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Abstract

It is generally presupposed that the shapes and mechanisms encountered in nature have
evolved in such a way as to maximize the robustness of a species. However, most such
optimization problems arising in biology are sufficiently complex that it is neither clear
what is being optimized, nor what are the relevant constraints. We here consider a number
of natural fluid transport systems that may be framed in terms of constrained optimization
problems.

We first examine natural drinking strategies. We classify the drinking strategies of a
broad range of creatures according to the principal forces involved, and present physical
pictures for each style. Simple scaling arguments are developed and tested against ex-
isting data. While suction is the most common drinking strategy, various alternative styles
have evolved among creatures whose morphological, physiological and environmental con-
straints preclude it. Many small creatures rely on relatively subtle capillary effects for fluid
uptake.

Particular attention is given to nectar drinking strategies. Nectar drinkers must feed
quickly and efficiently due to the threat of predation. While the sweetest nectar offers
the greatest energetic rewards, the sharp increase of viscosity with sugar concentration
makes it the most difficult to transport. An optimal sugar concentration is thus expected
for which the energy intake rate is maximized. An extensive data set indicates that the
sugar concentration that optimizes energy transport depends exclusively on the drinking
technique employed. We identify three nectar drinking techniques: active suction, capillary
suction, and viscous dipping and rationalize the reported optimal concentrations for each
through consideration of the appropriate constrained optimization problem.

Blood flow in vertebrates and phloem flow in plants are known to be optimized for effi-
cient transport of oxygen and sugar, respectively. Efficient transport of material is similarly
advantageous in engineered transport systems such as traffic and wireless networks. We
thus develop a general framework for determining the concentration that maximizes the
material flow in a number of transport systems.

Thesis Supervisor: John W. M. Bush
Title: Professor
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Chapter 1

Introduction

"If one way be better than another; that, you may be sure, is nature's way."

Aristotle thus stated the basic premise of optimization in biology. It is generally presup-

posed that the shapes and mechanisms encountered in nature have evolved in such a way

as to maximize the robustness of a species. However, most such optimization problems

arising in biology are sufficiently complex that it is neither clear what is being optimized,

nor what are the relevant constraints. We here consider a number of natural fluid transport

systems that may be framed in terms of constrained optimization problems.

Biocapillarity is a relatively unexplored field at the boundary of interfacial science, fluid

mechanics and organismic biology. The nascent field of microfluidics may exploit a variety

of nature's designs thanks to the diversity of life and the associated variety of mechanisms

for fluid transport on a small scale [ 132, 129]. For example, the water-repellent integument

of plants and insects has provided inspiration for the rapid recent developments in the

design of superhydrophobic, self-cleaning surfaces [33, 34]. Zhai et al. [150] demonstrated

that 'Super Plastic,' the manufactured surface that mimics the Namib beetle's back, can be

applied to water harvesting in the developing world, and Garrod et al. [37] investigated the

optimal surface topology for maximizing the water harvesting rate. It is thus our hope that

elucidating poorly understood fluid transport mechanisms exploited by the earth's smallest

creatures may inform microfluidics research.

Drinking is a critical behavior in the animal kingdom because water is essential in the
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sustenance of all life forms [20]. While water uptake is typically associated with drinking,

some creatures also do so in order to capture suspended prey [152, 38]. Moreover, many

insects and birds ingest fluid primarily in the form of nectar, which serves as their principle

source of energy [64, 65, 98, 66, 46, 78, 91]. Efficient strategies for fluid uptake have thus

been evolving for millions of years within the animal kingdom.

The styles of water uptake in nature are myriad, depending largely on the size of the

drinker. Drinking is generally facilitated by some combination of muscular and capillary

pressure and resisted by some combination of fluid inertia, gravity and viscosity. On a

small scale, viscous effects typically dominate inertia, and surface tension effects dominate

gravity; consequently, drinking strategies are strongly scale-dependent. For example, iner-

tial entrainment is exploited by lapping dogs and cats [105], while viscous entrainment is

exploited by some insects, small licking lizards [140] and birds [48]. Categorizing and ra-

tionalizing all natural drinking strategies is one of the principal contributions of this thesis.

Nectar feeding is one of the few natural mechanisms that can be rationalized by con-

sideration of a clean constrained optimization problem [65, 66]. Nectar drinkers must feed

quickly and efficiently due to the threat of predation. While the sweetest nectar offers the

greatest energetic rewards, the sharp increase of viscosity with sugar concentration makes

it the most difficult to transport. An optimal sugar concentration is thus expected for which

the energy intake rate is maximized. Another contribution of this thesis is the formulation

of the various nectar drinking strategies in terms of constrained optimization problems.

There are many transport networks in natural and engineering systems. Whether bio-

logical such as the vascular systems of plants and animals, or engineered such as roads and

wireless networks, they serve to move material from one place to another. There are many

instances where it is advantageous for these systems to transport matter efficiently. Blood

flow of invertebrates [90, 130] and phloem flow in plants [54] are known to be optimized

for efficient transport of oxygen and sugar, respectively. Efficient transport of matter is sim-

ilarly advantageous in engineered transport systems. The final contribution of this thesis is

the development of a general framework for understanding concentration-impeded natural

and engineered transport networks.

In this thesis, we consider the fluid mechanics of natural drinking strategies with a view

20



to informing optimal transport strategies. In Chapter 2, we categorize the drinking styles

of a broad range of terrestrial creatures by identifying the principal force balances involved

in the fluid transport. In Chapter 3, we focus on nectar drinking strategies, that we frame

in terms of constrained optimization problems. In Chapter 4, we consider the particular

case of nectar drinking by the hummingbird, a natural example of capillary origami. In

Chapter 5, we develop a general framework for optimizing concentration-impeded transport

systems.

1.1 Dynamic classification of drinking strategies

In Chapter 2, we examine the fluid mechanics of drinking in nature. We classify the drink-

ing strategies of a broad range of creatures according to the principal forces involved, and

present physical pictures for each style. Simple scaling arguments are developed and tested

against existing data. While suction is the most common drinking strategy, various alter-

native styles have evolved among creatures whose morphological, physiological, and envi-

ronmental constraints preclude it. Particular attention is given in our study to the drinking

styles employed by creatures small relative to the capillary length that rely on relatively

subtle interfacial effects. The later represent an interesting class of biocapillarity problems.

Chapter 2 appears as published in Kim, W. and Bush, J. W. M. 2012, Natural drinking

strategies. Journal of Fluid Mechanics vol. 705, pp 7-25.

1.2 Optimal concentrations in nectar feeding

Many insects and birds feed primarily on floral nectar. Most butterflies and moths suck nec-

tar through their probosci, along which a pressure gradient is generated by cibarial muscles

[64, 98]. Nectar-feeding birds such as hummingbirds and sunbirds rely on capillary pres-

sure, which drives flow along the tongue once its tip touches the nectar [65]. Most bees and

some ants ingest nectar by dipping their tongue into, then extracting it from, the viscous

nectar [66, 95]. It is advantageous for creatures to ingest energy rapidly due to the threat of

predation during feeding. While the sweetest nectar offers the greatest energetic rewards,
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the exponential increase of viscosity with sugar concentration [98] also makes it the most

difficult to transport. Optimal conditions may thus be sought to maximize their energy

intake rate. In Chapter 3, we rationalize the different optimal concentrations reported for

the different nectar drinking strategies by developing dynamic models for these strategies,

which indicate the dependence of flux on nectar concentration.

Chapter 3 appears as published in Kim, W., Gilet, T. and Bush, J. W. M. 2011, Optimal

concentrations in nectar feeding. Proceedings of the National Academy of Sciences, vol.

108, pp 16618-16621.

1.3 The tongue of the hummingbird

The hummingbird's tongue is forked and flexible, with characteristic length 2 cm and width

of 0.5 mm, effectively a sliced cylinder. It is passive, with no enervation or muscular con-

trol in its outer 1 cm [44]. The elastocapillary length, specifically, the length beyond which

capillary forces can cause the flexure of solid sheets, is comparable to the perimeter of the

tongue rd ~ 500 pm, thus raising the possibility of a dynamic role for tongue flexibility.

Indeed, when the tongue makes contact with floral nectar, it zips shut in response to cap-

illary forces, and fluid rises along its length by capillary action. The hummingbird tongue

thus has the form of a self-assembling siphon, the dynamics of which raises a number of

novel and fundamental fluid mechanics questions. As the fluid rises, some of the surface

energy is diverted to elastic energy of tongue flexure. How does the rise speed depend

on the flexibility of the tongue? For what range of material properties and shapes can a

sliced flexible tube serve as a self-assembling syphon? In Chapter 4, these questions are

addressed through a combined experimental and theoretical investigation.

Chapter 4 appears as published in Kim, W., Peaudecerf, F., Baldwin, M. W. and Bush, J.

W. M. 2012, The hummingbirds tongue: a self-assembling capillary syphon. Proceedings

of the Royal Society B, vol. 279, pp 4990-4996.
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1.4 Optimal concentration in transport networks

Given the widespread use of bio-inspired design in the development of engineered systems,

it seems likely that man-made transport networks such as roads or the electrical grid may

benefit from an improved understanding of natural transport systems. In Chapter 5, we

draw on a number of biological examples in order to develop a general framework for un-

derstanding the efficiency of concentration-impeded transport networks. Predictions of our

theoretical model are compared with experimental data on transport in over 100 animal and

plant species collected from the literature, and shed light on an often less than optimized

man-made transport system, traffic flow.
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Chapter 2

Natural Drinking Strategies

Sir James Lighthill coined the word 'biofluiddynamics' to describe fluid mechanics prob-

lems arising in biology [74], a theme that has been pursued with great success by the

honouree of this edition. Substantial effort has been devoted to elucidating natural lo-

comotion strategies, including those of fish [138], flying insects [141], birds [149] and

microorganisms [97, 71]. Flow through elastic tubes has been examined in order to elu-

cidate the dynamics of flows in the respiratory, pulmonary [96] and nervous systems [21].

'Biocapillarity' might likewise be used to describe the subset of biofluiddynamics prob-

lems dominated by interfacial effects. One well explored such problem is that of natural

strategies for water-repellency employed by plants and insects [18], which have served as

a source of inspiration in the design of superhydrophobic surfaces [22]. Another is the role

of surfactants in the respiratory system, a problem of critical importance in the treatment of

premature infants [43]. More recently, natural strategies for propulsion at the water surface

have been explored [17]. We here examine natural strategies for fluid transport, wherein a

number of novel biocapillary problems arise.

Although water can be ingested with food, drinking is the principal route for water

intake, critical in the sustenance of most animals. We loosely define drinking as fluid

uptake required for the sustenance of life. Some creatures uptake water in order to capture

suspended prey; for example, flamingoes feed on algae suspended in water [152], and tiger

salamanders capture aquatic prey by drawing in water [38]. Finally, we note that drinking

need not involve water; for example, many insects and birds ingest fluid primarily in the
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form of nectar, which serves also as their principle source of energy. Nectar drinking will

be one subject of focus in our study.

Most creatures ingest fluid either by suction through an orifice (e.g. lips or a beak) or

a tube (e.g. a proboscis or a trunk) or by entrainment onto the tongue. However, drink-

ing styles in nature are myriad, depending on the creature's size, the morphology of its

mouth parts, and its environment. Some creatures have developed ingenious drinking tech-

niques in response to harsh environmental constraints. In most previous studies of drinking

strategies, emphasis was given to reporting observations of particular drinking styles. Only

in very few such studies have the fluid mechanics of drinking been highlighted. Dynamic

models for nectar drinking in hummingbirds and butterflies were established by Kingsolver

et al. [65, 98]. In an attempt to rationalize observed drinking rates for butterflies, King-

solver & Daniel [64] were the first to pose nectar drinking through a tube as a constrained

optimization problem, an approach that has been recently advanced [62]. Prakash et al.

demonstrated that a class of shorebirds relies on contact angle hysteresis for the mouth-

ward transport of prey-bearing droplets [99]. Recently, Reis et al. [105] and Crompton &

Musinsky [23] rationalized the drinking strategies of cats and dogs, respectively, demon-

strating that they use inertial forces generated by their lapping tongues to overcome gravity.

In the current study, we focus on terrestrial creatures, excluding from consideration un-

derwater creatures, such as fish and amphibians, that drink primarily via osmosis. In § 2.1,

we categorize the drinking styles of a broad range of terrestrial creatures by identifying

the principal force balances involved in the fluid transport. We suggest consistent physi-

cal pictures and present simple scalings that describe the dynamics of each drinking style,

specifically, suction (§ 2.2), dipping, licking (§ 2.3), lapping, and ladling (§ 2.4). Finally,

several novel drinking techniques that rely on contact angle hysteresis are highlighted in

§ 2.5.

2.1 Dynamic classification

The drinking styles of terrestrial creatures, as shown in Figure 2-1, can be classified ac-

cording to the dominant driving and resistive forces. Drinking is generally accomplished
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Figure 2-1: Various drinking techniques. Schematic illustration of (a) viscous suction, as
employed by a moth, (b) capillary suction, as employed by a hummingbird, (c) viscous
dipping, as employed by a bee [62], (d) licking, as employed by a lizard, (e) lapping, as
employed by a cat [105], and (f) ladling, as employed by a dog. Images courtesy of (a)
Small Wildlife Films, (b) Richard Houde, (e) Pedro Reis, and (f) Discovery Networks
(http://dsc.discovery.com/videos/time-warp-dog-drinking-water.html).
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by virtue of a driving pressure generated by some combination of muscular contraction and

capillarity, and resisted by some combination of fluid inertia, gravity, and viscosity. The

dominant driving and resisting forces depend on the size and morphology of drinkers as

well as the properties of the fluid.

Consider a fluid of density p and viscosity y being driven with velocity u through a do-

main of characteristic scale L by a pressure difference AP in the presence of a gravitational

acceleration g. Characteristic magnitudes of the various hydrodynamic forces may be writ-

ten as Finertia ~ pU2 L2 , Fviscous ~ puL, Fpressure~ APL2 , and Fgravitationai - pgL'. In

drinking, AP is typically produced by either muscular contraction or interfacial curvature.

