, the local Hessian of the cost

function describes its local curvature and within this local range quantifies the dispersion

of estimation errors. As was shown, in the linear limit or for well-posed invertible models

the inverse of the Hessian approximates the posterior error covariance

P ~ Hi(^)-I, (2.4.4)

which is a global measure of uncertainty dispersion. For general models we can define

the inverse of the Hessian matrix as the local quadratic measure of uncertainty, and

apply same analysis as typically done for error covariance matrices without adding the

global interpretation to the resulting uncertainty estimates. Since any symmetric positive

semi-definite matrix is a covariance matrix of some random vector, any inverse Hessian

estimated at a convex8 point is a covariance matrix. Thus the local quadratic uncertainty

measure can be interpreted as the locally equivalent error covariance, formally extending

uncertainty covariance analysis to nonlinear models.

A rigorous theoretical foundation for use of local Hessians for uncertainty quantification

in estimation problem is available in the Bayesian and Information Theory frameworks.

The Hessian can be interpreted as the observed Fisher information matrix (Efron and

Hinkley 1978) and its inverse is the Cramer-Rao bound on variance of the estimated

control variables. However, these details fall beyond the scope of the current thesis and

are left to be addressed in future work. To avoid the possible issues due to the difference

between the full and the linearized Hessians in this thesis we will focus on UQ

8 Convex point here means - not a saddle point, and thus might include zero curvature directions. Of course
the Hessian in such case would not be directly invertible, its inversion would be defined in terms of its
pseudo-inverse.
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implementation for zero-residual problems using the method of identical twins (Losch

and Wunsch 2003), see Section 2.10 below.

2.5 Automatic Differentiation and TAF

The computational ocean state estimation system is implemented in numerical ECCO

environment (MITgcm documentation Chapter 8, Heimbach 2008), with its dynamical

ocean modeling kernel provided by MITgcm (Marshall et al. 1997a,b,

http://mitgcm.org/). The source code of the numerical model, written in Fortran 77,

together with integrated precompiled external libraries, is referred to as the forward

model code. We generate the derivatives of the forward code, namely the Hessian, the

Jacobian and the adjoint codes with the Automatic Differentiation (AD) tool - TAF

(Transformation of Algorithms in Fortran). Overview of TAF can be found in Giering

and Kaminski (1998) and in TAF manual (available from FastOpt.com). A heuristic

concise but insightful introduction to TAF predecessor TAMC (Tangent linear and

Adjoint Model Compiler) with illustration of its oceanographic application appears in

Marotzke et al. (1999). A comprehensive explanation of TAF application in MITgcm for

sensitivity and state estimation studies is given in Chapter 5 of MITgcm documentation

(Heimbach 2008), with the mathematical framework and theoretical background laid out

in Wunsch and Heimbach (2007). Here we avoid repeating the details of implementation

of AD machinery and only highlight the main challenges of its application for uncertainty

quantification codes.

The central difficulty with AD application to large and complex codes is that, despite

what the name implies, the procedure is not fully automatic. For simple short codes

application of AD machinery is straightforward and was verified by complete UQ system

implementation for generic linear transformation, damped harmonic linear oscillator and

the analytical ACC model (see Chapter 4). In contrast, differentiation of MITgcm

requires manual programming of code flow directives to help the differentiating compiler

process the code. Selected subroutines require manual differentiation, external

precompiled libraries are hidden and bypassed, some loop restructuring is needed to

design recursive variable storage and recomputation solutions leading to checkpointing

schemes. These are the regular challenges in adjoint model development, which required
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several man-years of coding by the MITgcm development team. The unique challenge in

the Hessian code generation is the repeated differentiation of first derivative AD output

code. For large codes, writing the directives to facilitate processing of the machine

generated first derivative code and differentiate it second time is even more complicated.

A specific difficulty encountered and resolved was differentiating of the checkpointing

storage constructs in adjoint code, while preserving the checkpointing efficiency.

Therefore, practical applications of AD to complex codes should be considered only

semi-automatic.

2.6 Hessian computation

The Hessian matrix of the cost function can be estimated in several different ways. The

Hessian is defined as the matrix of second derivatives (2.4.1) or equivalently, as the

derivative of the gradient, i.e. the Jacobian matrix derivative of the gradient treated as a

vector function. Therefore, it can be computed by differentiating the gradient (adjoint)

code - either via AD or column by column by finite differences of the gradient.

Alternatively, Hessian finite difference schemes can be derived directly in terms of the

perturbed cost function. We implemented a simple forward difference Hessian scheme

32j J~x + h,+h&- J(x+ hie^) J(x + h,,)+ J(x)e.. (2.6.1)
ax,3x, hih,

Here hi, hj are the magnitudes of finite perturbations of the independent variables, the unit

vectors e,, 5Q represent the perturbed components. This scheme is slow to converge and

is computationally expensive. More accurate higher order finite difference schemes have

even heavier computational load. Therefore, finite difference schemes are not scalable

and cannot be applied for computation of large Hessian matrices. We applied this scheme

only sparsely for validation of our AD results and implemented it in the

HESSIANCHECK subroutine.

Application of TAF for semi-automatic calculation of the Hessian allows several

different options. Direct differentiation of the gradient code with TAF allows one to

choose between calculation of the full matrix, its few columns or its left or right product

with an arbitrary column or row vector. For multivariate functions with only one
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dependent (output) variable the most computationally efficient strategy for evaluation of

the second derivative is the so-called forward-over-reverse mode (TAF manual, p. 18).

Therefore, we first apply TAF to the forward model in reverse mode to obtain the adjoint

code, then TAF is applied in forward mode to generate the Hessian code of the cost

function. This procedure reduces the computational complexity of the resulting Hessian

code because tangent linear differentiation of the adjoint code preserves the efficiency of

checkpointing schemes. That second application of TAF can be done either in vector

mode - to generate the entire matrix in single run, or in scalar mode - which for each run

produces a single Hessian-vector right product. The later leads to either column by

column evaluation of the full Hessian matrix or can be used inside Lanczos algorithm9

(Trefethen and Bau 1997) for iterative eigenanalysis of the Hessian without actually

constructing or storing the full matrix, which can both be prohibitively large. For

example, in double precision the size of our 80*180*6=86400 elements long control

vector is 675 KB, while the size the Hessian is 56 GB, preventing its storage in the

random-access memory of standard computers. Moreover, the run time for a single

Hessian-vector product operation in our implementation is 0(10 to 600 seconds),

depending on the duration of the simulation (see Table 2.1). It would require from 10

days to more than a year of computer run time for a single evaluation of the whole

Hessian matrix. Accordingly, our UQ methodology for very large systems cannot

practically rely on construction of the Hessian matrix, which leads to the development of

a matrix-free reduced rank Hessian UQ algorithm in the next section.

FWD AD HESS

CPU time (seconds) 90 days run 37 168 - 213 375 - 426

CPU time (seconds) 30 days run 12.5 55 - 71 129 - 146

CPU ratio (FWD) 1 4.4-5.8 10.1 -11.6

CPU ratio (AD) 1 2.0-2.3

Table 2.1 Code execution duration (user CPU time) for different simulated time periods (90 and 30 days)
and computational complexity factors ratios (number of timesteps scaling) relative to the forward (FWD)
and the adjoint (AD) codes. See text for explanation of the ranges shown for the adjoint and the Hessian
(HESS) codes. The codes were executed on Dual Core AMD Opteron(tm) Processor 875 (2210 MHz,
cache size: 1024 KB).

9 Lanczos algorithm is based on the power method projection to Krylov subspace. We implement the
Lanczos algorithm with the implicitly restarted Arnoldi method library - ARPACK (Lehoucq et al. 1998),
using its symmetric matrix version, known as the Lanczos iteration (Trefethen and Bau 1997).
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We briefly analyze the computational complexity and temporal scalability of the

derivative codes. Table 2.1 lists the execution times for two representative simulation

period configurations - 90 and 30 days runs. For the adjoint and the Hessian codes a

range of execution times is shown. The lower computational load is observed for the

synthetic, zero residual, identical twins configurations (see Section 2.10). The higher load

is for the regular configurations with non-zero misfits. The difference can be explained

by the runtime simplification of the executed code for trivial (zero) variable values, when

the program reaches recursive iteration loops. The analysis has indicated that the

execution time scales linearly with simulation length for all three codes, i.e. the

computational complexity is O(N), where N is the number of simulation timesteps. The

factors of the linear scaling are shown in terms of their ratios relative to the forward and

the adjoint codes execution times. That is, if the forward model runtime is mfwd-N and the

adjoint model runtime is mad-N, then the table lists the ratio of the complexity factors

mad/mfwd. These ratios are equivalent to the ratios of user CPU times and the results are

consistent with Giering et al. (2005), who obtain the ratios 5.5 and 11 for the adjoint and

the Hessian codes relative to the forward code. Note, that in Giering et al. (2005) the

derivative codes were generated with three-level checkpointing, while our

implementation uses two-level checkpointing only. The presented analysis focused on

simulation time scalability only. The complete scalability and computational complexity

analysis requires also spatial resolution scaling as well as the separate effects of different

control fields, which is left for future work.

In this thesis we follow the presented AD approaches and compute the Hessians either

entirely or only few columns depending on their size. Our AD Hessian computations do

not involve linearization, approximation or truncation errors and were verified with

analytical calculations. Although our direct Hessian computation approach is the

preferable way for estimating the Hessians, the alternative Hessian estimation techniques

are worth a brief examination. Although they only approximate the actual Hessian,

through their analytical form or simplified numerics they allow a better understanding of

the computed Hessian structure. The structure of the Hessian reflects the convexity of the

estimation problem, understanding of which provides a critical insight into the dynamical

properties of the model and the estimated uncertainty.
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It is useful to reexamine the structure of the analytical expression of the Hessian of

model-data misfit function, here given without the regularization term:

H(i^)=a R-1(' + a2 R-1 (M(^) - y). 262

The first term is the inner product of model Jacobian transformations weighted by the

covariance of observations. Equivalently, it is the weighted outer product of model

gradients. It is independent of second derivatives and is constant for linear models, i.e.

independent of point i were it is evaluated. The second term is the product of the model

Hessian tensor with model-data misfit vector normalized by the data covariance. This

term is zero for linear models (model Hessian vanishes) or when the inverse problem has

an exact solution (zero misfit). These insights contribute to understanding of the

properties of the Hessian. For linear or invertible models, the Hessian and therefore the

solution uncertainty are completely determined by the model Jacobian. The first term -

the linearized Hessian, may dominate the structure of the Hessian also in more general

cases, when a nonlinear model is nearly invertible or its nonlinearity is weak. The second

term captures the uncertainty structure due to large nonlinearity of the model.

Furthermore, this form of the Hessian does not include a regularization term. It is the

form of the Hessian for the pure inverse (maximum likelihood) problem and therefore

defines directly the nullspace and the observability properties of the system analyzed.

Addition of the prior term regularizes the Hessian inversion, but unless it is based on

known prior statistics it is only an artificial computational construct which introduces a

bogus bias masking the assimilated physical information. Addition of the regularization

term should, desirably, be based on understanding of the original structure of the

nullspace of the physical system and the regularization matrix should be designed to

minimize solution bias and masking of the physically meaningful uncertainty subspaces.

For this reason, we prefer to design a prior-independent UQ algorithm, as detailed in the

following sections.

The linearized Hessian matrix

(OM (_M
H)L = R-1 (2.6.3)

L X XT
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can be calculated using only the model Jacobian code, as was done by Thacker (1989)

and Losch and Wunsch (2003), which eliminates the need for the Hessian code.

Moreover, the form of the linearized Hessian has an important theoretical connection to

singular value analysis of the sensitivity matrix (Zanna et al. 2010), because the

eigenvectors of the linearized Hessian are the rescaled singular vectors of the Jacobian

matrix. Understanding this connection is the pathway to exploring "the relationship

between optimal patterns and expected uncertainty patterns", the question raised in

(Heimbach et al. 2011).

Alternatively, a low rank approximation of the Hessian can be obtained with only the

adjoint code, that is the Jacobian code of the scalar cost function. The Hessian is

constructed iteratively from the cost function gradients computed in quasi-Newton

minimization algorithm (Veerse 1999).

Ultimately, in this thesis we are interested in the inverse of the Hessian matrix and its

forward propagation for large nonlinear ocean models. The discussions above lead us to

formulation of reduced rank inversion and forward propagation schemes for high

dimensional systems, presented in next sections. Remaining research questions include

the possibility of using exact AD Hessians in ocean state estimation optimization

algorithms as well as normalization and scaling of the numerical implementation of

Hessians to limit the round off errors. The Hessian can also guide a theoretical scaling of

the inverse problem, or alternatively be used as a preconditioner for the optimization

schemes.

2.7 Inversion of the Hessian matrix

For small to medium dimension problems, up to O(103 - 104) elements, the Hessian

matrix can be directly inverted by dense matrix algebra methods. We implemented direct

inversion based on LU factorization using a sequence of LAPACK library procedures

DGETRF and DGETRI. This direct approach cannot be applied when the Hessian matrix

is ill conditioned, i.e. when the ratio of its largest to smallest eigenvalue is large. Due to

limitations of finite precision numerics, computer round-off errors make dense algebra

calculations of ill-conditioned inverse useless even if the inverse formally exists.
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Nonetheless, the inverse can be constructed explicitly using a pseudo-inverse matrix form

based on the orthogonal spectral expansion that always exists for symmetric matrices:

H = VAV T = v VT (2.7.1)

H = VA4V T  VT (2.7.2)

Here li and v, are Hessian eigenvalues and eigenvectors, A is diagonal matrix, V is the

orthogonal matrix of eigenvectors (its columns). Each outer product of eigenvectors,

viviT, is a rank-i matrix. The pseudo-inverse is the linear combination of these rank-i

matrices weighted by the reciprocals of the Hessian eigenvalues (see also Thacker 1989).

For invertible (nonsingular) matrices the pseudo-inverse is equal to the dense (exact)

inverse. For singular or nearly singular matrices it is possible to construct a reduced rank

pseudo-inverse by omitting zero or small eigenvalues of the Hessian and corresponding

eigenvectors from (2.7.2), which is equivalent to just setting the corresponding diagonal

terms of A 1 to zero. These omitted eigenvectors correspond to control variable

combinations that are poorly constrained by the data or lie in the nullspace of the

problem, their eigenvalues representing the small or zero information gained. The

reciprocals of Hessian eigenvalues represent the uncertainty variances of the constrained

control variables combinations, thus the uncertainty of the omitted eigenvectors is very

large. At the limit when the Hessian is singular, its inverse does not exist and, as can be

seen explicitly in (2.7.2) - the full pseudo-inverse would be infinite. The interpretation of

the reduced pseudo-inverse then is - omitting the nullspace and contracting the

assimilated uncertainty covariance only to the data-supported sub-domain in the control

parameters space.

An alternative to partial inversion of ill-conditioned Hessian is to slightly modify its

structure to suppress its nullspace by providing plausible constraints, which make

otherwise zero eigenvalues finite. This is achieved by augmenting the model-data misfit

cost function with a penalty term quadratic in control parameters' deviation from a

prescribed prior value (Losch and Wunsch 2003). The curvature of the quadratic term is

given by a coefficient matrix (2.2.3), which specifies the strength of the constraints

reducing the uncertainty of the corresponding eigenvectors. For linear models this
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method is known as generalized Tikhonov regularization and it renders the inverse

problem one of "tapered least squares" (Wunsch 2006, p. 55). In a Bayesian framework

the same penalty term is produced by multiplication by a Gaussian prior probability

density. In the context of matrix inversion, the regularization term is just a matrix of the

same dimensionality as the original matrix that is added to it before application of

inversion algorithm. Since in all these cases the regularization may introduce bias to the

pure inverse, it is preferable to keep the magnitude of the regularization terms small -

meaning large prior uncertainty. There is a certain arbitrariness in the selection of the

regularization term, unless the value of the prior uncertainty is known with high

confidence. Even within the Bayesian framework, unless there is a strong evidence for a

particular prior distribution, the choice of the prior can be questioned and pure inversion

is preferred whenever is possible.

For small ill-posed inverse problems regularization of the Hessian matrix is a practical

solution as it then can be directly inverted either with dense or spectral pseudo-inverse

methods. Losch and Wunsch (2003) demonstrate regularization, suppression of effective

(numerical) null space, and reduction of condition number from 0(108) to 0(10) for

160x160 Hessian. For large problems, however, regularization can be counterproductive

as the resulting well-conditioned matrix is both too large to be inverted by a dense

method and would require full spectral decomposition for construction of the pseudo-

inverse. Such full spectral decomposition would be computationally prohibitive for very

large matrices even with matrix-free iterative methods, such as the Lanczos algorithm.

Moreover, if regularization is not applied we can utilize the sparsity of the original ill-

conditioned Hessian and its null space structure. If the Hessian is formally singular or has

a numerical null space, its spectral decomposition (2.7.1) can be reduced by considering

only the nonzero eigenvalues. In this case only the corresponding eigenvectors need to be

evaluated for construction of (2.7.1) or (2.7.2). One way to proceed then would be to

construct a reduced rank pseudo-inverse and keep in mind that it does not constrain the

full control space, leaving infinite uncertainty for some control parameters combinations

belonging to the problem's nullspace. This solution is satisfactory for the analysis of the

uncertainty structure of the inverse problem, for understanding its dynamics and can be

applied for optimal experimental design. It cannot, however, be used in our inverse-
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predictive state estimation framework, as our forward propagation transformation is not

defined for partial uncertainty matrix. In other words, the remaining unconstrained

control parameter combinations would propagate forward with complete uncertainty

about some aspects of the estimated state, rendering the target variables completely

uncertain.

Nevertheless, another solution is possible for large inverse problems by combining the

advantages of both of the above techniques - the reduced rank and the regularization

approaches to Hessian inversion. The solution is based on application of the matrix

inversion lemma and is inspired by the Gauss-Markov or the Bayesian solution for

posterior uncertainty reduction (2.3.8). We recall that the equation for the reduced

posterior covariance is given by inversion of the sum of inverse prior covariance and the

back projection of the inverse covariance of misfits

C-1, = CPi,.+ M TR-M (2.7.3)

The matrix inversion lemma permits instead of explicitly inverting the posterior

covariance, which typically is large and in general is not sparse, to get the same result by

inverting the sum of the covariance of misfits and the forward projection of the prior

covariance, both of which would typically have much smaller dimension as well as be

sparse

CP,,t= CPo, - CPr (R +MCorMT ) MC,,.o, (2.7.4)

The proposed solution is derived by noting that the same lemma can be applied, instead

to the back projection of the misfit information, to the Hessian written in the diagonalized

form as a matrix product of its eigenvalues and eigenvectors H=VAVT

P-' = PO-1+VAV T  (2.7.5)

P = PO - POV (A1 +V TPOV) VTP0  (2.7.6)

Note that as long as the eigendecomposition was precise, no other approximation was

made at this stage. Nonetheless, even a precise eigendecomposition can reduce the

dimensionality of the calculation as the Hessian may not have full rank, reducing the

number of columns in the eigenvector matrix V and the size of eigenvalue matrix A to

number of the nonzero Hessian eigenvalues. In the limiting case when the rank of the
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Hessian is one, the matrix V is a single column vector, A is a scalar and the only

inversion involved is that of a scalar. The latter case has the same form as the case of a

linearized Hessian of only single scalar observed data. This lossless computational

compression is a major advantage of the proposed approach: while the traditional solution

(2.7.4) reduces the required matrix inversion computations from the dimensionality of the

control space to that of the observations space, (2.7.6) further reduces the inversion

computations to dimensionality of only the independent observations which add non zero

information to uncertainty constraint in the control space, equal to the rank of the

Hessian.

dim(P) dim(R) dim(A) = rank(H) (2.7.7)

The inversion of the resulting smaller information matrix A-I+VTPoV can be

implemented with dense matrix algebra and the remaining calculations, that involve only

matrix multiplications, can be implemented with matrix-free techniques. The downside of

this approach, as opposed to the reduced-rank pseudo-inverse above, is that the result is

dependent on the structure of the prior covariance matrix. Therefore, while this may

benefit the sparsity to speedup the calculations, the arbitrariness in the prior selection

enters the solution and it seems impossible to separate the pure Hessian contribution.

Rewriting (2.7.6) allows matrix-free implementation for large prior matrices that are

available only through matrix-vector products

P= I - POV (A-+V' P0 V) V P0= LI - P0 V (A-V TP0V) V (2.7.8)

P= P I-V(A-+'PoV ) VTPO ]=P I - POV(A +V T PoV) V T] (2.7.9)

The last right hand side transformations in both formulae are strictly correct only for

symmetric prior matrices, which is always the case for covariances. A convenient

interpretation is obtained by rearranging

PP0 ' = I -PV(A-'+VPV) V (2.7.10)

with the right hand side of (2.7.10) seen as an uncertainty reduction operator. For

diagonal Po the diagonal of (2.7.10) is the rate of uncertainty variance reduction. Another
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measure of uncertainty reduction, valid for any Po, is direct comparison of prior and

posterior diagonals:

1- diag(P)i (2.7.11)
diag(P),

which is the same as the posterior relative error reduction in Losch and Wunsch (2003).

Alternative development (Y. Marzouk, Large-scale Inverse Problems and Quantification

of Uncertainty workshop, IMA 2011) is possible by simultaneous diagonalization of the

Hessian and of the prior matrix, which eliminates the need for numerical matrix inversion

at the expense of generalized eigenvalue decomposition and loss of strict orthogonality of

the eigenvectors. The inversion then is achieved with the analytical formula and the

resulting generalized eigenvectors are prior-orthogonal, i.e. under prior-weighted inner

product. The significant advantage of that approach is due to the closed form expression

of the posterior covariances which can be analyzed analytically. The disadvantage is in

the dependence on the arbitrary prior choice, which becomes an inherent part of the

solution.

For approximately singular Hessian it is also possible to construct a rank-i vector update

scheme to iteratively update the solution up to sufficient convergence. This is not pursued

in this thesis.

2.8 Forward uncertainty propagation

In the developed UQ framework two options are possible for forward uncertainty

propagation. One can choose to restrict the analysis only to the sub-domain supported by

the observations, where the "posterior" uncertainty covariance is given by (2.7.2). The

forward uncertainty propagation is then given by

TH*T T = TVA- V T TT = I TvivT (2.8.1)

which can be implemented as a sum of rank-i matrix updates. Here we shorten the

notation by defining the target transformation T equal to the Jacobian matrix aN / JxT.

Note, that this result does not represent the formal error covariance of the target variable
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when the data-supported sub-domain of controls, while excluding the nullspace of the

observation operator, also excludes components of the target transformation row space.

That is, if the excluded combinations of control variables which are not constrained by

the observations, are not also in the nullspace of the target transformation and thus map

their infinite uncertainty to the target variable range.

Alternatively, for the regularized posterior uncertainty of controls (2.7.6) the posterior

target uncertainty is calculated by

TPTT = TPOTT -TPV(A- +VTPOV) VT Pj T  (2.8.2)

or with a matrix-free implementation by

TPTT = TPOT T - TPOV LTPOV (A-' +V TpV) - (2.8.3)

Remember, that the prior target uncertainty is given by TPoTT and only the second right

hand side term needs to be calculated for target uncertainty reduction. If the target model

is not linear but (2.3.10) applies, the Jacobian derivative code needs to be implemented.

For a single scalar target variable (2.3.12) the implementation is straightforward with the

standard adjoint code of the target model, as the target transformation T is replaced by

the single row vector aN/axT, i.e. the transposed gradient of the target variable.

For a multivariate target variable vector either a full Jacobian matrix code is required or a

Jacobian-vector or a vector-Jacobian products codes, depending on the relative

dimensionality of the target and the control spaces. In particular a vector adjoint code can

be generated in scalar TAF mode to efficiently evaluate the reverse mode vector-Jacobian

products if the number of target variables is much smaller that the dimensionality of the

control space.
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2.9 Summary of proposed UQ schemes

For quick reference, we summarize the developed UQ algorithms. The workflow of the

proposed inverse-predictive uncertainty propagation procedures, which formalize (2.1.6),

is illustrated below (2.9.1). Observation data uncertainty is assimilated into the model by

projection onto model controls by the inverse uncertainty propagation procedure (2.3.4).

