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Abstract

Cells sense stimuli, process information and respond using signaling networks regulated

by enzymatic activity of various proteins. Aberrations in signaling are associated with diseases

such as cancer. Most current methods lack the sensitivity to measure enzymatic activity in

single cells and instead measure the average of large cell populations. Cellular heterogeneity,
overlooked in these methods, is widespread and relevant. Microfabricated tools are uniquely

suited to single cell analysis due to the match in size scale which enables high sensitivity, high

throughput measurements.

In this thesis we develop a microfluidic platform for the direct measurement of enzyme

activities from selected single cells without disrupting their extracellular context. We develop

modules to: enhance enzyme assay sensitivity by microfluidic confinement, interface microfluidic

devices with selected single cells, enable multiplexing and then integrate these modules to

perform single cell assays.

We first investigate electrokinetic trapping of charged biomolecules in a nanofluidic

concentrator for enhancing enzyme assay sensitivity by simultaneously accumulating enzyme

and substrate into a reaction plug. Non-linear enhancement of reaction kinetics in this device is

predicted by a mathematical model and experimentally verified. A linear enhancement mode is

developed where only the enzyme is accumulated and is reacted with substrate later in aii

enclosed volume defined by integrated pneumatic valves or by micro-droplets formed using an

integrated droplet generator. This device is then used to perform high-throughput measurement

of secreted cellular proteases.

We then develop a nicrofluidic probe for lysis and capture of the contents of selected

single adherent cells from standard tissue culture platforms by creating a small lysis zone at its

tip using hydrodynamic confinement. The single cell lysate is then divided and mixed with

different substrates and confined in small chambers for fluorimetric assays. An integrated

nanofluidic concentrator enables further concentration-enhancement. We demonstrate the ability

to measure, from selected single cells, the activity of kinases: Akt, MAPKAPK2, PKA and a

metabolic enzyme, GAPDH - separately or simultaneously. This assay platform can correlate

single cell phenotype or extracellular context to intracellular biochemical state. We present

preliminary explorations of the correlation of cell morphology or local cell population density to

kinase activity.

Thesis Supervisor: Jongyoon Hanl

Title: Associate Professor of Electrical Engineering and Computer Science and Associate

Professor of Biological Engineering
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Chapter 1 Introduction

The advancement of science, and arguably that of civilization itself, is linked to the

development of novel tools as much as it is to that of new concepts and paradigms. The advent

of the telescope made possible Galileo's observation of the phases of Venus which was among

the most important in human history. Tycho Brahe's extensive and accurate compilation of

astronomical observations enabled Kepler's derivation of a model for planetary motion which in

turn was used by Newton in proposing the universal law of gravitation. Biology and medicine,

today, can be argued to be at a similar point where scientists need tools for high throughput

acquisition of information across levels of biological organization and across spatial and

temporal scales.

1.1 Looking at One among Many: A Role for Microfluidics and

Nanofluidics in Biology

Microfluidic and nanofluidic devices and systems by definition have a length scale

ranging from a few nanometers to a few tens of micrometers which closely matches the length

scale spanned by a range of bio-objects of interest from single macromolecules: DNA, RNA and

proteins to single organelles to single cells. This match in length scales provides a unique

opportunity for micro/nano-fluidics in terms of the sensitivity or resolution to study and

manipulate single bio-objects instead of the large ensembles studied in traditional methods.
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Microfabrication methods, borrowed from microelectronics, have the capability to

integrate a very large number and variety of unit devices in a small integrated system at a very

low extra cost per unit added. This creates the potential for microfluidic systems to achieve a

high level of automation by integration of multiple operations in a modular fashion that would

otherwise require laborious manual interventions and also very high-throughput in gathering

data by cost-effective repetition of a number of identical systems on a single chip [1] . Both

these features are of critical importance in studying single bio-objects in the large numbers and

at the high speed necessary to obtain statistically significant results in the presence of

heterogeneity.

The small size of these devices also gives rise to physical phenomena (such as laminar

flow in microfluidic channels or ion concentration polarization at micro-nano interfaces [2])

unique to these length-scales which can be harnessed to enable new methods of sensing and

manipulation of single bio-objects.

1.2 Single Cell Analysis

In cellular analysis it is increasingly realized [3-6] that while traditional ensemble average

measurements (from 103-106 cells) have provided the bulk of information gathered in cell biology

until recently, heterogeneity in individual cell constituents and behavior is in fact ubiquitous.

This confounds understanding of biological mechanisms [4], has consequences for the treatment

of diseases [5] and in fact, if studied along with the proper extracellular context, can be used as

a tool to generate new understanding of cell behavior [6]. Microfluidic and nanofluidic devices

and systems - due to the above-mentioned features of high sensitivity, throughput and
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automation - are exceptionally well-suited to single cell analysis at various scales ranging from

genes, gene transcripts, proteins, peptides and metabolites to whole cell phenotypic measures

such as cell mass and motility.

1.3 Thesis Scope and Structure

While single cell genomics is relatively advanced [7] primarily due to the amplification

and resultant sensitivity afforded by the Polymerase Chain Reacion (PCR), single cell

proteomics is impeded by the low abundance of most cellular proteins, lack of an easy

amplification scheme and consequent sensitivity bottlenecks which can be addressed by

miniaturization.

This thesis seeks to develop an integrated microfluidic system-on-chip which can

measure the activities of proteins, most prominently: kinases, from single adherent mammalian

cells and enable the correlation of the single cell kinase activities with the extracellular context

and cellular phenotype measurements. Due to their relative importance in human disease

models, to be able to integrate our data with that from the wealth of existing studies and due to

the hitherto persistent challenge in interfacing microfluidic systems to them, we focus on

adherent cells in standard tissue culture platforms.

We begin with a survey of current single cell analysis methods and a critical comparison

of traditional and microfluidic methods in Chapter 2. Chapter 3 presents the investigation of

enhancement of enzymatic reaction kinetics using an electrokinetic bio-molecule concentrator

and its integration with a valve-isolated reaction chamber or encapsulating droplets and their

use to detect secreted cellular proteases. The development and optimization of a microfluidic
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probe which measures intracellular kinase activities in selected single adherent cells is presented

in Chapter 4 which is followed by a summary of this work and directions for future work in

Chapter 5.
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Chapter 2 Current Single Cell Analysis Methods and the

Role of Microfluidics

2.1 Why Analyze Single Cells?

The cell is the fundamental unit of all known life and it is the central challenge of

biology to understand how a cell processes information and responds to perturbations. Most of

our understanding of the cell is obtained from bulk measurements made on large populations of

cells. This is to some extent due to a focus on finding mechanisms common to most cells but

also largely due to technical limitations of conventional methods in making measurements from

the very limited amount of starting material available in a single cell (usually ~5-10pg of

DNA/RNA, ~1ng of total protein in a single human cell).

Misleading Population Averages

Cellular heterogeneity has been found to be widespread in nature and the extent to

which bulk average measurements link faithfully to individual cell behavior is increasingly

doubted in a variety of contexts as discussed in a number of recent reviews 11-3]. Population

averages may not represent individual cells function even for a normal distribution of single-cell

measurements (Figure 2.1a). For example, subpopulations of clonally derived hematopoietic

progenitor cells with low or high expression of the stem cell marker Sca-1 were seen to give rise

to different blood cell lineages 141. In the presence of rare or small subpopulations (Figure 2.1b),

population averages can represent the vast majority of cells and still miss important biology.
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A.' B.

E. Single Population
/',A Cells Average (p)

p2 2 Time

Figure 2.1. Population averages hide cellular heterogeneity. a. Behavior of cells far away from the mean or b.
small subpopulations may not be captured by the mean. c. For a bimodal population the mean may not

capture behavior of any cells. d. Correlated and anti-correlated variables maybe difficult to distinguish by
average measurements and simultaneous multi-parameter single cell measurements are needed to resolve this.
e. Asynchronous dynamics of single cells (variable number and phase of constant-amplitude pulses here) can
lead to misleading population-averaged dynamics measurements (damped pulses here).

For example, in cancer, subpopulations of cells have been found to contribute unequally to

disease progression and the "cancer stem cell" hypothesis arising from this is a subject of debate

[5]. When a cell population contains several dominant, distinct subpopulations, the ensemble

average may not represent the majority of cells or even any single cell (Figure 2.1c). This has

been seen in presence of "all-or-nothing" responses with variations in the threshold across the

population - such as in hormone induction of maturation in Xenopus oocytes - which can be

misinterpreted as a graded response in bulk measurements.

For elucidating signaling networks, the situation can get especially complicated as the

nionitoring of multiple components is often essential 161 but in presence of heterogeneity,
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correlation and anti-correlation among different measurands may be difficult to distinguish in

bulk average measurements (Figure 2.1d) 17]. Additionally, the true dynamics of a signaling

network can be hidden by lack of synchronicity among cells (Figure 2.le) [81 and lead to wrong

mechanistic interpretations.

Sources of Cellular Heterogeneity

Heterogeneity among cells can emerge from fluctuations in internal components of cells

which occur due to the discrete nature of basic cellular processes. For example, fluctuations in

regulatory proteins, have been shown to determine the probability and timing of ligand-induced

apoptosis [9]. Heterogeneity in cellular response can also arise from differences in intrinsic

cellular states such as cell-cycle phase. For example, pulses of the tumor suppressor p53 in

appear to happen spontaneously in un-synchronized, proliferating cells but were found to be

correlated with DNA replication which causes intrinsic damage [10]. Heterogeneity of cellular

response can also be due to the variations in the microenvironment of a cell. The population

context of a cell such as local cell density, number of cell-cell contacts etc can vary dramatically

between individual cells. For example, these parameters have been shown to influence the

susceptibility for viral infection [11].

Appropriately chosen single cell measurement techniques can be useful in presence of any

of the above sources of heterogeneity and can resolve each of the above issues with bulk average

measurements. Additionally, single cell techniques also lend themselves naturally to analyzing

scarce and/or mixed yet difficult to sort cell samples such as adult stem cells or other

heterogeneous primary tissue samples. Also most environmental samples may contain a majority
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of uncultivable species of microbes and the ability to isolate individual cells and analyze them

can help probe such biological "dark matter" [12, 13].

2.2 Single Cell Analysis: Conventional vs. Microfluidic Methods

An increasing number of works have appeared in recent years focusing on single cell

analysis as summarized in multiple recent reviews [14-17]. Single cells can be studied at multiple

levels: from the population context of single cells to single cell phenotypic/functional

measurements to underlying proteins: their levels, localization and activity in single cells to the

sequencing of DNA and its expression as RNA in single cells. Additionally, various metabolites

and other small molecules can also be quantified in single cells. Ideally, one would like to

correlate diverse cellular phenotypes to the differences in underlying biochemistry and hence

discover the mechanistic basis of the observed heterogeneity.

Microfluidic systems - due to their size scale and associated phenomena - are uniquely

suited to single cell manipulation and analysis because of potential advantages in sensitivity,

throughput and automation. Various microfluidic devices and systems have been developed over

the last decade, targeted at various aspects of single cell analysis which have been the subject of

some recent eviews. [15, 16, 18]. Various tools based on conventional technologies also exist or

are being actively developed for most of the above measurement levels. Given the relative

familiarity of biologists with these tools, microfluidics systems have to compete with these

traditional tools by delivering unique and/or complementary advantages in gathering various

kinds of single cell data and placing them in context of existing knowledge. In the rest of this

chapter, we seek to critically review the relative advantages of microfluidic tools relative to
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available traditional tools at the various levels of single cell analysis and also propose some

technology gaps/opportunities for microfluidic systems. While heterogeneity has been found to

be common and is widely studied using single cell techniques in bacteria and yeast, we focus

here on mammalian single cell analysis.

2.3 Single Cell Genomic Analysis

A single cell usually contains less than 10pg of nucleic acid material. Yet, driven mostly

by the exponential, selective amplification afforded by PCR and its variants, single cell

sequencing and gene expression analysis is the most advanced among single cell analysis

methods. An excellent review of the evolution and current status of single cell genomic analysis

has appeared recently [19].

Single Cell PCR Amplification Based Methods

The analysis of DNA [20] and RNA from single cells 121, 221 has been reported, starting

as early as 1980s. Quantitative reverse transcriptase PCR (qRT-PCR or qPCR), which couples

reverse transcription and incorporation of a fluorescent tag, allows sensitive measurement down

to single molecule range and analysis of many (~3-4) genes is possible from the same sample.

