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Abstract

The helicopter is a versatile aircraft that can take-off and land vertically, hover efficiently,
and maneuver in confined space. This versatility is enabled by the main rotor, which also
causes undesired harmonic vibration during operation. This unwanted vibration has a neg-
ative impact on the practicality of the helicopter and also increases its operational cost.

Passive control techniques have been applied to helicopter vibration suppression, but
these methods are generally heavy and are not robust to changes in operating conditions.
Feedback control offers the advantages of robustness and potentially higher performance
over passive control techniques, and amongst the various feedback schemes, Shaw's higher
harmonic control algorithm has been shown to be an effective method for attenuating har-
monic disturbance in helicopters. In this thesis, the higher harmonic disturbance algorithm
is further developed to achieve improved performance.

One goal in this thesis is to determine the importance of periodicity in the helicopter
rotor dynamics for control synthesis. Based on the analysis of wind tunnel data and sim-
ulation results, we conclude the helicopter rotor can be modeled reasonably well as linear
and time-invariant for control design purposes. Modeling the helicopter rotor as linear
time-invariant allows us to apply linear control theory concepts to the higher harmonic
control problem. Another goal in this thesis is to find the limits of performance in har-
monic disturbance rejection. To achieve this goal, we first define the metrics to measure
the performance of the controller in terms of response speed and robustness to changes in
the plant dynamics. The performance metrics are incorporated into an W,, control prob-
lem. For a given plant, the resulting R... controller achieves the maximum performance,
thus allowing us to identify the performance limitation in harmonic disturbance rejection.
However, the N, controllers are of high order, and may have unstable poles, leading us to
develop a design method to generate stable, fixed-order, and high performance controllers.
Both the W, and the fixed-order controllers are designed for constant flight conditions. A
gain-scheduled control law is used to reduce the vibration throughout the flight envelope.
The gain-scheduling is accomplished by blending the outputs from fixed-order controllers
designed for different flight conditions. The structure of the fixed-order controller allows
the usage of a previously developed anti-windup scheme, and the blending function results
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in a bumpless full flight envelope control law.

Thesis Supervisor: Steven R. Hall
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Most helicopters experience significant levels of vibration during flight. Excessive vibra-

tion is problematic since it leads to passenger discomfort, reduced crew effectiveness, and

increased maintenance costs due to fatigue of structural and nonstructural components. As

a result, vibration reduction is an important area of helicopter research.

Helicopter researchers and engineers have developed a control framework called higher

harmonic control (HHC) to address the problem of excessive vibration. The framework

consists of actuators that can produce the necessary changes in lift in each rotor blade,

sensors to measure the vibration, and a controller that implements the HHC algorithm to

compute the required actions of the actuators, based on the measurement, to cancel the

vibration. HHC has been shown to be effective in wind tunnel tests [48, 87] as well as

actual flight tests [105]. The goal of this thesis is to develop a methodology for designing

higher harmonic controllers with improved performance over current design methods.

In this chapter, we first formulate the helicopter vibration control problem, and describe

the approach we take in this thesis to solve the problem. Then we present a literature review

that covers the historical development of vibration reduction in the helicopter up the current

state, as well as other literature that are relevant in solving the helicopter vibration reduction

problem. A summary of important conclusions and an outline of the thesis are provided to

conclude the chapter.
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1.1 Helicopter Vibration Problem

The main cause of the vibration in a helicopter is the periodic variation in the aerodynamic

loads as the rotor blades move around the rotor azimuth. Since the rotor spins at a near

constant speed, the resulting vibration occur at multiples of the blade passage frequency.

For a helicopter rotor with N blades, and a rotor angular speed of Q, the blade passage

frequency is NQ. In addition, imbalance and manufacturing variations in the individual

rotor blades cause vibration with frequency equal to Q. The frequency of vibration is often

normalized by the rotor angular speed Q, thus the fundamental harmonic is at 1 per rev,

and the blade passage frequency at N per rev is the Nth harmonic. To effectively reduce

vibration levels in a helicopter, the harmonic vibrations from the rotor must be attenuated.

The objective of this thesis is to address the helicopter vibration reduction problem from

the perspective of control theory. To achieve this objective, we will first analyze existing

wind tunnel test data of a full scale rotor to quantify the importance of periodic dynamics

in the helicopter rotor. Then the appropriate control design plant models will be obtained

by applying system identification techniques to the wind tunnel test data and nonlinear

simulation data. The plant models, which are at different constant flight conditions, will be

used in the development of the control design methods for helicopter vibration reduction.

We will examine the limits of performance, in terms of appropriately defined metrics, that

can be achieved. We will also take into consideration the practical aspects of a controller in

the development of the control methods. Finally, we will extend the controller to work in

varying flight conditions, since the helicopter operates within a flight envelope instead of a

constant flight condition.

1.1.1 Research Approach

Our approach to reduce the vibration is to use feedback control. The vibration reduction

problem is formulated as an output disturbance rejection problem, which is shown as a

block diagram in Figure 1-1. In the block diagram, the harmonic vibration generated by

the main rotor is represented by the disturbance d, thus the frequency content of d is known,

but its amplitude and phase are unknown. The plant block in Figure 1-1 represents the he-
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Figure 1-1: Block diagram of the feedback control system for harmonic disturbance rejec-
tion

licopter rotor, the periodic dynamics that produces the harmonic vibrations are excluded,

since they are considered as the output disturbance. Note that treating the harmonic vibra-

tions as an output disturbance does not imply that the plant dynamics is no longer periodic.

The controller is the focus of our research, and our main goal is to develop a methodology

to design effective feedback controllers for harmonic disturbance rejection in the measured

output z.

