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Abstract

Theoretical calculations indicate that topographic stresses in some landscapes may be large
enough to fracture rocks, which in turn could influence slope stability, erosion rates, and bedrock
hydrologic properties. These predictions typically have involved idealized topographic profiles,
with few direct comparisons of predicted topographic stresses and observed fractures at specific
field sites. I use a numerical model to calculate the stresses induced by measured topographic
profiles and specified far-field tectonic stress. I compare the calculated stress field and potential
shear fracture orientations with fracture abundance and fracture orientations observed in shallow
boreholes. The model uses a boundary element method to calculate the stress distribution
beneath an arbitrary topographic profile. When applied to topographic profiles extracted from a
laser altimetry map of the Susquehanna/Shale Hills Critical Zone Observatory in central
Pennsylvania, the model predicts considerable differences in depth profiles of stresses beneath
ridgelines and valley floors. Using a representative value for the friction angle of shale, we
calculate the minimum cohesion required to prevent shear failure, Cmin, as a proxy for the
potential for fracturing or reactivation of existing fractures. We compare depth profiles of Cmin
with structural analyses of image logs from four boreholes located on the valley floor, and find
that fracture abundance declines sharply with depth in the uppermost 10 m of the boreholes,
consistent with the modeled profile of Cm.. In contrast, Cmin increases with depth below
ridgetops, suggesting that future analyses of ridgetop wells should observe a different trend in
fracture abundance if topographic effects are indeed important. The numerical model used
assumes the subsurface to be homogeneous and isotropic. The model-predicted fracture
orientations do not reflect the scatter in fracture orientations seen in the wells. Thus, the present
results support the hypothesis that topography can influence subsurface rock fracture patterns,
suggest the imitation and reactivation of fractures of different generations, and provide a basis
for further observational tests.

Thesis Supervisor: Taylor Perron

Title: Assistant Professor of Geology
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CHAPTER 1

Introduction

1.1 Motivation

Gravitational and tectonic forces and rock mechanical properties determine the stress

distribution in the Earth's crust (McNutt, 1980). Topographic effects can perturb the stress field

and may cause the bedrock to fracture (McTigue and Mei, 1981; Savage et al., 1985; Miller and

Dunne, 1996; Martel and Muller, 2000; Martel, 2011) or reactivate existing, healed/closed

fractures if they are favorably oriented with respect to the principal stresses. Fractures in the

shallow subsurface affect bulk rock strength and permeability, which should in turn affect rock

erodibility, slope stability, infiltration capacity, and groundwater flow (Miller and Dunne, 1996;

Morin and Savage, 2002; Morin et al., 2006). By altering permeability, topographic stresses

could influence patterns of runoff and channel discharge. Also, topographically induced

fracturing on a sufficiently large scale could lead to feedbacks between landscape evolution and

rock fracturing and strength. For instance, the incision of river valleys may induce topographic

stresses that promote rock fracture beneath valley floors, which could in turn accelerate valley

incision (McTigue and Mei, 1981; Miller and Dunne, 1996; Molnar, 2004). Thus, rock fracturing

associated with stresses generated by surface topography could substantially influence the

development and evolution of landscapes.

Determining the extents to which these hypothesized effects actually occur requires a

detailed understanding of the mechanisms that generate topographic stresses and fractures, and

an evaluation of field evidence, including comparisons of observed rock fracture patterns with

predicted topographic stresses. The lack of comparisons of predicted stresses with observed

fractures is the main motivation for this thesis.
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1.2 Previous Work

Early studies of topographic stresses focused on the effects of large-scale topography

(tens of kilometers in horizontal extent) on the lithosphere at depths of kilometers or more (see

review in McNutt, 1980). Holzhausen (1978) and McTigue and Mei (1981) were among the first

to study the stress distribution immediately beneath local topographic features. Holzhausen

(1978) examined an elastic medium with a simple sinusoidal surface using a perturbation

method. McTigue and Mei (1981) also used a perturbation method but followed a Fourier

transform approach (Sneddon, 1951). McTigue and Mei (1981) obtained approximate analytical

solutions for the stress distribution in an elastic half-space with an irregularly shaped free surface

and a gentle (0.1-0.25) regional slope. They showed that even if regional horizontal stresses are

absent, topography induces local horizontal compressive stresses under ridgetops and local

tensile stresses under valley floors, and that the effect of topography decreases with depth. They

also showed that regional compressive stresses can induce local tensile stresses at topographic

highs. Augustinus (1995) obtained the same results and showed that stress concentration on

slopes made of low rock mass strength leads to failure that accelerates glacial erosion.

Exact analytical elastic solutions for the stress distribution under certain landforms were

subsequently found by Savage et al. (1985) and Savage and Swolfs (1986). They used the

analytical approach of Muskhelishvili (1953) to solve for the Airy's stress function in an

isotropic medium. They calculated subsurface stresses under a class of idealized, symmetric

valleys and ridges of various shapes described by a particular conformal coordinate mapping.

Savage et al. (1985) calculated the effect of gravity in a laterally constrained medium. They

showed that topographic stresses arising from gravitational effects alone are on the order of pgb,

where p is the rock density, g is the acceleration of gravity, and b is ridge height or valley depth.

Like Holzhausen (1978) and McTigue and Mei (1981), Savage et al. (1985) predict compressive

stress under ridgetops, tensile stresses under valley floors, and stresses approaching those

beneath a horizontal surface as depth increases. Savage and Swolfs (1986) additionally evaluated

the effect of the tectonic stresses by calculating how topography perturbs an otherwise uniform

compressive tectonic stress. They then superposed their solutions on those of Savage et al.
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(1985) to obtain the stress distribution due to both tectonic and gravitational stresses. They

demonstrated that topography reduces the effect of the regional compressive tectonic stress near

ridge crests, even generating tension if the ridge is steep; that stresses in valleys decrease with

shallower valley depth; that tectonic stresses are amplified in valleys; and that stresses under

ridge crests persist even when surface slopes are small.

Savage et al. (1985) and Savage and Swolfs (1986) calculated subsurface stresses

assuming the ratio k of the depth gradient of horizontal stress to the depth gradient of vertical

stress was less than one. Miller and Dunne (1996) compiled reported crustal stress values from

different geographic locations and concluded that in many places k exceeds unity. Noting that

many of the reported stresses indicated high regional compressive tectonic stress, they used the

approach of Savage et al. (1985) and Savage and Swolfs (1986) to calculate stresses for cases

with k > 1 and predicted the fracture patterns that would develop for various landforms and

tectonic stress states. They substantiated the finding of Savage et al. (1985) that topographically

induced stresses vary with landform shape (relief and steepness of valleys and ridges), and

showed that tensile stresses might arise under ridgetops if k > 1.

Miller and Dunne (1996) discussed the implications of their fracture mode predictions for

landscape evolution. Noting that elastic stresses scale with topographic relief, they proposed that

fracturing might occur only if the topographic relief (ridge height above valley floor) is

sufficiently high that the stresses exceed a Coulomb failure threshold. They also proposed a

positive feedback between topographic stresses and landscape evolution, in which valley incision

triggers fracturing in the valley floor, which then accelerates valley incision and further enhances

the fracturing effect. Molnar (2004) revisited the examples discussed by both Savage et al.

(1985) and Miller and Dunne (1996). He developed a framework for quantifying the positive

feedback in sustaining a valley that Miller and Dunne (1996) proposed, and showed the

dependence of stress concentration in a valley on its shape, especially the sharpness of the "V" at

the valley axis.

Few studies were done to relate velocity measurements and sonic and image logs to

13



fracture abundance in the subsurface; Clarke and Burbank (2011) showed that the linear P-wave

velocity gradient in the shallow multilayered subsurface is caused by non-linear decline in

fracture density (a quantity relating the velocity of a horizontal layer at a certain depth, velocity

of intact rocks, and velocity of the fracture filling material) and is independent of rock types.

Clarke and Burbank (2011) state that the source of fractures can either be tectonic or

geomorphic. They argue that tectonic fracturing produced a uniform/linear velocity and fracture

density with depth in single-layered profiles and that the geomorphic processes focused within

the near surface (0-1 5m) produce a depth-dependent or nonlinear fracture density change. Morin

et al. (2006) processed sonic logs and borehole images to study the mechanical properties of

fractured basalt and the permeability of subsurface fractures. They developed a finite element

model that incorporates both topography and lithologic structure of the Annapolis Valley, Nova

Scotia to calculate the subsurface stress distribution. They compared their calculated stress

distribution with well fracture orientations. Martel (2011) predicted the areal distribution of

sheeting joints in part of Yosemite National Park using an exact solution for the gradient in the

normal stress perpendicular to the surface. He accounted for the site-specific topography but

assumed the surface-parallel compressive stresses were constant. Observations of sheeting joints

on short-wavelength domes, ridges, and saddles were consistent with the hypothesis that surface-

parallel stresses and topography account for the formation of sheeting joints (Martel, 2011). An

opening clearly exists for a more complete examination of the coupling between topography and

stress state, the importance of this coupling at depth, and the combined impact on fractures at a

specific site.

The aforementioned studies notwithstanding, few investigations have tested the predicted

topographic stresses against observations from specific field sites. Savage and Morin (2002) and

Morin and Savage (2002) applied the conformal mapping method of Savage et al. (1985) to both

approximate the topography and predict the near-surface stresses at a study site in the Davis

Mountains of Texas, and compared their predictions to the stresses inferred from borehole

breakout orientations on acoustic image logs. They showed that breakout orientation appears to

change with depth in a manner consistent with stress calculations. However, they did not attempt

to compare predicted stresses with fracture patterns.
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1.3 Research Methodology and Summary

In this thesis, I implement a numerical method for calculating stresses beneath

topographic profiles of arbitrary form, and compare predicted topographic stresses with fracture

patterns mapped from shallow boreholes. I first employ the boundary element model of Martel

and Muller (2000) to idealized synthetic profiles to illustrate effects of variable valley aspect

ratio and tectonic stresses. Next, I calculate stresses along and beneath a high-resolution

topographic profile across a valley in the Susquehanna/Shale Hills Critical Zone Observatory in

central Pennsylvania. From the predicted stresses and mechanical properties of the rocks, I

calculate a proxy for fracture susceptibility and compare that proxy to the fracture abundance

distribution observed in optical logs of shallow (10-15 m) boreholes in the valley floor. I also

calculate the shear fracture orientation that will develop in a homogeneous, isotropic medium.