This technique has been used to analyze gene expression in a single cell [23]. Microarrays allow

the measurement of thousands of genes at once using hybridization of labeled sample to an

array of probes but typically require 1-2pg of mRNA. By using PCR to amplify mRNA from

single cells up to this amount, microarray analysis of single cells has been performed 124]. Using

next generation sequencing technologies, mRNA sequencing (mRNA-Seq) protocols have been

developed for single cell whole transcriptome analysis [251. Also sequencing of the genome of
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single E. Coli cells after amplification using multiple displacement amplification (MDA) has

been demonstrated [261.

Issues and avenues for optimization in further application of many of the above

amplification based techniques are: increasing sensitivity and precision by dealing with the

introduction of bias/errors or contamination in the amplification step and increasing throughput

in terms of number of cells and genes by automation and multiplexing. Microfluidic techniques

using large numbers of micro-reactors in the form of either chambers with pneumatic valves [27]

or water-in-oil droplets [28] have been applied for increasing sensitivity and throughput of PCR.

The small volume of the reactor provides a concentration-enhancement and leads to a higher

initial template concentration which can improve amplification bias/error issues [291 and make

it easier to implement digital PCR (dPCR) [30] where direct counting of single starting

molecules after stochastic encapsulation and amplification. The throughput and ease of use of

PCR-based methods is significantly improved by microfluidic automation and parallelization as

such devices can help automating and integrating on a single chip, various steps ranging from

single cell isolation from complex environmental or tissue samples [13, 31] to the combinatorial

mixing of thousands of PCR reactions in parallel [32] while decreasing the risk of contamination.

The unique low volume manipulation capabilities of microfluidics in PCR were also

recently demonstrated in isolating and amplifying single chromosomes from a single cell thus

enabling haplotyping of single cells [33].
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Microscopy Based Methods

A common disadvantage with the PCR-based methods is the loss of the tissue or other

extracellular context information as single cells are usually suspended and isolated for lysis and

DNA extraction. This can be mitigated by microscopy based approaches which have been

developed to visualize nucleic acids in single cells. RNA fluorescent in-situ hybridization uses

fluorescently tagged probes to mark mRNA molecules in fixed cells [34] and has been used to

count individual mRNA molecules in single cells and study cell-cell variability [35]. Microscopy

can be used to understand the spatial relationships between different cells and correlate the cell-

cell variability with the extracellular context of individual cells.

A limitation in microscopy-based methods stems from its usually limited throughput.

These limitations can be overcome by automated microscopy aided by automated microfluidic

parallelization of cell growth/treatment conditions [36]. mRNA FISH has been applied to

thousands of single bacterial cells using an automated microfluidic device [37].

2.4 Single Cell Proteomics

A single mammalian cell contains up to 1ng of total protein but with a large dynamic

range in abundances of the large number of different proteins ranging from a few copies to up to

105 copies which makes single cell proteomic measurement much more challenging. However,

significant non-genetic sources of heterogeneity exist downstream of gene expression in

mammalian cells at translational and post-translational levels [2, 38] which cannot be probed in

single cell genomic analysis methods. Information at the protein level more closely approaches
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signaling events. Direct reads of protein abundance, localization within the cell and protein

activity at the single cell level are essential in understanding such cellular heterogeneity.

Protein Abundance and Localization

Techniques for measuring proteins in single cells usually work by labeling specific

proteins for visualization and/or measurement. The labeling techniques can be broadly classified

as those using tagged antibodies against proteins and those using genetic manipulation of cells

to express proteins fused with specific fluorescent proteins. Antibody-based techniques usually

work with fixed cells for intracellular proteins and hence at single time points or with surface

markers on live cells. Antibodies can be used to measure the level of phosphorylated forms of

proteins which can be used as a surrogate for protein activity although this correlation might

break down in presence of multiple post-translational modificiations [39]. Antibody-based

methods in general, are also limited by the quality of antibodies available in terms of their

sensitivity and cross-reactivity. Fluorescent-tagged proteins can be used in live cells which can

be tracked over time. Generating cells expressing fluorescent-tagged proteins can be a laborious

process and the addition of the fluorescent protein tag can hinder normal protein function.

Visualization or measurement of the protein is usually done by either microscopy or flow

cytometry. Microscopy can provide protein levels as well as intracellular localization information

and with live-cell imaging can provide temporal information as well while maintaining the tissue

context of the cell and providing information about the population and other extracellular

context of the single cell. But it usually works at a relatively low throughput. Flow cytometry

usually provides only protein abundance information and at a single time-point at a time but
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works at a high throughput and can probe a large number of single cells quickly. With

fluorescent tagging, the number of simultaneous parameter measurements (usually ~12

maximum) is limited by the spectral overlap of fluorophores, independent of the detection

method. Recent development of mass-based flow cytometry 140] which uses lanthanide tags on

antibodies and time-of-flight mass spectrometry for measurement enables much higher degree of

multiplexing and up to 34 simultaneous parameter measurements have been demonstrated [41].

Microfluidic platforms have been developed for single cell analysis based on microscopy.

High throughput imaging of protein levels, localization and dynamics in single cells can be

facilitated by microfluidic platforms 136, 37, 42] which help in automating the growth, treatment

and imaging of single cells. Isolation suspended single cells in microfabricated wells [43] has

enabled single cell measurement of secreted proteins and the isolation of cells producing specific

proteins such as antibodies. Isolation of suspended single cells in valved microfluidic chambers

and the capture of secreted proteins 144] or intracellular proteins and their phosphorylated forms

after cell lysis [45, 46] on to a barcoded pattern of a DNA-encoded antibody library in an

adjacent microfluidic chamber has been demonstrated. The spatial separation of the antibody

binding sites in these techniques can ease the limitations posed by spectral overlap of

fluorophores and cross-reactivity of antibodies. A microfluidic flow cytometry method using

droplet encapsulation of single cells has been developed that can be used for enzyme-amplified

detection of low-abundance cell-surface biomarkers [47]. A parallel microfluidic imaging

cytometer has been demonstrated which combines the high throughput of flow cytometry with

the access to higher information content afforded by imaging [48].
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Protein Activity

Measurement of protein activity in single cells is extremely valuable as it provides the

most direct access to actions taking place inside the cell and is usually the closest link to

function. A large fraction of active proteins of interest in the cellular signaling network are

kinases which work by adding phosphate groups to their substrates. Protein activity is usually

measured using synthetic or natural substrates of the target protein such as peptides or protein

fragments or proteins whose measurable properties such as radioactivity, fluorescence or charge

change on reacting with it. For secreted or cell-surface proteins this reaction can take place

outside the cell while for most intracellular proteins either the substrate has to be introduced

into the cell or the cell has to be lysed before the reaction can happen.

Genetically encoded FRET sensors allow kinase activities to be monitored over time in

single live cells [49]. The challenges in this method are the limited multiplexing abilities and the

requirement for genetic manipulation of cells. Fluorescently-tagged kinase substrate peptides

have been introduced into cells by microinjection and the reaction products and un-reacted

substrates were later separated in a mobility-shift assay by capillary electrophoresis of the single

cell lysate, enabling the measurement of three kinase activities from a single adherent

mammalian cell at single time points in each experiment [50]. In rare cases, such peptides can be

naturally cell-membrane permeable [51] or in other cases, they can be made so by attaching a

hydrophobic chain such as the myristoyl group [52]. Overall, this method is limited by

challenges in achieving specificity of the reaction in the intracellular milieu and the

susceptibility of the peptides to non-specific cleavage by intracellular proteases [53].
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Most conventional protein activity measurement methods work with cell lysates and as

end-point measurements. Protocols based on the measurement of radioactivity after reacting

crude or immuno-affinity purified cell lysates with [y-]32 pATP are most common for kinase

activity measurement [54]. A homogenous fluorescence-based assay for protein kinase activity in

cell lysates has been developed which uses fluorogenic substrate peptides [55] and avoids the

relatively cumbersome use of radioactivity.

These methods are usually unable to measure single cell protein activity directly as they

require relatively large (~pg-scale) amounts of protein for measurable activity in the relatively

large assay volumes (~50piL or more) used in traditional reaction formats. This presents an

opportunity for microfluidic tools as a simple reduction in reaction volume can be used to

approach single cell sensitivity in these methods. The measurement of kinase activity from small

amounts of patient samples using a miniaturization of the radioactive kinase assay has been

demonstrated but this method still requires up to 3000 cells 1561. Measurement of kinase activity

from cell lysate equivalent to that from ~4-5 cells was demonstrated [57] using fluorogenic

peptide substrates with a nanofluidic biomolecular concentrator 1581 to gather molecules into a

~pL-scale plug on chip. Work is also in progress to use the biomolecular concentrator with

fluorescently labeled peptides to perform a single cell concentration-enhanced mobility shift

kinase assay [59]. Cell trap arrays have been used to isolate single suspended cells and assay the

activity of intracellular carboxylesterases for which cell-permeant substrates are commonly

available [51]. Microchamber arrays with cell traps and have been used to trap and lyse single
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suspended cells and analyse the level of intracellular metabolites and the activity of a house-

keeping enzyme G6PDH [601.

2.5 Single Cell Phenotype Characterization

Single cell phenotype can be quantified in a number of ways. Individual cell behavior

such as migration, proliferation and morphological changes can be considered part of cellular

phenotype. Depending on the context, some features discussed above (protein secretion or cell-

surface markers) could also be considered aspects of phenotype. Direct observation using live-

cell microscopy is the most common method for direct single cell phenotype characterization.

For direct measurement of the cellular phenotype in the natural extracellular context, methods

for intra-vital imaging have been developed [61]. Measurement of other parameters of the single

cell such as mass/density, chemical, mechanical or optical properties can sometimes be used to

indirectly make phenotypic measurements.

Microsystems have been used to facilitate high throughput phenotypic characterization

by automating microscopy-based methods (36, 62, 63] with or without isolation of single cells as

described for above modes of single cell analysis. Microsystems can also enable unique

measurements due to their sensitivity such as single cell mass [64, 65] and density measurements

[66] which would otherwise be impossible. Microsystems can also be used to mimic the natural

extracellular context [67] in which the cellular phenotype of interest such as cell migration is

displayed and thus enable measurement of the phenotype which can be closer to the in-vivo

phenotype.
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2.6 Connecting Signals to Responses in Single Cells

In order to elucidate the underlying mechanisms of cellular heterogeneity, it is important

to be able integrate the above modes of single cell analysis and create a link from the

extracellular and population context of the single cell to phenotypic measurements to protein

and gene level measurements. In heterogeneous cell populations, this would be best

accomplished if the phenotype measurement and the signaling measurements can be performed

on the same cell simultaneously.

Phenotypic measurements typically require maintaining the measurement context

relatively similar to the natural context in which the cell behavior of interest would occur. For

example, the proliferation of an adherent cell type requires, at the very minimum, adhesion to a

surface and may require a certain minimum cell density or even cell-cell contact. Similarly cell

migration is also an adherent cell phenotype. However the measurement of cell surface or

intracellular proteins using flow cytometry would require disrupting cell adhesion to make a

single cell suspension. Such practical experimental limitations in existing techniques mean that

often phenotypic measurements are made separately from signaling measurements making it

difficult to correlate them at the single-cell level.

Microfluidics can help in recreating complex extracellular environments in-vitro, as

demonstrated in recent 'organ-on-chip' work [68, 69], and thus help in systematically exploring

the effect of cell-cell interactions and population-level parameters on single cell phenotypic

variability. Microfluidic systems also offer unique single cell sensing and manipulation

capabilities and the possibility to integrate them seamlessly in a single system-on-chip, thus
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presenting an opportunity to perform phenotypic and signaling measurements from the same

single cell. Thus, with the development of appropriate integrated cell culture, single cell

manipulation and measurement platforms, an integrative study linking cellular heterogeneity to

population context and to intracellular biochemistry can be performed.

Alternatively, a single cell analysis platform which integrates standard, well-studied

platforms for performing single cell phenotypic measurements such as 2-D or 3-D tissue culture

with microfluidic devices for selective single cell biochemical analysis can also enable integrative

studies of cellular heterogeneity. Such platforms will provide new insights into the cellular

mechanisms and indeed help better understand and combat disease mechanisms.
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Chapter 3 Non-Linear and Linear Enhancement of

Enzymatic Reaction Kinetics using a Biomolecule

Concentrator

3.1 Introduction

Enzyme catalyzed reactions are ubiquitous in nature and enzyme assays and the study of

enzyme kinetics are essential in a wide range of scientific and technological domains such as

biochemistry, medical diagnosis and biochemical engineering. Well-established methods for

enzyme reactions such as microtiter-plate based colorimetric and fluorimetric assays usually

require large sample volumes (~OOpL) and use relatively large amounts of the enzyme (~1ng)

per reaction. This presents a significant bottleneck in studying the kinetics of enzymes from

precious samples such as those obtained directly from patients as well as from very low

concentration samples such as a lysate from a single or a few cells. Monitoring the activities of

various protein kinases, which play key roles in the cell signaling network, in single cells can

help in understanding the heterogeneity in their levels in cell populations [1]. Such cellular

heterogeneity, which cannot be studied by the usual ensemble average measurements, is thought

to cause incomplete sensitivity to chemotherapy in cancer [2, 3]. However none of the frequently

used methods provide the sensitivity needed to measure activities from molecules contained in a
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single cell, especially once they are diluted in a volume (~1pL) that can be physically handled

by micropipettes [4].