In the latter case, it scales as AP ~ a/L where a is the surface tension. The relative mag-

nitudes of the various force components can be written in terms of standard dimensionless

groups, specifically, the Reynolds number, Re = puL/p, denotes the ratio of inertial to vis-

cous forces, the Bond number, Bo = pgL 2 /., the ratio of hydrostatic to capillary forces,

and the Capillary number, Ca = pu/-, the ratio of viscous to capillary forces.

Many creatures, including nectar-feeding or blood-sucking insects, use tubes (e.g. pro-

bosci, snouts, or trunks) of high aspect ratio H/L, where H and L are the characteristic

length and diameter of the tube, respectively. For such tube feeders, the inertial and vis-

cous forces scale as Finertia ' pu2 L 2 and Fviscou8 ~ puH, so their relative magnitude is

prescribed by the reduced Reynolds number, Re = Re(L/H). Moreover, Fgravitational ~

pgHL 2 and Fcurvature ~ o-L, so their relative magnitude is prescribed by the reduced Bond

number, Bo = Bo(H/L), where Bo = pgL 2/o-. Assessment of the magnitudes of these

dimensionless groups indicates the dominant forces at play. The Re and Bo for various

creatures are compiled in Figure 2-2, where the different drinking styles are represented by

different colors. For creatures that do not rely on tubes for drinking, H ~ L, so Re = Re

and Bo = Bo. We first discuss general characteristics of the drinking styles represented on

the plot; later, we present a more technical examination.

For large creatures, including most mammals, Bo > 1, so capillary pressures are negli-

gible. Fluid transport is thus typically generated by pressure induced by muscular contrac-

tion, except in the case of a few creatures such as cats and dogs, which have morphological

constraints that preclude suction [105]. Reptiles, amphibians, and birds, for which Bo - 1,
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Figure 2-2: Drinking styles as a function of Re = puL/p- (L/H) and Bo pgHL/o-. For
tube feeders, L and H are the tube diameter and height, respectively; for others, L = H

is the characteristic mouth size. Data is compiled from various sources: elephants [147,

144], cows [2], camels [124], lions [105], dogs [1], donkeys [124], jaguars [105], humans

[89], sheep [16], cats [105], monkeys [76], chickens [48], wild ducks [68], snakes [25,

8], rats [143, 81], pigeons [151], finches [49], phalaropes [99], turtles [28, 7, 4], lizards

[140], Texas homed lizards [127], bats [148, 113], sunbirds [123], hummingbirds [133, 65],
orchid bees [14, 15], bees [46], mosquitoes [115, 73], moths [57], butterflies [98], ants [95],
and Rhodnius [6].
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can exploit capillary forces and so exhibit a relatively diverse variety of drinking styles.

Small creatures such as insects, for which Bo < 1 and Re < 1, rely principally on some

combination of capillary suction and viscous entrainment.

2.2 Suction

Suction is the most common drinking strategy in nature. We classify suction drinking

styles according to what produces the driving pressure and whether the flow is resisted

principally by fluid inertia or viscosity. The pressure-driven flow with mean speed u of a

fluid of density p and viscosity y along a tube of diameter d and height h is described by

Newton's second law:

- 2 A 2 2(m + ma)it = dAP - mg - -pU d - 7rhdT, (2.1)
4 8

where m is the mass of the fluid in the tube, ma the added mass of the fluid preceding the

inlet of the tube, AP the pressure difference applied at the height h of the fluid, and T the

shear stress along the outer wall. One can estimate m, ma, and T as

m = pd2h, ma = k pd T = k2p , (2.2)

where ki and k2 are order 1 constants. After dividing by 7rd 2 /4, rearrangement of (2.1)

yields:

AP= p + k1  hit + 1 + 8k/ pu2 + pgh, (2.3)
hj 2 \\ Re(d/h)

where Re = pud/p. When fluid is accelerating, the characteristic acceleration time is of

order h/u, so that i ~ U2 /h. We further note that, while the shape of the mouth parts varies

widely, commonly d/h < 1, particularly for tube feeders.

For active suction, AP is generated by muscular contraction, while for capillary suc-

tion, AP o-/d is the Laplace or capillary pressure. A cornerstone of biomechanics is

that the force that a creature of characteristic size 1 can generate F ~ 12 [82]; thus, one

expects the suction pressure generated by muscles, AP - F/ 2 10, to be independent
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of scale and so to be of comparable magnitude for all creatures. For example, AP - 10

kPa for mosquitoes [73], humans [89], and elephants [144]; the highest AP appears to be

80 kPa for bed bugs [26]. We can thus infer the tube diameter d ~ o-/AP ~ 10 Pm be-

low which capillary pressure dominates the applied suction pressure. For most creatures,

the tube or mouth diameter d is significantly larger than 10 pm, so the capillary pressure

is negligible. Nevertheless, capillary suction is employed by certain creatures for which

applied suction is precluded by virtue of geometrical and physiological constraints such as

the open, passive tongue of the hummingbird (Chapter 4) [63], and the open beak of the

zebra finch.

We can also use the near constancy of the suction pressure AP across species to as-

sess the tube height h - AP/pg - 1 m below which the applied suction pressure domi-

nates hydrostatic pressure. For virtually all creatures using active suction (except the ele-

phant), h < 1 m, indicating the relatively minor effect of gravity on the dynamics. Also,

most capillary suction feeders have tubes of characteristic length h - 1 cm; consequently,

pghd/o-~ 0.1, and the effect of gravity is negligible. In this limit, (2.3) may be expressed

AP ~ - + Rk2h) Pu 2 . (2.4)
2 Re(d/h)

The applied suction pressure must overcome inertial and viscous resistance, the relative

magnitudes of which are prescribed by Re(d/h).

2.2.1 Inertial suction (Re(d/h) > 1)

For many large creatures including human, monkeys, sheep and pigeons, Re(d/h) >> 1,

and the fluid speed in (2.4) scales as u ~ (AP/p)1 /2 . Therefore, Re may be expressed

pud ~ AP 1/2
Re = 2~ , (2.5)

where Bo = pgd2 /a. Assuming AP to be comparable for all suction drinkers, one expects

a slope of 1/2 in the plot of Re and Bo, as evident in Figure 2-3. Scatter in the data

presumably results from morphological variation between species. Specifically, h ~ 3
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Figure 2-3: Re pud/p and Bo = pgd 2 /o for creatures employing inertial suction. We

note that since inertial suction does not depend on surface tension, Bo is here simply a
proxy for body size.

m for elephants, which must thus generate relatively large pressures in order to counter

gravitational forces negligible to other creatures.

2.2.2 Viscous suction (Re(d/h) < 1)

Many insects such as butterflies and mosquitoes feed on nectar or blood with their probosci.

For such creatures, typically, h - 1 cm, 0.001 < p < 0.1 Pa-s, u - 1 cm/s, p ~ 1000

kg/m3 and d ~ 100 pm [64, 98, 73], so that Re(d/h) < 1, indicating that inertial effects

are negligible. Thus, the fluid motion is described by Poiseuille flow, for which k2 = 8 in

(2.2), and the flow speed is given by u ~ d2AP/(32ph). The viscosity of nectar increases

exponentially with sugar concentration; specifically, p = 0.0013 Pa-s for a 10% sugar

solution and 0.06 Pa-s for a 60% solution [142]. By measuring the dependence of flow rate

on sugar concentration, Pivnick & McNeil inferred that butterflies apply constant suction

power in drinking, regardless of nectar concentration [98]. The work per unit time required

to overcome the viscous friction on the wall, or equivalently the power output W of the

pump, is given by W = QAP, where Q is the volumetric flow rate. Expressing AP in

terms of Q then yields:

pud pd3 WRe=- ~26
pt 32pt2 hQ'(26
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Figure 2-4: (a) A schematic illustration of the proboscis. (b) The dependence of Re =
pud/p on Bo* as defined in (2.7) for viscous suction feeders: mosquitoes [115, 73], but-
terflies [78, 98, 12], bees [14], hawkmoths [57] and ants [95].

where W depends in general on both species and individual.

The dependence of flux Q on sugar concentration s has been reported for many insects

[78, 98, 12, 14, 57, 95]. Kim et al. compiled the data, which indicate that dQ(s)/ds < 0:

flux decreases with increasing sugar concentration s [62]. Using our upper bound on ap-

plied suction pressure, APmax ~ 10 kPa, we can assess W ~ QAPOX for each individual

creature. Eliminating d in (2.6) with Bo = pgd 2 /u yields:

32221/.3/2C)"3
log Re ~ - log Bo + - log = - log Bo*. (2.7)2 (3 32p2hpl/2 93/2Q )-2

We thus expect a slope of 3/2 in the plot of Re versus Bo*, as is evident in Figure 2-

4. Nectar drinkers have an incentive to feed quickly, specifically the threat of predation.

While the sweetest nectar offers the greatest energetic rewards, it is also the most viscous

and so the most difficult to transport. Kingsolver & Daniel pointed out that one might thus

anticipate an optimal sugar concentration for which the energy intake rate is maximized

[64]. Since Q - u, (2.6) indicates that Q ~ p-1/ 2 for a particular creature, provided W is
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Figure 2-5: (a) A schematic illustration of the hummingbird's tongue. (b) The dependence
of Q on y for hummingbirds [44, 133, 111] and honeyeaters [85]. The line represents
Q ~ p-1/2, as anticipated from our scaling.

constant. The energy intake rate B is proportional to both s and Q, so E ~ sQ s- 1

Considering the dependence of nectar viscosity p (s) on s [142], Kim et al. demonstrated

that E is maximized with respect to s subject to the constraint of constant work rate for s

33%, which represents the optimal sugar concentration for viscous suction feeders [62].

2.2.3 Capillary suction

Hummingbirds, honeyeaters, and sunbirds use their long tongues to collect floral nectar

from the tubular corollas of flowers. The distal portion of the bird's tongue has a C-shape

groove consisting of a thin keratinized membrane, from which vascular and nervous tissues

recede [44, 145]. Consequently, the bird has no muscular control over the shape of its

tongue, and active suction is impossible; instead, these birds rely on capillarity. When

the tongue is extended out of the bill and touches the nectar, capillary pressure drives the

nectar into the grooves. The tongue, once loaded with nectar, is then retracted into the bill

[108]. While extending the tongue again in the next cycle, the hummingbird keeps the gap

between its upper and lower bills smaller than the width of the tongue, thereby squeezing
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the nectar out of the tongue [32].

For creatures employing capillary suction, specifically hummingbirds and honeyeaters,

typically h ~1 cm, 0.001 < p' < 0.1 Pa-s, u ~ hf - 10 cm/s, where f ~ 10 Hz

is the tongue insertion frequency, p ~ 1000 kg/m 3 , and d ~ 100 Atm [65]. Therefore,

Re(d/h) < 1, indicating negligible inertial effects, and (2.4) again reduces to Poiseuille

flow:

AP ~ 2 pu2 (2.8)
(Re (d/h)'

where now AP ~ 4u/d, and the height of the nectar is time-dependent: h = h(t) and

u = h'(t). The solution of the force balance, crd = 8pthh', with initial condition h(0) = 0,

is given by Washburn's Law: h(t) = (dot/4t) /2. Capillary suction consists of repeated

cycles of tongue insertion and retraction. Over the nectar loading time in a single cycle, T,

the average flow speed is given by

U ~ h(T)/T (adf /(2p)) 1 / 2 . (2.9)

The average volumetric flow rate is thus given by

rd2  (7 2 d5 f 1/2 (2.10)
4 32p '

where the f depends only weakly on viscosity [111], so Q At p1/2. To test this proposed

scaling against experimental data, we introduce a relation between Q and p: Q = XP",

where X is a geometry-dependent prefactor that we expect to be different for each indi-

vidual. If we plot Q as a function of p on a log scale, n and X represent the slope and

the offset on the y-axis respectively. For each individual creature, we calculate an aver-

age value (X) = (Q-4t) based on the measured dependence of flow rate on viscosity.

Figure 2-5b indicates the dependence of Q/(X) on p, and that the observed dependence,

Q ~ p-1/2, is consistent with our expectation. We note that the dependence of Q on y for

capillary suction is the same as that for active viscous suction, so Q - A-t1/2. The optimal

sugar concentration, specifically that which maximizes energy flux E ~ sQ, is thus 33%

for both active viscous and capillary suction [62].
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Figure 2-6: (a) A bumblebee drinking. Inset: a schematic illustration of the bee's tongue.
(b) Scanning Electron Microscope (SEM) image of the bumblebee's tongue. (c) The depen-
dence of Q on p for bats [113], bees [116, 46] and ants [95], all of which employ viscous
dipping. The line corresponds to the scaling suggested by (2.11), specifically, Q ~ p/

2.3 Capillary and viscous entrainment

2.3.1 Viscous dipping

We present a simple model for a nectar drinking strategy in which the fluid is entrained

by the outer surface of the tongue through the combined action of viscosity and capillarity.