In order to determine the dynamics relevant for the design of effective controllers, we

will examine the behavior of the helicopter rotor using frequency domain techniques de-

veloped for linear time-periodic systems. Specifically, we will determine the extent of pe-

riodicity in the helicopter rotor at different values of advance ratio y, since it is known that

the dynamics of the rotor is dependent on p [56]. The advance ratio p is the dimensionless

forward speed of the helicopter rotor, given by

V Cos a
p Q= (1.1)P QR

where V is the helicopter velocity, a is the rotor shaft angle (rotor disk plane angle of

attack), Q is the rotor angular speed, and R is the radius of the rotor. In addition, the wind

tunnel test data allows us to quantify the harmonic disturbance, which is useful information

in the controller design process.

The plant models to be used for control design will have structures dictated by the

dynamics of the helicopter rotor. Optimization based system identification methods, with
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appropriate cost function and weighting, will be used to extract parametric models from

wind tunnel test data. Since we only have limited wind tunnel test data, we will also apply

our system identification method to simulation data to obtain additional models at different

flight conditions. The simulation data span most of the flight envelope in terms of the rotor

shaft angle a, the advance ratio y, and the blade loading coefficient CT/o-. The blade

loading coefficient is defined as the ratio between the thrust coefficient CT and the rotor

solidity o-. The variations in plant dynamics at different flight conditions will enable us to

determine the important flight parameters that we must account for in designing the full

flight envelope harmonic disturbance rejection control law.

We will define metrics that capture the performance and robustness of the harmonic

disturbance rejection controller, and then explore design methods that will produce con-

trollers with maximum performance. Since performance and robustness are generally con-

flicting objectives, a Pareto frontier may be generated to indicate the limit of achievable

performance. If the maximum performing controller is not practical for implementation

purpose, i.e., the controller is unstable or of high order, then we will develop a method to

design practical controllers that achieve improved performance compared to the currently

available methods. Finally, based on the variation of the plant dynamics at different flight

conditions, we will develop a control law that can be used in the entire flight envelope to

reduce vibration.

1.2 Literature Review

The primary source of literature is from the helicopter research community, where the har-

monic vibration reduction problem has been extensively studied. Since our approach is to

use feedback control, we also examined controls literature, in particular, we are interested

in using a stable and robust controller to achieve our goal. The helicopter vibration reduc-

tion problem is fundamentally similar to the narrowband disturbance rejection problem in

control theory, so we also present some relevant literature from different application fields

to illustrate the similarity.
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1.2.1 Helicopter Vibration Reduction

Helicopter vibration reduction methods can be generalized into one of two groups, active

control or passive control [4, 70]. Passive vibration control techniques include pendu-

lum absorbers [49], anti-resonance devices [13], and modification to the rotor transmis-

sion/fuselage mounting system [80, 70]. Although they can be effective, passive vibra-

tion control methods may be mechanically complicated, especially in cases where multi-

ple forces and moments at different harmonics require attenuation. Passive vibration con-

trollers may also be heavy, reducing the available payload of the helicopter, and cannot

remain in tune for all flight conditions [80].

Active control has the potential to significantly reduce higher harmonic vibrations with

less weight than passive methods. Friedmann [34] identified four approaches to active vi-

bration control in helicopters, including higher harmonic control, individual blade control

(IBC), vibration reduction using an actively controlled trailing-edge flap located on the

blade, and active control of structural response (ACSR). The four approaches are distin-

guished by the mode of actuation. From a control theoretic perspective, however, all four

approaches are similar in that the controller all implement the HHC algorithm [77].

The idea behind ACSR is to minimize the vibration at the desired locations in the fuse-

lage using the principle of superposition. Actuators are mounted to the fuselage to coun-

teract the vibration generated by the main rotor. Performance analysis of ACSR using a

coupled rotor and flexible fuselage model was carried out by Cribbs, Friedmann, and Chiu

[19], which showed ACSR has low power demand. Since no modification to the rotor is

required, ACSR also may have potentially fewer airworthiness issues than HHC [94, 78].

Individual blade control (IBC) refers to the actuation of each rotor blade independently

with a broadband actuator [46]. As such, IBC may refer to individually actuated pitch-links,

trailing-edge flaps, active blade twist, or other types of actuation with the actuators in the

rotating frame [104, 72, 54, 79, 82, 83, 59]. In addition to the application for vibration

reduction, IBC with HHC algorithm may also be used to reduce noise [15, 93] and improve

the overall performance of a helicopter [63, 47, 68]. In a higher harmonic control survey

paper, Kessler [60] defined HHC to refer to the control actuation where the actuators are
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in the fixed frame. However, Shaw [85] intended for HHC to imply the control theoretic

idea for harmonic disturbance rejection, with control actuation either in the fixed frame

or the rotating frame. In this thesis, we refer to the active helicopter vibration control

algorithms collectively as the higher harmonic control algorithm, without regard to the

type of actuation employed.

As originally conceived by McHugh and Shaw [73], Shaw [85], and Shaw and Albion

[86], HHC is a discrete-time algorithm based on a linear quasisteady model of the heli-

copter rotor (the so called T matrix), and the actuation is achieved through the swashplate,

actuators on the pitch links, or on-blade actuation such as actively controlled trailing-edge

flaps on the rotor blades. The linear quasisteady rotor model can be obtained either a priori

based on a combination of testing and modeling, or identified in real-time onboard the heli-

copter. Using the T matrix obtained from real-time online identification in the control loop

is referred to as the adaptive HHC. The main reason to use adaptive HHC is to account

for uncertainties in the plant dynamics [57], although it has also been applied success-

fully to address the variations in the plant dynamics at different flight conditions [48, 74].

Patt et al. [77] summarized the development of various discrete-time HHC algorithms, in-

cluding a relaxed version of HHC, and provided convergence and robustness analysis of

both the HHC algorithm and the relaxed HHC algorithm. An advantage of the quasisteady

discrete-time approach is that the T matrix can faithfully model the (quasisteady) effects

of periodicity on the dynamic response of the rotor. On the other hand, the quasisteady

assumption and discrete-time nature of the controller make it difficult to apply results from

control theory to the problem.

