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Abstract

It is challenging to obtain accurate predictions of ocean surface wavefield evolutions
due to several complex dynamic processes involved, including nonlinear wave inter-
action, wave breaking and wind forcing, and also wave interactions with currents and
bottom bathymetry. With fast computational algorithms for nonlinear phase-resolved
wave simulations and modern computational capabilities, we now develop and apply
a direct large-scale nonlinear phase-resolved wavefield simulation tool, which we call
SNOW (Simulation of Nonlinear Ocean Wavefields), to study the evolution of direc-
tional ocean waves and occurrence of rogue waves (extremely large waves).

Using SNOW, we obtain an ensemble of nonlinear deep-water wavefield simula-
tions, initialized by JONSWAP spectrum with a broad range of spectral parameters,
over large space-time scales. Spectral evolutions, nonlinear wave statistics and rogue
wave occurrence are investigated based on the simulated wavefields. The SNOW re-
sults are compared to available wave basin experiments and predictions from linear
theory and approximate nonlinear-Schr6dinger-equation (NLS) type models. SNOW
predictions give an overall better comparison with wave-basin experiments than NLS-
type model predictions. For initially narrow-banded and narrow-directional-spreading
wavefields, we find modulational instability develops over short time, resulting in
considerable spectral broadening, strongly non-Gaussian statistics and probability of
rogue wave occurrence an order of magnitude higher than linear theory prediction.
For longer time, the wave spectrum in SNOW simulations reaches a non-Gaussian
quasi-stationary state, and this is not predicted by NLS-type models, where a contin-
uous spectral broadening is observed. When waves spread broadly in frequency and
direction, the modulational-instability effect is reduced and the wave statistics and
rogue wave probability are close to linear theory prediction. Number and area-based
probabilities are introduced to measure the likelihood of rogue wave occurrence. To
effectively predict rogue wave occurrence in directional seas, we propose a new modi-
fied Benjamin-Feir index (MBFI), which accounts for the effects of wave directionality.
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It is shown that the occurrence probabilities of rogue waves are well correlated with
MBFI over a broad range of spectral parameters. Based on a large catalogue of rogue
waves found from SNOW simulations, the geometric shapes of rogue waves are an-
alyzed using proper orthogonal decomposition (POD). It is found that rogue wave
profiles can generally be described by a small number of POD modes.

SNOW simulations are also used to investigate the influence of finite depth on
the evolution of nonlinear wavefields. As water depth decreases, the modulational
instability decreases and finally diminishes. It is found that the occurrence probabil-
ity of rogue waves and wave kurtosis decrease as water depth decreases. The wave
statistics and rogue wave occurrence in bimodal wavefields are also studied. The in-
fluence of swell on the wave statistics of single-modal wind sea is not monotonic. The
occurrence probability of rogue waves can either increase or decrease depending on
the bimodal spectrum shape. We find the rogue wave probability and wave kurtosis
are minimized when the propagation directions of swell and wind sea are orthogonal.

By assimilating wave measurements from in-situ buoy and/or remote sensing into
SNOW, we develop and demonstrate the capability of phase-resolved reconstruction
and forecasting of wavefield evolution and rogue wave occurrence. Such capability
could significantly enhance marine design and operation.

This research paves the way for a new-generation wave forecasting model that is
capable of providing heretofore unavailable large-scale phase-resolved information on
the ocean wave evolution. Such capability is critically useful such as in the under-
standing of rogue wave dynamics and in the practical marine operations and safety.

Thesis Supervisor: Dick K. P. Yue
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

This thesis is devoted to the study of the directional ocean surface wave evolutions

with a primary focus on the extremely large wave events, rogue waves, using a direct

numerical simulation approach. In this chapter, the key physical processes in ocean

wave dynamics are briefly described and a short introduction to rogue waves is given.

We then review various types of numerical wave forecasting models developed at

different stages in the literature and discuss the model capabilities and limitations.

In the end, we state the objectives, problem statement, and contributions of present

thesis.

1.1 Historical note on ocean waves

Ocean surface gravity waves are one of the most familiar natural phenomena that are

both fascinating and intimidating to human. Man's relationship with ocean and ocean

waves has started since the invention of oceangoing vessels and large ships. The stories

of ancient marine explorers can be traced back to six centuries ago. The great Chinese

mariner and explorer, Zheng He, led seven expeditions to the Indian Ocean, histori-

cally referred to as the "the voyages of Zheng He", during 1405 to 1433. Despite the

long experiences of human with ocean waves, significant attempts for understanding

water waves started only 200 years ago. The celebrity mathematicians in eighteenth

and nineteenth century, including Laplace, Lagrange, Poisson, Cauchy, Green, Airy,

15



Stokes, Boussinesq and many others, who found the mathematical problems associ-

ated with water waves both fascinating and challenging, made solid contributions to

the development of water wave theory. Sophisticated mathematical techniques were

developed and applied to describe the propagation of small-amplitude monochromatic

sinusoidal waves, the wave pattern generated by dropping a pebble in the water, and

the shape of solitary waves generated by the stopping of a barge in a canal. Since

eighteenth century the water wave theory has triggered significant advances in math-

ematic techniques and state of knowledge of fluid mechanics. Interesting reviews on

the regular deterministic water wave theories in a historic perspective can be found

in Craik (2004, 2005); Darrigol (2003). A number of textbooks are devoted to the

beautiful mathematics and rich fluid dynamics in water wave theories, including Mei

et al. (2005a,b), Whitham (2011), and Kundu and Cohen (2004).

The subject of random ocean waves is more complex than that of regular deter-

ministic water waves. The major challenges in the ocean waves are their randomness

and the complex dynamic processes involved. When looking at the ocean, the mo-

tion of waves appears to be totally random in space and time and the ocean surface

appears to be composed of waves with various lengths and periods. In addition to

the complicity of wave randomness, several complicated physical dynamics evidently

involved in the ocean wave motion, including wind blowing, wave profile steepening,

and wave breaking (figure 1-1).

Substantial progresses in the ocean wave theories started during World War II

for the landing operations of Normandy in 1945 (Sverdrup and Munk, 1947) . In

the pioneer work of Sverdrup and Munk (1947), statistical quantities were introduced

to characterize quantitatively the properties of irregular random waves. Two wave

statistics of practical importance are significant wave height and significant wave

period, which are the average height and period of the highest one-third of the waves.

In Sverdrup and Munk (1947), an energy balance equation was introduced to describe

the evolution of the waves. In this equation, the wave evolution was determined

by a source function which is a sum of energy input and decay due to wind forcing

and wave breaking. Although empirical formula were used for the wind input and

16



breaking and effect of nonlinear wave interactions were completely ignored in Sverdrup

and Munk (1947), Sverdrup and Munk's work set up the basic framework for ocean

wave forecasting which is still adopted today. In particular, the idea of the evolution

of ocean waves being controlled by a sum of key physical processes allows the study

on each physical process to be separated. Once a dynamic process is understood, the

forecasting model can be advanced by adding or updating the corresponding term in

the source of the energy balance equation. Since then, enormous progresses have been

made to expand our knowledge of ocean wave dynamics, including the mechanisms of

wave generation by wind (Phillips, 1957; Miles, 1957), the energy transfer of nonlinear

waves (Phillips, 1960; Hasselmann, 1962, 1966), wave breaking and energy dissipation

(Duncan, 1981; Rapp and Melville, 1990), and equally importantly, the stochastic

aspects of ocean waves (Longuet-Higgins, 1952, 1975; Pierson et al., 1955; Ochi, 2005).

A number of extensive field measurements has also made considerable contribution

to clarify and advance our understanding of ocean waves (Mitsuyasu, 1968, 1969;

Hasselmann et al., 1973; Snyder et al., 1981). Elaborate literature review on process

in ocean wave forecasting can be found in Mitsuyasu (2002); Janssen (2008); Komen

et al. (1984)

Figure 1-1: North Pacific storm waves, NOAA.
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1.2 Basic dynamic processes in ocean waves

There are several complex physical processes involved in the ocean wave evolutions.

For deep water wavefield, the essential dynamic processes include energy input from

wind forcing, energy transfer due to nonlinear wave interactions, and energy dissi-

pation due to wave breaking. In the context of coastal environment, other effects

including wave-current interaction, refractions from varying bathymetry and coastal

zone boundaries should also be considered.

1.2.1 Linear waves

The ocean waves appear to be composed of waves of various lengths and directions,

therefore we may assume that the wave surface is made up of a large number of simple

sinusoidal waves with different frequencies and propagation directions. This idea is

supported by the mathematical concept of Fourier series for period functions, any

surface being represented as an infinite series of sine and cosine functions oriented

in all possible directions. In linear wave theory, each wave mode is assumed to be

independent. There is no energy transfer among different wave modes and individual

wave with random phase propagates with its own speed. The evolution of linear

wavefield, therefore, is the sum of evolution of each independent wave.

Surface waves in deep water are dispersive, that is, the wave propagation speed

depends on the wavelength. Waves with longer wavelength propagate faster than

the ones with shorter wavelength. As waves of different lengths propagate away

from their origin, eventually, they are sorted according to the wavelengths with long

waves being in front of short waves. While the short waves are dissipated over a

long journal, the long waves are able to survive as the dissipation associated with

them is much less significant. This situation occurs when the waves are generated

from a powerful storm thousands of miles away and have propagated several days to

reach their present location. These waves are called swell. The swell waves usually

have a narrow range of wavelengths (typically ~100 m) and directions. Figure 1-2

shows a swell at Lyttelton harbor in New Zealand and the waves are found to have
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an appearance close to regular monochromatic sinusoidal waves. The evolution of

swell with small amplitude in deep open sea can be captured by the linear theory

reasonably well (Snodgrass et al., 1966). Linear wave theory is the foundation of

ocean waves and it is discussed extensively in many textbooks including Mei et al.

(2005a), Whitham (2011) (part II), and Kundu and Cohen (2004) (Chapter 7).

Figure 1-2: Swell at Lyttelton Harbour, New Zealand, 2008.

1.2.2 Nonlinear waves

For monochromatic periodic surface waves with finite amplitude, their profiles are

no longer sinusoidal. In 1847, Stokes generalized the linear wave theory for constant

water depth by including high-order bound-wave effects to the sinusoidal waves (S-

tokes, 1847). These period nonlinear waves are named as Stokes waves. Stokes waves

have sharper crests and flatter troughs comparing to sinusoidal waves (figure 1-3).

For many years even until today, Stokes waves have been used as the model waves in

many practical marine design applications where the information of wave kinematics

is required (Patel, 1989).

Benjamin and Feir (1967) find initially periodic Stokes wave train is unstable

to side-band modulations. This Benjamin-Feir (modulational) instability causes the

wave train to disintegrate into wave groups within which large waves could form. Lake
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Figure 1-3: Regular sinusoidal wave (-) and ninth-order Stokes wave with steepness
ak = 0.3 (- -- -).

et al. (1977) find the unstable modulations grow to a maximum and then decreases.

Over a long evolution time, the wave train actually return to its initial profile. In

the absence of energy dissipation, the long time evolution of modulational instability

becomes a series of focusing and de-focusing cycles, known as the Fermi-Pasta-Ulam

recurrence phenomenon. The related time scale of Benjamin-Feir type modulational

instability for nonlinear wave energy transfer is T = O(Tpe- 2), where e = ak is

the wave steepness, with a and k being the wave amplitude and wavenumber of

the dominant wave, and Tp is the wave period. The Fermi-Pasta-Ulam recurrence

phenomenon occurs on the time scale O(TpE- 3 ). In other words, without energy

dissipation, the energy transfer caused by modulational instability is reversible over

time scale T = O(TpE- 3). A good review on nonlinear wave interactions for deep

water waves can be found in Yuen and Lake (1980).

In random wavefields, the randomness of the wavefields reduces the growth rate

of the modulational instability (Alber, 1978). For wavefield which are sufficiently

random, characterized by a broad range of wave frequencies and directions, the mod-

ulational instability could be eliminated. For wavefields in which the waves have a

narrow range in frequencies and directions, the modulational instability could still

occur. Recently, modulational instability is studied theoretically, experimentally, and

numerically as possible generation mechanism for extraordinarily large waves (see
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$1.4).

Benjamin-Feir instability is only one special example of four-wave (quartet) inter-

actions (Phillips, 1960; McLean et al., 1981; Mei et al., 2005b). For deep water waves,

the resonant interactions of lowest order occur among four waves. The resonant in-

teraction theory plays an important role in understanding the wavefield evolution

and nonlinear wave phenomena. The energy transfer caused by four-wave resonant

interactions occurs on a much longer time scale T = O(TpE- 4 ). The evolution of the

random wavefield consists of a relatively fast energy transfer process (over time s-

cale O(TpE-- 2 ) caused by Benjamin-Feir instability and a much slower energy transfer

process (over time scale O(TpE- 4 ) caused by four-wave resonant interactions. It is

believed that the former process is reversible similar to the Fermi-Pasta-Ulam recur-

rence phenomenon and it is the later process that is responsible for the net energy

transfer among waves because it is irreversible Yuen and Lake (1980). In fact, the

energy transfer due to quartet resonant interactions is believed to be one of the major

driving sources that leads to the change of the wavefield (Hasselmann, 1962, 1966)

However, the Fermi-Pasta-Ulam recurrence has not been discovered in realistic ran-

dom wavefields because of the presence of many unstable side bands (Caponi et al.,

1982) and non-ignorable wave breaking (Tulin and Waseda, 1999). Recent research

finds, for unidirectional random ocean wavefields composed of waves with a narrow

range of frequencies, modulational instability can lead irreversible redistribution of

the wave energy over the short modulational-instability time scale T = O(TE--2 )

(Janssen, 2003).

For wave evolutions over even longer time, the higher wave nonlinearity such as

quintet (five) wave interactions may also be relevant. It is found, for steep stokes

wave train, the three-dimensional modulational instability caused by resonant quin-

tet interactions develops leading to a "horseshoe" pattern of the waves (McLean

et al., 1981; Su, 1982b). The instability of Stokes wave train caused by the quintet

interactions and the coupled resonant quartet and quintet interactions are studied

in Stiassnie and Shemer (1984, 1987). Review on wave resonant interactions can be

found in Hammack and Henderson (1993). Although a few attempts have been made
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(Dyachenko et al., 1995; Mori and Yasuda, 2001; Kalmykov, 1998), the study on the

role of high-order wave nonlinearity on the random wavefield evolution is very limited

and the conclusion is far from complete.

The space and time scales of the nonlinear wave interactions involved in ocean

wave evolutions are summarized in Table 1.1. In this thesis, we focus on the effect of

the Benjamin-Feir type modulational instability on the wavefield evolution, therefore,

the spatial-temporal scales with L = O(A E-2) and T = O(T e-2 ) are considered.

1.2.3 Wind input

Although the understanding on the generation mechanism of ocean waves has not

be conclusive, it is generally accepted that wind forcing is the dominant generation

mechanism for surface waves. When wind blows the ocean surface, it generates small

ripples and the small ripples grow to larger waves as the wind continues blowing. As

the larger waves evolve, waves with even longer wave length are generated as result

of nonlinear wave interactions. Two fundamental papers, Phillips (1957) and Miles

(1957), contribute greatly to the understanding of wave generation and evolution

due to wind and they still provide the basic formulation in today's wave forecasting

models. The energy input from wind forcing may be estimated using the empirical

fetch and duration law described in Donelan et al. (1985):

E = 8.4 x 10- 7X0 -76; (la)

E - 7 x 10-9 1 .13; (1.1b)

where E is the non-dimensional variance, X and T are the non-dimensional fetch and

duration defined as

g 2 a 2  X gX. Tzz
E = U14- X - w- T - gt . (1.2)

Here o- is the standard deviation of the surface elevation. U10 is the wind speed at

height 10 m and U10/c, = 50- 0 . 4 , where c, is the phase velocity of the peak wave.
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Nonlinear wavefield evolution

L = O(Ap 6-2)
T =O(T - 2 )

" Wavefields change significantly due to quartet
resonance interactions including Benjamin-
Feir instabilities.

" The energy distribution over different wave
modes changes due to quartet resonance in-
teractions for wavefields with a narrow range
in frequencies and directions.

" There is no significant change in the ener-
gy distribution over different wave modes for
wavefields with a broad range in frequencies
and directions.

" Wavefield changes significantly due to quintet
resonance interactions.

L = O(A, E-3) * There is no significant change in the ener-

T = O(Tp E-3) gy distribution over different wave modes for

wavefields with a broad range in frequencies
and directions.

" The energy distribution over different wave

L = O(A, E-4) modes changes due to quartet resonance in-

-= O(T E 4) teractions for wavefields with a broad range
in frequencies and directions.

" The energy distribution over different wave

L = O(A, E-6) modes changes due to quintet resonance in-

T O(T - 6) teraction for wavefields with a broad range in
frequencies and directions.

Table 1.1: Space and time scales of nonlinear wave interactions involved in the non-

linear wavefield evolution. A, and T, are wave length and period of the peak wave in

the wavefield and E is the wavefield steepness.
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Figure 1-4 shows the growth of significant wave height H, calculated as four times of

the standard deviation of the surface elevation, as a function of time for wind speed

U10=10 m/s blowing over a sea with H,=4 m and T,=8 sec, where T, is the peak

period. After one hour, the increase of significant wave height is AH, ~0.1 m. For

the time scale we considered in this thesis 7 = O(TE--2), it reasonable to assume

wind input is negligible for size of the problem. At greater scales, effects from wind

(at even moderate speeds) could also play appreciable roles (Abdalla and Cavaleri,

2002; Lavrenov, 1998; Dysthe et al., 2003; Kharif et al., 2007).

Based on the field measurements done by Snyder and Cox (1966) and Barnett

and Wilkerson (1967), the measured growth rate of the waves are one order of mag-

nitude greater than the theoretical predictions by Miles (1957). The overestimation

on the growth rate from field observations could be due to the effect of nonlinear

transfer (Mitsuyasu, 2002). To clarify this discussion, accurate measurements using

advanced measuring techniques are, therefore, strongly needed to provide insights to

the understanding of wind input.

5
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Figure 1-4: Growth of significant wave height as a function of duration time.

1.2.4 Viscous dissipation and wave breaking

Two sources can cause the dissipation of waves in the open sea. One is due to viscous

damping over long time and distance and the other is breaking of waves as they
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become locally steep.

The decay time scale due to viscosity for an infinitesimal wave with wavenumber

k is T,=O(1/2vk2 ) (Kinsman, 1965), where v is kinematic viscosity of the water and

typically v = 10-6 m 2 /s. For ocean waves, the typical wave length ranges from 1 m to

200 m and the corresponding decay time scales are ranging from a few hours to a few

years. Based on this scaling argument, it is reasonable to assume the viscous decay

is important only for very short capillary waves; for non-capillary ocean waves, the

effect of viscous decay is insignificant.

Besides attenuating wave amplitude, viscosity could have two effects on (reso-

nance) wave-wave interactions (Hammack and Henderson, 1993): it detunes reso-

nances and it imposes a minimum steepness in order for the growth of inviscid insta-

bilities to occur. It is found recently by Segur et al. (2005) that a modulated Stokes

wave train can be stabilized with presence of viscosity and the growth of modulation-

al perturbations that are initially small enough can be stopped by viscous damping

before the nonlinearity becomes important. The effective time scale is about 0.01 per

wave length based on the wave tank experiments (Benjamin and Feir, 1967; Segur

et al., 2005). The possible influence of viscosity on the modulational instability of

random waves are investigated in Segur et al. (2008); Kharif et al. (2010). In partic-

ular, Segur et al. (2008) speculated that an inclusion of viscosity may affect the early

development of large waves. When wind input is not present, for the modulational

instability to grow, the nonlinear growth rate has to be greater than the viscous de-

cay rate. In real ocean, the dissipation due to viscosity is very weak compared to the

nonlinear interactions Kharif and Pelinovsky (2003), therefore, the dissipation due to

viscosity may not play a role for the time scale we consider.

Energy dissipation due to wave breaking is a non-ignorable process in the ocean

wave dynamics. To obtain accurate information on the wavefield evolution, it is very

important to account for energy loss associated with wave breaking. However, our

understanding on wave breaking dynamics is very limited and the knowledge has been

focused on breaking of single deterministic wave (group). The deep water breaking

waves have been studied in the laboratory for one single breaking wave (Duncan,
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1981) and a dispersive wave packet (Rapp and Melville, 1990). For different types of

spilling or plunging breaking waves in the laboratory and field, it is observed that the

energy dissipation is generally confined in the high frequency or wavenumber range

of the wave spectrum (Gemmrich and Farmer, 1999; Rapp and Melville, 1990). In

existing wave models, wave breaking is modelled by several different approximate

theories of the energy dissipation via breaking (Komen et al., 1994).

1.2.5 Coexistence of wind sea and swell

In many situations the ocean waves are combinations of wind sea and swell and they

are generally referred as bimodal seas. Wind sea is generated by local wind and it has

a relatively broader range of frequencies and directions. Swell it is generated from a

storm far distance away and has relatively narrow and low frequency range and long

crested. Based on the data collected from the open North Sea, it is reported that

the percentage of spectra with bimodal structure is about 20 ~ 25% (Guedes Soares,

1991). Comparing to single component wind wave system, the bimodal seas receive

much less attention. It is found that the dynamic processes of the ocean waves in

the near surface region could be affected due to the presence of swell (Mitsuyasu

and Yoshida, 1991; Dobson et al., 1994; Donelan et al., 1997). Moreover, the nonlin-

ear wave interactions in bimodal sea system are more complex than the single wave

system. Energy can be transferred from wind-sea to swell due to resonance interac-

tions (Masson, 1993). Onorato et al. (2006) find for directional bimodal seas with

close periods, a second system with small oblique angle can result in an increase of

the instability growth rates and enlargement of the instability region. The enhanced

instability region could lead to greater occurrence probability of large waves.

1.3 Wave measurements

Ocean wave theories are developed with guidance of measurements. The field and

laboratory measurements contribute significantly to the discovery of new phenomena,

verification of theoretical predications, and clarification of dynamic processes involved
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in wind waves (Mitsuyasu, 2002). One example is the recognition of the role of

nonlinear wave interactions. The important role of nonlinear wave interactions in the

wave evolution was ignored in the 1960s. The connection between energy transfer

among nonlinear waves and wavefield evolution was established after the extensive

field experiments by Mitsuyasu (1968, 1969); Hasselmann et al. (1973). Another

example is the quantification of the wind input. The wind input to waves were

carefully measured by pressure fluctuations on the moving wave surface by Snyder

et al. (1981) and this measurement have shed light on the understanding of wind

input and motivated people to reconsider Phillips' theory in 1970s (Mitsuyasu, 2002).

Recent advanced remote sensing technology provide an enormous amount of data

on wind and waves over a global scale. These measurements can also be used in ad-

vanced numerical wave prediction models (see, for example Chapter 9). However, the

capability of using satellite to measure waves globally is still debatable. Because the

synthetic aperture radar (SAR) imaging mechanism is in general strongly nonlinear,

the SAR image of the ocean waves is highly distorted which bears little resemblance

with the actual ocean waves (Janssen and Alpers, 2006). Further validation and study

on the fundamental imaging mechanism is required.

1.4 Rogue waves

This section is devoted to a short introduction to an interesting ocean wave phe-

nomenon, called rogue wave, which is addressed considerably in the remaining thesis.

1.4.1 Observations

Rogue waves, also called freak waves, killer waves, or sea monsters, are extremely large

water waves that suddenly appear on the ocean surface. Some of these giant waves

are reported to be more than 90 feet high, a size comparable to a 10-floor building.

Rogue waves are very catastrophic and they crash large oil tankers into pieces within

seconds. Ship accident reports show that more than 520 people were killed and 22

super carriers were lost because of freak waves between 1969 and 1994 (Kharif and
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Pelinovsky, 2003).

Based on linear ocean wave theory, the probability of rogue waves is so small

that their occurrence is regarded to be impossible. Only until decades ago, people

started realizing that rogue waves could occur much more often than they thought

when solid evidence became available. On January 1, 1995, a wave of more than 20

m was recorded at the Draupner Platform in the North Sea, and this extreme wave

is named as "New Year's wave" due to the date of its occurrence. Another famous

case of rogue waves, encountered by the oil tanker Esso Languedoc, occurred in 1980

off the east coast of South Africa. "We were struck by a monstrous wall of water

that rose out of nowhere and slammed onto the deck like the gist of God" Philippe

Lijour, first mate of Esso Languedoc recalled (Lawton, 2001). He and his shipmates

were the lucky ones to survive. The wave they encountered has an estimation height

of 30 meters or more. The Bay of Biscay near the 100-fathom curve in France is a

notorious place for rogue waves. Figure 1-5 is a picture of rogue wave taken in that

area and it looks like a "wall of water".

Figure 1-5: Rogue wave in the Bay of Biscay, France, in 1940. Picture from National
Oceanic and Atmospheric Administration (NOAA).

Rogue waves are sometimes confused with Tsunami, but rogue waves are not

tsunami. Tsunami is formed due to the movement of the sea floor. It propagates

thousands of miles across the ocean and becomes noticeable and hazardous only

28



when it arrives to the shore. Rogue waves can appear suddenly in the open sea, often

having a tremendous high crest, and live only for a short period, typically as short as

a few minutes.

1.4.2 Dynamic mechanisms of rogue waves

There are several mechanisms that could be responsible for the formation of rogue

waves. The mechanisms that, to the leading order, do not involve nonlinear wave-wave

interactions, commonly referred as linear mechanisms, include (Kharif and Pelinovsky,

2003):

1. Focusing due to wave dispersion

Large waves can form when a large number of waves are superposed at one

location with proper phases and directions due to wave dispersion. For unidi-

rectional wavefields, this can happen when long waves overtake short waves.

2. Wave-current interactions

The formation of freak waves in the area where the current is strong, such as

Gulf stream and Agulhas current, could be due to the "blocking" effect of the

current (Lavrenov, 1998). When waves propagate into a current with different

directions, the waves are stopped by the current at the locations where the

wave group velocity in the inertial frame is zero. This causes a localized energy

accumulation at such locations leading to formation of large waves in that area.

3. Geometrical focusing due to bathymetry

When waves propagate into varying bathymetry, they are refracted due to the

change of bottom topography, leading to the focusing of wave energy in partic-

ular places. This might be responsible for the formation of large waves in the

areas along irregular coastlines.

The linear mechanisms might be responsible for occurrences of rogue waves in certain

locations, however, they can not explain a large number of freak wave events reported

from the open sea where the current and bathymetry play a minimal role.

Nonlinear mechanism (modulational instability) is expected to be the most promis-

ing one responsible for the rogue waves generation in the open sea. As we mentioned
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in §1.2.2 the type of Benjamin-Feir modulational instability also obtains in irregu-

lar wavefields under certain conditions (Alber, 1978). The occurrence probability of

rogue waves could be enhanced in wavefields suffering the modulational instability.

The relevance of modulational instability to rogue wave formation are supported by

wave tank experiments and numerical simulations of unidirectional wavefields (Ono-

rato et al., 2001, 2005). Recent reviews of the rogue wave problem may be found

in Kharif and Pelinovsky (2003); Kharif et al. (2009); Dysthe et al. (2008); Slunyaev

et al. (2011). The rogue wave occurrence in directional wavefields is one big subject

of present thesis and is discussed in great detail in Chapter 5, 6, and 7. for rogue

wave occurrence in deep water, finite water depth, and bimodal seas. The typical

rogue wave shapes are studied in Chapter 8.

1.5 Numerical ocean wave forecasting models

The accurate prediction of ocean surface wavefield evolutions is a very challenging

task. First, it requires the good knowledge on all the complex dynamic processes

described in §1.2. Second, advanced wave models, including accurate mathemati-

cal formulations/modelling of the involved physical processes, need to be developed.

Third, reliable field measurements need to be taken to provide initial input and vali-

dations for the forecasting models. Fourth, depending the type of forecasting models

and desired resolutions, modern high-performance computing technologies may be

essential. In this section, we describe various types of wave forecasting models which

are developed at different stages in the literature.

1.5.1 Spectral models for broad-band waves

The ocean wave forecasting starts with the development of spectral models Sverdrup

and Munk (1947) . In the classic linear wave theory, the ocean wavefield can be

assumed as a superposition of a large number of sinusoidal waves with different fre-

quencies and directions of propagation. Concept of wave spectral density function,

sometimes also called wave (energy) spectrum, is introduced to describe the mean
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potential and kinematic energy of each wave mode (Pierson et al., 1955). The spec-

tral wave forecasting models are then developed to describe the evolution of the wave

spectrum. These models are sometimes referred as phase-averaged models because

they only describe the evolution of the energy (spectrum) of each wave (wave energy

is proportional to the square of wave amplitude) and the phase information of each

wave is ignored.

The phase-averaged wave forecasting models are based on the spectral transport

equation that states the energy balance in the dynamical system. The key physic

processes described in §1.2 are expressed in source-sink terms for energy balance

equation. The spectral prediction models based on the energy balance equation are

classified as first generation, second-generation, and third-generation models. In the

first generation models, each wave mode is modelled independently. The nonlinear

energy transfer among different wave components is ignored. Energy dissipation due

to wave breaking is modelled by putting a limit form of saturation spectrum. The

field measurements provided useful information leading to new constructions of the

forecasting model. In second generation model, the nonlinear interactions among

waves are modelled using simplified parameterizations.

Great advances have been made in the development of the third generation models.

In the third generation wave models, the source functions of the transport equation

has the form:

S = Sin + Sni + Sds, (1.3)

where Sin, Snj and Sd, represent wind input, nonlinear wave-wave transfer, and energy

dissipation by whitecapping. The terms in (1.3) are formulated based on the under-

standing of wave generation due to wind input by Phillips (1957) and Miles (1957),

resonant four-wave nonlinear transfer by Hasselmann (1962), and energy dissipation

due to whitecapping by Komen et al. (1984) and Hasselmann (1974). A number

of field experiments contribute greatly to the wave spectral formulations including

Hasselmann et al. (1973) and Mitsuyasu (1968, 1969). The typical third-generation

models include WAM for deep water (Group, 1988), WAVEWATCH for regions with
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varying bathymetry and current (Tolman, 1991), and SWAN for coastal regions (Booij

et al., 1999; Ris et al., 1999). Due to their simplified formulations and parameteriza-

tions, the spectral models are very computational efficient and are suitable for global

wave predictions and large-scale regional operations.

While much progress has been made using phase-averaged models for ocean wave

forecasting over the past decades, the success has not been uniform, with predictions

often falling outside the error band of the observations (Komen et al., 1994). In

the frame work of phase-averaged models, it is difficult to make major advances due

to their inherent assumptions and necessary simplifications. Equally important, the

phase-averaged models do not deliver the detailed space-time information of the wave

surface, which are critically important in the study of extreme wave dynamics as well

as in practical operational guidance.

The nonlinear interaction term in the source of (1.3) is a parametrization of reso-

nance four wave-wave interactions (Hasselmann, 1962) and quasi-resonance and non-

resonance wave-wave interactions are not included. According to (1.3), the significant

spectral change due to nonlinear interactions occurs over a long time scale associated

with four-wave interactions; therefore, the spectral change over relatively short time

due to quasi-resonant trio wave interactions including the modulational (Benjamin-

Feir type) instability is not captured in third-generation spectral models (Janssen,

2003). Consequently, rogue waves caused by modulational instability may not be

predicted using third-generation spectral models.

1.5.2 Wave envelop models for narrow-banded waves

The phase-averaged spectral models do not describe the detailed spatial-temporal

information of the surface elevation. To obtain a phase-resolved description of the

wave evolution, one may simulate the full Euler equations describing the ocean surface

in a large domain. This is generally very computationally expensive and considered

impossible before the recent advances in high-performance computing technologies.

For wavefields with narrow-band spectra, the wavefield elevation can be approximated

as a dominant fast oscillating wave train with central frequency modulated by a slowly
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varying wave envelope. For computational efficiency, many existing studies use model

equations that describe the slowly evolutions of the wave envelope. The envelope

models include the nonlinear Schr6dinger (NLS) equation and its modifications forms

such as the modified nonlinear Schr~dinger equations and its various extended forms

(Dysthe, 1979; Trulsen and Dysthe, 1996; Trulsen et al., 2000). Kharif et al. (2010)

considered wind forcing and viscous dissipation within the framework of a forced and

damped nonlinear Schrodinger equation. Mathematical formulations and numerical

implementations of NLS-type models are described in Chapter 2.