This drinking style, henceforth 'viscous dipping' [62], is used by most bees, some ants, and

nectar feeding bats, whose tongues are solid rather than hollow (see Figure 2-6). Dipping

is generally characterized by an extensible tongue being immersed into nectar, coated, then

extracted in a cyclic fashion. For bees, the tongue diameter d and length h are typically of

order 200 pm and 2 mm, respectively, and the tongue extraction speed u ~ 2 cm/s. We

expect the volume entrained to be proportional to the area of the immersed tongue surface

and the thickness e of the nectar layer. The average volumetric flow rate must thus scale as

Q ~ 7rdeu, where u is tongue speed. For steady flows, Landau-Levich-Derjaguin theory

predicts e - dCa2/3 in the limit of Ca < 0.1, We < 1, and Bo < 1, where We = pu2 d/o

is the Weber number, Ca = pu/u, and Bo = pgd 2 /o- [103]. We introduce the assumption

that the work rate applied in dipping is independent of p for a given creature. The retraction
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Figure 2-7: A schematic illustration of licking, the drinking strategy common to lizards
and rats. Fluid imbibition into the papillae plays a critical role in increasing the volume
entrained.

of the tongue through the viscous nectar requires the power P [thu2 to overcome the

viscous drag. Expressing the volume intake rate in terms of W yields:

Q - 7rdeu ~ o.2/5i6 (2.11)

so Q - P- 1/6 for each individual creature. For the relation between Q and y, Q = Xp"f, as

introduced in §2.2.3, we estimate an average value (X) = (Q-4) based on the measured

dependence of flow rate on viscosity [113, 116, 46, 95]. Figure 2-6 indicates the depen-

dence of Q/(X) on y, and the observed dependence of Q on p, specifically Q ~ p-'/6, is

consistent with our prediction (2.11). Using this scaling Q ~ P- /6 , Kim et al. inferred

that energy intake rate E - sQ - sp~/ 6 is maximized subject to the constraint of con-

stant work rate for s ~ 52%, which roughly corresponds to the measured optimal sugar

concentrations for creatures that drink via viscous dipping [62]. The model provides new

rationale for why the measured optimal concentrations are higher for creatures that use

viscous dipping (50-60%) than for creatures that use suction (30-40%).
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2.3.2 Licking

Lizards and rats lick water, a process relying on multiple cycles of tongue immersion and

retraction. While licking resembles dipping in nectar feeders such as bees and ants in some

regards, the licking mechanism is qualitatively different. We note that for dipping in nectar

feeders, the high viscosity of nectar results in a thick layer of nectar on the tongue, and

a relatively large volume of nectar transported to the mouth. For the lizard, the tongue

speed for licking u 1 cm/s, so Ca = up/o- ~ 10--4 while the tongue width w ~ 4

mm and extrusion length 1 ~ 2 mm are comparable to the capillary length lc [140]. Thus

Landau-Levich-Derjaguin theory predicts that the film thickness of the water layer on the

tongue is given by e ~ icCa2/3 - 10 pm [103]. The water intake rate should thus be given

by Q ~ el 2 f - 0.5 pl/s, where f ~ 3 Hz is the observed licking frequency. However,

measurements of volume uptake in rats Q ~ 10 pl/s suggest the importance of a physio-

logical adaptation, specifically, the papillae on the tongue. It was reported that the tongue

of the chameleon has papillae whose depth is of order 100 tm [104]. Since this depth is

significantly greater than the coating thickness of water on the tongue, the efficiency of this

licking mechanism is evidently greatly enhanced by the capillary imbibition of water into

the papillae (see Figure 2-7). Fluid is expelled from the papillae during the final phase of

licking, when the tongue is straightened and contracted. Based on the similar tongue sizes

and drinking behaviour of rats, we suspect that they employ a similar drinking strategy.

2.4 Inertial entrainment: lapping and ladling

Owing to the open geometry of their cheeks, many creatures in the biological family Feli-

dae (e.g. house cats and lions) and Canis (e.g. dogs and wolves) cannot seal their mouths in

order to generate suction; consequently, they drink by moving their tongue in a lapping mo-

tion. These creatures extend their tongues to the water, curled ventrally into a ladle shape.

After contacting the water, the tongue is retracted, transporting entrained water with it.

When the tongue is retracted to a height H, the creatures catch the entrained water by clos-

ing their jaws at some intermediate height (see Figure 2-8a,b). With the characteristic half-

width of the tongue tip R ~ 1 cm and tongue speed u > 10 cm/s, Re - puR/i > 1000
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Figure 2-8: A schematic illustration of ladling by (a) cats, (b) dogs, and (c) zebra finches
[49].

and Bo = pgR 2/o- ~ 10, indicating negligible viscous effects and capillary pressures. For

this class of creatures, the water is thus raised mouthwards through inertial entrainment.

Reis et al. elucidated the drinking technique of cats, using high-speed videography,

which indicates that cats do not immerse the tongue in water, so water is entrained only

below the tongue [105]. From analog lab experiments, they demonstrated that the entrained

water volume, specifically, that displaced above the initially horizontal interface, increases

up to order R3 shortly before pinch-off and then sharply decreases. They observed that the

cat catches the raised water just before pinch-off and thus ingests a water volume of order

R 3 . The study further demonstrates that the lapping frequency f is that which maximizes

the volume flux of water; f ~ (gH)i/2 /R. The assumption of isometry suggests that H

and R will be proportional to body size, so that the lapping frequency f ~ f-1/2, where

( is the characteristic body size. Therefore, the tongue velocity u - Rf - (1/2, and

Re = puR/p ~ f3/2. Since Bo - pgR 2 /. _ f2, we expect Re ~ Bo3 / 4 . Isometry of

Felidae would indicate that the tongue width scales as R M 11 3 [82], where M is the

body weight, and that the tongue speed scales as u ~ f R f M 3 . From the data on M

and f for various felines [105], we plot the dependence of Re on Bo in Figure 2-9. Here,

the slope is consistent with our expectation, specifically Re Bo 3 /4.

Using X-ray videography, Crompton & Musinsky recently examined the drinking tech-

nique of dogs [23]. They demonstrated that, as for the cat, fluid is entrained onto the base

on the tongue; however, it is also entrained above the tongue. Their high-speed videos

indicate that the dog immerses its tongue into the water before extracting it, thereby en-

39



Re

1 04.5 _ Cats 0 Jaguars
0 Ocelots 0 Cheetahs
A Bobcats A Lions
+ Leopards o Tigers 0

1 0 4 
~s 

"

3/4

103
101 101.5 102

Bo

Figure 2-9: The dependence of Re = puR/p on Bo pgR2 /o- for lapping cats. Data of u
and R [105] were estimated from f and M with the assumption of body shape isometry in
Felidae.

training fluid both above and below the tongue. Since the dog also closes its jaws before

the entrained water column pinches off, the volume entrained below the tongue is of order

R3, as for the cat. The ladling tongue may be roughly described as a bowl of radius R, so

the dog can ingest volumes of order R3 entrained both above and below the tongue.

The delineation between the various drinking strategies is never entirely clear. Zebra

finches use a variant of ladling that depends explicitly on capillary pressure, as one might

anticipate since the tongue size R 1 mm and Bo - 1. The zebra finch immerses its

beak into the water surface with a slight opening angle, causing water to rise by capillary

action into the resulting gap (see Figure 2-8c). It then ladles water with its tongue in

order to transport water to the esophagus. This drinking style is markedly different from

that of many other birds such as pigeons, which suck water into their mouths by closing

their beaks and applying suction across the resulting thin gap. We note that birds, for

which characteristic tongue and beak sizes are often comparable to the capillary length

1c = (-/pg) 1/2 - 2 mm, may generally use either suction or capillary pressure. Indeed,

drinking strategies in birds often depend on the interplay of these two forces.
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2.5 Contact angle hysteresis

The equilibrium contact angle 0e of a drop on a solid is prescribed by Young's Law:

o- cos e = 7SG - YSL, where YSG and 1SL are the interfacial energies per unit area between

solid-gas and solid-liquid, respectively. In reality, for a given solid-fluid combination, a

range of static contact angles may arise [30]. Consider a drop of fluid emplaced on a solid.

If the drop is filled, it will grow, and its contact angle increase progressively until reach-

ing a critical value, 0a, at which the contact line begins to advance. If conversely, fluid

is withdrawn from the drop, its contact angle will decrease progressively until reaching a

critical value, 0,, at which the contact line begins to recede. Observed static contact angles

O may thus lie anywhere within the range 0, < 0 < 0a, bounded below and above by the

receding and advancing contact angles. While contact angle hysteresis normally impedes

drop motion along surfaces, several creatures have evolved unique drinking strategies that

exploit it.

The Namib beetle resides in a desert where it rarely rains; nevertheless, it is able to

condense water from micron-scale fog droplets that sweep in daily from the coast. Their

surface is composed of hydrophilic bumps on hydrophobic valleys. The fog droplets thus

stick to the peaks, remaining pinned there by contact angle hysteresis, then grow through

accretion until becoming large enough to be blown by the wind onto the hydrophobic val-

leys, across which they roll with little resistance (see Figure 2-10a). By guiding these

rolling droplets towards their mouths, the beetles reap the rewards of the refrigeration-free

condenser on their backs [92].

Phalaropes are small birds that inhabit the American and Russian coastlines of the arctic

seas, and prey on small aquatic organisms such as miniature shrimp and phytoplankton. By

swimming in a tight circle on the surface of shallow bodies of water, they generate a vortex

that sweeps their prey upwards, like tea leaves in a swirling cup [117]. By pecking the free

surface, they capture a prey-bearing droplet in the tip of their beak. Then, by successively

opening and closing their beaks in a tweezering motion, they draw the droplet mouthwards.

Prakash et al. demonstrated that this capillary ratchet mechanism relies critically on contact

angle hysteresis. During the closing phase of the tweezering motion, both contact lines of
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Figure 2-10: Schematic illustrations of the drinking strategies of (a) the Namib desert beetle
(Image courtesy of Roberto Osti Illustrations), (b) the Phalarope, and (c) the Texas homed
lizard, all of which rely critically on contact angle hysteresis.

the droplet have the tendency to progress outward, but the leading edge always does so

first while the trailing edge is pinned due to the contact angle hysteresis (see Figure 2- 1Ob)

[99]. Conversely, during the opening phase, both contact lines tend to retreat inward, but

the trailing edge does so first. The drop thus advances through a ratcheting motion. In each

cycle, both leading and trailing edges of the contact lines advance and retreat; however, due

to the asymmetry in the wedge geometry, net mouthward drop motion is achieved. This

drinking strategy illustrates how contact angle hysteresis may, when coupled to dynamic

boundary motion, enhance rather than impede drop transport.

Some lizards such as Australian thorny devils and Texas homed lizards live in envi-

ronments where water is rarely encountered in the form of extended bodies of water such

as puddles or ponds. The lizards have thus evolved a novel rain harvesting technique that

relies on their integumental morphology. The skin of the lizard consists of multiple layers

whose warped shape forms micro-channels that uptake water from any source, from rain-

drops to wet soils, via capillary action [128]. The water is transported through the skin

to the base of the mouth through the microchannels; however, it has not yet been clearly

elucidated how the lizard uptakes the water from the microchannels. Specifically, once the

capillary network of its skin is filled with water, capillarity suction can no longer play a

role; therefore, the lizard requires a pumping system [127]. The lizard has a rictal plate, a

fold of skin at the corner of the mouth whose geometry is controlled by the jaw movement

(see Figure 2- 1Oc). Sherbrooke proposed that the jaw movement may draw water into the

mouth through contact angle hysteresis, in a manner reminiscent of the phalarope [127].
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Further study is underway to elucidate this subtle drinking mechanism.
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Chapter 3

Optimal Concentrations in Nectar

Feeding

Many insects and birds feed primarily or opportunistically on floral nectar. There are three

principal techniques employed by nectar feeders: active suction, capillary suction, and vis-

cous dipping. Lepidopterans (e.g. butterflies and moths) employ the former, sucking nectar

through their probosci, along which a pressure gradient is generated by cibarial muscles

[64, 98]. Nectar-feeding birds (e.g. hummingbirds and sunbirds) employ capillary suction,

in which capillary pressure drives flow along the tongue once its tip touches the nectar [65].

Most bees (except orchid bees) and some ants ingest nectar by dipping their tongue into,

then extracting it from, the viscous nectar [66, 95]. It is advantageous for creatures to in-

gest energy rapidly due to the threat of predation during feeding. Optimal conditions might

thus be sought to maximize their energy intake rate. While the sweetest nectar offers the

greatest energetic rewards, the exponential increase of viscosity with sugar concentration

[98] also makes it the most difficult to transport. We here rationalize the different opti-

mal concentrations reported for the different drinking strategies by developing a dynamic

model for viscous dipping and comparing it to existing models of suction feeding. Our new

viscous dipping model indicates an optimal sugar concentration of 52%, which is higher

than that for suction feeding, 33%. This result suggests a rationale for the fact that the nec-

tar concentration of flowers pollinated by viscous dippers such as bees (35%) is typically

higher than that of those pollinated by suction feeders such as hummingbirds or butterflies
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(20-25%) [102].

The sugar concentration that maximizes energy intake rate has been evaluated for a va-

riety of nectar feeders in previous experimental studies (Figure 3-1). Careful consideration

of all of these results indicates that this so-called 'optimal concentration' depends exclu-

sively on feeding mechanism but not on body size, quantity of intake, or species. Roughly

speaking, the optimal concentration for active or capillary suction feeders is 30-40% while

that for creatures using viscous dipping is 50-60%. Optimal sugar concentrations for suc-

tion feeders have been previously rationalized by Kingsolver & Daniel, who established

dynamic models for both active [64] and capillary [65] suction. Pivnick & McNeil [98]

advanced the active suction model by introducing the assumption of constant power output

for the suction pump, and so predicted an optimal concentration of approximately 35%,

consistent with that observed. Daniel et al. further demonstrated how the optimal concen-

tration of 35% emerges for active suction when muscular mechanics is considered [27].

Kingsolver & Daniel [66] also suggested a dynamic model for bees that relies on capillary

imbibition into the hairs of the tongue, a physical picture expected to be valid only in the

limit of small nectar uptake rates. Owing to its reliance on capillary suction, their model

implies an optimal concentration of 30-40%, identical to that for suction feeders. However,

for larger uptake volumes (Figure 3-1), this suction model is no longer expected to be valid,

and fails to rationalize the higher optimal concentrations of 50-60% reported, for example,

for bees [46, 116]. We proceed by briefly reviewing the active suction model developed by

Pivnick & McNeil [98] and the capillary suction model of Kingsolver & Daniel [65], then

developing a new dynamic model for viscous dipping. The result is a global physical pic-

ture that describes all nectar feeders, and indicates that the optimal concentration depends

exclusively on drinking style.