This allows me to test the hypothesis that topographic stresses contribute to the formation or

reactivation of fractures in the shallow subsurface.

The model predicts a nonlinear trend of fracture abundance with depth in the shallow

subsurface under the valley floor. This predicted trend reflects the combined effects of the

ambient stress field and topography. It is in agreement with the fracture abundance observed in

the wells and consistent with the hypothesis that topography affects the formation and activation

of fractures in the shallow subsurface. Also, I compare model-predicted and observed fracture

orientations. The fracture orientations observed in the wellbore agree with the horizontal stress

directions reported (Zoback and Zoback, 1980 and 1989; Plumb and Cox, 1987; Heidbach et al.,

2008). The fracture orientation predictions by the model does not reflect the different generations

of fractures seen on image logs; the BEM fracture orientation prediction does not incorporate

pre-existing fractures that can be reactivated as it assumes the subsurface to be homogeneous and

isotropic. Finally, I comment on the depth to which topographic stress is likely to have a

substantive influence on fracture development in the subsurface.

This study is one of very few that compares the predictions of a topographic stress model

to actual observations in boreholes. My results show the relative importance of different factors

that influence stresses beneath landforms; in particular, I show that tectonic stresses can mask the
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influence of topography. The work described here provides a static snapshot of the predicted

stress distribution beneath a particular topographic surface and its relationship to fractures

observed in the shallow subsurface. This comparison is a necessary first step toward a more

dynamic theory relating topographic stress and rock fracture to erosion and landscape evolution

through time.
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CHAPTER 2

Boundary Element Model for Stresses Induced by Arbitrary

Topography

2.1 Stresses in an Elastic Isotropic Medium

A problem of elasticity is one where stresses and displacements at every location in a

body of known shape and properties are determined. The body forces within the elastic medium

and tractions and displacement along its boundaries must be known. The numerical method that

will be described considers a finite body and will be compared to analytical solutions in infinite

bodies. Therefore, far-field stresses and surface tractions need to be distinguished. An infinite

body has no vertical ends and the notion of traction boundary conditions is not valid. Tractions

induce stresses within the body, and their effect decays away from the boundary/surface on

which they act. On the other hand, far field stresses are specified within and throughout the body.

They are different than the traction or stress boundary conditions; far-field stresses can represent

horizontal normal stresses (e.g. tectonic stresses) in a body of infinite horizontal extent, stresses

due to body forces (e.g. gravity), and stresses due to uniform horizontal normal stresses caused

by uniform tractions on vertical ends of a finite body (Martel, 2000).

To determine the stress and displacement in a static medium, a set of equations of stress

equilibrium (Equation 1) must be solved.

0+ (l a)

+ + + pFy =0 (I b)

aTxz + aTyz + a0zz + pFz = 0 (1c)
ax ay az
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where alz and r, (1, m = x, y, z) are the components of the stress tensor denoted with two indices;

the first indicates the direction of the outward unit normal vector of the plane on which the stress

component is acting and the second indicates the components of the traction vector. p is density

of the medium, and F(F, Fy, Fz) is the body force per unit mass. Equation 1 is general and

contains no assumptions on the stress-strain behavior of the material constituting the medium

(Jaeger et al., 2007). If stress-strain and strain-displacement relationships are specified in the

medium, the Navier Equations that relate components of the displacement gradient and elastic

properties of the medium to the body forces can be derived (Equations 5.81-5.83; Jaeger et al.,

2007). The Navier equations are helpful to work with if the displacements at the medium

boundaries are specified. However, most often, we have traction boundary conditions rather than

displacements at the outer boundaries of the medium. Therefore, we need a strain compatibility

equation (Equation 2).

a2 Exx g2CYY
2 axay -y2 + ax2 (2)

With stress-strain relationships and expressing the body forces as gradients of the gravity

potential function (V=-gz), the stress components are expressed in terms of some function U, the

Airy's stress function. The potential function V satisfies Laplace's equation; therefore U must

satisfy the biharmonic equation (Equation 3). Solutions for Equation 3 are obtained by analytical

solutions (Savage et al., 1985 and 1986) and yield displacement and stress distributions that

satisfy both the equilibrium and compatibility equations.

U+2 a + = 0 (3)

With a fixed, gravity-induced reference stress state, the ambient stresses in a laterally

confined body in plane strain (Ezz =Ezx = Ezy = =Ey = 0) with a traction-free

horizontal surface are:

axx V P9Y (4a)
1 -iVP
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yy= pgy (4b)

T= Tyx = 0, (4c)

Where g is gravity and compressive stresses are treated as negative.

When a known point load is added to a horizontal surface, the stresses caused by this load

and the displacement anywhere in the elastic half-space can be obtained (solving the Flamant's

problem; Equations 3.1.1 and 3.1.2 in Crouch and Starfield, 1983). Using the principle of

superposition, the stress distribution and displacements at any location in a finite elastic body

(e.g. under an imaginary topographic surface) caused by a load of any shape (e.g. an overburden

above a topographic surface) can be calculated.

2.2 The Displacement Discontinuity Method (2dd)

Crouch and Starfield's (1983) 2D displacement discontinuity method (2dd) is based on an

analytical solution for a constant discontinuity displacement over a finite linear segment in an

infinite, two-dimensional elastic solid. The method considers a crack in the solid (Figure 1) as

being formed of N finite linear segments, each of which has opposite sides moving relative to

one another. The displacement of each element is continuous everywhere except across the line

segment itself, thus the name displacement discontinuity. The displacement discontinuity, D, (Dr,

D,), is a vector whose magnitude is the difference between the displacements of the two sides of

the crack. The displacements (ux, u,) and the stresses (a-, oyy, and rxy) due to the displacement

discontinuity of each crack element can be computed (Equations 5.2.3 and 5.2.4 in Crouch and

Starfield, 1983). The distribution of displacements along all crack elements that satisfies the

traction boundary conditions of the problem and the stress distribution around the crack are

calculated using the principle of superposition.

19
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Figure 1: The discontinuity displacement approach represents a crack by N elements. The
displacement of each element affects the stress distribution within the elastic body and
the tractions on the rest of the crack elements. 2a = crack element length. i and j are
arbitrary crack-forming elements (reproduced from Crouch and Starfield, 1983).

2.3 Boundary Element Model Description

The need to study stresses induced by real topography, their interactions with variable

tectonic stresses, and their effects on slope stability motivated Martel and Muller (2000) to

develop a flexible numerical method that adopts a boundary element method (BEM) based on

Crouch and Starfield's 2dd approach (1983). Martel and Muller (2000) treated a topographic

surface as one half of a traction-free crack, with the opening of the crack corresponding to the

removal of overburden that formed the topography (Figure 2).

They started by defining the ambient stress state under a horizontal surface (Equation 4)

and used the ambient stress conditions away from the eventual topographic surface as boundary

conditions for later scenarios (i.e. when the topography is introduced and the overburden

removed). The justification for this approach is St. Venant's principle, which states that the

addition or removal of a load by erosion introduces only local stresses and strains.

20



a [ Y,
9 , g g

Figure 2: Conceptual illustration of Martel and Muller's (2000) approach for calculating
topographic stresses. (a) The reference stress field (left) contains contributions from the
stresses in the overburden above the land surface (middle) and stresses in the material
below the land surface (right). (b) The stress field below the topographic surface is
obtained by subtracting the effect of the overburden from the reference stress field.
Different lengths of the arrow representing the gravity force do not imply a change in
the magnitude of the force of gravity (reproduced from Martel and Muller, 2000).

With the shape of the topographic surface known, the topographic surface is viewed as an

imaginary crack. The overburden above each of its elements is calculated. The tractions

associated with the gravitational stresses due to the overburden above the (eventual) land surface

(or crack) are then subtracted, leaving the land surface traction-free and the stresses beneath the

surface altered from the ambient state (Figure 2).

The total stress field below the topographic surface is found by evaluating the

perturbation to the stress field caused by the generation of the topography (i.e., by the erosion of

overburden), and then superposing this perturbation on the fixed reference (ambient) stress state.

The perturbation along the surface modeled by the crack is reflected by the change in normal and

shear tractions that would arise due to erosion. Those traction changes, when superposed on the

reference state, yield a traction-free surface. The traction changes also serve as boundary

conditions along the crack for the stress perturbation solution and are stored in a matrix we refer

to as [B;].

The traction perturbations on the walls of the crack used to model the topographic surface

21



induce relative displacement of the walls across each of the N crack elements. The displacements

on the lower wall of the crack can be thought of as those experienced by the (eventual) ground

surface in response to the removal of overburden. The relative displacement of the walls of any

element (e.g. element i; Figure 1) induces stresses everywhere else in the body, as well as

tractions on the rest of the elements forming the surface/crack. The effects of unit relative

displacements of all elements on a specific element and on any other observation point in the

body are calculated and stored in influence-coefficient matrices [Aij]and [A9js], respectively.

[Aij] (length/stress) is a function of the elastic constants of the medium as well the spacing of

boundary elements.

With the influence coefficient and boundary condition matrices calculated, the relative

displacements at each element, [X], are obtained by solving for the relative displacements of the

crack walls needed to return the perturbed traction boundary-conditions using an inverse method

(Martel and Muller, 2000):

[Ai;][X1] = [Bj] (5)

Once the relative displacements are solved for, the stress perturbations at the observation points

beneath the land surface [I-js] are calculated using a forward method:

[Ats] [Xi] = [.0s] (6)

The resulting stress perturbation field is superposed on the reference (background) state to yield

the stress field beneath a traction-free surface (Figure 2).