Using NLS-type simulations for unidirectional wavefields, the relevance of modu-

lational instability to the significant wave spectral change and enhanced occurrence of

rogue waves is confirmed Onorato et al. (2001). For directional wavefields, Gramstad

and Trulsen (2007) find that the importance of BF-type modulational instability is

reduced with decreasing crest length which is confirmed by wave basin experiments

(Waseda et al., 2009; Onorato et al., 2009). However, the applicability of NLS-type

models in realistic ocean waves could be limited by their inherent assumptions and

simplifications. First, the assumption of narrow-banded spectrum may not obtain in

realistic wavefields, since it is known that even initially narrow-band spectrum may

become broad-banded due to nonlinear evolution (Dysthe et al., 2003). Secondly, it is

also debatable whether the assumption of slowly-varying modulation is applicable for

rogue waves which are expected to be very steep. Thirdly, the inherent limited valid

spatial-temporal scales in NLS-type models are not easily to be further extended.

1.5.3 Direct phase-resolved nonlinear simulations

With the development of modern computational capability and advanced numerical

wave modeling algorithms, it is now possible to obtain phase-resolved prediction of

the wavefields using direct simulation approach. To obtain a more reliable prediction

of ocean wavefield evolution, we develop a direct deterministic wave simulation tool,

called SNOW (Simulation of Nonlinear Ocean Wavefields), which is based on a high-

order spectrum method described in Dommermuth and Yue (1987) and West et al.

(1987). SNOW is fundamentally different from the existing phase-averaged models.
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It predicts the nonlinear wavefield evolution by direct simulation of the wave dynam-

ics including nonlinear wave-wave, wave-current, and wave-bottom interactions, wind

input, and wave-breaking dissipation. The physical processes are either directly ac-

counted for or modeled in physical space-time domain. Since phase information and

wave profile are inherent in the simulation, the model can be further calibrated and

advanced with better understanding on key physical process. In addition, nonlin-

ear spectral and statistical wave information obtained from SNOW simulations could

provide valuable guidance to develop new models or to improve parameterizations in

existing phase-averaged models. Unlike NLS-type models described in 1.5.2, SNOW

does not have any restriction on the spectral bandwidth, thus it can be applied for

studying the realistic ocean wave evolution. For practical applications, the detailed

space-time information of the free surface from SNOW simulations can be used as

the necessary wave environmental condition for the design of Navy advanced ships,

as well as to improve the operational safety of Navy ships. The mathematical for-

mulations, numerical implementations, and computational parallelization strategy of

SNOW are the subjects of Chapter 2. A few attempts have also been made to ob-

tain fully nonlinear simulations for the evolution of ocean waves, but the simulations

generally are applied over limited dimensions (Zakharov et al., 2002; Chalikov, 2009;

Slunyaev and Sergeeva, 2011; Bateman et al., 2001; Ruban, 2011).

In this thesis, SNOW simulations are applied over space-time scales responsi-

ble for modulational instability to study its relevance to the spectral change and

formation of rogue waves. According to Table 1.1, the space and time scales are

£/A,T/T,=O(E- 2). These length and time scales are also roughly the spatial reso-

lution and time step in a (phase-averaged) WAM regional model, which assumes a

quasi-stationary and quasi-homogeneous state over such scales. In order to capture

higher order nonlinear effects or the spatial-temporal spectrum evolution, simulation-

s of wavefield in a much larger length and time scales are theoretically needed (see

Table 1.1), but probably will not be attainable in the near future mainly due to the

limitations in computational capabilities (Liu and Yue, 2009).
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1.6 Problem statement, objective and scope

This thesis is devoted to the study of the evolution of ocean waves with primary focus

on the occurrence of rogue waves using direct phase-resolved numerical simulations.

In particular, we would like to understand (a) the essential generation mechanisms

of rogue waves; (b) the exact occurrence probability of rogue waves; (c) the typical

shapes of rogue waves for given sea state.

These are addressed through the following points of interest:

(1) Developing and applying a direct numerical simulation tool, SNOW, for the

study of ocean wave evolutions and rogue wave occurrence;

(2) Elucidating the importance of modulational instability in the ocean wave evo-

lution and its relevance to the rogue wave occurrence;

(3) Investigating the nonlinear wave-wave interactions as fundamental mechanisms

for generation of rogue waves;

(4) Quantifying the occurrence probability of rogue waves for given sea state and

identification of the key effective spectral parameter(s) for rogue wave predic-

tion;

(5) Identifying the accuracy, reliability, and validity range of existing linear the-

ories and simplified wave models in predicting ocean waves and rogue wave

occurrence;

(6) Investigating the effects of environmental factors, including wave directionality,

finite water depth, and bimodal seas, on ocean wave evolutions;

(7) Characterizing the kinematic and geometric features of rogue waves for given

sea state;

(8) Developing a capability for deterministically reconstructing and forecasting the

wavefields over intermediate space-time scales by assimilating high-resolution

wave measurements.

To achieve these, we perform a significant number of large-scale nonlinear three-

dimensional SNOW simulations covering broad range of spectral parameters. The

spatial and temporal scales of the simulations are commensurate with those of quartet
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wave-wave interactions, including BF-type instabilities, that is, L/Ap, T/T -0- ').

To account for natural dissipation due to wave breaking, we implement a robust

phenomenological-based model in SNOW which obtains satisfactory wave breaking

dissipation for 2D and 3D breaking waves compared to laboratory measurements. For

the spatial-temporal scales considered in this study, the growth of waves due to wind

input is practically insignificant (Dysthe et al., 2003; Janssen, 2003). We thus ignore

the wind effect. In this study, we consider deep water as well as finite water depth,

single wind sea as well as bimodal seas. For comparison, we also implement NLS-

type models and compare SNOW and NLS-type-model predictions over the large-scale

space-time domains we consider.

1.7 Thesis contributions

This thesis is a first attempt to use large-scale direct phase-resolved nonlinear simu-

lations to study the ocean wave evolutions and understand the essential generation

mechanisms of rogue waves for a broad range of sea states

The major contributions of this thesis are summarized below:

" Development and application of direct large-scale nonlinear wavefield simula-

tions to study ocean wave evolution and rogue wave occurrence

" Identification of the validity range of existing theories and simplified models

(NLS-type) in predicting rogue waves

" Understanding of nonlinear rogue wave generation mechanisms

" Understanding of the effects of environmental conditions including wave direc-

tionality, finite water depth and bimodal seas on the wave evolution

" Quantification of rogue wave occurrence probability and nonlinear wave statis-

tics as functions of wave spectral parameters

" Prediction of rogue wave occurrence probability and kinematics

36



* Identification of canonical rogue wave profiles as functions of wave spectral

parameters

1.8 Thesis content

The remainder of this thesis is organized as follows.

In Chapter 2, the mathematical formulations and numerical implementations of

two types of numerical wave predicting models, NLS-type models and direct phase-

resolved simulations (SNOW), are described.

Chapter 3 presents the wave spectral evolution over modulational-instability time

scale obtained from NLS-type models and SNOWsimulations. The spectral character-

istics including omnidirectional spectrum, high-frequency spectral tail, and directional

spectral spreading obtained from the two kinds of models are also discussed.

Chapter 4 gives the evolution of nonlinear wave statistics and their dependence on

initial spectral parameters, including skewness, kurtosis, and exceeding probability,

obtained from simulations based on NLS-type models and SNOW.

In Chapter 5, we study the generation mechanisms and occurrence probabilities

of rogue waves in deep water using SNOW simulations. We provide the occurrence

probability of rogue waves as a function of the initial spectral parameters.

Chapter 6 and Chapter 7 discuss two environmental factors, finite water depth

and bimodal seas, that could affect the wave evolutions. The spectral evolutions,

nonlinear wave statistics, and rogue wave occurrences in finite water depth and in

bimodal seas are discussed.

Chapter 8 presents the geometric characteristics of rogue waves by analyzing the

rogue waves identified from SNOW simulated wavefields.

Chapter 9 describes one practical application, in which a capability of phase-

resolved reconstructing and forecasting of nonlinear wavefields using high-resolution

wave measurement is developed. Based on the reconstructed and forecasted wave-

field, the nonlinear wave statistics and occurrence probability of rogue waves are

investigated.
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Finally, in Chapter 10 we summarize the conclusions of this thesis and discuss

several worthy possibilities for extending current work in the future.

1.9 Summary

In this chapter, we give a brief review on the ocean wave theory and key dynam-

ical processes involved in the ocean wave evolution, including nonlinear wave-wave

interactions, wind input, energy dissipation due to viscosity and wave breaking. The

relevant spatial-temporal scales related to these processes are discussed. In this the-

sis we study the generation mechanisms and occurrence probability of extreme wave

events, rogue waves. Reviews on rogue wave observations and possible generation

mechanisms are given. Different types of numerical wave forecasting models devel-

oped at different stages, including spectral models, wave envelope models, and direct

large-scale phase-resolved simulations (SNOW) are reviewed and their validity and

limitations in the study of ocean waves are discussed. In the end, the objectives,

problem statement, and outline of this thesis are described.
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Chapter 2

Simulations of nonlinear

three-dimensional wavefield

evolution

2.1 Introduction

we develop and apply a phase-resolved numerical simulation tool, named as SNOW

(Simulation of Nonlinear Ocean Wavefields) to study the ocean wave evolution and

occurrence of rogue waves. In particular, the spectral evolution, nonlinear wave statis-

tics, and occurrence of rogue waves are calculated from SNOW simulated large-scale

nonlinear directional wavefields. SNOW directly solves the primitive Euler equation

based on a high-order spectral method developed in Dommermuth and Yue (1987)

and West et al. (1987). In this chapter, we describe the mathematical formulation-

s and numerical implementations of SNOW. To capture the energy dissipation due

to wave breaking, a phenomenological-based filter is implemented in SNOW. To as-

sess the validity of the existing results obtained from simplified Nonlinear shrbdinger

(NLS) type equations, in this thesis we compare and contract the results obtained

from NLS-type models and SNOW simulations. In this chapter, the NLS-type mod-

els derived in Dysthe (1979) and Trulsen and Dysthe (1996) and their computational
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implementations are also described.

2.2 Direct Simulation of Nonlinear Ocean Wavefields

(SNOW)

2.2.1 High-order spectrum method

The fluid is assumed to be homogeneous, incompressible, inviscid, and the surface

wave motion is irrotational. We perform phase-resolved simulations of large-scale

nonlinear wavefields based on a high-order spectrum method (HOS) (Dommermuth

and Yue, 1987; West et al., 1987). The formulation is briefly described here. HOS

directly solves the field equation:

V2 4b + <b,22 = 0, for z < r7(x, t); (2.1)

with the kinematic and dynamic boundary conditions on the free surface in the Za-

kharov form:

rt - <D2= -Vr - b + (Vr/- Vxr/)<b2, at z = r(x, t); (2.2a)

+ g = 2(V4ps -V,<DV) 2(1 + Vxr - Vxr)<D, at z = r/(x, t); (2.2b)

where x = (x, y) and z are the horizontal and vertical coordinates; V, = (&/8a, 8/&y)

is the horizontal gradient; <D(x, z, t) is the velocity potential; and <Ds(x, t) -- <(x, z

r/(x, t), t) is the value of the potential on the free surface r(x, t).

The velocity potential <D(x, z, t) is written in a perturbation series up to a given

order M in wave steepness, denoted by E, assuming that <1 and r7 are O(E):

M

<b(x, z, t) = Z ()(x, z, t), (2.3)
m=1

where 4(m)=(Em). The surface potential is evaluated using the Taylor expansion
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around z=0:

M M-m 7k ak

V(x, t) (x #("k (x, z,t) z=0.

m=1 k=O

(2.4)

By comparing the terms with same order in (2.4) we obtain the sequence of boundary

values for #(m), m=1-. M, at z=0.

problem:

V 2 #(m) (x, z, t) = 0,

#(n (x, 0, t) f(M),

V#("W - 0,

#(") can be obtained from the boundary-value

m =1,2, - -. , M,

as z - -oo,m = 1,2 , M,

where

{f() _ I>S

f() z z=0

m = 2,3-- , M.

The boundary-value problem (2.5) is solved with mode-coupling approach by repre-

senting #(m) as truncated eigenfunction expansion of free modes

N

(2.7)#(") (X, Z, t) = # On (x, Z), z ; 0

where the free modes Tn satisfy all but the free-surface condition (2.6). After #nm) (t)

is obtained, the vertical velocity at free surface is

M M-m k

m=1 k=O

N 0 k+1

Z 0(rn) zk+1 4f(x, z) .
n=1 z=0
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The final evolution equations for r and 4 S are

M M-rn k N k+1
nt + Vx@S - Vxr7 - (1 + Vxn - Vxr/)[ E U )(t) 8z k+14(x, 0)] = 0,

m=1 k n=1

(2.9a)

tS+ rj + -Vx@S -VxV" - -(1 + Ai -Ain)2 2
M M-m k N ak+1 -2

x ( t)zk+ lfn(x, z) = -Pa.
.m=1 k=0 n=1 z=0_

(2.9b)

For rectangular domain -Lx/2 < x < Lx/2 and -L,/2 < y < Ly/2 with double

period boundary conditions, the free modes xT'(x, z) have simple forms in deep water:

WX(x, Z) = exp(ikn -x + knz) (2.10)

and in constant finite water depth:

cosh [kn(z + h)]
4f (X , z) = cohkh exp(ikn - X) (2.11)'If~(~z) = cosh kah

where kn=(ka, kyn)=(27rm1/Lx, 27m2/Ly), m 1 =0, ±1, -. , ±(Nx - 1), m 2 =0, +1,

-.. , ±(Ny - 1); No, Nu are the maximum Fourier modes in x and y directions; and

k, =|kn| and h is the constant water depth.

In HOS simulations, nonlinear interactions among a large number of wave compo-

nents, N=Nx x Ny, are accounted for up to arbitrary order M in wave steepness. The

computational effort is approximately linear in N, M, with exponential convergence

with M and N for waves up to ~80% of Stokes limiting steepness (Dommermuth and

Yue, 1987). The validity and efficacy of this method has been demonstrated exten-

sively for nonlinear wave-wave interactions (Dommermuth and Yue, 1987), and the

method has been extended to include atmospheric forcing (Dommermuth and Yue,

1988), variable finite depth (Liu and Yue, 1998), and effects of energy dissipation (Wu
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et al., 2006). For the spatial-temporal scales considered in this study, the growth of

waves due to wind input is practically insignificant (see discussions in Dysthe et al.

(2003); Janssen (2003) and also §10.2 in Chapter 10). We thus ignore the wind effect.

To account for energy dissipation due to wave breaking, a robust phenomenological-

based model is implemented in HOS (§2.2.2). Computational convergence tests of

SNOW regarding the grid size N and N, order of nonlinearity M, and number of

realizations for one given initial spectrum can be found in appendix A.

2.2.2 Modeling energy dissipation due to wave breaking

A phenomenological-based filter

For the large-scale long-time simulations we consider, it is important to account for

energy loss associated with wave breaking dissipation in the evolution. The study

on the detailed mechanism and dynamics of different types of (2D and 3D) breaking

events is beyond the scope of present thesis. It is however possible to capture the

effect of wave breaking dissipation on the overall wavefield evolution using relatively

simple phenomenological models in HOS.

For different types of spilling or plunging breaking waves in the laboratory and

field, it is observed that the energy dissipation is generally confined in the high fre-

quency or wavenumber range of the wave spectrum (Gemmrich and Farmer, 1999;

Rapp and Melville, 1990). Based on this, we propose an energy dissipation model in

HOS, where a low-pass filter in the wavenumber space is applied at every time step

on the free surface elevation and velocity potential. An example of such a filter is

A(k l k,, #1, 2) = exp{ - 1 2, (2.12)

where k = Ik| with k = (kr, k.) and #1, #2 are filter parameters.

The model (2.12) is found to be robust for a variety of 2D and 3D wavefields in

that the estimate of energy dissipation is found to be somewhat insensitive to the

choice of parameter values #1, #2. This is confirmed by repeated simulations varying

(the parameters of) (2.12). Figure 2-1 shows the energy dissipation using filter (2.12)
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with a range of #1 and #2 values. The energy dissipation is measured as AE/E, where

E is the total potential energy, AE = E2- E1 with E1 , E2 being the potential energy

of the surface elevations before and after wave breaking.

We find there exists a range for #1 and #2 where the estimation is not sensitive

to their values. The non-sensitive estimations are close to lab measurements on the

energy dissipation (indicated by color horizontal lines in the figure). For large-scale

simulations considered in this thesis, varying #1=7-8 and #2=20-35, the total energy

variation is within 2% at evolution time t=150Tp.

Two-dimensional breaking dispersive wave packets

The efficacy of this modeling is confirmed by direct comparisons with two-dimensional

laboratory breaking waves (Rapp and Melville, 1990). Figure 2-2 shows the energy

loss, defined as AE/Eo, measured from laboratory breaking dispersive wave packets

as a function of wave packet steepness (Rapp and Melville, 1990) compared with

HOS predictions. An acceptable quantitative agreement is found over a broad range

of steepnesses (and corresponding breaking types).

HOS model with the filter (2.12) provides not only a satisfactory estimation on

the energy loss due to wave breaking, but also reasonable descriptions on the wave

profile both before and after breaking. In the experiment, a plunging breaking wave

was generated near x = 0 by focusing multiple wave components with different fre-

quencies and designed phase combination. Figure 2-3 shows the evolution of surface

elevation at different locations along the wave tank. Comparing to the experimental

records, HOS simulations with the breaking model implemented capture the profiles

of breaking waves reasonably well not only before and but also after the wave break-

ing. From both experiment and HOS simulations, we observe the wave envelope of

the dispersive wave packet becomes narrower as approaching the linear theoretical

focal point x=0. At location close to the focal point, a large breaking wave with

significantly higher and narrower crest and flatter trough occurs. As the wave pack-

et propagates away from the focal point, the wave profile de-focused quickly due to

dispersion over a time scale ~O(5A,), leading to a longer wave packet.
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Figure 2-1: Dependence of energy dissipation on the parameter values of (a) #1 (with

#2=30), (b) #2 (with #1=8) in breaking model (2.12). Initial setups used are identical
to laboratory breaking waves: dispersive wave packet (Rapp and Melville, 1990) (A,
30%), square wave packet (Su, 1982a) (0, 20%), bimodal stokes wave group (Banner
and Peirson, 2007) (v, 20%).
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Figure 2-2: Loss of energy due to wave breaking as a function of steepness of the
dispersive wave packet ake. Experiments (Rapp and Melville, 1990): fc = 0.88 (0)
and 1.08 (A); HOS: fc = 0.88 (0) and 1.08 (A). fc and kc are the central frequency
and wavenumber of a dispersive wave packet. Results are obtained using HOS with
(2.12) with #1=8, #2=30. HOS simulations: N=2048, M=5, NT=40.

More interestingly, we find HOS simulations with breaking model also provides

the information on the location of the energy dissipation. Figure 2-4 shows the x - t

plot of the location of energy dissipation for the plunging breaking wave shown in

figure 2-3. The energy dissipation is measured as AP(x, t)/P, where P is the total

potential energy, AP(x, t) = r 2(x, t) - r/ (x, t), and r(x, t), rf(x, t) are the surface

elevations before and after the filter is applied. We observe that the energy dissipation

associated with breaking waves is very localized. The energy is mainly lost at the

steep peak of the wave packet. Note that locally AP(x, t) can be positive or negative,

but the net energy dissipation is always positive.

Three-dimensional steep breaking crescent waves

For a 2D plane stokes wave with large steepness e = ak >0.3, transverse (three-

dimensional) instability, having larger growth rate, becomes more important than

two-dimensional instability (Benjamin-Feir instability) (McLean, 1982). The trans-

verse instability leads to crescent waves in a horseshoe pattern (McLean, 1982; Su,
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Figure 2-3: Comparison of surface evolution of a dispersive packet between (a) exper-

imental measurements and (b) HOS simulations. The center frequency fc=0.88 Hz,
steepness ka=0.352, bandwidth Af/fc=0.73. The numbers on the plots indicate

the non-dimensional locations (normalized by center wave length Ac) relative to the

designed wave focusing point x = 0.
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1982b). For 2D plane stokes wave with steepness ak=0.33, the most unstable instabili-

ty for the fundamental wavenumber k=1 occurs when the 3D disturbance wavenumber

satisfies (ky, k) = (p+k, q) = (1.5, 1.23), where p and q are the longitudinal and trans-

verse perturbation wavenumber. We use Stokes wave [E, k] = [0.33, 4], where E and

k are steepness and central wavenumber of the stokes wave, with three-dimensional

perturbation in the form of Xue et al. (2001)

7' eA sin(kx + #) cos(kyy) (2.13a)

(k + k2)1/ 4 cos(kxx + #) cos(kyy) exp[(k2 + k 2)1/ 2
7 ] (2.13b)

where e 0.16, (kx, ky) are chosen as (6, 4.92); A is the amplitude of the Stokes

wave and r7 is the undisturbed Stokes wave. The phase of the Stokes waves is chosen

to make the maximum elevation at x = 0 and t = 0 ,and we choose # = 0. The

typical resolution we used is M = 4, N = 256 and At = T/100. The evolution of

the steep Stokes plane wave is shown in figure 2-5. We see as the three-dimensional

instability develops, the two-dimensional wave train of large steepness evolves into

three-dimensional horseshoe pattern. The energy dissipation AP/P due to wave

breaking is shown as the color contour. We find the energy loss occurs on the shoulders

of the steep wave front. This is observed in Su (1982b), where static spilling breaking

was observed on the crescent wave shoulders.

Figure 2-6 shows the comparison of the longitudinal profile between HOS simula-

tions and a fully nonlinear simulation using mixed Euler-Lagrangian method (MEL)

(Xue et al., 2001).The profile of MEL is obtained by digitalizing figure 16 in Xue

et al. (2001). We observe HOS results agree with MEL results remarkably well. To

be more quantitative, Table 2.1 shows comparisons of the geometric parameters of

crescent waves (denoted in figure 2-6) in the quasi-steady breaking state from exper-

iments (Su, 1982b), HOS and MEL simulations. We again see the HOS simulations

agree with the experimental data and MEL simulations.
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Figure 2-5:
dimensional
t/T=0; (b)
AP/P -;-2x

(b)

(d)

Evolution of a plane Stokes wave of steepness E=0.33 with three-

initial disturbance (2.13) e=0.16, #=0 and (km, ky) = (1.5,1.23). (a)
t/T=1; (c) t/T=4; (d) t/T=6. Color contour AP/P >2xI0- (@),
10-5 (e).

Su (1982) HOS (t=4.5T) HOS (t=6T) MEL (t=4.338T)
__/_ _ 1.28 1.02 1.06 1.07

hu/h12 1.10 1.08 1.12 1.09
h21/h22 0.88 0.86 0.76 0.88
hul/h21 1.66 1.52 1.63 1.64

Table 2.1: Comparisons among experimental data by Su (1982a), MEL (Xue et al.,
2001) and HOS.
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Figure 2-6: The Longitudinal profile of the crescent wave at y = -LY/4. kA=0.33,
c=0.16, #=0 and (kxk.) = (1.5,1.23). MEL (Xue et al., 2001) t = 4.338T (-);
HOS t = 4.5T ( --- ).

2.2.3 Computational performance on high performance com-

puting platforms

For the present study involving very large scale (N=0(107 -8)) simulations, we de-

velop a parallelized version of HOS optimized for modern massively-parallel high-

performance computing (HPC) platforms, using Message Passing Interface (MPI)

functions (Wu, 2004). This parallel version of HOS hereafter is referred as SNOW

(simulation of nonlinear ocean wavefields). Parallel implementation of SNOW is

achieved by decomposing the spectral domain across processors using MPI. SNOW

utilizes transposes and on processor fast Fourier transforms to move between the

physical and spectral domains. Our experience with SNOW using up to P=O(103)

processors indicates near linear scaling of HPC time with P- on Cray systems at the

U.S. Army Engineer Research and Development Center (ERDC). Figure 2-7 shows

the typical performance of SNOW as a function of processors and problem size on

the Cray XT3, XT4, XT5 and XE6 platforms. The performance is measured as the

number of time steps achieved in five wall-clock minutes. In general, the near linear

scalability is achieved on all Cray systems tested.
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Figure 2-7: Scalability of typical SNOW simulations on Cray XT3 (blue), Cray
XT4 (red), Cray XT5 ( r11) and Cray XE6 (black). Plotted is the number of
time steps of computations completed within 5 minutes of wall clock time ver-
sus the number of processors used in the simulation for different problem scales
N, x Ny. N, x Ny= 1024 x 1024 (O), 2048 x 2048 (A), 4096 x 4096 (v), 8192x8192 (0),
16384x 16384 (0).
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2.3 Nonlinear shrodinger (NLS) type equations

2.3.1 Mathematical formulations

We implement the modified nonlinear shrbndinger equations (MNLS) derived in

Dysthe (1979) and the broader bandwidth MNLS equations (BMNLS) described in

(Trulsen and Dysthe, 1996) to assess the range of validity of NLS-type models in

describing nonlinear wave statistics and rogue wave probability over the large-scale

spatial domains £ x C and evolution times T, where L/Ap, T/T, ~O(E-'2) (\, Tp are

peak wavelength and period, e is the steepness of the wavefield).

The MNLS and BMNLS models (to fourth order in wave steepness) describe the

evolution of the wave envelope B(x, t) which is slowly varying with space and time.

The temporal version of BMNLS equations, after applying the length and time scaling

wt -4 t, k(x, z) -+ (x, z), are

1 i i 1 3
Bt + -B + Bx -BY -- Bxxx + _BxY2 8 4 16 8

12 3 12
- jB 2B - -BI 2 B - -B2 B* - iB$2 2 4 X
5i 15i 3i 7

+ 12 8B""' 32 B 32 B 256 B
35 21

+-BxxxyV - BxYYYY z - 0, (2.14)
64 64

where e is solved through the boundary value problem:

4XX + 4OY + 4, = 0 - h < z < 0,

O2 -(IB) z = 0, (2.15)
2

Oz 0, z -h,

The BMNLS model is an improved form of MNLS model (Dysthe, 1979) with the

additional terms in the last two lines in (2.14) to relax the bandwidth limit of MNLS

model from O(e) to O(E1 / 2 ), where e is the wave steepness. After B(x,t) is solved,

53



the surface elevation is reconstructed as

rQ(x, t) = + (Be' + B2ei + B3e3 + - --+ c.c.), (2.16)

where B2, B3, and 77, obtained from B, represent corrections of second and third

harmonics and the mean surface elevation associated with the radiation stress. 0 =

k-x- wpt is the phase of the peak wave. In MNLS model B2 , B3 and Y7 are calculated

as (Dysthe, 1979):
1-
2 7

B 2  B2

B3 = - 3
8

_ -BB,
2

(2.17)

and in BMNLS model, they are calculated as (Trulsen and Dysthe, 1996; Toffoli et al.,

2010):

- 1
2x 16.

1 z
B 2 =lB2 2

B 3 =-B 3

8

Bx + I BB
3B2

- By,
(2.18)

Wave breaking is generally not considered in NLS-type models (Dysthe et al., 2003;

Socquet-Juglard et al., 2005), although the effect of dissipation can be included (see,

e.g. Segur et al., 2005).

2.3.2 Split-step fourier method

The MNLS and BMNLS models are solved numerically using the split-step Fourier

method described in Lo and Mei (1985), which is briefly repeated here. Both MNLS

and BMNLS has the form
aB
at= -(C + )B,at
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where L and g are linear and nonlinear operators of B, and for MNLS model

1 i
L(B) - Bx + -Bxx -

2 8
-i
4 B""

1 3
1 Bxxx + 3Bxy16h 8 Y

N(B) = |9B|2B + IB|2Bx + B2B + iBix (2.20)

The computations are performed in a double period domain:

and B(x, 0, t) = B(x, Ly, t) (2.21)

The solution of (2.19) is approximated as

B(t+At) exp [-(L + V)] B(t) = exp [-AtL] exp [-AtN] B(t). (2.22)

The linear and nonlinear terms are separately treated at each time step. The nonlinear

part is evolved in time by finite difference:

Bt+1/2st = Bt + AtN(Bt)/2

t+st = Bt - AtN(Bt+1/2At). (2.23)

The linear evolution is taken exactly in the wavenumber space. For MNLS model, it

is

Bt+At = { T(bt+At exp [-i (k,/2 - k/8 + k2/4 + k /16 - 3kk 2/8) At]) ,
(2.24)

where F and T-1 are the Fourier and inverse Fourier Transform.

For all the NLS-type simulations, the energy is verified to conserve to within

0.5%. The solvers for NLS-type models have been systematically validated through

convergence tests (see figure 2-8) and direct comparisons with various existing results

in the literature (Lo and Mei, 1985; Dysthe et al., 2003; Socquet-Juglard et al., 2005;

Toffoli et al., 2011) and the HOS simulations.

The applicability of NLS-type simulations in simulating evolution of nonlinear
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Figure 2-8: Convergence tests of maximum kurtosis by BMNLS (x) and SNOW (0)

as a function of (a) grid size and (b) number of realizations. The initial wavefield

is specified by a JONSWAP wave spectrum with H,=0.08 m, T,=1 sec, y=6, and

0=12'. For the results in (b), N,=zN=512 and 4096 in BMNLS and HOS, respec-
tively.
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ocean wavefields is questionable due to the inherent assumptions of narrow-band

spectrum and slowly-varying spatial and temporal modulations. One of the objectives

of this thesis is to assess the range of validity of NLS-type models for predicting

nonlinear wave statistics and rogue wave occurrence.

2.4 Summary

In this chapter, the mathematical formulations and numerical implementations of

two types of numerical wave forecasting models, direct phase-resolved nonlinear sim-

ulations (SNOW) and NLS-type models are described. In particular, for modelling

energy dissipation due to wave breaking, a phenomenological-based filter is developed

and applied in SNOW. The reliability and accuracy of this filter is validated by di-

rectly comparing the numerical results with measurements from laboratory breaking

waves. Moreover, the good computational performance of SNOW on high perfor-

mance computing platforms is demonstrated. Unlike NLS-type models, SNOW does

not have spectral bandwidth limitation and thus are more suitable for simulations of

realistic directional ocean waves.
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Chapter 3

Spectral evolution of nonlinear

directional wavefields

3.1 Introduction

The prediction of ocean wavefield evolution has been largely based on phase-average

spectral models, such as WAM and SWAN. To the leading order, the wavefield is as-

sumed to be Gaussian, quasi-stationary and quasi-homogeneous. The slow variation

of wave energy spectrum over time and space is described through the action balance

equation. In deep water, neglecting current, the change of energy spectrum is con-

trolled by wind input, nonlinear wave interactions and energy dissipation due to wave

breaking. Based on phase-average model, considerable spectral change occurs at a

very large time scale T/TP ~O(e4), where Tp is the peak period of the spectrum and

E is a measure of wave steepness. Recently, it is found from wave tank experiments

and NLS-type numerical simulations that spectrum can change on a much shorter

time scale T/T ~O(E-2) due to modulational instability described in Alber (1978)

(Onorato et al., 2004; Dysthe et al., 2003).

In this chapter, we study the nonlinear spectral evolutions using SNOW simula-

tions. Our focus is the spectral change due to modulational instability over space

and time scale L/A,, T/T,~O(E-2 ), where A, is the peak wave length of the spec-

trum (see Table 1.1). To assess the range of validity of NLS-type models, we also
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perform MNLS and BMNLS models described in Dysthe (1979); Trulsen and Dysthe

(1996), and compare their predictions with SNOW. In Chapter 4, and 5, we discuss

the influence of the spectral change on the nonlinear wave statistics and rogue wave

occurrence.

The short waves, which have wavenumber or frequency greater than about three

times the values at the peaks in the spectra, are of inherent scientific interest because

data show that, when scaled properly, the spectrum of short waves collapse onto

universal curves. The spectral slope of short waves is a reflection of the crucial

dynamical balance among wind input, nonlinear interaction and energy dissipation.

Phillips (1985) has concluded for one dimensional spectrum, the spectral density in

the equilibrium range is proportional to the power law of k-2 . The saturation range

they discuss occur at time scale T/T-O(E- 4).

The directional spreading of ocean wavefields is classically assumed to be uni-

modal, that is, for any given frequency or wavenumber, the wave energy is focused

in the main propagating direction and decreases monotonically when deviating from

this direction. Unimodal directional spreading functions such as the COS-square

function are commonly assumed in wave simulation models (Hughes, 1985; GODA,

1999). However, recent field measurements indicate that the wave energy for short

waves can demonstrate a bi-modal feature. For the directional distribution of short

waves, the wave energy are focused in two directions nearly symmetric about the

main propagating direction (Ewans, 1998; Hwang et al., 2000). The determination of

the directional distribution of wind waves is important to understand the dominant

mechanisms of wave dynamics.