3.1 Optimal sugar concentrations

Suction feeding may be simply described mathematically. The pressure-driven flow of a

fluid of density p and viscosity p along a tube of radius a, with mean speed u, is described
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Mechanism Name Genus Optimal

Atta 30
Ants Camponotus 40

P~A'Bees Euglossa 35

Agraulis 40
Active Phoebis 35
Suction L Butterflies Speryeria 35

Thymelicus 40
Vanessa 40

Pseudaletia 40

Moths Macroglossum 35
Manduca 30

a u(t) Humming- Selasphorus 35-45
Capillary birds Selasphorus

Suction h(t) Honey- Anthochaera 50

eaters Phylidonyris 40
Acanthorhynchus 30

Sunbirds Cinnyris 30

Pachycondyla 50
Ants Rhytidoponera 50

Viscous Bombus 55
Dipping u Bees Apis 55

Melipona 60

Bats Glossophaga 60

Figure 3-1: Optimal sugar concentrations for various nectar feeders [91]. The optimal
concentration is that for which the energy intake rate is highest based on drinking rates
measured at various nectar concentrations in a laboratory setting.[95, 13, 78, 12, 98, 45,
57, 131, 111, 133, 85, 46, 116, 113, 67]
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by Newton's second law:
du AP _ 8phu
dt p pa2

where g is the gravitational acceleration and AP the pressure difference applied at the

height h of the nectar. For active suction, AP is mainly generated by cibarial muscles

[64, 98], while for capillary suction, AP u a/a results from curvature pressure, where u

is the surface tension [65]. A cornerstone of biomechanics is that the force that a creature

of characteristic size 1 can generate [82] F ~ 12; thus, one expects the suction pressure

generated by muscles, AP F/1 2  lo, to be independent of scale and to be of compa-

rable magnitude for all creatures (e.g. AP ~ 10 kPa for both mosquitoes [66] and humans

[89]). One can thus assess the tube scale a ~ u/AP 10 pm below which curvature

pressure dominates the applied suction pressure AP. For most suction feeders, the radius

a of the proboscis is of order 100 pm [78, 44], so the curvature pressure is less than the

pressure applied in active suction. Nevertheless, capillary suction is employed by certain

creatures (Figure 3-1) for which active suction is precluded by virtue of geometrical and

physiological constraints such as the open, passive tongue of the hummingbird [44]. We

further note that most suction feeders have tubes of characteristic length L ~1 cm [78, 44];

consequently, pgL/AP < 0.1, and the effect of gravity on the flows is negligible. Finally,

the ratio of inertial to viscous terms scales as pa 2 f/p < 0.1, where f ~ 10 Hz is the

typical suction frequency [73, 32], indicating negligible inertial effects. Neglecting the

gravitational and inertial terms in (3.1) yields 8phu = a2 AR.

In active suction, the nectar motion is described by Poiseuille flow, for which the volu-

metric flow rate is given by Q =7ra2 u = ra4 AP/8iL. By measuring the dependence of

flow rate on sugar concentration, Pivnick [98] inferred that butterflies apply constant suc-

tion power in drinking, regardless of nectar concentration. The work per unit time required

to overcome the viscous friction on the wall or power output W of the pump is given by

W - QAP. Expressing AP in terms of Q then yields the dependence of volume flux on

viscosity: Q = (7a 4 W/8pL)/ 2  P 1 /2 . In capillary suction, AP = 2u cos 0/a, where

0 denotes the contact angle, and the height of the nectar is time-dependent: h = h(t) and

u = h'(t) (Figure 3-1). The solution of the force balance, 4phh' = au cos 0, with initial
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condition h(O) = 0 is given by h(t) = (aut cos 0/2p)/ 2 . Capillary suction consists of re-

peated cycles of tongue insertion and retraction. The whole time for a cycle is thus the sum

of the time to absorb the nectar, T, and the time to unload it, To. The average volumetric

flow rate per cycle, Q, is given by Q = ra 2h(T)/(T + To) oc (T/1p)'/ 2 /(T + TO), where

T'I/2 /(T + To) depends weakly on viscosity [Ill], and so Q DC p-1/2. Thus, for all suction

mechanisms, we anticipate Q x p-/

To test these proposed scalings against experimental data, we introduce a general re-

lation between Q and p: Q = Xp", where X is a geometry-dependent prefactor that we

expect to be different for each species. If we plot Q as a function of P on a log scale, n

and X represent the slope and the offset on the y-axis respectively. For each species, we

calculate an average value (X) = (Qp-") based on the measured dependence of flow rate

on viscosity. In Figure 3-2, red and blue points, respectively, indicate the dependence of

Q/(X) on y for active and capillary suction. The convincing collapse of the data, plus

the fact that, for each species, the slopes are close to -1/2, together support the proposed

scalings.

The energy intake rate E is given by the product of the energy content per unit mass

of sugar c, the sucrose concentration s, and the volumetric flow rate Q: E = Qpcs oc

s -p(s)-1/2. For the sake of simplicity, density is treated as constant since its variation with

sugar concentration is much less than that of viscosity. Considering the known dependence

of nectar viscosity p(s) on s [98], the dependence of E on s can be computed as shown in

the inset of Figure 3-2 and reveals an optimal concentration of 33% as inferred by Pivnick

& McNeil for butterflies [98] and Kingsolver & Daniel for hummingbirds [65]. These pre-

dicted optimal concentrations are consistent with the results from the experimental studies

reported in Figure 3-1.

We proceed by presenting a new model for feeding in which the nectar intake relies

on viscous entrainment by the outer surface of the tongue (Figure 3-3). Viscous dipping is

generally characterized by an extendible tongue being immersed into nectar, coated, then

extracted as shown in Figure 3-3, where a honeybee (Apis) drinks nectar from a reservoir.

One expects the volume entrained to be proportional to the area of the immersed tongue

surface and the thickness e of the nectar layer. As in capillary suction, the feeding by
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Figure 3-2: The dependence of scaled volumetric flow rate Q/(X) on nectar viscosity
p. The red points represent data for active suction, the blue points for capillary suction,
and the green points for viscous dipping. The slopes of the expected lines for suction and
viscous dipping are -1/2 and -1/6 respectively. Inset: optimal concentrations of 33% and
52% are evident for, respectively, suction feeding and viscous dipping from the dependence
of relative energy intake rate on nectar viscosity. Characteristic error bars are shown. [78,
98, 12, 14, 57, 95, 85, 44, 133, 111, 116, 46, 113]
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viscous dipping consists of repeated cycles. If T and To represent, respectively, the time

needed for tongue retraction and the interval between each cycle, then the volumetric flow

rate is given by Q = 27aeuT/(2T + To), where a represents the average tongue retraction

speed.

Encouraged by its success in the modeling of suction feeding, we introduce the assump-

tion that the work rate applied in viscous dipping remains constant with respect to nectar

concentration. The movement of the tongue in the fluid requires the power P, ~ pLu 2 to

overcome the viscous drag, where L is the tongue length (Figure 3-3). The power required

for tongue acceleration Pt ~ mu'u ~ pa2 a 3 , where m - pa2 L is the tongue mass. The

ratio P/P, - pua2/ 1 L < 1, so the effect of Pt is negligible. Assuming constant applied

power P, thus suggests that 7u, oc p-1/2. One does not expect T/(2T + To) to depend

strongly on viscosity since if T is shorter in less viscous nectar due to a faster retraction,

the unloading time To would also be shorter, so that T oc To. Thus, the average volumetric

flow rate may be expressed as Q = 27raeuT/(2T + To) oc e-1/2.

The thickness of the fluid layer entrained by a cylinder of radius a depends explicitly

on three dimensionless groups: the Bond number Bo = pga2
1c. (the ratio of hydrostatic

to capillary pressures), the Weber number We = pU2 a/a (the ratio of inertial to curvature

pressures), and the Capillary number Ca = pua/o (the ratio of viscous stresses to curvature

pressures). For bees, We ~ 10- 3 < 1, Bo ~ 10-3 < 1, and Ca < 0.1 for s < 65%, so

the thickness of the liquid layer on a tongue is prescribed by the Landau-Levich-Derjaguin

theory [103] that predicts e - Ca2 /3a. We thus anticipate that Q Dc ep -1/ 0 -/ 6 . In

Figure 3-2, this proposed scaling is validated by the data for all creatures that employ vis-

cous dipping. The energy intake rate, E = Qpcs, thus scales as E oc s p(s) 1 / 6 . In the

inset of Figure 3-2, the energy intake rate is plotted as a function of the sucrose concen-

tration, and peaks at a concentration of 52%, which is consistent with the data presented

in Figure 3-1. Our analysis thus provides the first rationale for the different optimal con-

centrations reported for creatures using suction and viscous dipping. For example, we can

now rationalize the observation that orchid bees that employ active suction have optimal

concentrations of 35%, while honeybees and bumblebees that use viscous dipping, 50-60%

[13].
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Nmm

Figure 3-3: Bees uptake nectar via viscous dipping. A schematic illustration of the ex-
periment that allows us to visualize the viscous dipping of a honeybee (Apis) with a long-
distance microscope and a high-speed camera operating at 250 frames per second. Here,
the bee's tongue is dipped into a 40% sucrose solution, then withdrawn.
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3.2 Coevolution between flowers and pollinators

A relatively complete physical picture of the fluid dynamics of nectar feeding has emerged.

First and foremost, the optimal nectar concentration for a given creature depends only on

its drinking style, being higher for viscous dippers than suction feeders. When considered

in light of the coevolution between flowers and pollinators, this deduction provides ratio-

nale for the observation that the nectar concentration of flowers pollinated by bees (35%)

is generally higher than that of those pollinated by butterflies and hummingbirds (20-25%)

[102]. Several caveats are in order, however. The optimal concentration in the laboratory

might differ from that preferred in nature due to the limited availability of nectar in the

wild. Specifically, in addition to energy intake rate, nectar feeders in the wild presumably

consider competition between other individuals or colonies [116], and travel costs [52].

Moreover, the nectar concentration proffered by flowers need not correspond to the opti-

mal value owing to the pollination strategy of flowers [50]. Indeed, it has been suggested

that flowers try to keep their pollinators hungry and faithful [146] because too great an

energy reward would decrease the inter-flower movement of pollinators, and too small a

reward would bring about desertion of the pollinators. Hence, the optimal concentrations

suggested by dynamic models still need to be carefully scrutinized in attempts to under-

stand the cues of coevolution between flowers and nectar feeders.

3.3 Methods

Live honeybees were purchased from a merchant in Paju, South Korea in June, 2010. One

of the bees was confined to a cylindrical cage of inner diameter 15 mm. One end of the

cylindrical cage had a window through which the bee could extrude its head. A feeder made

with glass blocks was filled with a 40% (by mass) sucrose solution and placed sufficiently

close to the window that the bee could drink from it. We filmed the drinking process with

a high speed camera (Photron APX-RS) operating at 250 frames per second with a zoom

lens (Navitar 12X Zoom) (Figure 3-3).
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Chapter 4

The hummingbird's tongue: a

self-assembling capillary syphon

Capillary action was one of several mechanisms proposed to account for hummingbird

nectar uptake in the 19th century [77, 36]. The question received renewed attention in the

1930s, and despite disagreements regarding the relative importance of capillarity [121, 120]

and a mechanism relying on the combined action of the bill and the tongue [86, 88], a

consensus emerged that capillarity plays at least a partial role [87]. According to this

hypothesis, once the tongue tip touches a nectar reservoir, surface tension drives the nectar

flow through the tongue's grooves, loading the tongue before its subsequent withdrawal

and unloading.

The distal portion of the hummingbird's tongue forms two parallel C-shaped grooves

that split in a bifurcated end [44] (Figure 4-la). These grooves consist of keratinized mem-

branes on the order of 25 pm in thickness, which curl around a relatively rigid, keratinized

rod [145]. The free edge of the groove ends in fine fringes or lamellae that are generally

attributed to wear [75, 108]. Since vascular and nervous tissues recede at the tip of the

tongue [145, 44], no active change of shape of these grooves is possible: tongue groove

deformation can only be driven by hydrodynamic forces arising from interaction with the

nectar.

Flexible solids in the presence of liquids can be deformed by interfacial forces [114]. Py

et al [101] presented the first example of capillary origami, demonstrating that thin sheets
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with bending stiffness B can be folded up by the surface tension -of a water droplet placed

on them, provided that the largest sheet dimension exceeds the elastocapillary length lE

(B/o)1 /2 . Recently, Rico-Guevara and Rubega [108] demonstrated that a hummingbird

tongue closes around nectar, thus representing a natural example of capillary origami [105].

Their high-speed videography indicates that when the tongue is withdrawn from the nectar,

the formerly immersed portion of the tongue changes shape, so that the thin membrane curls

inwards and traps liquid inside its grooves. They thus described the drinking mechanism

as a fluid trap: surface tension causes the trap to close, after which the fluid is transported

mouthward by tongue retraction.

An open question remains concerning how the nectar fills the entire tubular grooves,

each of which is on the order of 1 cm in length and 150 pm in radius [44]. Specifically,

what is the relative importance of fluid trapping and capillary suction in the loading of the

tongue? We note that the former does not preclude the latter, and so expect both to be

significant. Since the nectar reservoirs of many of the hummingbirds' target flowers are

shorter than the tongue groove length, the entire groove can not always be immersed in the

reservoir [67], in which case fluid trapping without capillary suction would not optimally

load the tongue.

Kingsolver and Daniel [65] proposed the first dynamic model for capillary suction in

a solid tube. By demonstrating that this model successfully predicts the dependence of

nectar intake rate on nectar concentration, Kim et al. [62] recently provided a rationale

for the optimal concentrations [52] for the fastest energy uptake, 33% for suction feeders,

as measured in a laboratory setting. Here we present in vivo observations of capillary

suction in a hummingbird tongue using high-speed videography [109, 61]. We also report

direct observations of elastocapillary behavior [101, 59, 114, 10], as the tongue is deformed

by capillary forces during nectar uptake. We then develop a theoretical model for the

hummingbird's drinking process, thereby elucidating how the elastic deformation of the

tongue affects the nectar dynamics.
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4.1 In vivo observations

We filmed captive ruby-throated hummingbirds (Archilochus colubris) drinking a sucrose

solution (10% by mass) from a feeder (see Figure 4-1). A 1.6 mm diameter hole on the

top of the feeder allows the bird to insert only the distal portion of its beak into the feeder.