As reported by Martel and Muller (2000), the stresses calculated by the BEM for the

symmetric topography studied by Savage et al. (1985) and Miller and Dunne (1996) compare

very well with the analytical solutions of Savage et al. (1985). The BEM stresses are subject to

numerical errors near the ends of the boundary elements (i.e., within approximately one element

length below the ground surface), but show close agreement at greater depths (Appendix A).
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Unlike the existing analytical solutions, the BEM can be used to calculate stresses beneath any

topographic profile.

In our model working with topography, the x- and z-directions are horizontal (Figure 3).

The positive y-direction points up, and y = 0 is at the highest ridgetop in the topographic profile.

Opposite ends of a profile are tapered to the same elevation (mid-way between the ridge top and

valley bottom) so that there is no net topographic gradient across the modeling domain. With the

ends of the modeled subsurface tapered to the same level and the same normal traction

distribution applied to each end, the modeled body experiences no net lateral force and is in

equilibrium.

2.4 Failure Criterion and Cohesion at Failure

Given a stress field calculated with the BEM, we seek a quantity that represents the

propensity for development of shear fractures or reactivation of existing ones. The Mohr-

Coulomb failure criterion (Equation 7) defines the shear failure envelope of a material (Figure

4). In Figure 4, or is the most compressive stress and q3 is the least compressive stress. For a

new shear fracture to form, the shear stress,r, acting on a plane must exceed the sum of the

cohesive strength of the material, Co, and the frictional resisting stresses, given by the term

lo7ntan#, where $ is the internal friction angle and u, is the normal stress acting on the plane of

weakness. The well-known graphical representation of the stress field in two dimensions is the

Mohr circle (Figure 4). Shear fractures form if the Mohr circle touches the failure envelope.

Failure occurs along planes with normal vectors that form angles 0 with the maximum

compressive principal stress, oa (Figure 4). Pre-existing fractures (with normal vectors that form

angles 01 and 02 with ai) can be reactivated with a shear stress magnitude lower than that needed

to initiate new fractures.
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Figure 4: A Mohr circle drawn for a specific stress state defined by most compressive (o) and

least compressive (q3) principal stresses. The values of the mean stress, omean, and the

maximum shear stress, Tmax, can be read from the normal and shear stress axes,

respectively. Both the failure and sliding friction envelopes are drawn with a 24' angle

of internal and sliding friction, respectively. The cohesion at failure (Cmin) is the

cohesion for which the failure envelope is tangent to the Mohr circle.

ITI = Ijn ltan # + CO (7)

The Mohr circle (Figure 4) represents the state of stress defined by the magnitudes of the

maximum and minimum compressive stresses, ai and q3, at a specific point in the subsurface.

The mean stress, Umean, and the maximum shear stress, Tmax, are the center and radius of the Mohr

circle, respectively, and are given by
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|Ia+ U31 (8)
omean = 2

lo1-o~ ox- 22(9
ITmaxl = 2 2 +axx-aYY + (9)

where o-x, ayy, and ay are as defined above. Based on Mohr-Coulomb theory, the minimum

cohesion needed to prevent the development of new shear fractures is (Jaeger et al., 2007; Figure

4):

Cmn _ Irmaxl-lOmeanlsin _ Jl- o 3 1-l oi+o 31 sine (10)
min cos# 2cos$ '

Equation (10) shows that Cmin increases linearly with rma. We follow Miller and Dunne (1996)

and use Cmin as a proxy for shear failure potential.

The types of fractures that are predicted to form depend on the stress state. Shear

fractures form at oblique angles with respect to the principal stresses, whereas opening mode

fractures develop perpendicular to the most tensile (least compressive) stress o3 (Jaeger et al.,

2007).

2.5 Influence of Topographic Aspect Ratio: Synthetic Calculations

The BEM method can be used to calculate stresses under any topographic profile, not

only idealized profiles that are amenable to analytical solutions, like the coordinate mapping of

Savage et al. (1985). To illustrate how topography affects the stress distribution in a simple

scenario, we used the BEM to calculate topographic stresses for a series of sinusoidal

topographic profiles with a common wavelength of 1000 m but different topographic amplitudes

(10 to 1 00m) and lateral tectonic stresses. Our boundary conditions were o-x,= tectonic stress +

[v/(1-v)] pgy and o>y = pgy, with p =2650 kg/m3 and v= 1/3. Each sinusoidal topography was

made of a series of 3-4 troughs/peaks and had tapered ends (not shown in Figure 5).
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Figure 5: Cmin obtained from the BEM under idealized sinusoidal topography with the same
wavelength but different amplitudes and tectonic stresses. Three tectonic stress regimes
are shown: compressive (-6 MPa; a,d), tensional (6MPa; c,f) and no tectonic stress

(b,e). Poisson's ratio, v = 1/3. The topography, which is vertically exaggerated in each
plot, has an amplitude of 50 meters in the upper row and 5 meters in the lower row.
The calculation was performed on a profile several wavelengths long to minimize
effects of the lateral boundaries; only the middle valley is shown here.

Figure 5 shows plots of Cmin beneath these profiles, calculated with $= 240. The most

obvious difference is that Cmin is larger when tectonic stresses are introduced. It is also clear from

Figure 5 that the sign of the tectonic stress and the amplitude of the topography modulate spatial

trends in Cmin. With no tectonic stresses (Figure 5b,e), Cmin increases with depth and its change

mimics the topographic relief.

Under compressive tectonic stress, Cmin decreases with depth (Figure 5a,d) beneath the

valley whereas under tensile tectonic stress, the amplitude of topography determines how Cmin

changes with depth beneath the valley; Cmin decreases with depth with high topographic relief

(Figure 5c) and increases with depth under low topographic relief (Figure 5f). Beneath ridgetops,

Cmin is smaller than beneath the valley and always increases with depth.
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This synthetic calculation illustrates three general trends: first, there is a greater

susceptibility to shear fracturing under valley floors; second, ridgetops are generally more stable

with respect to shear fracturing in the absence of tectonic stresses; and third, the depth gradient

of Cmin under ridgetops when tectonic stresses are applied is relief-dependent. Also, if the

horizontal tectonic stress is zero (middle column), then topography has a great effect, and the

magnitude of Cmin scales in proportion to the topographic relief (Figure 5b,e). When regional

tectonic stresses are applied, Cmin is still sensitive to topographic relief, but is controlled

primarily by the magnitude of the tectonic stresses (Figure 5a,c,d,f). In short, high regional

tectonic stress can mask the effect of topography on local stresses.
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CHAPTER 3

Application to the Shale Hills, Pennsylvania

3.1 Site Description

The Susquehanna/Shale Hills Critical Zone Observatory (SSHO) is a 0.08 km 2 catchment

located in the uplands of the Valley and Ridge physiographic province of central Pennsylvania

(Figure 6). It was established to investigate the creation, evolution and function of the regolith in

the catchment area; the observatory is used to study the groundwater flow, date groundwater,

estimate soil-weathering rates, and measure the residence time of solutes in the subsurface

(Singha et al., 2012; unpublished manuscript). It contains a stream (a tributary of Shavers Creek)

that flows west between narrow ridges. The average local relief (valley floor to ridgetop) is 20 m

and the average channel gradient upstream is 4.5% (Lynch, 1976, in Jin et al., 2010). The

catchment is eroded into the Silurian Rose Hill Formation of the Clinton Group (Jin et al., 2010),

which consists of shale with a few interbedded limestones of variable thickness (Lynch, 1976 in

Jin et al., 2010). Locally, the Rose Hill Formation is a fractured fossiliferous shale layer with

interbedded limestone and fine-grained sandstone (Singha et al., 2012; unpublished manuscript).

Although the area is currently tectonically inactive, the geologic structure in the region is

characterized by tight, plunging folds in Silurian-aged strata. Average strike and dip

measurements from exposures of bedrock in the catchment floor are S54 0W and 760NW,

respectively (Jin et al, 2010). Steeply dipping beds are seen in the center of the catchment area

suggesting folds of different scales superimposed on the dipping beds (Singha et al., 2012;

unpublished manuscript). Much shallower bedding dips of approximately 300 are observed in

borehole image logs (Kuntz et al., 2011) and in outcrops near the wells at the mouth of the valley

(Tim White, personal communication).

Pennsylvania is part of the eastern North American stress province which is a compressive

stress regime. The stress is thought to be associated with tectonic plate boundaries, with two
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Figure 6: The stress map of central and eastern North America showing the directions of
maximum horizontal stress (SHmax). SSHO (Longitude: 40*39'N; Latitude: 77*54'W) is
indicated with a red circle in Pennsylvania (PA). The different symbols represent
different methods used to measure SHmax in different faulting regimes: NF = normal
faulting, TF = thrust faulting, SS = strike slip, U = unknown regime. A, B, and C
represent the data ranking quality outlined in Zoback and Zoback (1989) with A being
the highest quality data. The map was prepared using CASMO, a web-based service for
accessing the World Stress Map database (Heidbach et al., 2008; http://dc-app3-14.gfz-
potsdam.de/pub/introduction/introduction frame.html; accessed in September, 2012).

models proposed for the source of compression: ridge push and basal drag (Zoback and Zoback,

1989). Seismic activity increasing from west to east within the craton and the extensional stress

regime in the southern Great Plains stress province are indications favoring the ridge push model

over the basal drag model (Zoback and Zoback, 1989). Plumb and Cox (1987) report trends in the

northeastern United States of the most compressive horizontal stress (SHmax) of N54*E±7*, and
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Zoback and Zoback (1980, 1989) report SHmax trends of NE to ENE in the central and eastern

stress provinces. Zoback and Zoback (1989) describe the Midcontinent stress province as having

a poorly defined eastern boundary that crosses the Valley and Ridge province, which includes the

SSHO, in the north. Under either of these conditions, many of the fractures beneath the valley

would be susceptible to slip, regardless of how they originated. Thus, even if topographic stresses

did not trigger the formation of all fractures in the bedrock, they could still cause re-fracturing and

sliding on older fracture planes, and could therefore have a strong influence on the abundance of

active, open fractures.