In this chapter, we study the spectral change and spectral characteristics includ-

ing spectral slope and directional spreading of short waves to understand the key

dynamics that govern the wave motion.
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3.2 Initial wavefield

3.2.1 Initial wave spectrum

The initial linear wavefield is generated from a given directional wave spectrum. In

this study, we investigate nonlinear evolutions of two kinds of spectra. One is very

narrow-banded Gaussian spectrum and the other is JONSWAP ocean wave spectrum.

The Gaussian spectrum is used in the theoretical study by Alber (1978) and BMNLS

numerical simulations in Gramstad and Trulsen (2007). The JONSWAP spectrum is

a more realistic description of the random wavefields (Hasselmann et al., 1973).

The directional JONSWAP spectrum is described as:

S(w, 0) - yexp 5 '()-4 _ exP 2 1 D(0), (3.1)
bi5 [ 4 Lip I

where o is the wave frequency, w, the peak wave frequency, a the Phillips parameter,

-y the peak enhancement factor specifying the spectral bandwidth, and 0-=0.07 for

< <w; u=0.09 for w > ip.

The direction spreading is given by cosine-square function:

2Cos2 (H) for 101 < 8/2
Df(0) = e (3.2)

0, for 101 > 6/2,

where 0 is propagating direction and 8 is the directional spreading width. The

corresponding directional wavenumber spectrum is given by

qI'(k) = 92 /(2w 3)S(w)D(0), (3.3)

where k = (kr, k.) is the wavenumber vector.

To elucidate the case of a very narrow-banded Gaussian spectrum considered by

Alber (1978) and Dysthe et al. (2003), we also perform HOS and BMNLS simulations
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for wavefields specified by a Gaussian wavenumber spectrum:

oa ~ 1 (k k)2 k
T (k) = 7-k exp (k -+ ky(3.4)

27ol _2kP2 o2 2

where o-=(f TI(k) dk) 1/2 is the standard deviation of the surface elevation, kp is the

peak wavenumber, and ok is the spectral bandwidth in the x and y directions.

The initial wavefield surface elevation and the linear velocity potential are ex-

pressed as

E~Nx/4 Ny/4

r/x =: R Amn exPikmn-x (3.5)
m=0 n=-Ny/4

Nx/4 Ny/4 .
s _ z g A m n .j;m3 .64~s (x) -R YS Y,-igm exp iknx(3.6)

m=O n=-Ny/4 Wmn

where wmn, Amn, and amn are the frequency, complex amplitude and phase of the wave

component with wavenumber vector kmn=(mAkx, nAky) respectively. For each kmn,

Wmn and kmn is related by linear dispersion relation. The complex amplitude Amn =

2S(kmn)AkxAky exp(iamn), and the phase amn is a random variable uniformly

distributed on the range [0, 27]. At the initial stage of SNOW simulations of nonlinear

wave-field evolution, the free-surface boundary conditions are smoothly transitioned

in time from linear to nonlinear conditions to minimize any standing wave effect that

results from using linear initial conditions (Dommermuth, 2000).

3.2.2 Physical and numerical parameters

Table 3.1 shows the definitions of physical parameters and numerical parameters used

in typical SNOW simulations of large-scale directional wavefields. In this thesis, a

uniform grid with size of Nx x N. is applied on a wavefield with a domain size L. x Ly.

Without loss of generality, we consider wave components propagating in both positive

and negative y direction but only in positive x direction. The wave modes, considered

in the wavefield evolution, are 0 < kx/Akx Nx/4 and -N,/4 < ky/Aky Ny/4
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after complete de-aliasing is applied. To include the nonlinear wave-wave interaction

up to third order, the typical domain size used in this paper is L" x Ly = 128Ap x 128Ap,

with A, being the wave length of the dominant wave component. The grid size

is N, = Ny = 4096 unless stated otherwise. This leads to a spatial resolution of

Ax = Ay = Ap/32 and spectral resolution of Ak, = Aky = k,/128. The maximum

wavenumber resolved in the simulation after a complete aliasing is kx,max = ky,max =

Nx/4 = 1024 = 8kp. The typical evolution time considered is 0 < t/T, < 150 to allow

the development of modulational instability. Although for the purpose of study it is

sufficient to use M = 3 to include the effect of modulational instability, we choose

to use M = 4 to achieve better accuracy for locally steep waves. No considerable

difference is noticed between the results using M = 3 and M = 4 over the evolution

time 0 < t/T, < 150. Computational convergence tests of SNOW regarding the grid

size N, and N., order of nonlinearity M, and number of realizations for one given

initial spectrum can be found in appendix A. We find the statistics are invariant for

higher resolution and nonlinear order for the space and time scale considered.

Table 3.1: Physical and numerical input parameters for SNOW simulations.

Spectral parameters (JONSWAP)

H significant wave height

k, wavenumber of the dominant wave

A, wavelength of the dominant wave

E E = EH,/2 representative steepness

0 spreading angle

a Phillips parameter

peak enhancement factor

Numerical parameters

Nx grid number in x-coordinate

Ny grid number in y-coordinate

M order of nonlinearity used in HOS
NT number time steps per period

In MNLS and BMNLS simulations, the envelope function B(x, t) is solved in

the modulational wavenumber space K = (k - kp)/k, and only the modes within

|Kj _ 1 and |Kyl <1 are used. This is slightly different from (Socquet-Juglard

et al., 2005) where wave modes within IKI < 1 are used. The computational domain
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is 128A x 128A,, over which a uniform grid size N = Nu = 512 is applied. To

resolve the fast oscillating surface elevation, r(x, t), uniform grid size of 4096 x 4096

is used. These computational parameter values lead identical spatial and spectral

discretization with HOS simulations. For all the BMNLS simulations, the energy is

verified to conserve within 0.5% in all simulations.

3.3 Nonlinear evolution of very narrow-banded Gaus-

sian spectrum

In this section, we study the nonlinear evolutions of very narrow-banded Gaussian

spectrum, described by (3.4), using MNLS, BMNLS, and SNOW simulations.

3.3.1 Evolution of directional spectrum

We consider the very narrow-banded Gaussian spectrum (3.4), which is theoretically

unstable if ok < 2E, where 6=v/2o-k, according to Alber (1978). The stability of this

Gaussian spectrum is assessed by Dysthe et al. (2003) using BMNLS simulations,

where they find a spectral broadening during wavefield evolution regardless of the

initial spectral bandwidth for three-dimensional wavefields. We investigate the evo-

lution of the same very narrow-banded Gaussian spectrum using SNOW simulations

and compare the results with those from MNLS and BMNLS predictions. The initial

spectra are chosen to be identical to those used in Dysthe et al. (2003). The spectra

have same steepness e=0.1 but two different bandwidths: o4=0.1 and 0.2. The initial

spectra are shown in figure 3-1.

Figure 3-2 shows the spectral evolution of the case E=0.1 and o4=0.1 from the

MNLS, BMNLS, and SNOW simulations. The spectrum contours are obtained by

ensemble averaging over five realizations and smoothed. In this case, 6 k < 2e and

the spectrum is unstable due to modulational instability according to Alber (1978).

All MNLS, BMNLS and SNOW models give similar predictions for the features of

spectral change, including significant spectral widening and spectral peak downshift-
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Figure 3-1: Initial very narrow-banded Gaussian shape spectrum IF(k). (a) E 0.1,
ok = 0.1; (b) E = 0.1, 6k= 0.2.

ing. Comparing MNLS and BMNLS simulations (figure 3-2(a)- (f)), for evolutions

within a short time t <;50T, the two models give comparable predictions on the

spectral change; however, for large evolution time, MNLS predicts more significant

energy spreading over short waves in comparison with BMNLS. Comparing MNLS

and BMNLS with SNOW simulations, the BMNLS model, with extensions to al-

low broader spectral bandwidth, in general gives an overall better comparisons with

SNOW simulations, although in BMNLS simulations noticeable overestimation of en-

ergy spreading over short waves at large evolution time (t > 100Tp) is still observed

relative to SNOW simulations. Moreover, we observe a continuous energy spreading

towards short waves in the NLS-type (MNLS and BMNLS) models, while in SNOW

simulations, at large time, the spectrum changes much slower and eventually reaches

a nearly quasi-stationary state after the initial rapid change over a relatively short

time.

Figure 3-3 shows the spectral evolution for the case E=0.1 and 6k=0.2. This

spectrum, with o k> 2E, is stable based on Alber (1978). For all MNLS, BMNLS and

SNOW models, considerable modifications on the spectral shape, including spectral
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Figure 3-2: Spectra evolution
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0.1 and spectral bandwidth ok=0.1. MNLS: (a), (b),
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peak downshifting and spectral widening, are present. NLS-type models (MNLS and

BMNLS) predict more significant spectral broadening in comparison with SNOW

and the overestimation of spectral broadening is more serious in MNLS simulations.

Similar to figure 3-2, in NLS-type models the spectrum broadens continuously, while

in SNOW simulations, the spectrum is nearly invariant with time at large time scale

(t ;> 10OT,).

In both simulations, Gaussian spectrum changes in three-dimensional wavefield

and more significantly so when the instability condition 6k < 2E is satisfied. These are

reasonably well predicted by both HOS and NLS-type simulations (specially BMNLS

simulations), with minor quantitative differences.

3.3.2 Omnidirectional spectrum

The one dimensional omnidirectional spectrum is defined as

S(k) = jk(k, 0) dO, (3.7)

where qf(k, ky) = T(k, 0) is obtained by mapping the wavenumber spectrum in

(k,k) to (k,), k=, k2 is the magnitude of the wavenumber vector and

0 is the wave direction.

Figure 3-4 shows the evolution of omnidirectional spectrum of the Gaussian spec-

tra with same steepness but different spectral bandwidths from MNLS and SNOW

simulations. For the cases considered, a clear spectral peak downshifting and band-

width broadening are observed from both models. For the spectrum with narrower

bandwidth (figure 3-4(a), (b), (c)), MNLS and SNOW give qualitatively similar pre-

dictions on the omnidirectional spectrum, although at large evolution time noticeable

differences are still found over the large wavenumber range. In both MNLS and S-

NOW simulations, the spectral around peak wave evolves to the power law of k 2 5 ,

although the power law of spectral tail is derived for large wave number in the satu-

ration range over time scale T/T, = O(E- 4 ). For large evolution time, comparing to

SNOW simulations, MNLS model overestimates the wave energy over short waves.

67



1

0.5

05 1 1.5 2

(a) t = 50Tp

- .. -!5 - --- -------2

0.5 1 1.5 2

(d) t =50T,

K^K kk,

(e) t = 10OT, (f) t = 150Tp

0 0.5 1 1.5

(h) t = 100T

1

0.5

-0.5

0 0.5 1

(i) t = 150Tp

Figure 3-3: Spectra evolution of narrow-band Gaussian-shape spectrum P(k) (Equa-
tion 3.4) with steepness E = 0.1 and spectral bandwidth o = 0.2. MNLS: (a), (b),
(c); BMNLS: (d), (e), (f); SNOW: (g), (h), (i). The contour values are logarithmic
ranging 1 x 10-6 to 1 x 104.
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For the case with broader bandwidth (64=0. 3 ), MNLS agrees with SNOW simulations

over a relatively short time t < 50T,. For large time, considerable energy accumu-

lation at the edge of spectrum is observed in MNLS simulations (figure 3-4(e), (f)).

Comparing with SNOW simulations, at t = 10OT,, the spectral range agrees with the

k-25 power law is broader in MNLS simulations. This is mainly caused by the energy

cumulation at the edge of spectrum in MNLS model. This is confirmed at later time

t = 150Tp, where a continuous energy cumulation is observed in MNLS model and the

tail of spectral has a smaller slope than k 2 5 . In SNOW simulations, the spectrum

is nearly quasi-stationary at large time.
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3.4 Nonlinear evolution of directional JONSWAP

ocean wave spectrum

We here investigate the evolutions of JONSWAP spectra using MNLS, BMNLS, and

SNOW simulations. The initial JONSWAP spectra are chosen to have same steep-

ness E=Hk,/2=0.16 and spectral bandwidth which is controlled by the peakness

enhancement parameter 7y=6, but a range of spreading angles.

3.4.1 Evolution of directional spectrum

Figure 3-5 shows the evolution of wavenumber spectrum for the wavefield with small

initial spreading angle 8 = 120 from MNLS, BMNLS and SNOW simulations. A

significant spectral broadening and peak frequency downshift as result of nonlinear

wave interactions are observed from all the simulations. In comparison with BMNL-

S, MNLS predicts a much broader spectral spreading, specially over short waves.

Comparing NLS-type models (MNLS and MNLS) with SNOW, BMNLS in general

gives better comparisons with SNOW relative to MNLS. Both of MNLS and BMNLS

models overpredict the energy spreading over short waves over large evolution time.

In NLS-type simulations, wave energy spreads towards short waves continuously. In

SNOW simulations, however, the directional spectrum reaches a quasi-stationary s-

tate and the spectrum is nearly invariant with time after a large time t > 10OT,.

The similar features are observed for the case with slightly broader spreading angle

0 = 21* shown in figure 3-6.

Figure 3-7 shows the spectral evolution for the wavefield with broad spreading

angle 8 = 62' from MNLS, BMNLS and SNOW simulations. The spectral change

including spectral peak downshifting and spread broadening are again observed in all

three models. Similar to previous cases, NLS-type models give a broader prediction

on the spectral spreading angle, in comparison with SNOW simulations. Contrasting

figure 3-7 with figure 3-5, we find the spectral change is much slower in this case

where the initial spectral spreading angle is large, which suggests the importance of
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Figure 3-5: Spectra evolution of JONSWAP spectrum q'(k) with H,= 0.08m,
T,=1sec, -y=6 and ( = 120. MNLS ((a), (b), (c)); BMNLS: (d), (e), (f); SNOW: (g),
(g), (h), (i). The contour values are logarithmic ranging 1 x 10-6 to 1 x 10-4.
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modulational instability is reduced when the spreading angle becomes large.
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Figure 3-7: Spectra evolution of JONSWAP spectrum J(k) with H,=0.08m,
T,=1 see, 'y=6 and 0 = 620. MNLS: (a), (b), (c); BMNLS: (d), (e), (f); SNOW:
(g), (h), (i). The contour values are logarithmic ranging 1 x 10-6 to 1 x 10-4.

3.4.2 Omnidirectional spectrum

Evolution of the omnidirectional spectra S(k) for the directional JONSWAP spectra

is shown in figure 3-8. Both BMNLS and SNOW predict the spectral peak downshift.
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The two models, however, differ qualitatively in the spectral tail. In the SNOW

predictions, the tail of S(k) is nearly time-invariant and remains very close to the

k-2. power law for large k, for both the narrow and broad spreading cases. This is

not predicted by BMNLS predictions which shows continuous energy accumulation in

time for short waves. The overestimation of the energy spreading is more significant

in the case with broader initial spreading angles. For SNOW simulations, we observe

the slope of spectral tail approaches to the power law of k- 2 5 from its initial value,

while for BMNLS simulations, a continuous broadening of spectrum is observed.

It is important to point out that the feature of the spectral slope depends on the

balance among wind input, nonlinear wave interaction and wave breaking. In our

simulation, the wind input is not considered and the wave breaking occurs mainly

on the very short waves |k| > 5k,. The feature of spectral slope discussed here is

contributed dominantly by nonlinear wave interaction.

3.4.3 Integral directional spreading function

The integral directional distribution function, D(6), is defined as

D(0) j k4"(k, O)dk. (3.8)

Figure 3-9 shows the evolution of D(O) for the JONSWAP spectra with different

spreading angles. Both BMNLS and SNOW show a broadening in the angle spreading.

For relatively short time, BMNLS and SNOW give very close prediction on D(O). For

larger time, BMNLS simulations give a slightly broader profile on D(O). Comparing

the profiles of D(O) obtained from two initial spreading angles, e = 120 and e = 620,
the spectral directional spreading changes much more significantly in the wavefield

with small initial spreading angle (E = 120).
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3.4.4 Directional spreading function

The directional distribution function is defined by (Hwang et al., 2000):

k'J( k,O)
D(k, 0) - S(k), (3.9)

S (k)

with D(k, 0) > 0 and f_"" D(k, 0) dO = 1. The normalized directional distribution

function Dk(0) is defined as

Dk (0) = T (k, 0) /max (qj(k, 0)). (3.10)

The moments of directional distributions are

0m(k) = fW/2 OmDk(0) dO (3.11)
fr /2 D(0) dO

The integration of the directional distribution function is

ID (k) =k D(0) d6. (3.12)
-r/

Apparently,

D(k, 0) = Dk(0)/ID (k). (3.13)

The directional resolution of SNOW simulations can be estimated by dk, dk, = kdkd0,

which gives dO = dkxdkl/(kdk) ~dk/k (if dk = dkx = dk,). For k = kp/2, dO < 1 .

The mean directional spread 60=02 (k) is defined as the average of the second-order

moment of the directional distribution function. Figure 3-10 shows the temporal

variation of J0 for wavefields with different initial spreading angles from BMNLS

and SNOW simulations. For the initially narrow spread case, e = 120, SNOW and

BMNLS predict a similar increasing J0 with evolution time up to t/T, ~zz_50. For

large time, BMNLS overpredicts 60 significantly in comparison with SNOW. For the

initially broader spreading case, BMNLS overpredicts 30 relative to SNOW over the
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entire evolution. Comparing the two spreading cases, we see that the rate of change

in 60 is greater for smaller e as observed in figure 3-6.

20

S10-

5--

O 50 100 150
VT

Figure 3-10: Temporal variation of mean directional spread 60. SNOW: 8=12* (-),

620 (--- ); BMNLS: 8=120 (-), 62 (--- ).

The directional spreading functions for the wavefields with different initial spread-

ing angles have been studied in Wu et al. (2012) and are reproduced in figure 3-11.

An interesting phenomenon observed is that the directional spreading function may

not remain its original unimodal COS-square shape and an obvious bi-modal shape

is developed for the wavefield with broad initial spreading angle. For all three cas-

es, it shows that the directional spreading function for a wavenumber near the peak

wavenumber stays as a unimodal function and does not deviate significantly from

its initial shape. However, in wavefields with broad spreading angle, the directional

spreading function of short waves (k > 3kp) deforms from its initial shape significantly

and develops into a bi-modal function. The bi-modal feature of short waves becomes

less significant as the initial spreading angle decreases. Therefore, we conclude that

the bi-modal distribution of spreading angle of short waves is a unique feature of

short-crested wavefields.

To study the dependence of bimodal feature on wavenumber, in figure 3-12 we

plot the first-moment of directional distribution function as function of wavenumber
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obtained from SNOW simulations with 6=80 and field measurement (Hwang et al.,

2000). We find SNOW agrees with field measurement reasonably well, although the

wave conditions used in SNOW is not the same as the sea state of the measurements.

60

50A

40 -*

0R& -A

0 ~30- A AAAA
A 1~

20 * AA A

10-

00 1 2 k 4 5

Figure 3-12: The comparison of the first moment of the angle spreading function
between field measurements (A) (Hwang et al., 2000) and SNOWsimulations (.)
(H, = 12m, T, = 13s, y = 5 and E = 80').

The bimodal properties of the spreading function can be described more quantita-

tively by the spreading angle width 0,(k), which is the angle where maximum Dk(O)

is obtained, and the scaled spreading amplitude, r,(k), which is the ratio between

maximum Dk(O) and Dk(Op), its value at the dominant direction. The comparison

of the spreading angle width and the amplitude between the field measurement and

SNOW simulations is shown in figure 3-13. It is observed the comparison is reason-

ably well for spreading width. For the amplitude of the spreading angles, comparing

with field measurements SNOW simulations generally overpredict r,(k), specially for

short waves.

The dependence of the first-moment of spreading angle 01(k) and the spreading

width 0,(k) on the initial spreading angle are summarized in figure 3-14. We observe

that for small spreading angle (E = 160), the bi-modal feature is almost absent.

As the initial spreading angle increases, the bi-modal feature starts to develop from
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large wavenumber. The angle width 0, increases with wavenumber. Moreover, the

dependence of angle width 0, on the wavenumber becomes nearly independent of

initial spreading angle for wavefields with broad initial spreading angle E >60'. The

spreading angle 0, becomes nearly constant for large wavenumber 0" ~ 40' for large

initial spreading angles. Since the wind-input are not considered and wave breaking

are mainly preformed over waves with wavenumber |kj/kp > 7, we conclude the

bimodal feature of directional spreading is dominantly contributed by nonlinear wave

interactions.

3.5 Summary and conclusions

We study the spectral evolution of three-dimensional nonlinear deep water wavefields

using direct simulations based on a high-order spectral method (SNOW). Consistent

with modulational instability of nonlinear waves, which is our main focus, we consider

spatial domains L x L and evolution times T, where L/AP, T/IT, O(E-2), for our

simulations.

To assess range of validity of NLS-type models in describing spectral change, we

obtain results using MNLS and BMNLS models, and compare and contrast these

with SNOW. In general, NLS-type models and SNOW obtain qualitatively similar

results for initial time. For L/A,, T/T, ~ O(E-2) and initially narrow frequency

and directional spread wavefields, however, SNOW obtains quasi-stationary states

after the broadening of the spectra. This is not predicted by NLS-type models which

in general obtain monotonic spreading of energy to shorter and more directionally-

spreading waves.

We elucidate the importance of modulational instability in the evolution of direc-

tional wavefields. Spectral change over the modulational instability scales is examined

using both NLS-type and SNOW simulations. BMNLS obtains in general a better

comparison with SNOW results than MNLS predictions. For very narrow-banded

Gaussian spectrum, NLS-type models and SNOW give very similar predictions on

the spectral peak downshift and spectral broadening, although NLS-type models give
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a slightly broader energy spreading over short waves. For initial spectrum theoreti-

cally unstable to the modulational instability, a considerable spectral broadening over

a relatively short time scale is observed in all the simulations. For initial spectrum

theoretically stable, the spectrum still broadens, however, the spectral broadening

process is much slower, which suggests a larger time scale is relevant for evolution of

broad-spreading seas. For JONSWAP wavefields with small spreading angles, modu-

lational instability leads to significant spectral broadening. For wavefields with large

spreading angles, the importance of modulational instability becomes less significant.

We find the directional spreading function may not remain its original COS-square

shape. An obvious bi-modal shape is developed for the directional distribution func-

tion of short waves in the wavefields with large initial spreading angles. For the

wavefields with small initial spreading angles, the bimodal features of directional dis-

tribution function are absent.
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Chapter 4

Nonlinear wave statistics of ocean

wavefield in deep water

4.1 Introduction

Reliable descriptions of the probability distributions of ocean waves are critically

important to many marine engineering applications. In linear random wave theory,

the wavefield is considered as a superposition of sinusoidal wave components with

different frequencies and directions of propagation. Based on the central limit the-

ory, the surface is therefore described by Gaussian distribution. For unidirectional

waves which are narrow-banded in frequency, Longuet-Higgins (1952) show that the

wave heights follow a Rayleigh distribution. This linear theory is extended to include

second-order bound-wave effects (Tayfun, 1980; Forristall, 2000). The inclusion of

second-order nonlinearity leads to sharper crests and flatter troughs with improved

statistical comparison to field measurements. The crest-to-trough wave heights, how-

ever, remain the same. The deviations of the nonlinear wave statistics from Gaussian

distribution can be quantified by the non-Gaussian values of skewness and kurtosis,

where skewness and kurtosis are the second and third moment of the surface elevation.

For unidirectional wavefields with narrow-banded spectrum, using second-order the-

ory, the skewness and kurtosis are Skew=3kpo and Kur=3+24(kpo) 2 , where k, and

o are peak wavenumber and standard deviation of the surface elevation (Longuet-

85



Higgins, 1963; Onorato et al., 2009). Observations from wave tank experiments indi-

cate that the classical linear and second-order theories do not describe the nonlinear

statistics accurately for the wavefields which are steep and narrow-banded (Onorato

et al., 2004, 2009).

For general directional wave spectra which have finite or broad band, it is challeng-

ing to derive nonlinear wave statistics theoretically because the governing equations

of the wave dynamics are highly nonlinear. The numerical approaches, therefore,

are quite useful in this context. For the wavefields with narrow-band spectra and

small spreading angle, considerable non-Gaussian statistics are observed in NLS-type

simulations (Socquet-Juglard et al., 2005). As the spectral spreading angle becomes

large, numerical simulations of NLS-type models indicate that the statistics are close

to linear or second-order theoretical predictions (Gramstad and Trulsen, 2007).

The NLS-type models are derived assuming the wavefield is narrow-banded and

the wave envelope is slowly varying with space and time. How applicable of these

assumptions on the realistic wavefields is questionable. In this chapter, we study the

nonlinear statistics of directional random wavefields, including significant wave height,

wave skewness and kurtosis, and distribution of wave crests, using direct simulation

approach (SNOW). The reliability of using SNOW simulation in describing nonlinear

wave statics are verified by direct comparisons with wave basin experiment (Onorato

et al., 2009). To assess the validity of using NLS-type models in describing the

nonlinear statistics of ocean waves, the predictions from BMNLS simulations are

compared with SNOW simulations.

4.2 Significant wave height

The significant wave height H, introduced by Sverdrup and Munk (1947) during

World War II, defined originally as the average of the one-third highest wave heights,

was used to describe the severity of the wavefield. However, it is rarely calculated us-

ing its original definition. Now the significant wave height is more commonly defined

as four times of the standard deviation of the surface elevation. For narrow-banded
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wavefield with Rayleigh-distributed wave height, H,,=4.01o, where o- is standard de-

viation of the surface elevation (Ochi, 2005). In this thesis, the later definition is

used, that is, H, = 4o-.

Figure 4-1 shows the evolution of the significant wave height from experiments

(Onorato et al., 2009) and SNOW simulations. The wavefields have same steepness

and spectral bandwidth but different initial spreading angles. For a range of spreading

angles considered, SNOW predictions agree qualitatively well with experiments. We

find the reduction of H, as a measure of the energy dissipation due to wave breaking,

is more significant in wavefields with small spreading angles. The reduction of H,

decreases as the spreading angle increases. This is consistent with the experimental

observations where the wave breaking is found more frequent in the wavefields with

small spreading angles (Onorato et al., 2009). When comparing temporal variation-

al results from SNOW simulations with spatial records from experiments, x=cgt is

used to transfer from temporal variations to spatial variations, where c, is the group

velocity of the dominant wave, . A discussion on the validity of this transformation

can be found in Toffoli et al. (2010). Figure 4-2 shows the influence of the spreading

angle and spectral bandwidth on the change of H, due to wave breaking, measured

as H,/H,,o, where H, is the value of significant wave height at time t = 150Tp and

H,,o is the initial value. We find the energy dissipation reduces with the spreading

angle increases. For small spreading angles, the change of H, is nearly independent

of spectral bandwidth. For large spreading angles, the reduction of H, is more sig-

nificant for wavefield with broader spectral bandwidth. Because wave breaking is a

nonlinear wave phenomenon, the reduction of wave breaking in wavefields with broad

spreading angle suggests the deduction of nonlinearity in short-crested wavefields.

4.3 Skewness of surface elevation

Skewness, the third moment of surface elevation, is defined as

Skewness = (3) /(2)3/2, (4.1)
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range of spreading angles. Experiment (Onorato et al., 2009): e = 12' (0), 21' (V)
and 620 (0). HOS: E = 120 (M), 210 (V); and 62' (0). Results are obtained using
SNOW with breaking model (2.12) described in Chapter 2 §2.2.2 with #1= 8 , #2=30.

1

0.9

I" 0.8F

0.7F

0.600 20 40
E(0)

60 80

Figure 4-2: Significant wave height at time t = 150Tp scaled by its initial value,
H,/H,,o, as a function of the initial spreading angle E for wavefields H,=0.08 m

T= 1 sec (E = 0.16), and -y=3 (x), 6 (0).

88

0
9 9 x

0

; OUI

.I I , I I .1



where. (-) denotes an ensemble average, and (p2) and (rq3) are second and third-order

moment of the surface elevation. It measures the asymmetry of the free surface eleva-

tions and larger value of skewness suggest more skewed/assymetric wave profile. The

value of skewness vanishes for linear Gaussian wavefields. The second-order theory for

unidirectional narrow-banded spectrum gives (Longuet-Higgins, 1963; Onorato et al.,

2009):

Skewness = 3ko-. (4.2)

4.3.1 Evolution of skewness

Figure 4-3 shows the evolution of skewness from experiments (Onorato et al., 2009),

BMNLS and SNOW simulations for wavefields with a range of spectral bandwidth

and spreading angle. The BMNLS and SNOW models give similar predictions on

the skewness, close to the second-order theoretical prediction 3kco-~ 0.24, although,

comparing with experiments, both of the numerical models overestimate the skewness,

specially at the locations away from the wavemaker. For all the wavefields, from the

SNOW simulations, skewness quickly deviates from its initial Gaussian value over a

very short time scale and stays rather stationary over the time because skewness is

mainly contributed by the second-order wave nonlinearity and are not sensitive to

higher order wave nonlinearities. Moreover, the variations of skewness have a similar

pattern for all cases considered and are not sensitive to the spreading angle of the

wavefields.

4.3.2 Effect of spectral directional spreading on skewness

Figure 4-4 shows the effect of initial spreading angle on the average value of skewness

((Skewness)) over evolution time 0 < t/T, < 150. We observe that a direction-

al spreading in general leads to a reduction in the average value of skewness, and

(Skewness) decreases as spreading angle increases. These results indicate the second-

order nonlinearity is in general weaker in directional wavefields.
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4.4 Kurtosis of surface elevation

Kurtosis, which is the fourth moment of the wave elevation, is defined as

Kur = (4.3)

where (-) denotes an ensemble average, and (p2) and (,q4) are second and fourth-order

moment of the surface elevation. Kurtosis denotes the peakness of one distribution.

Greater value of kurtosis suggests a longer tail of the distribution. For a linear

Gaussian wavefield Kur=3. The second-order approximation is (Longuet-Higgins,

1963; Onorato et al., 2009)

Kur= 3 + 24(kpo)2. (4.4)

Kurtosis strongly depends on third-order wave nonlinearity and it is regarded as an

important indicator of the probability of rogue wave occurrence and greater the value

of kurtosis higher occurrence probability of rogue waves (Mori and Janssen, 2006).
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4.4.1 Evolution of kurtosis

Figure 4-5 shows comparisons of the evolution of kurtosis for wavefields with a range

of -y and e, obtained from experiments (Onorato et al., 2009), SNOW and BMNLS

simulations. For both BMNLS and SNOW models, for wavefields with small spread-

ing angles, we find that kurtosis increases from initial value of Kur~3, coinciding

with the initial rapid spectral broadening observed in figures 3-5 (Chapter 3) due to

modulational instability. BMNLS overestimates kurtosis during this time. At large

time, in BMNLS simulations, kurtosis reduces to the Gaussian value. In SNOW simu-

lations, however, kurtosis decreases slowly to a quasi-stationary value, which is nearly

invariant over time 100 t/T,(= 2x/Ap) < 150 (and beyond). The quasi-stationary

kurtosis obtained from SNOW is considerably non-Gaussian. For wavefields with

large spreading angles (e.g., 6=620), both BMNLS and SNOW predict slower varia-

tions of kurtosis over the time, consistent with the slower spectral change observed in

figure 3-7 (Chapter 3). Overall, SNOW consistently obtains greater values of kurtosis

for longer time. SNOW also appears to obtain better comparisons to measurements

over the different wavefields considered.

We define the maximum kurtosis Kurma as the maximum value of kurtosis during

the evolution time 0 t/Tp ,150, and the average value of kurtosis Kur+ during the

stationary phase of the wavefield 100 t/T, 150. Figure 4-6 shows the dependence

of Kurm" on the initial spreading angle from experiments (Waseda et al., 2009) and

SNOW simulations. For wavefields with small spreading angles, Kurma decreases

quickly with 0 increases. For wavefields with spreading angle 0 > 40', Kur m'

decreases to a value close to Gaussian Kur=3 and Kurma is nearly independent of

.

The spatial homogeneity of kurtosis may be in the regional-dependence of the

value of maximum kurtosis

Figure 4-7 shows the dependence of Kurm" on the domain size from BMNLS and

SNOW simulations. We find that kurtosis is not homogeneous locally. For small size

domains, the value of Kurm' varies considerably in both of the simulations. For large
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size domains, the value of Kurm"x no longer depend on the domain size. This suggests

the value of wave kurtosis is statistically useful only for wavefields with large domain

sizes.