Microfluidic systems significantly reduce required sample volume and assay time and

also increase throughput of biochemical assays in general. Microfluidic enzyme kinetics studies

that explore these opportunities have been reviewed earlier [5]. Homogeneous reactions using

reactants mixing while in flow 16, 7] or with stationary reactants mixed in isolated chambers [81

or in water-in-oil droplets 19]. In addition, heterogeneous reactions using surface-immobilized

enzymes 110] or gel-immobilized enzymes [111 have also been studied in microfluidic systems.

Most microfluidic approaches to enzyme kinetics successfully reduce the sample volume

required but still have limitations in terms of the minimum enzyme concentration/activity they

can probe. This is due to unfavorable scaling stemming from the limited reaction volumes in

these devices. The optical path length available in these devices for use with any optical

detection method is at least an order of magnitude lower (~10pm-50pm typically) than that in a

micro-titer plate (~1mm or more). The high surface to volume ratio in microfluidics also results

in relatively high non-specific surface-binding reactions, which can compete with or even

overshadow the bulk reaction rate in very low volumes. Also, when using small sample volumes

and with low analyte concentrations, the statistical variation in number of enzyme molecules in

a given volume can be significant resulting in irreproducible results.

Our group has earlier demonstrated a novel nanofluidic concentrator 112] that can be

used to collect and trap charged molecules from a larger sample volume (~1-10pL) into very

small volume plugs (~10-100pL) on chip using the electric field gradient formed due to ion
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concentration polarization 113] at the interface of a microchannel and a nanochannel[12] or

nanoporous membrane [14] across which a voltage is applied. This technique can be used to

tackle the above mentioned scaling problems in microfluidics as it results in a large increase in

the local analyte concentration. Previously, we have employed such cencentration-enhanced

assays for protein immunoassay [151 and enzyme assays [14, 16] yielding significant (~100-1000

fold) sensitivity gains without changing the biochemistry involved (eg. quality of antibody) in

the assay. In enzyme assays, the enhancement was obtained by mixing the sample with the

target enzyme and a fluorogenic substrate off-chip and then trapping both molecules from the

mixture into such a plug on the chip using the concentrator [14]. In these devices, the operation

scheme of which is depicted in Figure 3.1a, at the very low enzyme concentrations of interest, a

significant reaction rate is observed only in the trapped plug. This plug, in effect, acts like a

reaction chamber to which more reactant molecules are being continuously added by the

incoming flow. Using this concentration-enhanced enzyme assay, two cellular kinase activities

(MAPKAPK2 and Protein Kinase A) were measured directly from unfractionated cell lysates

yielding a sensitivity good enough to measure the activity from a few cells 1161.

While the sensitivity gains in this concentration-enhanced enzyme assay are desirable,

this mode raises two valid questions. First, can one still extract important reaction parameters

from this experiment, since the reaction in the accumulated plug would not be directly

comparable to the usual isolate chamber reaction format as both reactants would be

accumulating and reacting simultaneously with a potentially continuous turnover of substrate.

Second, in complex samples like cell lysates (especially in the kinase activity assay using the
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a) Non-Linear Enhancement: Simultaneous b) Linear Enhancement: Accumulation then Reaction

Accumulation + Reaction i) Trapped V=0 ii) Plug Flows iii)Reaction
Trapped Enzyme + V=0 Enzyme + to Chamber in Chamber
Substrate Plug C Tracer Plug

V=Vhigh V=Vlow Enzyme I C--Enzyme MO + 0
+ 004 4 C 4Tracer

Substrate4
Substatelon-selective V=Vhigh V=Vlow

Reaction III' Membrane i V= *01 ,
in Plug V=o Observe Substrate Observe

Observe Product 4 Tracer * V=Vhigh Product

Figure 3.1 Non-linear enhancement mode of concentration-enhanced enzyme assay with simultaneous

accumulation of reactants and reaction in the trapped plug b. Linear enhancement mode where only enzyme is

accumulated into a plug and then mixed with a fixed amount of substrate in an integrated chamber where

reaction occurs.

chemosensor Sox-substrates 1171) would there be interference or non-specific reaction between

the fluorogenic substrate and non-target kinases, especially when the substrate might possiby

get accumulated to higher levels than starting conditions. These questions necessitate a careful

characterization to understand the differences between standard equilibrium reaction kinetics

and concentration-enhanced enzyme reaction kinetics.

In this work we first study this unique concentration-enhanced reaction kinetic regime,

which results in a non-linear enhancement of product formation rate. We develop a simple

model for the reaction kinetics in the plug based on a modification of the standard Michaelis-

Menten model and present an experimental verification of our model using a concentration-

enhanced reaction of the widely used reporter enzyme P-Galactosidase with a fluorogenic

substrate. We show that while the product formation rate is non-linear in time, a linear

calibration curve from initial reaction rate to enzyme concentration is in fact expected and is

experimentally obtained. This mode of enhancement is thus suitable for detecting very low

activity levels with maximum amplification.

34



We also then propose and demonstrate a new scheme (depicted in Figure 3. 1b) which

linearly enhances the enzymatic reaction rate by accumulating only the enzyme molecules and

mixing the concentrated enzyme plug with a fixed amount of substrate and placing and

observing the reaction mixture in a closed picoliter-scale reaction chamber on chip. We

demonstrate that reaction kinetics in this scheme obeys the standard Michaelis-Menten model

while still benefitting from the increased enzyme concentration. This mode of enhancement is

suitable for mechanistic studies with low abundance enzymes such as cellular kinases as well as

for applications such as studies of inhibitory action of drugs on them where fixed amounts of

other agents can be introduced via the substrate inputs into the reaction chamber.

3.2 Experimental Methods

Device Fabrication

The integrated concentrator and reaction chamber device was fabricated using a

standard two layer soft lithography protocol for making the PDMS channels and valves and a

Nafion surface-patterning and sealing method reported earlier 114] for making the concentrator

membrane. These processes are described here in brief for completeness. A 10plm tall AZ4620

positive photoresist was patterned on a 6 inch silicon wafer to make the mold for the flow layer

of the PDMS device. This photoresist layer was reflowed for 30 minutes at 150C to yield

rounded channels. A 15pm tall SU-8 (SU-8 2015, Microchem Inc, Newton, MA) mold was made

on another 6 inch silicon wafer for the pneumatic valve control layer of the device. Both the

masters were silanized by placing them inside dessicators with a drop each of Heptadecafluoro-

1,1,2,2-tetra- hydrodecyl trimethoxysilane (Gelest Inc, Morrisville, PA) and venting the
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Figure 3.2 Micrograph of fabricated concentration-enhanced enzyme assay device which is used to implement
both non-linear and linear enhancement mode experiments [18].

dessicators for 1 minute and maintaining the vacuum for 1 hour. A thin layer of mixed and

degassed PDMS (Dow Corning Inc, Midland, MI., Sylgard 184, 20:1) was spin-coated at

2500RPM on the flow-layer niold. A thicker layer of PDMS with a higher amount of curing

agent (5:1) was poured on the valve-layer mold. Both PDMS layers were partially cured for 30

minutes at 65C. The thicker valve-layer PDMS was then peeled from its mold and aligned to

the flow layer on its nold under a microscope and brought into contact with it. After ensuring

proper bubble-free contact, the mold was further cured overnight at 65C to obtain monolithic

devices. The Nafion membrane was cast using a PDMS piece with a 50pm tall and 50pm wide

straight microchannel with access holes which was reversibly sealed to a solvent-cleaned glass

piece. A 20% alcohol suspension of Nafion (Sigma Aldrich Inc) was filled into this channel by
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venting one of the access holes. The casting PDMS piece was then carefully removed and the

Nafion pattern was allowed to dry for 1 hour at room temperature. The cured monolithic PDMS

piece with channels and valves was cut and peeled from the flow layer mold and access holes

were punched into it using a biopsy punch. It was then exposed to plasma along with the glass

piece bearing the patterned, dried Nafion membrane and both were aligned and brought into

contact. The assembled devices were baked at 65C for atleast an hour and were degassed for 15

minutes under vacuum before use. The active area of a fabricated device is shown in Figure 3.2.

Plastic pipette tips were attached to the access holes to act as reservoirs.

Materials

To demonstrate the use of the devices, the enzyme p-Galactosidase (from E. Coli) (p-

Gal) and the fluorogenic substrates fluorescein di-p-galactopyranoside (FDG) and resorufin p-D-

galactopyranoside (RDG) (all from Sigma-Aldrich Inc) were used. B-Phycoerythrin (BPE) and

Alexa-488 tagged bovine serum albumin (Invitrogen Inc) were used as fluorescent tracers for

enzyme accumulation. IX PBS (pH=7.4) and magnesium chloride were obtained from Sigma-

Aldrich Inc and a reaction buffer with final concentration of 10mM magnesium chloride in

0.01X PBS was prepared. Stock solutions of both enzyme and substrate were diluted before use

to the concentrations needed into this buffer. A 1% w/v solution of Bovine Serum Albumin

(BSA) (Sigma-Aldrich Inc) in the same buffer was used for coating the channel surfaces before

the experiment to reduce non-specific binding of proteins.
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Measurement

An inverted epifluorescence microscope IX71 (Olympus, Melville, NY) equipped with a

LED-based light source and electronic shutter (CoolLED Ltd, UK) and a thermoelectrically

cooled CCD camera (Hammamatsu Co., Japan) was used for imaging. Chroma C38229

(Fluorescein) and Omega XF108-2 (Rhodamine) filter sets were used to observed green and red

fluorescence emission resspectively. Open source microscopy software, pManager

(www.micromanager.org) was used for image acquisition and NIH ImageJ was used for image

analysis. Fitting and plotting was done using MS Excel and programs written in MATLAB.

3.3 Reaction Kinetics Model and Simulation

We consider an enzyme catalyzed reaction where a substrate, S is irreversibly converted

to a product P in the presence of the enzyme E going through the bound intermediate state ES.

With ki, k. 1 and k2 as the rate constants of the reactions, this reaction can be represented as:

k 1 /k- 1  k2E + S :ES -4P+E

In order to understand the kinetics of product formation in the trapped plug in the

concentrator device and to compare it with standard closed system enzyme kinetics, we make a

few simplifying assumptions about the device operation. The concentrator device is assumed to

be able to trap all the incoming reactant molecules into the stationary plug without any losses

while letting all carrier fluid i.e. water flow past the plug without a significant change in plug

volume. The trapped plug is thus assumed to act as a reactor of constant volume to which

enzyme and substrate molecules are continuously added by the incoming flow from the

reservoir. The plug is also assumed to act as a well-mixed reactor. Further, the reaction rate in
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the input reservoir is assumed to be negligible so that the incoming reactant concentration

remains constant. Note that this is expected to be valid at low enough input enzyme

concentration which is the domain of application of this device.

Under these assumptions, representing the concentration of the species E by [E] and so

on, with [EO] and [SO] as the input concentrations of enzyme and substrate respectively in the

reservoir and a as a proportionality factor representing the accumulation ratet, the rate

equations and mass conservation for total amount of enzyme can be written as:

= -k1[E][S] + (k_1 + k2)[ES] + a[Eo] (1)

y=-k1[ E][S]+k_1 [ES]+a[SO] (2)

d[ES] = k [E] [S] - (k_1 + k2 )[ES] (3)

d[P] k2 [ES] (4)

[ET] = [E0](1 + at) = [E] + [ES] (5)

Here the terms that appear due to the accumulation into the plug are highlighted in

bold font. We explore this model first by simplifying arguments to obtain the initial and final

rates and then by numerical simulations to obtain the complete product formation curve.

For a = 0, the above set of equations reduce to the standard model of enzyme kinetics

in a closed system[19]. As proposed by Briggs and Haldane[19]., the enzyme-substrate binding

step can be assumed to be quick and bound intermediate can be assumed to quickly reach a

quasi-steady state (d[ES]/dt-0). So, the initial product formation rate can be expressed in the

standard Michaelis-Menten form:
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d [P] ISO] [SO]
dt=O = k 2 [ EO]- k 2]+[SO = vMAX.Ky+[S] (6)

using (3) and (4) where Km and VMAx are the Michaelis constant and the maximum

reaction velocity respectively.