Then, the assimilated uncertainty is projected forward onto the desired target variables

(2.3.10), here for simplicity of presentation shown for a single target scalar z.

Data uncertainty - Controls uncertainty -+ Target uncertainty 2.9.1)

The implementation of this scheme is straightforward for invertible models by inversion

of the Hessian of the non-regularized data-model misfit function J1 (2.2.1) and its

forward projection, here given by the target gradient vector g (2.9.2). This uncertainty

assimilation procedure is independent of a priori assumed uncertainty of controls and thus

can be regarded as "pure" propagation of observations' uncertainty (2.9.2). Color coding

is introduced in schematics below, intended to help differentiate between the three

different uncertainties of controls recurring in this thesis: the "pure" prior-independent

assimilated uncertainty Px (green), the assumed prior uncertainty Po (blue) and the

posterior assimilated uncertainty P (black). The uncertainty of observations is shown in

red given by the covariance matrix Pyy=R. This color coding is utilized in UQ illustration

figures in Section 2.10.

P, > P=H - =gPg (2.9.2)

PO U2 T~poPo > ac = grPg

I (2.9.3)

P, P= (Hj)- > y =glpg

For the ill-posed inverse problems in oceanographic applications such prior-independent

uncertainty assimilation schemes (2.9.2) lead to unbounded uncertainties because not all

model controls are constrained by the assimilated uncertainty of observations. In these
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cases we can resort to the prior-to-posterior uncertainty reduction scheme (2.9.3), which

melds together the assimilated observations uncertainty with prior uncertainty of the

controls to produce the posterior controls uncertainty. The melding can be computed by

inverting the Hessian of the regularized data-model misfit function J (2.2.6) or with the

reduced order method based on (2.7.6). Both the prior and the posterior uncertainties of

controls can be forward projected onto the target variable space, where both can be

compared, which is guaranteed to result in prior-to-posterior target uncertainty reduction.

2.10 Synthetic UQ problem and the "identical twins" setup

The initial application of the proposed estimation and UQ methodology is implemented

in a simplified synthetic framework also known as the "identical twins experiment"

(Losch and Wunsch 2003). The synthetic ocean state estimation problem is designed by

first selecting a value, i, for the estimated parameter i = i and applying the forward

model to find its image y = M(i). To focus the attention on quantification of the

uncertainty itself and to avoid implementation of minimization algorithm, we consider

the simplest inverse problem case by choosing the prior mean x0 = i and observation

y = y . This leads to an unbiased and zero residual inverse problem, allowing arbitrary

specification of the prior and the observation error covariance matrices. The Hessian of

model-data misfits needs to be evaluated at the solution point i, and the nonlinear

Hessian term disappears because the residual misfit is zero by construction.

In our MITgcm implementation, the estimated parameters are the perturbations of ocean

model control fields. We construct the synthetic inverse problem by setting the

perturbations to be zero. Consequently, the Hessian model is executed unperturbed.

The synthetic decoupling between the calculations of nonlinear state estimation and its

UQ is useful for optimal design of observation systems, extending similar decoupling

practice in linear estimation problems. For a linear inverse problem, its Hessian and

therefore UQ calculation are independent of the data, allowing "precomputing" the

uncertainty even before the data is collected. Similarly, the " identical twins" setup allows

data independent UQ analysis for nonlinear inverse problems. One can use the
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uncertainty estimates from the "identical twins" calculation for design of optimal

observation systems and then after the data is acquired and the nonlinear inverse problem

actually solved - another UQ calculation based on the actual (not synthetic) estimated

controls can confirm the "identical twins" estimates or quantify any corrections if needed.

2.11 Elementary illustration in two dimensions
We illustrate the developed uncertainty assimilation machinery in the "identical twins

experiment" setup with a simple analytical example in two dimensions. Consider a linear

forward model given by a regular invertible linear transformation

M = L0 0.4] (2.11.1)
-0.4 0

The forward model maps controls x to observations y, both shown as 2-d vectors in

Figure 2.1. Uncertainty covariances are shown by the corresponding constant-- ellipses, i.e.

x'C x =Oc.

The uncertainty of observations' 0 (red) is mapped back by (2.3.4) to the model controls

(green), which is defined as assimilated uncertainty. Note, that since the forward model is

invertible, the assimilated uncertainty of controls can be forward projected back to the

observations space by (2.3.3). Such one-to-one back and forth transformations would

complete the uncertainty propagation operations for any invertible forward model.

However, for non-invertible models such one-to-one inverse uncertainty propagation is

not possible. The alternatives are either to explicitly analyze the range and the nullspace

of their Hessian or to calculate the prior-to-posterior reduction of uncertainty. For

completeness of the illustration Figure 2.1 visualizes the later for the invertible model

case.

To illustrate the UQ alternative for a more general non-invertible model, consider a

singular linear transformation in 2-d given by the projection on vector u = [0.2 -0.3]"

S -(TU'1T = 0.31 -0.461
- 0 .4 6  0.69

10 The uncertainty of observations, the assimilated uncertainty, the prior and posterior uncertainties of the
solution are given by the covariance matrices

[63 47= 158 -29.7] F90 401 [50 -3]
P=x10 P = x10 ' P- = x109 P4= 1 x10

"L47 253_ "L-29.7 39 j 40 150] L-3 27]
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Observation uncertainty
Assimilated uncertainty

- Prior uncertainty

Posterior uncertainty

N

Figure 2.1 Visualization of inverse and posterior uncertainty problem for linear transformation MI. Ellipses
are shown for o value 1.

Figure 2.2 Visualization of inverse and posterior uncertainty problem for singular linear transformation M2.
The uncertainty of observations and the prior uncertainty are the same as in the previous invertible case.

Direct application of the uncertainty inversion transformation (2.3.4), as in the case of

invertible models, results in assimilated uncertainty which is ill defined. In fact, the exact
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inversion calculation fails due to matrix singularity and no uncertainty ellipse is available

for visualization. Nonetheless, these circumstances can be understood by the illustrating

the inversion in the limit of a nearly singular matrix, by plotting the inversion with a

slightly perturbed forward model given by the finite precision approximation (2.11.2).

The outcome of inverting a non-invertible model is infinite uncertainty in certain

directions which are not constrained by the finite uncertainty of the observations. This

infinite uncertainty is illustrated by the infinite elongated ellipse of the assimilated

uncertainty in Figure 2.2(a). Despite the difficulty with direct inversion, the calculation of

the prior-to-posterior uncertainty reduction (2.7.6) always succeeds. The plotted posterior

uncertainty ellipse highlights graphically the lack of uncertainty reduction in the

unconstrained direction, while the reduction in the constrained direction is exactly

consistent with the direct inversion in the near singular asymptotic limit.

The alternative to the prior-to-posterior calculation is the detailed analysis of the range

and the nullspace of the Hessian, which in this simple case are identical to the range and

the nullspace of the forward model, whose dimension here is one. The nullspace vector

and the range vector are shown in Figure 2.2(b). The nullspace is the direction along

which the controls are projected onto the observations space, spanned by the range

vector. Because the projection strips out all of the information along the nullspace

direction, its inverse cannot reconstruct it and this direction is not constrained by the

assimilation of the observation uncertainty. The information along the range direction is

preserved by the projection and therefore the inversion of the observation uncertainty

constrains the uncertainty of the controls in that direction. Although one cannot plot an

ellipse of the assimilated uncertainty in whole control space, one can plot it in the

constrained sub-space. The position of this sub-space ellipse in the full control space is

not known, as it can be arbitrarily shifted along the unconstrained directions of the

nullspace. This is explicitly visualized in Figure 2.2(b). by the 1-dimensional collapsed

ellipses of the assimilated uncertainty. The length of the remaining uncollapsed semi-axis

is equal the square root of the inverse of the non-zero eigenvalues of the Hessian. The

direction of the semi-axis is the corresponding eigenvector of the Hessian. In general, the

full structure of the finite covariance in the reduced data-supported sub-space is given by

the pseudo-inverse of the Hessian (2.7.2).
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2.12 Formalism for uncertainty quantification in ocean state
estimation

Although the developed algebraic formalism is general enough and allows

implementation for ocean state estimation by defining all the dependent variables as

controls, here we explicitly rewrite the UQ problem formulation in the original control

theoretic formalism of ocean state estimation problem (Wunsch and Heimbach 2007).

Following Wunsch and Heimbach, the equations of a nonlinear ocean model can be

written

xt+A, = L ( x,,q,, ut ) (2.12.1 )

where xt is the instantaneous model state vector, qt is the deterministic forcing vector and

Ut is the unknown control vector. Note, the nonlinear model is explicitly time dependent

(non-autonomous, not time invariant). Let the instantaneous vector of model diagnostics

or model counterparts of the observed data be given by a nonlinear equation

y, = T (x,,t)+ n, (2.12.2)

where nt represents random observation noise. Ultimately, the objective of ocean state

estimation and uncertainty quantification is a target variable derived form the state of the

ocean by the nonlinear equation

z, ='T (x, t) (2.12.3)

Here we did not include a random noise or model error term, although this can be

straightforwardly added to the formulation.

To simplify connection to the AD formulation and for consistency with control

theoretical formalism, we can write the solution of the ocean model as integrated

trajectory in model state space

x = M (x0,u) (2.12.4)

y = F (x)+ n (2.12.5)

z = T(x) (2.12.6)

The vectors shown in bold are trajectories of the corresponding instantaneous vectors -

model state, controls, modeled observations, observation noise and target variable. We

note that this formalism explicitly separates the dependence of the model trajectory on

the initial conditions from the vector of model controls, in contrast to (2.1.1).
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3 Barotropic models of ACC and flow
through the Drake Passage

3.1 Analytical ODE model
Consider the barotropic physics of a wind driven circumpolar current over varying

bottom topography with parameterized bottom friction. The nonlinear barotropic

equations with surface wind stress rs and linear bottom drag coefficient r are

+uu, = fv - gru+ -

(3.1.1)

uv + v, -fu -gY, + --
±UV+V pH H

= -7(u(H + i7)), - (v(H + i7))J (3.1.2)

Linearized equations reduce to

=ufv - gl, + -r p r

(3.1.3)
av -- - +,' rv

t > -97,pH H

=1 -(uH),x - (vH),Y (3.1.4)

To capture the leading order dynamics we derive a simplified model of ACC adjustment

to steady state forced by zonal wind stress only. The steady state balance equations

reduce to

0=fv-g7,+ ru
pH H (3.1.5)

0 = -fu -g,--H

0 = (uH), + (vH),Y (3.1.6)

For a flat bottom ocean the continuity equation (3.1.6) reduces to 0 = u, + v,.

If zonal homogeneity is assumed (a/ ax = 0), integration of the flat bottom continuity

equation from the southern boundary imposes zero meridional flow all over the domain

and the steady state solution simplifies to
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0_ Tr ru

pH H (3.1.7)
0= -fu - gr7,

The zonal momentum equation has reduced to a simple balance between wind forcing

and bottom friction, while the meridional equation simplified to the geostrophic balance

accompanying the zonal flow. The transient adjustment to this steady state can be

described in bulk for a zonally periodic basin when meridional flow perturbations can be

neglected in the momentum equations by

a - . (3.1.8)
at pH H

This idealized form of zonal momentum balance in a zonally homogeneous flat bottom

case can be written as a simple linear ODE:

du r X/p

dt - u+ -Ru+F (3.1.9)

Here R and F are just depth-normalized constant dissipation and forcing parameters. The

general solution is of the form of exponential relaxation, given by

(~ F>to Rto F-r
u(t) u - e -R(t-to) =uoe- to) (3.1.10)

The system adjusts to a steady state independent of the initial conditions uo with the

relaxation time scale H / r =1 / R . This time scale is also the exponential rate of decay of

the transient effect of the initial conditions. The asymptotic steady state flow is the

balance of wind stress and bottom drag, independent of the water column depth:

ur = = (3.1.11)

Similar idealized solution was utilized in previous theoretical studies of barotropic ACC

dynamics (Wearn and Baker 1980, Weijer and Gille 2005, Olbers and Lettmann 2007).

We highlight that this analytical model is an oversimplification of the real dynamics, it

does not resolve the detailed spatial structure of the geostrophic adjustment process and is

intended to describe the integral balances in a bulk form. The following detailed

numerical simulations with a nonlinear barotropic model confirm the high degree of

accuracy that this simple ODE model describes the overall system dynamics.
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3.2 Barotropic scales of ACC transport
First we consider the characteristic magnitudes of the physical and geometric variables

involved in the observed Drake Passage transport. These scales will guide our theoretical

understanding of the dynamics governing the Drake Passage transport and will be used

for design of equivalently scaled idealized simulations.

Despite the uncertainty and the variability debated in the literature, the rate of Drake

Passage volume transport is estimated to 0(100 Sv), i.e. 108 m3 /s. Examples include the

early observational estimate of 110 Sv (Meredith et al 2011), and the high resolution

ocean state estimation system result 153 Sv (Mazloff et al. 2010). For the characteristic

ocean depth of 5 km and the rough scale of the meridional extent of the Drake Passage of

10 degrees or about 1.1x103 km, the cross-sectional area of the passage is 5.5x 109 m2.

Thus, the typical average zonal flux U is order of 2 cm/s, which is in good agreement

with the scale of measured horizontal velocities at the Passage (Meredith et al 2011). The

corresponding scale of geostrophic surface elevation slope is ,= -fU / g ~2 x 1 ,

translating to surface elevation difference across the Passage of 0.2 m.

If simple barotropic balance of wind stress and bottom drag (3.1.7) is assumed, the scales

of wind stress and friction coefficient are constrained by the scale of the barotropic flow

rate U=2 cm/s. Following Losch and Wunsch (2003), the scale of the linear bottom drag

coefficient is assumed r =5x 10-3 m/s, which for 5000 m deep water column translates to

spin down time scale H/r = 106 s or about 12 days. The corresponding kinematic wind

stress scale is <r / p = rU =0- m2 s2 , i.e. wind stress r = 10-1 P a.

The Rossby number for Drake transport related barotropic flow dynamics can be

estimated with the length scale given by the meridional extent of the Drake Passage

(L=106 m) and the velocity scale given by the barotropic flow rate (U=2x 10-2 m/s). The

resulting Rossby number is Ro=U(Lf)-' = 2x10-4, which is sufficiently small to expect

a negligible contribution from the nonlinear advection terms in the momentum equations.

The real turbulent baroclinic ACC dynamics is more nonlinear than this, but we restrict

our simplified analysis to the coarse barotropic scales.

The time dependent solution (3. 1. 10) of the proposed simplified analytical ODE model of

the circumpolar transport is governed by a single time scale, given by the frictional spin-
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down rate. This frictional time scale is inversely proportional to the bottom friction

coefficient and is linear in the depth of the ocean:

Tfition H (3.2.1)
r

Therefore, in deeper basins or when the friction is weaker, the dynamics of ACC

evolution is, to the leading order, controlled by a single slower time scale. However, in

detailed numerical PDE model solutions that extend to the equator and include

continents, additional time scales (slower or faster) are expected to influence the

circumpolar transport evolution, reflecting the dynamics of different barotropic waves

(see Figures 3.1 and 3.2). Fast Kelvin waves propagating along the coastal boundaries

and the equatorial wave guide with phase speed gH = 220 m/s traverse a length

comparable to the Drake Passage in 0(1 hour) and cross the Pacific ocean in 0(1 day).
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Figure 3.1 Dispersion relations (left) and characteristic scales (right) of barotropic waves at the latitude of

the Drake Passage (shown for latitude -55*). The theory of midlatitude barotropic waves is a standard

textbook material, see for example Chapter 9 of Cushman-Roisin and Beckers (2011).
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Faster inertia-gravity (Poincare) waves can cross the Pacific ocean in few hours or less,

propagating geostrophic adjustment disturbances with effectively unbounded phase

speeds. They oscillate on the inertial time scale 0(10 hours) and below, asymptoting to

the Kelvin wave periods for shorter wavelengths. Slower planetary (Rossby) waves

oscillate at Drake Passage latitudes with periods longer than 6 days. Long 0(104 km)

planetary disturbances propagate non-dispersively at 45 m/s crossing the Pacific from

east to west in 5 days. Equatorial Rossby waves (Figure 3.2) are about a factor of 2 faster,

with peak non-dispersive propagation speed of 74 m/s and shortest oscillation period of

3.5 days. If the asymmetric mixed equatorial mode (n=0) is excited on the large scale it

can propagate across the Pacific arbitrarily fast.
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Figure 3.2 Dispersion relations (left) and characteristic scales (right) of equatorial barotropic waves shown
for different modes n, representing different meridional profiles spanned by Hermite polynomials H,,(y).
Further details of equatorial barotropic waves can be found in Cushman-Roisin and Beckers (2011) Chapter
21.

In addition to resolving the barotropic dynamics, the numerical implementation of the

PDE model introduces another time scale. The model is stabilized with numerical
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dissipation based on the Smagorinsky viscosity scale. For lateral eddy viscosity

coefficient Ah=4x 102 m 2/s the horizontal momentum diffusion introduces a long spin

down time scale T, =0.25- A2 /Ah , reaching for a 200 km spatial grid resolution

0(300 days).

3.3 Numerical PDE models
While the idealized analytical ODE model is a useful simplification of the ACC

dynamics, it does not solve the primitive ocean equations and does not resolve the

multitude of degrees of freedom of the actual ocean physics. The resolution of the

multivariate spatio-temporal dynamics of ocean fields requires a PDE model. We use the

MITgcm modeling system (Marshall et al. 1997a,b, http://mitgcm.org/) to simulate the

global barotropic dynamics of ACC in several idealized and realistic configurations of

increasing complexity and detail. We pursue this hierarchical modeling strategy because,

while the realistic configuration is the closest to describing the actual observed physics, it

masks the detailed understanding of the dynamics by the many layers of its complexity.

The idealized configurations simplify the resolved dynamics while attempting to capture

only the essential mechanisms in a hierarchy of configuration geometries.

The barotropic dynamics of ACC are modeled in a single layer global spherical domain

configuration. The spatial resolution is set to 2 by 2 degrees with zonally periodic domain

extending from latitude 80 south to 80 north. In the idealized flat bottom configurations

the water depth is set to 5000 m. We follow Losch and Wunsch (2003) setting the linear

bottom drag coefficient to 5x 10-3 m/s. Homogeneous steady zonal wind forcing is

specified by a sinusoidal profile, as detailed in the figures below. Other numerical

MITgcm parameters are listed in Appendix B.

3.3.1 Idealized geometry - aqua planet
The simplest idealized global PDE model of ACC is constructed on a spherical aqua

planet with flat bottom and forced by a constant zonally homogeneous zonal wind stress.

MITgcm solves the nonlinear barotropic equations starting from zero initial conditions

and converging to a steady state after 100 days. The convergence is confirmed by running

the model for 1 and 10 years. The steady state equilibrium exhibits exact balance of wind
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forcing with bottom drag in accordance with our ODE model (3.1.9). The modeled

idealized ACC jet is aligned with the applied wind stress (Figure 3.3), flow velocity is

equal the forcing to friction ratio given by (3.1.11). The flow streamlines and surface

elevation contours are aligned in geostrophic balance creating the typical ACC frontal

structure and supporting our theoretical analysis (3.1.7). The meridionally integrated

zonal transport at the steady state is 112 Sv.
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Figure 3.3 Wind stress profile (a) and barotropic flow map (b) shown by the magnitude of 2-D velocity
vector (color shades) overlaid with sea surface height contours (blue).
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Figure 3.4 Drake Passage transport growth to steady state.

Figures 3.5 and 3.6 display a detailed analysis of the geostrophic adjustment dynamics.

Starting from rest the flow accelerates eastward under the forcing of the wind, but outside
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of the latitudes of the applied wind forcing a return flow develops (Figure 3.5). This east-

to-west return flow is only a transient feature, as at the steady state there is no flow

outside of the wind forced region. The transient zonal return flow is accompanied by a

transient northward transport, which can be explained by the geostrophic adjustment to

the applied wind forcing. This transient northward transport redistributes the water mass

across the wind jet to create the meridional surface elevation gradient. That northward sea

surface gradient creates a southward pressure gradient force beneath it, which in the

steady state balances the northward (equatorward) Coriolis force on the zonal geostrophic

jet. The transient northward transport is also subjected to the Coriolis force, which pushes

the flow westward, explaining the return flow.

More details are available by examining the balance of the forces (Figure 3.6). The main

balance in the zonal direction is between the wind stress and the bottom friction, which

fully balance each other in the steady state. In the transient state the flow is weaker, the

linear bottom drag is smaller and the northward transport induces the retarding Coriolis

force. The resultant force accelerates the zonal flow eastward, eliminating the return flow

outside of the region forced by wind. The nonlinear inertial terms are 4 orders of

magnitude smaller (not plotted), as expected for the Rossby number Ro=O(10-4).
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Figure 3.5 Zonal (a) and meridional (b) flow profiles at different simulation times.
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Figure 3.6 Momentum equation terms showing acceleration and forces balance during the transient
adjustment state. Bottom drag is plotted multiplied by -1 for convenience of comparison with wind stress.
The values are shown in units of m/s2.
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3.3.2 Idealized geometry - aqua planet with barrier
The second step of hierarchical modeling of the ACC in idealized configurations is

addition of a meridional barrier to zonal flow. The straight meridional barrier (Figure 3.7)

represents an idealized American continent and creates an idealized Drake Passage

narrowing. The simulation spins up to a slightly more complex steady state. It still

exhibits wind forcing - bottom drag balance, however the zonal flow accelerates in the

narrowing at the northern side adjacent to the barrier. The relaxation to steady state is

slightly faster than in the aqua planet case, still 0(100) days. The total zonal transport at

the steady state is slightly weaker 109 Sv. Both results are consistent with slightly larger

effective bottom friction r in (3.1.11) and (3.2.1).
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Figure 3.7 Wind stress profile (a) and barotropic flow map (b) shown by the magnitude of 2-D velocity vector
(color shades) overlaid with sea surface height contours (blue).
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Figure 3.8 Drake Passage transport growth to steady state.
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3.3.3 Realistic geometry with flat bottom

The next step towards a realistic ACC configuration is inclusion of the realistic ocean

geometry. We use realistic bathymetry data and flatten it globally to depth of 5000 m.

The continents outlines remain unchanged and follow the real coastlines. The model

spins up to a steady state in 0(100) days, yet at a little faster rate than in the two previous

idealized configurations. The equilibrium balance of wind forcing and bottom drag is

modified by the continental boundaries. The acceleration of the flow in the Drake

Passage narrowing is more substantial, accompanied with denser concentration of sea

surface elevation contours. Boundary currents appear around continents close to the

latitudes of the applied wind stress, and diffusive weak flows emanate from the main

ACC jet. The total zonal transport is 100 Sv, slightly smaller than in the aqua planet

configurations. The results are consistent with the barotropic theory of ACC (LaCasce

and Isachsen 2010) for closed geostrophic contours, predicting flow primarily along the

contours and circumpolar transport inversely proportional to bottom drag coefficient. The

simulations are also consistent with the developed idealized analytical model scaling with

larger effective bottom friction r in (3.1.11) and (3.2.1) due to the geometric blocking

effects of the narrower Drake Passage opening.

Barotropic dynamics are an oversimplification of the real ocean physics, resolving only

the large space and short time scales of motion. Nonetheless, the utility of the flat bottom

barotropic analysis here extends also to the stratified baroclinic dynamics of the fine

spatial scale and long period features of the ocean. The linear quasi-geostrophic

baroclinic expansion for flat bottom (Section 16.5 in Cushman-Roisin and Beckers 2011)

shows that the baroclinic modes dynamics is identical to the barotropic mode with the

(external) Rossby radius of deformation replaced by the much smaller internal radii of

deformation. Note, that this equivalence is limited to the Rossby (planetary) wave

dynamics and does not apply to our analysis of Kelvin (gravity) waves below.
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3.3.4 Realistic bathymetry

More realistic barotropic ACC simulation configuration is designed with real bathymetry

data. The addition of bottom topography dramatically modifies the geometric patterns of

wind driven flow response. This is the expected effect of barotropic flow control by the

depth of the water column as the current is steered by the geostrophic contours due to

conservation of its potential vorticity, which for small Rossby numbers is given by the

depth-normalized Coriolis parameter f/H. The shape of the simulated ACC roughly

resembles the averaged frontal features in the schematic depiction of the observed ACC

(Rintoul et al. 2001), as it meanders across the wind forced latitudes of the Southern

Ocean. The pattern is similar to the results of other barotropic simulation studies (Weijer

and Gille 2005, Olbers and Lettmann 2007) of wind driven ACC response. LaCasce and

Isachsen (2010) explain that with blocked geostrophic contours the flow is "overly-

controlled by topography". The circumpolar jets follow the geostrophic contours over

most of the domain, but are effectively blocked by underwater topographic barriers at the

Scotian Island Arc and the Kerguelen Plateau. The bottom-steered circulation exhibits

gyres with weak cross-contour flow and strong western boundary currents. The resulting

circumpolar transport is an order of magnitude weaker (not shown) than its observed

values, consistent with the linear barotropic theory of Kamenkovich (1962). The utility of

the realistic bathymetry configuration in barotropic modeling is limited because the

topography is allowed to have too large effect on the flow, which is unrealistic.