4.4.2 Quasi-stationary value of kurtosis Kur+

Aggregating 0(200) SNOW simulations for wavefields with a broad range of ini-

tial spectral parameters, figure 4-8 plots the predicted values of (Kurm", Kur+) for

these cases. We see a clear relationship between Kur+ and Kurm. For smaller

Kurm( ; 3.2), Kur± Kurm; while for greater Kur"1x, Kur± remains almost con-

stant (~3.2) with increasing values Kurmax. These suggest that for evolutions with

Kurm < Kura Kurm" is reached in the asymptotic quasi-steady state; while evolu-

tions with values of Kurm > 3.2 are reached at an early phase of the evolution which

then decrease towards the longer-time average value Kur+. The former case is indica-

tive of significant modulational instability resulting in rapid change of the (initial)
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Figure 4-7: The dependence of maximum kurtosis Kur" on the domain size for

JONSWAP directional wavefields H,=0.08 m and T,=1 see (E = 0.16), -y-=6. BMNLS
(x) and SNOW (Q).

spectra and strongly nonlinear/non-Gaussian wave statistics, while the latter case

corresponds to the absence of significant modulational instability resulting in a slow-

ly varying wavefield and slowly developing non-Gaussian statistics. An estimation of

kurtosis using second-order theory for narrow-banded waves gives Kur2 =3+24(kpo)2

(Longuet-Higgins, 1963; Onorato et al., 2009). For the wavefields in figure 4-8, the

largest (initial) steepness is E = 0.14, which obtains Kur 2=3.12. This value is consid-

erably smaller than 3.2. This suggests the second-order approximation is not accurate

for general broad-band wavefields or the higher-order nonlinearities are required to

obtain an accurate description.

4.4.3 Dependence of kurtosis on initial BFI and spreading

angle

For unidirectional wavefields described by very narrow-banded Gaussian spectra, Mori

et al. (2007) find kurtosis only depends on the so-called Benjamin-Feir index (BFI):

Kur = 3 + 27rBFI 2/v'. (4.5)
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Figure 4-8: Kurm" vs. Kur+ for ~ 200 wavefields with a range of spectral parameters
E, -y and . E=0.06 (x); 0.08 (A); 0.1 (V); 0.12 (D); 0.14 (0).

BFI is introduced in Janssen (2003) as a measurement of the importance of modula-

tional instability, and it is defined as

BFI = E/(Ak/kp), (4.6)

where Ak is the spectral bandwidth. The direct dependence of kurtosis on BFI for

unidirectional seas with more general sea conditions is also observed in wave flume

experiment (Onorato et al., 2004). However, For short-crested wavefields, it is found

from experiments and NLS-type simulations that the dependence of kurtosis on BFI

is greatly reduced (Onorato et al., 2009; Waseda et al., 2009; Gramstad and Trulsen,

2007).

Figure 4-9 plots Kurm ' versus (initial) BFI-square for wavefields with a range

of e, e and -y. The effect of direction spreading on the correlation between kurtosis

and BFI-square is clearly seen, especially for large BFI. For the very narrow spread-

ing case(s), Kurmax has a clear linear correlation with BFI2 . For large e, a linear

(trend) correlation between Kur and BFI is still seen; however, the slope with which

Kurma, depends on BFI decreases with E increases, so that for very broad spread case,
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Kurma is almost independent of BFI. Although for a given E, we observe linear-like

correlation between kurtosis and BFI. For given BFI, the value of kurtosis is still un-

known if the influence of spreading angle is not considered. Using just BFI without

0- information creates huge scatter because of different rate of dependencies on BFI.
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Figure 4-9: Dependence of maximum kurtosis Kurm" on the initial BFI2

with a range of E, -y and E in MIT-Wave. E=20' (A); 0=30 ( ); 400
1200 (>).

for wavefields

(+; 800 (C));

Figure 4-10 shows the overall dependence of Kurm' on BFI and spreading angle of

the initial spectrum. For given BFI, Kurm' decreases as E increases. For wavefields

with relatively small spreading angle E < 40', there is a clear dependence of Kurm" on

BFI. Strong non-Gaussian statistics are observed for wavefields with small spreading

angles. For wavefields with relatively large spreading angle 0 > 600, Kurma is close

to Kur=3 and becomes nearly independent of BFI.

4.5 Exceeding probability of wave crests

In SNOW simulations the wave crests are defined as the local maxima of the wave

surface. In BMNLS simulations the wave crests are estimated as the third-order upper
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surface envelope

r c IB I + IB 2 1 + |B 3 |, (4.7)

where B 1 , B 2 and B 3 , defined as (2.18) (Chapter 2), are slowly varying in space and

time, and have magnitudes of first, second and third order in wave steepness; q, also

slowly varying in space and time, is the mean surface elevation and is third order in

wave steepness.

4.5.1 Evolution of crest distribution

Figure 4-11 shows the exceeding probability of crests for unidirectional wavefields

from experiments (Onorato et al., 2009), BMNLS and SNOW simulations. Predic-

tions from linearized (Rayleigh) and second-order theories (Tayfun, 1980) are also

shown as references. For all the locations considered, Rayleigh theory underestimates

the probability of crests considerably, especially for large crests. At the location

close to the wavemaker, x/A,(= t/2T,)=3.1, probability of crests obtained from ex-

periments, BMNLS, and SNOW simulations all are close to the second-order theory.

At location x/A,(= t/2T,)=15.9, where kurtosis reaches its maximum in the experi-
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ment, significant deviations of probability of large crests from linear (Rayleigh) and

second-order predictions are observed in both BMNLS and SNOW simulations. Sim-

ilar features are observed for the comparison at location x/A,(- t/2Tp)=28.7, the

farthest location from the wavemaker in the experiment (figure 4-11(c)), although

the exceeding probability is reduced somewhat relative to x/A,=15.9. Figure 4-11(d)

shows the results for t/2T,=x/A,=50, where the wavefield statistics have reached

the quasi-steady state (t/T,=2x/A, > 0(100)) predicted by SNOW (see §4.4). In

this case, BMNLS predictions are close to second-order theory, while SNOW predicts

considerably larger probability of large crests.

Figure 4-12 to figure 4-14 show the exceeding probability of crests for directional

wavefields with spreading angle e =12', 210 and 62' from experiments (Onorato et al.,

2009), BMNLS and SNOW simulations. Predictions from linearized (Rayleigh) and

second-order theories (Tayfun, 1980) are also shown as references. Comparing figure

4-12 and figure 4-11, the evolutional trend of exceeding probability of crests with

small spreading angle is very similar to the unidirectional case. For the wavefield with

slightly broader spreading angle (0 = 21'), the evolution of crests is similar to the

case E = 12', except that the deviation of large crest probability from the Rayleigh

and second-order theory is somewhat decreased comparing the case 0 = 12'. Figure

4-14 shows the crest distribution for initially broadly spread sea, 6=62', BMNLS and

SNOW simulations give similar predictions and agree well with experiments. In this

case, second-order theory provides a good prediction on the crest distribution.

In all cases, SNOW appears to obtain a better overall comparison to measured

values.

4.5.2 Effect of initial spreading angle on crest probability

Figure 4-15 shows summary plots of the exceeding probability of wave crests at loca-

tion x/Ap=28.7 for wavefields with different spreading angles. The occurrence of large

crests is greatly enhanced in wavefields with small spreading angles. The probability

of large crests decreases as the initial spreading angle increases. Referring the spec-

tral change observed in §3.4 (Chapter 3), the large crest occurrence is significantly
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Figure 4-11: Exceeding probability of wave crests for unidirectional JONSWAP wave-
fields with H,=0.08m, T,=1sec, -y 6. SNOW (o); BMNLS(+); Rayleigh distri-
bution (-); second-order theory (Tayfun, 1980) (--- -); experiment (Onorato et al.,
2009) (A). SNOW and BMNLS results are averaged over five realizations.
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Figure 4-12: Exceeding probability of wave crests for JONSWAP wavefields with
H,-0.08m, T,=1 sec, y = 6 and 0=12' (corresponding to exponents s = 840 in
Mitsuyasu spreading function cos*6). SNOW (o); BMNLS (+); Rayleigh distribu-
tion (-); second-order theory (Tayfun, 1980) (--- -); compared to experiment (Ono-
rato et al., 2009, 2008) for A: unidirectional; and A: s=840. (experimental values for
E = 12' at x/A,=28.7 are not published). SNOW and BMNLS results are averaged
over five realizations.
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Figure 4-13: Exceeding probability of wave crests for JONSWAP wavefields with
H,=0.08m, T,=1sec, -y = 6 and 6=210 (corresponding to exponents s = 200 in

Mitsuyasu spreading function cos' 0). SNOW (o); BMNLS (+); Rayleigh distribu-
tion (-); second-order theory (Tayfun, 1980) (- - -); experiment (Onorato et al.,
2009) (A). SNOW and BMNLS results are averaged over five realizations.
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Figure 4-14: exceeding probability of wave crests for JONSWAP wavefields
H,=0.08m, T,=1sec, -y = 6 and 0=62' (corresponding to exponents s = 24 in
Mitsuyasu spreading function cos*6). SNOW (o); BMNLS (+); Rayleigh distribu-
tion (-); second-order theory (Tayfun, 1980) (- - -); experiment (Onorato et al.,
2009) (A). SNOW and BMNLS results are averaged over five realizations.
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increased in the wavefields where the modulational instability plays an important role

in the spectral evolution.

1
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1I 1.5
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Figure 4-15: Exceeding probability of wave crests at x/Ap=28.7 for wavefields

H,=0.08 m, Tp=1 sec, -y = 6. Unidirectional (0), E)120 (A), 210 (D), 620 ().

4.6 Summary and conclusions

In this chapter, we study the nonlinear wave statistics and their dependence on the

spectral parameters. The reliability of SNOW simulations in describing nonlinear

wave statistics is confirmed by direct comparisons with wave basin experiments (Ono-

rato et al., 2009). The linear and second order theory of wave statistics are examined

by direct comparisons with SNOW simulations. We find for the wavefields with small

spreading angles, the wave statistics are considerably non-Gaussian and the occur-

rence of the large crests are greatly enhanced relative to first and second-order theory.

The non-Gaussian statistics are closely related to the spectral change due to modula-

tional instability. In next chapter (Chapter 5), we show modulational instability also

plays a crucial role in the generation of rogue waves.

The validity of using NLS-type models (BMNLS) in describing the nonlinear s-
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tatistics is investigated by comparing with SNOW simulations. Up to short evolution

time t/T, $100, we find BMNLS predictions agree with SNOW reasonably well. For

large time, however, BMNLS simulations underestimate the non-Gaussian statistics

in comparison with SNOW simulations. SNOW overall obtains a better comparison

with wave basin experiments.
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Chapter 5

Rogue wave occurrence in deep

water

5.1 Introduction

Rogue waves are extraordinarily large surface waves that appear infrequently in the

ocean. A common definition of rogue waves is waves whose heights exceed twice the

significant wave height. Occurrences of such large waves have been reported worldwide

from ships, offshore platforms and radars (Lawton, 2001; Kharif and Pelinovsky, 2003;

Forristall, 2005). Collisions with such waves have caused catastrophic damages to ship

and offshore structures (Kharif and Pelinovsky, 2003; Toffoli et al., 2005). The picture

of rogue wave approaching a merchant ship shown in §1.4 (Chapter 1), reproduced

here in figure 5-1, shows the wave has crest height much higher than the ambient

waves and it also has a long crest length leading to a shape similar to "wall of water".

Moreover, it has an extremely steep front indicating its strong nonlinearity.

The prediction of occurrence probability of rogue waves is of central interest.

In linear random wave theory, for unidirectional wavefield that is narrow-banded

in frequency, Longuet-Higgins (1952) shows that wave height and thus rogue wave

occurrence follow a Rayleigh distribution. The inclusion of second-order nonlinearity

leads to sharper crests and flatter troughs with improved statistical comparison to

field measurements (Tayfun, 1980; Forristall, 2000), although the crest to trough wave
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A.

Figure 5-1: Rogue wave in the Bay of Biscay, France, in 1940. Picture from National
Oceanic and Atmospheric Administration (NOAA).

height remains the same. Significantly, observations indicate that the classical linear

and second-order theories do not properly describe the occurrence of large waves with

heights greater than twice the significant wave height (Skourup et al., 1997; Stansell,

2005).

There are several mechanisms that could be responsible for the formation of rogue

waves. The mechanisms that, to the leading order, do not involve nonlinear wave-

wave interactions, commonly referred as linear mechanisms, are summarized below.

Recent reviews of the rogue wave problem may be found in Kharif and Pelinovsky

(2003); Kharif et al. (2009); Dysthe et al. (2008); Slunyaev et al. (2011).

1. Focusing due to wave dispersion

Gravity surface waves are dispersive and their phase (and group) velocity is

proportional to the square root of the wave length and inversely proportional

to the wave frequency. Large waves can form when a large number of waves

are superposed at one location with proper phases and directions due to wave

dispersion. For unidirectional wavefields, this can happen when long waves

overtake short waves.

2. Wave-current interactions

The formation of freak waves in the area where the current is strong, such as
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Gulf stream and Agulhas current, could be due to the "blocking" effect of the

current (Lavrenov, 1998). When waves propagate into a current with different

directions, the waves are stopped by the current at the locations where the

wave group velocity in the inertial frame is zero. This causes a localized energy

accumulation at such locations leading to formation of large waves in that area.

3. Geometrical focusing due to bathymetry

When waves propagate into varying bathymetry, they are refracted due to the

change of bottom topography, leading to the focusing of wave energy in partic-

ular places. This might be responsible for the formation of large waves in the

areas along irregular coastlines.

The linear mechanisms might be responsible for occurrences of rogue waves in certain

locations, however, they cannot explain a large number of freak wave events reported

from the open sea where the current and bathymetry play a minimal role.

Nonlinear mechanism is fundamentally different from linear mechanism. In linear

wave theory, the waves with different frequencies are independent and they do not

interact with each other. However, in nonlinear mechanism, one unstable wave mode

may absorb energy from other waves. When nonlinearity is present, significant inter-

actions occur at the third order and it is postulated that nonlinear focusing due to

modulational instability is an important generation mechanism of rogue waves. It is

known that an initially periodic Stokes wave train is unstable to side-band modula-

tions (Benjamin and Feir, 1967) which causes the wave train to disintegrate into wave

groups within which large waves could form. This type of Benjamin-Feir modulation-

al instability also obtains in narrow-band irregular wavefields (Alber, 1978), and its

relationship to rogue wave formation has been studied theoretically, experimentally

and numerically.

For unidirectional narrow-banded seas, Janssen (2003) shows theoretically that

the modulational instability can cause an exponential growth of the central wave

mode leading to the formation of large waves, and the importance of modulational

instability can be measured by the Benjamin-Feir index (BFI) which is a ratio of the

wavefield steepness to the spectral bandwidth. By including the third-order nonlin-
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earity of modulational instability, the wave height follows the modified Edgeworth-

Rayleigh (MER) distribution, which involves the fourth-order moment or kurtosis

of the surface elevation (Mori and Yasuda, 2002a; Mori and Janssen, 2006). MER

distribution deviates from Rayleigh distribution and predicts increasing probability

of rogue waves with increasing kurtosis. In the special case when the wavefield is

described by very-narrow-band Gaussian spectrum, kurtosis is specified by the value

of BFI (Mori and Janssen, 2006). The strong dependence of rogue wave occurrence

on BFI in unidirectional wavefields is supported by wave flume experiments (Onora-

to et al., 2004) and numerical simulations based on nonlinear Schr6dinger equation

(NLS) (Onorato et al., 2001).

For general 3D wavefields with broad directional spreading, statistical theories on

rogue wave occurrence accounting for nonlinearity are difficult to obtain, and much

of the investigation is based on numerical simulations. For computational efficiency,

many existing studies use model equations based on the wave envelope approximation

(assuming narrow-band waves) such as nonlinear Schr6dinger (NLS) or modified non-

linear Schrbdinger equations (BMNLS) (Dysthe, 1979; Trulsen and Dysthe, 1996).

Using BMNLS simulations, Gramstad and Trulsen (2007) study the effect of crest

length on the rogue wave occurrence and find that the importance of modulational

instability is reduced with decreasing crest length. For broad directional wavefields,

the probability of rogue wave occurrence is found to be close to Gaussian statistics

and nearly independent of BFI. The similarity between nonlinear and linear statis-

tics for broad directional wavefield has also been found in wave basin experiments

(Waseda et al., 2009; Onorato et al., 2009).

NLS-type simulations are potentially limited by the inherent assumptions of narrow-

band spectrum and slowly-varying spatial and temporal modulations. These assump-

tions may not obtain in general, since it is known that even initially narrow-band

spectrum may become broad-banded due to nonlinear evolution (Dysthe et al., 2003).

For steep waves (which might be expected in rogue wave events), the assumption of

slowly-varying modulation may also be invalid locally. One of the objectives of present

work is to assess the range of validity of wave envelope models for rogue wave pre-
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dictions. This is addressed in the recent study of Toffoli et al. (2010) where BMNLS

is compared with direct simulation using a high-order spectral method (Dommer-

muth and Yue, 1987; West et al., 1987). Toffoli et al. (2010) show that BMNLS and

HOS obtain qualitatively similar results which compare reasonably with wave tank

experiments of Onorato et al. (2009). The simulations are however limited to rela-

tively short evolution time (suggested by the scale of the tank experiments) and small

computational domains.

A few attempts have been made to study extreme waves using fully nonlinear

simulations, but most of simulations are performed for unidirectional wavefields or di-

rectional wavefields over limited domain size. Using a higher-order spectrum method,

Mori and Yasuda (2002b) find high-order nonlinearities play an important role in the

formation of extreme waves for unidirectional wavefields with narrow-banded spec-

tra. Zakharov et al. (2002) develop a numerical method for fully nonlinear wavefield

evolution. Bateman et al. (2001) simulate evolution of a realistic wavefield of limited

size, using a spectral wave model allowing fully nonlinear simulations of broad-band

broad spreading wavefield. In this thesis, we apply the direct simulations, SNOW,

to study the generation mechanisms, occurrence probability and kinematics of rogue

waves.

In this chapter, we apply direct numerical simulations to study the generation

mechanisms and occurrence probability of rogue waves in three-dimensional wave-

fields using SNOW. We focus on the importance of modulational instability as a

generation mechanism of rogue waves over space and time scales L x L and T with

L/A,, T/T, ~ O(e2), where A, and T are the peak wavelength and period of the

(initial) spectrum. E=Hkp/2 is the steepness of the wavefield, where H, is the sig-

nificant wave height and k, is the peak wavenumber. Our objectives are to obtain

the occurrence probability, mechanisms and geometry of rogue wave events and their

quantification in terms of statistical and spectral parameters. To achieve this, we

perform a significant number of large-scale nonlinear 3D SNOW simulations covering

broad range of spectral parameters. The spatial and temporal scales of the simulation-

s are commensurate with those of quartet resonance interactions, including BF-type
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instabilities. The simulations are performed on massively-parallel high-performance

computing (HPC) platforms. For comparison, we also implement BMNLS and com-

pare SNOW and BMNLS model predictions on rogue wave occurrence over the large-

scale space-time domains we consider.

5.2 Statistical models

In linear random wave theory, the wavefield is considered as a superposition of si-

nusoidal wave components with different frequencies and directions of propagation.

Using large number theory, the surface elevation is described by Gaussian distribu-

tion. Under this assumption, Longuet-Higgins (1952) shows that, for unidirectional

waves that is narrow-banded in frequency, wave height and thus rogue wave occur-

rence follow a Rayleigh distribution. The exceeding probability of wave heights with

a Rayleigh distribution is

PR(h) = Pr[H > h] = exp ( 2 (5.1)
80-/

where H is the wave height and o- is the standard deviation of the surface eleva-

tion. The crest height in linear theory is half of the wave height, and the exceeding

probability of wave crests is

PA(a) = Pr[A > a] = exp -a . (5.2)

This linear theory is extended to include second-order bound-wave effects (Tayfun,

1980; Forristall, 2000). The exceeding probability of wave crests based on the second

order theory, according to Tayfun (1980), is:

PA'(a) =exp 1-2 (a + 1I v/2a + 1)]. (5.3)

where A=H/2 is the crest height. The inclusion of second-order nonlinearity leads

to sharper crests and flatter troughs with improved statistical comparison to field
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measurements, although the crest to trough wave height remains the same. Field ob-

servations indicate that the classical linear and second-order theories do not properly

describe the occurrence of large waves with heights greater than twice the significant

wave height (Skourup et al., 1997; Stansell, 2005).

5.3 Collections of large-scale SNOW wavefields:

MIT-Wave database

To study the occurrence probability of rogue waves in directional random wavefields,

we simulate a large number of nonlinear directional ocean wavefields using a broad

range of spectral parameters, including representative steepness E, spectral bandwidth

controlled by the peakness enhancement factor ", and spreading angle . The rep-

resentative steepness, E - Hk,/2 (He, kp are the significant wave height and peak

wavenumber), ranges from 0.06 to 0.14 with increment 0.2. The peakness enhance-

ment parameter, -y, varies over 1, 3.3, 5, 6 and 10. The spreading angle 8 = 200,

300, 400, 600, 800, 1000 , and 1200. The input parameter values for MIT-Wave dataset

are summarized in Table 5.1. For unidirectional wavefields, a measure of the impor-

tance of modulational instability is BFI=E/(Ak/k,) and the modulational instability

is important if BFI> 1/v/2 (Janssen, 2003). The corresponding value of BFI for the

MIT-Wave dataset ranges from 0.1 to 1.1 (the spectral bandwidth Ak is calculated

as the half width at half maximum of the wavenumber spectrum). We hereafter re-

fer this database as MIT-Wave. Number of 0(10) realizations are performed where

needed to achieve convergent statistics.

Table 5.1: Input parameters for MIT-Wave database.

E 0.06, 0.08, 0.1, 0.12, 0.14

7 1, 3.3, 5, 6, 10
H (o) 20, 30, 40, 60, 80, 100, 120
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5.4 Identification of rogue waves

For the purpose of identifying a large rogue wave (group), we use the criterion that

the crest-to-trough wave height H exceeds H/H, 2 a. In this study, we use a=2.0.

In the context of long-crested waves, the identification of a wave (or wave group), and

hence its crest-to-trough height, obtains readily in terms of, say, zero crossings. For

short-crested seas, this is problematic. Nevertheless, for the identification of rogue

waves, large wave events are generally isolated from the ambient small waves, which

allows us to obtain a meaningful identification and definition.

The precise definition of the extent of the rogue wave event (within which H 2 aH,

obtains) is not unique. For the present study, we use the following procedure (the

results below are unaffected if "crest" and "trough" are interchanged). At any given

time, for every local maxima ("crest") located at, say, xc=(xc, yc), in the wavefield,

we define a rectangular region R centered on xc, given by

R = {(x,y)||x -xcl <_ A, Iy- yc| < C}, (5.4)

where C,=y4/2 is the average crest length and A, is the average wave length in y

direction, defined as

f kg 2 F(k) dkA= 27/(k 2)i/2, (k 2) = Y (5.5)Y - - ff T(k) dk

Within each R we search for all the minima ("trough") points to evaluate the corre-

sponding H. If the maximum H thus obtained satisfies H/H, ; a, a rogue wave is

identified associated with the corresponding crest-tough pair xc and xt. In the case

where a xt is shared by two or more x, (centered on different R), only the (xc, xt)

pair that obtains the maximum H among these (and the corresponding R) is count-

ed. The influence of using a different R and a different value of threshold a on the

resulting identified rogue waves is discussed in appendix B.

Figure 5-2(a) shows an example of the locations of the large waves identified in

a directional wavefield using the approach described above and Figure 5-2(b) shows
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one example of identified rogue wave with H/H, ~~2.43.
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Figure 5-2: (a) The locations of large waves found in a directional wavefield H,=12 m,
T,=13 s 'y=5 and -=60 . 1.9 < H/Hs < 2.0 (U), 2.0 < H/H < 2.1 (A), H/IH ;> 2.2
(e). (b) One example of identified rogue wave with H/H, ~2.43. Zero contours
around the crest and trough points of the rogue wave (-).

5.5 Number probability of rogue waves

The number probability of rogue waves at given time, denoted as PN, can be defined

as:

PN = Nrogue/Nw, (5.6)

where Nrogue is the number of rogue waves identified, and Nw the total number of

waves in the wavefield. For general short-crested wavefield, precise value of N" can

be difficult to obtain (or define). For specificity, we set

N_ = L-Ly/6,
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where d is the average area of a wave, estimated by (Piterbarg, 1996; Socquet-Juglard

et al., 2005):

d = AAy/ 27r, (5.8)

and

A, = 27/(k )1 / 2, and A = 27r/(k )1 / 2  (5.9)

where

(k ) Jk 2xJ(k) dk/ J4(k) dk, (5.10a)

(k ) = k J(k) dk/ J (k) dk. (5. 1Ob)

Note that with this definition, N, varies in time as the spectrum changes, and gen-

erally increases with directional spreading.

5.5.1 Evolution of number probability of rogue waves

Figure 5-3 shows the evolution of PN from SNOW and BMNLS simulations. The

convergence of the PN statistic, estimated by the standard deviation PN/ Nrogue

is indicated as error bars. For small (initial) spreading angles (Figure 5-3(a), (b)),
from both BMNLS and SNOW simulations, PN increases initially over a time scale

corresponding to the rapid spectral change (see Figure 3-5 in Chapter 3), reaching

values of Pynx that are an order of magnitude greater than the linear prediction.

During this time, BMNLS overestimates PN. At larger time, PN decreases, with

BMNLS predictions approaching the Rayleigh prediction PR, where for SNOW, PN

approaches a quasi-stationary non-Gaussian value which is multiple times greater

than PR and BMNLS predictions. Contrasting Figures 5-3(a) and (b), it is clear that

the magnitude of PN is greater for narrower (initial) frequency bandwidth (larger y)

corresponding to stronger modulational instability.

For greater spreading angles, the qualitative trends remain, although the ampli-

fication of PN relative to PR is progressively less significant. For the very broadly-

spreading case 6=62', PN in SNOW generally increases slowly with time (towards
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quasi-stationary value); while in BMNLS, PN Inonotonically decreases with time,

eventually becomes smaller than PR.

In summary, we see that PN generally increases with decreasing E and increasing

-, with PjTa many times greater than PR for narrow spreading wavefields, and gen-

erally reached over a relatively small time scale corresponding to the initial strong

modulational instability of the wavefield. In all cases, SNOW obtains a nonlinear

quasi-static state after long time, with P+ still multiple times greater than PR (and

BMNLS predictions).

Comparing Figure 5-3 and the evolution of kurtosis shown in Figure 4-5 (Chapter

4, §4.4.1) corresponding to the same (initial) spectral parameters, the qualitative

resemblance between PN and kurtosis is quite apparent, suggesting that the latter is

a good indicator/predictor of the likelihood of rogue waves.

5.5.2 Number probability of rogue waves in the quasi-stationary

state

To better understand the quasi-stationary probability of rouge waves in large time

predicted by SNOW, we plot PN versus P " for ~ 200 wavefields in MIT-Wave

dataset. Similar to figure 4-8, the ensemble of wave cases fall into two relatively dis-

tinct categories. For cases with relatively small Pjx(< 4 PR), PZ ~ PjT', indicating

that P;T' is obtained in the quasi-stationary state. For greater Pjx, PZ shows some

scatter but is aggregated around Pu/PR ~4. These latter cases correspond to situa-

tions where pax is achieved due to strong initial modulational instability before the

quasi-stationary state.

We want to point out that the calculation of PN could be problematic. First, N is

estimated statistically and how relevant of the estimated N to the precise total number

of waves in the wavefield is not known to the author. Second, the value of N could

vary significantly due to the spreading angle broadening as wavefields evolve. Figure

5-5 shows the variation of N for directional wavefields with different spreading angles.

It shows, for the wavefield with narrow-banded spectrum and narrow spreading angle,
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Figure 5-4: P]" vs. P+ for ~ 200 wavefields with a range of E, -y and E from

MIT-Wave. E=0.06 (x); 0.08 (A); 0.1 (V); 0.12 (D); 0.14 (0).

N can increase to four times of its initial value. To overcome the difficulties related

to the calculation of PN, we here introduce a new quantity to measure the rogue wave

occurrence based on the area they occupy. We define the rogue wave area probability,

PA, as

PA= Arogue/A, (5.11)

where SR is the coverage area of rogue waves and S is the area of the entire wavefield.

A detailed study on rogue wave area statistics are demonstrated in section 5.6.

5.6 Area probability of rogue waves

5.6.1 Definition of area probability of rogue waves

As we pointed out earlier, the number probability of rogue waves in terms of relative

frequency of number of (rogue) waves is problematic for (very) broad directional

spreading waves. For short-crested seas, Nrogue does not distinguish between events

of different sizes, while the validity of (5.7) for estimating the total number of waves

N may be questioned. The problem is exacerbated by the fact that even initially
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Figure 5-5: Variation of estimated total number of waves N" using (5.7) in the
wavefields H,=0.08m, T,=1s with (a) -y=6 and (b) -y=3. 0) 15 : SNOW (-);
BMNLS ( -). = 310 : SNOW (-); BMNLS (-- -). = 72 : SNOW (-);
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narrow spreading spectra tend to evolve toward broader spreading and furthermore,

as the spectrum evolves, N, is a time varying (but a priori unknown) function. For

instance, for the case of figure 5-3(a), N, at t = 150T, is over 4 times its initial value

shown in figure 5-5.

To overcome these problems, we introduce a general and robust area probability

of rogue waves, denoted by PA, as a useful measure of the likelihood of rogue waves

for general directional spread wavefields. PA is defined as

PA = Arogue/Aw, (5.12)

where Arogue is the total area of rogue waves, and Aw=LLy is the total area of the

wavefield under consideration (which, unlike N., is invariant). After a rogue wave

event is identified, its area arogue is defined as the sum of the zero elevation contours

enclosing the crest point xc and trough point xt associated with the rogue wave (figure

5-2b). Clearly PA is applicable for any general directional spreading sea.
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Note that while both PN, PAE [0, 1] are well defined as probability, their quanti-

tative values can differ substantially for short-crested wavefields. In general, PA and

PN are related by:

PA/PN = drogue/d, (5.13)

where

drogue = Arogue/Nrogue (5.14)

is the average area of a rogue wave. In Chapter 8, §8.2, we find Arogue ~~ Ap, so that

PA/PN = Arogue/Ax '>~ 1 (since Ap > A. for JONSWAP spectrum). For short-crested

wavefields, the value of drogue/d is not generally known. In Chapter 8, §8.2, we find

that drogue/t ~ 0(5) (depending on wavefield parameters, see figure 8-6).

5.6.2 Evolution of area probability of rogue waves

Figure 5-6 shows the evolution of PA for the same cases considered in §5.5. Comparing

figures 5-6 and 5-3, we observe that the qualitative trends of PN and PA are somewhat

similar, except that the magnitude of PA is several times (~ 5) greater than PN,

indicative of arogue much greater than a, characteristic of short-crested seas. The

notable difference between PA and PN are seen in the initially narrow spread cases

(6=12' and 21'), where BMNLS now consistently under estimates PA throughout

the evolutions. As observed earlier, PA predicted by HOS again displays the quasi-

stationary state after t/Tp > 0(100); while the BMNLS predicted PA diminishes

monotonically with increasing time.

5.6.3 Area probability of rogue waves in the quasi-stationary

state

Figure 5-7 shows the relation between PAj and PA" for the ~200 wavefields we

used in the MIT-Wave dataset. We observe very similar pattern relative to those
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for kurtosis and PN. In this case, the threshold value beyond which PA+ departs

from Pa", and modulational instability is significant in the (initial) evolution, is

PjI/PR~20. With the more valid definition of rogue wave occurrence in terms of

area, the scatter in PI/PR ~20 obtained in the quasi-stationary state is substantially

reduced. Despite the range of Pjgax/PR spanning over an order of magnitude, the

quasi-stationary value of PJ/PR ~20 has a remarkably narrow range, suggesting

that this might be a somewhat (more) common value of probability of occurrence

of rogue waves (H/H, ;> a=2) under a broad range of ocean wavefield conditions

for which modulational instability is relevant. For greater/smaller values of a, this

threshold/quasi-stationary value of PA7/PR is expected to increase/decrease, which

we verify in Appendix B, §B.2.