We adjusted the level of the sucrose solution so that the bird had to extend its tongue tip

approximately 13 mm out of its bill to reach the reservoir. Figure 4-1B indicates that

as soon as the tongue tip touches the free surface of the reservoir, the liquid begins to

rise along the tongue groove, thus clearly demonstrating capillary suction of the sucrose

solution along the hummingbird's tongue. The rise continues until the tongue is extracted

from the liquid, and the tongue is retracted into the beak.

For quantitative analysis of the capillary suction and tongue deformation, the tongue is

observed at a higher magnification (see Figure 4-2). Before entering the liquid, the tongue

tips adhere to each other due to surface tension, indicating that the tongue is prewetted with

either nectar or saliva. Upon contact with the fluid, the immersed tips separate, and the

sucrose solution starts to climb up along the tongue, as indicated by the rising menisci in

Figure 4-2a. The menisci advance at a speed u ~ 20 cm/s in response to capillary action,

and the tongue is moving at a speed less than 7 cm/s while the tongue tip is immersed in

the nectar. After being loaded by capillary suction, the tongue retracts with peak speeds of

33 cm/s. The tongue protrusion and retraction are repeated at a frequency of approximately

6 Hz.

Examining dorsal views of the tongue during capillary suction indicates the deforma-

tion of the tongue since the tongue's lateral extent becomes smaller after its inner surface is

wetted by the nectar (Figure 4-la). Our measurements reveal that the outer tongue diameter

decreases by approximately 10% near the advancing meniscus, but we observe that surface

tension does not cause the complete closure of the groove. A schematic illustration of the

deformation of one of the two tongue tubes is presented in Figure 4-3.
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Figure 4-1: A hummingbird (Archilochus colubris) drinking from a transparent feeder.

(a) A photograph of the drinking bird. Inset: schematic illustration of the hummingbird's

tongue and feeder. The feeder is made of glass plates, and wrapped with red paper in order

to attract the bird. (b) High-speed images of the hummingbird drinking from a feeder.

Owing to the transparency of the tongue, the meniscus of the rising nectar (arrows) is

observable. As the tongue tip touches the surface, interfacial forces drive the liquid along

the tongue at speeds of approximately 20 cm/s.
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Figure 4-2: Capillary suction through a hummingbird's tongue (Archilochus colubris). (a)
A dorsal view of the tongue of a hummingbird drinking sucrose solution of 20% concen-
tration by mass. The arrows indicate the two menisci of the rising nectar. The tongue width
becomes smaller after the inner surface is wetted by the nectar. (b) The position of the
tongue tip (open circles) and meniscus (closed circles) during two consecutive licks. The
measurement is interrupted when the meniscus moves beyond the field of view. The nectar
rise speed is approximately 20 cm/s. The capillary rise of the nectar clearly precedes the
tongue retraction.
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4.2 Tongue deformation

Drinking in hummingbirds involves a sequence of nectar loading and unloading events. It

has been demonstrated that hummingbirds unload nectar by squeezing their tongues be-

tween their upper and lower bills [32]. The tongue must be flexible for this unloading

process. In addition, when only small quantities of nectar are available in the target flow-

ers, a flexible tongue may make it easier for the tongue lamellae to sweep the corolla tube

[94, 108]. Hummingbirds feed from plants with a variety of floral morphologies: Jew-

elweed (Impatiens capensis) even have forward-pointing nectar spurs which require the

tongue to bend at a 180 degree angle [53]. We thus infer that the tongue's flexibility is

advantageous in both accessing and unloading the nectar.

We proceed by examining its role in nectar transport. We model the tongue as an

open circular groove without longitudinal variation (see Figure 4-3), with radius a - 150

pm, thickness e ~ 25 pm, length I ~ 1 cm, and opening angle 2a ranging from 0 to 7

[145, 44]. The ratio of hydrostatic to capillary pressures is prescribed by the Bond number

Bo = pgal/o-, where p is the density of the nectar, g the gravitational acceleration and o-

the surface tension. Owing to the weak dependence of o- and p on sucrose concentration

[65], we treat a- 0.07 N/m and p - 1000 kg/m 3 as constants with respect to sucrose

concentration. Since Bo attains a maximum value of 0.2 for the worst-case scenario of a

vertical tongue, we infer that tongue deformation is caused principally by surface tension

applied along its lateral edges rather than hydrostatic suction along its length.

To estimate the tongue deformation, we consider a lateral segment of the groove of

length #a, as shown in Figure 4-3, where the angle # is measured clockwise from the edge.

Balancing moments about the point C yields the bending moment M(#) per unit length

at the cross section, a# away from the edge: M() = o-a[cos a - cos(a + 3)], where

a clockwise moment is defined as positive. Then, applying Castigliano's theorem [137]

yields the maximum tongue displacement 3 at the edge:

f7t0 Al am aa 3
6 = - ado = B (4.1)

w0 B o- B

where B ~ Yes3 is the bending stiffness per unit length, Y the tongue's Young's modulus,
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Figure 4-3: A schematic illustration of nectar rise along the flexible tongue of the hum-
mingbird, which closes in response to the surface tension. For the sake of clarity, only one
of the tongue's two grooves is illustrated.

and Q = (1/4)[2(7r - a)(2 + cos 2a) + 3sin2a]. The dimensionless deformation thus

scales as 6/a - F, where F = a2 c./B represents the control parameter of the system. By

measuring Y ~ 300 kPa (see § 4.6), we estimate F - 0.3 and thus consider the regime of

weak deformation, which is consistent with our direct observations of the tongue diameter

contracting by approximately 10% near the advancing meniscus.

4.3 Elastocapillary suction

We define the Weber number We = pau2 /o-, the ratio of inertial to curvature pressures, and

the reduced Reynolds number Re = pua2 /p_, the ratio of inertial to viscous forces. We rely

on the reported nectar viscosity [142], which strongly depends on sucrose concentrations,

and 0.001 < p < 0.1 for sucrose concentrations between 0 and 65%. For typical rise speeds

u - 0.1 m/s (Figure 4-2b), we estimate We ~ 0.02 and 0.002 < Re < 0.2. Therefore,

inertial effects are negligible, and the nectar flow through the hummingbird's tongue is

described by Stokes equation: -aP/zi+pV2u = 0, where P is the pressure. The pressure

gradient may thus be expressed by &P/&z = (aE/&h)/V, where V is the nectar volume
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inside the tongue, and E the total system energy contained inside the tongue of height h

(see Figure 4-3), specifically, the free surface energy E, plus the bending energy Eb.

For nectar rise by an infinitesimal height Ah from h to h + Ah, the free surface energy

associated with the inner surface of the tongue increases by 2(7 - a)(ThSL - 'Ysv)aAh,

where 7YSL and 7sv are the interfacial energy per unit area between solid and liquid and

solid and gas, respectively. Also, owing to the interfacial area between liquid and gas at

the gap of both edges, the free surface energy increases by 2a'sin a'uAh, where a' and a'

are respectively the radius of the groove and the half opening angle after deformation (see

Figure 4-3). Using Young's equation, Sv - YSL = a cos Oc, the increase of free surface

energy AE, can thus be expressed by AE= 2[-(7 - a)a cos 0c + a' sin a']uah, where

0c is the contact angle. The bending energy is principally associated with the change of

the cross-sectional tongue shape. Since the strain energy per unit longitudinal length is

2ao = 2aaFQ, the increase of the strain energy for deformation over a length Ah is given

by AEb = 2aaFQAh.

Substituting into Stokes equation yields:

V2 _ = h (E1 + Eb) = p {(7 - a)a cos Oc - a'sin a' - aFQ}, (4.2)
,uVh AE jtAh

where A = (7 - a' + cos a'sin a')a'2 denotes the cross-sectional area of the rising nectar.

The no-shear and no-slip boundary conditions are applied at, respectively, the meniscus

between the edges and the inner wall of the tongue (see Figure 4-3).

The solution of Stokes equation gives the velocity distribution of u over the cross-

sectional area A. From the computation of the velocity field via the Finite Element Method

(FEM), we estimate the average flow speed and the nectar rise h(t) (see § 4.6). For a licking

frequency f, the energy per volume of nectar c, and the time of contact with the nectar T

for each lick, the energy intake rate E predicted by our model is E = fcAh(T).

We restrict our attention to a given f, r, nectar properties (p, u, c), and lateral perimeter

of the tongue. While the driving capillary pressure decreases with a, the cross-sectional

area through which nectar flows increases with a, so one anticipates an optimal opening

angle for which the hummingbird attains the fastest energy intake. In Figure 4-4, we plot

62



2

1.8 - L c

1.6 -

1.4 -

1.2

0= .