Equivalent barotropic models (Krupitsky et al. 1996, LaCasce and Isachsen 2010) reduce

the effects of topography and result in more realistic circumpolar transport.

The implementation of these simulations with MITgcm encountered numerical

instabilities and required addition of a dissipative numerical scheme for stabilization. We

applied the C-D stabilization scheme (Adcroft et al. 1999), which may have added to the

blocked geostrophic contours effect resulting in an order of magnitude smaller Drake

Passage transport than the observed values. To simulate transport of comparable

magnitude to the other configurations in this thesis, the supplied wind forcing momentum

input was increased about an order of magnitude (Figure 3.11).
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The resulting realistic bathymetry simulations reach the steady state faster, in order of 30

days. This is consistent with our scaling of the spin down time H/r, because the realistic

bathymetry domain is shallower on average compared to 5000 m depth in the flat bottom

configurations. The resulting magnitude of the total zonal transport in the steady state is

110 Sv.
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Figure 3.11 Wind stress profile (a) and barotropic flow map (b) shown
vector (color shades) overlaid with sea surface height contours (blue).
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4 UQ analysis with analytical ODE model

4.1 Steady state analysis
We start with implementation of the UQ system for the analytical ODE model due to its

simplicity to analyze and the convenience to confirm analytically the computational

results, while resolving the principal dynamical processes and thus involving the some of

the challenges relevant to the full oceanographic state estimation problem. We quantify

the uncertainty of the forced exponential relaxation dynamics governed by

=R (4.1.1)

The generalized control vector can be defined to include only forcing and dissipation

parameters

x =[F,R]T  (4.1.2)

Or it can include also the initial conditions

x 2 =[F, R, u0 ]T  (4.1.3)

The output of the model can be defined as the trajectory of its solution - in this case the

vector of values u(t) at a range of times e.g. [to, t], or just a single scalar value at some

chosen time. Both configurations were successfully implemented numerically. For

simplicity of the analytical derivation we first discuss the later choice, defining the model

output as the steady state flow rate u. after sufficiently long integration

M(x)= u(t =<x>) =u (4.1.4)

For verification of the UQ system both the assimilated observations and the estimated

target variable are set to the steady state flow

Y = Uobs = u- (4.1.5)

z = u. (4.1.6)

The cost function for a single scalar model output is

((M(x)x- y) R- (M(x) -y)= ( ) (4.1.7)
Au

where Au is the assumed observation uncertainty.
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The Jacobian matrices of the modeled variable, here the steady state flow

u1 = FI/R (4.1.8)

can be written out explicitly in both control spaces
au._ =[u_ a u 1Fl -Fi] (4.1.9)
axi _F R _R R2

au au- au. au 1= -F ~](..0* F - - - =F 1 - 01 (4.1.10)
ax2  I DF 3R au R R2

Note that the steady state Jacobian does not depend on the initial conditions. Moreover,

the sensitivity of the steady state to the initial conditions is zero, confirming that the

asymptotic steady state solution "forgets" completely the initial conditions of the ODE.

The sensitivity of the steady state flow to wind forcing is positive and stronger for

smaller friction. The sensitivity of the steady state flow to the friction parameter is, as

expected, negative. Interesting results are that for a stronger forced system the negative

sensitivity to friction is linearly stronger, while for a stronger friction parameter this

negative sensitivity is weaker. Both forcing and friction sensitivities are nonlinear

functions of the friction parameter, and since these first derivatives are not just constants

the model is classified as nonlinear. While the Hessian matrix of a linear model must

vanish, the Hessian of our nonlinear model does not. Written explicitly for xi controls the

Hessian of the modeled variable is

F 2u 2u -1~
a2U 0

2 )F2  aRaF R2
- -l (4.1.11)

ax 2 a2U a2u -1 2F

LR3F aR2 I LR2 R3

The explicit form of the model Hessian in the X2 control space is given simply by

augmenting this 2 by 2 matrix with zeros, because all the derivatives with respect to the

initial conditions controls are zero in the steady state.

One should not confuse the Hessian of the model (4.1.11) with the Hessian matrix of the

UQ analysis - given by the Hessian of the misfit costfunction. The Hessian of the misfit

(4.1.7) can be calculated analytically either directly term by term or using the formula

(2.6.2), written explicitly
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3J2 J - ___BM(x,) M(x 1 ) R2M(x,) -u )=2i R- +,aM(, )R- (M(xI) -u e,)-
X 12 X )X

_u a _2u _2u_ ~ (4.1.12)
_F -1 au au + F 2  aRaF -(AU2)1(X)U )

=[ ;(Au2) [ *. :R-(u2)(u(xR-u ,j
au _3F 3R a2u_ 32U

- R _ _aRaF aR2

Note, that the second RHS term of the cost function Hessian does include the

contribution of the model Hessian (4. 1.11). Yet, since the misfits are zero in our setup,

the second Hessian term disappears. The remaining term is commonly termed the

linearized Hessian (Losch and Wunsch 2003), although in general it is not a result of

asymptotically consistent Hessian linearization. That can be explained because the other

(nonlinear) term appears only for nonlinear models and vanishes for linear models. We

highlight that linearity of the model in this context is different from the linearity of the

ODE equation (4.1.1) that constitutes the model M(x). The model M(x) is nonlinear

because of the nonlinear dependence of its output on the controls x, or equivalently,

because its Jacobian (4.1.10) is not constant, i.e. that model Hessian (4.1.11) is not zero.

Whereas in this thesis we focus only on the implementation of the identical twins setup,

from now on we concentrate only on the so-called linearized Hessian. Written explicitly

in the xi control space the linearized Hessian of misfits is given by

au- au- 2 au. 1 1 -F]

D2 F -1~u u ' u 1 jF ) BR F 1 R2 R3L=j I (Au2) - - -- -"- = - - a aj u 3 (4.1.13)
axI L aum - F aR _Au2 au_ au "u 2 Au2 -F F 2

DR _ aR~F L R3  R _

Compare this Hessian matrix to the Hessian of the model (4.1.11). They have different

structure and different properties. While both are symmetric (which is a basic property of

any Hessian), the Hessian of misfits is positive-semidefinite and singular, while the

model Hessian is regular and indefinite". Essentially, only the later involves the second

derivatives of the model, the former is constructed only of products of the first

derivatives.

u 1 1
The eigenvalues of (4.1.11) are = - u A2 =+ 2R R R
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It is important to develop intuition for the construction and the detailed structure of the

analytically derived Hessian of misfits as a guide to understanding the Hessians of much

more complex configurations. Note that the Hessian matrix (4.1.13) is essentially a scaled

outer product of vectors given by the sensitivity Jacobians above (4.1.9). More precisely,

adopting the definition of a gradient as the transpose of the Jacobian matrix (Magnus and

Neudecker 1988 p. 87), the linearized Hessian of the cost function is the outer product of

the gradients of the scalar output of the model scaled by its observed uncertainty. In the

multivariate model output case, the Hessian is essentially the sum of the outer products of

gradients of the separate scalar outputs scaled by their observed uncertainty variances.

This, of course, is exact only if the observed uncertainty covariance matrix R is diagonal,

otherwise the algebra is more involved. If the gradients of the scalar model outputs are

orthogonal and R is diagonal, then this explicit expression for the Hessian is exactly

equivalent to the eigenvalue decomposition form (2.7.1).

Understanding the dependence of the linearized Hessian on Jacobian vectors (or

gradients) of model outputs is critical for design of uncertainty quantification

experiments. The singularity of the Hessian is a direct result of linear dependence of the

Jacobians of separate model outputs. In our example (4.1.13) the Hessian is given by the

outer product of only one vector and thus its rank is equal one. One could add another

scalar model output to the misfit cost function in attempt to increase its rank and remove

the singularity. This would succeed only if the new scalar model output (and the

corresponding observation) are independent of the first one. For example, in our ODE

system if one adds another observation of the converged steady state flow, say one day

later, the additional Jacobian will be identical to the first one and will not increase the

rank of the Hessian. One could have implemented a complex cost function with many

additional observations, but if these are not dynamically independent from the first

observation, despite an increased computational complexity there would be little benefit

to regularizing the Hessian. Note, that our discussion leads to a formal definition of

dynamical independence of observations - in terms of the linear independence of the

corresponding Jacobians. In the design of an optimal observation system one should

attempt to include only the minimum amount of dynamically independent observations,

to keep the computational complexity down, while maximizing the rank of the Hessian.
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This is equivalent to designing an observational system to maximize the range and

minimize the nullspace of the uncertainty quantification problem.

Similarly, the dynamical independence of observations is the basis of the reduced order

numerical algorithm for the Hessian inversion and uncertainty reduction (Section 2.7).

The eigenvalue decomposition of the Hessian (2.7.1) separates the orthogonal linearly

independent Hessian eigenvectors, which are equivalent to the independent gradients in

(4.1.13) combined by the weighted sum of their outer products. Discarding the nullspace

of the Hessian removes those outer product matrices who do not contribute to the sum

and do not constrain the posterior uncertainty in (2.7.5).

The pseudo-inverse of the Hessian can be constructed analytically by treating (4.1.13) as

the spectral decomposition (2.7.1) with the only nonzero eigenvalue

G = (4.1.14)
Au2

Here G is the normalizing factor given by the norm of the gradient given by transpose of

(4.1.9). Pseudo-inverse of the Hessian by substitution into (2.7.2) is given by

au- 1 -F

Au 2 ~3F _u au 2__R4FR2 R3]
H* = -- 2 -- -- a- Au 2 R4 2T R3(4.1.15)

G' 4 u JF R3R _ 2+F2 -F F2

R _ _ R 3 R _

This rank-1 matrix constrains the controls, either in 2 or 3 dimensional control spaces,

only in one direction given by the gradient vector. This direction is represented by the

covariances, which are negative, meaning that knowing the steady state flow constrains

the forcing and the friction to be less negatively correlated. In other words, they are

constrained to co-vary positively. This is intuitively clear by looking at (4.1.8), because

for a given steady state flow an uncertain positive perturbation of wind forcing must be

balanced by the corresponding positive perturbation of bottom drag. We learn from this

example that seeing negative off-diagonal terms in covariance matrix doesn't necessarily

imply negative correlation when the covariance matrix is singular. The unconstrained

orthogonally complementary directions in control space remain unbound with infinite

uncertainty. In our example in 2 dimensional space, this is the vector orthogonal to the

sensitivity gradient vector and it is oriented such that forcing and friction are positively
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correlated. Another way to see this is to consider the prior to posterior uncertainty

reduction formula (2.7.6), which for a prior given by the identity matrix can be written

analytically

au- 1 -F

aF Au 2  Fu a u 1 R2 3P = I - +1 = U I - (4.1.16)
au. G2 _F aR _ u+G2 -F F2

LR __R R' _

We see that reducing the uncorrelated prior uncertainty by subtracting negative off-

diagonal terms, we end up with a positive off-diagonal posterior covariance terms,

indicating positive posterior correlation of wind and bottom friction.

One can confirm the consistency of the inverse and forward projection of uncertainty, by

projecting the calculated Hessian pseudo-inverse (4.1.15) forward, back to the space of

the estimated steady state flow (4.1.6). This was verified both - numerically, with the

developed AD machinery, and analytically as shown below.

F 1
gTHg = F u ?u] H+ 3F =Au 2  (4.1.17)

aF aR _ au-
L R]

4.2 Time resolving analysis
The previous section limited the analysis of the UQ system only to the steady state

solution of the ODE model. However, the essential feature of the general Ocean State

Estimation problem is resolving the temporal evolution of the solution and the

accompanying UQ system must resolve the time dependence of the uncertainties. This

time dependence increases the complexity of the analysis, as was acknowledged and left

unexplored by Losch and Wunsch (2003), but also provides a much richer understanding

of the dynamics of the solution and its uncertainty.

The closed form analytical solution of the ODE model (4.1.1) allows a convenient and

explicit derivation of the time dependent form of the UQ system objects. One can

analytically differentiate the solution

u(t)=u0eR(t-t) -R(t-to) (4.2.1)
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to obtain the components of the Jacobian or sensitivity vector. Since the solution depends

linearly on the forcing parameter, the partial derivative with respect to forcing is trivial

au(t) 1 -R(t-to (4.2.2)
F R

The sensitivity to forcing grows from zero and relaxes exponentially to the asymptotic

steady state value that was discussed in the previous section (4.1.9). The sensitivity

remains always positive - for stronger wind input the flow response is always stronger.

The fact that the sensitivity of the response grows with time can be explained as the

gradual adjustment of the flow to the steadily supplied wind forcing.

The sensitivity of the solution to the friction parameter is more complex.

au(t) =-_uRe-R(t-to)_ F l- R(t-tO) +Fe-R(t-to) = R -u _ U R(t-t,)) F le-RQt-to)) 423
aR 0R 2 (R ) R2

The three separate terms (before combining the exponentials) can be identified as - (1)

the sensitivity to the transient decay of the initial conditions, (2) the sensitivity to the

adjustment to the steady state due to the steady state balance sensitivity, and (3) the

sensitivity to the transient growth due to the sensitivity of the growth rate. The first of the

three is negative (for positive initial conditions) and exponentially decreases in

magnitude, meaning that for stronger friction the transient flow decays faster. The second

term is always negative, it starts from zero growing to the negative steady state sensitivity

discussed in the previous section (4.1.9). The third term is positive as it captures the

sensitivity to the growth rate - the stronger the friction the faster the system adjust to the

supplied forcing. But as the adjustment slows down with time, this positive sensitivity

exponentially disappears.

The two transient friction sensitivity terms can be combined to separate the transient

disappearing effects from the growing steady state effects in the RHS of (4.2.3). These

two competing processes are the key to understanding the complex temporal evolution of

the UQ analysis results in the following chapter. The current result shows that if the

integration starts from the steady state initial conditions (4.1.8), then the transient

decaying signals cancel out and the sensitivity evolves from zero to its steady state. In

alternative simulation, if integrating from rest the sensitivity starts evolving from a non-
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zero initial value and it is possible to temporarily find the system in overall positive

sensitivity to friction, which is a contra-intuitive result.

Next we examine the sensitivity to the initial conditions u0 =u(to). Written analytically,

it takes a simple exponentially decaying form independent of forcing or initial conditions

themselves:

au(t) e-R(t-to) _ eR(to-t) (4.2.4)
au(to)

The sensitivity is positive - larger initial flow leads to larger transient solution, while the

system is exponentially "forgetting" the effects of the initial conditions.

The sensitivity of flow response to the initial flow magnitude is a unique sensitivity term,

because it is a derivative of one physical variable by itself but at a different time. It

highlights the relation between two tangent linear perturbations of one variable shifted in

time and its adjoint - given by the ratio of these two perturbations. More precisely, the

adjoint of u(t) at time t--to is defined as the sensitivity term (4.2.4). The time shift

between the two perturbations can be referred to as a positive forward in time shift t-to or

as a negative backward in time shift to-t. For the convenience of the discussion of the

adjoint model results, we formally define the adjoint time

= to -t (4.2.5)

We note, that because here we examine the derivatives of an autonomous ODE (4.1.1)

which solution does not depend separately on the initialization time to and the forward

time t, the derivatives also do not depend separately on the initialization time but only on

the time shift. Nonetheless, in general the Jacobian (and the gradient) may depend on

each of these two time separately

au(t)_ u au au 1
g(t, t) T= a (4.2.6)

2x aF aR auo

Example of such case would be a time varying wind forcing, e.g. due to the annual

variability cycle. Moreover, the forward time t may be in general different from the time

12 Definition of the adjoint variable u* (to) of the variable u(to) and its tangent-linear perturbation

u(to) is given by Su(t) =(u*(to) Iu(to)).
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of the assimilated observations ta. The posterior covariance constrained by the

observation uncertainty R(ta) would in general depend on the initialization and the

assimilation times P(to, ta) and so is the inverse of the assimilation Hessian

2
UF UFR cYFu 1

= 2FR O2
un (4.2.7)Hto OFuRu 0 u0 _

21

The eventual result of forward uncertainty projection to time t of controls defined for

initial conditions at time to and constrained by uncertainty assimilated at time ta would

lead to the triple time dependence

C (to, t", t) = gT Pg = g'Pog - g'Tg (4.2.8)

Here we introduced another symbol, F, for the posterior uncertainty reduction matrix.

Based on the definition of the unregularized Hessian (2.6.2) and the matrix inversion

lemma applied to P- 0  PO-1 + H , the uncertainty reduction matrix can be written out

T(to, t)= PO (H-1+Po Po (4.2.9)

Note that for ill-posed problems, when Hessian H is not invertible, the expression (4.2.9)

is undefined. Nonetheless, the uncertainty reduction matrix can be written out based on

the reduced rank Hessian decomposition (2.7.6)

T(to, t) = PoV (A-1+ VTPOV) V Tpo (4.2.10)

In the current autonomous system analysis the projected target uncertainty result depends

explicitly only on the time shifts, and since both the forward and the backward

projections of uncertainty are governed by the adjoint Jacobian transformations, the result

can be written as a (r, r) with the adjoint assimilation time defined

r, = t - t,(4.2.11)

We can now proceed to analyze the adjoint dynamics of inverse and forward uncertainty

propagation. The combined analytical sensitivity (adjoint) vector of the ODE model

solution in the x 2 control space can be written in the row vector form of the Jacobian

transformation matrix
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R

au(t) _au au au 1 R F u e-R(t-to) F ( -R(t-to)) (4.2.12)
aX LF T WR uJ R 0)R2

e-R(t-to)

Furthermore, one can analytically construct the linearized Hessian matrix of misfits by

the outer product of the adjoints as discussed in the section above (4.1.13). Here, to save

space, we present the Hessian for the case of the ODE model integration from the steady

state initial conditions, which is also the configuration of the numerical model results

discussed in the following chapter.

-R(ta-to) 2 F 2 1R(ta-to) -R(a-to)

R R R
SF -R(ta-t) F2 F 2 (I R(t-to )

2  F R(tto) Rt-to)

ax2
2 )L Au 2  R R4

- R 2

1(1-e -R(t-to) )e-R(ta-to) F -R(t to))e -R(ta-to) e- 2
R(ta-to)

R' R 2 ,1-

(4.2.13)

The analytical form explicitly shows the structure and properties of the ODE misfit

Hessian matrix, which are also expected to be reflected in the results of the more complex

numerical model. The Hessian is a singular, rank one matrix. The rank and the range of

the Hessian are given by the number and the span of the independent observations

Jacobians. The various scalar components of the Hessian matrix have different time

evolution profiles (see Figure 4.1), resulting from the cross-products of the Jacobian

components. The components associated with the uncertainty of the forcing and friction

parameters are growing from zero exponentially relaxing to their steady state values. All

the components associated with initial conditions uncertainty vanish exponentially,

indicating that after sufficiently long model integration time the observations do not

constrain the uncertainty of the initial conditions. Nonetheless, interesting transient cross-

terms emerge temporarily coupling the initial conditions with forcing and friction

parameters. These grow from zero and eventually vanish, due to the transient

amplification of the negative superposition of two exponentially decaying modes which

fully cancel each other at to and at the steady state, given by er(1- e') = e' - e". Such
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cross-coupling of physical variables due to the quadratic combination of sensitivities in

the Hessian leads to correlation of uncertainties, which our method allows to identify and

which are shown to dominate the uncertainty in ocean state estimation.

0.8-

0.6-

0.4

0.2-

0 -
0

(1-el)

eT(1 -e)

(1-et)
2

1 2 3 4 5
_T

6

Figure 4.1: Time evolution profiles of scalar components of the Hessian matrix compared to the evolution
profiles of the components of the gradient, shown as function of forward assimilation time, which is minus
adjoint assimilation time for to=0. (In this figure r stands for ra).

One can further utilize the explicit form of the analytical UQ solution to gain better

understanding of the physical mechanisms of uncertainty evolution in wind-bottom

friction adjustment problem. Following the procedure as in the previous section, we can

construct analytically the pseudo-inverse of the Hessian. Note, that the only nonzero

eigenvalue is given by (4.1.14). Here G is the normalizing factor given by the norm of the

vector (4.2.12) for the adjoint assimilation time:

G2 (1-,)= R R)+F 2 (l e R" )+e 2Rr, (4.2.14)

The pseudo-inverse of the Hessian is given by

- (1eRa )2

R(1-e 
R R

F Rr 2

R R (- )

F ( eRr.) Rr_

R2,

eRT. R.

R

F a

R 2 -RG R

The profiles of time evolution of the Hessian pseudo-inverse terms are different and more

complex than of the Hessian terms due to the nontrivial evolution of the normalizing
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factor. Figure 4.2 illustrates the nondimensionalized evolution of the resulting covariance

terms labeled by the notation of (4.2.7). The variances of wind forcing and bottom

friction coincide growing from zero reaching a peak and subsiding to their steady state

value. The cross term of forcing-friction covariance is the negative mirror image, relaxing

to the negative steady state covariance term of (4.1.15). We see that this negative

constraint is not time invariant, immediately after model initialization the constraint is

zero and it reaches a transient peak before stabilizing to the steady state. The variance of

the initial conditions constraint starts from nonzero value, grows and decays to zero at the

steady state, as was discussed in the previous section. The cross terms of forcing and

friction covariances with the initial conditions have opposite signs and evolve from initial

zero to zero value at the steady state, through a transient peak which can be very high and

short in time, depending of the actual parameters of the problem. This analysis shows that

cross coupling that involves initial conditions is transient in time, while the cross

coupling of only friction and forcing parameters grows to a steady state value.

Hessian pseudo-inerse elements

1.2
/\FF' ORR

1 
GFR

0.8 -u u -

a 0.6-- F
oo 0

0 . ... ~Ru

cc: 0.2/

CU)

-0.2

-0.4 \ \O

0 1 2 3 4 5
Nondimensional assimilation time taR

Figure 4.2 Evolution of nondimensionalized covariance terms given by the pseudo-inverse of the Hessian
(4.2.15) as function of assimilation time. Each scalar term is labeled according to (4.2.7).
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It will be seen in Chapter 5 that most of the effect of uncertainty reduction of the ACC

transport is achieved due to cross-coupling of controls. This uncertainty reduction is

achieved when the cross terms of the quadratic product of the Jacobian vectors (4.2.6)

with the posterior uncertainty reduction matrix (4.2.9) is positive. These terms of gTFg

can be positive either for positive or for negative covariance terms depending on the

combination of signs of the Jacobian terms. Two examples are shown in Figure 4.3 which

have been calculated analytically with our model. It is seen that cross coupling of friction

and forcing acts to reduce uncertainty of the target transport in the steady state, growing

gradually from zero. The cross coupling of forcing with initial conditions has only a

transient effect, it grows faster but disappears at the steady state as the system evolves

away from the initial conditions. Note, that the analytical expression of the target

uncertainty reduction is an explicit function of two separate times - time of uncertainty

assimilation and time of forward projection. In Figure 4.3 the abscissa shows the forward

projection time, while the assimilation time is shown by the vertical line (dashed

magenta) - a notation that will be used in Chapter 5.