40
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00 20

Figure 5-7: P" vs. PA+ for 200
MIT-Wave. E=0.06 (x); 0.08 (A); 0.1

40 60
prmaxp

A/PR

wavefields with a range of E, -y and 8 from

(V); 0.12 (0); 0.14 (0).

5.7 Occurrence probability of rogue waves vs. kur-

tosis

The enhanced occurrence of rogue waves is related to the modulational instability

of nonlinear waves, which is a third-order nonlinear effect. Including the effects of
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third order nonlinearity, the distribution of wave heights in a uni-directional, narrow-

banded wavefield follows the modified Edgeworth Rayleigh (MER) distribution (Mori

and Janssen, 2006; Gramstad and Trulsen, 2007):

PH(H/o-) = e-1/8(H/o-)2 [1 + (Kur - 3)BH(H/o)], (5.15)

where a is the standard deviation of the surface elevation and Kur is the kurtosis of

the wave elevation, and

BH(H/u) = 1/384(H/u)2[(H/o-)2 - 16]. (5.16)

The MER distribution states that the probability of rogue wave occurrence increases

as the kurtosis increases.

5.7.1 Number probability of rogue waves vs. kurtosis

The probability of rogue wave occurrence has been found to be closely related to the

kurtosis of the wavefield at a given time. Figure 5-8 plots Py' as a function of Kurm '

for the ~ 200 wavefields from MIT-Wave dataset. For comparison, we also include the

modified Edgeworth Rayleigh (MER) distribution (5.15) for the "number" exceeding

probability of wave heights, wherein the third-order wave nonlinearity effects related

to modulational instability are included (Mori and Yasuda, 2002a; Mori and Janssen,

2006). We see that PY' has almost linear correlations with Kur m ' for the full range

of Kurm' that we obtained from broad ranges of (initial) spectral parameters in

the MIT-Wave cases considered. For Py", MER substantially underestimates the

occurrence probability and appears to be relevant only for small Kur values (above

Kur=3).

5.7.2 Area probability of rogue waves vs. kurtosis

Figure 5-9 plots P ' as a function of Kurm ' for the - 200 wavefields from MIT-Wave

dataset. Comparing figure 5-8 and figure 5-9, it is evident that pax has a better linear
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Figure 5-8: PT'" vs. Kur m" for -200 directional wavefields from MIT-Wave. S-

NOW (0); MER (Mori and Janssen (2006)) (-). Linear regression line (- -

Pg7/P=1+18.64(Kurm" - 3) (coefficient of determination R 2 = 0.82).

correlation (with higher R 2 value) relative to PR" (especially for greater Kurma).

This is not surprising since many of the MIT-Wave wavefields are (eventually) broadly

spread. Clearly, PA is a preferred measure of rogue wave probability for general

wavefield conditions.

Overall, we find that both pjax and Pf"' have almost linear correlations with

Kurm' for the full range of Kurm" that we obtained from broad ranges of (initial)

spectral parameters in the MIT-Wave cases considered.

5.8 Number and area probability of rogue waves

vs. Benjamin-Feir Index (BFI)

The dependence of the number and area probability of rogue waves on the initial

value of BFI and spreading angle is shown in figure 5-10. Similar to kurtosis, For the

very narrow spreading cases, both P7T and pax have a strong dependence on BFI2 ,

especially for large probabilities. For large 08, the slope with which P]" and Pfm

depends on BFI2 decreases with 0 increases, so that for very broad spread cases,
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NOW (0); MER (Mori and Janssen, 2006) (-). Linear regression line (- -

Pf"a/P=5.06+90.30(Kur'ax - 3) (R2 = 0.89).

the number and area probability of rogue wave occurrence are almost independent of

BFI.

Although for a given E, we observe linear-like correlation between kurtosis, P7a,

Pax, and BFI2. For given BFI, the value of kurtosis and rogue wave probability are

still unknown if the influence of spreading angle is not considered. Using just BFI

without E information creates huge scatter because of different rate of dependencies

on BFI.

5.9 Modified Benjamin-Feir Index (MBFI): a spec-

tral parameter for rogue wave prediction

5.9.1 Definition of MBFI

The above findings suggest the need for a more general spectral parameter, applicable

to wavefields with arbitrary directional spreading, that measures the probability of

extreme waves. Different forms of modified BFI have been proposed by Waseda et al.
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(2009) and Mori et al. (2011). The parameterization in Waseda et al. (2009), which

is obtained based on limited number of wave basin experiments, does not reflect the

general feature of monotonic reduction of kurtosis with increasing spreading angle.

The modified BFI in Mori et al. (2011) is obtained by fitting to the results from NLS

simulations and is thus applicable to wavefields with narrow-band wave spectra only.

We here introduce a new modified Benjamin-Feir index (MBFI) defined as:

MBFI =[1 +tan 2 (6/2) 1 (5.17)11 + 4 tan2 (6/2)] Ak/kp'

i.e., MBFI=F(e)-BFI, where F(8) is the quantity in the square brackets in (5.17).

For uni-directional wavefields F(0)=1 and MBFI=BFI, while for very broadly direc-

tional spread seas, MBFI/BFI=F(1800)=0.25.

This definition of MBFI (5.17) is derived based on a generalization of the result

of Alber (1978) who considered the effect of three-dimensional disturbance on the

stability of the very narrow-band Gaussian spectrum (3.4). In this case, the wavefield

is unstable for:

2 V r 2kp -a~1K K ) > 1 G(K y - 2(KY /K )2- 1/2 ( -8
,Ak/ k, _1 + (2Kulx) / KI

where Kx and Ky are the modulation wavenumber in the x and y directions, and Ak

is the spectral bandwidth in the x direction. The effect of the presence of transverse

disturbance G(Kx, Ky) can be related to the directional spreading e by taking, say,
e8=2tan-(Ky/Kx) and writing:

G(Kx, KY) = [1 - 2(Ky/Kx) 2 11/2 1 - 2tan2 (8/2) 1/2 1 + tan2 (8/2)
_1 + (2Ky/K)2 _1 + 4 tan2 (E/2)_ 1 + 4tan2 (E/2)

(5.19)

where the last approximation, valid for small E, is used to make F(O) defined for

general value of E) E [0, 1800]. The profile of F(6) is shown in figure 5-11.
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5.9.2 Kurtosis vs. MBFI

Figure 5-12 shows the dependence of Kur" on MBFI and BFI for the MIT-Wave

data. With MBFI, the scatter in the data is greatly reduced, resulting in a clear

and almost linear parametrization of Kurmax and MBFI2 over the broad range of

initial spectral parameters we considered, especially in the range Kurma >3.2. This

indicates that F(8) (5.19) is a reasonable description of the influence of the spreading

angle on maximum value of kurtosis.

Figure 5-13 shows the color contours of Kurmax as functions of F2 (E8) and BFI 2,

using the 0(200) large-scale simulations in MIT-Wave. The hyperbolic contour lines

corresponding to MBFI 2 -BFI 2 F 2(8)=constant are also plotted. We see a strong

dependence of Kur"" on 0, especially for large value of BFI. The general dependence

of Kurm on both BFI and 0 is generally captured by MBFI, clearly shown in the

comparison between the value contours of Kurma and the MBFI 2 contours.
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5.9.3 Number and area probabilities of rogue waves vs. MB-

FI

Given the known dependence of rogue wave occurrence on kurtosis, it is expected that

MBFI would also be the (single) metric for the occurrence probability. This is shown

in figure 5-14, where we see a remarkable correlation between occurrence probability

and MBFI especially for PA. Indeed, a linear fit obtains:

PA/PR ~ b1 x MBFI2 + bo, (5.20)

where, over a broad range of spectral parameters, be and b1 are functions of the rogue

wave criterion H/H, > a only. For figure 5-14, a=2, and we obtain bo=8.60 and

b1=43.88 with R2=0.76. A similar fit obtains for PN/PR with a somewhat smaller

R 2=0.67. Considering the broad range of wavefield conditions represented in figure

5-14, the surprisingly simple result (5.20) is noteworthy.

Figure 5-15 shows the color contours of the number and area probabilities of rogue

wave occurrence, as functions of F 2(8) and BFI2 , compiled from the 0(200) large-

scale simulations in MIT-Wave. Also included in the figures are the hyperbolic contour

lines corresponding to MBFI2=BFI2F 2(8) =constant. We see a strong dependence on

e suggesting that prediction of the occurrence using BFI alone is inadequate (except

for the special case of very small 8, i.e., large F(O)). The general dependence on

both BFI and 8 is generally captured by MBFI, with the suggested fit (5.20) clearly

shown in the comparison between the computed probabilities and the MBFI 2 con-

tours. Comparing PN/PR and PA/PR, it appears that PA/PR is better parameterized

by MBFI, especially for greater values of directional spreading 0 (smaller values of

F(O) and MBFI), as expected.

5.10 Summary and conclusions

We study the occurrence probability of rogue waves and their dependence on the spec-

tral parameters over a broad range. Our interest is the importance of modulational
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instability as a generation mechanisms of rogue waves. The simulations are performed

over spatial-temporal scale £/Ap, T/T,=O(E- 2 ). For wavefields with small spreading

angles, modulational instability leads to enhanced probability of rogue waves. For

wavefields with large spreading angles, the importance of modulational instability is

less significant and the occurrence probability is closer to Rayleigh distribution.

For general directional spreading wavefields, occurrence probability based on num-

ber of rogue waves PN becomes problematic as crest lengths become short. The

problem is exacerbated since even initially narrowly spread seas become directionally

broadened in the nonlinear evolution. To overcome this, we introduce the definition

of area probability of rogue wave occurrence PA, which is well-defined and convergent

for arbitrary 3D wavefields. We confirm the general correlation between both PN,
PA, and kurtosis.

For relatively narrow spreading wavefields, kurtosis, and hence occurrence prob-

ability, can be reasonably well predicted by the (initial) BFI of the wavefield. This

is no longer true for broad directionally-spreading wavefields. We propose a modified

Benjamin-Feir index (MBFI) which accounts for directional spreading and show that

kurtosis, PN and PA are well predicted by MBFI over a broad range of wave steepness,
frequency bandwidth, and directional spreading.
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Chapter 6

Nonlinear wave statistics and

rogue wave occurrence in finite

water depth

6.1 Introduction

The understanding and prediction of nearshore wave environment, specially a reliable

forecast of occurrence probability of rogue waves, is of fundamental importance to

the design and safe operation of naval ships and marine structures. Moreover, an

appropriate description of nearshore wave statistics is a necessary input in the motion

analysis of surface vessels and floating marine structures.

When waves propagate from deep water to shoreline, the wave crest becomes

shaper and wave trough becomes flatter, leading to a steeper and more asymmetric

wave shape. Based on the second-order Stokes expansions for finite depth water,

skewness and kurtosis of surface elevation increase as water depth decreases (Tuah

and Hudspeth, 1985; Song et al., 2002).

When high-order nonlinearity is relevant, the (third-order) nonlinear wave inter-

actions have a significant influence on the spectral evolution, nonlinear statistics, and

particularly on the probability of large waves (Janssen, 2003; Socquet-Juglard et al.,
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2005). For wavefields with narrow-banded spectrum and small directional spread-

ing, modulational instability leads to significant spectral change and considerable

non-Gaussian wave statistics. As the directional spreading angle increases, the im-

portance of modulational instability reduces and the statistics are close to Gaussian in

short-crested wavefields. The influence of modulational instability on spectral change,

nonlinear wave statistics and occurrence probability of rogue waves in the context of

deep water are discussed in detail in Chapter 3, Chapter 4, and Chapter 5 using direct

simulations (SNOW).

Extension of the deep water results to finite depth is less addressed. The classic

study suggests that, for unidirectional wavefields, the water depth effect on the wave

spectrum evolution is insignificant as long as the water depth is not too shallow. Ac-

cording to classic theory, for the water depth h satisfies y -kph> 0.7, where kp is the

peak wavenumber, the wave spectrum in finite depth can be obtained from deep wa-

ter spectrum through a similarity transformation (Herterich and Hasselmann, 1980).

However, a recent study, which is based on the Zakharov equation in finite depth,

shows that a considerable reduction in the nonlinear energy-transfer rate among wave

components in the spectrum occurs around =t1.363, corresponding to a much deeper

depth than that indicated in the classic study (Janssen and Onorato, 2007). As an

special example, for unidirectional uniform stokes wave train, the Benjamin-Feir in-

stability diminishes for small water depth satisfying kph <1.363, therefore, we expect

that the modulational instability due to one-dimensional perturbation (Benjamin-

Feir type instability) may play a less important role in the generation of extreme

waves in finite water depth. For water depth kph <1.363, although the unidirectional

stokes waves are stable to two-dimensional perturbations, they are unstable to three-

dimensional perturbations (McLean, 1982). In the context of finite water depth, the

instability due to three-dimensional perturbations becomes more important than that

due to two-dimensional perturbations specially for steep waves. The influence of fi-

nite water depth on the nonlinear wave statistics for three-dimensional wavefields is

investigated using HOS over relatively small computational domain in (Toffoli et al.,

2009). They find, for wavefields with small spreading angle, finite depth in general
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leads to a significant reduction in the kurtosis of surface evolution; for short-crested

wavefields, the dependence of wave statistics on water depth is not significant. In

this chapter, these conclusions are verified using SNOW simulations over domain size

L/A,, T/T, = O(Eg ). Moreover, we investigate the influence of finite water depth

on the wave breaking and occurrence probability of rogue waves.

In deep water, resonant triad wave-wave interactions are absent and four wave-

wave interactions dominate the evolution of the spectrum. In very shallow water, triad

wave-wave interactions transfer energy from lower frequencies to higher frequencies of-

ten resulting in lower and higher harmonics. The low-frequency energy generation by

triad wave-wave interactions is general not considered in phase-averaged models (e.g.

SWAN) (Booij et al., 1999). For intermediate water depth, triad and quartet non-

linear wave interactions coexist and their combined effect on the spectral evolution,

nonlinear wave statistics and rogue wave probability over the spatial and temporal

scale L/A,, T/T, = O(E-2) is the topic of this chapter. We assume constant flat

bottom and varying water depth involving shoaling process is not considered.

6.2 Initial finite-depth wavefield

6.2.1 Initial finite-depth wave spectrum

The frequency wave spectrum for finite depth S(w, h) is given by multiplying the

wave spectrum in deep water S(w) by a depth factor H(wh):

S(w, h) - S(W)H(wh). (6.1)

where Wh-WNh/g is the corresponding wave frequency in finite water depth. For

S(w), we use the JONSWAP spectrum

0-92 5 o exp - W-

S(w) exp [ ( )-4 7P kP, (6.2)
4 p
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where w is the wave frequency, w, the peak wave frequency, a the Phillips parameter,

y the peak enhancement factor specifying the spectral bandwidth, and ks=0. 07 for

W <; wp; Uk=0.0 9 for w > wp. The depth factor has a form (Kitaigorodskii et al.,

1975):

1 w5

H(Wh) = h k
C,(w, h) 92k3' (6.3)

where Cg is the group velocity of the wave, k is related to w by the dispersion relation,

and g is the gravitational acceleration. For directional spreading, a cosine-square

spreading function is employed. Figure 6-1 shows initial frequency spectra using same

frequency JONSWAP spectrum but different water depths. With decreasing water

depth, energy over short wave range increases considerably, suggesting an increasing

wave steepness. Note that the representative wavefield steepness e =Hkp/2 is slightly

different for different water depths, because for given wp, k, varies for different h. Here

H, and k, are significant wave height and peak wave number.

50

40

E 30

20

10

.5

Figure 6-1: Initial frequency wave spectra for finite water wavefields S(w, h),
H,=10m, Tp=12s, -y=3 .3 .
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6.2.2 Physical and numerical parameters

To study the combined effects of finite water depth and directional spreading on wave

evolution, we perform SNOW simulations for wavefields with a range of spreading

angles and water depths. The scaled water depth p = kph varies from oo (deep

water) to 1.07, covering the theoretical stable to theoretical unstable range in water

depth; Two different spreading angles are chosen, 6=20' and 6=80', representing

small and large spreading angles. The importance of wave nonlinearity relative to

wave dispersion is measured by the dimensionless parameter Ursell number defined

as Ur-/(kph)3 . In this chapter, we are interested in the cases with relatively small Ur

( Ur<1). Under this assumption, the Stoke's expansion and the asymptotic expansions

in HOS formulations (2.3) in Chapter 2 §2.2 converge for finite water depth.

We consider the computational domain L, x L. and evolution time T, with

LX = LY = 128A and T/T,=150. A uniform grid Nx xNy = 4096x4096 is applied,

which gives a spectral resolution of Akx=Aky=kp/32. For the time integration, a

constant time step of At=Tp/64 is used. In all SNOW computations, we use order

of nonlinearity M=4 sufficient to capture the quartet and quintet nonlinear wave in-

teractions including modulational instabilities over the space-time scales considered.

At the initial stage of SNOW simulations, the free-surface boundary conditions are

smoothly transitioned in time from linear to nonlinear for minimizing the numerical

standing wave effect associated with the use of the linear initial conditions (Dommer-

muth, 2000).

6.3 Nonlinear statistics of waves in finite water

depth

To study the effects of finite water depth on nonlinear wave statistics, we perform

SNOW simulations of directional wavefields with H,=10 m, T,=12s, -y=3.3 and a

range of water depth and directional spreading angle. The normalized wave depth,

p = kph=inf, 2.82, 1.53, and 1.07, varies from the values that are stable (p >1.363) to
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the values that are unstable (t ;1.363) to the unidirectional disturbances. Same topic

has also been addressed in Toffoli et al. (2009) using relatively smaller computational

domain.

6.3.1 Significant wave height in finite water

Figure 6-2 shows the evolution of the significant wave height (H,=40-) for wavefields

with a range of water depth. For all the cases considered, H, decreases with time

due to non-ignorable wave breaking in directional finite depth wavefields. For given

spreading angle, the reduction of H, increases as water depth decreases, a clear in-

dication of water depth dependent wave breaking. Comparing figure 6-2(a) and (b),

we find the variational pattern and reduction amount of H, are very similar between

the two different spreading angles, although the energy dissipation in the case with

broader spreading angle (E = 800) is slightly less than that in the case with narrow

spreading angle (6 = 200).

6.3.2 Skewness in finite water

In figure 6-3, we plot the temporal variation of skewness for wavefields with differ-

ent water depths and spreading angles. For the wavefields with scaled water depth

t >> 1.363, the dependence of skewness on water depth is not significant for both

spreading angles considered. For wavefields with scaled water depth A <1.363, skew-

ness increases as water depth decreases. Comparing figure 6-3(a) and (b), the vari-

ation patterns of skewness are similar between the cases with different spreading

angles. The influence of water depth on the mean skewness over 0< t/IT, <150T, is

shown in figure 6-4. In the range of relatively shallow water depth, skewness increas-

es significantly as water depth reduces. We find a sharp transition in the skewness

from the shallow water to deep water. In the shallow water, skewness has a strong

dependence on water depth and it is slightly greater in the case with broad spreading

angle; while in the deep water, skewness is nearly independent of water depth and it

is greater in the case with narrow spreading angle. These finds are consistent with
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Figure 6-2: Temporal variation of the significant wave height in wavefields initialized
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what is observed in Toffoli et al. (2009). These results also agree qualitatively with

the field measurements listed in Herbich (1990). The increasing skewness suggests

more asymmetric wave shapes in shallower water depth, which is expected.
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Figure 6-3: Temporal variation of the skewness for wavefields H,=10m, T=12s,
-y=3.3 with different water depths and angles of spreading. (a) e = 200; (b) E = 800.
Deep water( );p 2.82, h = 100m (1.53, h = 50m 1.07,
h = 30 m ( ---
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Figure 6-4: Mean skewness as a function of scaled water depth p = kph. = 20' ();
0 = 800 (+).

6.3.3 Kurtosis in finite water

Figure 6-5 shows the temporal variation of kurtosis for wavefields with a range of

water depth. For the wavefields with small spreading angle (0 = 20'), the kurtosis

decreases as water depth reduces. This is somewhat as expected since the kurtosis

is largely influenced by the modulational instability that vanishes at shallow depth

(with p <1.363). For the case of 0 = 20' and p=1. 0 7 (h=30m), in particular, the

kurtosis even becomes less than the Gaussian value (3). This result is consistent with

the predictions based on the Zakharov equation (Janssen and Onorato, 2007) and

the KdV model (Pelinovsky and Sergeeva Kokorina, 2006). For the case with broad

spreading angle, the dependence of kurtosis is less significant, although the decreasing

trend with decreasing water depth remains. These results again are consistent with

Toffoli et al. (2009).

Figure 6-6 shows the combined influence of finite water depth and the spreading

angle on the maximum kurtosis over 0<; t/T, (;150, denoted by Kurma. We find a

strong dependence of Kurm" on the water depth and spreading angle. For wavefields

with small spreading angles, Kurma decreases as the water depth decreases. The
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Figure 6-5: Time variation of the kurtosis in nonlinear wavefield evolution. (a) =
200; (b) E = 800. Deep water( );y = 2.82, h =10m( );p 1.53, h = 50m
( - ); y = 1.07, h = 30 m (- -- )
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reduction rate of Kurm" with respect to water depth is greater in the shallow water

depth range. For the case of large angle of spreading, the influence of water depth on

kurtosis is greatly reduced and kurtosis is close to Gaussian and is nearly independent

of water depth. In the shallow water region [p <1.363, for wavefields with small

spreading angles, Kurm" < 3. The great reduction of kurtosis with decreasing water

depth in the case of small angle of spreading suggests less likelihood of large wave

occurrence.
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Figure 6-6: Maximum kurtosis
8 - 800 (+).

as a function of scaled water depth. 8 = 200 (o);

6.3.4 Distributions of crests and troughs in finite water

In finite water depth, the wave becomes sharper and more asymmetric. The linear

assumption of equal wave crest and trough is no longer valid. Figure 6-7 and 6-8

show the temporal variation of exceeding probabilities of crests for wavefields with

different water depths and spreading angles. The the linear Rayleigh and second-

order theories (Tayfun, 1980) are also shown as references. For the case with small

angle of spreading (- = 200) the deviations from the Rayleigh and second-order

predictions become significant, specially at the time t = 30Tp when the kurtosis
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is maximized in the case of deep water (figure 6-7). The deviations reduce a bit

as wavefields evolve, but probability of large crests is still higher than second-order

theory. This feature agrees with the experimental observations in the deep water wave

basin (Onorato et al., 2009). As water depth decreases, the exceeding probability of

crest is close to the second-order Tayfun prediction. The results suggest that the

occurrence probability of large waves is reduced in the finite water depth. In the

case of large angle of spreading, the exceeding probability of crests is very close to

second-order prediction regardless of the water depth (figure 6-8). However, we notice

that for the case of smallest water depth (h = 30 m), a slightly higher probability of

crests is observed (figure 6-8b), which is also found in Toffoli et al. (2009). This might

be related to the transverse (three-dimensional) instability. Exceeding probability of

troughs are shown in figure 6-9 and 6-10. The exceeding probability of large troughs

is greatly reduced in finite water depth for both spreading angles considered.

A very interesting phenomenon we find is that, unlike crest distributions which

are well described by second-order theory in shallow water for both spreading angles,
the trough distributions in shallow water are significantly underestimated by the

second-order theory for both spreading angles. Moreover, in comparison with crest

distribution, the trough distribution does not seem to vary with time as what is

observed in crest distribution.

For finite water depth, the results suggest the wave profiles are more asymmetric

for wavefields with small angles of spreading.

6.4 Spectral evolution in finite water depth

6.4.1 Omnidirectional wave spectrum

The omnidirectional spectrum S(k), describing the energy distribution over wavenum-

ber for all the directions, is defined as

S(k) = J IF'(k) dk J 'F(k, 0)k dO. (6.4)
J kl=k -r
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Figure 6-8: Exceeding probability of crests for wavefields 0 = 800 with different water

depths. p = inf (A); p = 1.53, h = 50 m (+); p = 1.07, h = 30m (
(-); Second-order theory (- - -).
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Figure 6-10: Exceeding probability of troughs for wavefields E = 800 with different
water depths. p = inf (A); p = 1.53, h = 50 m (+); p 1.07, h = 30 m ( ). Rayleigh
(-); Second-order theory --- -).
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where k = Iki and T is the wavenumber spectrum. Figure 6-11 shows the evolution

of omnidirectional wave spectrum for wavefield 8 = 200. A significant downshifting

of the spectral peak is observed in the case of deep water. As the water depth

decreases, the spectral downshifting reduces, suggesting a reduction of nonlinear wave

interactions among (dominant) energetic wave components. A considerable energy

loss due to wave breaking is observed in the range of short waves, and it becomes more

significant as the water becomes shallow, consistent with the results of decreasing

significant wave heights discussed in §6.3.1. As water depth decreases, our results

show the presence of a significant energy transfer to the low wavenumber region,

leading to the generation of very long waves in nearshore areas. This is discussed

in detail in §6.4.2. Figure 6-3b shows the evolution of omnidirectional spectra for

wavefields with 8 = 800. We observe that the downshift of spectral peak and energy

dissipation over short waves due to wave breaking are much weaker. The phenomenon

of long wave generation however persists particularly in shallow depths.

The influence of water depth on the downshift of the spectral peak during evolution

time 0 ~ 150Tp for the wavefields with - = 20' is shown in figure 6-13. A sudden and

significant reduction in spectral peak downshift is observed as water depth becomes

shallow.

6.4.2 Generation of long waves in finite water depth

As observed in figure 6-11 and 6-12, a significant energy is transferred to the low

wavenumber region as the water depth decreases, leading to the generation of very

long waves in nearshore areas. This is a result of second-order bound waves or triad

wave-wave interactions, which are stronger with shallower depth. Proper prediction

of such long waves is of particular importance in the designing of moorings of floating

marine facilities in nearshore areas. The zoomed-in plots of the omnidirectional wave

spectrum of long waves are shown in figure 6-14. The long waves are generated in

wavefields as the water depth reduces. The energy transfer to long waves is more

significant in the case - 20' in comparison with the results observed in the case

8= 800 .
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Figure 6-12: Evolution of omnidirectional spectra S(k) of wavefields
different water depths. p = inf, Deep water (-); p=2.82, h=100 m (
h=50 m (- - -); p=t-1. 07, h=30 m ( )
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Figure 6-13: Downshift of the spectral peak as function of scaled water depth P = k~h
for wavefields with E = 200.

6.5 Rogue waves in finite water depth

Figure 6-15 shows the temporal variation of number probability of rogue waves PN

defined in Chapter 5 for wavefields with a range of water depths. For both of the

spreading angles considered, the occurrence probability of rogue waves decreases as

water depth decreases. In small spreading angle case, for water depth A >1.363, the

rogue wave occurrence is greatly enhanced in comparison with Rayleigh distribution,

which is consistent with what we observe in the deep water case in Chapter 5. As

water depth decrease, PN reduces significantly due to the diminishment of modula-

tional instability in shallow water. In shallow water depth, Rayleigh theory actually

overestimates the occurrence of rogue waves. For large spreading, the dependence on

water depth, although less considerable, remains. Figure 6-16 shows the temporal

variation of area probability of rogue waves PA for wavefields with different water

depths. PA has very similar variation trend with PN expect that the magnitude of

PA is about five times of the magnitude of PN. The influence of the water depth on

the rogue wave probability is summarized in figure 6-17 for wavefields with e = 20'.

We find a sudden and significant reduction in number and area probabilities of rogue

154

0.25F-1



30

25

20
E

15

10

(a) E = 20*, t = 50T,

30

25

20

15

10

(c) 8 = 20', t = 100T,

0.2 0 0

(e) 8= 20, t =150T,

C

C

(b) 8 = 80', t = 50T,

(d) 8 = 80', t = 10OT,

E

CO)

(f) 8= 80*,t=150T

Figure 6-14: Wave spectra in

spreading angle 8 = 200 ((a),
(-); p=2.82, h=100m ( )

the long wave region
(c), (e)) and 800 ((b),

in different water depths with
(d), (f)). t = inf, Deep water

155

30

25

20
E

15

10

0.8

; p=1.53, h=50 m (- -. -); p=1.07, h=30 m (- -- -).



waves as water depth reduces when kph < 1.363.
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Figure 6-15: Variation of probability of rogue wave occurrence scaled by Rayleigh
distribution PN in wavefields with spreading angle 8 = 20'. Deep water (Q); yA
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Figure 6-16: Variation of probability of rogue wave area PA/PN in wavefields with
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h = 50 m (+); y = 1.30, h = 40 m (<); y = 1.07, h = 30m (A). Results are scaled by
the Rayleigh distribution PR= 3 .3 5 x 10-4 for H/IH, > a, a=2.

156

10r



15

10

C9
E z
CL

5

0

0

0

0

0

x
0

x

1.07 1.53

60-

50-

40-

xCa
a-

30-

20-

10-

0

X
x

2.81

(a)

inf

0
0

0

0

o xx

1.07 1.53

xx

2.81

(b)

inf

Figure 6-17: Dependence of (a) P "/PR and (b) P"x/PR on the scaled water depth
kph for wavefields with e = 200. Results are scaled by the Rayleigh distribution

PR= 3 .3 5 x 10-4 for H/H, > a, a=2.

157



6.6 Summary and conclusions

We study the combined effects of finite water depth and directional spreading on the

spectral evolution, nonlinear wave statistics, and probability of rogue waves using

direct simulation approach SNOW. The results indicate considerable energy dissipa-

tion due to wave breaking for wavefields with shallow water depth. The finite water

depth has a significant influence on skewness and kurtosis for wavefields with small

spreading angle, specially for the scaled water depth t <1.363. Skewness increases

and kurtosis decreases as water depth reduces, which are consistent with Toffoli et al.

(2009). This suggests the second-order nonlinearity associated with bound waves in-

creases with water depth decreases, while the third-order nonlinearity dominated by

modulational instability decreases as the water depth decreases. We find significant

long waves are generated by second-order bound waves or triad wave-wave interac-

tions in finite water depth. Compared to deep water, the occurrence probability of

rogue waves is significantly reduced as the water becomes shallow. The threshold for

instability at t=1.363 has important consequences for wave modeling in intermediate

depth. The effect of water depth on the wave statistics and rogue wave occurrence

becomes less significant in wavefields with large directional spreading angle. In the

relatively shallow water region p <1.363, the kurtosis and occurrence probabilities of

rogue waves are slightly greater in the cases with broader spreading angles.

It is important to point out that, for all the computations done in this chapter,
the Ursell number, Ur = E/(kph)3 , is 0.006, 0.043 and 0.147 for h = 100 m, 50 m and

30 m, therefore the perturbation expansions in terms of the wave steepness in the

mathematical formulations of HOS described in Chapter 2, are valid. We consider

the case of flat bottom and shoaling process is not involved. If the water depth is

slowly varying, the wave statistics and rogue wave probability may slowly adjust to

different values in comparison with the ones obtained using the local depth assuming

flat bottom. The varying bathymetry is not addressed in present study.
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Chapter 7

Nonlinear wave statistics and

rogue wave occurrence in bimodal

wavefields

7.1 Introduction

The discussions in previous chapters are focused on the wave system with single spec-

tral peak; however, wave spectra with multi-peaks are also measured in the ocean.

Based on the data collected from the open North Sea, it is reported that the per-

centage of spectra with bimodal structure is about 20 ~ 25% (Guedes Soares, 1991).

Bimodal wavefield is described by a wave spectrum featuring two spectral peaks and

it can form when a wind-sea and a swell coexist. A wind-sea, generated by the local

wind, has relatively high peak frequency and is usually short-crested; a swell, generat-

ed from a storm far way, has relatively low peak frequency and is usually long-crested.

A recent ship accident study found that a large percentage of ship accidents occur in

bimodal seas (Toffoli et al., 2005).

In contrast to the wave statistics of single spectral peak wave system which are

studied relatively intensively, the bimodal sea statistics have not been fully investi-

gated. Unidirectional bimodal seas usually characterize in terms of relative significant
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wave height ratio (HR) and peak period separation (PS) between the two systems:

HR = ** PS= * (7.1)
Hsi' TS + Ti'

where H 8 and Hi are significant wave heights of wind-sea and swell respectively,

calculated as four times standard deviation of the surface elevation; T, and T are

peak periods of wind-sea and swell. The bimodal sea is called wind-sea dominant

(or swell dominant) if HR>1 (or <1). Using second-order representations, Rodriguez

et al. (2002) and Arena and Soares (2009) find that the presence of a second system can

lead to an increased or decreased probability of large crests in comparison with linear

Rayleigh theory, depending on whether the bimodal wavefield is wind-sea dominant

or swell dominant.