With non-zero accumulation rate a, we can similarly estimate the initial rate by

assuming that enzyme-substrate binding is quick relative to the accumulation. Also, the usual

high initial substrate concentration ([SO] >> [EO]) results in a proportionally high substrate

accumulation rate which is expected to result in a quick rise of substrate concentration in the

plug initially. So, although free enzyme is continuously added to the plug from the reservoir by

the flow, almost all enzyme can be assumed to quickly bind with excess substrate in the plug

and end up in the bound intermediate state as soon it arrives in the plug. Thus, in the plug:

[E]-O =: [ES]-[ET] = [EO](1 + at) (7)

Then using (4):

~[P _k2[Eo](1 + at)=VMAX(1+at) (8)
dt 2

Integrating this:

[P]- [POI + VMAXt + 1aVMAX t2 (9)2

Thus, initially the product formation curve is expected to have a quadratic shape. In this

initial phase, the rate of reaction is limited by the arrival rate of the free enzyme and we call

this an enzyme-limited phase. In this phase:

|lt=o-vMX & Jt=o-avMAX
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Note from (8) and (10) that in this phase the product formation rate is independant of

substrate concentration but is linear in enzyme concentration with a slope which increases with

the time. This is expected to make the device operating in this mode effective in detecting very

low enzyme activities by using this amplification with time.

At later times as the enzyme molecules recycle while the substrate is irreversibly

converted to product, an eventual excess of enzyme is expected to build up in the plug and all

arriving substrate molecules quickly bind to excess enzyme as they arrive in the plug. So in this

substrate-limited phase:

dS] 0, d[ES] 0  11)
dt 'dt (1

Using (11) along with (1)-(5):

dP
|t- o~ aSo] (12)

This implies that at later times a linear product formation curve is expected.

We verify the validity these simplifications by numerically solving the system (1)-(5) of

ordinary differential equations. Here, we integrated them as an initial value problem in

MATLAB using the Runge-Kutta-(4,5) solver ode45. The results of these simulations for no

accumulation, a [s-'] = 0 (with reaction paremeters ki[pM- 1s-'] = k_1[s-1] = 0.01, k2 [s-1] =

1) and initial values [SO] = 20pM and [EO] = 0.01MM, 0.1pM, which are experimentally

reasonable starting conditions are shown in (red and magenta) product curves in Figure 3.3a.

The effect of initial enzyme concentration can be seen in this plot as at low enzyme

concentration, product curve [P2] rises slow and remains linear within the simulation time
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Figure 3.3 a. Numerical simulation results for an enzyme-substrate reaction modeled in the system of
equations (1)-(5) with no accumulation i.e. a = 0, with parameter values k1 = k_1 = 0. 01 and k2 = 1 and

initial values [E0] = 0. 01,0. 1 and [SO] = 20 b. Enzyme-substrate reaction in the trapped plug with a
constant accumulation rate, a = 1 due to fluid bringing adding unreacted enzyme and substrate - with same
parameter and initial values. Note that in this case, for easier visualization enzyme and substrate
concentrations are scaled 10-fold and plotted [18].

window while at the higher enzyme concentration, product curve [P1] rises faster and levels off

due to substrate depletion.

With accumulation, setting a = 11, the results for the same initial conditions and

reaction parameters as above are shown in Figure 3.3b. Note from the different y-axis scale that

the reaction product concentration rises much faster in this case. Also the (red) product curve

clearly shows the quadratic and linear phases as argued above. Further, the initial high

substrate concentration in the enzyme-linited phase and the later higher enzyme concentration

in the substrate-limited phase can be clearly observed in the (blue) enzyme and (green)

substrate concentration curves respectively. (See Supplementary Figure 1 for further simulated

curves at different initial substrate concentrations). This simulation result clearly agrees in

expected shape - with an initial quadratic and later linear phase with the analytical

approximations made earlier. This further justifies our earlier simplifying assumptions and in
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Figure 3.4 a. Fluorescence micrographs of trapped reaction plug at different time intervals after starting the

reaction and accumulation. b. Variation of the mean fluorescence of the plug with time. The two black dotted

lines are quadratic and linear fits to the segments of data on which they are shown. The inset shows the

variation of initial and final reaction rates with substrate concentration [18].

fitting the experimental data we use the initial and final rate expressions (10) and (12) derived

above.

3.4 Non-linear Enhancement Mode Experiments

Non-linear enhancement experiments were performed in the device shown earlier in

Figure 3.2 by using only the enzyme input reservoir and channel and introducing enzyme and

substrate mixed off-chip. In this experiment. the enzyme 1-Galactosidase was mixed at a final

concentration of 0.5pg ml with fluorogenic substrate fluorescein di-P-galactopyranoside (FDG)

and the mixture was loaded into the enzyme input reservoir and a gravity driven flow was

established, controlled by a difference in fluid height between the enzyme input reservoir and

the common output reservoir. A potential difference was then applied across the Nafion

membrane by applying a voltage (1OV-25V) to platinum electrodes dipped in the input and
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output reservoirs while grounding both the adjoining buffer channels. Both P-Galactosidase

(pI=5.1) [20] and FDG 121] are expected to be negatively charged at this pH and hence expected

to be trapped and accumulated in the electric field gradient zone formed near the membrane. s-

Galactosidase catalyses the hydrolysis of non-fluorescent FDG to form the green fluorescent

product fluorescein. A green fluorescent plug formed upstream of the membrane as shown in

Figure 3.4a. This region was observed at fixed intervals and the average fluorescence of the

plug was measured and is plotted in Figure 3.4b.

This product curve shows an initial non-linear phase, which was found to fit well to a

quadratic polynomial in time, and a later linear phase. The plot in Figure 4b also shows that

the experimental product curve is in broad agreement to the model and simulation described

above. The experiment was repeated with different substrate concentrations (data shown in

Supplementary Figure 2) and the variation of initial and final product formation rates is shown

in inset in Figure 3.4b. Note that the final saturation phase that is expected in closed-chamber

enzymatic reactions with fixed amounts of reactants, due to substrate depletion, is not observed

even at long times in this case. This is because unconverted substrate is continuously flowed in

from the reservoir which gets added to and converted in the plug without significantly diluting

the existing enzyme concentration in the plug. This feature results in a continuously rising, very

high amount of product fluorescence from the trapped enzyme which can be very useful in

studies from very small amounts of enzyme such as from a single or few cells. The final limit on

this continuous amplification may appear due to effects such as product inhibition that occur at

very high product concentrations.
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To further verify our understanding of the kinetics and the applicability of the

asymptotic analytical model proposed for the initial enzyme-limited and final substrate limited

rates in equations (9) and (12) respectively, the variation of these rates was studied with

varying initial substrate concentration. As seen in the inset in Figure 3.4b, for a range of

substrate concentrations ([So]=4.75pM to 38pM), the initial rate (0-10s) remains independent of

substrate concentration as predicted by equation (10) while the final rate (550-600s) increases

linearly with substrate concentration as predicted by equation (12). Quadratic polynomials in

time were fitted to the initial non-linear phases (0-200s) of the product curves at different

substrate concentrations and these were found to have constant curvatures as predicted by

equation (10). These polynomial fits (along with a fluorescence (AU) to product concentration

(pM) calibration shown in Supplementary Figure 3) were used to obtain the value of the

parameters aVMAX=1.0 ± 0.3 x 10- 3 A U/s 2 = 4.6 + 1.4ptM/s from the quadratic term and

VMAX = 5.6 + 3.6 x 10- 2 AU/s = 21.2 ± 16.6pjM/s from the linear term. The higher error in the

linear term is possibly due to differences in starting observation times in the different reactions.

Similarly the later linear phase can be used to obtain a = 6.75 x 10- 2 /s. This is lower than the

estimated value of a-0.5, possibly due to dispersion of molecules or a lower than estimated flow

velocity due to channel height variation. This along with the earlier quadratic term then yields

a lower estimate of VMAX = 1.5 + 0.4 x 10- 2 AU/s = 6.9 + 1.8 x 10-2pM/s. At higher substrate

concentrations ([S]>38pM) the product curves deviate significantly from this predicted form and

become completely linear in time and the initial rates rise linearly with substrate concentration

too. This could be because the assumption of very low reaction rate in input reservoir might
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break down at such high substrate concentrations and there may be a significant contribution of

direct accumulation of product already formed in the reservoir into the observed plug adding to

or overshadowing the reaction in the plug itself. This can be compared with the product

accumulation device reported recently by Cheow et al [221 where the reaction always happens

upstream of the plug at enzyme-coupled beads and linear product accumulation curves are

obtained.

An important conclusion from this model and the above observations verifying it is that

the concentration-enhanced reaction in the accumulation plug ultimately enters a substrate-

limited linear regime where adverse effects of excessive substrate accumulation - such as

reactions with non-target kinases in cell lysates due to an uncontrolled substrate concentration

are not expected to happen [16]. Also the simple model still provides an opportunity to find

reaction parameters such as vMIAX from experimental data although within limits of relatively

low substrate concentrations.

We also directly verified the linearity of initial reaction rates with enzyme concentration

as predicted in equation (8). To avoid variability due to different starting observation times and

other device and experimental variations, we ran five simultaneous reactions using a 5-channel

multiplexed version of the device reported earlier . The results from this experiment are shown

in Figure 3.5. The input reservoirs of the five channels are loaded with the same volume of

enzyme-substrate mixtures at the same substrate concentration but differing enzyme

concentrations and the same potential is applied to all the channels and the three reaction

plugs are observed simultaneously as shown in Figure 3.5a. The five product curves are
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Figure 3.5 a. Five simultaneous reactions in the non-linear enhancement mode running in a multiplexed device

with different enzyme concentrations. b. Initial reaction rates versus enzyme concentration show that the rate

rises linearly with enzyme concentration. The initial rate is enhanced ~400X at all the five enzyme

concentrations when the potential is applied to accumulate the reactants and the product [18].

analyzed as earlier and the initial rates of product formation with and without application of

the trapping voltage are plotted in Figure 3.5b. A 400-fold enhancement in reaction rate is

observed while linearity with enzyme concentration is maintained.

3.5 Linear Enhancement Mode Experiments

To demonstrate the proposed linear enhancement mode, the enzyme and substrate

solutions were loaded into separate input reservoirs attached to the two input channels of the

device shown in Figure 3.2. Only the enzyme would be accumulated into a plug in this case so

the enzyme solution was spiked with a fluorescent tracer to make the plug visible. These

experiments were performed with two different substrates: Fluorescein P-D-galactopyranoside

(FDG) as described above and Resorufin P-D-galactopyranoside (RDG) which gets hydrolysed

to red fluorescent product Resorufin. The tracer was chosen to have a different emission color

than the fluorescent reaction product to avoid interference with later observation of the reaction
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progress. A red fluorescent protein, P-Phycoerythrin was used as tracer for the FDG reaction

while a green fluorecent protein, Alexa® 488 tagged BSA was used as a tracer in the RDG

reaction. Gravity-driven flows of enzyme and substrate were established in the device with

identical pressure heads and the mixing of the two reactant streams could be observed in the

reaction chamber both in the tracer fluorescence and in the fluorescence of the product as it

formed at the mixing interface. As a control experiment without accumulation of the enzyme,

the valves were closed in this condition by applying and holding air pressure using tubing

attached to a syringe and the reaction was observed in the closed chamber using the product

fluorescence filter set.