Forward projected uncertainty reduction contribution for ta=0.25/R

0.03 -

0.02

0.01

0
0 1 2 3 4 5

Forward uncertainty propagation time tR

Figure 4.3 Evolution of nondimensionalized target uncertainty reduction terms - scalar contributions to

sum g Trg, shown as function of forward uncertainty projection (abscissa) and uncertainty assimilation

times (vertical dashed line).
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5 UQ analysis with MlTgcm model

This chapter demonstrates application of the developed UQ methodology to a large-scale

ocean state estimation problem. The UQ machinery was implemented in the MITgcm

model of the ACC. Different synthetic observations, generated with the method of

"identical twins" (Section 2.10), and their uncertainties are assimilated in the model. The

data-constrained uncertainties of controls are mapped to uncertainties of the target

variable - the Drake Passage transport. Two types of uncertainty calculations are

implemented and analyzed: prior-independent uncertainty assimilation and prior-to-

posterior uncertainty reduction (see Section 2.9). The following sections illustrate and

analyze the details of these calculations for different model configurations, different

assimilated observations and different prior assumptions. The key building blocks of the

methodology essential to understanding the uncertainty dynamics, the Jacobian fields, are

discussed first in Section 5.1. Section 5.2 focuses on inverse uncertainty propagation. The

prior-independent Hessian eigenvector fields and their eigenvalue spectra are illustrated

in Section 5.2.1, the prior-to-posterior uncertainty reduction of controls is shown in

Section 5.2.3. Forward uncertainty propagation experiments are examined in Section 5.3,

comparing the dynamics of the prior and the posterior uncertainties of Drake Passage

transport and analyzing the time-resolved evolution of uncertainty reduction. A schematic

representation of the implemented UQ algorithms is shown in Figure 5.1, which also

highlights the parts of the calculations visualized in the following sections.

Data uncertainty -+ Controls uncertainty -- Target uncertainty

Pure / prior-independent R >(H P 2 grpU
uncertainty assimilation L"z n

L~i~~{i0  - T -O

Prior-to-Posterior
uncertainty reduction

R - > P=(H) gPg

Figure 5.1 Comparison of the two different UQ schemes implemented in the MITgcm state estimation
system. The rectangular shapes highlight the parts of the calculations visualized in the following sections,
indicated by the numbers in the callouts. For more details on these UQ schemes see Section 2.9.
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5.1 Sensitivity analysis
As discussed in Chapter 4, understanding the structure of the model Jacobian fields

explains the structure of the Hessian matrix in linear or zero residual misfit cases.

Examination of these first derivative fields is also important in its own right and is known

as sensitivity analysis (Heimbach et al. 2011). For the case of a single scalar model

output, here - the Drake Passage transport, the Jacobian vector calculated with the adjoint

model is known as the dual or the adjoint vector (Heimbach et al. 2011).

We show the adjoint (sensitivity) fields of the steady state circumpolar transport for the

idealized and the realistic topography configurations of MITgcm, described in Chapter 3.

In the following figures each 6 panel plot displays a single adjoint vector made of 6 two-

dimensional fields, each one of 80 by 180 scalar elements. The total size of the vector

80*180*6=86400 elements. Each element is a partial derivative of the transport with

respect to the perturbation of the corresponding element of one the six fields shown in the

panels, i.e. each figure is equivalent to (4.2.12). The arrangement of the panels follows

the scheme in Figure 5.2. The left side panels are sensitivities to forcing and friction

fields, the right side panels are sensitivities to the initial conditions.

Zonal wind stress r Zonal flow u,-0

Meridional wind stress TY Meridional flow v-o

Bottom drag coefficient r Surface elevation q/=o

Figure 5.2 Arrangement of control fields panels, all the 6 fields together constitute a single control vector.

This control vector is a generalization of the 3 element long control vector (4.1.3) and is

intended to highlight the differences of adjoint forcing/dissipation vs. initial conditions

fields.

Each of the figures shown below is the adjoint (sensitivity) vector for different adjoint

time, defined as the backward time shift from the differentiated variable (transport) to the

adjoint (4.2.5). The color scheme in the figures is symmetric with separate scale for each

panel, shown by the colorbar to the right. The green color is zero sensitivity on all panels.

As example, consider in detail Figure 5.3. The green zero sensitivity contour confines the

regions of non-zero sensitivity around the idealized Drake Passage. Over the most of the

ocean area the sensitivity is zero at adjoint time -2 hours, meaning that the transport at
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given time is not sensitive to any perturbation over this area two hour before. The

sensitivity is not zero in the Passage area. It is positive for zonal wind forcing (upper left

panel), meaning that a positive perturbation leads to increase of the transport 2 hours

later. This sensitivity is not spatially homogeneous. It is maximum near the northern side

of the Passage and gradually decreases to zero to the west and to the east of it. The

sensitivity to the meridional wind stress changes sign across the Passage. It is negative to

the west and in the Passage, but positive to the east of it. That means that a negative

(southward) meridional stress perturbation to the west increases the transport, as well as a

positive (northward) perturbation to the east. The sensitivity to the bottom friction

(bottom left panel) is negative, meaning that increasing friction has negative effect on the

transport. Note that the sensitivity to friction is zero over the southern part of the Passage.

This is explained by realizing the nonlinear nature of the sensitivity concept, even that the

effect of sensitivity is linear in the perturbation itself. The nonlinearity manifests by the

fact that the sensitivity in general has a nontrivial dependence on system parameters. In

the case of the sensitivity to the bottom friction, it is dependent on the magnitude of the

flow itself, as is clear from the equations of motion (3.1.1). This is also evident in the

explicit analytical form of sensitivity calculated for the ODE model (4.2.12). The

sensitivity of the steady state circumpolar transport to bottom friction is stronger where

the steady state flow is stronger. It is zero where there is no steady state flow, which can

be confirmed on Figure 3.7.

Now consider the sensitivities of transport to the initial conditions two hours earlier,

shown in the right panels in Figure 5.3. The sensitivity to the initial zonal flow (upper

right panel) is positive to the west and much more so to the east of the Passage. It is in

fact negative in the Passage itself. This highlights the effect of time shift between the

differentiated variable (transport) and the adjoint, as well as the dynamics of the system

as resolved by the evolving sensitivity fields. The sensitivity is propagating through the

domain as it propagates backward in time and reflects the "adjoint dynamics". In this case

the strong positive sensitivity propagating eastward and leaving behind the negative

sensitivity in the Passage can be explained by fast Kelvin waves propagating westward

along the Antarctic boundary, crossing 1000 km on the time scale of 1 hour (see Section

3.2). The positive sensitivity of the transport to zonal flow to the east of the Passage two
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hour earlier indicates that a positive zonal flow perturbation propagates from that area on

the east to the west into the Passage reaching it exactly in two hours time. Note, that the

resulting "adjoint Kelvin waves" propagate in the opposite direction of the actual Kelvin

waves, carrying the sensitivity information backward in time. Such "adjoint waves" are

also known as the "dual waves" (Heimbach et al. 2011) and can be regarded as

"sensitivity waves" as well. In the context of uncertainty quantification, similar waves in

the uncertainty fields which propagate the uncertainty information across the domain will

be regarded as "uncertainty waves". Back to the explanation of the zonal flow sensitivity

map, the positive sensitivity to the west of the Passage can also be explained by the

adjoint Kelvin waves, but those propagating westward and northward around the south-

western corner of the rectangular barrier representing the American continent. These

west-northward adjoint Kelvin waves are also seen in the meridional flow sensitivity map

(Figure 5.3 middle right panel) as a strong negative sensitivity around the barrier south-

west corner. The fast time scale adjoint Kelvin waves are also seen in the sensitivity to

the initial surface elevation (Figure 5.3 bottom right panel).

5.1.1 Aqua planet with barrier

Now we overview the sensitivity results for the idealized aqua planet with barrier (Figure

5.3 to Figure 5.8). The change of sensitivity fields from time to time is very substantial

and highlights the importance of understanding of time evolution of the adjoint fields. All

sensitivities appear first in the local area around the Drake Passage and spread all over

the planet in the first 24 hours. The sensitivities to initial conditions decay to zero with

adjoint time, while the sensitivities to forcing and friction grow to steady state values.

The sensitivities exponentially reach steady state after 60 to 90 days. The convergence

was confirmed by running the adjoint model for 360 days (Figure 5.8). Both the growth

and the decay of sensitivities were predicted by the analytical solution (4.2.12). Note, that

the adjoint integration starts from a steady state of the forward model and thus, as

predicted by the analytical model, we do not resolve some possibly peculiar transient

sensitivities (see the discussion in Section 4.2).

In more detail, Figure 5.3 shows that the sensitivity to steady zonal wind forcing is

positive and grows from O(10-1 Sv/Pa) to 0(5 Sv/Pa) at the steady state (Figure 5.7). The
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steady state sensitivity is confined to the southern hemisphere inside a zonal band, wider

than the applied wind stress jet. However, during the transient adjustment of the

sensitivity there is a significant global contribution peaking at the equatorial latitudes to

the west of the barrier (Figure 5.5). The maximum sensitivity is always just next to the

northern side of the Drake Passage. The transient sensitivity to the meridional wind stress

is negative to the west and positive to the east of the Passage, with maxima located just to

the north of the latitude of the Passage. The meaning is that south blowing winds to the

west of the barrier force the flow into the Passage and north blowing winds to the east of

the barrier accelerate the transport by pushing the water out of the Passage. During the

transient sensitivity growth the western negative sensitivities grow and spread along the

western coast of the barrier (Figure 5.5), while the eastern positive sensitivities remain

small and confined. At the steady state only a narrow region remains sensitive around the

southern tip of the barrier, the negative sensitivity on the west side is strong O(-5 Sv/Pa)

(Figure 5.7). The sensitivity to bottom friction coefficient spreads zonally from the

Passage to circumscribe the planet at the latitude band of the applied wind forcing and the

resulting flow jet. The sensitivity is negative everywhere and peaks near the southern

coast of the barrier, where it grows from -2-10' m2 to -9- 107 m2. The sensitivity to the

initial velocities decays from the initial values of O(5- 107 M2) after 2 adjoint hours to

O(2-105 m2 ) after 90 days to O(4-10- M2) after 360 days. We note that, the area of the

vertical western face of a single grid cell is 1.1-109 M2 , which is equal to the adjoint of the

transport to zonal flow at adjoint time 0, i.e. before any effects of the dynamic adjoint

model. The sensitivity to the initial surface elevation decays from absolute values of

O(2- 106 m2 s-1) after 2 hours of adjoint integration. The sensitivities to the initial

conditions include positive and negative values and in the transient stage exhibit strong

global and equatorial signatures (Figure 5.5), as well as wavy structures propagating

along the equator from west to east (Figure 5.6). The latter can be referred to as

sensitivity Rossby waves and they are an explicit manifestation of oceanic

teleconnections as resolved by the adjoint model. Their mechanism can be explained as

the adjoint of equatorial Rossby waves, which propagate from east to west on time scale

of 3 days and longer for shorter wavelengths (see Section 3.2).
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SensitiAty of Drake Passage Transport, adjoint time=-2 hours.
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Figure 5.3 Adjoint (sensitivity) vector of Drake Passage transport to (columnwise top to bottom and left to
right): zonal wind stress (M

3 s- Pa'), meridional wind stress (M3 s-1 Pa-'), bottom friction coefficient (M 2),
initial zonal velocity (M

2
), initial meridional velocity (m2), and initial surface elevation (M

2 S-1). Shown for
aqua planet with barrier configuration at adjoint time -2 hours.

SensitiAty of Drake Passage Transport, adjoint time=-6 hours.
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Sensitivity of Drake Passage Transport, adjoint time=-24 hours.
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Figure 5.7 Same as in Figure 5.3. Shown for aqua planet with barrier configuration at adjoint time -90 days
approximating convergence to steady state sensitivity.

Sensitivity of Drake Passage Transport, adjoint time=-360 days.
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Figure 5.8 Same as in Figure 5.3. Shown for aqua planet with barrier configuration at adjoint time -360
days approximating convergence to steady state sensitivity.
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5.1.2 Realistic geometry with flat bottom
Next we examine the sensitivity fields for the realistic geometry with flat bottom

configuration. Qualitatively the dynamics of sensitivity is very similar to the aqua planet

with barrier case. All sensitivities appear in the first hours only around the Drake Passage

area and spread over the planet by the end of the first day. The sensitivities to forcing and

friction grow to their steady state patterns, while the initial conditions sensitivities decay.

The positive sensitivity to zonal wind stress grows from 0(10-' Sv/Pa) to 0(5 Sv/Pa),

while the negative sensitivities to the meridional stress on the west of the Passage start

from slightly weaker magnitudes. The transient sensitivity to southward winds is very

prominent along the western coasts of both American continents (Figure 5.11). The

sensitivity to bottom friction is negative, as expected, as the band of sensitivity encircles

the globe following the pattern of the flow. The magnitude is higher, growing from -5- 106

m2 to -15- 107 Mi2 , which can be explained by the narrower Passage geometry. The

evolution of sensitivities to the initial conditions is qualitatively and quantitatively similar

to the previous examined case, with strong transient teleconnections signatures and west

to east propagating waves. The differences in the specific patterns can be attributed to the

more complex geometry, which for example capture the effect of the circulation around

the Australian continent.
Sensithty of Drake Passage Transport, adjoint time=-2 hours.
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Figure 5.9 Same panels as in Figure 5.3 with additional black contour outlining the coastline. Shown for
realistic geometry with flat bottom configuration at adjoint time -2 hours.

86



Sensitivity of Drake Passage Transport, adjoint time=-6 hours.
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Figure 5.10 Same panels as in Figure 5.3 with additional black contour outlining the coastline. Shown for
realistic geometry with flat bottom configuration at adjoint time -6 hours.
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Figure 5.11 Same panels as in Figure 5.3 with additional black contour outlining the coastline. Shown for
realistic geometry with flat bottom configuration at adjoint time -24 hours.
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Sensitivity of Drake Passage Transport, adjoint time=-10 days.
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Figure 5.12 Same panels as in Figure 5.3 with additional black contour outlining the coastline. Shown for
realistic geometry with flat bottom configuration at adjoint time -10 days.

Sensitivity of Drake Passage Transport, adjoint time=-90 days.
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Figure 5.13 Same panels as in Figure 5.3 with additional black contour outlining the coastline. Shown for
realistic geometry with flat bottom configuration at adjoint time -90 days approximating convergence to
steady state sensitivity.
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5.1.3 Realistic bathymetry

The sensitivities of the transport in the realistic bathymetry case are markedly different

from the flat bottom configurations, indicating that the bottom topography or geometry

play a critical role in the dynamics of the system response to wind forcing. The patterns

of the sensitivity fields appear to follow the topography exhibiting a finer spatial scale.

One of the leading order explanations might be the consequence of the flow itself being

governed by the topography. The flow aligns with the geostrophic contours due to

conservation of the potential vorticity and so are the localized sensitivity effects. This is

in contrast with remote sensitivity effects due to ocean teleconnections. The sensitivity to

bottom friction appears to follow closely the contours, but unlike in the flat bottom case

there are regions of strong positive sensitivity along the path of the ACC. This appears

counterintuitive that strengthening of the bottom friction may increase the overall

transport, but may be explained if in these sensitive "choke points" the increased

resistance to the flow pushes the current to an alternative path with overall less resistance.

Unlike in the flat bottom cases, the sensitivity to zonal wind forcing is not confined to

one zonal band and splits to two main regions - along the path of the ACC and along the

equator. The meridional stress sensitivity is not confined only to the narrow areas along

the continents as before, but appears also along most of the path of the ACC.

Nonetheless, the sensitivity along the coasts remains significant. The sensitivity to the

initial conditions still decays to zero but the patterns appear more fragmented. The

transient teleconnections and eastward waves are still noticeable, however a different

pattern of longitudinal standing waves dominates (Figure 5.14). In the later adjoint times

(Figure 5.15), as the steady state settles and the initial conditions sensitivities are small,

the equatorial areas exhibit unusual patterns of sensitivity that may be related the

numerics of the C-D scheme used and would require a higher resolution simulation to

understand if these are not just numerical artifacts.
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Sensitvity of Drake Passage Transport, adjoint time=-24 hours.
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Figure 5.14 Same panels as in Figure 5.3 with additional black contour outlining the coastline. Shown for
realistic bathymetry configuration at adjoint time -24 hours.

Sensitivty of Drake Passage Transport, adjoint time=-90 days.
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Figure 5.15 Same panels as in Figure 5.3 with additional black contour outlining the coastline. Shown for
realistic bathymetry configuration at adjoint time -90 days, approximating the steady state sensitivities.
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5.1.4 Time scales and evolution of sensitivity

In this section we analyze in detail the time scales and evolution of the resolved dynamics

of sensitivity fields. The magnitudes of sensitivity fields can be quantified by separate

Frobenius norms of each two-dimensional adjoint fields. The resolved dynamics of the

spatially integrated MITgcm sensitivities are very similar to the exponential evolution in

the analytical model (4.2.12). The sensitivities to wind forcing and bottom friction grow

with adjoint time, exponentially approaching the steady state values (Figure 5.16). The

sensitivities to the initial conditions exponentially decay (Figure 5.17).

A detailed analysis of the sensitivity evolution shows that one time scale dominates the

dynamics of the system. After initial 4-day adjustment, characterized by oscillations with

time scale of 1 day, the systems enters an exponential regime. The exponential regime

prevails for 300 days, controlling the system on synoptic barotropic time scales. Figure

5.17 quantifies the details of the spin down of initial conditions sensitivity. The dominant

slow exponential relaxation time scale is exactly 20.5 days for both surface elevation and

currents initial conditions. It is consistent with the frictional spin down time scale 0(12

days) but is roughly a factor two slower. The fast initial transient decay can be

approximated by exponential relaxation with time scale of roughly 3.3 days for current

and 4.9 days for surface elevation initial conditions sensitivities. This fast relaxation and

the transient oscillations must be associated with the fast geostrophic adjustment by

Kelvin and inertia-gravity waves.
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Figure 5.16 Frobenius norms of wind stress components and bottom friction coefficient sensitivities.

Shown for the idealized aqua planet with barrier sensitivity calculations.
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On long time scale, after 320 days the norm of initial surface elevation exhibits another

transition to even slower decay. That transition may be associated with the eddy viscosity

dissipation acting on the diffusive time scale of 0(300 days), see discussion in Section

3.2.
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Figure 5.17 Frobenius norms of surface elevation (upper panel) and velocity components (lower panel)
adjoint fields as function of adjoint time. Two exponential fits are shown for each - surface elevation and
the zonal velocity component. Shown for the idealized aqua planet with barrier sensitivity calculations.
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5.2 Inverse uncertainty propagation

In this inverse uncertainty propagation section we analyze the details of uncertainty

assimilation in MITgcm. We first introduce the different synthetic observation systems

designed for the uncertainty assimilation experiments, sub-section 5.2.1. Then, in sub-

section 5.2.2, we analyze the unbiased prior-independent uncertainty assimilation by

exploring the principal uncertainty patterns resolved by the Hessian eigenvectors. We

examine the spectra of the Hessians, which properties are key to the efficiency of our

numerical implementation of the UQ methodology. The last sub-section (5.2.3.) of this

inverse uncertainty propagation section combines the Hessians with prior uncertainties

and focuses on prior-to-posterior uncertainty reduction in the control space.

5.2.1 Uncertainty assimilation experiments

Different uncertainty assimilation experiments were designed to explore the effects of

different observation types, locations and assimilation times. The different synthetic

observation systems are listed in Table 5.1. The rectangular array of surface elevation

data represents wide and coarse resolution altimetry of Drake Passage area, which in our

barotropic framework is equivalent to array of bottom pressure recorders, roughly

resembling the LDA observation coverage in cDrake experiment (Meredith et al. 2011).

The linear transect of the Passage represents the typical hydrographic sections, such as

WOCE SRlb. Without the current data the Drake transect represents a line of bottom

pressure recorders such as used in lower spatial resolution in WOCE experiments

(Meredith et al. 2011). The transect is shifted westward to the open ocean along the same

latitude to compare the effects of the geometry of the Passage with the dynamics

unconstrained by coastlines. The transect is also shifted northward to test the effects of

assimilating very remote data in a different oceanographic regime.

The observation-model misfit cost functions are weighted with observation uncertainties

(2.2.1). The assumed uncertainty of observations data is equal for all grid points and

times, given by the standard errors Ar/=0.01 m for altimetry and Au=0.001 m/s, Av-0.001

m/s for barotropic flow vector components. No cross-correlation of observation

uncertainty is assumed and a diagonal observation covariance matrix (2.2.4) is

constructed with squares of the assumed standard errors. The size of the observation
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covariance matrix is given by the square of the number of scalars in each observations

vector, as listed in Table 5.1, which is much smaller than 864002=7.5-10 9 elements of the

Hessian matrix. This Hessian would require 56 GB for storage in double precision and

for more realistic GCM configurations is expected to require orders of magnitudes more.

In our numerical implementation the full Hessian is not stored, but efficiently

reconstructed based on the reduced rank Hessian compression algorithm (2.7.7).

Table 5.1 Table of different synthetic observation system configurations - location and data types.

Observation system Longitude Latitude Number of
coordinate range coordinate range scalars

Drake Passage array altimetry W 75 - W 59 S 67 - S 55 63

Drake transect altimetry W 67 S 65 - S 57 5

South Pacific transect altimetry W 155 S 65 - S 57 5

North Pacific transect altimetry W 155 N 17 - N 25 5

Drake transect altimetry and flow rate W 67 S 65 - S 57 15

60

30

0

-30

-60

60 120 180 240 300 360

Figure 5.18 Location of observation systems drawn over the steady state flow and sea surface height plot
for the flat bottom configuration. The Drake Passage array of 9x7 altimetry data point is shown with back
rectangle. The meridional transects are shown with cyan, black and red markers for the Drake, south
Pacific and north Pacific transects.
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5.2.2 Hessian calculation and diagonalization
The first steps in our inverse uncertainty propagation methodology are calculation of the

Hessian matrix and its eigenvalue decomposition (2.7.1) with Lanczos algorithm

(Lehoucq et al. 1998). The resulting eigenvector fields resolve the uncertainty structures

of model controls in algebraically orthogonal combinations of the control variables (see a

simple illustration in Figure 2.2). The eigenvectors corresponding to the larger Hessian

eigenvalues represent control fields combinations well constrained by the observations,

with the inverse of these eigenvalues equal their estimated uncertainty variance. The

inverse of square roots of the eigenvalues are the corresponding standard errors. The

eigenvectors with zero or negligibly small eigenvalues, corresponding to infinite

uncertainty, are in the nullspace of the uncertainty assimilation Hessian and represent the

unconstrained combinations of controls. Note, that this uncertainty assimilation analysis

is independent of prior uncertainty assumptions and therefore resolves the pure

uncertainty dynamics as captured by the Hessian model. Prior uncertainty assumptions,

on the other hand, may introduce bias into the estimation problem and which may be

arbitrary if the priors are arbitrarily selected. The prior uncertainty assumptions also lead

to posterior uncertainty estimates that are different from the pure assimilated uncertainty

(as illustrated in Figure 2.1). These posterior uncertainties depend on the priors and

therefore reflect the arbitrariness in prior selection. The following uncertainty reduction

sub-section (Section 5.2.3) illustrates in detail the complex dependence of the resulting

posterior uncertainties on arbitrary prior choice. However, in this section we eliminate

this undesirable effect and focus on the pure assimilated uncertainty dynamics.

5.2.2.1 Realistic geometry with flat bottom

Different inverse uncertainty propagation experiments were compared for each of the

observation systems listed in Table 5.1. For each uncertainty assimilation configuration

the observation data was assimilated at different time shifts from the time of the initial

conditions. It was found that inverse uncertainty propagation depends on the uncertainty

assimilation time similarly to sensitivity fields dependence on the adjoint time (4.2.5).

Uncertainty is not static and evolves dynamically through transient states even when the

forward model is integrated from the steady state. The uncertainty was found to reach a
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steady state on the time scale of the forward model relaxation, consistent with our

analytical analysis in Section 4.2.

The spectra of the Hessians for uncertainty assimilated 1 day, 10 days and 90 days after

steady state initial conditions are compared in Figure 5.19 for the flat bottom experiment.

The spectrum steepens as function of uncertainty assimilation time. The 90 days' leading

eigenvalues are larger and the trailing eigenvalues are smaller than the shorter

assimilation period ones. This means that the steady state assimilated information gain is

more strongly associated with the more constrained eigenmodes of uncertainty.

All the spectra are characterized by a sharp spectral drop after the first 50 eigenvalues.