Gupta, Du Val and Gregory [40, 41, 28] applied the linear quadratic (LQ) optimal con-

trol method [67, 2] to the helicopter vibration problem. In their approach, the dynamics are

modeled using a linear time-invariant (LTI) state-space model of the helicopter. The stan-

dard linear quadratic regulator (LQR) approach is extended to include frequency domain

weighting filters in the quadratic cost functional. In particular, the filters were selected

to place infinite weighting at the selected harmonic frequencies, resulting in controllers

that completely reject the disturbance at the selected harmonic frequencies. Bittanti and

Moiraghi also modeled the helicopter dynamics as LTI, and applied the pole assignment
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technique to design controllers for harmonic disturbance rejection [9]. Bittanti, Lorito and

Strada [7, 8] considered observer based controllers for helicopter vibration reduction. They

replaced the output harmonic disturbance by an equivalent input disturbance, and then de-

signed controllers using the linear quadratic Gaussian (LQG) approach.

Hall and Wereley [44] developed a framework based on classical control theory to an-

alyze Shaw's HHC algorithm. They showed that Shaw's discrete-time HHC algorithm is

similar to a continuous-time controller that employs an oscillator at the disturbance fre-

quency in the feedback. (This result is really just the an instance of the internal model

principle [31].) Further, they showed that the continuous-time controller generally results

in greater stability margins and better performance than the discrete-time HHC algorithm.

One potential limitation of the continuous-time higher harmonic control (CTHHC) ap-

proach is that it relies on an LTI model of the helicopter dynamics. Theoretically, both

the disturbance and the dynamics of a helicopter rotor in forward flight should be periodic.

For small control inputs, linearizing the dynamics leads naturally to a linear time-periodic

(LTP) model [56]. Wereley and Hall [102] developed the harmonic transfer function (HTF)

approach to describe LTP systems in the frequency domain, and showed how classical

control analysis tools for LTI systems, such as the Nyquist diagram, can be extended to

LTP systems. The HTF was used by Arcara, Bittanti and Lovera [3] to construct an input

equivalent disturbance, which allows the vibration control problem for LTP systems to be

formulated in a periodic optimal control framework [6]. Numerical simulations show, how-

ever, that the optimal periodic control law does not achieve satisfactory performance if the

flight condition varies, which led Bittanti and Cuzzola [5] to develop a gain-scheduled Nt

approach for the parameter varying LTP system. It was found that for the values of advance

ratio ranging from 0 to 0.3, a total of 60 controllers were required for gain-scheduling to

achieve good performance.

However, experimental data suggests that the effects of periodicity on helicopter ro-

tor dynamics (but not the disturbance) are often insignificant, and that the dynamics of

rotors often may be treated as time-invariant, at least for a fixed flight condition. For exam-

ple, wind tunnel experiments conducted by Shin, Cesnik, and Hall [88] on the four-bladed

NASA/Army/MIT Active Twist Rotor showed that the periodic parts of the harmonic trans-
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fer function for that rotor are much smaller than the time-invariant part of the transfer func-

tion, implying that the helicopter rotor in forward flight may be well modeled as an LTI

system.

The effectiveness of the LTI model based CTHHC approach was demonstrated by Hall

et al. [42] on the Smart Material Active Rotor Technology (SMART) rotor in 2008. The

SMART rotor is a full-scale, five-bladed rotor based on the MD-900 helicopter rotor. Tra-

ditionally, HHC algorithms control vibration at multiples of the N per rev harmonic only,

where N is the number of rotor blades. However, wind tunnel data for the SMART rotor

showed that significant vibration exists at most integral harmonics of the rotor frequency

within the frequency range from 0 per rev to 12 per rev. Using CTHHC controllers, Hall et

al. were able to achieve a 95% decrease in the normal force vibratory load simultaneously

for the first five harmonics.

1.2.2 Helicopter Rotor Model for Control Design

Helicopter rotor model can be obtained using the theory of aeroelasticity [33], detailed

description of the interactions between the elastic and aerodynamic forces in the rotor given

by Johnson [56] and Stepniewski and Keys [96] are useful for the design and analysis of the

helicopter. For control design purpose, a simpler model is preferred since the controllers

obtained using modern control techniques have the same order as the plant model. Model

reduction procedures such as balanced truncation and Hankel norm approximation can be

used to obtain plant models that capture enough details while keeping the order of the

model tractable in control synthesis [38, 39]. The reduction procedure can also be applied

to the controller, thus allowing the full order model to be used in the design process.

An alternative approach is to use system identification techniques to infer the model

from experimental data. Models obtained using system identification techniques are of-

ten used for control design purpose [37], and can be specialized for robust control design

as in [81]. Linear time-invariant models obtained using system identification techniques

range from the empirical transfer function, which can be used in classical frequency do-

main control design method, to parametric models that are suitable for modern state-space
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control design method [69]. Procedures for identifying linear time-periodic systems were

developed by Siddiqi [89] and Allen [1]. The procedure developed by Allen identifies the

time-varying state transition matrix of an LTP system. Siddiqi developed an experimental

method to obtain the harmonic transfer function, which was introduced by Wereley and

Hall [102] to represent an LTP system in frequency domain.

1.2.3 Performance limitations

The knowledge of performance limitation for a given plant and control architecture allows

the determination of whether the performance specification is feasible before the control

synthesis step is carried out. In the case that the performance specification is not feasible,

a change in control architecture, i.e., the types and locations of sensors and actuators, may

be required. The seminal work on limits of performance in control system was done by

Bode [12]. For minimum phase systems, Bode established the relationship between the

system gain and phase, as well as the sensitivity integral bearing his name. Further exten-

sion of Bode's sensitivity integral to cover unstable and nonminimum phase systems were

established by Horowitz [52] and Freudenberg and Looze [32].