For observing the reaction with accumulation of the enzyme - a potential difference was

applied across the Nafion membrane as earlier. To maintain identical flow of enzyme and

substrate, the same voltage was also applied to the substrate input reservoir. During the

accumulation, the region upstream of the membrane was observed using the tracer fluorescence

filter set. A tracer plug formed near the membrane (Figure 3.6a.i) and it grew in brightness over

time as more of the tracer accumulated in the plug. After 20 minutes of accumulation, the plug

was released by turning the voltage off and it was pushed downstream by the flow (Figure

3.6a.ii). The plug met the substrate flow at the junction and moved into the reaction chamber

region. When the plug was positioned in the reaction chamber, the valves were closed (Figure

3.6a.iii) and the image acquisition was started under the product filter set with the same

exposure time and frame rate as in the control experiment. The time variation of product
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Figure 3.6a Fluorescence micrographs showing the operation of the device i. The tracer protein, B-

Phycoerythrin is concentrated into a plug by applying the voltage ii. The plug released by turning the voltage

off and is driven by gravity driven flow to the reaction chamber. iii. The pneumatic valves are actuated to

capture the plug b. Variation of peak green fluorescence in the reaction chamber with time for the reaction

between 13-Galactosidase and FDG with and without accumulation of the enzyme. The insets show the reaction

chamber at the beginning and end of the observation period [18].

fluorescence in the chamber is plotted in Figure 3.6b along with that from the control

experiment. We assume here that the enzyme plug is formed at the same position as the tracer

plug and hence gets transferred to chamber along with it. This was experimentally verified by

changing the position of the tracer plug relative to the valves before closing them and it was

observed that the maximum reaction rate was obtained when the tracer plug was centered in

the chamber. A 50-fold increase in the initial product formation rate is observed due to the

increased enzyme concentration from the trapped plug. The control experiment has a very low

amount of enzyme present in the chamber and hence the product curve obtained remains in the

initial linear region (as predicted in simulated product curve [P21 in Figure 3.3a) till the end of

the 10 minute observation period. However with the accumulated enzyme plug, the product

curve shows the effect of higher enzyme concentration and we observe substrate depletion and
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Figure 3.7a Variation of peak red fluorescence in the reaction chamber with time for the reaction between the

enzyme 3-Galactosidase and RDG with different accumulation times of the enzyme. b. Variation of product

formation rate in the linear enhancement mode as measured by the rate of variation of mean fluorescence in
the closed chamber and a fitting of the expected Michaelis-Menten form to the experimental data in order to
obtain reaction parameters [18].

the resultant reduction in reaction rate with time (as predicted in simulated curve [P1] in Figure

3.3b. In this mode product curves are found to fit the standard Michaelis-Menten kinetics model

(as shown in Figure 3.71)) as derived in equation (6) from which the parameter KM was

extracted as ~12pM and VMAX~ 6 .9 x 10-2 iM/s which is within the range of reported values

1231.

The enzyme concentration in the captured plug and hence the level of enhancement of

the reaction rate can be tuned by changing the time for which the enzyme is accumulated before

releasing it into the reaction chamber. The effect of accumulation time on the reaction rate is

shown in Figure 3.7a. Longer accumulation times yield higher reaction rates in the chamber due

to higher concentration of enzyme in the incoming plug. The reaction rates variation with

enzyme accumulation time is shown in the inset in Figure 6c. Each data point here indicates the

mean and standard deviation from three experiments. A 73-fold enhacement of reaction rate is
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obtained for 20 minutes of enzyme accumulation time. For a given accumulation time, the

product curve obtained is repeatable over experiments as evidenced in the small variation in

initial rates measured over three experiments.

A current limitation of this device in this mode is the reduction in enhancement due to

the dispersion during transfer from the concentrator region to the reaction chamber which is

evident in the tracer plugs seen in Figure 3.6a. The dispersion is expected to decrease with the

distance between these regions which is dependent on the alignment accuracy between the two-

layers of PDMS during device fabrication which can be reduced by optimizing the fabrication

process further.

3.6 Integration with Droplet-Based Microfluidics

Droplet-based microfluidics affords the ability to run massively parallel reactions in

thousands of droplets 124, 25] which is desirable in order to monitor the enzymatic activity of

physiological samples using extremely small amounts of sample and reagents. However, the

analysis of low-abundance enzymes directly from physiological samples in droplets is challenging

because of the low assay sensitivity, the long assay times and the nonspecific loss of target

biomolecules to droplet interfaces. Random encapsulation of individual biomolecules into

droplets could increase the effective concentration within droplets and enhance the assay

sensitivity [26]. However this mode of enhancement is limited because even in the smallest

stable droplets (diameter ~5 Om), a single trapped molecule is equivalent to an effective

concentration of ~1pM, which is still below the detection limit of many conventional assays,

such as capillary electrophoresis-based assays and immunoassays. So far, methods for controlling
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Figure 3.8a Schematic of integrated nanofluidic biomolecule concentrator and microfluidic droplet generator

chip. (B) Enzyme molecules were accumulated by a concentrator into a plug that (C) was mixed with the
substrate and (D) then encapsulated into monodisperse microdroplets. (E) The reaction was monitored as a
function of time in the droplets. (F) Scheme showing that the concentrated plug diffuses as it travels from the
concentrator to the point where it is encapsulated in immiscible fluid (~200pm). Then, the plug is divided into
several droplets with different enzyme concentrations for parallel screening. b. (A) MMP-9 reaction product

fluorescence intensity increase in each droplet with reaction time is shown. The reaction rate exhibited a 15-
fold increase because of the enhancement of the recombinant protease MMP-9 concentration. Scale bar: 25pm.
(B) Reaction rate increases as the MMP-9 concentration in the droplets increased. MMP-9 concentrations were
inferred by comparing the tracer dye intensity to that of the droplet without enzyme. Different concentrations
were analyzed in a single experiment to obtain the reaction kinetics constants. Each data point represents the
average of five droplets, and the error bar represents the standard deviation. Scale bar: 50pum. [27].

reactant concentrations in droplets rely on further dilution of the sample to tune the ratio of the

different reactants 1281. Thus, a reliable and programmable method to increase the

concentration of bionolecules within droplets is required to take advantage of the full potential

of droplet-based microfluidics.

Here we further implement the linear-enhancement mode of concentration-enhanced

enzyme assay developed above using water-in-oil droplets as isolated reaction chambers by
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integrating a biomolecule concentrator and a droplet generator in a single chip (shown in Figure

Figure 3.8a), exploiting the complementary advantages-sensitivity enhancement and effective

encapsulation-of these two technologies. Additionally, the multiplexed assays can be completed

with a minimal amount of sample reagent because numerous droplets that have different sample

concentrations are used as individual reaction chambers. Thus, this integrated device has the

ability to detect low-abundance enzymes and other relevant biomarkers in complex physiological

samples with high sensitivity and throughput, and therefore can be a generic tool for systems

biology research and medical diagnostics.

3.7 Measurement of Activity of Secreted Matrix Metalloproteinases

We use this integrated platform to study secreted proteases from the matrix

metalloproteinase family which participate in diverse biological and pathological processes 129].

As the key degradative enzymes of the extracellular matrix, MMPs play a critical role in cancer

development and metastasis [30]. Existing enzyme activity assays either lack the sensitivity

required to directly detect the protease activity in limited sample quantities or suffer from low

throughput [14]. We first employed our platform to study the activity of a recombinant matrix

metalloproteinase (MMP-9, 0.2nM in MMP buffer 1301) in using a FRET-based polypeptide

MMP substrate (5 M), which fluoresces upon cleavage as an indicator of proteolytic activity.

MMP-9 activity was monitored in the individual droplets. We observed very small fluorescence

changes (~25a.u.) for the negative-control samples lacking protease (Figure 3.8b). For droplets

containing the protease, the fluorescence intensities of the turned-over substrate increased

linearly with assay time in both experiments with and without the concentration step. After the
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preconcentration step, the concentration of MMP-9 in the droplets increased up to 16-fold

(inferred by the tracer fluorescence) which correlated with the identical increase in activity

measured using product fluorescence.

Additionally, different enzyme concentrations (from 0.2nM to 3.2nM) were screened in a

single experiment to obtain information on reaction kinetics, as shown in Figure 3.8b. The

concentration range could be tuned by selecting the distance. As expected, the reaction rates

showed an almost linear increase with increasing MMP-9 concentration. After calibration of the

fluorescence intensity of the product, the value of the kinetic constant (k,., K,, = 7.81*10 4 M-IS-')

was obtained by assuming that Michaelis-Menten kinetics were obeyed. This result was

consistent with the value obtained using a standard plate-reader and with the value from a

previous study on protease activity 1301.

We then performed the experiments with diluted conditioned media from in vitro tissue

culture samples (0.5X cellular supernatant dilutions in MMP buffer) to study the protease

activity in the media. Specifically, we examined stimulated and untreated protease activity of

the culture media from mouse embryonic fibroblasts (MEF) in response to cytokine treatment.

For both stimulated and untreated samples, the proteolysis reaction caused the fluorescence

intensity to increase linearly over time (Error! Reference source not found.a). After

concentrating the sample, the difference in activity between the stimulated and untreated

samples was amplified ~10-fold compared to difference between the unconcentrated samples.

The detection sensitivity for the stimulated and untreated conditions was thus improved,

allowing us to clearly differentiate

54



A 1.8. B
* Stimulated cel-concentrated .ne-ISStimulated -un traed stimulated

-16 d,
Untreated eell-concentrated * * Control

4 Untreated cell-unconcentrated

* 1.2

Line-3

o -~ 0

Line-2
---- a-a IX OA

0406u-" 0.2-

0 o 100 M 2000 n so 0 2 4 6 8 10 12 14 16 18 20 22 24
Reaction time (min) Cellular supernatant concentration (fold)

Figure 3.9a Increase in product fluorescence intensity in an individual droplet with reaction time after mixing

the cellular supernatant and the sensor is shown. The reaction rates, as determined by substrate turnover

resulting from proteolysis in cellular supernatant, were monitored as a function of time. The activities of the

stimulated samples (concentrated and unconcentrated) are represented by line-1 and line-2, respectively. The

activities of untreated samples are shown in line-3 (concentrated) and line-4 (unconcentrated). The difference

in the reaction rates was greater for the concentrated samples than for the unconcentrated samples, and thus,

the assay sensitivity was improved. b. The reaction rate increased with increasing cellular supernatant

concentrations in the droplets. A linear relation was observed between the reaction rate and the initial

concentration. Each data point represents the average of five droplets, and the error bar represents the

standard deviation [27].

these conditions by the slopes of the fluorescence intensity increase over 5 min (line-1 slope:

2.14a.u./s, line-3 slope: 0.95a.u./ s). In the unconcentrated assay, the traces of the stimulated

condition (line-2 slope: 0.32a.u. s) were significantly different from those of the untreated

condition (line-4 slope: 0.22a.u. s) only after 50 min of reaction time. Taking advantage of the

high-throughput screening made possible by using our device (Error! Reference source not

ound.b), the reaction rates over a range of concentration enhancements were determined by a

single experimental run to obtain the parameters related to the reaction kinetics (stimulated

sample:(k ,/K,)[E] =1.61*10-4S-'; untreated sample: (k,,/K)[E]=4.68*10-S-'). This experiment
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required less than 250L of diluted cellular supernatant. This is a ~100-fold reduction in sample

volume compared to conventional assays.

3.8 Conclusions and Future Directions

In summary, we have demonstrated here that the nanofluidic biomolecule concentrator

can be used in multiple ways to perform enzyme assays from low volume and/or low abundance

samples. The enzyme reaction kinetics in these devices was studied and was found to obey

simple models within certain limits of reactant concentrations. We showed that the

simultaneous accumulation and reaction mode gives a high amplification factor with a product

formation curve that is initially non-linearly rising in time but is linear in enzyme concentration.

Finally at long enough times, this reaction mode enters a linearly rising phase which is

explained in our model as a substrate-limited phase. The substrate concentration in the

accumulated plug is maintained low in this phase and this enables ruling out non-target

reactions of chemosensor substrates in complex mixtures such as cell lysates which might arise

due to uncontrolled substrate concentrations. This allows maintaining the performance of the

assay within designed limits in terms of cross-reactivity while continuously forming a large

amount of product over time with a limited -amount of trapped enzyme. This mode is thus well

suited for detection of very low enzyme activities where a high reaction rate enhancement is the

most desirable feature. We also showed the ability to multiplex these assays in the same chip

which leads to the possibility of higher throughput in concentration-enhanced assays. The new

separate accumulation and reaction device - implemented by integrating the nanofluidic

concentrator with a chamber isolated by pneumatic valves or with a water-in-oil droplets using
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a microfluidic droplet generator - offers a linearly enhanced reaction rate with a simpler product

curve that replicates the standard kinetics observed in macro-scale isolated chamber assays. It

offers the opportunity to perturb this kinetics - for example by adding drugs or other inhibitor

molecules to the reaction chamber - and study the mechanism of reaction of low abundance

enzyme molecules while maintaining an easy comparison with data from existing non-

microfuidic reaction formats. It also offers the oppportunity to study more complex mixtures

where addition of fixed amounts of substrate maybe critical to the assays.

We also developed and demonstrated a we developed a microfluidic platform that

integrates a biomolecule concentrator and a droplet generator to detect enzyme activity with

high sensitivity in a high-throughput manner. This system can be used to analyze different

enzyme reactions, such as those catalyzed by reporter enzymes, kinases and proteases. We

specifically characterized the activity of MMPs in diluted cellular supernatant from stimulated

and untreated MEF cells. The concentrator amplified the difference between the stimulated and

untreated conditions and allowed a significant reduction in the reaction time (~10-fold).