This spectral cut-off separates the range from the nullspace of the Hessians, allowing to

restrict the UQ analysis to the dimensionality of the range. Only relatively few Hessian

eigenvectors are required for inverse uncertainty propagation, eliminating the necessity to

calculate most of the eigenvectors. The effective rank of the Hessian matrix is much

smaller than the dimension of the space spanned by its columns. This allows a reduced

rank representation of the Hessian and is the foundation of the compressed algorithm of

Hessian matrix inversion (2.7.7). Physically, the compactness of the Hessian spectrum

implies that the number of dynamically independent observations projecting a nonzero

information on model controls is small. Only these meaningful observations constrain the

uncertainty of controls, and only they are required for the inverse uncertainty propagation

calculation.
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Figure 5.19 Hessian spectra of Drake Passage array altimetry misfits for f lat bottom configuration, shown
for observations assimilated after 1 day. 10 days and 90 days.
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The leading constrained eigenvectors for each of the three uncertainty assimilation times,

1 day, 10 days and 90 days, are shown in the following figures using the control fields

panels arrangement as in Figure 5.2. For short uncertainty assimilation time (Figure 5.20)

the fields exhibit large planetary scale structures which appear to be proportional to the

corresponding sensitivity fields (Figure 5.11), supporting our analytical analysis (4.1.13).

However, the detailed local structure at the Drake Passage is very different, e.g. the

strong meridional dipole of the uncertainty of zonal wind stress vs. its homogeneous

positive sensitivity area. The difference is explained because the sensitivity is the

derivative of the integral transport through the Passage, while the uncertainty is due to the

sum of misfits of local surface elevation observations. Both, being dynamically linked at

the Passage, radiate similar patterns to the far field. But locally the eigenvector

decomposition extracts the orthogonal contributions to the Jacobian of the misfits, which

are different from the Jacobian of the transport integral.

The orthogonal fields of the Hessian eigenvectors are the principal uncertainty patterns.

Assuming an equivalence of backward uncertainty propagation time to-t with forward

time of uncertainty assimilation t-to, since the forward model is integrated from the steady

state, allows to describe the evolution of the constrained uncertainty fields. Just as the

sensitivities to forcing and initial conditions had opposite dynamic - the initial conditions

sensitivities decaying to zero and the sensitivities to wind stress and bottom friction

growing to steady state values, similar dynamics can be noticed also for the uncertainties.

The relative magnitude of the eigenvector fields shifts from the initial conditions

uncertainty to the stress and friction fields, but the effect is less pronounced. Also wavy

structures can be noticed after 10 days of backward uncertainty propagation (Figure

5.21), whose spatial scale decreases as the uncertainties evolve backwards (Figure 5.22).

These waves are related to the adjoint waves examined in the sensitivity analysis, but

their appearance in the Hessian eigenvector fields is a manifestation of "uncertainty

waves" propagation through the domain. The south to north dipole asymmetry of the

uncertainty patterns across the Drake passage is noticeable for all times for most of the

Hessian eigenvector fields, with particularly strong signature of bottom friction

uncertainty on the northern side. Other noticeable geographical patterns include the
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circumpolar band of the bottom friction uncertainty and the transient teleconnections

patterns of the initial conditions fields.
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Figure 5.20 Leading eigenvector of the Hessian of Drake array altimetry observations misfit for flat bottom
configuration for uncertainty assimilation after 1 day.
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Figure 5.21 Leading eigenvector of the Hessian of Drake array altimetry observations misfit for flat
bottom configuration for uncertainty assimilation after 10 days.
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Figure 5.22 Leading eigenvector of the Hessian of Drake array altimetry observations misfit for flat
bottom configuration for uncertainty assimilation after 90 days.
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5.2.2.2 Realistic bathymetry

Comparing inverse uncertainty propagation calculations for the realistic bathymetry

configuration in the following figures shows qualitatively similar results to the flat

bottom case. The increasing tilt of the Hessian spectra with assimilation time is still

apparent, although the leading eigenvalue of the 1 day experiment is larger. The patterns

of the leading eigenvectors again resemble the sensitivities in the far field, but

significantly differ locally. The shift of the signal magnitude from the initial conditions to

the forcing is more pronounced. A noticeable difference is the alignment of the

uncertainty patterns with the bottom topography, which means that the uncertainty is

dynamically steered by the geostrophic contours due to conservation of potential

vorticity. In the steady state the strongest signatures of forcing and friction uncertainty

are localized at the Drake Passage and downstream. The initial conditions uncertainties

exhibit wavelike transient features along the equator with shorter meridional extent than

in the flat bottom case. These can be explained by equatorial Rossby uncertainty waves

(see Section 5.2.2.1) dynamics over varying and shallower ocean depth. These barotropic

waves are constrained in north-south direction by the shorter Rossby radius of

deformation, which scales the width of the equatorial wave guide. Other strong signals

are noticeable along the Antarctic coast propagating westward in the direction opposite to

the adjoint Kelvin waves and on time scales too long for gravity oscillations. The

mechanism of these signals is not understood but may be potentially attributed to the

numerics of the C-D scheme used to stabilize the realistic bathymetry simulations.
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Figure 5.23 Hessian spectra of Drake Passage array altimetry misfits for realistic bathymetry
configuration, shown for observations assimilated after 1 day. 10 days and 90 days.
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Figure 5.24 Leading eigenvector of the Hessian of Drake array altimetry observations misfit for realistic
bathymetry configuration for uncertainty assimilation after 1 day
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Figure 5.25 Leading eigenvector of the Hessian of Drake array altimetry observations misfit for realistic
bathymetry configuration for uncertainty assimilation after 10 days
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Figure 5.26 Leading eigenvector of the Hessian of Drake array altimetry observations misfit for realistic
bathymetry configuration for uncertainty assimilation after 90 days
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5.2.3 Prior vs. posterior uncertainty: uncertainty reduction

This section summaries the application of the developed methodology for uncertainty

reduction based on model-data misfit Hessian information. Assumed prior uncertainties

of model controls are reduced by combination with assimilated uncertainty of synthetic

observations. The resulting large regularized information matrix is inverted to obtain the

posterior uncertainty covariance matrix according to (2.7.5), implemented for application

in very large uncertainty quantification problems. Based on the cut-off of the Hessian

spectrum (Figure 5.19) only few Hessian eigenvectors are explicitly resolved with the

Lanczos algorithm and are combined with the prior uncertainty matrix in the developed

matrix-free algorithm based on (2.7.8).

The following figures display the reduction in the uncertainty of control fields for

different uncertainty assimilation times, different synthetic observation systems (Table

5.1) and two forward model configurations. A key feature of these calculations is

dependence on the assumed prior uncertainties. If these are not a priori known or

estimated from trusted statistics, the uncertainty reduction results retain the arbitrariness

of the prior selection, which is demonstrated below. In the following examples the prior

uncertainties are not correlated, their covariance matrix is diagonal with constant values

for each of the six different physical fields of the control vector. The prior uncertainty

diagonal is given by the squares of the corresponding standard errors

Arx , A r', Ar , Au, , Avo, A r7,_0 , (5.2.1)

that is a single constant scalar value for each of the panels on Figure 5.2. The posterior

uncertainty matrix is not diagonal, but because it is very large (7.5-109 elements) only its

diagonal is analyzed here, representing the posterior uncertainty variances of each of the

elements of the control vector. In the following figures we compare the prior and

posterior diagonals in terms of the posterior relative error reduction as defined by (2.7.11)

or equivalently by defining relative uncertainty reduction percentage

RURP = "i"' '""~ -100 (5.2.2)
Aprior
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5.2.3.1 Realistic geometry with flat bottom

Consider first the flat bottom configuration with Drake Passage array altimetry

observations. The relative uncertainty reduction for uncertainty assimilation time 1 day

for prior uncertainties given by [ AT, Azv, Ar, Auo, Avo, Aqt-o]'=[0.1 Pa, 0.1 Pa,

5.0e-3 m/s, 0.01 m/s, 0.01 m/s, 0.1 mIT are shown in Figure 5.27. The uncertainty

reduction is localized in the Drake passage area, only slightly extending beyond the

geographic coverage of the assimilated altimetry data. An exception is the reduction of

the initial surface elevation uncertainty, which extends far beyond the Drake Passage area

and has a strong signature in the western Pacific. This planetary scale uncertainty

teleconnection mechanism is explained by the adjoint Kelvin waves (Figure 5.3 and

Figure 5.11), which radiate from the western Pacific and propagate to the Drake Passage

area after 24 hours. Uncertainty of wind stress is reduced by 0.2 to 0.3 percent, the

reduction of the initial surface elevation uncertainty is an order of magnitude less. Larger

uncertainty reduction of 6 to 8 % is calculated for the initial flow components. Maximum

0.8 % reduction is found for the bottom friction coefficient at the highest reduction point

near the northern coast of the Drake Passage. The zonal band of the flat bottom ACC

confines the reduction of friction uncertainty, shown by the lowest uncertainty reduction

contour (blue). For the other fields some minimal uncertainty reduction extends all over

the global ocean area, with the first contour aligned along the continental boundaries.

Comparing the aforementioned results to uncertainty reduction after 10 days (Figure

5.28) shows larger reduction for the forcing and friction fields and smaller for the initial

conditions. The reduction of uncertainty of wind stress is 4 to 8 %, of bottom friction up

to 12 %, for initial velocities less than 1 %, and order of 10-3 for the initial surface

elevation. This uncertainty dynamics is consistent with evolution of sensitivity and

Hessian eigenvector fields. As the system evolves away from the initial conditions their

effects are "forgotten", while the effects of the boundary conditions grow stronger. This

trend continues for 90 days uncertainty assimilation time (Figure 5.29). The reduction of

wind stress uncertainty grows for both vector components, but more for the meridional

winds, reaching 12 %. For bottom friction the reduction is still larger - up to 14 %. For

the initial conditions the uncertainty reduction is small, and while some localized and

physically meaningful patterns can still be observed, the machinery seems to approach
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the limits of finite precision numerics. In practice, the uncertainty reduction of the initial

conditions can be neglected for long uncertainty assimilation times, as the uncertainty is

expected to evolve to a steady state independent of any initial conditions.

Neglecting the random uncertainty reduction patterns in Figure 5.29 because they are too

small 0(10~8) and are attributed to artifacts of finite precision numerics raises the

question what is the threshold for neglecting the uncertainty reduction results. The

mentioned reduction of 0.2% in Figure 5.27 might be considered effectively zero for

practical applications and it might be argued that observations do not meaningfully

constrain the uncertainty of these controls. Nonetheless, the patterns appear spatially

coherent with meaningful physical interpretation and therefore are more likely to be

considered a signal rather than noise. To make a quantitative discrimination of signal

from noise and decide what amount of uncertainty reduction is too small to be

considered, one may need to introduce the asymptotic machinery of statistical inference.

Assigning formal asymptotic confidence regions and other measures of statistical

significance of estimation results is an important next step, but is not pursued in this

dissertation.

Next we examine the effects of different priors selections on the resulting uncertainty

reduction. Figure 5.29 can be compared to Figure 5.30 and Figure 5.31, showing identical

calculations with the only difference in the assumed prior uncertainty of wind stress. The

values are 0.1 Pa, 0.01 Pa and 0.0001 Pa correspondingly. Note that the amplitude of the

supplied wind stress profile is 1o=0. 1 Pa, such that the prior uncertainties are 100%, 10%

and 0.1% of the scale of the forcing. The results show that not only the uncertainty

reduction of the wind stress decreases with decrease of its prior, but also it leads to larger

reduction of the other uncertainties - most evident here for the bottom friction, reaching

30%. This result highlights the dependence of the uncertainty reduction on the choice of

the prior, and also demonstrates the cross-coupling of the different control fields.

We also consider the effects of the different observation systems. Compare the 10 days

uncertainty assimilation of Drake Passage array altimetry (Figure 5.28) to Drake transect

altimetry (Figure 5.32) and to Drake transect altimetry and current data (Figure 5.33). As

it can be expected, the decrease of the amount of assimilated data points reduces the
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effects on the uncertainty reduction. All the uncertainty reduction fields are weaker for

the Drake transect altimetry case. They are all stronger for the Drake transect altimetry

and currents case, indicating the value of assimilation of different physical variables for

constraining the posterior uncertainties. The spatial patterns of uncertainty reduction are

collocated with the assimilated grid points, spanning the Drake Passage and radiating to

the far field only for the initial surface elevation. The lowest contour is consistent

between all three cases, with the band of friction uncertainty improvement confined in

similar zonal channels and the minimal uncertainty reduction extending over all the

global ocean.

Moreover, compare the uncertainty assimilation effects of the Drake transect altimetry

(Figure 5.32) to altimetry of the south Pacific (Figure 5.34) and north Pacific (Figure

5.35) transects. Substantial differences are observed. As can be expected, the uncertainty

reduction areas shift geographically following the location of the observations. However,

the magnitudes of the reduction are not exactly the same, indicating the effects of

different uncertainty dynamics in different regions. Shifting the observations zonally

along the path of the ACC to an open area in the southern Pacific slightly increases the

local uncertainty reduction of wind stress components and initial zonal velocity. The

reduction of uncertainties of initial surface elevation and meridional velocity are slightly

decreased. The largest difference is in the reduction of bottom friction uncertainty. In the

open ocean uncertainty reduction weakens by more than factor of two, which can be

attributed to the constriction effect of the narrow Drake Passage. The flow accelerates

through the Passage and the role of bottom friction is larger in that region. Another

interesting difference is the shape of initial elevation uncertainty patterns. While the

Drake Passage observations radiate to the west Pacific via long Rossby wave

teleconnection and also shed gradually decreasing uncertainty reduction downstream

along the Antarctic coast, the south Pacific observations' influence spreads both to the

east and along a north-east oriented band to the north of the observed area. The

downstream band of south Pacific observations' uncertainty reduction is almost fully

blocked at the entrance to the Drake Passage, where a local maximum is clearly seen. The

diagonal north-east oriented band of uncertainty reduction is interesting because it

connects the equatorial and mid-latitude regions.

106



Moving the altimetry transect northward to the subtropical northern Pacific also exhibits

interesting uncertainty patterns. While the uncertainty reduction effects on wind stress

and initial currents are localized and of comparable magnitude, albeit weaker for the

meridional stress and the velocities, the uncertainty of surface elevation radiates strongly

to the south of the equator and to the Indian ocean, as well as the western coast of south

America. Dynamically this might be linked to excitation of a wide asymmetric equatorial

barotropic wave due to the mixed Kelvin-planetary mode. The most interesting result is

the reduction of uncertainty of the bottom friction: although the topography is flat and

while the assimilated data is in the north Pacific, the uncertainty is constrained only in the

south along the ACC band and peaking at the Drake Passage.
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Figure 5.27 Relative uncertainty reduction with Drake array altimetry observations in flat bottom
configuration for uncertainty assimilation after 1 day. The prior uncertainties are given by [AT, A, Ar,
Auto, Avt=o, A7 ,o]T=[ 0.1 Pa, 0.1 Pa, 5.0e-3 m/s, 0.01 m/s, 0.01 m/s, 0.1 m] T. The location of the
assimilated observations is marked by the magenta rectangle, here shown only on the top right panel.
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Figure 5.28 Same as Figure 5.27 but for 10 days uncertainty assimilation time.

Figure 5.29 Same as Figure 5.27 but for 90 days uncertainty assimilation time. The location of the

assimilated observations is marked by the magenta rectangle, here shown on the three right panels.
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Figure 5.30 Same as Figure 5.29 for 90 days uncertainty assimilation time, but for smaller prior uncertainty
of wind stress given by the prior standard errors [ Ae, ATY]=[ 0.01 Pa, 0.01 Pa]. The location of the
assimilated observations is marked by the magenta rectangle, here shown on the three right panels.
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Figure 5.31 Same as Figure 5.29 for 90 days uncertainty assimilation time, but for smaller prior uncertainty
of wind stress given by the prior standard errors [ Ax, Ae]=[ 0.0001 Pa, 0.0001 Pa]. The location of the
assimilated observations is marked by the magenta rectangle, here shown on the three right panels.
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Figure 5.32 Relative uncertainty reduction with Drake transect altimetry observations in flat bottom
configuration for uncertainty assimilation after 10 days. The prior uncertainties are same as in Figure 5.27
given by [Az', Ary, Ar, AuO0 , Av,-0 , Aq~o]T=-[ 0. 1 Pa, 0. 1 Pa, 5.0e-3 m/s, 0.01 m/s, 0.0 1 m/s, 0. 1 M] T.
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Figure 5.33 Same as in Figure 5.32 for 10 days uncertainty assimilation time, but with Drake Transect
Altimetry and Currents data.
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Figure 5.34 Same as in Figure 5.32 for 10 days uncertainty assimilation time, but with south Pacific
transect altimetry data.
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Figure 5.35 Same as in Figure 5.32 for 10 days uncertainty assimilation time, but with north Pacific
transect altimetry data.

5.2.3.2 Realistic bathymetry

Next we examine the uncertainty reduction patterns for the realistic bathymetry

configuration, as shown in the following figures. The patterns overall resemble to the flat
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bottom case, although much larger in magnitude for forcing and friction and less

localized with complex spatial structure for the initial conditions. The contours of

uncertainty reduction extend outside the assimilated data region for all control fields for 1

day uncertainty assimilation period (Figure 5.36). The reduction of zonal wind stress

uncertainty extends farther downstream than upstream and reaches maximum 11% at

discrete points at northern and southern sides of the Drake Passage. The uncertainty

reduction of the meridional wind stress is much stronger, reaching 46% at a discrete point

on the southern side. Uncertainty reduction for the bottom friction reaches 3%, which is

much more than the corresponding 0.8% for the flat bottom configuration. Uncertainty

reduction for the initial velocities is of comparable magnitude to the flat bottom case, but

weaker 2-4% vs. 6-8% in the flat bottom example. It is much stronger for the initial

surface elevation, 6% vs. 0.02%. The most significant difference is the complex spatial

structure of the uncertainty reduction patterns, consistent for all three initial condition

fields. These patterns reach as far as 1500 km upstream and downstream of the Passage

area, the upstream part is adjacent to the southern coast, the downstream part aligned

along the northern coast bending and extending to the eastern coast of South America.

Considering the longer uncertainty assimilation periods, the 10 days (Figure 5.37) and 90

days (Figure 5.38) uncertainty reduction patterns converge to the steady state. Reduction

of wind stress and bottom friction uncertainties grows, up to 58% for the meridional wind

stress. The band of bottom friction uncertainty reduction covers a wider meridional extent

and as Figure 5.38 captures - it follows the topographic features along with the current

itself.. The prominent feature is the same overall dynamics of uncertainty as in the flat

bottom case - the uncertainty reduction of boundary conditions of momentum sources and

sinks grows to the steady state, while the for the initial conditions it decays to zero as the

systems "forgets" their effects. No uncertainty reduction signature remains in the area of

the assimilated observations for the initial velocity and elevation fields. After 10 days

some far field signals remain, and after 90 days the UQ machinery resolves only

numerical noise for the velocities, while the effects of surface elevation decay more

slowly.

The effects of prior uncertainty selection are illustrated next. Comparing Figure 5.39 to

Figure 5.38 we see that reducing the prior for wind stress not only decreases the relative
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uncertainty reduction of the stress components themselves, dropping from 58% to 11%

for meridional wind stress at the upstream points on the northern coast of the Drake

Passage, but it also affects the other fields. Just as in the flat bottom case, the uncertainty

reduction is larger for the rest of control fields and largest for the bottom friction,

reaching 30%. The effect is stronger for the much smaller prior uncertainty of wind stress

(Figure 5.40). The reduction of wind stress uncertainty decreases to 0(10~6) and for

bottom friction it increases to 35% . The uncertainty reduction for initial surface elevation

increases from 0(10-5) to 0(10-4) to 0(10-3 ), although no direct physical meaning

probably should be assigned to its planetary scale meridional profile because of the

smallness of its amplitude. For initial velocities some remote signals emerge from the

numerical noise.

Next, we compare the 10 days uncertainty assimilation of Drake Passage array altimetry

(Figure 5.37) to Drake transect altimetry (Figure 5.41) for the realistic bathymetry

configuration. As in the case of the flat bottom topography, decreasing the number of

assimilated altimetry data points data from two dimensional array to only one row of grid

points decreases the uncertainty reduction patterns coverage and magnitude. For zonal

wind stress it drops from 18% at the discrete points at northern and southern sides of the

Drake Passage to 5% peak in the interior of the Passage. For the meridional stress the

drop is from 58% to 11%. Uncertinty reduction for the bottom friction drops from 4% to

0.8%. The remote signals of the initial conditions uncertainty reduction are also

weakened for the transect compared to the array. We note that the locations of these

signals are consistent - equatorial bands for the velocities and few spots along the

Antarctic coast for the surface elevations. When compared to the Drake transect with

altimetry and the current data (Figure 5.42) the magnitude of uncertainty reduction is

stronger when current uncertainty is also assimilated, but not as strong as in the case of 2-

D altimetry array. The spatial coverage of uncertainty reduction appears very similar for

both transect experiments, except that for altimetry and current assimilation the equatorial

uncertainty signals for the initial conditions are masked out by the stronger Antarctic

coastal signals.

Finally, we examine the effects of translating the assimilated altimetry transect to the

middle of the southern Pacific (Figure 5.43) and the subtropical Pacific north (Figure
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5.44). The magnitudes of uncertainty reduction for the wind stress are reversed between

the two components depending on the location of the assimilated data. For the northern

Pacific transect the zonal wind stress is more strongly constrained, while for the southern

Pacific transect it is the meridional wind stress, which is also the case for the Drake

Passage transect (Figure 5.41). The bottom friction uncertainty is constrained by the north

Pacific observations only in the southern hemisphere, peaking to the south and to the

north of the Australian continent. The effect of south Pacific transect on the bottom

friction uncertainty is similar to the Drake transect, except that the local pattern is zonally

elongated following the ACC core downstream. Uncertainty reduction patterns for the

initial conditions are fragmented for both Pacific transects but the magnitude is small. To

summarize, these results indicate that uncertainty reduction patterns shift spatially

following the shifting the geographic location of assimilated uncertainty. The

uncertainties of the different control variables are dynamically coupled as all change in

response to modifying the assimilated uncertainty of one of them.

Posterior Relatiw Error Reduction (%)

60-

10 48 3

0- - 6

-60 
-

60-

40 2

30 1.5

-0-
0 20 1

6010 

0.5

105
60-

2.55

2

60 120 180 240 300 60 120 180 240 300

Figure 5.36 Relative uncertainty reduction with Drake array altimetry observations in realistic bathymetry
configuration for uncertainty assimilation after 1 day. The prior uncertainties are given by [ Ai, Arl, Ar,
Au, 0 , Av, 0 , Ar/, 0 ]T=[1 Pa, 1 Pa, 5.0e-3 ni/s, 0.01 m/s, 0.01 m/s, 0.1 m] T. The location of the assimilated
observations is marked by the magenta rectangle, here shown on all panels.
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Figure 5.37 Same as Figure 5.36 but for 10 days uncertainty assimilation time.