0= .
~~~~FO 11'0fl~bJ

0.8=0.4

0 20 40 60 80 100 120 140 160 180
2a

Figure 4-4: The dependence of the energy intake rates on the opening angle 2a for different
F = o-a2 /B, where a is the undeformed radius and B is the bending stiffness per unit
length. Here the energy intake rate is scaled by that for the tongue of a = 0, F = 0,
and a = 150 pm. The closed circles represent a, a limit below which the two lateral
edges come into contact after bending. The tongue perimeter is the same for all cases. The
optimal opening angles 2a that maximize energy intake rates are indicated by the dashed
line and lie between 140' and 170'.

the energy intake rates for tongues that have the same perimeter but different F. The energy

intake rates are normalized by that obtained for a = 0, F = 0, and a = 150 pm, and ac rep-

resents a limit below which the two lateral edges come into contact after bending. Although

the optimal opening angle depends on F, the normalized energy intake rate is maximized

at opening angles between 140' and 1700. For parameters relevant for the hummingbird,

we conclude that opening angles 140' < 2a < 1700 optimize energy uptake because vis-

cous resistance relative to curvature pressure is minimized for the optimal angles. Since

the results presented in Figure 4-4 are independent of the frequency, we expect them to be

valid even at higher licking frequencies, which can be as large as 17 Hz when the distance

between the beak tip and the nectar is smaller [32].
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4.4 Capillary suction vs. Fluid trapping

Recently, the role of capillary action in hummingbird feeding has been questioned: a

new model proposes that instead of being taken up via capillary suction, fluid is captured

through entrainment by the tongue following submergence, a mechanism called 'fluid trap-

ping' [108]. Arguments against the role of capillary action include the observation that

nectar intake rates are only weakly dependent on flower orientations (pendulous or erect).

However, as previously noted, the value of Bo ~ 0.2 indicates that gravitational effects are

negligible in nectar uptake. Another potential inconsistency of the capillary model is that it

predicts optimal nectar concentrations (30-40%), specifically those that maximize energy

uptake rate, that are different from preferred concentrations (45-60%), as deduced from the

statistics of visit frequency to feeders with different nectar concentration [133, 110]. How-

ever, a bird's preferred concentration may depend on factors such as gustatory preferences

[83] or physiological state [19] and thus may not correspond to the optimal concentrations.

We note that fluid trapping does not inherently preclude capillary suction, so humming-

birds can use both mechanisms. In our experimental set-up, we can assess the importance

of each mechanism. To permit visualization of the tongue outside of the bill and in a verti-

cal orientation (Figure 4-2), we positioned the level of the sucrose solution (20% by mass)

in the feeder sufficiently far from the opening of the feeder that the tongue must extend

approximately 15 mm from the bill to be immersed by an amount hi ~ 2 mm in the su-

crose solution. We measured a ~ 150 pm, T - 50 ms, p ~ 2 mPa-s, so the length loaded

via capillary suction in a time T is given by hc ~ (o-aT/(2 p))l12 ~ 1 cm (see @ 4.6). We

thus deduce hc/hi - 5, and so assess that capillary suction is the dominant nectar loading

mechanism in this experimental setting.

Our experimental set-up likely resulted in a longer tongue extension and slower licking

frequency than may occur in natural feeding bouts. The relative importance of capillary

suction and fluid trapping in the wild will in general depend on the depth of the nectar

reservoir of the visited flower as well as on the licking frequency of the hummingbird.

Very little data exist for heights of nectar, and estimating this is challenging: nectar volume

can vary temporally as well as within and among populations [9, 58, 70, 42, 5], and data
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on corolla diameter are scarce [136]. Moreover, the diameter at the base of the corolla tube

may be different from the distal corolla diameter.

We list corolla measurements of six species of flowers visited by ruby-throated hum-

mingbirds (see Table S 1). Using images obtained from the digital herbaria of the New York

and Missouri Botanical Gardens as well as specimens from the Gray Herbarium (Harvard

University Herbaria), we obtained a rough measurement of proximal corolla width, which

we used to estimate a possible upper-bound value for nectar height (see Table A. I and

Fig. B- 1-B-5). Due to the uncertainties associated with estimates of nectar volume as well

as internal corolla shape, these calculations are approximations, yet it appears that some

plants may have a small nectar height H compared to the tongue groove length of 1 1

cm in the ruby-throated hummingbird [44]. In addition, during a natural drinking bout, the

volume of nectar in a flower will decrease progressively. Thus, partial immersion of the

tongue (hi - H - 1 mm) may commonly arise in the wild.

The capillary loading length he depends critically on y- and T. The loading time T may

be bounded by the licking frequency f, which ranges from 6 Hz (our observations) to 17

Hz [32], and has been shown to depend on tongue's extrusion length and corolla shape

[134]. In our observations (Figure 4-2), T 50 ms is approximately 1/3 of the period of

the full licking cycle T = 1/f - 150 ms. If we were to assume similar tongue kinematics

of T/T - 1/3 for different licking frequencies, we would expect that 20 < T < 50 ms

for 6 < f < 17 Hz. By using the empirical dependence of p- on sucrose concentration

c [142], we deduce the dependence of he on c for different T (see Figure 4-5). As the

concentration of the hummingbird flowers is typically 20-25% [102], the model results

presented in Figure 4-5 indicate that when a hummingbird drinks nectar from a flower with

a shallow nectar reservoir of H1 = 1 mm, the majority of its nectar is loaded via capillary

suction for biologically relevant values of T. Fluid trapping becomes appreciable when the

hummingbird drinks from deeper nectar reservoirs (i.e. H 3 = 10 mm) or with high licking

frequencies. While the relative importance of capillary suction and fluid trapping will

thus in general depend on feeding rates, tongue and plant morphology, available estimates

indicate that hummingbirds may benefit from capillary suction in many natural settings.

Previous laboratory experiments of the hummingbirds drinking [44, 133, 85, 111, 67]
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Figure 4-5: The dependence of the tongue length loaded by capillary suction, he, on su-
crose concentrations c for a range of biologically relevant loading times T. We represent
three different nectar reservoir depths of Hi = 1 mm, H2 = 5 mm, and H3 - 10 mm
by dotted lines. Provided that the tongue immersion depth hi ~ H, curved and dotted
lines allow for a comparison between nectar volumes loaded via capillary suction and fluid
trapping.

lend support to the capillary suction model [65]. These indicate that the observed depen-

dence of nectar intake rates on nectar concentrations are satisfactorily rationalized by the

capillary suction model [62]. Moreover, the fact that the average volumetric uptake rate

decreases with nectar concentrations [67] is consistent with the capillary suction model,

but inconsistent with the fluid trap model, which suggests that nectar uptake rates are inde-

pendent of nectar concentration.

4.5 Discussion

We have presented in vivo observations of a hummingbird drinking that indicate both the

elastocapillary deformation of the hummingbird's tongue and capillary suction along its

length. The hummingbird's tongue may thus be best described as a self-assembling capil-
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lary syphon. Our observations clearly indicate that fluid trapping and capillary suction are

complementary rather than mutually exclusive mechanisms. While both are viable mech-

anisms for nectar uptake, we conclude that capillary suction is important in many natural

settings. Nectar reservoirs are often shallow relative to the tongue's groove length, thus

precluding tongue submergence, in which case capillary suction is predominantly used.

Moreover, the dependence of nectar uptake rates on nectar concentrations reported in the

biological literature [44, 133, 85, 111, 67] for the hummingbird are well rationalized by the

capillary suction model [62].

Guided by our observations, we have developed a theoretical model for the elastocapil-

lary suction of nectar. The model suggests that the hummingbird can maximize the energy

uptake rate when the opening angle of its tongue is roughly 1500. Our model thus pro-

vides new rationale for the shape of the tongue: specifically, the fact that each of the two

grooves of a hummingbird's tongue is nearly semicircular (Figure 4-la). The results of our

model (Figure 4-4) suggest that, for a given opening angle, a rigid tongue (F = 0) enables

the hummingbird to maximize the energy uptake. Nevertheless, tongue flexibility F - 0.3

presumably evolved since it is advantageous for both accessing and unloading nectar.

Floral nectar is the primary energy source of hummingbirds, and their inter-flower

movement serves to pollinate flowers. This mutual reliance can result in coevolution of

bill shape and floral morphologies [135, 136, 106]. Thus, the detailed shape of the hum-

mingbird's tongue may also be affected by the corolla morphology and nectar attributes of

its target flowers. Nevertheless, flexible tongues with semicircular cross-sectional shapes

are characteristic of many hummingbirds, as well as sunbirds and honeyeaters [94], which

may rely on similar nectar uptake styles.

4.6 Methods

4.6.1 In vivo high-speed imaging

The images were taken at the Concord Field Station, in Concord, Massachusetts. We filmed

four individuals (of the species Archilochus colubris), feeding during flight in a cage (Fig-
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ure 4-1) or while held in the hand (Figure 4-2). The birds fed spontaneously. The feeders

contain a sucrose solution of concentration 10% (Figure 4-1) or 20% (Figure 4-2) by mass,

which is sufficiently far from the opening of the feeder for the birds to have to extend

their tongues out of their bill in order to reach the liquid. We filmed the dynamics of the

tongue and nectar with high-speed cameras (Phantom V5.2 running at frame rates of 1000

fps for Figure 4-1 and Photron Fastcam 1024 PCI running at frame rates of 2000 fps for

Figure 4-2).

4.6.2 Tension stress experiment

We prepared a rectangular sample (1.0 x 0.2 mm) from the tongue tip of a deceased hum-

mingbird (Archilochus colubris). We stuck the extremities of the samples on a plastic

holder. By using a high-precision dynamometer, we recorded the force exerted on the sam-

ple while extending it. By measuring a deformation rate in the elastic regime, we calculated

the Young's modulus. Although the thickness of the tongue is not uniform, we assumed a

thickness of 25 pim in order to calculate a value of Y ~ 300 kPa.

4.6.3 Finite Element Method

The linearity of Stokes equation enables us to find the solution via numerical solution of

-2 -1, (4.3)

with the boundary conditions:

un(r, ) = 0 on r = 1 and a' < 0 < 27 - a'

1 u 1 U - n Cos a/ and(4.4)
- ~= 0 on r = - and - az < 0 < az.

cosO Or r sin 0 80 cos 0

By using the FreeFEM++ software (see http://www.freefem.org), the velocity distribution

of an is found. The dimensionless volumetric flow rate Qr through An, the cross-sectional

area bounded by (4.4), depends only on a'. The volumetric flow rate Q for the tongue

dimensions is then given by Q = -(DP/Dz)a' 4Qn(a')/p. Since Q is the product of the
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cross-sectional area A and the rise speed dh/dt, one readily obtains the differential equa-

tion:
dh 1&8P ,4
__A = a Q,(a'), (4.5)
dt PuOz

which we solve with the initial condition h(O) = 0. For the prewetted tongue (0c = 0), the

solution of (4.5) yields the dependence of rise height on time:

2a' 2 _IQ ()
h(t) = [a(7r - a) - a'sin a' - aFQ]t. (4.6)

A p! -1

The lateral perimeter of the tongue groove does not change through bending, (7 - a)a =

(7r - a')a' and 6 = aFQ aa - a'a'. Solving these equations for a' and a' yields:

a' = (1 - FQ/7r)a and a' = [1 - (r - a)/(7r - FQ)]7r in (4.6). For a rigid, circular tube

(F 0, a' = a = 0, a = a'), Q,(0) = 7r/8 and h(t) = (aot/(2p))i/2

Animal Care

Animals used in these experiments have been captured under state and federal collection

permits and have been maintained and filmed following protocols approved by Institutional

Animal Care and Use Committee at Harvard University, Faculty of Arts and Science, to M.

Baldwin and A. Biewener.
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Chapter 5

Optimal Concentrations in Transport

Networks

Transport networks are ubiquitous in nature and technology. Whether biological such as

the vascular systems of plants and animals or engineered such as man-made pipes, roads,

electrical grids, and the internet, they serve to move matter, energy, or information from

one place to another. Due to the cost of constructing and maintaining redundant channels,

it is advantageous for biological transport systems to distribute matter efficiently [69, 139].

Oxygen transport in vertebrates [90, 130], sugar transport in plants [54], and drinking

strategies of many animals [60, 63] are known to be optimized for efficient transport of

energy and material. Engineered systems must likewise be cost-effective and able to pro-

vide efficient transport under a variety of conditions; for example, considerable resources

are spent annually to ease traffic congestion.

In our examination of transport networks, we consider material flow in four differ-

ent natural systems: blood flow in vertebrates, sugar transport in vascular plants, and two

modes of nectar drinking in birds and insects. A common feature of these and other trans-

port networks is that the flow impedance depends on concentration. While the most con-

centrated solutions offer the greatest potential in terms of material transfer, the increase of

impedance with concentration also makes them the most difficult to transport. Addition-

ally, most transport networks are subject to a set of limiting constraints. For example, nectar

feeders are typically constrained by a constant work rate, which in turn is a function of flow
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impedance and hence concentration [98, 62, 63]. These transport networks may thus be

characterized in terms of an optimization problem subject to appropriate constraints. This

approach has been used to rationalize observed concentrations in a wide range of natural

systems [98, 11, 62, 130]. For example, the observed volume fraction of erythrocytes (red

blood cells), typical - 40 % - 50 % in humans, has been shown to maximize oxygen trans-

port [11, 130]. With the widespread use of bio-inspired design in the development of novel

engineered systems, it seems likely that man-made transport networks such as roads or the

electrical grid may benefit from improved understanding of natural transport systems.

We here develop a general framework for determining the concentration that maximizes

material transfer in transport systems. By drawing on a number of natural examples - both

new and derived from the biology literature - we show how these can be treated within a

single framework that provides new insight into the efficiency of transport networks. We

compare our model predictions to experimental data from more than 100 animal and plant

species collected from the literature. Finally, we show that similar optimization criteria

may be applied to engineered systems, and consider traffic flow in the context of our new

framework.

5.1 General formulation

We consider systems in which the material transfer rate (material flow) J can be expressed

as the product of a volumetric flow rate (volume flow) Q and a concentration of material c

J= Qc (5.1)

We express the volume flow as Q = Xf /p where X is a geometric factor, f quantifies

the mechanism driving the flow, and y characterizes the impedance. The material flow in

Eq. (5.1) can be expressed as

J = Xf (5.2)

where X, f and t can all depend on c. We now seek the optimal concentration c = copt that

maximizes J in Eq. (5.2) subject to a set of constraints, e.g. constant driving pressure or
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constant work rate. As we observe later, these constraints imply that the product Xf will

scale with impedance p as Xf oc p-1, where in general -y < 1.

Although we may have limited knowledge of the exact functional form of the material

flow J(c) in Eq. (5.2), two general statements can be made. First, we expect the material

flow to be a linear function of material concentration c at low concentrations and to ap-

proach zero with the concentration: J(O) = 0. Second, we are concerned with situations

where the system impedance depends on concentration and J increases monotonically up

to a maximum value J(copt) where &J/&c = 0 and &2J/&c2 < 0. For such situations, we

can approximate the normalized material flow * = J(c)/J(copt) by a simple function of

the normalized concentration c* = c/copt:

J c*(2 - c*) (5.3)

While Eq. (5.3) does not reveal the absolute value of the optimum concentration capt, it

does contain information concerning the impedance at the optimum concentration PI(Copt).

Assuming Xf oc p7, we find from Eq. (5.2) that the normalized flux J* can also be written

as P = c*/(p*)l 7Y, so that the normalized impedance p* = p/p(copt) may be expressed

as

p* = (5.4)

It follows that the impedance at the optimum concentration is

p(copt) = 2"p(O) (5.5)

where the power a = 1/(1 - 0) log2 (p(copt)/p(O)) and p(O) is the impedance at zero

concentration.

Eqns. (5.3), (5.4), and (5.5) provide a general framework for analyzing optimization

of concentration impeded material flow in biological and engineered systems. To test the

quantitative predictions of the theory we proceed in Sec. 5.2 by considering a series of

biological examples where the flux J can be optimized along the lines outlined above. In

Sec. 5.3, we apply our model to traffic flow. Finally, in Sec. 5.4, we consider universal
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properties of concentration impeeded material transport systems.

5.2 Biological transport networks

5.2.1 Nectar drinking from a tube

Perhaps the simplest situation in which we may apply Eq. (5.2) is drinking from a cylindri-

cal tube. Many insects and birds such as butterflies and hummingbirds [63] feed on floral

nectar, an aqueous solution of sugars, through tubes formed from probosci or tongues.

Quick energy ingestion is advantageous for nectar feeders owing to the threat of predation.

While the sweetest nectar offers the greatest energetic rewards, the increase of viscosity

with sugar concentration also makes the sweetest nectar the most difficult to transport [65].

An optimal concentration may thus be sought for maximizing energy uptake rate.

Two different suction mechanisms are typically used by nectar feeders: active suction

and capillary suction [65, 98, 62, 63]. Active suction feeders such as butterflies use muscle

contraction to suck nectar through their roughly cylindrical probosci. The nectar flow rate

J, can be expressed as
7ra 4

J- = pc 8 lAp (5.6)

where a is the radius and 1 the length of the proboscus, i is the wt/wt sugar concentration,

q the viscosity (see § 5.6.1), p the density of the nectar solution, and Ap the pressure dif-

ference generated by muscular contraction. The manner in which biological constraints

determined the dependence of the pressure Ap on nectar viscosity has been treated else-

where [98, 62]. Active suction feeders are typically constrained by constant work rate

W = QAp = ra 4 /(8,l)Ap 2 , so the pressure Ap = (8Wl/(7ra 4 ))1/ 2
7i/ 2 depends on vis-

cosity and hence concentration. Comparing the nectar flow rate in Eq. (5.6) to the general

expression in (5.2), we find that the impedance corresponds to the viscosity of the sugar

solution p- = q, the concentration to c = p, the geometric factor to X = ra4/(81), and

the driving mechanism to the pressure, f = Ap. We can thus express the constraint as

f = (8W1/(7ra4 ))1 / 2
i/

2 (see Table 5.1).

Capillary suction feeders such as hummingbirds use surface tension to draw nectar
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Figure 5-1: Optimal concentrations in biological transport networks.(a) Drinking from a
tube. Histogram showing distribution of observed sugar concentrations that maximizes
nectar uptake for 16 bird and insect species that use muscular contractions or surface ten-
sion to feed through cylindrical tubes [62, 91]. Normalized sugar mass flow J/J,max
(solid line, Eqns. (5.6) and (5.7)) and nectar viscosity p/po (dashed line, data from [47])
are plotted as a function of nectar sugar concentration E. Mass flow is predicted to be maxi-
mum when dEpt = 35 %, in good agreement with the observed average nectar concentration
(37 %). (b) Blood flow. Histogram showing distribution of observed red blood cell concen-
trations (hematocrit) from 57 vertebrate species [130]. Normalized oxygen flow J,/J,.,max
(solid line, Eq. (5.8)) and blood viscosity p/po (dashed line, see § 5.6.2) are plotted as a
function of hematocrit . Flow is predicted to be maximum when Sept = 40 %, in good
agreement with the observed average hematocrit (40 %). (c) Sugar transport in plants. His-
togram showing distribution of observed sugar concentrations from 28 plant species that
use active sugar loading [56]. Normalized sugar flow Jp/J,max (solid line, Eq. (5.9)) and
sap viscosity t/po (dashed line, data from [47]) are plotted as a function of nectar sugar
concentration E. Mass flow is predicted to be at a maximum when ept = 24 %, in good
agreement with the observed average sugar concentration (22 %).
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Figure 5-1 (continued): (d) Nectar drinking by viscous dipping. Histogram showing distri-
bution of observed sugar concentrations that maximizes nectar uptake for 6 insect species
that use viscous dipping [62, 91]. Normalized sugar mass flow J,/J,ma (solid line) and
nectar viscosity p/po (dashed line, data from [47]) are plotted as a function of nectar sugar
concentration e. Mass flow is predicted to be at a maximum when dept = 57 %, in good
agreement with the observed average nectar concentration (55 %). In (a)-(d), the numbers
given above the bins indicate the percentage of species in the bin.

along their tongue, during repeated cycles of tongue insertion and retraction [62, 63]. If the

duration of a cyclic motion is the sum of the nectar loading time T and unloading time To,

the average nectar flow rate J, can be expressed as

7Fa 4  T
is =PC--T+ AP (5.7)s= B8,ql T + To A 57

where the nectar height I = 1(t) is time-dependent and Ap = 2u/a is the capillary pressure.

During nectar loading, the volumetric flow rate is given by wa2 (dl/dt) = aAp/(871),

yielding 4q1(dl/dt) = aa. The solution with initial condition 1(0) = 0 is given by

1(t) = (aut/(2J))i/2 , which depends on viscosity and hence concentration. By com-

paring the nectar flow rate in Eq. (5.7) to the general expression in Eq. (5.2), we find

that X = ra4T/(81(T + Ti)), f = 2o-/a and p = y. We express the constraint as

X - r[(a 7 )/(32a)]i/2 T 1 / 2 /(T + To)pi/2, where Ti/ 2 /(T + To) is assumed to be inde-

pendent of viscosity [44] (see Table 5.1).

For both active and capillary suction we find that Xf cX Pi1 / 2 (i.e. 7 1/2) and the

optimal concentration copT can therefore be found by maximizing c/p 1 / 2. For nectar sugar

solutions, we therefore predict that copt = 35 % wt/wt and p(bopt) = 4 po (i.e. a = 2 in

(5.5)). This is in good agreement with experimental data on 16 butterfly and hummingbird

species (see Figure 5-1(a) and Table 5.2), where optimal concentrations in the range 30% -

45 % are reported.

5.2.2 Blood flow in vertebrates

Another biological flow problem that can be analyzed within our framework is oxygen

and nutrient transport within the cardiovascular system of vertebrate animals. Here, red
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Table 5.1: Parameters describing the material flow J = Qc = Xfc/jp (see Eq. (5.2)) for each of the systems considered. See Appen-
dices 5.6.1 and 5.6.2 for details on the viscosity 71 of blood, nectar and phloem sap.

System Geometry Driving force Concentration Impedance Constraint
X f c p

Nectar drinking
(Active suction)

Nectar drinking
(Capillary suction)

Blood flow
in vertebrates

Sugar transport
in plants

Nectar drinking
(Viscous dipping)

Traffic flow
(Greenberg)

Ap

Ap

Ap

C-2

C

pih

c

PC

PC

P/Pm

"1

1
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1

Const. work rate W = QAp

f - (W/X)1/2

Cyclic suction period T + To
X = wT[a T/(32o-)]i 2 (T + T0 )-11/2

Const. pressure Ap

f =fo = AP

Const. pressure Ap
f =fo - 'Ap

Const. work rate W ru 21

Xf =27ra 2 W 5/ 6l-5/60- 2/ 3 M5/6

ln(co/c)_1 Const. optimum speed C

f = fo =C

Vmax P/Pm tanh( 1 PL)_1Ps
Const. speed limit Vmax

f =fo = Vma

7ra(81l

7rae 3

N
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blood cells transport oxygen between the lungs and distal parts of the organism. The cells

are suspended in blood plasma, which primarily consists of water [112]. Red blood cells

typically measure 10 pm in diameter [41], and the blood's bulk viscosity depends on the

hematocrit a, the volume concentration of red blood cells. While blood with the highest

hematocrit is the most oxygen rich, the increase of viscosity with the hematocrit also makes

such blood the most difficult to transport. Accordingly, an optimal hematocrit may be

sought for maximizing oxygen transport.

The red blood cell flow rate J, can be expressed as

7ra4

Jr = 7ra 4 Ap (5.8)
8T11

where a and I are the radius and length of the blood vessel, Tj the blood viscosity (see

§ 5.6.2), and Ap the pressure difference generated by the heart. Blood pressure is on

the order of 10 kPa for most animals [126], and the dependence of blood pressure on the

hematocrit is negligible [130]. Although blood viscosity T/ generally depends on the shear

rate, this dependence is weak for typical blood conditions, specifically high shear rates (>

50 s1) [112]. Comparing the blood flow rate in Eq. (5.8) to the general expression in

Eq. (5.2) we find that c = C,- =1, X = ra 4 /(81) and f = Ap. We express the constraint

as that of constant pressure f - fo = Ap (see Table 5.1).

For blood flow we thus find that Xf oc p0 (i.e. -y = 0) and the optimum concentration

copt can be found by maximizing c/p. We therefore predict that opt = 40 % vol/vol and

p(aopt) = 2to (i.e. a = 1, in (5.5)), in good agreement with experimental data from 57

species observed throughout the animal kingdom (see Figure 5-1(b) and Table 5.2). We

note that for some diving mammals (e.g. Weddell seals and whales), oxygen storage in the

blood may also be an important factor, resulting in a higher hematocrit (up to 63 %) [130].

It is also likely that lack of thermoregulation may explain why poikilothermic animals

(e.g. the rainbow trout) has a lower hematocrit value (23 %) than the average, likely due to

thermally induced variations in blood viscosity [31].
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5.2.3 Sugar transport in plants

Plants, like animals, rely on vascular systems for distribution of energy and nutrients. En-

ergy distribution in plants takes place in the phloem vascular system. Here, an aqueous

solution of sugars, amino acids, proteins, ions, and signaling molecules flows through a se-

ries of narrow elongated cylindrical cells, known as sieve tube elements, that lie end-to-end

forming a microfluidic network spanning the entire length of the plant. The flow is driven

by differences in chemical potential between distal parts of the plant [55]. While phloem

sap with high sugar concentration has the greatest potential for energy transfer, the increase

of viscosity with sugar concentration makes it the most difficult to transport. Accordingly,

an optimal concentration may again be sought for maximizing energy flow.

The phloem energy flow J, can be expressed as

7T4

JP - pC Ap (5.9)8rl

where a is the radius of the phloem sieve tube (a ~_ 10 pm), 1 the length of the plant, c the

sugar concentration, q the phloem sap viscosity, and Ap the pressure difference driving the

flow. By comparing the sugar flow rate (5.9) to the general expression in (5.2), we find that

y = I, c = ap, X - 7ta 4 /(81) and f = Ap. We express the constraint as that of constant

pressure f = fo = Ap (see Table 5.1).

For sugar transport in plants we thus find that Xf oc po (i.e. 7 = 0) and the optimum

concentration dopt can therefore be found by maximizing c/p1. We find that eopt = 24 %

wt/wt and p(copt) = 2po (i.e. a = 1, in (5.5)), in good agreement with experimental data

(see Figure 5-1(c) and Table 5.2). While sugar concentrations observed in plants generally

span a wide range, this analysis provides a rational for the observation that plants that use

active sugar loading (data shown in Figure 5-1(c)) typically have higher sugar concentration

than plants that use passive loading [56]. Active loaders spend metabolic energy to increase

the sugar concentration in the phloem [107], and thus enhance the transport of sugar into

the vasculature when compared to passive loaders which rely solely on the concentration

gradient generated by photosynthesis to drive the transport [56]. We also note that plants

with the highest sugar concentrations are crop plants, for example potato (50 %) and maize
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(40 %) [56], suggesting that selection for high crop yield tends to lead to increased sugar

concentration in the phloem sap.

5.2.4 Drinking by viscous dipping

So far, we have limited our attention to transport in closed channels. However, it is straight-

forward to extend the problem to situations where free surfaces are involved. Most bees

whose tongues are solid rather than hollow use a drinking style termed "viscous dipping"

in which the fluid is entrained by the tongue surface. The average nectar volume entrained

can be expressed by Q ~ 27raeu, where a is the tongue radius, e the thickness of the nectar

layer on the tongue, and a the tongue extraction speed. Based on Landau-Levich-Derjaguin

theory when the Reynolds number Re < 1 and Bond number Bo < 1, the nectar film

thickness is given by e - aCa2 /3 , where Ca = qu/o < 1 is the ratio of viscous to capil-

lary forces [29]. Since the fluid is entrained on the tongue by viscous forces, we define f as

the viscous force per unit volume of liquid, so that f = qu/e 2 and X = 27rae 3 . The move-

ment of the tongue in the fluid requires power W - 7uq2 l to overcome the viscous drag,

where 1 is the immersed tongue length. Assuming a constant work rate W for a given crea-

ture leads to the constraint on velocity n ~ (W/(71l)) 1 / 2 so Xf = 27a2W5/6--5/6o--2/3/s

[62] (see Table 5.1).

For viscous dipping, we find that Xf oc p5/6 (i.e. -y = 5/6) and the optimum con-

centration acpt can therefore be found by maximizing c/pl/6. We find that copt = 57%

wt/wt and p(copt) = 64po (i.e. a = 6, c.f. Eq. (5.5)). This is in reasonable agreement

with experimental data on 6 bees species (see Figure 5-1(d) and Table 5.2), where optimal

concentrations in the range 50 % - 60 % are found. This may explain why the nectar con-

centration of flowers pollinated by bees is generally higher than that of those pollinated by

tube feeding butterflies and hummingbirds [62].
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5.3 Applications to engineered transport systems: Traffic

flow

We have thus far seen many qualitative similarities between different biological flows.

Although the detailed physiological and physical mechanisms are different, provided in-

creased concentration leads to greater impedance, we can rationalize the optimal concen-

trations. An interesting question naturally arises. In which engineered systems might one

expect to observe similar phenomena? It appears likely that most efficient communication

and transport networks will exhibit similar features. Nevertheless, we limit our discussion

to traffic congestion on highways.

A measure of the efficiency of a given section of road is the vehicle flow Jo, the num-

ber of vehicles passing a given point per unit time [ 119, 125, 51, 35]. Designers of road

networks strive to maximize the vehicle flow which can be expressed as Jv = pv, where v

is the speed of the individual vehicle and p the number of vehicles per unit length of road-

way. Generally, the car speed v = v(p) is a decreasing function of density p. At very low

densities, where inter-vehicle interaction is negligible, however, the speed approaches the

speed limit Vmax and the vehicle flow is proportional to density Jv ~- PVmax. At higher ve-

hicle densities, interaction between adjacent cars leads to flow impedance and a significant

reduction in the speed of the individual vehicles, causing congestion and a net decrease in

Jv. One thus anticipates an optimal vehicle density pop, that maximizes the vehicle flow

rate.

To estimate popt, we require v(p) which can be found either empirically, or deduced

from vehicle interaction models. One of the simplest models that leads to a reasonable

expression for v(p) was proposed by Greenberg [40], who treated traffic flow as a one-

dimensional flow of an ideal compressible gas. He assumed (i) that the local speed is a func-

tion of density only v = v(p(x, t)), (ii) that vehicles are conserved 3p/8t + Jv/&x = 0,

(iii) that vehicle flow satisfies the Euler equation Dv/Dt = -(1/p)p/&x, and (iv) that

traffic "pressure" is proportional to density p = C2p. This leads to the relation v(p) =

C In (Pmax/P) where pmax is the density at which traffic stops due to congestion. The vehicle

flow rate J, = Cp In (pnax/p) is at a maximum when p = ppt = Pmax/C, and the constant
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C = v(popt) is the vehicle speed at the optimal concentration. Since vehicles typically oc-

cupy 7.5 m in a totally congested flow [ 119], we estimate that Pmax ~ 133 vehicles/km.

Greenberg's model overestimates the optimal density, predicting popt = Pmax/e ~ 50 vehi-

cles/km, while the true values is known to be - 20 vehicles/km. Nevertheless, the vehicle

flow rate J, is qualitatively consistent with empirical traffic data, see Figure 5-2. The

data is plotted as a function of vehicle concentration c = p/Pmax in Figure 5-2 along with

Greenberg's flow rate Jo, deduced using pmax = 133 vehicles/km.

A shortcoming of Greenberg's theoretical model is that the vehicle speed v diverges