The SSHO site has two key advantages for our study. First, the site's topography has been

surveyed with high-resolution airborne laser altimetry through the State of Pennsylvania's

PAMAP program (ftp://pamap.pasda.psu.edu) and by the National Center for Airborne Laser

Mapping (NCALM). Second, optical image logs from boreholes located in the valley permit

detailed observations of fractures.

3.2 Topography and Stress Calculations

I used laser altimetry data to extract a topographic profile perpendicular to the valley axis

(N22 0E) along a transect that passes through CZMW 1 and is within a few meters of the other

three boreholes (Figure 7). The valley profile (Figure 7b) is asymmetric, and therefore the stresses

cannot be modeled well using the analytical solution of Savage et al. (1985). Given the elongated

shape and relatively gentle longitudinal profile of the valley, we assume that a two-dimensional

treatment of the state of stress is reasonable. The measured transect and the added tapered sections

(Figure 7a) are 4284 m long horizontally so that the valley and ridges of interest are far from the

tips of the crack representing the ground surface. A mesh of subsurface observation points where

stresses will be calculated is chosen, with the x locations generally beneath element midpoints

(which results in improved accuracy; Figure 3) and y locations at regular depth increments, Ay =

0.5 m. The uppermost observation points are chosen to be 0.05 m from the surface. To reduce the
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Figure 7: (a) A shaded relief map of the Shale Hills study site and surroundings showing well
locations (yellow circles) and the trace of the cross-section used in this study (white
line). (b) Topographic profile along the black transect in (a) showing locations and
depths of wells. The transect passes through well CZMW 1, and wells CZMW 2, 3, and 4
are projected onto the cross-section. All wells are within 3m of CZMW 1.
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total number of elements for reasons of computational efficiency, we use fine elements (Ax = 7 m;

defined and dictated by the resolution of topographic maps available for the region) under the

topography of interest and part of the tapered sections (911 m < x < 3463m), and coarse elements

(Ax = 16 m) for the extended tapered sections (for x < 911 m and x > 3463 in).

We are aware of only a few estimates of tectonic stresses in the region (Heidbach et al.,

2008. Figure 6). The compilation of stress measurements in Heidbach et al. (2008) is believed to

be for measurements taken at depths greater than 100 m as it contains data reported from breakout

analysis, focal mechanisms, hydraulic fracturing, etc. Zoback (2007) states that in situ stress

measurements at shallow depth cannot be used for tectonic stress compilations; tectonic stresses

at shallow depths are very small due to low frictional and tensile strengths of near-surface rocks.

Therefore, the tectonic stress magnitude reported on the World Stress Map Project site (http://dc-

app3-14.gfz-potsdam.de/index.html) may not be suitable to use to calculate the stress distribution

in the shallow subsurface at SSHO. Miller and Dunne (1996) report tectonic stresses in the

northeastern United States of -6.9 + 0.035y MPa for the maximum horizontal stress (SHmax) and

-6.0 + 0.01 7y MPa for the minimum horizontal stress (Smin) (where y is depth, and both y and

compressive stresses are negative). Given the small difference between the reported values of

SHmax and Shmin (Miller and Dunne, 1996), I used the BEM to calculate stresses beneath the SSHO

topographic profile (Figure 7) assuming the tectonic stress to have the magnitude of the lowest

reported surface horizontal compressive stress (-6 MPa) in order not to mask the effect of

topography at SSHO.

The boundary conditions are oxx= tectonic stress + [v /(1 - v)] pgy and oy, = pgy, with p

=2650 kg/m3 and v= 1/3. Horizontal stresses (-x) are compressive throughout the landscape, but

are smallest under the ridgetops (~2-5 MPa) and largest under the valley floor (-9-10 MPa)

(Figure 8a). Vertical stresses (a,) are also compressive (Figure 8b). The maximum shear stress

(Figure 8c) decreases sharply with depth beneath the valley and increases with depth beneath the

ridges. The cohesion at shear failure, Cmin (Figure 8d), has a pattern similar to the maximum shear

stress, with remarkably different trends in Cmin under the valley floor and under ridgetops. The

zone most susceptible to topographically induced shear fracturing is a shallow zone beneath the
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Figure 8: Plots of (a) a,,, (b) oyy, and (c) Tm a, as obtained from the BEM for the topographic
profile in Figure 7, with a 6 MPa compressive tectonic stress, p= 2650 kg/in 3,. and
v--113. (d) Cohesion at failure, Cmin, calculated with 0 = 240. The locations of the depth
profiles in Figures I I a and 1 l b are indicated.

valley floor. Zones near the surface beneath tall ridges or deep below the valley are more resistant

to fracturing, with little to no cohesion required to prevent failure.

3.3 Borehole Structural Analysis

Data on the locations and orientations of subsurface fractures from borehole logs

constitute the key information we use to test our model predictions. Image logs (e.g., Figure 9.

Appendix B) from the four boreholes in the valley bottom shown in Figure 6 were acquired with

an Optical Borehole Imaging (OBI) tool manufactured by Mount Sopris Instruments. The OBI is

an optical televiewer that produces a continuous, 3600, oriented image of the borehole wall using

a downhole charge-coupled device (CCD) camera. The tool has a 3-axis magnetometer and two

accelerometers that allow for precision in calculating borehole deviation from vertical and

orientation of the image. Image resolution of the logs was roughly 0.5 mm vertically and 0.33 mm

azimuthally. The image logs were processed with WellCAD, a PC-based well log processing

package. They were oriented to magnetic north. No deviation or casing-effect corrections were
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Figure 9: A section of an OBI log taken from CZMW 4. The left image shows untraced bedding

and fracture planes. The right image log shows the same section of the borehole wall

with structural features traced. Green low-amplitude traces indicate gently dipping

bedding planes, and red high-amplitude traces indicate steeply dipping fracture planes.

Image orientations are relative to magnetic north.

made, as the wells are vertical and cased with polyvinyl chloride (PVC) pipes. Fractures could not

be mapped within 3 meters of the ground surface, because boreholes were cased to 3 m depth.

The main structures observable in the borehole image logs are natural fractures and

bedding planes. These planar features have sinusoidal traces on the flattened image logs (Figure

9). The phase angle of a trace relative to a reference mark (North) yields the strike of the planes,

and the trace amplitude yields the dip (Luthi, 2001; Serra, 1989). Each fracture and bedding plane

was traced eight times, and the strike and dip of a feature were assigned based on the arithmetic
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averages of the eight strike directions and eight dip magnitudes. A scatter in the repetitive picks

and the misfit of the average trace with a planar feature reflect a low certainty tracing the planar

feature. Features with incomplete sine waves were the hardest to trace. Neither drilling-induced

fractures nor borehole breakouts are well developed in the boreholes. No clear displacement was

seen along structural features. A few traces suspected to be healed or partially healed fractures are

visible in the thick shale layer in well 1. Because of the image quality, image acquisition

technique (camera vs. resistivity mapping), and their scarce occurrence, healed fractures were not

grouped into a separate fracture set nor used to interpret old stress regime(s) in the area. I do not

believe that the few healed fractures add to the scatter in the fracture orientations. The observation

that they are still healed suggests that they are either older than other fractures or too deep for the

topography to influence and initiate their reactivation.

The bedding planes were traced where weathering or differential erosion highlighted

surfaces separating laminations or beds. Bed traces on the image logs were continuous; the

complete sine waves suggest depositional features rather than structural ones and their

consistently low amplitudes reflect gentle dip angles. Many fractures, on the other hand, had

generally incomplete sine waves where only the troughs or portions of its sides are seen. Steeply-

dipping en-echelon traces, although rarely seen, may be poorly-developed drilling-induced

fractures. The strike direction of drilling-induced fractures indicates the direction of SHmax. The

poor development and rare occurrence of the drilling-induced fractures indicates a low tectonic

stress magnitude. The absence of breakouts indicates far-field horizontal stresses (Sumax and Shmin)

with comparable and similar magnitudes. This is consistent with the regional tectonic stresses

reported in Miller and Dunne (1996). In highly deformed and fractured zones, some fractures

have complete traces/sine waves and occur in steep conjugate sets. This latter family of fractures

might be younger than the one with partial sine waves (partial sine waves indicates erosion of an

already fractured bed/formation).

Figure 10 shows the poles to fracture and bedding planes in the subsurface. These data

show clustering in the orientations of both fractures and bedding. The fractures beneath the

valley generally dip steeply to the SE or NW. The bedding beneath the valley generally dips to
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Figure 10: Stereonets showing arithmetic averages (see text) of the (a) fracture and (b) bedding

plane orientations in the wells. The plots are Schmidt plots showing the intersections of

the poles to the planes with the lower hemisphere. Gentle-dipping planes plot near the

center of the stereonet whereas steeply-dipping planes plot near the primitive circle. Dip

angle magnitudes are indicated on the stereonet.

the NW. A few bedding planes in CZMW 3 and CZMW 4 dip to the S and W. The gentle bedding

dips contrast with Jin et al. (2010) and agree with observations of outcrops (Tim White, personal

communication; Kuntz et al., 2011). The data also reveal scatter in wells CZMW 2, CZMW 3 and

CZMW 4 (fractures striking WSW-NW) partly due to incomplete fracture traces, which increased

the uncertainty in the sine wave fit; the presence of what appear to be healed fractures (traces with

bright colors suggesting cement-filled fractures/joints) in some deeper shale sections; and highly

fractured/faulted and perturbed middle sections in some of the wells where many fractures

intersect and individual fracture traces are less clear. Most of the subsurface fractures are roughly

perpendicular to bedding. Some of the fractures, however, are at shallow angles with respect to

bedding, especially in borehole CZMW 3. The variation in the absolute orientations of the

fractures and the variation in the orientations of the fractures with respect to bedding suggest that

subsurface fractures reflect multiple episodes of deformation. The prediction of Miller and Dunne
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(1996) and Augustinus (1995) of tensile fractures forming right beneath the valley floor could not

be checked as the upper 3m of each borehole are cased with no image log available. At greater

depth (>3m), a triaxial stress state dominates, and shear fractures are more likely to develop.