60 120 180 240 300

50

40

30

20

10

Figure 5.38 Same as Figure 5.36 but for 90 days uncertainty assimilation time. The location of the
assimilated observations is marked by the magenta rectangle, here shown on the three right panels.
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Same as Figure 5.38 for 90 days uncertainty assimilation time, but for smaller prior
uncertainty of wind stress given by the prior standard errors [ AC, Ae]=[ 0.1 Pa, 0.1 Pa]. The location of
the assimilated observations is marked by the magenta rectangle, here shown on the three right panels.
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Figure 5.40 Same as Figure 5.38 for 90 days uncertainty assimilation time, but for smaller prior uncertainty
of wind stress given by the prior standard errors [ Ae, Ary]=[ 0.0001 Pa, 0.0001 Pa]. The location of the
assimilated observations is marked by the magenta rectangle, here shown on the three right panels.
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Figure 5.41 Relative uncertainty reduction with Drake transect altimetry observations in realistic
bathymetry configuration for uncertainty assimilation after 10 days. The prior uncertainties are same as in

Figure 5.36 given by [AT, Ary, Ar, Auo, Av,0, A/,0o]f=[ 1 Pa, 1 Pa, 5.0e-3 m/s, 0.01 m/s, 0.01 m/s, 0.1m]T.
The location of the assimilated observations is marked by the magenta rectangle.
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Figure 5.42 Same as Figure 5.41 for 10 days uncertainty assimilation time, but with Drake transect

altimetry and currents data. The location of the assimilated observations is marked by the magenta

rectangle, here shown on the three right panels.
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Figure 5.43 Same as Figure 5.41 for 10 days uncertainty assimilation time, but with south Pacific transect
altimetry data. The location of the assimilated observations is marked by the magenta rectangle.
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Figure 5.44 Same as Figure 5.41 for 10 days uncertainty assimilation time, but with north Pacific transect
altimetry data. The location of the assimilated observations is marked by the magenta rectangle.
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5.3 Forward uncertainty propagation
The ultimate goal of the developed inverse-predictive UQ methodology is projection of

the assimilated uncertainty to the desired target variables, which in general may be

different from one of the model controls. For example, the target quantities can be the

circumpolar heat transport or meridional overturning circulation, neither of which is

among the model control variables. In this section we present the results of application of

the scalable matrix-free algorithm for uncertainty assimilation and forward propagation

given by (2.8.3). We propagate the prior and the posterior uncertainties of the controls to

the target variable - the Drake Passage transport. Since the transport is not static but a

dynamically evolving variable, its uncertainty evolves with time as well. We display the

evolution of the prior and the posterior uncertainties of the transport and also calculate

the evolution of the relative uncertainty reduction. The resulting timeseries of posterior

uncertainty evolution is the formal estimate of the time dependent uncertainty for the

time dependent output of ocean state estimate system. It replaces the temporal standard

deviation (Figure 1.1) used as fixed uncertainty bounds of the state estimate in previous

studies.

Different posterior uncertainty timeseries are calculated for each uncertainty assimilation

experiment constructed with different uncertainty assimilation times, different synthetic

observation systems (Table 5.1) and different forward model configurations. The results

are summarized in the tables below. For simplicity of presentation the tables list the prior

and posterior uncertainties only at the time of the assimilated observation data. The

following figures add the time dimension to these results.

Before we proceed to describing the results, we illustrate the computational method by

displaying the spectral convergence of the uncertainty propagation calculation for

spectral truncation of the Hessian of model-data misfit. Figure 5.45 shows the output of

the UQ algorithm for posterior uncertainty of the transport calculated with increasing

number of Hessian eigenvectors resolved (the reduced Hessian rank). If none are resolved

(Hessian rank 0) then the output of the algorithm is the prior uncertainty. If only the

leading eigenvector is used (Hessian rank 1) the posterior uncertainty reduction is small.

This is an interesting result showing that resolving only one large eigenvalue with the
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leading eigenvector is not enough for this calculation and the converged output is due to

the combination of several eigenvalue - eigenvector pairs. This convergence is shown to

be achieved successfully with only few leading eigenvectors. The number of the

eigenvectors required for convergence can be regarded as the effective rank of the

Hessian in the UQ problem. This effective UQ rank (which can be determined by

selecting the desired spectral convergence threshold) is equal the dimension of the

dominant part of the range of the Hessian and represents the number of independent

degrees of freedom constrained in the uncertainty assimilation procedure. The rest of the

degrees of freedom in the control space of the ocean model can be regarded as the

effective nullspace of the UQ problem. This uncertainty assimilation based partition of

the model control space allows separation between the uncertainty due to "errors of

commission", which are projected on the range of the Hessian, and the uncertainty due to

"errors of omission", which remain unresolved in the nullspace of the UQ problem.
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Figure 5.45 Posterior error of Drake Passage transport calculated with increasing Hessian spectral
resolution given by the reduced Hessian rank. For zero Hessian rank the result is equal the prior error,
shown here with square markers. For increasing Hessian ranks the prior is reduced to monotonously
smaller posteriors, converging to the minimum posterior with only few resolved eigenvectors. The left
panel is for flat bottom configuration, the right panel is for the realistic bathymetry case.

5.3.1 Realistic geometry with flat bottom

Tables 5.2, 5.3 and 5.4 summarize the forward uncertainty propagation results for the flat

bottom configuration. The first table compares different uncertainty assimilation times

and different observation locations and variables for large prior uncertainty of wind

stress. The second table compares the effects of arbitrary selecting different prior

uncertainties of wind stress for steady state uncertainty assimilation of Drake Passage
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array altimetry. The third table repeats the first table's experiments with a smaller prior

uncertainty of the wind.

Table 5.2 Summary of forward uncertainty propagation experiments for flat bottom configuration with
prior uncertainty of controls specified with a diagonal covariance matrix with constant standard errors:
[AT', Ail, Ar, Auso, Avo, Ai,o]T=[ 0.1 Pa, 0.1 Pa, 5.0e-3 m/s, 0.01 m/s, 0.01 m/s, 0.1 m]T

Prior Posterior Uncertainty
Eigenvalue Uncertainty Uncertainty Reduction

1 (Sv) (Sv) (%)
1 day Drake Array Altimetry 5.55E+05 3.842 1.899 50.6

1 Odays Drake Array Altimetry 1.73E+06 3.521 1.873 46.8

30days Drake Array Altimetry 3.36E+06 5.360 1.920 64.2

60days Drake Array Altimetry 3.87E+06 6.080 1.922 68.4

90days Drake Array Altimetry 3.96E+06 6.190 1.924 68.9

1Odays Drake Transect Altimetry 2.74E+05 3.521 2.672 24.1

1Odays South Pacific Transect Altimetry 1.15E+05 3.521 3.397 3.51

1Odays North Pacific Transect Altimetry 8.64E+03 3.521 3.507 0.384

1Odays Drake Transect Altimetry & Flow 5.26E+06 3.521 1.332 62.2

Table 5.3 Same as Table 5.2 except for different prior uncertainties of wind stress as specified.

Prior Posterior Uncertainty
Eigenvalue Uncertainty Uncertainty Reduction

(Sv) (Sv) (%)
90days Drake Array Altimetry, 3.96E+06 6.190 1.924 68.9
Prior AT=0.1 Pa

90days Drake Array Altimetry, 3.96E+06 3.488 1.139 67.4
Prior AT=0.01 Pa

90days Drake Array Altimetry, 3.96E+06 3.450 1.121 67.5
Prior AT=0.0001 Pa

Table 5.4 Same as Table 5.2 for flat bottom configuration for prior uncertainty of controls with standard
errors: [ Ai, Ar, Ar, Auo, AvO, A/,o]=[ 0.0001 Pa, 0.0001 Pa, 5.0e-3 m/s, 0.01 m/s, 0.01 m/s, 0.1 m]T.

Prior Posterior Uncertainty
Eigenvalue Uncertainty Uncertainty Reduction

(Sv) (Sv) (%)
1 day Drake Array Altimetry 5.55E+05 3.809 1.885 50.5

1 Odays Drake Array Altimetry 1.73E+06 2.306 1.420 38.4

30days Drake Array Altimetry 3.36E+06 2.929 1.111 62.1

60days Drake Array Altimetry 3.87E+06 3.378 1.117 66.9

90days Drake Array Altimetry 3.96E+06 3.450 1.121 67.5

1 Odays Drake Transect Altimetry 2.74E+05 2.306 1.909 17.2

1 Odays South Pacific Transect Altimetry 1.15E+05 2.306 2.214 4.02

1 Odays North Pacific Transect Altimetry 8.64E+03 2.306 2.300 0.27

1 Odays Drake Transect Altimetry & Flow 5.26E+06 2.306 1.209 47.6
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The figures that follow the tables add the time evolution dimension to the results in the

tables. However, that time dependence of the uncertainty results is also reflected in the

tables. Looking on Tables 5.2 and 5.4 one can see that by increasing the duration of

uncertainty assimilation from 1 day to 10, 30, 60 and 90 days - the leading eigenvalue

increases. This, generally, indicates growth of the Hessian spectrum magnitude

associated with the increase of the assimilated information. As Figure 5.19 illustrates, not

the entire spectrum grows and the growth of the leading eigenvalue is related to

concentration of the assimilated information in the leading eigenmodes of the Hessian.

Comparing the eigenvalues of different 10 days experiments (Tables 5.2 and 5.4) with

different assimilated observation systems (Table 5.1), we see that assimilating less data

points decreases the assimilated information. Same is true if the assimilated data is

moved away from the Drake Passage. The assimilated information for the "Drake

Passage Transect Altimetry" is more than double than for the "South Pacific Transect

Altimetry" case which is shifted on the same latitude to the middle of South Pacific

Ocean. Moving the data to the north Pacific reduces the assimilated information by

almost 2 orders of magnitude. Adding the currents data to Drake transect assimilation

("10days Drake Transect Altimetry & Flow" experiment) raises the eigenvalue by an

order of magnitude to more than what even the 2-dimensional altimetry array ("10days

Drake Array Altimetry") provides at the steady state.

Note, that the eigenvalues in Table 5.3 are all the same. That table compares the effects

of different priors with same uncertainty assimilation experiment. Clearly, different prior

selections do not affect the assimilated Hessian information.

5.3.1.1 Prior uncertainty propagation

Projecting uncertainty of controls to the target variable space is a nontrivial calculation,

which was not implemented with MITgcm before. Forward projection of the prior

uncertainty of controls is independent of uncertainty assimilation experiments and is

evaluated with the Jacobian derivative code of the target variable, see first row of (2.9.3).

Although no Hessian code is involved, the results are complex and reflect the dynamics

of the uncertainty in the system.
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The prior estimate of uncertainty of transport is not constant and varies as function of

time. Surprisingly, this is true even if the transport itself is constant and does not vary

with time, because the system is in the steady state. This apparent paradox is resolved by

understanding that the evolution of the ocean system and the evolution of its uncertainty

are governed by two separate equations representing mutually dependent and yet

different dynamics. By initializing the forward ocean model with initial conditions in the

steady state balance, the resulting forward solution remains in the steady state for all

time, but its uncertainty evolves due to solution's evolving sensitivity to the initial and

boundary conditions uncertainty.

6.5

6

5.5

W'r 45 -

C -

4 /

3

C I

- Case 1
2.5- Case 2

0 10 20 30 40 50 60 70 80 90
Model time (days)

Figure 5.46 Evolution of the prior uncertainties of Drake Passage transport given in percents as fraction of
the actual transport at the time of forward uncertainty propagation. Shown here for two cases: the less a
priory constrained controls (Table 5.2) and the more certain prior controls case (Table 5.4).

The nonstationary values of the prior transport uncertainty can be read from the second

column of tables 5.2 and 5.4, for the two different sets of prior uncertainties of controls.

In both cases after one day integration from the steady state, the prior uncertainty of

transport is 3.8 Sv. It drops in both cases in the 10th day, although more sharply for more

certain prior case (Table 5.4). In the following days the prior uncertainties of transport

grow, reaching higher for the less certain case (Table 5.2). More detailed time evolution

of these prior transport uncertainties can be seen in Figure 5.46. The prior standard errors

of the transport start at 6 Sv in the first hour of the uncertainty propagation simulation (in

this particular simulation the steady state transport is 100 Sv, such that the percentage
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value in the figure is also the absolute value in Sv). Both curves decline together in the

first day of the simulation. The uncertainty in the less certain case drops to the minimum

3.2 Sv after 5 days of forward propagation, and monotonically grows asymptoting to 6.2

Sv after 90 days. The uncertainty of the more certain case drops further to the minimum

of 2.3 Sv after 10 days and grows asymptotically to 3.5 Sv.

Not shown in Figure 5.46 is the initial value of prior transport uncertainty, due to the

prior uncertainty of the initial conditions - independent of the dynamics of the ocean.

That initial transport uncertainty can be calculated as following from the assumed prior

uncertainty of the initial zonal flow Au,-o=0.01 m/s. There are 5 grid cells spanning the

Drake Passage at the longitude of the transport calculation. The cross sectional area of

each westerly face is a-- 1.1 x 109 M2 . Since the transport is just the sum of the zonal

volume fluxes z-alui, and if the uncertainties of the initial zonal flow are independent,

then the uncertainty of the transport is given by addition in quadrature of each of the grid

cell contributions. The value of the initial prior uncertainty of zonal transport is 24.6 Sv,

which is much larger than the uncertainty propagated by the ocean model.

We learn that transport uncertainties estimated in the dynamical ocean model are

substantially smaller than the static uncertainties due to independent "measurements" at

each grid cell. The explanation for this is that the sensitivity of the transport to the

uncertainties in model initial and boundary conditions are much weaker than the

sensitivity to the flow at the Passage at the moment of transport calculation. The latter is

given by the vertical cross sectional area of each grid cell a= 1.1 x 109 Sv 10-6/(m/s), while

a representative example of the former is the sensitivity of transport to the initial zonal

flow, which 2 hours after model initialization is 0(5x 107) Sv 10-6/(m/s) (see Figure 5.9).

It is important to highlight that the presented apparent uncertainty reduction in the ocean

model is not due to constraint of model uncertainty by assimilated observations. The

calculations shown are for prior transport uncertainty only, based on assumption of prior

uncertainty of ocean model controls. The reduced uncertainty in the model may reflect an

incomplete resolution of all the uncertainty factors contributing to the real uncertainty of

transport. The uncertainty resolved in the ocean model is only a measure of uncertainty

due to "error of commission", any uncertainty which is not represented in the modeling
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framework is not reflected in our calculations and should be considered as a possible

"error of omission". Including the uncertainties due to "errors of omission" is a grand

challenge in model based UQ and is not considered further in this dissertation.

The resolved evolution of the forward projected prior uncertainty (Figure 5.46) can be

understood further by a detailed analysis of the forward propagation operator (2.3.11).

For the specified diagonal prior (5.2.1), i.e. without correlations of control uncertainties,

the forward projection reduces to summation of control variances weighted by the

sensitivities of the transport:

o0 =, IN 0 (5.3.1)

This summation is known as uncertainty addition in quadrature (Taylor 1982). For each

forward model time, the vector of the uncorrelated contributions to the variance of the

transport can be plotted by multiplying sensitivity maps with the prior uncertainties of

controls and squaring the result. Equivalently, the absolute values of the uncertainty

weighted sensitivity maps can be shown. Closely related maps were analyzed by

Heimbach et al. (2011) by multiplication of sensitivities with uncertainties based on the

observed variability of ocean fields (Forget and Wunsch 2007). The difference is that in

that study the absolute value was not taken and the "normalized sensitivities" were treated

as "normalized response fields" to expected uncertainties in observations. Here, we

extend that uncertainty analysis approach by formal application of the quadrature rule.

Two uncertainty maps of independent uncertainty contributions to the prior uncertainty of

Drake Passage transport evolution are shown in Figure 5.47 and Figure 5.48. Both

uncertainty contribution snapshots are shown for Case 1 of Figure 5.46, one after 6 hours

from uncertainty model initialization and one after 10 days. The physical mechanisms of

the uncertainty contributions can be inferred from the spatial patterns and the time

dependent evolution of the uncertainty fields. After 6 hours the dominant uncertainty

contribution is due to the adjoint Kelvin waves propagating equatorward along the

western American coast and eastward along the Antarctic continent. After 10 days the

contribution due to the adjoint Rossby waves are clearly seen in the meridional velocity

uncertainty panel. That uncertainty, however, is not the dominant one. Locally large

uncertainty values are due to the boundary conditions - wind forcing and bottom friction
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Figure 5.47 Map of prior Drake Passage transport uncertainty contributions due to control fields, in
volume transport units (m3/s) . Shown for the prior transport uncertainty 6 hours after uncertainty
propagation model initialization for the prior control parameters as in Table 5.2.
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Figure 5.48 Same as in Figure 5.47, shown for the prior transport uncertainty 10days after uncertainty

propagation model initialization
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uncertainty fields. Considering the integral contribution over the whole domain, the zonal

wind forcing uncertainty appears to dominate. This can be confirmed quantitatively by

plotting the quadrature integrals over each panel in Figure 5.49. The plot is the partition

of the prior uncertainty evolution curve for Case 1 in Figure 5.46 to 6 separate control

fields uncertainty contributions. The uncertainty due to the initial conditions dominate in

the first 5 days, exponentially decaying to zero at the steady state as the system "forgets"

the initial conditions. The uncertainty due to the boundary conditions grow from zero to

their steady state values on the time scale of frictional relaxation of the ACC. The

dominant uncertainty source in the steady state is zonal wind forcing. The second

strongest uncertainty source is the bottom friction field.

These detailed quantitative results are consistent with the conclusions based on the

idealized analytical ODE uncertainty quantification analysis - the effects of initial

conditions decay exponentially, while forcing and friction effects grow with exponential

relaxation to the steady state values. The developed here forward uncertainty propagation

analysis approach allows a detailed quantitative understanding of transport uncertainty

sources, their evolution and a qualitative identification of their physical mechanisms.

Prior transport uncertainty quadrature contributions

5
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0.r

u

0
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Time (days)
Figure 5.49 Uncertainty variance contributions due to each of six control fields to the prior transport
uncertainty evolution for the prior control parameters as in Table 5.2. Shown in percents of the total
variance of the prior transport uncertainty.
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5.3.1.2 Posterior uncertainty and uncertainty reduction

The posterior uncertainty and the relative uncertainty reduction values for the Drake

Passage transport (5.2.2) are tabulated in the last two columns of Tables 5.2, 5.3 and 5.4

for the exact time when observations and their uncertainties are assimilated in the model.

The posterior uncertainty after 24 hours of model integration, at the time of Drake array

altimetry uncertainty assimilation, is reduced by 50.6 %. If uncertainty is assimilated

after 10 days, the posterior is reduced by 46.8% at this time. Uncertainty reduction

increases for longer data assimilation times when examined at the time of uncertainty

assimilation. Just by looking at the table it is not obvious if the increase is due to longer

assimilation times or because the system integrates to a steady state equilibrium. This

question will be resolved by consideration of the detailed time evolution of the

uncertainties in the sections below.

Now, we consider the effects of the different observation systems assimilated 10 days

after model initialization. The effects of 10th day uncertainty assimilation on posterior

uncertainty reduction are consistent with the trends of the assimilated Hessian

information, as discussed in terms of the Hessian eigenvalues above. Restricting

assimilated data to one row of altimetry points decreased uncertainty reduction to 24.1%

and the resulting posterior uncertainty is larger, that is 2.7 Sv vs. 1.9 Sv for Drake array.

Assimilation of uncertainty far in South Pacific leads to much smaller uncertainty

reduction, while data uncertainty in the North Pacific almost does not affect the

uncertainty of Drake Passage transport. The addition of current meters to Drake transect

assimilation constrains more strongly the transport, by 62.2% compared to 24.1% for

Drake array altimetry only.

5.3.1.3 Transport uncertainty constraint by different prior uncertainties of wind
forcing

Considering the effects of different priors in Table 5.3 we see that an order of magnitude

smaller prior uncertainties of wind stress result in twice smaller prior uncertainties of the

transport (column 2 in the table). That quantifies how much the knowledge of wind stress

constrains the uncertainty of predicted Drake transport, which is a valuable UQ result in

forward uncertainty propagation framework (unrelated to uncertainty assimilation

problem and the developed inverse propagation machinery). This uncertainty constraint
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effect has a limit, as reducing the prior by two more orders of magnitude does not farther

reduce the prior transport uncertainty by much. This indicates that other variables control

the remaining uncertainty of the transport, as was explicitly shown in Figure 5.49, and

the way to farther reduce this uncertainty is constraining the controls by assimilation of

observations. Calculating that in the 3rd column of Table 5.3, we see that the prior

uncertainty can be reduced by more than two thirds with assimilation of Drake array

altimetry uncertainty. The exact fraction of uncertainty reduction (column 4) decreases by

very little if smaller prior uncertainty is assumed. This is confirmed for all the other

uncertainty assimilation experiments in Table 5.4, except for the 10 days south Pacific

altimetry, where the uncertainty reduction fraction is larger than in Table 5.2, 4% vs.

3.5%. This means that if wind stresses are better known over the globe, then adding

knowledge of ocean surface elevation upstream of the Passage is more valuable for

estimating Drake transport than knowledge of the elevation at the Passage itself.

5.3.1.4 Time-resolving analysis of uncertainty dynamics

As mentioned above, the tables present only a partial view of the uncertainty

quantification results. The estimated uncertainties vary considerably as function of time

and in general are different from those at the exact time of uncertainty assimilation. For

example consider the uncertainty reduction due to assimilation of Drake array altimetry 1

day after model initialization (Figure 5.50). It is shown that there is a sharp peak in the

posterior uncertainty reduction exactly at the assimilation time, 50.6% as is listed in

Table 5.2, but this peak is not a good representative of the posterior uncertainties and

their reduction at the other times. Before and after the uncertainty assimilation moment

the posterior uncertainty is only slightly smaller than the prior - i.e. only small

uncertainty reduction, asymptoting 1% reduction in the steady state.

In contrast, assimilation of same altimetry data on 30th day of the steady state simulation

(Figure 5.51) produces quite different uncertainty reduction effects. The reduction in the

posterior transport uncertainty at the assimilation time is 64.2%, as is listed in Table 5.2.

This reduction is not transient and keeps growing slightly to the steady state value. The

posterior uncertainty curve drops significantly beneath the prior uncertainty curve in the

first 10 days and when the prior uncertainty grows back, the posterior remains low
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growing only a little to its steady state value 2.2 Sv. We conclude that uncertainty varies

considerably not only as function of forward uncertainty propagation time, but also as

function of the uncertainty inverse propagation time. In this example, the longer inverse

propagation time, i.e. the uncertainty assimilation period, resulted in stronger effect on

Drake Passage transport uncertainty.
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Figure 5.50 Evolution of prior and posterior uncertainties of Drake Passage transport given in percents as
fraction of the actual transport at the presented time. Here shown for 1 day Drake array altimetry
uncertainty assimilation experiment for flat bottom configuration model. The prior uncertainties are given
by the standard errors: [Az", Ar, Ar, AuO, Av,O, Ario]r =[ 0.1 Pa, 0.1 Pa, 5.0e-3 m/s, 0.01 m/s, 0.01
m/s, 0.1 m] T. The left panel compares the prior uncertainty (blue dashed) and the posterior uncertainty
(green solid) evolutions. The moment of uncertainty assimilation, here 1 day, is shown by the vertical
magenta dotted line. The right panel shows the relative uncertainty reduction fraction in percents (red solid)
and a the time of uncertainty assimilation (vertical magenta dotted).
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Figure 5.51 Same as in Figure 5.50 but for uncertainty assimilation 30 days after model initialization. For
compactness of presentation the two separate panels are combined into single plot. The left-side axis is
transport uncertainty in percents, the right-side axis is the uncertainty reduction in percents.
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The striking difference between posterior uncertainty dynamics for different uncertainty

assimilation times suggests analyzing in detail the dynamics of uncertainty reduction. In

Section 5.3.1.1 a detailed analysis of prior uncertainty evolution and its physical

mechanisms was possible by analyzing the separate contributions to the uncertainty of

transport given by the quadrature rule. That mapping from uncertainties of controls to the

target variable was simplified because the prior control uncertainties were not correlated.

This is not the case for the posterior uncertainties of controls, because uncertainty

assimilation introduces off-diagonal covariance terms to the posterior control covariance

matrix. The posterior mapping from controls to the target variable uncertainty is given by

o=o+ o p (5.3.2)

Only the first sum (in quadrature) of sensitivity weighted uncertainties was considered in

the previous analysis. One could visualize the spatial structures of the separate control

fields contributions for each forward propagation time, or one could plot the time series

of the evolution of the separate contributions. It is much more technically challenging to

apply similarly detailed analysis to the covariance contributions to the target uncertainty.

The double summation includes cross products of sensitivity fields weighted by the

covariances of controls, or equivalently, the cross products of sensitivity-weighted

posterior uncertainties scaled also by their correlation coefficients. The number of the

terms in the double summation is square of the number of quadrature sum terms and

therefore cannot be simply visualized for the large dimensionality of the ocean state

estimation problem.