when the car density is very low. To ensure that v(P/Pmax - 0) = Vmax and to ac-

count for other aspects of traffic flows, numerous other models have been proposed [3,

119, 125, 51, 35]. For example, Bando and Hasebe [3] suggested a traffic model in

which the vehicle speed depends on the distance from the car in front, Ax. This leads

to V = Vmax tanh(Ax/s), where s is a fixed length scale determined by the road conditions.

With a minimum vehicle distance L = 7.5 m, we can express the density in terms of Ax as

p = 1/(L + Ax). This leads to v(p) = Vmax tanh[(1/p - L)/s], in which case the flow rate

J = Vp is optimized when p = 0. 2 1Pmax = 28 vehicles/km. With Vmax = 120 km/h and

s = 60 m, the Bando-Hasebe model provides a better quantitative fit to the empirical data

than Greenberg's model (see Figure 5-2).

Comparing the Greenberg and Bando-Hasebe models of traffic flow to the formulation

introduced in Eq. (5.2), we see that traffic flow can be treated in the same general framework

where

X = N, f = C = v(popt), p = (In Pmax/P) 1 (5.10)

for Greenbergs model, and

X = N, f = Vmax, P = tanh 1 pL) (5.11)

for the Bando-Hasebe model. In both cases, N is the number of lanes.

Comparing traffic flow to the biological transport problems considered above, we find

that the normalized flux and impedance curves follow the same pattern (see Figure 5-2).

While traffic flow can be treated in the same framework as biological flows, it is important

82



2

15

N10 O\.6

-0.2

0 0
0 20 40 60 80

c (%)

Figure 5-2: Optimal vehicle concentration for maximizing traffic flow. Grey dots show
measured vehicle flow rate J, plotted as a function of vehicle concentration c = p/popt
where popt = 133 vehicles/km. The flow rate is normalized by 1483 vehicles/hour which
corresponds to J,(popt) =J,max in Bando & Hasebe's model [3]. Histograms show the
states occupied by the system in the morning (green, 6-8AM) and evening (blue, 4-6PM)
rush-hour traffic. The data were collected by the Minnesota Department of Transportation
from a sensor on the westbound direction of 1-94 (Minneapolis, MN, USA) on Fridays (7,
14, 21, 28) in September 2012 [84]. The predicted vehicle transport rate J/J,max (thick
solid black line: Bando & Hasebe's model; thin solid red line: Greenberg's model) and
traffic impedance p/po (dashed line: Bando & Hasebe's model) are plotted as a function
of vehicle concentration c.
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Table 5.2: Comparison between theoretical predictions (T) and experimental observations
(E) of the optimum concentration copt, the optimum viscosity popt and the exponent a.
Concentration units are % wt/wt for nectar drinking and sugar transport in plants, % vol/vol
for blood flow, and % vehicle density/max vehicle density for traffic flow.

System

Nectar drinking
(Suction)

Blood flow
in vertebrates

Sugar transport
in plants

Nectar drinking
(Viscous dipping)

Traffic flow
(Greenberg)

Traffic flow
(Bando)

T

35

Capt

E

36.9 ± 5.3

40 40.2 i 8.6

24 21.8 10.3

57 55.0 ± 4.1

T

4

2

2

popt/po

E

3.5 - 7.4

T

2

E

1.8 - 2.9

2.2-3.4 1 1.1-1.8

1.4 - 3.6 1 0.5 - 1.8

64 17.5 - 49.4 6 4.1-5.6

37 18 - - - -

21 18 2 1.9 1 0.9

to note that the congested highway (Figure 5-2, data recorded from 4-6 PM) is very far

from being optimized. This is presumably due to two main effects. First, the individual

vehicle operator attempts to minimize his or her own travel time which does not necessarily

optimize the overall vehicle flow J,. Second, traffic flows are intrinsically time dependent

which leads to the formation of traveling density waves and shocks [119, 125, 51, 35].

5.4 Universal properties of transport networks

To compare characteristics of the particular biological and man-made transport networks

considered in Sec. 5.2 and 5.3 to the general formulation in Eqns. (5.3) and (5.4), normal-

ized material flow and impedance curces are plotted in Figure 5-3. Despite the complex

dependence of impedance on concentration (see Appendices 5.6.1 and 5.6.2), both the ma-

terial flow J* and impedance p* are adequately approximated by the simple forms given in

Eqns. (5.3) and (5.4). From (5.4), it follows that the impedance at the optimum concentra-

tion is pop, = 2 'po, where yo is the impedance of the pure carrier medium (with c = 0)
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and the power a is determined by the flow constraints. In the cases of vascular transport

in plants and animals, the power a = 1, since there is no coupling between the constant

driving pressure (f) or the vascular geometry (X) and the impedance (I). This suggests

that the optimum in material flow should occur when the blood or phloem sap is twice as

viscous as water, i.e. 10opt = 2710, in good agreement with observed values (see Table 5.2).

In transport systems that are constrained, for example by constant work rate, a will

generally be greater than unity, because of the coupling between flow and impedance. The

impedance at the optimum concentration p[pt = 2 a1po, can therefore be significantly greater

than that of the carrier medium. This is most clearly seen in the case of viscous dipping

(Sec. 5.2.4), where the observed nectar viscosity is up to 50 greater than that of water,

roughly consistent with the value (26 = 64) predicted by our simple model (see Table 5.2).

These observations suggest that this general framework may also provide rationale for

the viscosities found in other biological transport systems where efficient transport is fa-

vored. Examples of systems with constant forcing include mammals that drink whole milk

(observed viscosity: q - 2TjO [80]), and in the macro-alga Chara where streaming dis-

tributes the content of the cell cytosol (observed viscosity: - 3rIO [122]). Although detailed

studies of these systems are left for future consideration, we note that both are roughly con-

sistent with the predictions of our general theory with a = 1.

Comparing traffic flow to the biological transport problems considered, we find that

the normalized flux and impedance curves follow the same pattern (see Figure 5-3 and

Table 5.2). Since the speed limit vma which is fixed on a given road section, corresponds

to the flow driving mechanism in the Bando-Hasebe model, traffic flow is analogous to

vascular transport in animals and plants that operate at constant pressure. Our model thus

indicates that the flow constraint does not couple to impedance, Xf oc P0 ('Y = 0, a = 1),

and hence that the optimal impedance is ppt = 2po. This is in rough accord with Bando-

Hasebe's model which yields pep, = 1.9po.
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Figure 5-3: Universal properties of biological and engineered flows. (a) Normalized flow
rate J = J(c)/J(copt) plotted as a function of normalized concentration c* = c/copt. The
solid thick black line shows the prediction of Eq. (5.3). (b) Normalized impedance p* =
p(c)/p(copt) plotted as a function of normalized concentration c*. The solid and dashed
thick black lines show the predictions of Eq. (5.4). The inset indicates the dependence of

on c*.
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5.5 Discussion

We have seen many qualitative and quantitative similarities between different natural and

engineered transport networks. Although the detailed mechanisms are different, key com-

mon features have allowed us to develop a general framework. Provided impedance in-

creases with concentration, our model provides means of rationalizing the optimal concen-

trations. Collecting data from more than 100 plant and animal species, we have observed

that optimization of material flow appears to be a universal feature of biological transport

systems. This deduction provides rational for the observation that the simple model in-

troduced in Sec. 5.1 collapses flow and impedance curves for all the systems considered

(Figure 5-3), suggesting a universal component to all natural transport networks.

Finally, we have shown that an interesting analogy can be made between biological

systems and self-driven systems such as traffic flows. Here we find that the impedance

analogy is still valid, but that the system is far from optimized due to conflicting interests

between individuals and the collective. The consideration of other man-made transport

systems, such as the electrical grid or the internet, is left for future consideration.

5.6 Methods

5.6.1 Viscosity and density of nectar and phloem sap

Phloem sap and flower nectar consist of an aqueous solution of sugars, amino acids, pro-

teins, and other nutrients. Sugars, of which sucrose, fructose and glucose are the most abun-

dant types, constitute about 90 % of the total solute mass [93]. To approximate the viscosity

q and density p of phloem sap and nectar, we therefore used data from sucrose solutions

of concentration e obtained from [47]. Least square fits to sucrose data yields the approx-

imate expressions for viscosity TI = iogn(c) = 7o exp [0.032 5 - (0.012 e)
2 + (0.023 e)31

and density p = po (1 + 0.0038 + (0.0037c) 2 + (0.0033c) 3). We note that viscosity and

density data from other sugar types (glucose and fructose) are well approximated by the fit,

suggesting that the major determinant of viscosity is the mass fraction c, and not the type

of solute.

87



5.6.2 Viscosity of blood

Vertebrate blood is composed of blood cells suspended in blood plasma, a liquid which

consists mostly of water. The viscosity of blood q depends primarily on the volume con-

centration a (hematocrit) of red blood cells, and on temperature [31, 130]. As demon-

strated by Saito [118] and Stark [130], blood viscosity is well described by the function

77/71o = 1 + 2.5a/(1 - ), which for blood vessels with diameters larger than 1 mm is

consistent with empirical data with less than 5% error for 0 < a < 70% [100, 39].
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Chapter 6

Conclusions

We have explored a variety of natural designs for fluid transport and presented physical

pictures of many such systems. We have rationalized a number of nature's strategies for

fluid uptake and demonstrated that many such strategies are optimized for efficient trans-

port. By identifying qualitative similarities between a number of transport systems, we have

developed a general framework for determining optimal concentrations in concentration-

impeded flows.

Nature's myriad drinking techniques make clear that the optimal fluid transport mech-

anism for a given creature depends on both its geometry and scale. We have identified the

dominant forces and suggested physical pictures for each drinking style, thereby classi-

fying the natural drinking styles of terrestrial creatures according to mechanism. Simple

scaling arguments have been validated by comparison with existing data. Suction is the

most common drinking strategy, the suction pressure being applied to overcome either vis-

cous forces for small creatures (Re < 1) or inertial forces for large creatures (Re > 1). In

suction drinking, gravitational effects are negligible for all but the largest creatures. Scal-

ing arguments indicate that the pressure generated by muscular contraction is comparable

for all creatures, and larger for large creatures than the characteristic capillary pressure.

Conversely, capillary pressure is employed by many small creatures and others for which

morphological constraints preclude active suction. Creatures for which suction is impossi-

ble have developed various drinking styles. Inertial forces facilitate lapping or ladling for

large creatures (Bo > 1), while interfacial and viscous forces facilitate licking and viscous
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dipping for small creatures. A few such small creatures have developed ingenious drinking

techniques that rely critically on contact angle hysteresis. The critical importance of wet-

ting properties in the drinking strategies of these creatures makes immediately clear their

vulnerability to surface-active pollutants such as petroleum or detergent.

Guided by the presupposition that evolution leads to optimal design, it is natural for

applied mathematicians to attempt to rationalize natural systems through consideration of

constrained optimization problems. However, it is rarely clear what, precisely, is being

optimized and what are the relevant constraints. For example, attempting to rationalize the

shapes of bird beaks or insect probosci exclusively in terms of their drinking efficiency

would mistakenly neglect their importance in many other tasks, for example, foraging and

combat. Nevertheless, we have considered a number of instances where it is fruitful to con-

sider the role of optimization in natural drinking strategies. In particular, we have demon-

strated that the optimal sugar concentrations for nectar-feeding via viscous dipping or active

suction can be rationalized as those that maximize energy flux subject to the constraint of

constant work rate [62]. In addition, we have suggested new rationale for the shape of the

hummingbird's tongue: specifically, the fact that each of the tongue's two grooves is nearly

semicircular.

We have identified many qualitative and quantitative similarities between different nat-

ural and engineered material flows. Although the detailed mechanisms are different, key

common features have allowed us to develop a general framework for transport networks.

Provided an increase in concentration leads to greater impedance, our framework allows

us to rationalize the optimal concentrations. Collecting data from more than 100 plant and

animal species, we have observed that optimization of material flow appears to be an uni-

versal feature of biological transport systems. Finally, our general framework was applied

to assess the efficiency of an engineered system, traffic flow.

Nature has been optimizing transport strategies on small scales for millions of years

while man has only recently become interested in transporting fluid on the nanoliter scale,

for applications ranging from drug delivery to the handling of biomolecules [ 132]. Al-

though biomimicry is now a central methodology in the engineering sciences, nature's

myriad mechanisms for fluid transport on the scale of interest to microfluidics remain rel-

90



atively unexplored. It is expected that continued exploration of this class of problems will

prompt further biomimetic technological advance.
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Appendix A

Supplementary Tables
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Table A. 1: . Estimation of the nectar depth for six flowers visited by A. colubris.

Plant V (Ml) D' (mm) Hb (mm) Schematic

Campsis radicans 40 [9] 4.2 2.9

Ipomoea coccinea 1.6 [79] 2.0 0.5 Nectar

Ipomopsis rubra 0.8 [5] 2.0 0.2 H

Lobelia cardinalis 18.8 [24] 5.8 0.7

Aquilegia canadensis 3.0 [42] 0.9 5.2c

Impatiens hiflora - - 11.7d

aCorolla diameter at base (see Figure B-1-B-5).

bNectar height H is estimated as H = 4V/(7D 2 ).

CNectar bulb at corolla base is omitted to estimate an upper limit for H (see Figure B-5).

dDirect measurements have been reported for Impatiens biflora whose spur is transparent [72].
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Table A.2: . Corolla measurement (diameter at base of corolla tube).

Plant Numbers of flowers Average diameter' Collection

(S.D.) [mm] [Source]

Campsis radicans 9 4.2 (0.3) MOb [1,2]

Ipomoea coccinea 6 2.0(0.1) MOb [3] & NYC [4]

Ipomopsis rubra 12 2.0 (0.2) GHd [5,6]

Lobelia cardinalis 10 5.8 (0.3) MOb [7] & NYC [8]

Aquilegia canadensis 6 0.9 (0.1) MOb [9] & NYC [10]

aWe measured corolla diameters at the base from two specimens in the program ImageJ
took the average value.

bMO=Missouri Botanical Gardens (images obtained from Tropicos, the botanical information
system at the Missouri Botanical Garden - www.tropicos.org).

CNY=New York Botanical Garden, C.V. Starr Virtual Herbarium.

dGH= Gray Herbarium, Harvard University Herbaria.

Source

[1] http://www.tropicos.org/Image/100137855

[2] http://www.tropicos.org/Image/100002820

[3] http://www.tropicos.org/Image/100004180

[4] http://sweetgum.nybg.org/vh/specimen.php?irn= 1139533

[5] A. Arthur Heller 1869

[6] J. M. Tracy No.8311

[7] http://www.tropicos.org/Image/100015764

[8] http://sweetgum.nybg.org/vh/specimen.php?im=634937

[9] http://www.tropicos.org/Image/100105516
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Appendix B

Supplementary Figures
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Figure B-1: Campsis radicans. The arrows indicate the basal corolla diameters used in our
estimation of nectar height. (http://www.tropicos.org/Image/100002820)
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Figure B-2: Ipomoea coccinea. The arrows indicate the inferred basal corolla diameters.
(http://www.tropicos.org/Image/100004180)
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Figure B-3: Ipomopsis rubra. The arrows indicate the inferred basal corolla diameters.
(Gray Herbarium, Harvard University Herbaria, Ipomopsis rubra J.M. Tracy No.8311)
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Figure B-4: Lobelia cardinalis. The arrows indicate the inferred basal corolla diameters.
(http://www.tropicos.org/Image/100015764)
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Figure B-5: Aquilegia canadensis. The arrows indicate the inferred basal corolla diame-
ters. (http://www.tropicos.org/Image/100105516)
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