To obtain a complete understanding on the statistics of bimodal seas is challenging,

because the parameters in the bimodal system are double of the single system. Our

intention here is not to do a complete quantification on the bimodal sea statistics as

functions of spectral parameters, as we have done for the unimodal (single spectral

peak) system in Chapter 5. Our focus in this chapter is a preliminary study on how

a second swell-like system would affect the single wind sea system over the spatial

temporal scales considered in Chapter 5. In particular, we study if an additional

swell-like system will enhance the occurrence probability of large waves.

Several possible physical mechanisms responsible for enhanced occurrence proba-

bility of large waves in bimodal seas have been proposed. For unidirectional bimodal

seas with PS~ 0, that is, the two systems in bimodal sea have close periods and prop-

agate in the same direction, energy can be transferred from wind-sea to swell due to

resonance interactions (Masson, 1993). For directional bimodal seas with PS~0, a

second system with small oblique angle can result in an increase of the instability

growth rates and enlargement of the instability region (Onorato et al., 2006). When

the two systems have very different peak periods, PS~1, energy transfer from swell to

wind-sea due to nonlinear interactions occurs is expected to occur over large evolution

time. Over small time scale, the presence of swell may, however, still change the wave
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statistics through its modifications on the amplitudes and phases of wind sea. The

influence of swell on a directional wind-sea is assessed using swell-modified nonlinear

Schr6dinger equation for PS~ 1 (Gramstad and Trulsen, 2010). For short-crested

wavefields, a second wave system can generally lead to a small increase (5%~10%) in

probability of large crests except for the case in which the propagation direction of

swell is orthogonal to the direction of wind-sea. For wavefields with small spreading

angles, the influence of a second wave system is much less significant (Gramstad and

Trulsen, 2010). To our knowledge, a comprehensive validation of the swell-modified

nonlinear Schr6dinger equation has not been performed by comparing with experi-

ments or other numerical models.

In this preliminary study, we study the spectral evolution, nonlinear statistics

and occurrence probability of rogue waves for swell-modulated wind-sea using direct

simulations of nonlinear large-scale bimodal wavefields (SNOW). In particular, we are

interested in the effect of swell on the modulational instability related to the wind-sea.

We focus on the spatial and temporal scales relevant to the modulational instability

of the wind-sea (or high-frequency) system: L/AS, T/T, = O(E-2), where A, and T,

are wavelength and period of the wave at the spectral peak of wind-sea system. E is

the steepness of wind sea, E=H,k,/2, where H, = 4o, (o-, is the standard deviation

of the surface elevation of wind sea) and k, is the peak wavenumber of the wind sea.

7.2 Initial bimodal wavefield

7.2.1 Physical and numerical parameters

The physical parameters required to describe a bimodal wavefields are summarized

in Table 7.1.

Although SNOW does not have restrictions on the specific shape of the bimodal

spectrum, in this preliminary study, we study the cases in which the peak periods of

the wind sea and swell are relatively close, that is, the peak period separation PS is

relatively small. We investigate the influences of different aperture angles (#), the
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Table 7.1: Input spectral parameters for the bimodal sea

Swell system H 1 : Significant wave height
T: Period
k,: Peak wave number
w1 : Peak wave frequency
'ye: Peak enhancement parameter
(9: Spreading angle of swell

Wind-sea system H,, : Significant wave height
T,: Period
k,: Peak wave number
wS: Peak wave frequency
7, : Peak enhancement parameter
E8: Spreading angle of swell

Bimodal # Bimodal aperture angle
PS (Ti -TS)/(TS+T i )
HR H 8 jH,91

relative significant wave height ratio HR, and the spreading angle of wind-sea E).

We consider the computational domain L xL, and evolution time T, with L=

LY = 128A, and T/T,=150, leading to a physically domain 30 km in each direction

for a typical spectral peak period T,=10s. A uniform grid N xNy = 4096x4096 is

applied, which gives a spatial resolution of Ax= Ay ~7rm for (Tp=10 s) and a spec-

tral resolution of Akx=Aky=k,/32. For the time integration, a constant time step

of At=Tp/32 is used To capture nonlinear wave effects including quartet and quintet

resonant interactions, we use the order of nonlinearity M = 4 in all SNOW com-

putations. At the initial stage of the SNOW simulations, the free-surface boundary

conditions are smoothly transitioned in time from linear to nonlinear for minimiz-

ing the numerical standing wave effect associated with the use of the linear initial

conditions (Dommermuth, 2000).

7.2.2 Initial bimodal spectrum

The initial bimodal wavefield is composed of two JONSWAP spectra, one describes

the high-frequency wind sea and the other describes the low-frequency swell. The
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unimodal JONSWAP spectrum has a form

S(w) = ,9 exp -" )- p[ 2 , (7.2)
W5 [ 4 op I

where w is the wave frequency, w, is the peak wave frequency, a, is the Phillips

parameter, 7y is the peak enhancement factor specifying the spectral bandwidth, and

or=O.07 for w < w,; ao=0.09 for w > wp.

The two-peak spectrum can be described by nine independent parameters, eight of

which describe the significant wave height (H,), peak period (Tp), peak enhancement

parameter (-y) and spreading angle (8) of each wave system. The ninth parameter

describes the aperture angle # between the propagation directions of the two wave

systems. An example of bimodal spectrum TP(k, 0) and its relative one-dimensional

omnidirectional spectrum are shown in figure 7-1.
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0 0.05 0.1 0.15 0.2 0.2,
Iki

(a) (b)

Figure 7-1: (a) Example initial k-0 spectrum of a bimodal sea; (b) Omni-spectrum of
the bimodal sea. Wind-sea (H,,=5.5 m, T,=9.5 s, 7,=6, 91 =60'); Swell(Hi=4m,
Tz11.5s, rn= 10, 0 1=2 0 ') with aperture angle -=75'.

In this study, we focus on the influence of three bimodal spectral parameters on

the spectral change, nonlinear statistics, and occurrence probabilities of rogue waves

of the swell-modulated wind-sea. Our investigations are based on SNOW simulations

of three scenarios:
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Table 7.2: Parameter values for bimodal wavefield scenarios.

s
wi
bi

Scenario A: effect of aperture angle
HS (m) T, (s) 1 0e(o)

well 1.2 6 10 20
nd-sea 1.1 4 6 30
nodal #=200, 40', 600, 800, 90 , 1000

swell
wind-sea
wind-sea

bimoda

swell
wind-sea
wind-sea
wind-sea

bimoda

Scenario B: effect of HR
Hs (m) Tn(s) 1

1.2 6 10
I 1.1 4 6
II 1.5 4 6

l3=400, 900

Scenario C: effect of E8,
H. (m) T, (s)

1.2 6
I 1.1 4
II 1.1 4
III 1.1 4
l 3=40

1Y
10
6
6
6

E(o)
20
30
30

e(o)
20
20
30
80

Scenario A: Effect of aperture angle #;
Scenario B: Effect of relative significant wave height ratio HR;

Scenario C: Effect of spreading angle of wind sea E8,.

The initial input spectral parameters for these three scenarios are specified in Ta-

ble 7.2.

7.3 Effect of the aperture angle between two wave

systems

In this section, we study the influence of the aperture angle /, which is the angle

between the dominant propagation directions of two wave systems, on the evolution

of nonlinear bimodal wavefields. The input parameter values are described in sce-

nario A in Table 7.2. The bimodal wavefields are composed of identical wind sea and
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swell spectra with varying aperture angle p. The relative significant wave height ratio

HR=0.92~1 and the peak period separation PS=0.2. For unidirectional wavefields, a

measure of the importance of modulational instability is the Benjamin-Feir index (B-

FI) (described in Chapter 5): BFIJE/(Ak/kp) > I/v/5 (Janssen, 2003). The spectral

bandwidth Ak is calculated as the half width at half maximum of the wavenumber

spectrum. The corresponding values of BFI are equal to 0.93 and 0.52 for the wind

sea and swell respectively.

7.3.1 Omnidirectional spectrum

Figure 7-2 shows the evolution of the omnidirectional spectra (described in Chapter 3

@3.3.2) of bimodal seas described in scenario A. For all the bimodal seas, we find

considerable spectral peak downshift of the wind-sea system and energy loss in the

large wavenumber region due to wave breaking. The peak downshift of wind-sea is

calculated as Ak/k, where k, is the initial peak wavenumber of the wind sea and

Ak = k,-k,(t) (k,(t) is the peak wavenumber at time t). Figure 7-3 shows the spectral

downshift Ak/k, at time t = 50T, as a function of aperture angle 0. For comparison,

the results from unimodal wind sea is displayed. We find that a presence of swell

in general leads to an enhanced spectral peak downshift of the wind sea. For small

aperture angles, the spectral downshift is enhanced considerably. The downshift Ak

decreases as the aperture angle 0 increases. For large aperture angles, the influence

of swell on Ak is much less significant. The enhanced spectral peak downshift for

small # is an indication of a more significant energy transfer around the spectral peak

of the wind sea.

7.3.2 Skewness and kurtosis

Skewness, defined as Skew (rj3 ) /) 3/2, measures the asymmetry of one distribu-

tion. Kurtosis, defined as Kur = (i 4 )/(7) 2 , describes the peakness of one distri-

bution. Skewness and kurtosis of bimodal wavefields composed of a monochromatic

swell and random short waves are studied in Gramstad and Trulsen (2010) with a
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Figure 7-2: Evolution of omnidirectional spectrum of bimodal wavefields in scenario
A. # = 200 (-); 40 (- - -); 60 ( ); 90* (---); 1000 ( ); unimodal wind sea
initial bimodal spectrum (- - -).
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Figure 7-3: Influence of bimodal aperture angle # on the downshift of wind-sea spec-
tral peak at time t = 50T,. The unimodal wind sea is labeled as 0 = 00.

peak period separation HR~1. Up to third-order wave nonlinearity, they find that

the swell has no contribution to skewness and has only Q(E3) (E ka) contribution

to kurtosis.

Figure 7-4 shows the temporal variation of skewness for bimodal wavefields with

different aperture angles. For all the bimodal cases, skewness quickly increases from

its initial value (Skew~0) to a quasi-steady value over a short time scale t/T, ~ (E-1).

Figure 7-5 shows the influence of 0 on the mean skewness, denoted as (skewness),

which is defined as the mean of the skewness over time 0 < t/T, <;100. We find

a presence of swell in general leads to a reduction in skewness in comparison with

the mean skewness in uni-modal wind sea. This suggests that the wave profiles in

bimodal wavefields in general are less skewed than the uni-modal wind-sea waves.

The mean skewness increases as the aperture angle decreases. The smallest value

of (skewness) is found for #=90'.
Figure 7-6 shows the temporal variation of kurtosis for bimodal wavefields with

different aperture angles. For short evolution time, kurtosis increases in a similar

fashion with it does in uni-modal case and the value of kurtosis decreases as the aper-

ture angle increases. This is because over short time, modulational instability plays
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Figure 7-5: Influence of aperture angle 3 on the mean skewness (skewness) of bimodal
wavefields in scenario A. The results of wind-sea only system is recorded as # = 0'.
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a dominant role in wave dynamics and a presence swell leads to a broader effective

directional spreading. For relatively longer time evolution, unlike the variation of kur-

tosis in uni-modal wind sea, kurtosis does not decrease after reaching its maximum

value in bimodal wavefields, instead, it slowly increases to a quasi-stationary value.

We define the maximum kurtosis, attained during the entire SNOW simulation

(up to t/Tp=100), as well as the average value of kurtosis, Kur+, obtained over the

quasi-steady phase of the SNOW evolution (60< t/T, 100). Figure 7-7 shows

Kurm' and Kur+ as functions of aperture angle #. Kurm' in bimodal seas is slightly

smaller than its value in uni-modal wind sea except for the case with # - 90', where

a great reduction of Kurm" is observed (figure 7-7(a)). Figure 7-7(b) shows Kur+ as

a function of /. In contrast to Kurm, Kur+ is greater in bimodal wavefields except

for the case with #3 = 900. A great reduction of Kur+ is found again for / = 900.

3.2

3.15

(0
0f

T

Figure 7-6: Temporal variation
200 (o); 400 (A); 600 (v); 900 (

of kurtosis for bimodal wavefields in scenario A. /3
); 1000 (x ); unimodal wind sea (.).

7.3.3 Exceeding probability of large crests

Figure 7-8 shows the exceeding probability of large crests for the bimodal seas in

scenario A. The Rayleigh and second-order predictions are plotted for comparisons.
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Figure 7-7: The influence of aperture angle 3 on (a) Kur" and (b) Kur+ for bimodal
wavefields described in scenario A. The unimodal wind sea is labeled as 3 = 00.

At short time scale (t = 20T,), the probability of large crests in bimodal wavefields

is smaller than the value in the unimodal wind sea (figure 7-8(a)). This might be

because over short time the modulational instability is important and large crests are

greatly enhanced in single wind sea. For larger time (t > 20T,) when the modulational

instability becomes less important, the probabilities of large crests in bimodal seas

are higher than the large crest probability in single wind sea, except for the case

with # = 900. In the bimodal case with 3 = 900, the exceeding probability of

large crests is close to the one in unimodal wind sea. For all the cases considered,

Rayleigh distribution underestimates the probability of large crests. For most of the

bimodal seas considered, the second-order theory (Tayfun, 1980) underestimates the

occurrence of large crests, except for the case # 90*, where the crest distribution is

found to be close to second-order theory.

Figure 7-9 plots the exceeding probability of large crests in bimodal seas, scaled

by the corresponding value in unimodal wind sea, as a function of aperture angle

/. We find that the influence of swell on the crest probability of wind sea is not

monotonic. The probability of large crests can increase or decrease when a swell is

present, but an inclusion of swell in general leads to an enhanced probability of large
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Figure 7-8: Exceeding probability of large crests for bimodal wavefields in scenario
A. # 200 (); 400 (A); 600 (V); 900 ( ); 100' ( x); unimodal wind sea (0). Rayleigh
theory (-); second-order theory (Tayfun, 1980) --- -)
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crests. The probability of large crests r7c > 4.8- is increased by 150% in bimodal

wavefields (figure 7-9(b)). Consistent with previous findings, the probability of large

crests is least enhanced for the bimodal wavefield with # = 900.
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p

(a)
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2.5
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1.5
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0.5k
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Figure 7-9: Temporal variation of exceeding probability of large crests in bimodal seas
in scenario A, P(qc ; a-), scaled by the values in unimodal wind sea. (a) a =4.6;
(b) a =4.8. #= 200 (Ei); 400 (A); 600 (V); 900 ( ); 1000 (x)

7.3.4 Area probability of rogue waves

In this subsection, we study here the occurrence probability of rogue waves in swell-

modulated wind sea described in scenario A. We have discussed in Chapter 5 that

the occurrence of rogue waves can be measured by the number probability (PN) and

area probability (PA). For bimodal wavefields, it is unclear how to calculate the total

number of waves, the area probability of rogue waves PA, therefore, is particularly

useful in this case. Figure 7-10 shows the area probability in bimodal seas is in general

greater than its value in wind sea. The inclusion of a swell can lead to an increase

of PA up to 5 times comparing to PA in unimodal wind sea. The area probability of

rogue waves for bimodal seas with # = 900 is close to the value in unimodal wind sea.
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Figure 7-10: Evolution of area probability of rogue waves PA scaled by the value
in unimodal wind sea for bimodal wavefields in scenario A. # = 20 (o); 40 (A);

600 (1); 800 (-); 900( ) 1000( )

7.4 Effect of relative significant wave height ratio

In this section, we study the effect of relative significant wave height ratio HR on the

nonlinear evolution of bimodal wavefields described in Table 7.2 scenario B. The swell

component in the bimodal wavefields considered in this section is identical. The peak

period separation PS=0.2. The wind-sea components have two different significant

wave heights H, One bimodal wavefield is swell-dominant with HR=0.92<1; and

one is wind-sea dominant HR=1.25>1. The values of BFI calculated from the wind

seas are 0.93 and 1.26 for the swell-dominant and wind-sea dominant bimodal seas

respectively.

7.4.1 Omnidirectional spectrum

Figure 7-11 shows the nonlinear evolution of the omnidirectional spectrum of bi-

modal wavefields described in scenario B. Considerable spectral peak downshifting is

observed for all cases considered and it is more significant in the wind-sea dominant
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(HR> 1) case. This is somewhat expected because the spectral peak downshift is

caused by nonlinear wave interaction. For the same spreading angle E), a higher BFI

value of the wind sea suggests a more significant wave nonlinearity of the wavefield.

Figure 7-12 plots the peak wave downshift of the wind sea for the swell-dominant

and wind-sea dominant bimodal wavefields with different aperture angles #. A more

rapid downshift is observed in the wind-sea dominant case HR=1.25. In the wind-sea

dominant case, after the rapid downshift, the omnidirectional spectra become quasi-

stationary. For the swell-dominant bimodal wavefield, a slowly continuous spectral

downshift is observed. For given HR, the spectral downshift is smaller for # = 900,
consistent with §7.3.1.

7.4.2 Skewness and kurtosis

Figure 7-13 shows the influence of HR on the skewness of bimodal wavefields. Consis-

tent with the previous discussions, wave profiles are in general less skewed in bimodal

wavefields. In comparison with the swell-dominant case, the influence of aperture an-

gle is less significant in the wind-sea dominant bimodal sea. For both swell-dominant

and wind-sea dominant cases, the skewness is minimized when # = 90'.

Figure 7-14 shows the variation of kurtosis for bimodal wavefields with different

HR. For swell-dominant bimodal seas, as we discussed in §7.3.2, Kurma is smaller

and Kur+ is greater in bimodal seas with # not equal to 900. For wind-sea dominant

bimodal wavefields, both Kurmax and Kur+ are smaller in bimodal seas. For aperture

angle # 90', a significant reduction of kurtosis is again observed for both values of

HR.

7.4.3 Exceeding probability of large crests

Figure 7-15 shows the exceeding probability of large crests for bimodal wavefields in

scenario B. The influence of swell on the probability of large crests are not monotonic.

In the wind-sea dominant bimodal wavefields, the probability of large crests is in

general smaller in bimodal wavefields than its value in wind sea. In this case, Tayfun
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Figure 7-12: The spectral peak downshift Ak/k, for bimodal wavefields with different
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Figure 7-13: Influence of relative significant wave height HR on skewness for bimodal
wavefields in scenario B. HR=1.25: Wind sea (0) #=40' (A), #=900 (x); HR=0.92:
Wind sea (0) #=400 (A), #=900 (x).
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Figure 7-14: Influence of relative significant wave height HR on kurtosis for bimodal

wavefields in scenario B. HR-1.25: Wind sea (Q) #=400 (A), #=900 (x); HR=0.92:

Wind sea (0) #=400 (A), #=90' (x).

second-order theory (Tayfun, 1980) underestimates the large crest probability in wind

sea, but overestimates large crest probability in bimodal seas. This is because in the

wind-dominant bimodal case considered, modulational instability plays a major role

in the formation of large crests. The presence of swell leads to a broader effective

spreading angle, leading to a similar or reduced probability of large crests. For the

swell-dominant case, inclusion of a swell generally leads to an increase in large crest

occurrence. This could be because the high-order nonlinearity is increased due to the

inclusion of a strong swell (as seen in Figure 7-14). The influence of HR is seen more

clearly in Figure 7-16, where the occurrence of large crests in bimodal seas scaled by

the values in unimodal wind sea is plotted. A great reduction of large crest occurrence

is observed for bimodal seas with # = 900 regardless HR.

7.4.4 Area probability of rogue waves

Figure 7-17 shows the influence of relative significant wave height HR on the area

probability of rogue waves. The area probability of large waves in bimodal seas,

scaled by the value in unimodal wind sea, is plotted. For aperture angle # = 40', for

177



10

10 '"t 10

10 10.4

3.5 4 4.5 5 3.5 4 4.5 5
i C/a

(a) t =20T, (b) t= 50T

10 10

10 10

10~ 4 10-413

3.5 4 4.5 5 3.5 4 4.5 5
T /C

(c) t = 70T, (d) t =100T,

Figure 7-15: Exceeding probability of large crests of bimodal wavefields in scenario B.
HR=1.25: #=40 (A), #3=90 (0) Wind sea (0); Tayfun second-order theory (-)
HR=0.92: #=40 (A), #=90 (EZ); unimodal wind sea (0). Linear Rayleigh theory
(-), Tayfun second-order theory (--- -).
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seas Pg(rle > ao) scaled by the values in unimodal wind sea P(r/c > au) for bimodal
wavefields in scenario B. (a) a =4.6; (b) a =4.8. HR=1.25: 3=400 (A), #=900 (x);

HR=0.92: #=400 (A), #-900 (x).

wind-dominant bimodal sea (HR> 1), the area probability of rogue waves in bimodal

seas is slightly enhanced relative to its value in unimodal wind sea; for swell-dominant

bimodal sea (HR< 1), the area probability of rogue waves in bimodal seas is enhanced

up to four times of its value in unimodal wind sea. For aperture angle # = 900, the

area probability of rogue waves are comparable to the value in unimodal wind sea in

both swell-dominant and wind-sea dominant bimodal seas.

7.5 Effect of the spreading angle of wind sea

In this section, we study the influence of the spreading angle of wind sea E, on the

evolution of nonlinear bimodal wavefields described in Table 7.2 scenario C. The swell

component of the bimodal seas is identical for all the cases. The wind-sea components

in the bimodal seas have same frequency spectrum with varying spreading angle E).

All the bimodal seas have relative significant wave height HR=0.92 and aperture

angle # = 400.
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Figure 7-17: Influence of relative significant wave height HR on area probability of
rogue waves H/H, > a for bimodal wavefields in scenario B. (a) PA(H/H, > 1.9);
(b) PA(H/H, _ 2.0) scaled by the values in relevant unimodal wind sea. HR=1.25:
#=40' (A), #3=900 ( x); HR=0.92: #=400 (A), #=900 ( x).

7.5.1 Omnidirectional spectrum

Figure 7-18 shows the evolution of omnidirectional spectrum of bimodal seas in s-

cenario C. Considerable spectral peak downshift is again observed and the spectral

downshift as a function of spreading angle of wind sea 8, is seen in figure 7-19.

The downshift increases as E, decreases, suggesting more significant nonlinear wave

interactions in bimodal seas having small spreading wind-sea component, which is

somewhat expected.

7.5.2 Skewness and kurtosis

Figure 7-20 shows the temporal variation of skewness for bimodal wavefields in s-

cenario C. We observe that the value of skewness is nearly independent of E, with

slightly decreasing trend with increasing E8,. This is consistent with what we observe

in unimodal wind sea (see figure 4-4 in Chapter 4).

Figure 7-21 shows the temporal variation of kurtosis for bimodal wavefields with

different wind-sea spreading angles e,. The variation pattern of kurtosis is similar for
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Figure 7-18: Evolution of omnidirectional spectra of bimodal wavefields in scenario
B. 08=20' (-), 300 ( - ) and 80' (- -) -
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Figure 7-20: Temporal variation of skewness for bimodal wavefields in scenario B.
O8 =200 (o), 300 (A), 800 (x).
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different wind-sea spreading angle 0. The value of kurtosis increases from its initial

value Kur~3 to a quasi-stationary value Kur+ and Kur+ decreases with increasing

(). This is not surprising because the value of kurtosis depends on the importance of

modulational instability. The modulational instability diminishes in broad spreading

seas, leading to a smaller value of kurtosis.

3.25

3.2

.tn 3.15
0

32 3.1

3.05

2095L
0 20 40 60 80

t/T
100

Figure 7-21:

8 = 200 ((
Temporal variation of kurtosis for bimodal wavefields in scenario B.

); 300 (A); 800 ( ).

7.5.3 Exceeding probability of crests

Figure 7-22 shows the effect of spreading angle of wind sea on the exceeding proba-

bility of large crests for bimodal seas described in scenario C. At the time scale when

the modulational instability is relevant, the probability of large crests reduces with

increasing 0-. The dependence on 80, however, is less significant at large time. This

is again consistent with the observations in unimodal wind sea.

7.5.4 Area probability of rogue waves

Figure 7-23 shows the effect of 8, on the area probability of rogue waves with H/H, >

a, scaled by the Rayleigh distribution, in bimodal seas described in scenario C. A clear
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Figure 7-22: Exceeding probability
C. es = 20* (C); 30* (A); 80O (x ).
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of large crests for bimodal wavefields in scenario
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decreasing trend with increasing 8, is observed for both a = 1.9 and a = 2.0. This

is because the modulational instability plays an important role in the formation of

large waves. A smaller 8, leads a more significant modulational instability and thus

higher occurrence probability of large waves.

40 40

35- 35-

30- 30

25, 25-

20 080 10 20

10 10- ,

0 20 40 60 80 100 0 20 40 60 80 100

P P

(a) (b)

Figure 7-23: Temporal variation of PA,a for bimodal wavefields in scenario B. (a)
PA,1.9 and (b) PA,2.0 for bimodal wavefields 0, = 20' (V); 300 (0); 800 ().

7.6 Summary and conclusions

The nonlinear wave statistics and rogue wave occurrence of bimodal wavefields are

studied using direct simulation approach over the space and time scale relevant to

modulational instability, L/4, T/IT = O(E-2). This preliminary study is focused on

the effects of aperture angle, relative significant wave height, and spreading angle of

the wind sea. Our conclusions are summarized as following:

1. For bimodal seas composed of a swell and wind sea with comparable significant

wave height (HR=0.92), an inclusion of swell in general leads to an enhanced

occurrence probability of large waves, except for one special case where the

aperture angle # = 900. The area probability of rogue waves in bimodal seas

can be enhanced up to five times of its value in unimodal wind seas. For

bimodal wavefields with # = 90', the swell system has a minimal influence oi

the occurrence of large waves.
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2. The influence of the swell on the bimodal seas reduces as the relative significant

wave height increases because the modulational instability related to the wind

sea component plays a dominant role in the wavefield evolution for wind-sea

dominant cases.

3. The deviation of nonlinear wave statistics from Gaussian statistics become less

significant as the spreading angle of wind sea increases. Meanwhile, the area

probability of large waves also reduces as wind-sea spreading angle increases.

In this preliminary study, we have chosen the bimodal cases in which the modu-

lational instability related to the wind sea plays an important role in the nonlinear

wavefield evolution. Our investigation reveals the possible influences of a presence of

swell on the modulational instability. We find that the effect of swell is not monotonic.

With a presence of swell, the nonlinear statistics and occurrence probability of rogue

wave can either increase or decrease. At short evolution time when the modulational

instability is relevant, the nonlinear statistics and large wave occurrence in bimodal

seas decrease in comparison with their corresponding values in unimodal wind sea.

At large evolution time when the modulational instability is less important, the swell

in general leads to an enhanced nonlinear wave statistics and occurrence of rogue

waves. To obtain comprehensive knowledge on the influence of swell on the bimodal

wavefields, effect of other spectral parameters, including peak period separation PS,
spectral bandwidths of wind sea and swell, to name a few, should be examined.
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Chapter 8

Rogue wave shapes in deep water

8.1 Introduction

8.1.1 Observation of rogue waves of different shapes

An accurate description of the rogue wave shapes is essential for understanding the

extreme loads and impacts of rogue waves on marine structures. Most of instrumen-

tal records of rogue waves are in time series obtained from buoys or other on-site

wave gauges. In these measurements, a cross-cut of the rogue wave profile from

certain direction can be obtained; however, the transverse information and three-

dimensional structures of the large waves are missing. The three-dimensional records

of rogue wave profiles are recently available from airborne spaceborne synthetic aper-

ture radar (SAR) measurements (Lehner et al., 2002; Rosenthal et al., 2003); however,

the measurement techniques have not been well validated. Arguments arises on the

possibility of using SAR to obtain reliable measurements of waves, because both the

wave motion and SAR imaging mechanism are strongly nonlinear Janssen and Alpers

(2006).

Personal descriptions of experiencing unexpected large waves, which provide qual-

itatively information on the three-dimensional wave kinematics, are found useful.

Many of these stories and photos can be found from review papers (Kharif and Peli-

novsky, 2003; Dysthe et al., 2008) and internet. Rogue waves with different shapes
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have been reported (Kharif et al., 2009). One of the most impressive kinds of rogue

waves is a single extremely high wave with a long crest, usually referred as a wall of

water. The cruise ship Queen Elizabeth II met such a wave with a height of 30 meter

in the North Atlantic, in February 1995. The captain described it as "a great wall

of water, it looked as if we were going into the White Cliffs of Dover." (ESA, 2004).

Rogue waves in the form of wave groups containing two or three successive large waves

have also been documented (Moreau, 2004; Lawton, 2001). The different geometric

characteristics of rogue waves may be reflections of different generation mechanisms

and different underlying different environmental conditions. A visual classification of

rogue wave shapes is proposed in Rosenthal and Lehner (2005):

1. Singular wave tower: very localized large wave;

2. Three sisters: a large wave group containing three successive large waves;
3. White wall: extreme wave group with a configuration similar to a ship wake.

8.1.2 Statistical model for extreme wave profile

The statistical description of average surface shape around an extreme crest for linear

Gaussian wavefield is shown to be proportional to the auto-covariance function of the

record (Lindgren, 1970; Boccotti, 1983):

r7L(X) oc p(x)/p(0), (8.1)

where p(x) is the auto-covariance function of the wave elevation:

p(x) = 'IF(k) cos(k -x) dk, (8.2)

for a wave spectrum T (k).

SNOW simulations obtain not only the probability of rogue waves, but also de-

tailed information of the geometry and kinematics of such waves. Figure 8-1 shows

average rogue wave profiles obtained from SNOW simulated wavefield and the rele-

vant auto-covariance function. We observe that, in comparison with auto-covariance
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function, the crest length of the average rogue wave is larger and the crest is also

steeper.

0. 0
0 0.5 X 1 1.5 0 0.5 X/

(a) (b)

Figure 8-1: (a) Auto-covariance function. (b) average profile of
2.0 in wavefield H,=12 in, T,=12 s, y = 5 and 8 = 30'.

1 1.5

rogue waves H/H, ~

In this chapter, we use a large ensemble of rogue wave events obtained from MIT-

Wave dataset to investigate their geometric features, including wave and crest length,

area size and group structure, and their dependence on spectral parameters. We

study the geometric structures and their dependence on spectral parameters using

proper orthogonal decomposition (POD). For the rogue wave group containing only

one wave, their profiles can be well represented using only a few POD modes.

8.2 Geometric characteristics of rogue waves

Rogue wave profiles reflect certain characteristics of the underlying wavefield. Figure

8-2 shows the geometric structures of typical rogue waves from wavefields with a range

of initial spreading angles. As expected, the crest length of rogue waves decreases
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as the initial spreading angle increases. The typical rogue wave from wavefield with

small spreading angle (6 = 160) has very similar geometric features with the wall of

water.

0 16*0

15 0=40*

0 112
0

4501
01 6 =80*0

0 E)=120*0

3334

0 y/5

Figure 8-2: Rogue waves identified from simulated directional wavefields.

Once a rogue wave, in particular the crest and trough pair associated with H(;;

aH) (hereafter referred to as the "main" wave), is identified in a general directional

wavefield, we define the wavelength of the rogue wave Arogue as the distance between

the two adjacent zero up-crossing points along a line parallel to the dominant direction

containing the crest point xc. Similarly a crest length Crogue is defined as the distance

between two adjacent zero crossing points along a line perpendicular to the dominant

direction containing the crest point x. To characterize the rogue wave groups, that

is, the rogue wave is contained in a wave group of successive large waves, we repeat

§5.4 (Chapter 5) but now use a new "group" threshold H/H,=aG(< a, typically),

identifying all the R = RZ for this threshold value. For given a and aG, a rogue

wave group is identified if any of the RG overlaps and the union of the R)c contains a
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main wave satisfying H/H, ;,a. In this case, we say that this is a rogue wave group

of "n" waves (hereafter G,) if "n" overlapping R1's are involved. Note that this

definition/procedure is general for arbitrary directionally spread wavefields, and the

number "n" does not distinguish among the different configurations (or positions) of

RG in such groups.