Moreover, the protease-substrate reaction kinetics could be determined by a parallel analysis of

droplets with different amplified enzyme concentrations in a single experiment to significantly

reduce the sample volume used (~100-fold). This device, with its ability to assay biochemical

reactions catalyzed by low-abundance enzymes and other relevant biomarkers in physiologically

complex samples, is a generic and useful platform for systems biology research and medical

diagnostics.
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More broadly, we have demonstrated the use of the biomolecule concentration technique

as a world-chip interface which can be used to bring molecules from low concentration samples,

such as from single cells, into highly concentrated very small volume plugs on chip and then

manipulate and study them using flow and reaction and these platforms.
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Chapter 4 An Integrated Microfluidic Probe for Single

Cell Kinase Activity Measurement

4.1 Introduction

Understanding how a cell processes information presented by external cues, through the

action of internal signaling molecules, to generate a phenotypic response is essential to

elucidating basic cell biology as well as for understanding and finding therapies for disease states

such as cancer which result in many cases from aberrations in this signaling network.

Measurement of the cellular signaling state under conditions of controlled cues and correlating it

with associated cellular behavior can play an instrumental role in this pursuit. Protein kinases,

which generate or relay signals by the phosphorylation of specific target molecules, form a

significant fraction of the nodes in the cellular signaling network and the measurement of

cellular kinase activity is thus an important tool in basic biology as well as disease research.

Most kinase activity measurement methods - like indeed most cellular biochemical

assays - measure ensemble averages of large numbers (103-106) of cells, usually due to very low

abundance of these molecules in single cells and the limited sensitivity of the detection methods.

However it is increasingly obvious that cell populations are heterogeneous and such bulk

measurements result in a 'blurred' picture of cellular signaling [1]. This may not represent the

signaling state of single cells which may behave differently due to their inherent differences [2, 31

or in response to variation in their local extracellular microenvironment [4] and may in fact
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control phenotypic outcomes in various life and disease processes. Measuring single cell kinase

activity and correlating it to the phenotype and local extracellular context from the same single

cell can thus be of great advantage in understanding cellular behavior.

Many existing single cell kinase assays, based on flow cytometry or imaging, depend on

the use of phospho-specific antibodies [51 to measure the phosphorylation state of proteins as a

surrogate for their activity - a correlation which may not hold true [6]. In addition, flow

cytometry based methods work with cell suspensions which makes it difficult to correlate

phenotype or cellular microenvironment to kinase activity for adherent cells which includes most

cancer cell types except for those of hematologic or immunologic origin. Genetically encoded

reporters can be used to measure protein levels, localization or activity directly [7] in live single

adherent or suspended cells but require genetic manipulation of cells which may affect the

system under study. Also such reporters are difficult to multiplex which limits their use. Single

cell kinase activity measurement by microinjection of substrates into adherent cells has been

demonstrated but can suffer from non-specific intracellular reactions [8, 9].

Direct measurement of kinase activity from single cells remains difficult, in general, due

to limited assay sensitivity and the difficulty of interfacing activity measurement methods with

phenotype measurement. Selective, fluorogenic peptide probes for measuring kinase activity

directly in cellular media and unfractionated cell lysate have been developed [10] and have been

used to probe kinase activity in bulk cell and tissue lysates [11]. Our group has earlier

demonstrated the measurement of kinase activity from small amounts of bulk cell lysate(~4-

5ng=4-5cells) in microfluidic chip using a biomolecular concentrator [121.
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Microfluidic systems can boost assay sensitivity by scaling assay volume down. However

most existing microfluidic cell analysis [13] or manipulation techniques usually work with cell

suspensions which are easy to flow into microfluidic channels. Here we intend to develop an

integrated microfluidic device that can interface directly with selected single, adherent cells on

standard tissue culture platforms and capture their contents into a small volume and perform

kinase activity measurements. This would enable the measurement of potentially complex

adherent cell phenotypes such as cell migration or morphology and their correlation with kinase

activity in specific single cells.

4.2 Selective Single Cell Lysis

Juncker et al. [14] have developed a multi-purpose, vertical, silicon microfluidic probe

which is essentially a scanned probe with microfluidic channels that are used to create a small

zone of a specific liquid under its tip while the probe itself can be mobile inside an open liquid

environment. This is enabled by hydrodynamic confinement of the liquid from the probe using

simultaneous out-flow and in-flow from ends of the microchannel at the tip at a fast enough

velocity to beat diffusive mixing Figure 4.1a. This has been used for protein patterning or

localized staining of cells in a tissue culture plate [14] and recently even on tissue slices [15]. It

has also been adapted to a slanted probe format, fabricated in PDMS, for stimulation of single

cells [16] for electrophysiological measurements which allows easier positioning and landing near

cells.

Here we adapt the microfluidic probe for selective single cell lysis by flowing a scaling it
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Figure 4.la. A tunable lysis zone is formed by simultaneous in and out flow of lysis buffer established using

microchannels which results in a hydrodynamically confined, small, tunable lysis zone which can be used to

target single cells. b. The probe tip places the microchannels close to cells by having a thin membrane base c.

This is fabricated using spin-coating and thermal bonding of a thin PDMS membrane. D.

down in size to target single adherent cells and flowing a detergent-containing lysis buffer in it

to form a small, tunable 'lysis zone' at it tip. One of the key requirements for the probe tip is

that it has to bring the iicrochannels for lysis buffer out-flow and lysate in-flow as close to

single cells as possible Figure 4.1b. This was achieved by using a thin spin-coated and thermally

bonded PDMS membrane as the base for the probe Figure 4.1c. The fabricated probe as shown

in Figure 4.1d was mounted on a micro-manipulator which enabled dipping it into a

tissueculture plate containing tissue culture medium placed on a motorized microscope stage

and accurate positioning next to selected single cells which could be selected based on unique

phenotypic measures demonstrated by them in a microscopy-based assay.
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Figure 4.2 A selected cell from a green-fluorescent protein expressing adherent MCF-7 population is lysed
using the microfluidic probe with a lysis buffer containing 1% Triton-X 100 while the surrounding cells remain
unaffected by this process. The lysis zone can be seen in fluorescence from a tracer added to the lysis buffer.

Selective single cell lysis using this technique was demonstrated with cells expressing a

fluorescent protein (MCF-7 cells, expressing GFP) as shown in Figure 4.2. The out-flow channel

and in-flow channels of the probe are primed with lysis buffer containing 1% Triton-X 100 as a

lysis agent (1X lysis buffer as in 117]) any assay buffer (IX assay buffer as in 1171) respectively

by connecting the respective ports to 50pL Hamilton gas-tight syringes carrying those fluids,

which are then coupled to separate Harvard Apparatus PHD 2000 syringe pumps. The probe is

positioned next to a single cell and then the in-flow is established at a flow rate of ~130nL/min

using and then a pulse (~10s-60s tuned by observation) of out-flow of the lysis buffer is

generated which forms a lysis zone, visualized here using a fluorescent dye added to it, which
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Figure 4.3 A selected single fluorescently labeled MCF-7 cell is lysed and its contents are captured using the

microfluidic probe by flowing out a lysis buffer (with 1% Triton-X 100) and simultaneously flowing the cell

lysate back into the device. Due to the limited lysis zone, other contacting and nearby cells even on a tissue

culture dish grown to about ~95% confluence remain unaffected. A picture (A) before and (B) after lysis is

shown and (C) the variation of cellular fluorescence during the lysis and capture is quantified.

engulfs and lyses the target cell while the other cells remain unaffected. The flow of the cell

lysate back into the chip without dispersion is ensured by the high local fluid velocity inward.

The radius of the lysis zone is similar to the width of the channels used which is nominally

50pin here. A further optimized version of the microfluidic probe with a smaller lysis zone

(~10pn) was used to demonstrate selective single cell lysis from a, confluent tissue culture plate

as shown inl Figure 4.3. The variation of the fluorescence of the target cell as it is lysed and that

of unaffected neighboring cells is shown in Figure 4.3c.

4.3 Integrated Microfluidic Probe v1

The single cell lysate flowing in from the probe tip can be used to perform any single cell

biochemical assay after mixing it with appropriate assay or capture agents. Here we intend to

mix it with fluorogenic peptide kinase substrates [10] which can either be directly observed or

concentrated using a biomolecular concentrator [12] for sensitivity enhancement. Also
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fluorescently labeled peptide substrates can be used which can then be separated based on their

electrohoretic mobility and concentrated simultaneously in a concentration-enhanced mobility

shift assay [181.

Measuring Kinase Activity in Cell Lysates: Compatibility of Lysis/Assay

Components

Existing work [10] uses relatively dilute cell lysate (7.5%) in assays. However here, in

order to use the single cell lysate (which is 50% lysate + 50% tissue culture medium) with

minimum further dilution, we try to establish the compatibility of device components and the

assay with the lysis agents at higher concentrations. It was observed (Figure 4.4a) that surface-

patterned Nafion which we have used (see Section 3.2) as a cation-selective material to build

bio-molecule concentrators was dissolved by the presence of 1% Triton-X 100 and to a lesser but

still damaging extent even with detergent concentrations down to atleast 0.05%. Other non-ionic

A.i Nafion A.ii C. 0.1 -

0.09

V 00.08
X 0.07
2>0.06

Daae ain0.0.5IReaction/Tracer Plugs Da geNfin.0
0.04

B. i Hydrogel -> B.ii Hydroge -- > 0.0U2 0.03
0.02

V=20V 0.01 *

0 0.5 1

Reaction Plug Fraction of Lysis Buffer (CHAPS)

Figure 4.4a Nafion membrane before (i) and after (ii) damage due to presence of 1% Triton-X 100 in the

buffer. b. Hydrogel membrane is not damaged by the same buffer. c. MK2 activity is inhibited both at zero

and high (1%) lysis buffer concentration.
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detergents such as Tween-20 were found to cause similar damage while ionic detergents such as

the anionic detergent SDS or the zwitter-ionic detergent CHAPS were found to not cause any

such damage, presumably because they were excluded from the membrane due to charge effects.

Also anionic hydrogel [19], an alternative cation-selective material was found to be not affected

by 1% Triton-X 100 Figure 4.4b.

The kinase assay itself was found (Figure 4.4b) to require a small amount of detergent

(0.1X lysis buffer/0.1% detergent was the lowest tested) presumably to keep proteins suspended

[20]. This rules out the use of Nafion with this assay except if a large post-assay dilution step is

built in as was done off-chip by Cheow et al [181. The assay was also inhibited in IX lysis buffer

conditions, presumably due to denaturing of proteins by the high detergent concentration [21] or

incompatibility of some other lysis buffer component with the assay. This rules out direct use of

the lysate for the assay and necessitates an on-chip dilution step with at least 5X dilution to

bring the lysate concentration down to 10% which was found to work reliably and this

motivated the chip design developed here onwards. Later it was also found that the Sodium

Pyrophosphate, a component present in the lysis buffer as a phosphatase inhibitor, specifically

forms a precipitate in presence of Magnesium Chloride, an essential component of the assay.

Leaving the pyrophosphate out from the lysis buffer is thus a potential option for an assay

without any dilution step which was not pursued here but is explored further later in a simpler

proposed device (Section 4.9).
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Figure 4.5a. The integrated microfluidic probe consists of three modules: cell lysis/collection tip to selectively

lyse and collect single cells, a reaction chamber to mix and hold assay reagents and a nanofluidic concentrator

to concentrate product peptides and perform a mobility-shift assay for phosphorylated/unphosphorylated

substrates. b. Fabricated PDMS device showing the different layers: top piece with two layers: the valve lines

(orange) and the channels (blue/green), bonded to bottom piece with two layers: a thin membrane base in the

tip region and a thicker base which holds the UV-cured ion-selective hydrogel (dotted lines).

Development of Integrated Microfluidic Probe

An integrated microfluidic probe was developed that consists of the cell lysis tip, a

dilution and assay reagent reservoir and channel, a reaction chamber with pneumatic valves to

isolate it for observation and a hydrogel-based biomolecule concentrator to perform

concentration-enhanced assays (Figure 4.5a). The fabricated device shown in Figure 4.5b, thus

consisted of four layers: two in the top PDMS piece which consisted of the valve lines and

microfluidic channels respectively and two in the botton PDMS piece which consisted of the

membrane base of the tip and the thicker base of the rest of the chip which held the anionic

hydrogel pattern. Each of the pieces was thermally bonded internally while the two pieces were

assembled by plasma-bonding.

The operation scheme of the device and the setup used are depicted in Figure 4.6a. Cell

lysis and capture are done with the chip mounted on a mnicromanipulator which allows

positioning next to single cells. After the cell lysate flows back into the chip and mixes with the
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Figure 4.6 a. Scheme of operation with i) cell selection, lysis and capture with the chip mounted, slanted, on

a micromanipulator and ii) assay with the chip mounted flat on a microscope stage for observation b. Device

operation: i) a stable tunable lysis zone outside the tip as lysis buffer is flowed out/back in ii) collected cell
lysate mixes with the kinase-specific substrate in assay buffer iii) valves are closed to capture the reaction
mixture which is observed over time or iv) flowed into the concentrator for a mobility shift assay.

pre-loaded assay buffer simultaneously flowing in from the reservoir containing it and reaches

the reaction chaimber, the pneumatic valves are actuated to isolate it. The chip is then removed

from the micromanipulator, wiped of any remaining tissue culture medium on the tip and placed

on the microscope stage for observation and further manipulation of the reaction chamber

contents within the chip. The complete operation of the device, visualized using buffers

fluorescent proteins is shown in Figure 4.6b.