3.4 Comparison of Fracture Abundance and Orientation with Modeled Topographic
Stresses

If the fractures detected in the boreholes were influenced by topographic effects, then the

spatial distribution of the fractures might well mirror the spatial trends predicted by our stress

model, particularly the trends with depth below the topographic surface. We seek a proxy for the

intensity of fracturing that will be relevant to near-surface hydrologic and geomorphic processes

that we can compare with our model predictions of Cmin. One simple proxy is the number of

fractures per unit vertical depth within each borehole, which we refer to as the fracture

abundance.

The strongest vertical trends in Cmin are beneath ridgetops and the valley floor (Figure 8d).

Under the ridgetop, Cmin increases with depth, whereas Cmin declines with depth under the valley

floor. Calculations of Cmin for various angles of internal friction, #, show that the shapes of these

trends are largely independent of # (Figure 11 a,b). The main effect of # is to scale the magnitude

of Cmin. No logged boreholes exist on the ridgetops, ruling out a comparison of ridgetop fracture

abundance with Cmin beneath the ridges. Boreholes do penetrate the valley floor, though, so I

focus my attention there. The rate at which our modeled values of Cmin decrease with depth under

the valley floor is steep in the uppermost 10 m of the wells and gentler at greater depths (Figure

11). Figure 11 compares these trends in Cmin with the fracture abundance measured in the four

boreholes near the valley axis at the SSHO. The measured fracture abundance declines from an

average of roughly 10-15 fractures/m at a depth of 5 m to less than 5 fractures/m at a depth of 15

m (Figure 11 c). This reduction in fracture abundance with depth is similar to the predicted decline

in Cmin with depth beneath the valley floor (Figure 11 b).

Working in the upper 15 m of the subsurface and having SHm..ax and Shmin, with comparable
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Figure 11: Depth profiles of cohesion-at-failure, Cmi, under (a) the ridgetop and (b) the valley

floor at the locations shown in Figure 8d. Curves are shown for internal friction angles

(#) ranging from 100 to 350*. (c) Plot of fracture abundance in borehole image logs as a

function of depth. Fracture abundance could not be measured within 3 m of the surface

because boreholes are cased to 3 m depth.

magnitudes (Miller and Dunne, 1996), I assume that the overburden is the least principal stress.

The BEM code used allows the calculation of the principal stress orientation (Figure 12a); in the

shallow subsurface, the most compressive stress, o, is parallel to topography. In deeper sections,

ui becomes horizontal, and therefore parallel to the tectonic stress applied in the model. The depth

at which the maximum principal stress becomes aligned with tectonic stress provides an estimate

of the depth below which the effect of topography is no longer significant. This depth is roughly

15-20 m below surface.

The topographic transect is taken along N224E, perpendicular to the valley direction in

order to have the maximum topographic relief to work. The transect is at 20-400 to the reported
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Figure 12: Orientations of (a) principal stresses obtained from the BEM and (b) predicted
fracture planes under the valley.

SHmna direction at SSHO. The BEM calculates the orientations of the principal stresses (Figure

12a), and I infer the orientation of potential conjugate sets of fracture planes where the maximum

shear stress is expected. The planes with maximum shear stress form at ±45' from a, (Figure

12b). Potential fracture planes, thus, strike N70"W and N20*E.

Following Anderson's theory of faulting, potential strike directions for faulting planes can

range between being parallel to SHma (mode I fractures and Normal faulting regime), forming 300

with SHmax (strike slip regime), or normal to SHmax (thrust faulting regime). The structural data
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from the boreholes at SSHO (Figure 10) show that we have multiple generations of fractures. The

dominant faulting regime is strike slip as many of the well fractures having strike directions 20-

450 from SHmax. Few fractures have their strike direction parallel to SHmax; these might be the

youngest generation mode I fractures.
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CHAPTER 4

Discussion, Conclusions, and Implications

4.1 Discussion

The model presented is a useful tool for studying the effects of topographic stresses and

predicting areas of high failure potential and relative fracture abundance. The main advantage

over previous models of topographic stress is that the BEM does not require the topography to

conform to an idealized, symmetric shape that can be described with a simple analytical function.

Another advantage is that it can calculate stresses beneath a topographic profile that includes

multiple landforms, rather than a single valley or ridge. As in the existing analytical models,

however, the limitation of our stress calculations to plane strain conditions means that the effects

of two-dimensional topography on the three-dimensional stress distribution are not considered.

As the main objective of this work is study the effect of topography on the stress distribution, a

topographic transect along the valley floor gives stresses beneath a sloping surface with no

significant topographic relief, and developing a 3D model that incorporates multiple transects is

beyond the scope of this work.

Drilling boreholes on a ridgetop deeper in the valley was attempted, but taking the

drilling rig up the ridge and stabilizing it for drilling was not successful. I acknowledge the

importance of drilling more boreholes, as observations would permit a more complete test of the

predicted effects of topographic stress. In particular, structural data from a ridgetop borehole

would provide a test of whether a more uniform fracture abundance with depth, or perhaps even

an increase in fracture abundance with depth, is observed beneath ridges, consistent with the

trend in Cmin in Figure 11 a.

Another way to test the influence of topography would be to compare the measurements

presented here with measurements from boreholes in a site with comparable regional tectonic

stress but higher topographic relief. If such a site displayed comparable trends in fracture
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abundance over a deeper depth than in the SSHO, it would support the prediction of Savage et al.

(1985), McTigue and Mei (1996), and Clarke and Burbank (2011) illustrated here in Figure 8,

that the effects of topographic stress should scale with topographic relief.

Observations in the wells and BEM predictions are consistent in supporting the

hypothesis that both the ambient stresses, which reflect the tectonic context (Martel, 2000), and

topography affected the fracture abundance. The observed decrease of fracture abundance with

depth (Figure 11 c) beneath the valley floor in all four wells is consistent with my predictions, as

the cohesion required to prevent fractures decreases with depth (Figure 11 b). This occurs for the

study area because the maximum shear stress decreases with depth more rapidly than the mean

compressive stress increases with depth (see Equation 9). The rate that these variables change in

general would depend on the ambient stress field and the topography. Our comparison of

predicted topographic stresses with observed fractures beneath the valley floor is consistent with

the hypothesis that topographic stresses influence the formation or reactivation of rock fractures

in the shallow subsurface; the stresses due to the valley's cross-sectional shape and 20-30 m

relief might indeed have contributed to the fracture patterns observed in the uppermost 15 m of

the subsurface at the SSHO, where topography is predicted to have its greatest influence (Figure

7). The principal stress orientations stop being parallel to the topography 20 m from the surface;

the maximum principal stress around that depth becomes horizontal (parallel to the applied

tectonic stress) and the overburden becomes vertical, indicating that the effect of the topographic

relief decreases with depth.

Although the image log of CZMW 1 in Appendix B shows a thick shale layer that

extends from 7-15 m with no open fractures seen in it, the predicted decrease in fracture

abundance with depth does not mean that no fractures will be seen below 10-1 5m. A more linear

trend between depth and Cmin is calculated deeper in the boreholes, where topographic effects are

less significant (Figure 11 a,b), suggesting that the decline in fracture abundance with depth will

be more gradual. This is consistent with Clarke and Burbank's (2011) conclusions that linear P-

wave velocity gradient in the shallow multilayered subsurface is caused by non-linear decline in

fracture density and is independent of rock types. Clarke and Burbank (2011) argue that tectonic
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fracturing produced a uniform/linear velocity and that the geomorphic processes focused within

the near surface (0-15m) produce the depth-dependent or nonlinear fracture density change.

Their fracture density profile is very similar to the decline in fracture abundance in Figure 1l c;

topographic stress is a possible mechanism that can explain Clarke and Burbank's (2011)

fracture abundance in the shallow subsurface.

The fracture orientations obtained in the wellbore agree with the structural history of the

location and the (recent) horizontal stress directions reported (Zoback and Zoback, 1980 and

1989; Plumb and Cox, 1987; Heidbach et al., 2008). The scatter in the borehole fracture

orientations reflects multiple generations of fracturing events and spatial variability in rock

properties and structure within the site. The medium, as seen from image logs, is not

homogeneous (shale and carbonaceous layers) nor isotropic (heavily fractured sections,

laminations and bedding planes) as assumed by the BEM; anisotropy and variations in

lithologies, porosities, pore pressure, and cementation are not taken into consideration by the

model. Stress distribution and concentrations at pore cavities and effective stress variations due

to pore pressure affect the stress distribution in the subsurface and, consequently, the fracture

orientation predictions. Without a careful study of how the topography evolved with time and a

more thorough understanding of the tectonic history in the region, it is difficult to separate the

fractures into various generations and point out which one was most influenced/caused by the

present-day topography. Pre-existing fractures due to the tectonic history could have been

reactivated; a process that can release strain energy gradually and more efficiently than forming

new fractures. Reactivated old fractures might be the ones most clearly seen in the wells. It is

therefore understandable that the stress model does not correctly predict the orientations of all

observed fractures.

4.2 Summary and Conclusions

We used a two-dimensional numerical boundary element method (BEM) to calculate

elastic subsurface stresses induced by an arbitrary topographic profile. The BEM solutions for
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symmetric valleys and ridges match previously published analytical solutions well. Unlike the

analytical solutions, the BEM is not limited to topography that can be described by simple

functions, and it can calculate stresses for transects through multiple landforms rather than single

ridges or valleys. The sign and magnitude of tectonic stresses can easily be included in model

calculations. In sites where topographic stresses influence rock fracture, the model presented

here provides a framework for studying the effects of topography on subsurface hydrology, as

well as possible feedbacks between rock fracture and landform evolution.