1.2.4 Stable Stabilization

Modern control techniques such as R 2 and 'H, do not explicitly incorporate the pole loca-

tions of the controller in problem formulation, so the resulting controllers may have poles

in the open right-half plane. In contrast, by using the internal model principle to achieve

harmonic disturbance rejection, the continuous-time HHC has all the poles on the jW-axis,

hence is marginally stable. The term stable stabilization (also called strong stabilization)

refers to finding stable controllers that achieves internal stability for a given plant [24]. For

a single-input/single-output plant, the necessary and sufficient condition for the existence

of a stable controller is known as the parity interlacing property (PIP), which requires an

even number of real poles between every pair of real zeros in the right-half plane [107].

Construction of the stable controller has been examined by numerous authors, and can

in general be grouped into two main categories, the interpolation approach [99, 36], and the
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modified algebraic Riccati equation (ARE) approach [55, 110, 111]. The interpolation ap-

proach of stable controller construction by Vidyasagar [99] is based on the parametrization

of all controllers by Youla, Bongiorno, and Jabr [106, 108], and consists of finding a unit

in the set of all proper stable rational functions that satisfies the interpolation constraints

imposed by the plant. For plants with the parity interlacing property, this method will

yield a stable controller, but the order of the controller could be arbitrarily high [92, 110].

Ito, Ohmori, and Sano [53] extended the interpolation approach to incorporate W" perfor-

mance specifications in the problem formulation.

The modified ARE approach is based on a state-space framework similar to that of W2

and W,, control. The general approach is to fix the controller structure, and then appro-

priately modify the ARE to ensure stability of the controller [100, 110]. The order of the

controller is fixed, and it may be possible to find reduced order stable controller directly

[101]- 712 and W,, performance specifications can be treated in this framework, but the

resulting algebraic Riccati equations are coupled and the solution of the coupled AREs is a

nontrivial task. Furthermore, since the modified AREs are only necessary conditions for a

stable controller, further modifications to the AREs may be required to obtain nonconser-

vative controller.

The stable stabilization problem is closely related to the problem of simultaneous sta-

bilization [99, 11], which is the problem of designing a controller that will stabilize a set of

distinct plants. Treating the elements from the set of distinct plants as variations from the

nominal plant, it can be seen that the concept of simultaneous stabilization is similar to the

robust control problem.

1.2.5 Robust Control

The robust control problem is to design a controller that achieves internal stability and

the performance specification for all admissible uncertainties. The model uncertainties are

treated as perturbations about the nominal plant, which could be due to the lack of knowl-

edge about the true plant, or the need for a simplified nominal model for control design.

The development of the robust control theory was motivated by the lack of guaranteed
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stability margins in LQG controlled systems [21].

Three useful tools in robust control are the linear factional transformation (LFT), the

structured singular value p [26], and R,[ optimization. LFT provides the general frame-

work for robust control theory, in block diagram form, it has the interpretation of isolating

the perturbation from the generalized plant in a feedback loop [23]. The main utility of

LFT is that it allows a variety of control problems, including both robust stability and ro-

bust performance, to be treated using the same mathematical machinery.

The structured singular value [p introduced by Doyle et al. [22], and the closely related

multivariable stability margin k, introduced by Safonov [84] are powerful tools for control

system robustness analysis. The structured singular value y' extends the idea of the max-

imum singular value for systems that contain a combination of unknown parameters and

unmodeled dynamics [29]. While problems with unstructured uncertainty can be handled

by the small gain theorem, p is needed to deal with problems with structured uncertain-

ties. However, in the general case of mixed real and complex uncertainties, P cannot be

computed exactly, and numerical methods must be used to obtain estimates of mixed pi.

The NH,, optimization is used to obtain a controller that minimizes the ratio of the 2-

norm between the input signals and output signals of the generalized plant. The use of

weighting filters to specify required performance is an important aspect of R-K control

design. The appropriate use of the weighting filters on system transfer functions allows

specification of the nominal performance [91, 112]. The sub-optimal W- controller can

be obtained by solving a pair of algebraic Riccati equation as shown by Doyle et al. [25],

and a bisection search can be used to find a near optimal RK controller [66]. Alternatively,

linear matrix inequality (LMI) can be used to obtain the 7-, controller [35].

1.2.6 Active Noise Control and Narrowband Disturbance Rejection

The field of active noise control (ANC) is concerned with mitigating noise generated by

a primary source in a given environment. A typical ANC setup consists of the generation

of an antinoise signal that is propagated from a secondary source, which then cancels the

undesired noise through the principle of superposition. The antinoise signal, which ideally
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has the same magnitude but the opposite phase as the noise, is generated by a filter that is

analogous to the controller in a control system, while the secondary source can be viewed as

the actuator in a control system. Although ANC methods are primarily focused on acoustic

noise, they have also been used in the suppression of vibration [30] and hydroacoustic noise

[65].

In general, ANC can be categorized into feedforward control structure [71] and feed-

back control structure [76]. In the feedforward ANC setup, a reference sensor measures

the primary noise to be suppressed, which is then processed by an adaptive filter to gener-

ate the antinoise; the adaptive filter is updated using signal measured from an error sensor.

The main difference in the feedback control structure is that instead of using two sensors,

only one sensor is used to measure the noise. The measured noise is then processed by

the filter before it is passed on to the secondary source, creating the feedback loop [98].