Single Cell Kinase Assay Demonstration

HepG2 cells adherent on 60 mm tissue culture plates were serum-starved for atleast 12

hours before the assay and then stimulated using 300mM sorbitol which is know to activate

MK2. Cells were then labeled with the fluorescent dye Cell Tracker Orange (as per the dye

manufacturer's recommendation). Single cells from a tissue culture plate were lysed, mixed with
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Figure 4.7a. Single cell MK2 Assay - Single sorbitol-stimulated, CellTracker Orange labeled HepG2 cells were

lysed and the captured lysate was mixed with a MK2 substrate that shows increased fluorescence upon

phosphorylation. Valves were closed and the chamber fluorescence recorded over time. Measured single cell

activity corresponds well to the activity measured from a comparable amount (~1.75ng) of bulk cell lysate as

these cells have about ~1ng/cell of total protein. b. Concentration-enhanced mobility shift Akt assay - A small

group (~15) of HepG2 cells was lysed using the microfluidic probe and the lysate was reacted in the chamber

with a fluorescent substrate Products were diluted out and loaded into a multiplexed concentrator chip along
with a negative control (unconverted substrate). A 5.8% phosphorylation was measured which compares well
to corresponding amount of bulk lysate.

assay reagents and captured into the microfluidic probe. Observation of the reaction chamber

over time revealed that single cell sensitivity was approachable in the direct fluorimetric assay

without further concentration-enhancement. Single cell MK2 activation assays were performed

with multiple single cells, the results of which are shown in Figure 4.7a. The assay sensitivity

was calibrated with bulk, stimulated HepG2 cell lysate and the activity measured from single

cells was found to equivalent to that from about ~Ing of cell lysate which is roughly the

expected total protein content of single cells of this kind. Given these promising results which

were obtained without much any device design optimization, we further optimize this device for

direct fluorimetric assay without concentration-enhancement (Section 0).

A demonstration of concentration-enhanced mobility shift assay from ~15 HepG2 cells

was also performed in a two-chip format where the reaction products from the microfluidic
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probe were diluted out and loaded into a multiplexed concentrator chip with a negative control

and a bulk lysate calibration control. The simultaneous concentration and separation of the

phosphorylated and unphosphorylated peptides allowed a ratiometric measurement of the

phosphorylation level which was found to compare well between the cells and the corresponding

amount of bulk lysate.

4.4 Optimization of Microfluidic Probe for Higher Sensitivity,

Repeatability and Throughput

H B. ______C. I
A.4 tst T P=pgH

LysisQ AR
. 4 CILB LysisBuffer RL

.Mixing Lysate Q

Figure 4.8a. Modular representation of the integrated microfluidic probe b. The radius of the lysis zone is

controlled by the fluid velocity at the tip which is thus limited to a certain minimum before diffusion

dominates. c. A circuit model of the mixing ratio showing the tip resistance, RL and flow rate QL, the assay

buffer channel resistance, RA and flow rate QA and the assay buffer reservoir pressure P and total flow rate Q.

The nicrofluidic probe was optimized by considering its various modules as shown in

Figure 4.8a and optimizing each subject to constraints offered by the operation of all the

modules together. The sensitivity of the microfluidic probe is dependent on lysate concentration

which depends on the volume into which the single cell is lysed. This is in turn, governed by the

lysate flow rate QL and the time of lysis TL so that the volume of single cell lysate VL is:

VL = QL. TL. Lysis time, TL is found to be relatively independent of flow rates and hence the

lower the flow rate QL, lower the dilution of the lysate and potentially higher the sensitivity at

this stage. The lower bound to this is set by the fact that the radius of the small lysis zone
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depends on a high enough fluid velocity at the probe tip to overcome lysis agent and lysate

diffusion Figure 4.8b. Thus we reduce the channel height at the tip from 15pm to 5pLm to

maintain a high fluid velocity with a lower flow rate.

The sensitivity is also proportional to the optical path length offered by the reaction

chamber and thus its height is increased from 15pam to 30pm. Thus a two-level chip is proposed

with a tall chamber region and short probe region.

The repeatability of the assay was found to be hindered primarily by the variability of

the mixing ratio which was found to vary due to the change in assay buffer height as it was

consumed over time as shown in Figure 4.9a. This could be rectified my reducing the

contribution of the gravity-driven assay buffer flow to the total flow by increasing the channel

resistances as predicted by a simple circuit model of the mixing system:

P
QA +RL

QQ

This can be achieved again by the reduction of the channel heights in the probe and
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Figure 4.9a. The mixing ratio in the microfluidic probe was found to vary over time due to assay buffer

depletion and resultant fluid height change. b. This effect was minimized by increasing channel resistances

which reduced the relative contribution of the height-driven flow c. The chip-to-chip repeatability was also

improved due to this.
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assay buffer channel region to 5pm as described earlier. This was observed to improve

repeatability of the mixing ratio over time in a single chip and also from chip to chip to within

acceptable limits (<10%) (Figure 4.9c). It was observed that repeatability in a single chip over

experimental runs was still better than chip-to-chip repeatability. This indicated that probing

multiple cells using the same chip would provide excellent technical repeatability of the assay.

This would provide higher assay throughput too.

4.5 Integrated Microfluidic Probe v2

A new version of the microfluidic probe incorporating the design changes proposed above

was fabricated as shown in Figure 4.10. This version features four reaction chambers which can

be independently controlled using pneumatic valves. A valve controller was designed and made

(Figure 4.11) to ease the use of this device. The flow in the device could thus be directed from

the tip and assay buffer chamber to any of the four reaction chambers (Figure 4.11) and this

control can be performed manually or via computer programs.

30pm) -O Bonded

Layervalve
Laye r

Laye r -250ptm

Figure 4.10a. Fabricated multiplexed microfluidic probe showing the two layers: (green) flow channels and

(red) valve lines b. Micrograph of the inset area showing the reaction chambers controlled by the pneumatic

valves. The flow channels are 5pam tall while and the reaction chambers are 30pm tall.
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Figure 4.11a. Valve controller which can switch eight gas lines between the two input pressure levels either

manually or via computer control. b. Filling and draining of the multiple reaction chambers of the microfluidic

probe with, visualized using a fluorescent dye.

The chamber-to-chamber repeatability of the kinase assay was verified by probing a

single sample of recombinant kinase MK2 four times, loading each of the four chambers with

reaction mixtures. All four chambers were found to show similar fluorescence Figure 4.12 and

reasonable agreement (<10% error) was found between the reaction rates measured from them.

recMK2 11.25ng/mi
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Figure 4.12a. Reaction chambers show uniform fluorescence at the end of a multiplexed assay in which each

chamber was used to probe the same recombinant kinase MK2 sample. b. The product curves for the four

reactions shown in a.

Kinase Assay Sensitivity Calibration

A calibration of the MK2 assay sensitivity in these chambers (volume: 18nL each ) was

performed by probing a bulk lysate of stimulated HepG2 cells stimulated using Sorbitol. The
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total protein concentration in this lysate was independently measured using a bicinchonic acid

assay (BCA) and the appropriate dilutions were made to mimic total amounts equivalent to a

single cell and multiples or fractions thereof. The result of the MK2 assay at various total

protein amounts is shown in Figure 4.13a. Activity was clearly measurable down to about

0.25ng of total protein and was found to linearly increase with the amount of total protein.

Assuming that a single cell contains about lng of total protein, this indicates that MK2 activity

from 1/4th of a cell should be measurable.

Similarly a calibration of the Akt assay sensitivity was performed using a bulk lysate of

HepG2 cells stimulated using Insulin. The result of the Akt assay at various protein amounts is

shown in Figure 4.13b. Again, assuming around lng/cell, this indicates that Akt activity from

less than half a cell should be measurable. Comparing MK2 and Akt activities in similar

amounts of bulk lysate shows that the measured MK2 activity is slightly higher than the Akt

1 cell ~ng
0.8

0.6 0
y=0.4603x+0.1034

<0.4 R2
=0.9813 0.4

0.2 0.2

0 .0
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Figure 4.13a MK2 assay calibration curve obtained by probing bulk lysate of HepG2 cells stimulated using

Sorbitol. b. Akt assay calibration curve obtained by probing bulk lysate of HepG2 cells stimulated using Insulin
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activity. This is different from what is seen on probing these same bulk cell lysates on a plate

reader where the measured MK2 activity is much higher than the measured MK2 activity (data

not shown). One can only speculated as to the reasons for this - potentially the PDMS

microchannel impedes the MK2 reaction somehow by maybe non-specific binding of either the

enzyme or the substrate. This is worth further investigation as it might lead to further increased

sensitivity if this issue is resolved.

4.6 Single Cell Kinase Activity Measurements

Single Cell MK2 Activity Measurement

A single cell MK2 assay was performed with Sorbitol-stimulated HepG2 cells, the result

of which is shown in Figure 4.14. An around 10-fold higher reaction rate compared to earlier

(Figure 4.7) was observed as a result of the lower volumes into which the cell lysate was diluted
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Figure 4.14a. Product curves obtained for the measurement of MK2 activity from single sorbitol-stimulated

HepG2 cells show a repeatable positive slope. b. Product curves obtained for the measurement of MK2 activity

from a negative control which consisted of tissue culture medium and lysis buffer only. c. Initial slopes of

product curves from a and b show the ability to clearly distinguish MK2 activity in single cells from negative

control.
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as a result of chip optimizations. This was clearly distinguishable from the negative slopes

obtained due to photo-bleaching from the negative control samples which consisted of tissue

culture dishes with medium but without cells and thus collected a mixture of medium and lysis

buffer. Also the single cell MK2 activity compares well to that measured from lng of bulk lysate

(Figure 4.13a).

Single Cell Akt Activity Measurement

Single cell Akt activity measurements were performed on HepG2 cells. Figure 4.15 shows

the results of probing single serum-starved and insulin stimulated cells for Akt activity. The

measured single cell activity levels between these two conditions are clearly distinguishable as

shown and compares well with to that measured from lng of bulk lysate (Figure 4.13a). It can

also be noted here that the measured single cell kinase activities are higher for Akt than for

MK2. This too, as noted above in Section 4.5 for the bulk lysate calibration assays, is the

opposite of what is seen for bulk Akt and MK2 assays on plate readers.
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Figure 4.15a Product time curves for the measurement of Akt activity from single serum-starved and insulin

stimulated cells b. Akt activity of serum-starved and insulin-stimulated single cells is clearly distinguishable
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Time-course of Kinase Activation

We measured the time-course of activation of the kinase, MK2 by measuring its activity

in single HepG2 cells stimulated by sorbitol (300mM) for different amounts of time. As shown in

Figure 4.16a, an increasing level of single cell MK2 activity above the level measured in serum-

starved cells was observed up to at least thirty minutes of stimulation which matches the

corresponding time course of MK2 activation observed in bulk HepG2 cell lysate measurements.

The time course of Akt activation upon 500ng/ml insulin stimulation was also similarly

measured. Again, an increasing level of Akt activity was seen extending to at least thirty

minutes of stimulation (Figure 4.16b). While bulk Akt activity measurements from high cell

density plates in the same cells have shown transient activation peaking at ~5-10 minutes of

stimulation (data not shown), there is an earlier report showing [221 showing that Akt

activation dynamics in MCF10A cells is cell density dependant and cells show sustained activity

when plated at lower densities. This also correlates with the observation that the number of

cell-cell contacts may affect the level to Akt activity with cells with lower cell-to-cell contact
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0.45 0 Sorbitol Stimulated Cells - Expt I / - A Seu ted C. A Forskolin Stimulated Cell - Expt 2

. Sorbitol Stimulated Cells - Expt 2 4 ss 0.15 A Serum Starved Cells
0.3 /obio Stmlae CelU xp Insulin Stimulated Cells - Expt 2 ,/ -

+ 0lnsulin Stimulated Cells - Expt 3 0.1
/ S,

0.25 3 0.05

0.15 0
-.0 13 -0 . 20 30

0A0 < 0.51

to2 'go -0.1

S-0.05 4- 10 20 30 0

- Time (minutes) 10 20 30 -0.2
-0.25 -1 Time (minutes) Time (minutes)

Figure 4.16a. Time course of MK2 activation measured from single cells stimulated with 300mM sorbitol for

different amounts of time b. Time course of Akt activation measured from single cells stimulated with

500ng/ml insulin for different amounts of time. c. Time course of PKA activation measured from single cells

stimulated with 25pM forskolin for different amounts of time
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showing higher Akt activity [23]. This needs to be compared and corroborated with bulk HepG2

lysate measurements at cell densities comparable to those used for the single cell measurement.