The posterior quadrature contribution patterns can be plotted, just as in Section 5.3.1.1,

however they are not shown here because visually they are almost indistinguishable from

the prior quadrature uncertainties (e.g. Figure 5.47). This can be explained by the

relatively small reduction of the diagonal terms in the posterior covariance matrix of

controls. The reduction of the uncorrelated part of posterior uncertainty of controls was

analyzed in detail in Section 5.2.3. It was shown to reflect spatially meaningful patterns,

mostly localized at the assimilated observations regions, but the magnitude of uncertainty

reduction was only few percents and less. In fact, the total effect of the reduced variance

of controls on the posterior transport uncertainty is very small, as shown in Figure 5.52
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and Figure 5.53 for the day 1 uncertainty assimilation experiment of Figure 5.50. The

posterior variance of transport due the quadrature sum in (5.3.2) is practically

indistinguishable from the prior transport variance (Figure 5.52), meaning that there is

almost no uncertainty reduction due to the uncorrelated part of the posterior uncertainty

of the controls (Figure 5.53). The large 50% uncertainty reduction is completely due to

the correlated posterior covariance terms (Figure 5.53). In other words, the double sum in

(5.3.2) is negative, as shown in Figure 5.52. Because the prior covariance of controls is

diagonal, all the nonzero off-diagonal terms in the posterior covariance matrix are solely

due to the uncertainty assimilation. The interpretation is, that the assimilation of

observation uncertainty and its inverse propagation through the model cross-couples the

control fields and this coupling is the responsible for the bulk of uncertainty reduction.

Same partition to correlated and uncorrelated posterior uncertainty and uncertainty

reduction contributions can be plotted for the day 30 assimilation experiment (Figure

5.51). Again, the posterior variance of transport follows closely the prior variance (Figure

5.54) and almost all the uncertainty reduction is due to the off-diagonal posterior control

covariance terms (Figure 5.55). However, in this case the contribution of the diagonal

covariance terms is more noticeable, up to 3.4% of the total transport variance reduction.

The double sum in (5.3.2) is again negative for all times (Figure 5.54), however, unlike in

Figure 5.52 the effect is not a transient peak but grows to a negative steady sate value.

In summary, the have learned the critical role that posterior controls correlations play in

UQ. Not only that the quadrature rule for summation of uncertainty sources cannot be

applied, but its effect is completely dominated by the off-diagonal covariance terms.

Physically, it is the coupling of ocean fields that reduces the uncertainty in ocean state

estimation, relative to a priori uncorrelated uncertainties in specified ocean controls. The

ocean system appears to be tightly coupled and the developed uncertainty assimilation

methodology allows to resolve these correlations. More detailed analysis of the structure

of the off-diagonal covariance fields is expected to reveal the physical mechanisms of

coupling, but this remains challenging due to the large dimensionality of the covariance

data. We highlight, that this challenge is of careful analysis and physical interpretation

kind, and is not limited by the technical properties of the machinery developed in this

dissertation.
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Figure 5.52 Evolution of prior and posterior transport variance for Drake array altimetry assimilation 1
day after model initialization. The posterior uncertainty variance is partitioned to the uncorrelated and the
correlated contributions of the posterior uncertainty of the controls.
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Shown for Drake array altimetry assimilation 1 day after model initialization. The right panel shown the
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Now we return to the comparison of different uncertainty assimilation experiments.

Figure 5.56 displays the posterior uncertainty evolution results for the different
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assimilation times as listed in Table 5.2. The review of the detailed evolution allows to

reexamine the above raised question - if the increase in uncertainty reduction with

uncertainty assimilation period is "due to longer assimilation times or because the system

integrates to a steady state equilibrium". Considering the 10 days uncertainty assimilation

experiment we see that the peak 46.8% uncertainty reduction applies only to the exact

assimilation moment, it recedes slightly to value of 40% at the steady state. As a result,

the posterior uncertainty of the transport grows from 1.7% minimum to 3.7% at the

steady state. For longer uncertainty assimilation periods the picture is quite different. The

uncertainty reduction peak does not appear and it is monotonically increasing to the

steady state values asymptoting to 70%. The results for 30, 60 and 90 days are very

similar indicating the convergence of the uncertainty dynamics to steady sate equilibrium.

All five experiments are compared to each other in a single plot in Figure 5.56(f). We see

that the peak uncertainty reduction for 1 day assimilation experiment is larger than the

reduction for 10 days experiment for all times. For the long assimilation period

experiments the uncertainty reduction grows more slowly at first days, but reaches higher

values as the system approaches the steady state.
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Figure 5.57 Same panels as Figure 5.56(b) but for 10 days assimilation of Drake transect altimetry (left
plot) vs. Drake transect altimetry and currents (right plot).

We can also examine the uncertainty evolution for the other experiments listed in Table

5.2. Figure 5.57 compares assimilation of Drake transect altimetry vs. Drake transect

altimetry and currents uncertainty. Both generally resemble the 10 days Drake array

altimetry experiment (Figure 5.56b). The transect altimetry only case shows weaker

uncertainty reduction than altimetry array case, and no transient peak at 10 days time is
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noticeable. While the table shows weakening of uncertainty reduction from 46.8% to

24.1% on day 10, the figures show steady state reduction weakening of 40% to 24.3%.

The uncertainty constraint effects of assimilating altimetry with currents are stronger than

both Drake altimetry transect and altimetry array. A strong uncertainty reduction peak is

calculated on day 10 and transient wiggling of the posterior uncertainty curve is more

pronounced.

The uncertainty evolution results for other prior selections are not qualitatively different.

Here we only plot the relative uncertainty reduction rates for the three 90 days

assimilation experiments with different wind stress priors (Table 5.3). Figure 5.58 shows

that for the largest priors the relative uncertainty reduction is slightly larger, but for the

weaker cases it does not make a noticeable difference.
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Figure 5.58 Same as Figure 5.56(f) for the three wind stress priors in Table 5.3.

137



5.3.2 Realistic bathymetry

Next, we analyze the results of the forward uncertainty propagation for the realistic

bathymetry configuration, summarized in Tables 5.5, 5.6 and 5.7. The leading

eigenvalues are smaller, compared to the flat bottom configuration, for all the

experiments except for the day 1 Drake array altimetry experiment. However, this higher

than usual first eigenvector does not reflect the whole Hessian spectrum for this case as

was seen in Figure 5.23. The convergence of uncertainty assimilation to the steady state

is faster, as the eigenvalues for 30, 60 and 90 days are indistinguishable.

5.3.2.1 Prior uncertainty propagation

The evolution of the prior uncertainty of the Drake Passage transport is very different

from the flat bottom configuration and also between the different prior cases. For the

prior control values in Table 5.5 the prior of the transport grows rapidly from 3.7% in the

first 5 days (Figure 5.59) and converges to 9.2% in the steady state. This is the opposite

of the initial prior drop and the eventual growth for the flat bottom cases, and the sharp

drop with negligible growth for the smaller wind stress control priors in Table 5.7.

Because the posterior uncertainties depend on dynamics of prior uncertainties, the

evolutions of the posterior will also be very different between the flat and the realistic

bathymetry configurations.

5.3.2.2 Posterior uncertainty and uncertainty reduction

The posterior uncertainties and the relative uncertainty reductions are affected by the

different dynamics of the realistic bathymetry configuration. From Table 5.5 we learn

that the peak uncertainty reductions at the uncertainty assimilation times are larger

compared to the flat bottom configuration for all experiments except for the 10 days

south Pacific altimetry. For the first day Drake array assimilation experiment it is only

55.9% vs. 50.6%, but for the steady state Drake array assimilation it is 86.4% vs. 68.9%.

The largest instantaneous uncertainty reduction in Table 5.5 is almost 90% for 10 days

Drake transect altimetry and current data, which is in dimensional units reduction of prior

9.2 Sv to 1 Sv only.
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Table 5.5 Summary of forward uncertainty propagation experiments for realistic bathymetry configuration
with prior uncertainty of controls specified with a diagonal covariance matrix with constant standard errors:
[A-e, AY, Ar, Au-o, Av,-o, Ay,ho]T=[ 1 Pa, 1 Pa, 5.0e-3 m/s, 0.01 m/s, 0.01 m/s, 0.1 m] T

Prior Posterior Uncertainty
Eigenvalue Uncertainty Uncertainty Reduction

(Sv) (Sv) (%)
1 day Drake Array Altimetry 1.84E+06 5.123 2.261 55.9
10days Drake Array Altimetry 5.59E+05 9.249 1.317 85.8
30days Drake Array Altimetry 5.98E+05 9.650 1.311 86.4

60days Drake Array Altimetry 5.98E+05 9.662 1.311 86.4

90days Drake Array Altimetry 5.98E+05 9.662 1.311 86.4

1 Odays Drake Transect Altimetry 1.78E+05 9.249 3.295 64.4

1 Odays South Pacific Transect Altimetry 1.42E+05 9.249 8.978 2.92
1 Odays North Pacific Transect Altimetry 6.73E+03 9.249 9.204 0.489

1 Odays Drake Transect Altimetry & Flow 3.78E+06 9.249 0.991 89.3

Table 5.6 Same as Table 5.5 except for different prior uncertainties of wind stress as specified.

Eigenvalue Prior Posterior Uncertainty

1 Uncertainty Uncertainty Reduction
(Sv) (Sv) (%)

90days Drake Array Altimetry, 5.98E+05 9.662 1.311 86.4
Prior AT=i Pa

90days Drake Array Altimetry, 5.98E+05 1.666 0.704 57.8
Prior AT=0.1 Pa

90days Drake Array Altimetry, 5.98E+05 1.364 0.642 53.0
Prior AT=0.0001 Pa

Table 5.7 Same as Table 5.5 for realistic bathymetry configuration for prior uncertainty of controls with
standard errors: [AT, Ae, Ar, Auo, Avo, Ar/,o]T=[ 1.Oe-4 Pa, 1.Oe-4 Pa, 5.0e-3 m/s, 0.01 m/s, 0.01 m/s, 0.1 m].

Eigenvalue Prior Posterior Uncertainty
1 Uncertainty Uncertainty Reduction

(Sv) (Sv) (%)
1 day Drake Array Altimetry 1.84E+06 2.931 1.933 34.1
1 Odays Drake Array Altimetry 5.59E+05 1.388 0.690 50.3
30days Drake Array Altimetry 5.98E+05 1.362 0.641 52.9
60days Drake Array Altimetry 5.98E+05 1.364 0.642 53.0
90days Drake Array Altimetry 5.98E+05 1.364 0.642 53.0
1Odays Drake Transect Altimetry 1.78E+05 1.388 1.212 12.6
1 Odays South Pacific Transect Altimetry 1.42E+05 1.388 1.293 6.87
1 Odays North Pacific Transect Altimetry 6.73E+03 1.388 1.362 1.85
1Odays Drake Transect Altimetry & Flow 3.78E+06 1.388 0.789 43.1
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5.3.2.3 Transport uncertainty constraint by different prior uncertainties of wind
forcing

Examining the dependence on the prior uncertainty of the controls (Table 5.6) shows

much stronger dependence than in the flat bottom case. The more certain wind stresses

lead to significantly lesser reduction of uncertainty of the transport in the steady state.

But this may be simply understood noticing much lower prior uncertainty of the transport

in the steady state. It is already so low that more observations do not reduce it as much.

The lower prior uncertainty of the winds changes the uncertainty results for all the

experiments in Table 5.7. The differences between the experiments are less than in Table

5.5, with maximum reductions not reaching 90% but only 50%. Note, that the relative

reductions for both Pacific transects are larger, 6.9% and 1.9%, compared to the weakly a

priori constrained case.

9 60

8-S

.2 40-I

6-

30-!

5-

>20
4 C

3 Prior 10

Posterior

2 '0
0 5 10 15 20 25 0 5 10 15 20 25

Model time (days) Model time (days)

Figure 5.59 Evolution of prior and posterior uncertainties of Drake Passage transport given in percents as
fraction of the actual transport at the presented time. Here shown for 1 day Drake array altimetry
uncertainty assimilation experiment for realistic bathymetry configuration model. The prior uncertainties
are given by the standard errors: [Ar, , Ar, Au,=, Av, A,=o]T=[ 1 Pa, 1 Pa, 5.0e-3 m/s, 0.01 m/s,
0.01 m/s, 0.1m] T. The left panel compares the prior uncertainty (blue dashed) and the posterior uncertainty
(green solid) evolutions. The moment of uncertainty assimilation, here 1 day, is shown by the vertical
magenta dotted line. The right panel shows the relative uncertainty reduction fraction in percents (red solid)
and a the time of uncertainty assimilation (vertical magenta dotted).
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Figure 5.60 Same configuration as in Figure 5.59 but for different uncertainty assimilation times. Panel (a)
shows the same data as Figure 5.59 but in single plot and for longer times. The left-side axis is transport
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uncertainty assimilation times shown with open circles markers of corresponding colors.
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Figure 5.61 Same panels as Figure 5.60(b) but for 10 days assimilation of Drake transect altimetry (left
plot) vs. Drake transect altimetry and currents (right plot).

4 70 4
Prior

3.5- Posterior i60 3.5 60
Reduction

3R I Prior3 50 3 Pi 50
- - Posterior

2.5 40 2.5Reduction2.5- 114 2.5 140 =

2 30 2 -30

1.5 -20 1.5- - 20 a

1 10 1- 10

0. 5 0 Ll00 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Model time (days) Model time (days)

Figure 5.62 Same panels as Figure 5.60(b) but for assimilation of Drake array altimetry on day 10 (left
plot) vs. on day 90 (right plot) with weaker prior uncertainties of wind stress as given in Table 5.7.

5.3.2.4 Time-resolving analysis of uncertainty dynamics

Finally, we examine the evolution of the posterior uncertainties of the transport for the

realistic bathymetry configuration. As mentioned above, the major difference from the

flat bottom cases is the evolution of the prior uncertainty, which is monotonously

growing for the priors in Table 5.5. Figure 5.59 shows in detail the uncertainties for the

first day Drake array altimetry assimilation. The sharp uncertainty reduction peak in the

first day more than halves the prior transport uncertainty, but eventually the posterior

uncertainty grows with the prior. The steady state uncertainty reduction is 15%. This and

the other Drake array altimetry cases are compared further in Figure 5.60. Uncertainty

reduction for the 10 day case resembles that for the flat bottom, with rapid growth, a peak

and slight decline to the steady state. Uncertainty reduction for the longer assimilation
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periods also resembles the flat bottom results, except that the initial growth is more rapid

without the convex bend of the curve. All the 5 cases are plotted together on Figure

5.60(f), showing the convergence of the 30 and 60 days experiments to the steady state

curve. The most essential result is that the assimilation of the observations uncertainty

significantly reduces the prior uncertainties of transport, in fact reversing the dynamical

tendency of the uncertainty to grow with time.

Further, we compare the assimilation of Drake transect altimetry with altimetry together

with currents data in Figure 5.61. Again, as in the flat bottom cases, the currents increase

the uncertainty reduction effect but not by as much. The peak on the 10th day is again

more prominent with the currents data. The wiggling of the posterior uncertainty curve

for that case is not as vigorous.

Next we examine evolution of the uncertainties calculated for different selected priors.

Figure 5.62 illustrates the evolution of 10 and 90 day Drake array experiments from

Table 5.7. The prior uncertainty of Drake transport is different, rapidly dropping and

staying low because the a priory well constrained winds reduce the prior uncertainty of

the transport as soon as the model settles in. The relative uncertainty reduction evolution

curves are also different. For the 10 days experiment a strong peak appears and after it

relaxes the reduction continues to grow to a steady state with considerable amount of

wiggling. For the 90 days experiment the transient growth of reduction slows down

temporarily as the convex bend appears. The evolutions of uncertainty reduction curves

for the experiments in Table 5.6 are shown in Figure 5.63. Unlike in the flat bottom cases

(Figure 5.58) the prior uncertainty of the winds affects a lot the posterior uncertainty

reduction.
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6 Summary and Conclusions
The central achievements of this dissertation are the development and implementation of

a formal uncertainty quantification (UQ) methodology for large scale ocean state

estimation. A methodology is developed in an inverse-forward ocean modeling

framework (Section 2.1) tailored to extend the Lagrange multipliers state estimation

machinery used in ECCO. Observation-constrained ocean state and model controls are

estimated with the inverse model. The forward model calculates the oceanographic target

quantities, such as the circumpolar transport, which are not among the variables estimated

by the inverse model.

UQ methodology is based on application of the Hessian and the Jacobian derivative

codes of a nonlinear ocean model. The derivatives retain the nonlinearity of the ocean

dynamics, but provide a linearized leading order description of uncertainty propagation.

Although other methodologies exist for a higher order uncertainty description, their

applicability on the scale of realistic ocean state estimation problems is limited by the

large dimension. A scalable UQ algorithm is developed, applicable in the dynamically

consistent state estimation framework of the adjoint method. Unlike sequential reanalysis

approaches, it is free of physical imbalances due to data assimilation cycles and does not

require propagating large covariance matrices throughout the model.

Inverse and forward propagation of uncertainty is quantified by the developed UQ

scheme. Inverse propagation was the main challenge and was solved by inversion of the

Hessian matrix of model-observations misfit. The curvature of the misfit function

described by the Hessian eigenvalues is a measure of confidence in the value of the

inverse problem solution - larger curvature meaning better fit. Uncertainty of the solution

is given by the inverse of these eigenvalues, paired with eigenvectors corresponding to

the orthogonal combinations of the constrained control fields. The inverted Hessian

matrix is associated with the covariance of the solution vector. Its pseudo-inverse is the

solution covariance in a reduced data-supported solution subspace.

Justification of the Hessian approach was demonstrated by direct derivation of inverse

uncertainty propagation for linear invertible models, by derivation of the linearized
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solution of nonlinear inverse problem, and by connection to the Gauss-Markov, Bayesian

and maximum likelihood state estimation approaches. Main technical challenges of this

thesis were calculation and inversion of the Hessian matrix by differentiation of a

numerical ocean model over a large high-dimensional variable space. A Hessian ocean

model was constructed by direct second order differentiation with algorithmic

differentiation (AD) machinery and implemented as a Hessian-by-vector product

operator. This analytically differentiated Hessian code differs from linearized Hessian

models used in variational data assimilation and does not neglect the nonlinear part in

large residual configurations. Reduced rank representation of the Hessian matrix resolves

the large dimensionality limitations, here O(105), discarding the unobservable nullspace

of the estimation problem. In practical applications where only a limited number of

degrees of freedom is constrained by observations, this results in a lossless compression

of the Hessian matrix inversion. A Lanczos algorithm is applied for spectral

decomposition of the Hessian and for partition of the control parameter space to the data-

constrained range and the unobservable nullspace. Numerical algorithms are designed

with matrix-free linear algebra, allowing the computational scalability required for the

large dimensionality of the realistic ocean state estimation problem.

Connection of formal uncertainty propagation to sensitivity analysis is clarified by the

structure of the UQ methodology constructs. Model sensitivity fields, given by the first

derivative of ocean model, resolve the mathematical links between perturbations of

model inputs and outputs, and therefore are used to describe the effects of uncertainty in

one on the other. Formal uncertainty algebra combines these sensitivity links in quadratic

structures projecting the uncertainty between model input and output domains. Forward

projection for independent uncertainties is given by the quadrature rule, summing squares

of sensitivities scaled by input uncertainties. For correlated input uncertainties, the

quadrature rule is extended to include a double summation of sensitivity cross-products

with corresponding covariances. For inverse uncertainty projection, inversion of the

Hessian is the inversion of weighted outer products of sensitivities. The number of

linearly independent sensitivity patterns defines the independent degrees of freedom and

is the basis for compression of the algorithm. Moreover, the role of sensitivity in
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uncertainty propagation leads to identification of the adjoint dynamics as the physical

mechanisms of uncertainty, as demonstrated by the adjoint barotropic waves.

The developed UQ methodology is applied to the barotropic uncertainty of the Antarctic

Circumpolar Current transport through the Drake Passage. We applied a hierarchy of

analytical and numerical models of increasing complexity to resolve the barotropic

mechanisms of the ACC and to guide the UQ methodology calibration. An analytical

ACC model allowed a detailed understanding of the structure of the inverse and forward

uncertainty propagation, the central role of sensitivities in the algorithm, the singularity

of the Hessian and the structure of its pseudo-inverse. The analytical form of UQ is

explicitly time-resolving, highlighting its multiple time dependencies, revealing the

stationary and transient uncertainty regimes, explaining the differences between initial

and boundary conditions uncertainty dynamics and their cross-coupling. Numerical

models of the ACC with barotropic MITgcm configuration resolve the dynamics of

uncertainty at the steady state equilibrium of wind forcing and bottom friction.

Comparison of flat and realistic bottom topography configurations allows distinction

between closed and blocked geostrophic contour governed ACC dynamics

An identical twin setup eliminates any residual misfit of the state estimation solution.

Synthetic observations are generated with forward MITgcm runs modeling the typical

observation systems deployed at the Drake Passage. Different uncertainty assimilation

experiments simulate several generic ACC monitoring configurations, comparing the

effects of different locations and geographic coverage, number of sensors deployed,

measured variable, and different uncertainty assimilation times. Different control priors

are tested and compared. Idealized model configurations guide identification of the

barotropic uncertainty mechanisms by reducing the geometric complexity and

simplifying the dynamical balances. Adjoint barotropic sensitivity waves are identified

and lead to detection of barotropic uncertainty waves. Initial conditions sensitivities

exhibit transient oscillations and decay to zero at the steady state. Boundary conditions

sensitivities grow from zero to their stationary patterns. The evolution of sensitivities in

the numerical model is consistent with the exponential single timescale sensitivity

dynamics predicted by the idealized analytical model. Thus, the leading order dynamics

of both sensitivity and uncertainty is explained by the frictional time scale of relaxation to
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wind forcing-bottom drag equilibrium. A key conclusion is that even when the model is

initialized with the steady state initial conditions and remains in equilibrium at all times,

if finite uncertainty is assumed about its initial and boundary conditions, the uncertainty

simulations are not time invariant and adjust to the steady state with the forward model

relaxation timescale.

The developed UQ scheme includes separate calculations for prior-independent

uncertainty assimilation and for uncertainty assimilation with prior information leading to

posterior uncertainty reduction. The former is an unbiased pure inverse uncertainty

propagation algorithm, inverting the unregularized Hessian of model-data misfit and

resolving the constrained information patterns in Hessian eigenvectors. The latter

depends on sometimes arbitrary prior selection, and its assimilated information patterns

may be masked by the patterns of the prior unless they are orthogonal complements of

each other. Prior-to-posterior uncertainty reduction in the control space constrains the

diagonal terms of the posterior covariance, which are visualized by plotting the relative

uncertainty reduction maps. In addition to the diagonal terms decrease, the uncertainty

assimilation procedure introduces non-zero off-diagonal terms in the covariance. The off-

diagonal terms resolve the correlations between model controls, revealing the physical

mechanisms of dynamical coupling within and between the different control fields.

Together, the constrained diagonal and off-diagonal posterior control uncertainty terms

constrain the posterior error of the circumpolar transport in forward uncertainty

propagation calculations. Comparing the effects of the diagonal and the off-diagonal

terms we find that transport uncertainty reduction due to the observation-constrained

variances of controls is relatively small. Most of the reduction in transport uncertainty is

shown to be due to the off-diagonal terms, highlighting the importance of correlations.

Future research directions include extending the formal quantitative framework of the

current uncertainty bounds study to the field of statistical inference to formally quantify

confidence regions, goodness of fit and uncertainty partition between resolved and

unresolved uncertainty sources. The next technical challenge is to integrate the developed

machinery in the full realistic configuration of the ECCO ocean state estimation system.

This will require extension of the machinery from synthetic to real observed data and to

include baroclinic ocean physics. The developed UQ method is can be applied for model
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calibration to guide selection of physical parameterizations, boundary conditions,

numerical parameters. The uncertainty assimilation methodology is applicable to new

observation systems design by quantifying the expected information gains and optimizing

for the specific observation goals.
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Appendix

A. Maximum likelihood and Bayesian formulation of the
inverse problem

Consider the model-data misfit cost function (2.2.1) for a linear forward model M. We

note that the quadratic form of the cost function resembles closely the negative of the

argument of the exponent in multivariate Gaussian distribution, the minimum i

corresponding to the mode of the PDF

N(i, X) cc exp[-(x - i) T E-1(x - i)] (A. 1)

We therefore can quantify the likelihood of state x given the data y by the conditional

probability of data y given the state x

L(x y) -- P(y |x) cc exp [-J, (y, x)] (A.2)

if we assume that the observed data is normally distributed around model prediction with

covariance R, or equivalently, that the observation error n = y - Mx is Gaussian with

zero mean and covariance R. Consequently, we can name the negative of the argument of

the exponent13 (A.2), which is equal to the misfit function (2.2.1) - the likelihood cost

function of state x. The argument of the minimum of J, (x) is the most likely state x

given the observations. Or equivalently, in the language of maximum likelihood

estimation - the most likely state i is one that maximizes the likelihood function (A.2)

for given observations y.