Despite being categorized as feedforward control structure, in most instances the reference

sensor will be sensitive to the antinoise generated by the secondary source, creating a feed-

back path that must be accounted for in the ANC design process [98]. Adaptive algorithms

used in ANC include filtered-X least-mean-squares (FXLMS) [17, 103], and recursive least

squares (RLS) [51, 109]. The ANC problem resembles the HHC problem in many respects,

in particular, the idea of the antinoise signal is fundamentally similar to the control signal

generated by the HHC algorithm. In certain applications, such as cooling fan noise reduc-

tion [61], the acoustic noise spectrum is narrowband, the ANC problem is nearly identical

to the HHC problem.

Literature for control schemes to attenuate narrowband or harmonic disturbances also

exist in other application fields. In the control of tape drives and optical drives, the literature

refers to the scheme of periodic disturbance rejection as repetitive control [50, 95, 64]. The

term convergent control [62] is used to describe an algorithm to control a rotor on magnetic

bearings. Sievers and von Flotow [90] categorized a variety of control methods for the

general problem of narrowband disturbance rejection.
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1.3 Thesis Outline

The remainder of this thesis is organized as follows:

In Chapter 2, a review of different control algorithms for helicopter harmonic vibration

reduction is given. These algorithms are based on models with varying degrees of simpli-

fications, and range from Shaw's original discrete-time HHC to optimal control for linear

time-periodic systems.

In Chapter 3, we define the performance measures for harmonic disturbance rejection,

namely the bandwidth and the peak sensitivity. The performance metrics are incorporated

in a notch filter, which is used as the weighting filter in the full-order W,, control method.

The performance limit in harmonic disturbance rejection, in terms of the bandwidth and

peak sensitivity, is obtained by using full-order W, controller designed with high order

notch filter.

The full-ordered NH controller that is developed in Chapter 3 presents two problems.

First, the controller is of high order since the notch filter of high order is required. The

second problem is that the full-ordered N- controller is not guaranteed to be stable. We

develop a fixed-order 7- control methodology that produces marginally stable controller

with reduced order in Chapter 4.

Linear time-invariant models are used for control design in both Chapters 3 and 4. In

Chapter 5, we present the analysis of existing wind tunnel test data showing the effects of

periodicity to be small, which allows us to use the LTI model for control design. We also

discuss the process used to obtain the plant models from both previously collected wind

tunnel test data and nonlinear simulation data.

Since significant changes occur to the dynamics of the helicopter with changes in the

flight condition, we design a gain-scheduled controller to maintain disturbance rejection

performance throughout the flight envelope. In Chapter 6, we provide the details of the

gain-scheduled control law and present the results from closed-loop simulations.

In Chapter 7, we provide a summary of this thesis, including the main contributions,

and discuss potential areas for future research.
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Chapter 2

Helicopter Vibration Control

Various types of plant models have been used in the helicopter vibration reduction problem.

The underlying assumptions in the plant models lead to different controller design methods.

In this chapter, we examine three types of linear models, namely the quasisteady model,

the linear time-invariant (LTI) model, and the linear time-periodic (LTP) model, and the

control algorithms that have been developed for these three types of models. A common

theme in the different control algorithms is in the inclusion of the dynamics of a harmonic

oscillator, either indirectly through weighting filters in the performance index, or directly

through the structure of the controller.

2.1 Linear Quasisteady Plant

The discrete-time quasisteady model of the helicopter rotor is

z= Tu, + zo (2.1)

where the vectors

un = n "(2.2)

and

z [ zc" (2.3)
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Figure 2-1: Block diagram for implementing Shaw's discrete-time HHC algorithm

are the amplitudes of the harmonic components of the plant input and output, respectively,

and the subscript n indexes the discrete time steps. The constant matrix T in Equation

(2.1) is the control response matrix, and zo is a vector of the amplitudes of the harmonic

components of the baseline vibration that is to be rejected [57].

2.1.1 Discrete-Time Higher Harmonic Control

The baseline harmonic vibration zo in Equation (2.1) can be eliminated by applying the

control

u, = -T--zo (2.4)

However, since zo is unknown, an alternative is to cancel the current vibration level z, by

applying the discrete-time control

un+1 = un - T-'z, (2.5)

Equation (2.5) is Shaw's higher harmonic control (HHC) algorithm [85], and its implemen-

tation is shown in Figure 2-1. The components of the harmonic amplitude vector Zn are

the Fourier coefficients of the measured vibration at the frequency NQ. The Fourier co-
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efficients are obtained by integrating the demodulated vibration signal over one sampling

period T, which must be an integral number of blade passage periods. The amount of

control adjustments Auc and Au, are obtained as the product of z, and the inverse of the

control response matrix T-'. The control adjustments are sampled and added to the con-

trol signal amplitudes of the previous time step, generating the current control amplitude

vector un. The controller output is obtained by summing the modulated components of the

control amplitude vector.

The integrations of the demodulated signals in Figure 2-1 extracts the harmonic in-

formation from the measured output. As a result, Shaw's HHC algorithm accounts for

the inherent periodicity of the helicopter rotor disturbance, even though the plant used for

control design is quasisteady.

In the case that the plant is not exactly quasisteady, the one period integration smooths

out the effect of the plant dynamics in the measured vibration signal. Since a longer in-

tegration period generally leads to an increased level of smoothing, it also diminishes the

effects of the system dynamics. Thus, in the case where the rotor dynamics is important

and cannot be ignored, the HHC algorithm would require a longer sampling period, which

in turn leads to a controller with a long settling time that is slow to respond to changes

in the disturbance. On the other hand, speeding up the response by decreasing the sam-

pling period introduces the plant dynamics into the controller, which could destabilize the

closed-loop system, since the quasisteady assumption no longer holds.