We used the BEM to calculate stresses beneath a topographic cross section through the

Shale Hills Critical Zone Observatory in Pennsylvania. The model predicts different stress

conditions beneath the valley floor and adjacent ridgetops. With a compressive regional tectonic

stress of -6 MPa, the predicted horizontal stress is compressive throughout the landscape, is

largest (~9-10 MPa) in the valley, and is smallest (~2-5 MPa) under the ridgetops. Vertical

stresses under the valley floor and the ridgetops are also compressive, but generally are less than

the horizontal compressive stress by a factor of 5-10. From the stress calculations, we derived the

minimum cohesion needed to prevent shear failure, Cmin, as a proxy for the susceptibility of the

rock to the formation or reactivation of shear fractures. The trends of Cmin with depth differ

between the valley and ridges, with Cmin increasing with depth under the ridgetops and

decreasing with depth under the valley floor. This predicted decline in Cmin under the valley floor

compares well with a measured decline in fracture abundance in four boreholes near the valley

axis at the Shale Hills site, consistent with the hypothesis that topographic stresses influence the

formation or reactivation of fractures. Future logging of a ridgetop borehole would provide a

more complete comparison of the observed fracture patterns with the predicted topographic

stresses. Comparing the predicted fracture orientations to fracture planes traced on the image

logs, it is clear that the BEM poorly predicts fracture orientations as it assumes a homogeneous

and isotropic subsurface with no means to incorporate the structural history and multiple

fracturing events.
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4.3 Implications and Recommendations for Future Work

The ability to calculate topographic stresses and predict fracture patterns beneath any

topographic profile provides a means of exploring the effects of topographically induced

fracturing on other landscape processes. Predicted spatial trends in fracture abundance and

orientation could allow hydrogeologists to map spatial variations in permeability, and thereby

study the effects of surface topography on subsurface flow and transport (Singha et al.,

unpublished transcript). Civil engineers could use predicted topographic stresses to help

calibrate their models of subsurface density, porosity, and velocity. The effects of subsurface

fractures on bulk rock strength, rock surface area, and groundwater flow could also influence

rates of rock weathering, soil production, bedrock erosion, and rock wall recession (Moore et al.,

2009). Predicted fracture abundance could potentially be used as a proxy for the rates of these

processes in long-term landscape evolution models (Moore et al., 2009; Dtihnforth et al., 2010).

Feedbacks between landform evolution and rock fracture (Moore et al., 2009) might include the

previously proposed positive feedback between valley incision and stress concentration at the

valley axis (Molnar, 2004), as well as effects introduced by the depth dependence of topographic

stress. For instance, topographically induced fractures beneath valley floors may be limited to the

shallow subsurface, creating a shallow, highly permeable zone overlying relatively intact and

stable rock. This might limit the penetration of shallow groundwater flow and slow weathering

within valleys. A more gradual decline in fracture abundance with depth below ridgelines might

create a deeper zone of accelerated weathering and enhanced rock erodibility. All these reasons

emphasize the need and importance of dynamic models (Augustinus, 1995; Moore et al., 2009)

first to incorporate parameters describing the erosive agent (glaciation period and erosion

potential) and to describe landform evolution with feedback incorporating rock properties and

changes in its strength as it gets fractured and eroded. Dynamic models and feedback

incorporating changes in the medium properties and changes in landscape and topography

constitute a logical extension of my work and an outline to study landform evolution.
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Appendix A

Comparison Between Analytical and Numerical Methods

We compared the outputs of the BEM (which is implemented in a code referred to as

2dd) and the analytical solution of Savage et al. (1985) and Savage and Swolfs (1986) (which is

implemented in a code referred to as rvt) to check the consistency of the methods. We used both

approaches to calculate stresses beneath symmetric profiles of a ridge and a valley produced with

the conformal coordinate mapping of Savage et al. (1985), with a = 40 and b = 20 (ridge) and a =

16 and b = -8 (valley). The magnitudes of a and b were chosen to produce ridge and valley aspect

ratios similar to those at the SSHO. The stress distributions under the symmetric ridge and valley

were calculated using a constant tectonic compressive stress of -6 MPa and v= 1/3.

Figure A-I shows color plots of stresses and Cmin for the ridgeline, and Figure A-2 shows

color plots of the stresses and Cmin for the valley. The numerical and analytical solutions match

very closely except for a shallow zone immediately beneath the topographic surface. This

difference appears to arise from numerical errors in the BEM solution very close to element

endpoints. A comparison of depth profiles of Cmin beneath the ridge (Figure A-3a) and valley

(Figure A-3b), however, indicates that this discrepancy disappears at depths below the first point

near the surface. All of our borehole fracture observations are at depths deeper than 3 m, where

all quantities predicted by the two methods agree very closely.
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Figure A-1: A comparison of analytical solutions and BEM solutions for a symmetric ridge
generated with the conformal coordinate mapping of Savage et al. (1985), with a shape
similar to the SSHO ridgelines (a = 40 and b = 20). (a) Uxx,2dd, (b) Uxxrvti, (c) vy.2dd, (d)

ay,rvt, (e) Tmax,2dd, (f) Tmaxjvt, (g) Cmin,62d, and (h) Cminrt are calculated with a 6 MPa
compressive tectonic stress, p= 2650 kg/m 3 , and v= 1/3. Cohesion at failure, Cmin, is
calculated with #= 24*. Insets in (a-d) illustrate the deviation of the BEM solution from
the analytical solution within approximately Im of the land surface.
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Figure A- 2: A comparison of analytical solutions and BEM solutions for a symmetric valley
generated with the conformal coordinate mapping of Savage et al. (1985), with a shape
similar to the SSHO valley (a =16 and b = -8). (a) Uxx,2dd, (b) G-xxrvt, (c) or,2d, (d)
o-,,,rvt, (e) Tmax,2dd, (f) rmaxryt, (g) Cm,~f2dd, and (h) Cmninryt are calculated with a 6 MPa
compressive tectonic stress, p= 2650 kg/in 3, and v= 1/3. Cohesion at failure, Cmin, is
calculated with $= 24g. Insets in (a-d) illustrate the deviation of the BEM solution from
the analytical solution within approximately Im of the land surface.
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Appendix B

Borehole Image Logs and Structural Data
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Figure B-I: Image log of CMZW I showing
average traces (refer to text) of
fracture (red) and bedding (green)
planes.
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(red) and bedding (green) planes.
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Table B-1: CMZW I bedding plane strike directions and dip angles.

Bedding Bedding Bedding Bedding Bedding Bedding
Depth Mean Mean Mean Depth Mean Mean Mean
(p} Azimuth Strike Dip (m) Azimuth Strike Dip

(Deg) (Deg} (Deg (Deig) (Deg) (Deg)

1 3.13 327.36 237.36 22.59 31 5.79 343.58 253.58 25.99

2 3.17 333.08 243.08 21.02 32 5.83 336.76 246.76 22.57

3 3.24 345.36 255.36 22.28 33 5.87 328.99 238.99 27.00

4 3.31 345.94 255.94 21.64 34 5.91 338.17 248.17 29.43

5 3.39 338.38 248.38 13.58 35 5.97 225.16 135.16 23.26

6 3.49 328.77 238.77 17.11 36 6.08 311.38 221.38 19.84

7 3.53 332.67 242.67 22.99 37 6.18 330.86 240.86 34.08

8 3.72 332.63 242.63 27.13 38 6.21 332.37 242.37 32.23

9 3.76 335.12 245.12 28.26 39 6.26 330.75 240.75 32.21

10 3.8 350.08 260.08 21.93 40 6.4 339.18 249.18 30.95

11 3.88 347.72 257.72 25.99 41 6.51 302.39 212.39 27.60

12 3.94 355.24 265.24 23.16 42 6.75 339.94 249.94 28.64

13 4.01 310.40 220.40 26.02 43 6.99 339.52 249.52 31.52

14 4.29 331.69 241.69 16.48 44 7.03 344.45 254.45 29.19

15 4.52 320.75 230.75 22.61 45 7.16 345.15 255.15 35.08

16 4.59 330.48 240.48 27.89 46 7.35 326.04 236.04 19.85

17 4.64 329.34 239.34 19.80 47 8.26 331.98 241.98 22.13

18 4.7 341.08 251.08 31.01 48 8.28 331.21 241.21 22.58

19 4.8 330.62 240.62 28.73 49 9.06 321.88 231.88 27.62

20 4.89 335.94 245.94 19.60 50 9.33 329.55 239.55 18.10

21 5.04 325.65 235.65 25.67 51 9.37 320.00 230.00 20.09

22 5.07 335.77 245.77 28.89 52 9.48 332.91 242.91 20.62

23 5.14 342.82 252.82 29.69 53 9.59 342.00 252.00 20.07

24 5.27 313.06 223.06 25.03 54 9.66 337.61 247.61 17.89

25 5.31 324.76 234.76 23.30 55 9.86 320.24 230.24 29.14

26 5.4 330.21 240.21 25.28 56 9.9 323.53 233.53 24.91

27 5.58 319.86 229.86 16.62 57 10.52 28.71 298.71 27.55

28 5.63 349.03 259.03 24.37 58 10.75 326.39 236.39 23.87

29 5.69 343.38 253.38 21.65 59 11.73 334.73 244.73 20.27

30 5.73 336.44 246.44 25.21 60 13.2 333.83 243.83 27.09
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Table B-2: CMZW 2 bedding plane strike directions and dip angles.