8.2.1 Wave length of rogue waves

For the rogues waves identified in MIT-Wave (with a=2.0), figure 8-3 shows the aver-

age wave length of rogue waves over the evolution time 0 < t/T, ( 150 as a function

of spectral bandwidth (-y) for wavefields with a range of spreading angles. We observe

for the broad range of spreading angles considered, Arogue is comparable to the peak

wave length AP. This gives further support that the dominant mechanism is modula-

tional instability around the peak wavenumber over slowly-varying space/time. For

wavefields with broad band frequency spectrum (small -y), the average rogue wave

length Xrogue is slightly longer than Ap, specially for small spreading angle where

Arogue ~ 1.1A,. With increasing spectral bandwidth, the standard deviation of Arogue

increases. The dependence of Arogue on the spreading angle is rather subtle. There

is a tendency that Arogue is slightly greater in wavefields with large spreading angles,

although the difference is much smaller than the standard deviation.

8.2.2 Crest length of rogue waves

The dependence of crest length of rogue waves on the directional spreading of the

underlying wavefield is visually obvious as seen in figure 8-2, where we observe the

crest length of the rogue waves decreases as the spreading angle increases. To quantify

the dependence of Crogue on spectral parameters, in figure 8-4 we plot the average crest

length of rogue waves Crogue over the evolution time 0 < t/T, ,150 relative to the

average crest length of the initial wavefield as a function of spreading angles. The
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6 8 10

Figure 8-3: Average rogue wave
wavefields E=0.14, e = 200 (0))
dard deviation.

length Arogue as function of
40' (F), 80* ( ). The error

spectral bandwidth for
bars indicate one stan-

average crest length C, of the wavefield is estimated as

C = Ay/2,

where AY is the average wavelength in the y direction:

Ay = 27r/(k )1/2, and k ) Jk , T(k) dk/ J1T(k) dk.

In figure 8-4 we observe, for wavefields with small spreading angles, Grogue/C increases

with increasing e. As the spreading angle becomes large, Crogue/Cy is nearly constant

and independent of spreading angles. For a given spreading angle, Crogue/Cy increases

as spectral bandwidth increases. For short-crested wavefields with e ;>600, the aver-

age crest length is considerably greater than the average crest length (Orogue/Cy >2).
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Figure 8-4: Average rogue wave crest length Crogue relative to the average crest length

C, of the initial wavefield as function of spreading angle E for wavefields E=0.14,

-y=l (>); 5 (x); 10 (O). Average crest length Cy=A/2=7r/(k )1/2. The error bars

indicate one standard deviation.

8.2.3 Area size of rogue waves

Figure 8-5 shows the average size of rogue waves arogue, scaled by the average wave size

of the initial wavefield 5o, as a function of spreading angle and spectral bandwidth.

In the range of relatively small E <~ 600, arogue/do increases as - increases. For

larger 8, arogue/do slowly decreases as E increases. For a given e, arogue/ao increases

as the spectral bandwidth increases (-y decreases).

As wavefield evolves, the average size of waves a varies with time. Figure 8-6 shows

drogue/a, which is the average of arogue/a(t) over time 0 < t <150Tp, as a function of

8 and -y. Comparing figure 8-5 and figure 8-6, arogue/a behaves similarly to arogue/ao

but with a larger value. The large standard deviation in the range of small e is

associated with the significant change of the underlying spectrum due to the effect of

modulational instability.

8.2.4 Grouping of rogue waves

For given a = 2 and ac = 1.8, we catalogue the rogue wave groups G, obtained

from MIT-Wave. Figure 8-7 shows the percentages of G 2 and G 3 rogue wave groups,
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20 40 60
0( 0 )

80 100 120

Figure 8-5: The average rogue wave area arogue scaled by the average area of initial
wavefields do as a function of spreading angle, for directional wavefields with E=0.14,
y= 1 (), 5(0)) and 10 (0). d = A.A,/v 2. The error bars indicate one standard
deviation during the evolution time considered.

20 40 60
0( 0 )

80 100 120

Figure 8-6: The average rogue wave area arogue relative to the average wave area of
the wavefields as a function of spreading angle, for directional wavefields with -=O. 14,
=1(x), 5 (0)) and 10 (0). d = AAy/v2w. The error bars indicate one standard

deviation during the evolution time considered.
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Figure 8-7: Percentage of rogue wave groups, G2% and G3% as functions of spreading
angle for wavefields with steepness E= 0.14, -y 1 (x), 5(>), 10 (0). G2: (red); G 3:
(blue). Results are obtained using aG=1. 8 and a=2.

denoted as G2% and G3%, among the rogue wave populations. For a given spectral

bandwidth, both G2% and G3% decrease with increasing E for E <~ 60', while they

are nearly independent of e for larger . For a fixed -, both G2% and G3% increase

as -y increases. These observations are consistent with the effect of modulational

instability on rogue wave development.

For G, rogue wave groups with general configurations, the length of the rogue wave

group is not well-defined. For a special configuration when the crest points xc of 'ZG

forming the rogue wave group lining in the dominant propagation of the underlying

wavefield, the group length Arogue is defined as the distance between the zero up-

crossing points of the last downwave and first upwave along a line parallel to the

dominant direction containing the crest point xc. Figure 8-8 shows the distribution

of the group lengths of this particular configuration. We find that the percentage of

Arogue ~2 or 3 increases as the spreading angle increases. Notice that this results are

obtained for wave groups with a particular configuration.
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Figure 8-8: Distribution of group length of rogue wave groups with crests lining in
the dominant direction of wavefields. (a) unidirectional; (b) E = 160; (c) e = 400;
(d) E = 600; (e) E = 800; (f) e = 1200.
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8.3 Analysis of rogue wave shapes using proper

orthogonal decomposition (POD)

8.3.1 POD of rogue wave shapes in unidirectional wavefields

A large number of rogue waves obtained for broad range of spectral parameters are

found to have surprisingly similar geometric features. To identify these salient fea-

tures and to see if these can be represented by relatively small number of parameters,

we analyze rogue wave surface profiles in MIT-Wave by applying the proper orthog-

onal decomposition (POD), which provides a statistical method to obtain a compact

representation of the data to extract the dominant structures.

The general analysis of rogue wave groups which contain large "n" waves involving

different possible configurations is complex. As a preliminary investigation, we focus

on the relatively simple case of G1, i.e., a single large (3D) wave satisfying H ; aH.

We first consider unidirectional waves and write the POD expansion of the rogue

wave:

M"

Trogue()/Hs = 7POD Z Cm mUm (1'; E, _y), 0 < < 1, (8.5)
m= 1

where ,=x/Ar, and A, is the length of the rogue wave defined as the distance between

the down crossing of the upwave trough and the up crossing of the downwave trough

around the rogue wave crest. In (8.5), Um(z; e, -y) is the mth POD mode for wavefields

with spectral parameters E and '; Cm is the coefficient of the mth POD mode, and

M the total mode number. Um, m=1, 2, ... , form orthogonal basis vectors that

characterize the ensemble of rogue wave shapes. The rogue wave profiles are selected

from SNOW simulations with time interval AT=10Tp. To compute Um, we typically

use 0(1000) rogue wave profiles from MIT-Wave (the difference in Um obtained using

a larger ensemble is less than 1%). Note that unlike the rogue wave probability, POD

shapes are not invariant if crest and trough are interchanged in above procedure. For

uniqueness of POD shapes, we have chosen to describe rogue waves in 'crest-centered'
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profile. To obtain POD shapes of rogue waves described in 'trough-centered' profile,

similar approaches can be applied.

Figure 8-9(a) shows the leading POD mode U1 of G1 rogue waves for unidirec-

tional wavefields with different spectral steepness E. We observe U1 has a sharp crest

and two shallow troughs, indicating the nonlinearity of the wave. U is asymmetric

with respect to the crest and the crest is skewed to the upwave trough (i.e., right

trough in the figure with wave propagation to right). The downwave trough is slight-

ly deeper than upwave trough, which suggests more rogue waves may be identified

if up-crossing approach is used in analyzing time series. This is consistent with the

observations in Pinho et al. (2004). With increasing steepness, U1 becomes more

asymmetric and skewed, suggesting more significant nonlinearity of the rogue waves.

This mode profile can be contrasted to the average profile around a local extreme

crest for linear Gaussian waves, which is proportional to the autocovariance function,

p(x)=fk cos(kx)J(k) dk/ fk 4'(k) dk, where '(k) is the wavenumber spectrum (Lind-

gren, 1970; Boccotti, 1983). In comparison with p(x), U1 has shallower upwave trough

and deeper downwave trough, while p(x) is symmetric with respect to the wave crest.

Figure 8-9(b) plots the profile of the higher order POD modes Um, m=2, 3, 4. Um

describe the perturbations of rogue wave profiles around the leading mode U1. Higher

POD modes are more oscillatory, describing perturbations with successively shorter

scales.

It is more interesting to distinguish the rogue waves with crest greater/less than

trough ("wall of water"/"deep hole") and name them as crest-dominant/trough-

dominant rogue waves. We find that crest-dominant rogue waves generally occur more

frequently than trough-dominant rogue waves. The first POD modes of crest/trough-

dominant rogue waves are shown in figure 8-10. For the trough-dominant rogue waves,

a trough-center profile is used. Similarly to figure 8-9(a), U1 becomes more asymmet-

ric and skewed for both crest and trough-dominant rogue waves as the wave steepness

increases.

Figure 8-11(a) shows the coefficients of POD modes C, for wavefields with a range

of spectral bandwidths. The magnitudes of the coefficients decrease rapidly and only
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Figure 8-9: (a) Ui(x) for unidirectional wavefields -y=6, E=0.07 (- x .); s=0.14 ( A -).

Autocovariance function p(x) (). (b) Um for unidirectional wavefields E=0.14, 7=6.

m=2 (-), m=3 (- -), m=4 (---). Waves propagate from left to right.
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Figure 8-10: Leading POD mode U1(x) for (a) crest-dominant rogue waves; (b)

trough-dominant rogue waves. Unidirectional wavefields -y=6 , 6=0.07 (. x -, 710 crest-

dominant and 290 trough-dominant rogue waves); E=0.14 (- A -, 914 crest-dominant

and 86 trough-dominant rogue waves). Waves propagate from left to right.
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Figure 8-11: (a) Coefficients of POD modes Cm, m = 1 ... 8, for unidirectional wave-

fields with -y=5, E=0.07 (0), 0.1 (0), 0.14 ( x). The error bars indicate one standard
deviation. (b) The average error of POD approximations AEPOD using M, POD
modes. M,=1 (<); 2 (x); 3( ), 4 (0).

the first mode has a non-zero mean. The standard deviation of the coefficients de-

creases for the higher modes. This suggests that the dominant geometry of the rogue

wave profile q/H, can be reasonably approximated using only U1 . The representation

error of POD is defined as AEPOD=lEPOD - ERl/ER, where ER,POD~f 77rogue,POD dx.

Figure 8-11(b) shows the average representation error of POD modes for wavefields

with a broad range of steepnesses. For relatively small steepness E <0.1, the errors are

within 20% using only U1. For wavefields with greater steepness, more POD modes

are needed to achieve a satisfied accuracy. The error decreases as more POD modes

are used. For a broad range of wavefield steepness, when M,=4 POD modes are used,

the mean representation error AEPOD is less than 5%. Using similar approach, the

POD modes of rogue wave groups containing two large waves (G 2 ) in unidirectional

wavefields can be obtained (shown in figure 8-12).

Examples of rogue wave groups, G1 and G 2 , and their POD representations are

shown in figure 8-13. We find that the rogue wave profiles can be approximated well

with only three POD modes.
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Figure 8-12:
fields -y - 6.

Leading POD modes of rogue waves of type G2 for unidirectional wave-

(a) Ui (x); (b) U2(x). E=0.07 (--- oE=0.14 (-).
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Figure 8-13: Examples of (a) single rogue wave (G1 );
two large waves (G2). Rogue wave (group) profile (
number of modes Mx=1 ( - ); Mx=2 ( - ); Mxz=3 (
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(b) rogue wave group containing

); POD approximations using
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8.3.2 POD of rogue wave shapes in directional wavefields

For directional wavefields, the POD representations of rogue waves 77rogue are written

in the form

My M.

G7rogue(X, Q)/Hs = POD(X, CmnVx,m(&)Vy,n(P), (8.6)
n mn

where & = x/A, and = y/Crogue; Vx,m(s), Vy,a(Q) are the POD modes in x and

y directions; and Mx and My are the number of POD modes in the two horizontal

directions.

There are several ways to calculate V,m and Vy,n in (8.6). One approach is to

assume that Vx,m(&) in (8.6) is given by (8.5), and focus on the transverse modulations

V,n(9). Another approach is to assume V 0=1, and apply inner product both sides

of (8.6) by Vy,o:

7POD Vy,o= (Cmn Vy,n - 1 Vm. (8.7)

Then V,m can be obtained by applying 1D POD on (8.7). We use Um(&) to denote the

1D POD calculated using the former method and Vx,m(&) to denote the 1D POD using

the latter method. Figure 8-14 shows the ID POD modes Vx,m in (8.7) calculated from

two approaches. The two approaches lead to ID POD modes with qualitatively similar

structures. We observe the leading order of Vx,m calculated from second approach is

considerably less asymmetric than the 1D POD modes from unidirectional wavefields

shown in figure 8-14(a). V, 1 () has deeper upwave trough and shallower downwave

trough, and the crest is less skewed in comparison with Ui (&). This suggests rogue

waves in the directional wavefields are less nonlinear than the unidirectional rogue

waves, which is consistent with the effect of directional spreading on the modulational

instability. Similar features are observed for the second mode as seen in figure 8-14(b).

The POD modes in the y direction, V>n, n =1, 2, 3, and 4 obtained from 0(200)

3D rogue waves are shown in figure 8-15 using the two approaches described above.

We observe the two approaches lead to very similar profiles for the longitudinal mod-

ulations. Vy,1, the leading order along-crest modulation (scaled by Crogue), is positive
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Figure 8-14: 1D POD modes using two approaches. (a) first mode U1 () (-);
V, 1(z)(-- -). (b) second mode. U2 (^) (-); V,,2 (z)(-- -) for wavefields H,=12m,
T,=13 sec, 7'=5, and 0=60 .

definite and approximately symmetric with respect to ye. The higher order transverse

POD modes Vy,n (n ;;2) describe successively shorter modulations with both positive

and negative values and are generally not symmetric (relative to yc).

To assess the assumptions inherent in (8.6), we can alternatively represent r7rogue

using 2D POD modes:

Mzy

r/rogue~z Q)H, = 77POD m " 1 Wm, E; 0,7,) (8.8)
M=1

where M, is the number of 2D POD modes and Wm( E, ; 0,7, ) is the mth 2D

POD mode for directional wavefields specified by E, y and 0. Figure 8-17 plots the

contours of Wm(J(, Q), m=1, 2, and 3.

Figure 8-17 plots the contours of W1 (&, y) as compared to U1 (X)V1 (y) from (8.6)

and (8.8) respectively. Qualitatively, W and U1 V1 are very similar; however W1 is

less asymmetric than U1 V1 in both the longitudinal and transverse directions. The

quantitative differences between W and U1 V1 (figure 8-17(c)) are mainly in the shal-

lower upwave and downwave troughs of U1 V1 relative to W 1, which are consistent with

the reduction effect of directional spreading on the nonlinearity of wavefields.

Figure 8-18 shows the coefficients of the leading POD modes in (8.8). Similar
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Figure 8-15: POD modes in y direction.
Vy, 4(y). Approach one (---); approach two
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Figure 8-16: POD modes of rogue wave profiles of type G1

E = 0.1, -y = 5 and 8 = 600 based on 200 samples. (a)

W3(2, 9).
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Figure 8-17: (a) Leading POD mode U1 (2)V1(Q) in (8.6); (b) W 1 (^, i) in (8.8); (c)

W1 (2, Q)-Ui(,)V 1 (9) for rogue waves in the directional wavefield -=0.1, -Y=5 and E)
60'. The POD modes are obtained based on a sample size of 200. Waves propagate

from left to right.
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to the case of unidirectional wavefields (figure 8-11(a)), the coefficient Cm decreas-

es rapidly and only the leading mode has a non-zero mean. Comparing with figure

8-11(a), the coefficients decrease less significantly comparing with the unidirection-

al case, which suggests for directional wavefields more POD modes are required to

archive a satisfied accuracy. Figure 8-19 shows the average accuracy of the POD

expressions of rogue waves for wavefields with different initial spreading angles. The

error of the POD representation decreases as the spreading angle increases. Over

the broad range of e, the average errors of POD representation using only the three

leading-order POD modes are less than 20%. As an example, figure 8-20 shows a

rogue wave and its POD representation using three POD modes.

1.5

1

E 0.5

0

-05
0 2 4 6 8 10

m

Figure 8-18: Coefficients Cm of leading POD modes of rogue waves in directional
wavefields characterized by e = 0.14 and -y = 5. e = 16' (Q), 400 ('), 80' (<) and
1200 (x). The error bar indicates one standard deviation of the values.

8.4 Summary

In this section, we investigate the geometrical characteristics of rogue waves and their

dependence on spectral parameters. We find the wave length of the rogue waves is

comparable to the peak wave length. The crest length of rogue waves is generally
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Figure 8-20: Example of rogue wave

(b)

from directional wavefield 6=0.12, -y=6 and

- = 60 . (a) rogue wave profile qrogue(s, 9); (b) POD representation using leading

three POD modes.
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longer than the average crest length of the wavefield, resulting in a rogue wave area

much larger than the average wave area. Rogue wave groups containing several large

waves are also studied and we find the percentage of rogue wave groups among the

total rogue wave populations decreases as spreading angle decreases. The structure

of the rogue waves is analyzed using proper orthogonal decomposition (POD). For

2D and 3D rogue waves, we find the rogue wave profiles can generally be represented

using a few leading POD modes.
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Chapter 9

Phase-resolved prediction of

nonlinear wavefield and rogue wave

occurrence based on wave

measurements

9.1 Introduction

The discussions in the previous chapters focus on the statistical aspects of the wave-

field predictions. Unlike classic wave forecast models such as WAM and SWAN which

can only provide statistical properties of the wavefield, SNOW simulations provide

phase-resolved deterministic information of the wavefield. Recent advanced technol-

ogy in radar sensing obtains high-resolution marine radar image, from which the

surface elevation can be estimated by applying an inversion algorithm described in

Nieto Borge et al. (2004). The radar inversion surface has high-resolution over a large

domain and allows for individual wave detection in continuous time. The relatively

large-scale, high-resolution measurements of wave surface give a description of present

sea that could be used as initial conditions for wave forecast models. Phase-resolved

deterministic forecast of the wavefields can, therefore, be obtained by assimilating the
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measured data into wave evolution models.

A phase-resolved and reliable description of the ocean wave surface is crucial to

improve maneuverability and active control of ship motion and to increase opera-

tional envelop and survivability of marine structures in severe seas. For example,

the deterministic near real-time predictions of the surrounding surface profile could

be used to find operational windows for side boat launch and recovery, or to obtain

deterministic predictions of rogue wave occurrence.

The project High Resolution Air-Sea Interaction DRI (Hi-Res), carried out in June

2010 and funded by the Office of Naval Research, aims to obtain reliable deterministic

predictions of nonlinear wavefields in moderate to high sea states using phase-resolved

direct wave simulations (SNOW) with field measurement from ship-based radars. As-

similating radar measured high-resolution information of wave surface provided by

WaMos@II, our nonlinear phase-resolved wave model (SNOW) provides improved

predictions of realistic wavefields, from which the nonlinear wave statistics and oc-

currence probability of large waves are obtained. For more information on the project

see http: //airsea. ucsd. edu/hires/.

The main objective of this chapter is to develop and evaluate a simulation-based

capability of phase-resolved reconstruction and (short-time) forecasting of realistic

ocean wavefield evolution based on marine radar measured wave surface in Hi-Res

(WaMos@II) . Special interests and focus are the incorporation and assimilation of

radar measurements in the SNOW-simulation-based reconstruction and forecasting

of the wavefield. The wave model predictions are directly compared with field mea-

surements. The nonlinear statistics and occurrence of large waves are investigated

based on the SNOW reconstructed and forecasted realistic wavefields. Equally im-

portant, forecast of the wavefield can be used for the validation, interpretation and

improvement of the radar measured wave data.
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9.2 Predictability based on instantaneous and con-

tinuous radar images

For a given wave measurement, there exists a spatial-temporal zone in which the wave

elevation can be predicted deterministically. The predicable zone using on-site buoy

measurements is derived theoretically and is discussed extensively in Wu (2004). In

this section, we follow the similar procedure in Wu (2004) to derive the predicable

zone of directional wavefields based on instantaneous and continuous radar measured

surface elevations.

9.2.1 Predictability based on one radar image

. We assume the radar measured wave surface is accurate, and further assume that

the spectral bandwidths of the wavefield are finite in both x and y directions. We

derive the spatial-temporal predicable zone based on radar measured wave surface at

time t = to, ((x) with x =(x, y) c M, where M is the region of radar measurement.

The wave elevation is described as

77(x, t) = A(k)ei(k-x~-'') dkxdky (9.1)
J k in J kin

Therefore, at t = ti

I k mn 
k m a*

((x, y) = n(x, y, ti) j A(k)ei(k-x-wti) dkxdky, (9.2)
fkmin kmin

where (x, y) E M. To apply fourier transform, we extend ((x, y) to unbounded

domain and still note it as ((x, y). The inverse two-dimensional fourier transform of

(x, y) gives

((x, y) 2 B(k)ei(k-x) dkxdky, (9.3)

211



where

(9.4)B(k) g((x ' y')e-i(k.x' ) dx'dy'.

Together equation 9.2 and 9.3 gives

A(k) - ez"'"B(k) - eLt (9.5)

The wavenumber domain is discretized into

k = k"m " ± (m - 1/2)Ak,"" (9.6)

k ky (n - 1/2)Aky"", (9.7)

where Akx = (km" - kmi")/Nkx, Aky = (k a - kmin)/N, and Nkx x Ny are the

number of the discrete wave modes. We thus have

Nk, Nk,

((X, y) = E 1 In(X, Y), (9.8)
m=1 n=1

where

1m f k4+Aky/2 jk'+Ak2/2
(mn -= 7r A(k)e i(k~x~"''l) dkxdky.

472kg -- Aky/2 k -akx/
(9.9)

The frequency w and wavenumber k is related through dispersion relation. The Taylor

expansion of w is

w(kx, ky) = Wmn + k [kmn - (k - kmn)] + O(%k' (Ak) 2  k (Aky)2),
X Y

(9.10)

where C"" is the group velocity of the wave with frequency Wmn. Comparing (9.1)

212

f((x'-00 , y')e-ik x' dz'dy'.



and (9.8), and using (9.10), the surface elevation is then:

Nk. Nky

q(x, t) = ei,Cmnkmn-Wmn(t-

m=1 n=1

-t) mn(X -Cmn(t - ti) kmn)[I + O(ex'n, em)],
mn

where e-' = 2aw (Akx) 2 (t - ti)| and e = a2 (Akg)2(t - t1 ).X.mn ) p i f

7?(x, t) is predictable if

x - kmn E M,
kmn

for all m, n. (9.12)

Equation 9.12 is the predicable zone based on the radar inversion surface in M at

time t = to. At the future time t = t* (t* > t1 ), the predicable range in space is

Cn(t* -ti)
kmn - kmn E M, for all m, n.

For a rectangular measurement domain (x, y) E [0, Lx] x [0, L.] at time t = t* , and

for wavefields with c9,min < cg < cg,max and spreading angle (-6,, 0,), the predicable

zone is:

cgmaxt* < xp < Lx + cg,min cos owt*;

cg,max sin Owt* < y, < L, - Cg,max sin wt*.

(9.14a)

(9.14b)

Figure 9-1 shows the evolution of predicable region based on radar measured surface

at one time instant. We find the predicable zone decreases with time.

9.2.2 Predictability based on series radar images

The predicable zone of the image series is the combination of the predication zones

based on each radar image. The predicable zone at t = ti in space based on radar

measurement at t = to (to < ti) is

P1={xlx- Cmn(ti - to)kmn E M}.
kmn .

(9.15)
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Figure 9-1: Variation of predicable zone based on wave data in a rectangle region for
wavefields with 0.423s-1< f <0.83s-', -300 <6 300.

The effective radar measurement at t = ti is therefore expanded to

M 1 = M U P (9.16)

The predicable region at t =t 2 =ti+ At based on M 1 is, therefore,

P2 xix - Cmn(t 2 - t) kmn E M 1}.kmn

The predicable zone (x,, y,, t*) based on N radar images t = nZt, t = 0 - -

cg,mx(t* - NAt) xp < Lx + Cg,min cos wt*

Cgmax sinOw (t* - NAt) yp Lx - cg,m sin Ow(t* - NAt).

(9.17)

-N is

(9.18a)

(9.18b)

Comparing (9.18) with (9.14), the predicable zone with relative elapsed time T=t* -

NAt is expanded by cg,min cos 6WNAt in x-direction and the expansion is not signifi-

cant if Cg,min cos 6w is small.
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9.3 Phase-resolved reconstruction of the wavefield

using wave measurements

9.3.1 Mathematical formulations

The linear random wave-field can be written as suppositions of sinusoidal waves with

different frequencies and propagation directions:

MkY Mk,

(x, y, t) = a1E cos(kx,ix + kky - wist + o6j),
j=1 i=1

(9.19)

where (kx,i, ky,j) is the wavenumber vector, wij is the frequency, which is related with

the magnitude of the wavenumber kij= kx, + kxi by the linear dispersion relation

i = ,rgk, ai and 64, are the amplitude and phase of the wave respectively.

Given the wave measurements, denoted by i(xp, t) at grid points of the radar image

x, = (x,, y,) (p = 1, - - - , Np) and successive instants t = nTrAt, nT 0, ... , ar, the

reconstruction problem is to construct a wavefield r?(x, t) in a domain, denoted by

R(x, t), such that

r/(xp, nTAt) = i(xp, nTAt), (9.20)

The forecasted wavefield for t > aTAt is obtained by evolving the reconstructed

wavefield using wave forecasting model SNOW.

9.3.2 Optimization schemes

Considering (9.19) and (9.20), we have

Mky Mk,

i(xp, t) = [ [ aij cos(ko,jx, + kyy' y + ij),
j=1 i=1

(9.21)

For given measurements, for simplicity, the wavenumber is chosen as kx,t = kx,min +

(i - 1)Akx, i = 1, - - , Mk,, kyj = ky,min + (j - 1)Aky, j = 1, ... , Mk9. The wave
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amplitude and phase, aig and Oij, are the variables to be optimized.

(9.21) can be written in another form:

Mky Mk.

rx t) = E a1 ,) cos(kx,ix, + ky - w~igt) - a2,ij sin(kXix + kkYy, - wit)
j=1 i=1

(9.22)

where

ai,ij = aij cos(Oiy), and a2,ij = ai sin(Oi). (9.23)

Equation (9.22) is in the standard form of linear model Ax = b, where A is a Np x

2MkxMk matrix. Matrix A is usually not a square matrix, and in most cases N, >

2 MkxMk,. The equation (9.22), therefore, is an over-constrained problem without an

exact solution. We instead solve the corresponding least square problem:

min JAx - b|| 2 , (9.24)
x

which is equivalent to the problem

A T Ax= ATb. (9.25)

ATA is symmetric and positive definite. Note that ATA is a sparse matrix be-

cause the plane monochromatic waves are orthogonal to each other. ATA has size of

2MkxMk, x 2Mk ,Mky. For a typical ocean wavefield, it requires Mkx = Mk, = 20 to

obtain a satisfied representation. The matrix ATA therefore has a size of 800 x 800.

A large linear system like (9.25) can be solved by many standard iterative methods

including Gauss-Seidal method, or its improvement form, method of Successive Over-

Relaxation, and Conjugate Gradient Method. In this study, we apply the conjugate

gradient method to solve (9.25) and it converges in at most n iterations, for a linear

system with a matrix size of n x n.
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9.4 Radar inversion data vs. SNOW reconstruc-

tion and forecast

9.4.1 Comparison metrics

The point-by-point error map is defined as

Err(x, y) - |model(X, Y) - radar (X,Y)
4o-

where 77radar (X, Y) is the (radar) wave measurements, a7modei(X, y) is the model (SNOW)

reconstructed and forecasted wavefield, and o- is the standard deviation of the surface

elevation.

The cross correlation with zero-shift between 77model and qradar is defined by

Corr = ff modei(x, Y)qradar(Xy) dxdy (9.27)

ff 0model(X, y) dxdy rff adar(X y) dxdy

9.4.2 Reconstruction and forecast of wavefields based on radar

inversion data

High-resolution wave measurements were obtained during the Hi-Res project by ap-

plying the WaMos@II radar inversion algorithm on the surface image from ship-based

marine radars. Using the reconstruction algorithm described above, phase-resolved

wavefields are reconstructed based on the WaMos@II radar inversion data. Figure

9-2 shows an example of a comparison between radar inversion data and SNOW

reconstructed wave surface. The comparison is very satisfactory.

The forecasted wavefield is obtained by evolving the reconstructed wavefield using

SNOW. Figure 9-3 shows comparisons of surface elevation between radar inversion

data and SNOW forecast at different time for wave data shown in figure 9-2. The

theoretical predicable zone is also shown as a reference. We observe the comparisons

are reasonably well in the predicable domain over a short-time evolution, while the

comparisons are less satisfied outside the predicable zone. This can be seen quantita-
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x (in) X(M)

(a) lradar(X, Y) (b) imodel(X, Y)

Figure 9-2: (a) radar inversion data; (b) SNOW reconstructed wave-field using Mk,-
Mk = 20.

tively from the point-by-point error maps in Figure 9-4. In the predicable region, the

forecasted wavefields agree reasonably well with the radar inversion data; however,

significant discrepancy is observed around the boundary areas.

The correlations between radar inversion data and model prediction in entire

domain and in predicable region are shown in Figure 9-5. We find that, for the

entire computational domain, the correlation decreases with time as the waves outside

the domain propagate into the domain as observed in figure 9-4. In the theoretical

predicable zone, the correlation does not decrease with time and the prediction is

almost certain (with correlation close to unity).

To assess the predicability outside the measurement domain, we only use a sub-

domain of the radar inversion data, denoted by Sub, to reconstruct a wavefield. The

forecasted wavefield is then compared with the entire radar inversion data. We present

two examples of reconstructed and forecasted wavefields using radar data obtained

on two different days during the Hi-Res project. One wavefield has relatively small

spreading angle and the other has broader spreading angle. The amplitude maps of

the reconstructed wavefields, a(ke, ky), are shown in figure 9-6(a) for small spreading
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Figure 9-3: Comparison between radar inversion data (WaMos) and SNOW forecast

at (a) t = 1T,; (b) t = 2T,; (c) t = 3Tp. The unit of the legend is meter. T,=10 sec.

The black box shows the theoretical predicable zone.
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Figure 9-4: Point-by-point err between radar inversion data and model forecasted
wavefields at (a) t = 0; (b) t = T,; (c) t = 3Tp; (d) t = 4Tp. The legend unit is meter.
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Figure 9-5: The correlation with zero shift Corr = C(0, 0) between
data and SNOW predicted wavefield in entire computational domain
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Figure 9-6: Reconstructed amplitude a(kx, k.).
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(a) wavefield with small spreading
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Figure 9-7 shows the comparisons between radar inversion data and SNOW fore-

cast for the wavefield with small spreading angle. For a short time t/IT=10, S-

NOW forecast agrees reasonably well with radar inversion data in the region Seub
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(0 x 2000 m and 0 y 2000 m). At later time t = 20Tp, SNOW gives a rea-

sonable prediction outside Sub (2000 x <3000 m). The point-by-point error maps

at different time are shown in figure 9-8. We observe that, at short time, the point-

by-point error in Sub is small, while considerable error is observed in the region

outside Sub. For longer time, the theoretical predicable zone moves as waves prop-

agate through the region Sub leading to a better comparison outside 8 sub but worse

comparison inside Sub.

1500

1000

500

(a) 'radar(X, y), t = 10T, (b) 77radar (x, y), t = 20Tp

1500

1000

500

(C) 7model (X, Y), t = 10T, (d) r/modeI(X, Y), t = 20T,

Figure 9-7: The comparisons between radar inversion data and model forecast. The
radar measurement region used for reconstruction Ssub is 0 < x < 2000m and 0 <
y < 2000m. Radar measurement (WaMos): (a) t/Tp=10, (b) t/T,=20; SNOW: (c)
t/T=10, (d ) t/Tp=20.H,~r1_5.3 m, Tp=6 s.

Figure 9-9 shows the radar inversion data and the point-by-point error map of the

SNOW reconstructed and forecast wavefields for the case with broad spreading angle.