A generalization of Shaw's algorithm [16, 57] can be obtained by considering a quadratic

cost function of the form

J(zJ, u,) = zTWzza + ujWouJ (2.6)

which results in the control law

Un± = (T TWZT + Wu) 1 T'Wz (Tun - zn) (2.7)

It can be seen that without the control weighting Wu, Equation (2.7) simplifies to Equation

(2.5).
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Figure 2-2: Alternative implementation of Shaw's HHC algorithm with integrators and
sample and hold

2.1.2 Continuous-Time Higher Harmonic Control

Hall and Wereley [44, 45] noted that the integration over one period, the summation and

the delay shown in Figure 2-1 can be replaced by a continuous integration and a sample and

hold as shown in Figure 2-2. Furthermore, using the continuous signals instead of sample

and hold results in the continuous-time implementation of the HHC shown in Figure 2-3.

Observing that T matrices of helicopter rotors are often nearly skew-symmetric [45],

then the inverse control response matrix can be assumed to have the form

T-- [ a b (2.8)
-b a

The transfer function of the continuous-time higher harmonic controller depicted in Figure

2-3 is given by

Ks) --U(s) 2k as + bNQ
Z(s) s2 + (NQ) 2

where U(s) is the Laplace transform of u(t), and Z(s) is the Laplace transform of z(t).

The static gain k is a design parameter chosen to satisfy the stability margins and the band-
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Figure 2-3: Implementation of the continuous-time HHC algorithm

width of the controller. For direct comparisons between the discrete-time algorithm and the

continuous-time algorithm, the gain should be selected as

1
k = (2.10)

T

With a complex conjugate pair of poles at s = ±jNQ, the controller K(s) in Equation

(2.9) is in the form of the classical controller for rejecting a sinusoidal disturbance with a

frequency equal to NQ. The closed-loop pole positions can be shown to be at

1
s -- ijNQ (2.11)

T

where T is approximately the settling time of the closed-loop system. As in the discrete-

time case, a smaller T corresponds to a faster response to changes in the harmonic distur-

bance, but the dynamics of the system may be destabilized.

The continuous-time HHC offers an interpretation for the relaxed version of the discrete-

time HHC algorithm described by Patt et al. [77]. The relaxed HHC algorithm was at-

tributed to Depailler [20], and is obtained by applying a relaxation factor a < 1 to the
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control update in Equation 2.5, resulting in

un+1 = un - aT- Zn (2.12)

Simulation results [77] showed that the relaxed version increases the convergence time, but

is useful in situations where the estimated T is uncertain, which could occur in maneuver-

ing flight. Using the continuous-time interpretation of HHC in Equation (2.9), it can be

seen that the relaxation factor a < 1 essentially decreases the static gain, thus stabilizes the

system while slowing down the response, consistent with the simulation results obtained

by Patt et al.

2.1.3 Adaptive Higher Harmonic Control

In the HHC algorithms discussed above, the control response matrix T is obtained either

through modeling or experimentation, and implemented in the control structure shown in

Figure 2-1 or Figure 2-3. An alternative method is to estimate T online, and then im-

plement it in the controller. The online estimation can be accomplished using either the

recursive least squares method, or the Kalman filtering method. The combination of online

identification of T matrix and Shaw's HHC algorithm is referred to as the adaptive HHC. A

comprehensive review of various adaptive HHC algorithms was provided by Johnson [57].

To obtain the estimates of the elements in the matrix T, the quasisteady model equation

is rewritten as

Az, = TAun (2.13)

where

Au, un - un-1 (2.14)

Az = zn - zn-1 (2.15)

Measurements up to step n are concatenated to give

AZn = TAUn (2.16)
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where

AUn - u1 U2 ... un (2.17)

AZr = Zi Z2 ... Zr (2.18)

The least squares estimate of T is

-in AZniAUjP,, (2.19)

where

P,, (AUn AUT) (2.20)

and the inverse is assumed to exist. From the least squares estimate shown in Equation

(2.19), Patt et al. derived the following equations for the recursive least squares estimate of

T

Kn+1 - (1 + Aun+,1 Aun+1) Au>+1P, (2.21)

in+1 =in + (AZn+1 - inuAni+) Kn+1 (2.22)

Pn+1 =Pn (I - Aun+1Knt+1) (2.23)

The adaptive HHC algorithm is completed by substituting Trn+1 obtained in Equation

(2.22) for T in either Equation (2.5) or Equation (2.12). In the case that the elements

of T are assumed to be time-varying, then an exponential window should be applied to

de-emphasize the older measurements. The exponential window is applied by replacing

Equations (2.21) and (2.23) with

- (+ AujIPn Au,+1) 1 Au7'IP, (2.24)

Pn+1 = Pn (- I - Aun+1 Kn+1) (2.25)

where 0 < y < 1.

In addition to online estimation of T, some adaptive HHC algorithms also estimate the
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baseline levels of vibration zo online. Although as discussed by Hall and Wereley [44],

the output of the integrators in Figure 2-3 are estimates of the in-phase and quadrature

components of the harmonic disturbance. Thus the HHC algorithm implicitly estimates zo,

and explicit estimation of the baseline vibration is not needed.

The main reason cited for using adaptive HHC is to account for uncertainties in the T

matrix [74]. However, Shaw et al. have demonstrated the effectiveness of the fixed-gain

HHC algorithm in different flight conditions experimentally [87], and Hall and Wereley

have shown the fixed-gain HHC algorithm to be quite robust to plant variations [44].

2.2 Linear Time-Invariant Plant

Assuming the periodicity effect on the helicopter rotor dynamics is small, then a linear

time-invariant (LTI) system would be a suitable candidate as the plant model. The LTI

system is described by the state-space model

4p(t) Apx(t) + Bpu(t) (2.26)

yp(t) = Cpxp(t) + Dpu(t) (2.27)

z(t) = y,(t) + d(t) (2.28)

where x, E R n is the state vector of the plant, u E R"' is the control input, y, C R" is the

plant output, z E R ny is the performance output to be controlled, d E R"y is the harmonic

disturbance with frequency NQ, and AP, Bp, C, and D, are matrices of the appropriate

dimensions. The transfer function from the input u to the performance variable z is

G(s) = C,(sI - A) --1Bp + D, (2.29)

For the discussion in this section, we consider a single-input/single-output (SISO) plant.