Bedding Bedding Bedding Bedding Bedding Beddine
Depth Mean Mean Mean Depth Mean Mean Mean

.(m Azimuth Strike Dip .(m Azimuth Strike Dip
(De2) (Dee) (De2) (De2) (De2) (Dea)

1 3.16 334.27 244.27 32.98 27 4.56 334.87 244.87 39.93

2 3.20 288.21 198.21 25.76 28 4.65 337.37 247.37 42.31

3 3.36 352.82 262.82 32.43 29 4.71 330.93 240.93 46.70

4 3.39 343.86 253.86 30.78 30 4.94 313.11 223.11 40.58

5 3.42 333.76 243.76 29.51 31 5.02 304.05 214.05 41.71

6 3.45 334.66 244.66 28.50 32 5.08 332.89 242.89 45.38

7 3.46 340.05 250.05 28.33 33 5.22 283.30 193.30 42.53

8 3.52 331.97 241.97 27.81 34 5.32 89.92 359.92 47.89

9 3.55 332.88 242.88 28.26 35 5.37 333.66 243.66 47.88

10 3.61 305.39 215.39 29.15 36 5.54 320.24 230.24 45.93

11 3.65 216.26 126.26 26.29 37 5.70 336.54 246.54 43.53

12 3.68 341.79 251.79 27.54 38 5.78 320.67 230.67 47.91

13 3.74 322.92 232.92 35.30 39 5.82 311.68 221.68 36.72

14 3.83 333.67 243.67 35.11 40 5.85 317.14 227.14 32.42

15 3.89 338.94 248.94 47.67 41 5.90 317.88 227.88 40.37

16 3.97 332.39 242.39 45.59 42 6.02 325.35 235.35 46.46

17 4.01 323.15 233.15 51.34 43 6.12 311.39 221.39 38.59

18 4.03 326.29 236.29 31.54 44 6.25 317.55 227.55 37.34

19 4.09 333.48 243.48 39.61 45 6.30 305.05 215.05 27.28

20 4.14 317.93 227.93 45.60 46 6.42 323.14 233.14 49.36

21 4.20 318.23 228.23 44.87 47 6.51 327.24 237.24 45.16

22 4.30 295.90 205.90 41.11 48 6.61 306.52 216.52 42.92

23 4.37 327.66 237.66 37.25 49 6.93 315.24 225.24 36.34

24 4.42 328.53 238.53 42.89 50 7.26 318.74 228.74 45.21

25 4.45 327.51 237.51 37.87 51 9.78 215.81 125.81 30.41

26 4.51 326.19 236.19 39.07
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Table B-3: CMZW 3 bedding plane strike directions and dip angles.

Beddin2 Bedding Bedding Bedding Bedding Bedding
Depth Mean Mean Mean Depth Mean Mean Mean

(m) Azimuth Strike Dip (jj Azimuth Strike Di p
(Dee) (Dep.) (Dee) (De2) (Deg) (Dee)

1 3.09 196.3 106.3 9.44 27 5.88 169.45 79.45 16.22

2 3.13 214.14 124.14 10.75 28 5.92 174.39 84.39 13.71

3 3.49 180.72 90.72 13.71 29 6.09 179.64 89.64 20.08

4 3.56 199.53 109.53 11.78 30 6.12 165.19 75.19 3.89

5 3.76 205.05 115.05 11.5 31 6.17 110.16 20.16 6.33

6 3.90 198.32 108.32 10.50 32 6.54 247.44 157.44 10.54

7 4.16 200.20 110.20 4.17 33 6.58 235.90 145.90 13.58

8 4.25 178.41 88.41 20.08 34 6.84 189.91 99.91 9.90

9 4.28 172.94 82.94 18.54 35 6.96 226.34 136.34 12.08

10 4.38 190.24 100.24 11.89 36 7.03 139.17 49.17 7.95

11 4.48 165.02 75.02 14.47 37 7.06 200.93 110.93 8.89

12 4.52 169.98 79.98 13.25 38 7.14 231.51 141.51 8.86

13 4.60 202.60 112.60 10.26 39 7.19 210.89 120.89 7.06

14 4.64 216.58 126.58 9.10 40 7.37 333.54 243.54 32.98

15 4.72 203.28 113.28 10.93 41 7.47 326.50 236.50 20.22

16 4.82 182.15 92.15 11.01 42 7.55 271.89 181.89 7.11

17 4.89 183.78 93.78 10.26 43 7.58 190.46 100.46 7.66

18 4.92 190.19 100.19 10.80 44 8.06 278.59 188.59 12.84

19 5.11 179.90 89.90 8.22 45 8.08 314.58 224.58 13.65

20 5.19 221.14 131.14 7.66 46 8.28 169.41 79.41 11.67

21 5.45 235.26 145.26 15.93 47 8.34 185.98 95.98 15.22

22 5.50 208.76 118.76 13.99 48 8.44 281.49 191.49 9.85

23 5.60 197.36 107.36 13.56 49 9.26 304.01 214.01 11.44

24 5.63 187.17 97.17 14.94 50 9.35 325.02 235.02 14.03

25 5.75 201.60 111.60 9.51 51 9.40 310.16 220.16 18.72

26 5.79 186.48 96.48 11.12
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Table B-4: CMZW 4 bedding plane strike directions and dip angles.

Bedding Bedding Bedding Bedding Bedding Beddin2
Depth Mean Mean Mean Depth Mean Mean Mean
.(ml Azimuth Strike Dip (m) Azimuth Strike Dip

(Deg) (Deg (Deeg (Deg) (Deg) (Deg)

1 2.98 296.48 206.48 14.31 24 4.48 303.60 213.60 12.90

2 3.09 268.65 178.65 10.84 25 4.55 321.16 231.16 18.48

3 3.14 225.80 135.80 12.34 26 4.57 292.90 202.90 14.86

4 3.16 207.43 117.43 11.40 27 4.62 320.59 230.59 18.27

5 3.19 254.57 164.57 9.46 28 4.66 276.12 186.12 14.69

6 3.26 179.37 89.37 10.62 29 4.70 307.74 217.74 18.68

7 3.29 243.19 153.19 12.04 30 4.79 315.46 225.46 15.13

8 3.36 241.06 151.06 12.59 31 4.90 167.43 77.43 11.92

9 3.45 288.50 198.50 11.10 32 4.94 158.44 68.44 13.58

10 3.52 254.86 164.86 7.89 33 4.98 138.16 48.16 13.27

11 3.62 259.22 169.22 11.93 34 5.74 306.78 216.78 13.91

12 3.68 286.36 196.36 11.27 35 6.06 265.60 175.60 15.88

13 3.72 268.58 178.58 9.88 36 6.94 302.25 212.25 24.52

14 3.84 276.27 186.27 12.85 37 7.06 313.20 223.20 26.72

15 3.86 261.96 171.96 15.70 38 7.66 309.61 219.61 19.34

16 3.89 271.85 181.85 15.99 39 7.78 328.14 238.14 14.12

17 3.95 277.47 187.47 15.26 40 10.79 161.16 71.16 15.62

18 3.98 255.58 165.58 12.22 41 11.45 178.62 88.62 27.50

19 4.11 277.35 187.35 16.65 42 12.45 175.05 85.05 19.24

20 4.24 319.44 229.44 19.50 43 13.61 169.11 79.11 15.46

21 4.29 339.95 249.95 24.29 44 13.75 195.29 105.29 10.80

22 4.38 311.91 221.91 15.54 45 14.43 186.10 96.10 14.79

23 4.44 300.33 210.33 16.80 46 14.56 199.07 109.07 18.34
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Table B-5: CMZW I fracture plane strike directions and dip angles.

Bedding Bedding Bedding Bedding Bedding Bedding
Depth Mean Mean Mean Depth Mean Mean Mean

(ml Azimuth Strike Dip (m Azimuth Strike Dip
(Deg) (Deg) (Deg) (DeM) (De2g (Deg)

1 3.07 142.30 52.30 61.58 22 5.34 153.86 63.86 72.60

2 3.12 152.20 62.20 56.99 23 5.37 157.11 67.11 57.03

3 3.19 175.45 85.45 42.55 24 5.44 150.34 60.34 69.77

4 3.33 153.20 63.20 47.40 25 5.49 151.42 61.42 64.58

5 3.39 156.98 66.98 45.01 26 5.60 154.62 64.62 51.65

6 3.46 154.20 64.20 50.77 27 5.64 144.87 54.87 43.01

7 3.53 162.39 72.39 55.02 28 5.82 157.67 67.67 73.12

8 3.62 170.10 80.10 47.98 29 5.86 139.45 49.45 32.45

9 3.86 197.74 107.74 67.66 30 5.88 148.57 58.57 70.01

10 4.14 148.79 58.79 73.92 31 5.98 87.40 357.40 72.73

11 4.23 150.74 60.74 67.90 32 6.04 85.86 355.86 67.31

12 4.30 158.54 68.54 68.88 33 6.13 147.09 57.09 44.73

13 4.43 151.86 61.86 78.13 34 6.19 144.43 54.43 49.38

14 4.47 156.15 66.15 77.22 35 6.20 148.93 58.93 50.69

15 4.51 156.72 66.72 75.53 36 6.31 149.84 59.84 69.18

16 4.60 157.22 67.22 71.65 37 6.88 162.66 72.66 76.64

17 4.68 166.96 76.96 62.47 38 7.01 170.20 80.20 65.46

18 4.72 163.46 73.46 62.30 39 7.09 164.52 74.52 69.01

19 5.07 165.69 75.69 69.61 40 7.18 162.05 72.05 52.17

20 5.13 164.60 74.60 68.49 41 14.01 7.99 277.99 65.25

21 5.27 152.16 62.16 70.07 42 15.01 100.80 10.80 51.71
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Table B-6: CMZW 2 fracture plane strike directions and dip angles.