We measured the time-course of activation of the kinase, PKA similarly by stimulating

cells with 25[LM forskolin. In this case a transient stimulation of PKA activity was observed

peaking at about 5 minutes. This needs to be compared and corroborated with bulk HepG2

lysate measurements.

Correlating Extracellular Context and Cellular Phenotype to Kinase Activity

The microfluidic probe enables the selective assay of single adherent cells from specific

extracellular contexts or those displaying specific phenotypes. We have observed an inverse

correlation with cell density, of single cell Akt activity in HepG2 cells after 15 minutes of insulin

stimulation Figure 4.17a. While cells plated at 104 cells/[60cm dish] and 105 cells/[60cm dish]

have measurable Akt activities, those at 106 cells/160cm TC dish] have no Akt activity above

that of serum-starved cells. While these preliminary measurements were performed in different

dishes plated to different densities, a potentially more interesting measurement suggested by
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Figure 4.17a. Single cell Akt activity at 15 minutes of insulation stimulation for different cell densities. Akt

activity was found to decrease with increasing cell density b. Single cell Akt activity vs cell circularity. Rounded

cells (circularity nearer to 1) show no Akt activity while cell spread out cells show measurable Akt activity.
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this results is one where the local cell density variation on a single plate could be correlated

with the measured Akt activity. Whether global cell density of the whole dish or the local cell

density near the cell being studied, controls the Akt activity would be interesting to find out.

Cell shape and morphology are simple yet important phenotypic markers. Here we

observed that, on the same dish among neighboring cells - some cells are more rounded

compared to others that show a more spread out shape. With the microfluidic probe, we find

that the spread out cells show Akt activity while the rounded cells show no measurable Akt

activity Figure 4.17b. Presumably the rounded cells are not well-attached to the surface or are

about to die and this is reflected in the activity of Akt which is a know proliferative signal. Such

cell-shape correlations can be a subject of further study.

4.7 Deconvolving Technical and Biological Variability in Single Cell

Kinase Activity Measurements

Establishing that the measured variability among single cells is indeed biological variability and

not a technical artifact is essential for further use of the microfluidic probe. The bulk kinase

activity assays normalize the measured activity across experiments using a measurement of total

protein in the cell lysate. Many other protein measurement techniques such as western blotting

measure a so-called "house-keeping" protein as a loading control to overcome effects of unequal

protein loading in different gel lanes. Here we develop an assay for measuring the activity in

single cells of the metabolic enzyme Glyceraldehyde 3-Phosphate Dehydrogenase which is known

to be expressed at a high level in most cells and is commonly used as a loading control in other
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techniques. The sensitivity of this assay in the microfluidic probe was verified and calibrated

using a bulk lysate of HepG2 cells. The results of this are shown in Figure 4.18a. Both serum-

starved and insulin stimulated cells were seen to yield similar reaction rates. This is as expected

since there is no known interaction at least in this cell type between the insulin activated

pathways and GAPDH. A demonstration of the single cell GAPDH activity measurements is

shown in Figure 4.18b. Further results for measurements of GAPDH activity in single cells are

shown in Figure 4.18c along with a negative control from which they are clearly distinguishable.
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Figure 4.18a. Calibration of GAPDH assay using bulk lysate of serum-starved and insulin-stimulated HepG2

cells. b. Product curves obtained for the measurement of GAPDH activity from single HepG2 cells. c. Single

Cell GAPDH Assay: Ability to measure GAPDH activity in single HepG2 cells as clearly distinguishable from a

lysis buffer negative control is demonstrated. d. A correlation is seen between the measured single cell GAPDH

activity and the cell size as estimated by the measured area of the cell. Red circles indicate potentially two cells

or cells about to divide. The blue arrow shows a single cell with abnormally spread out morphology and hence

the large area.
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Further as shown in Figure 4.18d, a correlation between the cell size of the adherent

single cells as estimated by the measured area (in sq. pixels) and the measured single cell

GAPDH activity is observed. Red circles indicate potentially two cells or cells about to divide.

The blue arrow shows a single cell with abnormally spread out morphology and hence the large

area.

4.8 Integrated Microfluidic Probe v3: Measuring Multiple Kinase

Activities from Single Cells

Given the sensitivity of the microfluidic probe as demonstrated by the ability to measure

kinase activity from 0.25ng of total lysate protein (Figure 4.12c), we developed a further

advanced version to measure simultaneously the activity of four enzymes from a single cell. This

device is shown in schematic in Figure 4.19a and works by splitting the single cell lysate into

Figure 4.19a. The integrated microfluidic probe consists of two modules: cell lysis/collection tip to selectively

lyse and collect single cell contents and a set of four reaction chambers in which the lysate can be mixed with
different assay reagents and held for observation to measure activities of different kinases. b. a) Fabricated two

layer PDMS device: top 5mm layer with channels and chambers (green) and lower 30pm layer which forms the
base of the tip and contains the valve lines (red). b) Formation of lysis zone at tip c) Mixing of cell lysate with
different assay buffers d) Reaction chambers filled and valves closed.
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four parts and mixing each part with a different assay buffer into a different reaction chamber

which can then be observed for activity over time. All the flows are controlled using pneumatic

valves as before. The device and its operation are shown in Figure 4.19b.

We first use this device to perform

a single cell. The result, in Figure 4.20c,

single cell are almost perfectly correlated.

from a single cell to establish repeatability

shown in Figure 4.20a. As seen here

measurements potentially due to cell size

activity to the measured GAPDH activity

two repeat measurements each of a single kinase from

shows that two MK2 measurements from the same

We also measure MK2 and GAPDH simultaneously

and the absence of loading effects. These results are

there is a small correlation between these two

or loading effects. Normalizing the measured MK2

does explain some but not all of the variability of the

data as shown in Figure 4.20b. This data

experiments in order for any robust conclusion
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Figure 4.20a. Simultaneous measurement of MK2 and GAPDH activity in single HepG2 cells. b.

Normalization using GAPDH activity reduces the observed variation only slightly c. Two MK2 measurements

from the same cell are almost perfectly correlated.
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Figure 4.21a. Measurement of three kinase activities from a single Sorbitol stimulated HepG2 cells shows an
activation of only MK2. b. Measurement of three kinase activities from three single EGF stimulated HepG2
cells shows an activation of Akt and MK2.

This device also can be used to simultaneously measure three kinases and the loading control

enzyme, GAPDH thus providing a normalized kinase activity profile across different single cells.

The measurement of three kinase activities simultaneously from single cells under various

stimulation conditions is shown in Figure 4.21. Sorbitol stimulation is seen to activate MK2

selectively while EGF stimulation activates both Akt and MK2. Again, this data needs to be

supplemented with further repeat experiments in order for any robust conclusion to be drawn.

4.9 Conclusions and Future Directions

In conclusion, we have demonstrated that the integrated microfluidic probe developed here can

be used to selectively lyse and capture the contents of selected single cells and measure single

single or multiple kinase activities in them with or without other the activities of other enzymes

as loading control. We demonstrated that while an integrated concentration-enhanced assay can

be performed, a direct fluorimetric assay in a small volume chamber suffices to measure the
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kinase activity from single cells and can in fact measure this activity from 1 / 4 th of a cell. The

time courses of kinase activation were measured by probing different single cells. A preliminary

demonstration of correlations of extracellular context such as cell density and cell phenotypic

measures such as cell shape with kinase activity was performed. A multi-kinase version of the

microfluidic probe was developed and it was demonstrated to be able to measure up to four

different enzymes simultaneously. These results suggest the directions of future work.

Correlating Phenotype or Extracellular Context with Kinase Activity Profile

Using the single kinase, multi-cell measurement probe (v2: Section 4.5) to pursue further

measurements especially those that correlate single cell phenotype or extracellular context to its

kinase activity seems to be of immediate interest. An example of an important biological process

that involves a cell morphology change is the epithelial-mesenchymal transition (EMT). The

microfluidic probe can enable the measurement of differences in kinase or other enzyme

activities in neighboring cells that may or may not have undergone the EMT process and thus

help in understanding this process which plays a critical role in cancer mctastasis.

Further Improvements to Microfluidic Probe

The microfluidic probe can be further optimized especially to improve throughput. A

three-layer design instead of the current two-layer design will enable the implementation of

more complex architectures such as a multi-cell, multi-kinase device. Sensitivity can be further

improved too further reducing the probe size and hence flow rates. The reliability of the

microfluidic probe can also be further improved especially with regards to lysis buffer delivery

which is currently - due to the thin channel and the low flow rate - especially prone to clogging

86



and flow rate oscillations. A potential solution to this is establishing a pressure-driven flow

instead of using a syringe pump. This would allow faster starts and stops of this flow without

oscillations.
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Chapter 5 Conclusions and Future Work

5.1 Thesis Contributions

In this thesis, we set out to develop microfluidic and nanofluidic tools for sensitive

enzyme activity assays that could approach single-cell enzyme activity measurement and

perform reliable cell signaling measurements in presence of cellular heterogeneity.

We have developed several such tools using broadly two confinement principles:

electrical trapping of charged molecules into ~pL-scale plugs in the biomolecule concentrator

and mechanical confinement in small volumes using either ~pL-scae water-in-oil droplets or

~nL-scale chambers formed using pneumatic valves.

We have also demonstrated the measurement of various cellular enzymes ranging from

secreted extracellular proteases (MMP-9) to intracellular kinases (Akt, MK2, PKA and

metabolic enzymes (GAPDH). The intracellular enzymes were measured simultaneously or

separately from single cells and the possibility to correlate the variations in their activity with

the variation in extracellular context and single cell phenotype was demonstrated.

The specific contributions of this thesis can be summarized thus:

- The non-linear enhancement of enzymatic reaction kinetics in the biomolecule

concentrator was experimentally studied and modeled. It was shown that the measured

rates are linear in enzyme concentration. Also it was shown that concerns of the
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enhancement of off-target reactions due to substrate accumulation are mitigated by a

substrate-limited phase reached by the reaction over long times.

- A new linear enhancement mode of enzymatic reaction kinetics in the biomolecule

concentrator was proposed in which the reaction follows the accumulation and occurs in

a separate enclosed volume. This was demonstrated by integration with an integrated

chamber with pneumatic valves or with a microfluidic water-in-oil droplet generator.

The droplet device was further used for multiplexed measurement of activity of secreted

proteases in cellular supernatants.

= A microfluidic probe was developed which can selectively lyse visually selected single

cells and capture their contents in small volumes for sensitive on-chip measurement and

manipulation. The integration of this probe with a fluorimetric assay chamber and a

concentration-enhanced assay using a biomolecule concentrator was demonstrated.

- An optimized, multiplexed microfluidic probe was developed which can lyse multiple

cells and measure kinase activities in them using a direct fluorimetric assay was

developed. Measurement of the activity and the time-course of activation of kinases:

Akt, MK2 and PKA were demonstrated using this probe. The measurement of single cell

GAPDH activity was also demonstrated.

= A multiplexed microfluidic probe which can measure multiple kinase and other enzyme

activities from single cells was developed and demonstrated.
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5.2 Directions for Future Work

The various sensitive enzyme assay methods developed here are well-suited for and ready

to be applied to a number of interesting biological and other problems.

The non-linear yet controlled enhancement of enzyme activity afforded by the

biomolecule concentrator opens up several opportunities for very high sensitivity detection. This

can be applied with slight modifications to problems ranging from biomarker discovery to

diagnosis of diseased states in which low abundance enzymes are bio-markers to the detection of

bacterial contaminants in water for human consumption. The linear enhancement tools

developed here are directly applicable to high throughput measurement of enzyme kinetics and

thus are potentially applicable to drug and drug target testing especially for low-abundance

targets.

The microfluidic probe is a versatile tool that can be used to interface standard tissue

culture platforms to microfluidic systems. Assays can thus be performed at both scales

depending on their suitability to particular formats and the results can then be correlated at the

single cell scale. The immediate prospect of this tool seems to be in correlating single cell

phenotype of local cellular microenvironment variability to intracellular signaling state via

kinase activity measurement. However the system is agnostic to specific assay chemistry and

various other assays: enzymatic, binding-based or even PCR-based assay can be easily

implemented without much modification and can benefit from the interfacing capabilities and

high sensitivity afforded by small volumes.
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