Most of the results presented below can be generalized to the multi-input/multi-output

(MIMO) case with suitable modifications,.
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2.2.1 Continuous-Time Higher Harmonic Control

In the quasisteady case examined earlier, the continuous-time controller is given by

as +bNQ
K(s) = 2k " (NQ (2.30)

s2 + (NQ)2

where the coefficients a and b are the elements in the inverse control response matrix

T-1 a b (2.31)
-b a

Under the LTI assumption, the coefficients a and b of Equation (2.30) can be obtained by

evaluating the system transfer function G(s) at the harmonic frequency NQ as [44]

a = real G(jNQ) (2.32)

b = -imag G(jNQ) (2.33)

The sensitivity transfer function is the closed-loop system transfer function from the

disturbance d to the output z. For a negative feedback control system, it is given by

1
S(s) = 1 (2.34)

1 + L(s)

where

L(s) = G(s)K(s) (2.35)

is the loop transfer function. The magnitude of the sensitivity transfer function is the level

of attenuation or amplification of the disturbance. With the controller given by Equation

(2.30), it can be seen from Equation (2.34) that

S(jNQ) 0 (2.36)

Equation (2.36) implies that any disturbance with frequency equal to NQ will be com-

pletely rejected by the controller K(s) in the closed-loop system, regardless of the static
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Figure 2-4: Nichols plots for a typical loop transfer function of the helicopter rotor and

continuous-time HHC

gain k, and the coefficients a and b in the numerator. Note that s = tjNQ are the poles of

the controller K(s), hence the controller gain at the harmonic frequency is infinite, result-

ing in complete rejection of the harmonic disturbance.

The stability margins of the closed-loop system are related to the maximum amplitude

of S(s). A lower value of the maximum amplitude of S(s) guarantees greater gain and

phase margins. The parameters k, a, and b can be chosen, based on the plant dynamics, to

minimize the maximum amplitude of S(s), resulting in a controller with greater stability

margins.

Shin, Cesnik, and Hall [88] used the Nichols plot to determine the amount of phase

shift # of the plant dynamics needed to decrease the maximum amplitude of S(s) to an

acceptable level, thus achieving the desired gain and phase margins. The value of the plant

transfer function used to determine the coefficients a and b of the controller in Equations

(2.32) and (2.33) is

G(jNQ)e-i0 (2.37)

As an example, Figure 2-4 shows the Nichols plot of a typical loop transfer function with a

continuous-time HHC in red dashed line. The contour lines in the figure represent constant

40



values of IS(s) . The solid blue line is the loop transfer function with a controller obtained

from the plant with a phase shift # = -25 deg. The points marked by asterisks show the

direction of increasing frequency. The controller designed with the phase shifted plant has

approximately 25 deg more phase margin, and also a slight increase in gain margin.

Shin, Cesnik, and Hall [88] also examined reducing vibration at different harmonic

frequencies using multiple modes of actuation. The multi-mode controller is a summation

of individual continuous-time controllers, it has the form

K(s) = is+(NiQ (2.38)
s,82 + (NiG)2

where the subscript i is an index of different combinations of mode of actuation and

the harmonic frequency to be attenuated. The multi-mode controller was implemented

with an anti-windup algorithm developed for the parallel integrators of the demodula-

tion/modulation structure of the continuous-time HHC. The anti-windup mechanism is in-

corporated in the demodulation/modulation structure as shown in Figure 2-5, and the logic

is given by

2ku, if v < vsat, or Ivl > vsat and (u v) < 0

2k [u - (u n)n - ,(lvl - vsat)n], if v > vsat, and (u n) > 0
(2.39)

where

v = v1 (2.40)
V2

u = '1 (2.41)
'U2

and n is the outward unit normal vector given by

n = v/ lvl (2.42)

For each individual controller, a maximum allowable amplitude vsat was assigned, and av
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Figure 2-5: Continuous-time higher harmonic controller with anti-windup algorithm

was chosen to provide the desired convergence rate of the control vector. The anti-windup

logic prevents degradation of performance in the case of actuator saturation.

2.2.2 Frequency Weighted Linear Quadratic Regulator

Gupta and Du Val proposed applying a modified version of the linear quadratic regulator

(LQR) method to solve the helicopter vibration problem [40, 41]. The constant weighting

matrices in a typical LQR cost functional place equal emphasis at all frequencies. Gupta

and Du Val proposed a generalized frequency domain cost functional of the form

J f [z*(jw)Q22(jw)z(jw) + pu * (jw)u(jw)] dw (2.43)

where Q22 is a dynamic weighting filter, and * denotes complex conjugation. The weighting

filter is assumed to have the spectral factorization

Q22(jW) = P*(jw)P(jw) (2.44)
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For harmonic disturbance rejection, the filter

is chosen to provide infinite weighting at the harmonic frequency W

realization of P(jw) is given by

24(t)

zM(t)

= Awx(t) + Bwz(t)

CWx (t)

NQ. A state-space

(2.46)

(2.47)

where zw is the weighted variable to be controlled, and

0
A -=)

L- (NQ)2 0

0

C. = [
(NQ) 2

0 1

.I

(2.48)

(2.49)

(2.50)

The augmented state-space model, which contains the additional dynamics introduced

by the weighting filter P(jw), is

4(t)

z(t)

where the augmented state vector is

Jo.ci(N Q)2

w2 +(N) 2 (2.45)

= Ax(t) + Bu(t)

= Cx(t)

(2.51)

(2.52)

x =- I
43

(2.53)

B, =



and the state-space matrices are

(2.54)
A 0

BwCp Aw

B [B]
0

C = 0

(2.55)

(2.56)C.