The probabilistic framework of the inverse problem can be extended by application of the

Bayes' theorem to quantify the posterior uncertainly of the state x given observations y

P(x y) = P(y I x)- P(x) / P(y) (A.3)

If the prior probability of the state x is known and assumed Gaussian with mean xo and

covariance Po, allowing a definition of the negative logarithm of the prior probability as

the prior costfunction:

Jo = (x -xO) T P- 1(x -x 0 ), (A.4)

13 Also known as the negative log likelihood.
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then the posterior PDF of state x is given, up to multiplying factor independent of x, by

the exponent of the combined cost function

J=J1 +J 0 = [(Mx-y) T R (Mx - y)+(x - x0)T P0 (x - x 0 )], (A.5)

which can be named the posterior cost function, or equivalently the negative log

posterior.

B. MlTgcm configuration details
Listed here for the realistic bathymetry simulations, see Section 3.3.4.

// ====-== ==== === === ==== === ==== === ===

// Model configuration

//
// "Physical" paramters ( PARM01 in namelist

//
buoyancyRelation = /* Type of relation to get Buoyancy */

'OCEANIC' ;
fluidIsAir = /* fluid major constituent is Air */

F ;
fluidIsWater = /* fluid major constituent is Water */

T ;
usingPCoords = /* use p (or p*) vertical coordinate */

F ;
usingZCoords = /* use z (or z*) vertical coordinate */

T ;
tRef = /* Reference temperature profile ( oC or K ) */

2.000000000000000E+01 /* K = 1 */

sRef = /* Reference salinity profile ( psu ) */
1.000000000000000E+01 /* K = 1 */

viscAh = /* Lateral eddy viscosity ( m^2/s ) */
4.000000000000000E+02

viscAhMax = /* Maximum lateral eddy viscosity ( m^2/s ) */
1.000000000000000E+21 ;

viscAhGrid = /* Grid dependent lateral eddy viscosity ( non-dim. (PID.TID 0000.0001) ) */
0.000000000000000E+00

useFullLeith = /* Use Full Form of Leith Viscosity on/off flag*/

F ;
useStrainTensionVisc= /* Use StrainTension Form of Viscous Operator flag*/

F ;
useAreaViscLength = /* Use area for visc length instead of geom. mean*/

F ;
viscC2leith /* Leith harmonic visc. factor (on grad(vort),non-dim.) */

0.OOOOOOOOOOOOOOOE+00 ;
viscC21eithD = /* Leith harmonic viscosity factor (on grad(div),non-dim.)*/

0.000000000000000E+00 ;
viscC2smag = /* Smagorinsky harmonic viscosity factor (non-dim.) */

0.000000000000000E+00 ;

viscA4 /* Lateral biharmonic viscosity ( m^4/s ) */
0.OOOOOOOOOOOOOOOE+00 ;

viscA4Max = /* Maximum biharmonic viscosity ( m^2/s ) */
1.000000000000000E+21 ;

viscA4Grid = /* Grid dependent biharmonic viscosity ( non-dim. ) */
0.000000000000000E+00 ;

viscC4leith /* Leith biharm viscosity factor (on grad(vort), non-dim.)*/
0.OOOOOOOOOOOOOOOE+00 ;

viscC4leithD = /* Leith biharm viscosity factor (on grad(div), non-dim.)*/

0.OOOOOOOOOOOOOOOE+00 ;
viscC4Smag = /* Smagorinsky biharm viscosity factor (non-dim) */

0.OOOOOOOOOOOOOOOE+00 ;
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no-slip sides = /* Viscous BCs: No-slip sides *7
F ;

sideDragFactor = /* side-drag scaling factor (non-dim) */
2.000000000000000E+00 ;

viscArNr = /* vertical profile of vertical viscosity ( m^2/s )*/
1.OOOOOOOOOOOOOOOE-02 /* K = 1 */

no-slip bottom = /* Viscous BCs: No-slip bottom */
F ;

bottomDragLinear = /* linear bottom-drag coefficient ( m/s ) */
5.OOOOOOOOOOOOOOOE-03 ;

bottomDragQuadratic = /* quadratic bottom-drag coefficient (-) */
0.00000OOOOOOOOOOE+00 ;

diffKhT = /* Laplacian diffusion of heat laterally ( m^2/s ) */
4.OOOOOOOOOOOOOOOE+02 ;

diffK4T = /* Biharmonic diffusion of heat laterally ( m^4/s ) */
0.000000000000000E+00 ;

diffKhS = /* Laplacian diffusion of salt laterally ( m^2/s ) */
0. 000000000000OOE+00 ;

diffK4S = /* Biharmonic diffusion of salt laterally ( m^4/s ) */
0.OOOOOOOOOOOOOOOE+00 ;

diffKrNrT = /* vertical profile of vertical diffusion of Temp ( m'2/s )*/
1.OOOOOOOOOOOOOOOE-02 /* K = 1 */ ;

diffKrNrS = /* vertical profile of vertical diffusion of Salt ( m^2/s )*/
0.OOOOOOOOOOOOOOOE+00 /* K = 1 */ ;

diffKrBL79surf = /* Surface diffusion for Bryan and Lewis 79 ( m^2/s ) */
0. 00000000000OOOE+00 ;

diffKrBL79deep = /* Deep diffusion for Bryan and Lewis 1979 ( m^2/s ) */
0.000000000000000E+00 ;

diffKrBL79scl = /* Depth scale for Bryan and Lewis 1979 ( m ) */
2.00000000000000OE+02 ;

diffKrBL79Ho = /* Turning depth for Bryan and Lewis 1979 ( m ) */
-2.OOOOOOOOOOOOOOOE+03 ;

ivdckappa = /* Implicit Vertical Diffusivity for Convection ( m^2/s) */
0. 00000000000OOOE+00 ;

hMixCriteria= /* Criteria for mixed-layer diagnostic */
-8.OOOOOOOOOOOOOOOE-01 ;

dRhoSmall = /* Parameter for mixed-layer diagnostic */
1.OOOOOOOOOOOOOOOE-06 ;

hMixSmooth= /* Smoothing parameter for mixed-layer diagnostic */
0.OOOOOOOOOOOOOOOE+00 ;

eosType = /* Type of Equation of State */
'LINEAR' ;

tAlpha = /* Linear EOS thermal expansion coefficient ( 1/oC ) */
2.OOOOOOOOOOOOOOOE-04 ;

sBeta = /* Linear EOS haline contraction coefficient ( 1/psu ) */
0. 00000000000OOOE+00 ;

rhonil = /* Reference density ( kg/m^3 ) */
9.998000000000000E+02 ;

rhoConst = /* Reference density ( kg/m^3 ) */
9.998000000000000E+02 ;

rhoFacC = /* normalized Reference density @ cell-Center () */
1.OOOOOOOOOOOOOOOE+00 /* K = 1 */

rhoFacF = /* normalized Reference density @ W-Interface (-) */
2 @ 1.OOOOOOOOOOOOOOOE+00 /* K = 1: 2 */

rhoConstFresh = /* Reference density ( kg/m'3 ) */
9.998000000000000E+02

gravity /* Gravitational acceleration ( m/s^2 ) */
9.810000000000000E+00 ;

gBaro = /* Barotropic gravity ( m/s^2 ) */
9.810000000000000E+00 ;

rotationPeriod = /* Rotation Period ( s ) */
8.616400000000000E+04

omega = /* Angular velocity ( rad/s ) */
7.292123516990375E-05

fo = /* Reference coriolis parameter ( 1/s ) */
1.OOOOOOOOOOOOOOOE-04

beta = /* Beta ( 1/(m.s) ) */
9.999999999999999E-12

fPrime = /* Second coriolis parameter ( 1/s ) */
0.OOOOOOOOOOOOOOOE+00

rigidLid = /* Rigid lid on/off flag *7
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F ;
implicitFreeSurface = /* Implicit free surface on/off flag */

T;

freeSurfFac = /* Implicit free surface factor */
1.000000000000000E+00 ;

implicSurfPress = /* Surface Pressure implicit factor (0-1)*/

1.000000000000000E+00 ;
implicDiv2Dflow = /* Barot. Flow Div. implicit factor (0-1)*/

1.000000000000000E+00 ;
exactConserv = /* Exact Volume Conservation on/off flag*/

F ;
linFSConserveTr = /* Tracer correction for Lin Free Surface on/off flag*/

F ;
uniformLinPhiSurf /* use uniform Bosurf on/off flag*/

T;
hFacMin /* minimum partial cell factor (hFac) */

2.000000000000000E-02 ;
hFacMinDr = /* minimum partial cell thickness ( m) */

2.000000000000000E-02 ;
nonlinFreeSurf = /* Non-linear Free Surf. options (-l,0,1,2,3)*/

0 ;
-1,0= Off ; 1,2,3= On, 2=+rescale gU,gV, 3=+update cg2d solv.

hFacInf = /* lower threshold for hFac (nonlinFreeSurf only)*/
2.000000000000000E-01 ;

hFacSup = /* upper threshold for hFac (nonlinFreeSurf only)*/
2.000000000000000E+00 ;

select rStar = /* r* Vertical coord. options (=0 r coord.; >0 uses r*)*/
0 ;

selectAddFluid = /* option for mass source/sink of fluid (=0: off) */

0 ;
useRealFreshWaterFlux = /* Real Fresh Water Flux on/off flag*/

F ;
temp_EvPrRn = /* Temp. of Evap/Prec/R (UNSET=use local T) (oC)*/

1.234567000000000E+05 ;
saltEvPrRn = /* Salin. of Evap/Prec/R (UNSET=use local S) (psu)*/

0.000000000000000E+00 ;
tempaddMass = /* Temp. of addMass array (UNSET=use local T) (oC)*/

1.234567000000000E+05 ;
saltaddMass = /* Salin. of addMass array (UNSET=use local S) (psu)*/

0. 000000000000OOE+00 ;
convertFW2Salt = /* convert F.W. Flux to Salt Flux (-l=use local S) (psu)*/

3.500000000000000E+01 ;
use3Dsolver = /* use 3-D pressure solver on/off flag */

F ;
nonHydrostatic = /* Non-Hydrostatic on/off flag */

F ;
nhAm2 = /* Non-Hydrostatic terms scaling factor */

1.OOOOOOOOOOOOOOOE+00 ;
implicitNHPress = /* Non-Hyd Pressure implicit factor (0-1)*/

1.000000000000000E+00 ;
selectNHfreeSurf = /* Non-Hyd (free-)Surface option */

0 ;
quasiHydrostatic = /* Quasi-Hydrostatic on/off flag */

F ;
calc-wVelocity = /* vertical velocity calculation on/off flag */

T ;
momStepping = /* Momentum equation on/off flag */

T ;
vectorInvariantMomentum= /* Vector-Invariant Momentum on/off */

F ;
momAdvection = /* Momentum advection on/off flag */

T ;
momViscosity = /* Momentum viscosity on/off flag */

T ;
momImplVertAdv= /* Momentum implicit vert. advection on/off*/

F ;
implicitViscosity = /* Implicit viscosity on/off flag */

F ;
metricTerms = /* metric-Terms on/off flag */

T ;
useNHMTerms = /* Non-Hydrostatic metric-Terms on/off *
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selectCoriMap = /* Coriolis Map options (0,1,2,3)*/
2 ;

0= f-Plane ; 1= Beta-Plane ; 2= Spherical ; 3= read from file
use3dCoriolis = /* 3-D Coriolis on/off flag */

F ;
useCoriolis = /* Coriolis on/off flag */

T ;
useCDscheme = /* CD scheme on/off flag */

T ;

readBinaryPrec = /* Precision used for reading binary files */
64 ;

writeBinaryPrec = /* Precision used for writing binary files */
64 ;

globalFiles = /* write "global" (=not per tile) files */
T ;

useSingleCpuIO = /* only master MPI process does I/O */
F;

// Computational Grid Specification ( see files "SIZE.h"
// ( and "eedata" )
// = = = = = = = = = = = = = == = = = = = = = = = = = = =

nPx = 1 ; /* No. processes
nPy = 1 ; /* No. processes

(PID.TID 0000.0001) nSx = 1
(PID.TID 0000.0001) nSy = 1
(PID.TID 0000.0001) sNx = 180
(PID.TID 0000.0001) sNy = 80
(PID.TID 0000.0001) OLx = 2
(PID.TID 0000.0001) OLy = 2
(PID.TID 0000.0001) nTx = 1
(PID.TID 0000.0001) nTy = 1
(PID.TID 0000.0001) Nr = 1
(PID.TID 0000.0001) Nx = 180
(PID.TID 0000.0001) Ny = 80
(PID.TID 0000.0001) nTiles = 1
(PID.TID 0000.0001) nProcs = 1
(PID.TID 0000.0001) nThreads = 1
(PID.TID 0000.0001) usingMPI = F

in X */
in Y */
; /* No. tiles in X per process */
; /* No. tiles in Y per process */
/* Tile size in X *7
/* Tile size in Y */
/* Tile overlap distance in X *7
/* Tile overlap distance in Y */
/* No. threads in X per process */
/* No. threads in Y per process */
/* No. levels in the vertical */
/* Total domain size in X ( = nPx*nSx*sNx ) */
/* Total domain size in Y ( = nPy*nSy*sNy ) */
/* Total no. tiles per process ( = nSx*nSy ) */
/* Total no. processes ( = nPx*nPy ) */
/* Total no. threads per process ( = nTx*nTy ) */
/* Flag used to control whether MPI is in use */

Generic Advection/Diffusion (GAD) parameters

tempAdvScheme = /* Temp. Horiz.Advection scheme selector */
2 ;

tempVertAdvScheme = /* Temp. Vert. Advection scheme selector */
2 ;

tempMultiDimAdvec = /* use Muti-Dim Advec method for Temp */
F ;

tempSOMAdvection = /* use 2nd Order Moment Advection for Temp */
F ;

AdamsBashforthGt = /* apply Adams-Bashforth extrapolation on Gt */
F ;

AdamsBashforthT = /* apply Adams-Bashforth extrapolation on Temp */
F ;

saltAdvScheme = /* Salt. Horiz.advection scheme selector */
2 ;

saltVertAdvScheme = /* Salt. Vert. Advection scheme selector */
2 ;

saltMultiDimAdvec = /* use Muti-Dim Advec method for Salt */
F ;

saltSOMAdvection = /* use 2nd Order Moment Advection for Salt */
F ;

AdamsBashforthGs = /* apply Adams-Bashforth extrapolation on Gs */
F ;

AdamsBashforthS = /* apply Adams-Bashforth extrapolation on Salt */
F-

INICG2D: CG2D normalisation factor = 6.9951093270951558E-05

//
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//
// Elliptic solver(s) paramters ( PARM02 in namelist

// - - - - - - -

cg2dMaxIters = /* Upper limit on 2d con. grad iterations */

1000 ;
cg2dChkResFreq = /* 2d con. grad convergence test frequency */

1 ;
cg2dTargetResidual = /* 2d con. grad target residual */

1.000000000000000E-07 ;
cg2dTargetResWunit = /* CG2d target residual [W units] */

-1.000000000000000E+00 ;
cg2dPreCondFreq = /* Freq. for updating cg2d preconditioner */

1 ;
useSRCGSolver = /* use single reduction CG solver(s) */

F;

// =============-

// Time stepping paramters ( PARM03 in namelist )
// =======-- - -

deltaTmom = /* Momentum equation timestep ( s ) */
1.200000000000000E+03 ;

deltaTfreesurf = /* FreeSurface equation timestep ( s ) */
1.200000000000000E+03 ;

dTtracerLev = /* Tracer equation timestep ( s ) */
1.200000000000000E+03 /* K = 1 */

deltaTClock = /* Model clock timestep ( s ) */
1.200000000000000E+03 ;

cAdjFreq = /* Convective adjustment interval ( s ) */
0.000000000000000E+00 ;

momForcingOutAB = /* =1: take Momentum Forcing out of Adams-Bash. stepping */
0 ;

tracForcingOutAB = /* =1: take T,S,pTr Forcing out of Adams-Bash. stepping */
0 ;

momDissip_InAB = /* put Dissipation Tendency in Adams-Bash. stepping */
T ;

doABonGtGs = /* apply AB on Tendencies (rather than on T,S)*/
T ;

abEps = /* Adams-Bashforth-2 stabilizing weight */
1.000000000000000E-01 ;

tauCD = /* CD coupling time-scale ( s ) */
1.728000000000000E+05 ;

rCD /* Normalised CD coupling parameter */
9.930555555555556E-01 ;

epsABCD = /* AB-2 stabilizing weight for CD-scheme*/
1.000000000000000E-01 ;

pickupStrictlyMatch= /* stop if pickup do not strictly match */
T ;

nIterO = /* Run starting timestep number */
0 ;

nTimeSteps = /* Number of timesteps */
25992 ;

nEndIter = /* Run ending timestep number */
25992 ;

baseTime = /* Model base time ( s ) */
0.000000000000000E+00

startTime = /* Run start time ( s ) */
0.000000000000000E+00

endTime = /* Integration ending time ( s ) */
3.119040000000000E+07 ;

pChkPtFreq = /* Permanent restart/pickup file interval ( s ) */
3.110400000000000E+07 ;

chkPtFreq = /* Rolling restart/pickup file interval ( s ) */
8.640000000000000E+06 ;

pickupwrite mdsio = /* Model ID flag. */
F;

pickupread mdsio = /* Model IO flag. */
F;

pickupwrite mnc = /* Model IO flag. */

pickupread mnc /* Model 10 flag. */
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T ;
pickup writeimmed = /* Model IO flag. */

F;
writePickupAtEnd = /* Model 10 flag. */

T;
dumpFreq = /* Model state write out interval ( s ). */

3.456000000000000E+05 ;
dumpInitAndLast= /* write out Initial & Last iter. model state */

T ;
snapshot mdsio = /* Model 10 flag. */

F ;
snapshot mnc = /* Model IO flag. */

T ;
monitorFreq = /* Monitor output interval ( s ). */

8.640000000000000E+04 ;
monitorSelect = /* select group of variables to monitor */

3 ;
monitorstdio = /* Model 10 flag. */

F ;
monitormnc = /* Model 10 flag. */

T ;
externForcingPeriod = /* forcing period (s) */

0.000000000000000E+00 ;
externForcingCycle = /* period of the cyle (s). */

0.000000000000000E+00 ;
tauThetaClimRelax = /* relaxation time scale (s) */

0.000000000000000E+00 ;
tauSaltClimRelax = /* relaxation time scale (s) */

0.000000OOOOOOOOOE+00 ;
latBandClimRelax = /* max. Lat. where relaxation */

1.800000000000000E+02

77 Gridding paramters ( PARM04 in namelist

usingCartesianGrid = /* Cartesian coordinates flag ( True/False ) */
F;

usingCylindricalGrid = /* Cylindrical coordinates flag ( True/False ) */
F-

usingSphericalPolarGrid = /* Spherical coordinates flag ( True/False ) */
T ;

usingCurvilinearGrid = /* Curvilinear coordinates flag ( True/False ) */
F ;

selectSigmaCoord = /* Hybrid-Sigma Vert. Coordinate option */
0 ;

RoSeaLevel = /* r(l) ( units of r == m ) */
0. 000000000000OOE+00 ;

rSigmaBnd = /* r/sigma transition ( units of r == m ) *7
1.234567000000000E+05 ;

rkSign = /* index orientation relative to vertical coordinate */
-1.000000000000000E+00 ;

gravitySign = /* gravity orientation relative to vertical coordinate */
-1.OOOOOOOOOOOOOOOE+00 ;

mass2rUnit = /* convert mass per unit area [kg/m2] to r-units [m] */
1.000200040008002E-03 ;

rUnit2mass /* convert r-units [m] to mass per unit area [kg/m2] */
9.998000000000000E+02

drC = /* C spacing ( units of r ) */
2.500000000000000E+03 /* K = 1 */

drF = /* W spacing ( units of r ) */
5.OOOOOOOOOOOOOOOE+03 /* K = 1 */

delX = /* U spacing ( m - cartesian, degrees - spherical ) */
180 @ 2.000000000000000E+00 /* I = 1:180 */;

delY = /* V spacing ( m - cartesian, degrees - spherical ) */
80 @ 2.000000000000000E+00 /* J = 1: 80 */

xgOrigin = /* X-axis origin of West edge (cartesian: m, lat-lon: deg.) */
0.OOOOOOOOOOOOOOOE+00 ;

ygOrigin = /* Y-axis origin of South edge (cartesian: m, lat-lon: deg.) */
-8.OOOOOOOOOOOOOOOE+01 ;

rSphere = /* Radius ( ignored - cartesian, m - spherical ) */
6.370000000000000E+06 ;
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rcoord = /* P-point R coordinate ( units of r ) */
-2.500000000000000E+03 /* K = 1 */

rF /* W-Interf. R coordinate ( units of r ) */

0.000000000000000E+00, /* K = 1 */

-5.000000000000000E+03 /* K 2 */

deepFacC = /* deep-model grid factor @ cell-Center (-) */

1.000000000000000E+00 /* K = 1 */

deepFacF = /* deep-model grid factor @ W-Interface (-) */

2 @ 1.000000000000000E+00 /* K = 1: 2 */

rVel2wUnit = /* convert units: rVel -> wSpeed (=1 if z-coord)*/

2 @ 1.000000000000000E+00 /* K = 1: 2 */ ;
wUnit2rVel = /* convert units: wSpeed -> rVel (=1 if z-coord)*/

2 @ 1.000000000000000E+00 /* K = 1: 2 */ ;
dBdrRef = /* Vertical grad. of reference buoyancy [(m/s/r)2] */

0.000000000000000E+00 /* K = 1 */

rotateGrid = /* use rotated grid ( True/False ) */
F ;

phiEuler = /* Euler angle, rotation about original z-coordinate [rad] */

0.000000000000000E+00 ;
thetaEuler = /* Euler angle, rotation about new x-coordinate [rad] */

0.OOOOOOOOOOOOOOOE+00 ;
psiEuler = /* Euler angle, rotation about

0.000000000000000E+00

dxF = /* dxF(:,l, :,l) ( units: m ) */

180 @ 4.242732399761023E+04

dyF = /* dyF(:,l,:,l) ( units: m ) */

180 @ 2.223549467040776E+05

dyF = /* dyF(1,:,1,:) ( units: m ) */

80 @ 2.223549467040776E+05

dxG = /* dxG(:,l, :,l) ( units: m ) */

180 @ 3.861153129039051E+04

dyG = /* dyG(:,l,:,l) ( units: m ) */

180 @ 2.223549467040776E+05

dyG = /* dyG(1, :,1, :) ( units: m ) */

80 @ 2.223549467040776E+05

dxC = /* dxC(:,l, :,l) ( units: m ) */

180 @ 4.242732399761023E+04

dxC = /* dxC(1, :,1, :) ( units: m ) */

4.242732399761023E+04,

5.001897969965614E+04,
5.754969497977125E+04,

1.572286906448266E+05,
1.626201133453605E+05,
1.678134084874913E+05,

2.220502169774711E+05,
2.223210809686942E+05,
2.223210809686942E+05,
2.220502169774711E+05,

1.728022488410539E+05,

1.678134084874913E+05,

1.626201133453605E+05,

5.754969497977125E+04,
5.001897969965614E+04,
4.242732399761023E+04

dyC = /* dyC(:,l,:,l) ( units: m ) */
180 @ 2.223549467040776E+05

dyC = /* dyC(1,:,1,:) ( units: m ) */
80 @ 2.223549467040776E+05

globalArea = /* Integrated horizontal Area

3.231411041679922E+14 ;

new z-coordinate [rad] */

/* I = 1:180 */

/* I = 1:180 */

/* j = 1: 80 */

/* I = 1:180 */

/* I = 1:180 */

/* J = 1: 80 */

/* I = 1:180 */

1*

1*

1
2

3

18
19
20

39

40
41
42

60
61

62

* /

/* J = 78 */
/* J = 79 */
/* J = 80 */

/* I = 1:180 */

/* j = 1: 80 */
(m^2) */
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