At a short time t/T,=4, SNOW forecast agrees reasonably well with radar inversion
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Figure 9-8: The point-by-point error between radar inversion data and model predic-
tion. The radar measurement region is 0 < x < 2000m and 0 < y < 2000m. The unit
is in meter.
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data in the region Ssub (0 x <2000 m and 0< y 2000 m). As waves evolve, SNOW

gives a reasonable prediction outside 8 sub (2000< x <3000 m). We observe that at

earlier time, the point-by-point in Seub is small, while considerable error is observed

in the region outside Ssub. For longer time, good comparison outside Ssub but worse

comparison inside Sub are observed . The overall agreement between radar inversion

data and SNOW forecast in this case is less satisfactory comparing the case with

small spreading angle shown in figure 9-8. This is because the theoretical predicable

zone based on (9.14) decreases faster with time for wavefields with large spreading

angle.

9.5 Dependence of model performance on spectral

resolution

The reconstructed wavefields based on the radar inversion surface data using different

spectral resolutions (Mk,, Mk,) with fixed incremental wavenumber, Ak, and Aky,

for a given radar measurement are shown in figure 9-10. The spectral band coverage

increases with the number of wave modes used in the wavefield reconstruction and

forecasting. Waves with shorter length scales could be resolved using higher spectral

resolutions (Mk,, MkI).

The forecasted wavefields with different spectral resolutions are compared with

on-site buoy record. Figure 9-11 shows the wave frequency spectra calculated from

buoy time series and model forecast for different spectral resolutions. With increas-

ing spectral resolution, waves with high frequencies are reconstructed, leading to

wavefields containing shorter wave scales. The frequency spectrum from forecasted

wavefield with sufficient number of wave modes Mk, x M,=34x26 is very close to

the frequency spectrum measured from buoy.
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Figure 9-9: The point-by-point error between radar inversion data and model pre-
diction. The radar measurement region is 0 < x < 2000m and 0 < y < 2000m.
H, =3.6 m, Tp=8.3 sec.
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Figure 9-11: The wave frequency spectra calculated from buoy time series and model

prediction at the buoy location. (Mk,, Mk,) = (14 x 13) ( ); (24 x 17) ( ); (34 x 26)

(- -). Buoy record (-).

9.6 Effect of shear current on the reconstruction

and forecast of wavefields

An accurate and reliable estimation on the current profile is very important for phase-

resolved wavefield prediction. In the radar inversion surface data, the background

current is estimated as the constant current which gives the optimal fit to the mea-

surement using linear dispersion relation with constant current (Nieto Borge et al.,

2004).

The current may also be obtained by finding the current profile in SNOW that pro-

duces the maximum correlation between the radar inversion data and model forecast.

This is considered to be a better approach because the possible nonlinear interactions

between current and waves are considered. More importantly, the current in SNOW

can be space-dependent. Figure 9-12 shows two simple cases where constant current

is considered. We find the correlation between the radar inversion data and model

prediction with and without consideration of background current for two different

radar data sets. It shows that the agreement between the radar data and model
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prediction is improved considerably by including the background current.

o 0 .5 e
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Figure 9-12: The correlation between radar inversion data and model forecast. Model
forecast with optimal current: data set one ( e ) and data set two (+); model
forecast without current: data set one (- -o- -) and data set two (- -o-

For the current with weak vorticity, the flow including the current can still be

treated as potential flow. The interaction between such current and irregular wavefield

is studied in Wu (2004). We here implement depth-dependent shear current using the

concept of equivalent current. The equivalent uniform current for given wave mode is

defined as the constant current which leads to the same wave phase velocity observed

in stationary coordinates as the shear current for the wave mode.

Kirby and Chen (1989) derived an approximate dispersion relation for weak cur-

rent with max(U(z))/co = O(E), where co is the wave phase speed and E is a small

parameter. For water with finite depth, the equivalent current U is

U = U(z) cosh 2k(h + z) dz, (9.28)
sinh 2kh _-n
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and for deep water, it is

U = 2k j U(z) exp(2kz) dz. (9.29)

For a special shear current profile

U(z) = U,(1 + az/h) = U, + Qz, (9.30)

the exact absolute velocity is

ca = g/ikV1 + Q2/4gk + Us - Q/2k. (9.31)

The equivalent velocity can be calculated by substituting (9.28) into (9.29) which

gives

U(k) = U, - Q/2k. (9.32)

The difference between the estimated absolute velocity and the exact solution is

O(Q 2 ). The discussion on the action flux conservation using the equivalent current

can be found in Kirby and Chen (1989).

The effect of shear current on the wave propagation is counted in the leading

order using the equivalent current. The implementation of the shear current vector is

done in the wavenumber space. The project current, in the direction of wavenumber

k = (kr, ky), denoted by U'(z), is U'(z) = U(z) -k/k. The equivalent current of the

shear current U(z) = U(z)(cos #3U, sin #U), where #u is the direction of shear current,

is U(k) - U(k)(cosOk, sinOk), where cos Ok= kx/k, sin O = k/k and

U(k) = 2k] U'(z)e 2kz dz, (9.33)

where k = k+ kv and U'(z) is the projected velocity of U(z) in the direction of
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k = (kx, ky):

U'(z) U G(z) k/k = U(z) (cos # cos Ok + sin 0# sink). (9.34)

The shear current is considered in the leading order of SNOW in the form:

nt - U(k) COS k77X + O (k) sin Ok7y; (9.35a)

-7 U (k) cos Okq 5s + U(k) sin Okjsay. (9.35b)

We simulate a nonlinear directional wavefields with a background shear current:

U(z) = [a exp(Kz), 0], (9.36)

where a is the current magnitude and K is the current parameter. Figure 9-13(a)

shows the profile of the shear current. The current decreases exponentially with

depth and is mainly penetrated in a thin layer close to the surface. A subdomain

of the simulated wavefield is used as synthetic radar inversion data. Two wavefields

are reconstructed. one uses uniform current and the other uses wavenumber depen-

dent current described in (9.35). Figure 9-13(b) shows the correlation between the

synthetic radar surface and the forecasted wavefields with and without considering

current. In the case in which the current is not considered, the correlation between

synthetic radar data and model forecast decreases rapidly with time. The correlation

is improved significantly when the current is considered, specially in the case in which

the wavenumber-dependent current is used (9.33). For an accurate phase-resolved re-

construction and forecast, it is important to consider background current properly.

230



0 1.

-50

%., 0.5N

-100 0

0

-150-
-- 0.5 -''

-200 I 'I ' ' '' ' ' ' '-
-0. 5 0 0.5 1 1.5 0 1 2 3 4 5

U(z) (m/s) t/rp
(a) (b)

Figure 9-13: (a) Profile of depth dependent shear current (9.36) with a=1.5 and
kappa=2ky. (b) Correlation wavenumber dependent current U(k)( A ); constant
current Uo (- 4 -); no current (---) for JONSWAP directional wavefield H,=10m,
T,=10s, -y=3.3 and 8=80'.
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9.7 Interpretation of radar measurement errors

9.7.1 Spatial-dependent modulations

In Radar image, the intensity of backscattering related to the wave tilt modulations

depends on the distance of the local surface patch from the radar antenna, and the

orientation of the local surface patch relative to the antenna (Nieto Borge et al., 2004).

These modulations usually show as low-wavenumber and time-independent signal in

the 2D spectrum of the radar image, therefore they can be removed by filtering. It

is not straightforward to remove more complex space-dependent modulations. The

spatial dependent modulations lead spatial-dependent error in the induced radar in-

version data. The radar inversion surface data with spatial-dependent error may be

approximated as

(radar(X, y, t) = M(X, Y)nradar(X, y, t) (9.37)

where Cradar is the radar inversion data with spatial-dependent error, r/radar is the cor-

rected radar inversion data, and M(X, Y) is slowing varying function describing the

spatial-dependent error. M(X, Y) can be approximated using (chebyshev) polyno-

mials with unknown coefficients. The original wavefield may therefore be retrieved

from rlradar using iterative nonlinear optinal algorithm. An example of the calibration

process is shown in figure 9-14. figure 9-14(a) and (c) are the original radar inversion

data. The radar antenna is located on the right of the domain. Considerable spatial-

dependent modulations are observed with the intensity of radar image decreases as

the distance from the antenna increases. The calibrated surfaces are shown in Fig-

ure 9-14(b) and (d). The spatial-dependent modulations are removed and the wave

energy distributes more evenly over space.

9.7.2 Dependence on radar looking angle

The accuracy of radar inversion wave data depend on the angle between dominant

direction of wavefield and radar looking angle, denoted as a. To asses dependence
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Figure 9-14: Radar inversion data vs. model calibrated surface. Radar inversion data
at (a) t = OTp; (c) t = 1T,; Model calibrated surface at (b) t = OT,; (d) t = 1Tp.
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of the radar inversion data accuracy on a, we choose the four sub-domains in the

radar image located in different radar looking directions shown in figure 9-15(a). The

correlations between the radar inversion data and SNOW forecasted wavefields for

each subdomain at time t = 2T, as functions of radar looking angles are shown in

figure 9-15b for different radar inversion data sets. For the three sets of radar inversion

data, the maximum correlation is observed for a=180'. The agreement between the

radar inversion data and model prediction is satisfactory when the wave propagation

direction is parallel to the radar looking direction (#=O' and 1800). The minimum

correlations are observed at a=90' and 180', when the propagation direction of the

wavefield is perpendicular to the radar looking angle. This is because the radar

backscatter is minimally effected when the wave crests are aligned in the direction of

the radar looking direction.

KNO, 08-15-2006, 12:00:21 UTC 0.9 -

0.8 -
i

o**
0

S0.6 -

0.5 --

-2 -1 2 0.41
xpm) 0 60 120 180 240 300 360

(a) (b)

Figure 9-15: (a) Sub-domain of radar inversion data. The number marked in the
rectangle is the radar looking angle for that domain. (b) Sub-domain of radar inver-
sion data. The number marked in the rectangle is the radar looking angle for that
domain. Different symbols are used to represent different data sets of radar inversion
data.
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9.8 Nonlinear wave statistics and occurrence of

large waves in phase-resolved forecasted real-

istic wavefields

9.8.1 Reconstruction and forecast in a large domain size us-

ing multiple measurements

Using multiple radar measurements, a wavefield with large domain size could be

reconstructed by extending (9.19) to a large domain. Figure 9-16(a) shows an example

of a reconstructed large wavefield with size of 15 x 15 km 2 using two collocated radar

inversion data (for each radar, two subdomain images in upwind and downwind are

shown) obtained from the Hi-Res project. The reconstructed amplitude map a(kx, ky)

of the free waves is shown in Figure 9-16(b). The wavefield has an estimated significant

wave height H,=5.3 m and Tp=11.58 sec. The large-scale wavefield is forecasted by

evolving the reconstructed initial wavefield using SNOW simulations.

0.04

0.02

E

-002

(a) (b)

Figure 9-16: (a) Reconstructed large-scale wavefield with a domain size of 15x 15 km2

using two radar measurements. For each radar, two subdomain images in upwind

and downwind directions are shown. (b) Amplitude a(kx, k.) of the free waves of the

reconstructed wavefield using two radar measurements.
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The one-dimensional omnidirectional spectrum S(k) and integral directional dis-

tribution function D(6) are defined as

S(k) = jk T (k,0) dO, and D(0) = jk(k,O)dk. (9.38)

Figure 9-17 shows the omnidirectional spectrum and the integral directional dis-

tribution function for the reconstructed wavefield. Local smoothing has been applied

on the spectra. The estimated spectral bandwidth Ak/k, ~0.26 (Ak is calculated as

half width at half maximum of the spectrum). The estimated directional spreading

angle e ~ 42.750 (0 is calculated as the width at half maximum of the directional dis-

tribution function D(6)). The Benjamin-Feir index and modified BFI introduced in

Chapter 5 § are BFI=0.31 and MBFI=0.23 respectively. We use the forecasted wave-

field to demonstrate the importance of using nonlinear simulation in phase-resolved

prediction of wavefield evolution. The initial wavefield is evolved using SNOW sim-

ulations with orders of nonlinearity M=1 and M=4, from which the nonlinear wave

statistics and occurrence probability of large waves can be calculated and the results

obtained from linear and nonlinear simulations are compared.
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Figure 9-17: (a) One-dimensional omnidirectional spectrum S(k). (b) Integral direc-
tional distribution function D(O) of the initial spectrum of the reconstructed wavefield.
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9.8.2 Skewness and kurtosis

Figure 9-18 shows the evolution of skewness and kurtosis of the forecasted large

domain wavefield shown in Figure 9-16(a). The SNOW simulations are applied using

M=1 (linear) and M=4 to assess the importance of using nonlinear wave prediction

model to capture the nonlinear wave statistics. Linear model gives a value of skewness

close to zero, while in nonlinear model (M=4), the value of skewness quickly evolves

from its initial value to a quasi-stationary value 0.125. The wavefield has a estimated

significant wave height H,-5.3 m and peak period T,-11.58 s. Based on the second-

order theory, Skew = 3kpo- 3.12, which is very close to SNOW prediction. For

kurtosis, second-order theory gives an estimation Kur=3 + 24(kpo) 2 ~3.04. Figure

9-18(b) shows the predictions of kurtosis using linear (M=1) and nonlinear model

(M=4). The value of kurtosis obtained from nonlinear model is slightly greater than

the second-order prediction.
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Figure 9-18: Evolution of (a) skewness and (b) kurtosis for the forecasted large domain

wavefield reconstructed using two radar measurements using SNOW simulations with

M=1 (A); M=4 (Q).

9.8.3 Exceeding probability of crests

Figure 9-19 shows the exceeding probability of crests obtained from SNOW simula-

tions using M 1 and M = 4. For comparison, linear Rayleigh and second-order
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predictions are also plotted. We find the crest distribution from M = 1 is very close to

Rayleigh distribution. Comparing the prediction from M = 1 with that from M = 4,

for crests with small to intermediate crest height q, <2.5, linear and nonlinear the-

ories give similar predictions. For large crests, linear theory and linear simulations

underestimate the probability of large crests significantly comparing the prediction

from nonlinear (M = 4) simulation. The second-order theory gives a better predic-

tion than linear theory, although it still underestimates the occurrence of large crests

relative to SNOW nonlinear simulations.

3
11/oT

Figure 9-19: Exceeding probability of wave crests at t = 60Tp (T,=11.58sec).
M =1(A); M =4 (0). Rayleigh (-), second-order theory (Tayfun, 1980) (- -

9.8.4 Occurrence probability of large waves

In Chapter 5, we have shown that it is important to include nonlinearity to predict

correctly the occurrence probability of rogue waves. The linear theory underestimates

the occurrence of rogue waves significantly, especially for wavefields with narrow-band

spectra and small spreading angle. Linear and nonlinear simulations result in not

only different large wave statistics but also different phase-resolved information of
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large waves, including the occurrence locations and geometric shapes of such large

waves. Figure 9-21 shows the crest locations of large waves satisfying H/H, > a,

a=2.0, identified from SNOW forecasted wavefields using M = 1 and M = 4 during

evolution time 0 < t/T, < 100. We find linear and nonlinear SNOW simulations give

different predictions on the location of rogue wave occurrences. The large waves can

either be missed or over counted if linear simulations are used. For proper predictions

of large (rogue) waves, it is essential to consider high-order nonlinearity. Moreover,

large waves are often steep waves, having sharp crest and flat trough. Figure 9-21(a)

and 9-21(b) show the rogue wave profiles obtained from SNOW using M=1 and

M-4 respectively. The cross profile along x coordinate through the crest point from

linear and nonlinear simulations are shown in Figure 9-21(c). The rogue wave profile

obtained from nonlinear simulation has longer crest length and shorter wave length

than the one obtained from linear simulation. The crest is also sharper and higher in

nonlinear simulations.
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Figure 9-20: Crest locations of the large waves satisfying H/H, > a (a=2.0) identified

from SNOW forecasted wavefields over evolution time 0 < t/T, < 100. M =1(+);

M =4 (Q).
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Figure 9-22 shows evolution of number (PN) and area (PA) probabilities of large

waves satisfying H/H, > a, a=1.8. For short time evolutions (t < 40T,), we find

linear and nonlinear SNOW simulations give similar predictions on PN and PA. For

longer time evolutions (t > 40Tp), nonlinear simulations in general give a greater

prediction (up to 50%) on the occurrence of large waves in comparison with linear

simulations. We apply the relationship between PN, PA and Kurm in §5.7 (Chap-

ter 5), and it gives

PIax/PR= 1 + 18.64 x (Kur"" - 3) = 2.23, (9.39a)

PA"/P = 5.06 + 90.30 x (Kurm' - 3) = 11.02, (9.39b)

using Kurm=3.066. These estimations agree reasonably well with what is observed

in figure 9-22, although (9.39) are derived for large waves H/H, >2.0. The empirical

relation (5.20) derived in §9.8.1 for large waves with H/H, > a (a=2.0), using the

estimated modified Benjamin-Feir index, MBFI=0.23, gives:

P77a/PR = 1.51 + 9.80 x MBFI2 = 2.03, (9.40a)

Pa/PR = 8.60 + 43.88 x MBFJ2 = 10.92. (9.40b)

9.9 Conclusions and discussions

We develop a simulation-based capability of phase-resolved reconstruction and (short-

time) forecast of realistic ocean wavefield based on radar inversion surface data. With-

in this capability, a phase-resolved wavefield is reconstructed and forecasted. The

correlation between the radar inversion wave data and forecasted wavefield is close

to unity in the theoretical predicable region. A large-scale wavefield is reconstructed

and forecasted using multiple radar measurements. We study the nonlinear statistics

and occurrence probability of large waves of the forecasted realistic wavefield. The

comparison between the linear and nonlinear simulations shows the nonlinearity is
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Figure 9-21: Rogue wave profiles obtained from SNOW forecasted wavefields. (a)

M=1; (b) M=4. (c) Cross profile along x coordinate. M=1 (-- -); M=4 (-).
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essential to obtain accurate predictions of nonlinear wave statistics and rogue wave

probability. Moreover, nonlinear simulations are crucial to obtain reliable phase-

resolved (large) wave characteristics.
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Chapter 10

Conclusions and future work

10.1 Summary of conclusions

We develop and apply a direct large-scale nonlinear phase-resolved wavefield simu-

lation tool, named as SNOW (simulation of nonlinear ocean wavefields), to study

the evolutions of directional ocean waves with a primary focus on rogue waves. Com-

mensurate with quartet wave-wave interactions including modulational instability, we

consider spatial domains L x L and evolution times T with L/A,, T/Tp, ~O(E-),

where A, and T, are the wavelength and period of the peak wave and E is the wavefield

steepness, for our simulations.

We elucidate the importance of modulational instability in the evolution of direc-

tional wavefields using NLS-type and SNOW simulations. For wavefields with small

spreading angles, modulational instability leads to significant spectral broadening

and strongly non-Gaussian wave statistics over a relatively short time scale in both

SNOW and NLS-type simulations. Over longer time, for initially narrow-banded and

narrow-spreading wavefields, SNOW obtains statistically quasi-stationary nonlinear

non-Gaussian states and this is not predicted by NLS-type models in which energy

spreads continuously to short waves and the wave statistics are close to Gaussian. For

wavefields with large spreading angles, the spectral change is much slower and wave

statistics are close to Gaussian in both NLS-type and SNOW simulations. Comparing

the nonlinear wave statistics from the two simulations with wave basin experiments,
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SNOW obtain an overall better comparisons with experiments comparing with NLS-

type models.

The relevance of modulational instability to the formation of rogue waves is in-

vestigated using SNOW simulations. A large number 0(200) of three-dimensional

nonlinear SNOW wavefields (MIT-Wave dataset) are generated using initial (JON-

SWAP) spectra with a broad range of spectral parameters. For small spreading seas,
modulational instability leads to strongly non-Gaussian wave statistics and enhanced

probability of rogue waves over short time. For longer time, the rogue wave prob-

ability reaches a quasi-stationary value still considerably higher than the Rayleigh

distribution. For broad-spreading seas, the modulational instability diminishes and

the rogue wave probability is close to the Rayleigh theoretical prediction. Comparing

with SNOW, NLS-type models generally underpredict the occurrence of rogue waves

at longer time. We introduce area probability (PA) as a better and convergence

quantity to measure the likelihood of rogue wave occurrence. We confirm the general

correlation between PN, PA and kurtosis. For broad spreading wavefield, kurtosis and

occurrence probabilities depend on both the Benjamin-Feir index (BFI) and spread-

ing angle. We propose a modified Benjamin-Feir index (MBFI) which accounts for

directional spreading for predicting rogue wave occurrence. We show that PN, PA

and kurtosis are well predicted by MBFI over a broad range of spectral nonlinearity,

frequency bandwidth and directional spreading. Based on a large catalogue of rogue

waves found from SNOW simulations, the geometric shapes of rogue waves are an-

alyzed using proper orthogonal decomposition (POD). It is found that rogue wave

profiles can generally be described by a small number of POD modes.

The influence of other environmental factors, including the finite water depth and

bimodal seas, are also examined. In finite water depth, for small spreading angles,

we find the occurrence probability of rogue waves as well as wave kurtosis reduces

as the water becomes shallow and significant reductions occur for scaled water depth

p <1.363. For large spreading angles, the influence of water depth on wave statistics

becomes less significant. In bimodal seas, the influence of swell on the wave statistics

is not monotonic. The occurrence probability of rogue waves can either increase
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or decrease depending on the bimodal spectrum shape. We find the rogue wave

probability and wave kurtosis are minimized when the propagation directions of swell

and wind sea are orthogonal.

Advanced remote sensing technology allows for high-resolution measurement of

surface wave elevation. By assimilating hi-resolution wave measurements into SNOW,

we develop a capability of phase-resolved reconstruction and forecasting of wavefield.

The usefulness of this capability in the understanding of rogue wave dynamics and in

the practical marine operation and safety is demonstrated.

This thesis describes a new-generation wave forecasting model that is capable of

providing heretofore unavailable large-scale phase-resolved information on the ocean

waves. In this work, we show a first attempt to apply this model to study the evolution

of ocean waves and understand the essential generation mechanisms of rogue waves

for a broad range of sea states.

10.2 Future work

10.2.1 Wind input

The input from wind forcing is not considered in present study due to the relatively

small space-time scale considered. At greater scales, effects from wind (at even mod-

erate speeds) could also play appreciable roles (Abdalla and Cavaleri, 2002; Lavrenov,

1998; Dysthe et al., 2003; Kharif et al., 2007) . In particular, the effect of wind forcing

on the occurrence of rogue waves is studied experimentally and numerically in Kharif

et al. (2007), in which it is found an inclusion of wind force may lead an longer dura-

tion time of the rogue waves. The effects of wind input on the occurrence probability

of rogue waves and the characteristics of local wave profile deserve a further study.
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10.2.2 Nonlinear wave statistics and rogue waves in bimodal

wavefields

In Chapter 7, the effect of a presence of swell on the nonlinear wave statistics and

occurrence probability of rogue waves is studied for the bimodal wavefields in which

the peak periods of swell and wind sea are relatively close. Different wave dynamics

are expected to be involved in the bimodal wavefields with different values of peak

period separation (PS). Most existing studies of bimodal wavefields are derived for

specified range of PS (Onorato et al., 2006; Gramstad and Trulsen, 2010). To better

understand the dynamics in bimodal wavefields, SNOW can be applied to study the

evolution of bimodal wavefields described by different bimodal spectral parameters

(different values of significant wave height ratio, peak period separation, MBFI of

each wave system, etc. .).

Recently, Wright et al. (2001) measured the directional wave spectrum in all quad-

rants of Hurricane Bonnie in open water using airborne topographic mapper (ATM)

and wavefields with bimodal or multi-modal spectra were recorded at many locations

in the hurricane. Assimilating ATM measurements into SNOW, bimodal or multi-

modal wavefields could be reconstructed and forecasted to understand the nonlinear

wave statistics and rogue wave occurrence in a realistic hurricane environment.

10.2.3 Effect of bottom bathymetry

In Chapter 6, the nonlinear wave statistics and occurrence probability of rogue waves

are studied for constant water depth. As the water depth decrease, the Benjamin-

Feir type modulational instability becomes less important, however, the transverse

(three-dimensional) modulational instability caused by five-wave interactions becomes

dominant. Moreover, as water depth becomes shallow, trial resonant wave interactions

start playing a role. The role of each nonlinear wave process plays in determining

ocean wave evolutions and occurrence of rogue waves requires a further investigation.

During the wave evolution in the finite water, a generation of long waves is observed.

The influence of these long waves on the wave evolution is also not clear.
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In this thesis, we only examined the influence of constant water depth and varying

bathymetry involving shoaling process is not considered. A recent study by Zeng and

Trulsen (2012) show a slowly varying bathymetry could result in different nonlinear

wave statistics . The nonlinear wave statistics and occurrence of rogue waves in

varying bathymetry deserves a further study.

10.2.4 Effect of weak current

In the region where a strong current is present, rogue waves could form due to wave-

current interactions and this has been well studied, for example, in Lavrenov (1998)

and Lavrenov and Porubov (2006). For realistic wavefields, a weak current ~ 0.5 m/s

is usually present. The wave statistics in wave-basin-generated random wavefield

traveling obliquely over an ambient current are studied by Toffoli et al. (2011) and

an increase occurrence probability of rogue waves is observed. The influence of weak

current on the nonlinear wave statistics and occurrence probability of rogue waves

needs to be carefully investigated.

10.2.5 Bimodal directional spreading function of short waves

In Chapter 3, we observed the directional spreading functions of short waves develop

into an interesting bimodal feature over time 0 ( t/T, < 150. We find this bimodal

feature only exists in wavefields with relatively broad spreading angle. Moreover,

the dependence of angle width (the angle between the two peaks) on the wavenumber

becomes nearly independent of initial spreading angle for wavefields with broad initial

spreading angle 8 ;,60'. The wave dynamics responsible for the formation of bimodal

directional spreading functions have not been carefully studied. We expect that the

bimodal directional spreading function of short waves is formed due to quartet wave

(quasi) resonance. Whether this is the case requires a further study.
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10.2.6 Long time evolution

In this thesis, we have been focused on the role of Benjamin-Feir type modulational

instability in the nonlinear wavefield evolution, therefore, the spatial-temporal scales

used in present study is L/Ap, T=O(TE- 2) (Table 1.1). We find, over these scales,
for wavefields with small spreading angles, nonlinear wave statistics and occurrence

probability of rogue waves reach to a quasi-stationary non-Gaussian state; for wave-

fields with broad spreading angles, the occurrence probability of rogue waves slowly

increases. For deep water waves, the quartet wave interaction is the lowest nonlinear

order over which the wave resonant interactions could occur. Although a few at-

tempts have been made (Dyachenko et al., 1995; Kalmykov, 1998; Mori and Yasuda,
2001), the influence of high-order resonance wave-wave interactions on the wavefield

evolutions remains unclear.

To study the effect of high-order nonlinearity on the wavefield evolution, according

to Table 1.1 evolutions over larger space and longer time are required. For example,
to study the influence of quartet and quintet resonant interactions on the wavefield

change, a spatial-temporal scale T/Tp, L/A,=O(E- 4 ) should be considered. For these

larger scales, some of the approximations made in present study, including ignorable

wind input and viscous damping, may become inappropriate and these factors should

be addressed in the further study.
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Appendix A

Convergence tests of SNOW

simulations

A.1 Number of realizations

Due to the large computational effort required for each large-scale SNOW simulation,

for most of the wave spectra considered in MIT-Wave, only one realization is per-

formed. The wavefield considered in this thesis normally contains number of waves

N, = 104 ~ 105 at any instant time depending on the spreading angle. For the

large number of waves, the moments of surface wave elevation obtained using only

one realizations are expected to be reliable. To verify this, we here investigate the

variations of nonlinear statistics calculated from different realizations.

Figure A-1 shows the evolution of skewness and kurtosis calculated from differ-

ent realizations. It is observed that the variational trends of skewness and kurtosis

are very similar among different realizations although small variations over different

realizations are still noticeable. Figure A-2 shows the ensemble average of aver-

age skewness ((Skewness)) and maximum kurtosis Kurm" over the evolution time,

0, t/T, ,150, as a function of number of realizations. We find the variation of

(Skewness) and Kurma are less than 5% over the number of realizations.
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A.2 Order of wave nonlinearity

In this thesis, our focus is the influence of modulational instability on the wavefield

evolutions, therefore order of nonlinearity M=4 is chosen which is sufficient to account

for third-order nonlinearity. The nonlinear statistics, skewness and kurtosis, obtained

using identical initial wavefields but different orders of nonlinearity (M) in SNOW

simulations are shown in Figure A-3. We find using different orders of nonlinearity

leads to a variation of skewness less than 5%, and a slightly greater value of skewness

is obtained if a greater M is used (Figure A-3(a)). We find the differences between

the evolutions of kurtosis using M=3 and M=4 are negligible. A variation around

5% is noticed in maximum value of kurtosis Kurma if a value of M greater than 5 is

used. We find the quasi-stationary value of kurtosis Kur+ keeps invariant for M ;,3.

These results suggest for the space-time scale used, M =3 is sufficient to include the

key nonlinear wave dynamics. The greater Kurm" obtained at short time could be

due to steeper waves are resolved using greater value of M.
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Figure A-3: Nonlinear statistics calculated from SNOW simulated wavefield H,=12 m,
Tp=13 sec, -=6, and E)=20' using different orders of nonlinearity (M). M=3 (0);
4 (D); 5 ( );6 (); 7 (0). (a) skewness; (b) kurtosis.
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A.3 Grid size

To identify the grid size sufficient for the calculations of nonlinear wave statistics,

we simulate wavefields using different grid sizes (N,,=Ny-N) while keeping the spa-

tial resolution unchanged. In this case, varying the grid size is equivalent to varying

number of wave modes and wavefield domain size. Figure A-4 shows the mean skew-

ness (Skewness) and maximum kurtosis Kurm" as functions of grid size. Values of

(Skewness) and Kur"n" oscillate significantly for grid size N 1024. The dependence

of nonlinear statistics on grid size becomes much less significant for grid size N >1024.

In this thesis, most of simulations are performed using N=4096, which is sufficient to

obtain reliable nonlinear wave statistics. To obtain statistics of rare events like large

crests and rogue waves, a larger grid size or more realizations may be needed.
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Appendix B

On the calculation of occurrence

probabilities of rogue waves

B.1 Identification algorithm of rogue waves

In short-crested wavefields, the precise definition of the extent of the rogue wave event

(within which H > aH, obtains) is not unique, the rogue wave events obtained using

a different way may be slightly different. In the procedures to identify rogue waves

(Chapter 5 §5.4), a rectangular region R centered on xc (5.4) is used to define the

relevant trough xt and thus the relevant crest-to-trough wave height H of the wave.

One rogue wave is identified if the crest-to-trough wave height satisfies H/H, ; a,

a=2. To assess the effect of using R of a different size on the resulting rogue wave

probability, we calculate PN and PA using R of three different sizes:

R1 = {(x, y)IIx - Xc| < A, ly - yc < C}, (B.1a)

R 2  {(x, y)IIx - c Ap, Iy - yc, C,/2}, (B.1b)

R3 =({(x, y)IIx - Xc| < Ap,|y -- yc <_ Cy/4}, (B.Ic)

where R1 is the standard R used in this thesis and R2, 7Z3 are modified search

regions with successively smaller range in the y direction.
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Figure B-i shows PN and PA calculated using different sizes of R specified in

(B. 1). We find that the evolutions of PN and PA obtained using different R have very

similar variation trend. Moreover, although the size of R is increased four times in the

y direction, we find both PN and PA decrease only slightly. Therefore, using different

R in the rogue wave identification algorithm, the general conclusions are expected to

be similar. Moreover, these results also support the assumption that large (rogue)

waves are usually isolated from ambient small waves.

10 35

30-

25

50 100 15 050 100 10
p p

(a) (b)

Figure B-i: Evolution of PN/PR using searching range Ri of different sizes for JON-
SWAP wave field H8 =12 m, T,=13 s, 7=5 8=3O0 . li 1 (C)), li 2 (A ), Z3 (x ).

B.2 Threshold value of large waves

The calculations and discussions on rogue waves in this thesis are based on the large

waves satisfying H/HS ; a, a=2.0. To assess how sensitive the conclusions are to

different (but still relatively large) threshold values a, we calculate PN and PA using

different values of a.

The evolutions of PN and PA using different values of a and li are shown in Figure

B-2 and Figure B-3. We find the magnitudes of PN/PR and PA/PR increases as a

increases. This suggests that the underestimation of Rayleigh distribution becomes

more serious for greater values of a. Comparing the variation trend of PN and PA

using different size of li, similar features are observed for different values of a.
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