Bedding Bedding Bedding Bedding Beddin2 Beddin2
Depth Mean Mean Mean Depth Mean Mean Mean

(mi Azimuth Strike Dip (m Azimuth Strike Dip
(Deg) (Deg) (Deug (De2) (Deg) (Dee)

1 3.07 142.51 52.51 48.81 28 5.36 167.59 77.59 55.52

2 3.10 146.66 56.66 48.42 29 5.51 159.55 69.55 48.53

3 3.18 151.53 61.53 33.20 30 5.91 159.27 69.27 45.64

4 3.21 150.22 60.22 28.13 31 5.99 169.59 79.59 54.72

5 3.24 102.34 12.34 77.92 32 6.02 134.84 44.84 59.42

6 3.27 156.09 66.09 63.62 33 6.03 114.08 24.08 63.24

7 3.29 162.93 72.93 41.70 34 6.14 183.96 93.96 40.34

8 3.36 140.28 50.28 60.43 35 6.37 167.07 77.07 55.02

9 3.47 160.76 70.76 72.36 36 6.46 172.86 82.86 50.31

10 3.63 141.63 51.63 61.81 37 6.51 175.01 85.01 45.09

11 3.71 155.96 65.96 47.70 38 6.58 169.81 79.81 43.60

12 3.77 157.51 67.51 57.46 39 6.60 175.53 85.53 36.92

13 3.83 91.06 1.06 62.73 40 7.22 150.13 60.13 47.91

14 3.86 156.41 66.41 57.56 41 7.27 155.47 65.47 37.84

15 3.96 155.72 65.72 45.30 42 7.37 336.89 246.89 58.39

16 4.04 227.78 137.78 74.07 43 7.45 324.95 234.95 65.23

17 4.09 57.87 327.87 76.35 44 7.47 328.72 238.72 52.86

18 4.18 69.07 339.07 69.38 45 7.67 147.21 57.21 72.17

19 4.37 116.96 26.96 68.19 46 7.83 328.97 238.97 72.13

20 4.39 104.58 14.58 70.82 47 7.88 257.60 167.60 70.44

21 4.46 77.38 347.38 72.86 48 7.90 214.65 124.65 66.33

22 4.46 146.26 56.26 68.61 49 7.94 346.40 256.40 73.73

23 4.55 164.00 74.00 70.36 50 7.97 110.28 20.28 59.45

24 4.64 154.14 64.14 64.76 51 7.99 120.86 30.86 60.55

25 4.65 131.74 41.74 65.06 52 8.26 149.79 59.79 79.15

26 4.92 97.89 7.89 70.98 53 8.85 163.12 73.12 61.57

27 5.16 159.40 69.40 33.71 54 8.98 160.66 70.66 51.21
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Table B-7: CMZW 3 fracture plane strike directions and dip angles.

Bedding Beddin2 Bedding Bedding Bedding Bedding
Depth Mean Mean Mean Depth Mean Mean Mean

fM) Azimuth Strike DiR Lm) Azimuth Strike Dip
(Deg) (Deg) (Deg) Deg) (Deg) (Deg)

1 3.39 154.48 64.48 59.22 42 8.07 112.29 22.29 62.90
2 3.45 164.45 74.45 41.04 43 8.09 111.04 21.04 69.49
3 3.57 157.04 67.04 59.28 44 8.10 113.13 23.13 57.92
4 3.78 164.65 74.65 76.78 45 8.13 111.81 21.81 53.37
5 3.99 149.51 59.51 74.79 46 8.22 172.76 82.76 63.21
6 4.15 330.15 240.15 66.39 47 8.33 304.21 214.21 37.56
7 4.21 241.50 151.50 75.41 48 8.43 171.38 81.38 57.67
8 4.24 242.86 152.86 75.50 49 8.62 169.08 79.08 48.28
9 4.34 39.20 309.20 52.17 50 8.65 279.41 189.41 65.85
10 4.38 330.21 240.21 79.73 51 8.89 162.93 72.93 62.69
11 4.62 175.20 85.20 52.59 52 8.96 165.74 75.74 65.72
12 4.72 323.28 233.28 74.22 53 9.06 177.51 87.51 70.40
13 4.78 169.43 79.43 31.56 54 9.15 311.98 221.98 62.29
14 4.80 169.36 79.36 33.70 55 9.22 158.16 68.16 65.93
15 4.84 172.00 82.00 33.86 56 9.27 175.98 85.98 60.07
16 4.89 188.06 98.06 40.58 57 9.33 198.63 108.63 35.34
17 4.92 183.73 93.73 43.33 58 9.41 168.58 78.58 48.93
18 4.96 204.67 114.67 32.28 59 9.86 337.07 247.07 54.34
19 5.07 353.16 263.16 59.58 60 10.20 156.98 66.98 74.47
20 5.18 164.18 74.18 56.01 61 10.31 167.88 77.88 56.92
21 5.21 321.39 231.39 62.26 62 10.42 168.55 78.55 51.82
22 5.21 184.62 94.62 64.78 63 10.63 171.42 81.42 65.99
23 5.30 159.35 69.35 71.01 64 10.72 175.20 85.20 47.81
24 5.43 344.18 254.18 70.82 65 10.83 339.54 249.54 57.11
25 5.45 337.74 247.74 61.51 66 10.92 331.02 241.02 61.44
26 5.55 152.84 62.84 54.17 67 11.04 170.99 80.99 44.53
27 5.61 335.51 245.51 69.25 68 11.08 170.93 80.93 41.64
28 5.63 159.55 69.55 54.97 69 11.31 327.06 237.06 67.96
29 5.74 164.87 74.87 50.07 70 11.86 154.71 64.71 75.63
30 5.78 160.54 70.54 33.90 71 11.88 159.22 69.22 64.84
31 5.80 165.65 75.65 35.02 72 11.96 158.58 68.58 76.93
32 5.89 331.56 241.56 43.20 73 12.07 155.70 65.70 67.86
33 6.41 155.21 65.21 66.77 74 12.19 149.95 59.95 79.02
34 6.72 158.84 68.84 60.89 75 12.25 147.72 57.72 76.29
35 6.79 342.57 252.57 80.01 76 12.32 145.56 55.56 76.48
36 6.82 154.09 64.09 79.03 77 12.44 139.00 49.00 75.37
37 6.97 161.95 71.95 79.81 78 12.84 114.62 24.62 67.73
38 6.99 185.53 95.53 59.70 79 13.71 336.31 246.31 45.73
39 7.11 300.98 210.98 80.67 80 14.49 30.60 300.60 57.64
40 7.23 111.18 21.18 61.33 81 14.96 179.67 89.67 35.88
41 7.27 275.78 185.78 50.82 82 15.01 180.01 90.01 34.89
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Table B-8: CMZW 4 fracture plane strike directions and dip angles.

Bedding Bedding Bedding Bedding Bedding Bedding
Depth Mean Mean Mean Depth Mean Mean Mean

(mil Azimuth Strike Dip (m) Azimuth Strike Dip
(Depg) (Deg) (Deg) (De2g (Deg) (Deg}

1 3.04 113.54 23.54 35.58 42 5.94 166.54 76.54 44.82
2 3.10 129.38 39.38 31.92 43 5.97 332.19 242.19 56.05
3 3.21 150.50 60.50 26.95 44 6.01 333.10 243.10 51.32
4 3.39 162.65 72.65 72.43 45 6.06 321.07 231.07 60.47
5 3.44 159.36 69.36 71.44 46 6.21 331.46 241.46 58.20
6 3.64 176.12 86.12 70.90 47 6.26 327.08 237.08 57.66
7 3.85 183.43 93.43 47.09 48 6.31 326.37 236.37 56.97
8 3.88 186.02 96.02 51.30 49 6.34 302.19 212.19 55.70
9 3.91 183.88 93.88 48.72 50 6.35 183.12 93.12 47.03
10 4.02 163.11 73.11 60.49 51 6.42 167.15 77.15 50.29
11 4.16 159.78 69.78 59.62 52 6.48 321.34 231.34 54.75
12 4.16 145.02 55.02 71.62 53 6.51 323.78 233.78 52.50
13 4.16 117.33 27.33 71.32 54 6.54 186.49 96.49 42.95
14 4.19 85.47 355.47 73.86 55 6.54 305.03 215.03 51.27
15 4.24 163.81 73.81 63.18 56 6.76 319.44 229.44 52.62
16 4.30 153.77 63.77 67.75 57 6.97 178.60 88.60 30.72
17 4.47 131.48 41.48 76.28 58 7.27 331.53 241.53 53.67
18 4.67 154.79 64.79 58.99 59 7.30 326.83 236.83 53.79
19 4.73 149.76 59.76 59.55 60 7.35 316.61 226.61 50.11
20 4.81 149.53 59.53 52.41 61 7.40 318.13 228.13 52.86
21 4.88 324.04 234.04 46.34 62 7.49 336.70 246.70 65.65
22 4.91 328.48 238.48 49.92 63 7.81 351.58 261.58 44.41
23 4.92 146.91 56.91 58.17 64 7.92 337.76 247.76 72.63
24 4.95 329.99 239.99 58.66 65 8.11 329.32 239.32 67.89
25 4.97 164.90 74.90 59.23 66 8.25 289.28 199.28 67.40
26 5.01 309.64 219.64 61.40 67 8.66 327.49 237.49 62.44
27 5.03 147.01 57.01 52.39 68 8.90 313.38 223.38 55.23
28 5.06 335.43 245.43 59.86 69 8.99 330.39 240.39 81.46
29 5.14 173.81 83.81 42.12 70 9.01 308.36 218.36 60.11
30 5.23 178.93 88.93 52.65 71 9.09 331.61 241.61 44.24
31 5.25 330.69 240.69 46.23 72 9.28 334.27 244.27 78.63
32 5.29 339.22 249.22 56.13 73 9.47 53.08 323.08 68.32
33 5.37 330.16 240.16 50.66 74 9.62 330.90 240.90 73.17
34 5.44 176.12 86.12 49.79 75 11.43 174.15 84.15 47.24
35 5.44 314.20 224.20 49.83 76 12.46 172.24 82.24 43.57
36 5.55 329.76 239.76 44.77 77 12.97 161.02 71.02 42.91
37 5.61 148.93 58.93 60.39 78 13.41 352.93 262.93 58.69
38 5.64 328.35 238.35 59.69 79 13.52 171.13 81.13 69.78
39 5.67 160.44 70.44 54.58 80 13.75 221.35 131.35 52.54
40 5.75 326.04 236.04 48.38 81 13.84 180.06 90.06 39.71
41 5.81 161.80 71.80 37.75 82 13.91 157.69 67.69 49.99
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