The cost functional in Equation (2.43) can be expressed in terms of the augmented state-

space plant as

J = (z2(

The resulting full state feedback law is

u = -gx

9P

t) + pu 2 (t)] dt

1P
a: ,

9w I [
where the gain g is given by

g = BTX
P

and S is the solution to the algebraic Riccati equation

0 = ATX + XA + CTC - -XBB TX
P

(2.60)

(2.61)

Since the rotor and fuselage states are not easily obtained, Du Val, Gregory and Gupta

[27] investigated a simplified controller using feedback on just the weighting filter state x.

The transfer function of the resulting output feedback controller is

(gW S + g9) (NQ ) 2

s2 + (NQ) 2 (2.62)
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where g, and g,, are the elements of g, given by

9w = g 9wi gW2 ] (2.63)

To account for the phase lag of the actuator, an additional derivative factor

S (2.64)
NQ

is included in the controller to add 90 deg of phase. The derivative factor also decreases the

controller gains in low frequencies, which reduces adverse effects on the rotor and fuselage

dynamics.

The transfer function in Equation (2.62) has the same classical narrowband disturbance

rejection controller form as in the continuous-time HHC. The poles of Equation (2.62)

are the poles of the weighting filter P(jw), which is a harmonic oscillator with a natural

frequency of NQ. The inclusion of a model of the disturbance in the controller is known

as the internal model principle [31], and serves as another interpretation for the common

structure shared by the continuous-time HHC method and the frequency weighted LQR

method.

2.3 Linear Time-Periodic Plant

The state-space representation of a linear time-periodic (LTP) system is

4 -(t) = A,(t)x,(t) + Bp(t)u(t) (2.65)

yp C(= p p(t) + D,(t)u(t) (2.66)

z(t) = y,(t) + d(t) (2.67)
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which differs from the LTI model in that the matrices AP, Bp, C,, D, are periodic with

period T, i.e.,

A, (t + T) = A, (t) (2.68)

B,(t + T) = Bp(t) (2.69)

C,(t + T) = C,(t) (2.70)

D,(t + T) = D,(t) (2.71)

The vectors xP, yp, z, u, and d in Equations (2.65) - (2.67) are analogous to their counter-

parts in the LTI system described by Equations (2.26) - (2.28).

2.3.1 Harmonic Transfer Functions

The notion of the transfer function is not well defined for an LTP system, since a complex

exponential input to an LTP system results in an output with an infinite number of harmon-

ics. Wereley and Hall [102] used the exponentially modulated periodic (EMP) signal to

derive the frequency response of an LTP system.

An EMP signal can be expressed as

u(t) e= t E ue"jnwPt (2.72)
nEZ

= UC S"t (2.73)
nCZ

where un, n e Z, are the complex Fourier coefficients of a periodic signal with frequency

wp, and s, = s + JfnWp. The relationship between the EMP signal and the LTP system is

analogous to the relationship between the complex exponential function and the LTI sys-

tem. Input signals in the form of Equation (2.73) lead to a frequency domain representation

of the LTP system called the harmonic transfer function (HTF).

In order to obtain the HTF of an LTP system, Wereley and Hall first note that the steady-

state response of an LIP system to an EMP input u(t) is also an EMP signals, i.e.,
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XP (t)

y (t)

= ii: ,es't
nEZ

-=~ sexs7 ess'
nCZ

= yC e nZ

(2.74)

(2.75)

(2.76)

Second, the system dynamics matrix Ap(t) can be expanded in a complex Fourier series as

(2.77)A(t) = [ Ae"jmwPt

mEZy

The matrices Bp(t), Cp(t), and D,(t) can also be expressed as complex Fourier series in a

similar fashion.

Expanding the LTP state-space Equations (2.65) and (2.66) in terms Equations (2.73) -

(2.77) results in the harmonic state-space model

sX = (A - N)X + Bu

y = CX+DU

(2.78)

(2.79)

where A is a Toeplitz form composed of the complex Fourier coefficient matrices Am, m c

A

... Ao A_1 A-2 A- 3  A_ 4

... A1  AO A_ 1 A-2 A- 3

... A2  A1  AO A_ 1 A-2

... A3  A 2  A1  Ao A- 1

... A 4 A3 A 2 A1 Ao

(2.80)
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with the matrices B, C, and D similarly formed from the complex Fourier coefficient ma-

trices Bin, Cm, and Dm of the the state-space matrices B,(t), C,(t), and Dp(t). The matrix

N is an infinite block diagonal matrix given by

N = diag (jnwI; n E Z) (2.81)

The infinite harmonic vectors X, U, and Y are formed by stacking the Fourier coefficients

of xp(t), y,(t), and u(t)

XT [ T. j 2  X> T 4 T X TX (2.82)

YT .. Y-2 Y-I Yo Yi Y2 .... (2.83)

UT [... u- 2 U- 1 Uo Ui U2 ... (2.84)

The frequency domain relationship between harmonic input vector U and the harmonic

output vector Y

Y =9(s)U (2.85)

results directly from the harmonic state-space model, where the harmonic transfer function

O(s) is given by

9(s) =C(sI- (A-N))1 B+D (2.86)

For practical usage, the harmonic transfer function must be truncated, retaining the non-

trivial terms in the Fourier series expansion of A, B, C, and D. In the case that only the

coefficient matrices AO, Bo, CO, and Do are significant, the HTF reduces to a transfer func-

tion, and the LTP system can be simply represented by an LTI system.

2.3.2 Periodic Disturbance Rejection Control

An observer based periodic controller was developed by Arcara, Bittanti, and Lovera [3]

to attenuate the vibration of the main rotor in forward flight. The plant model was an

analytical model of the helicopter rotor in constant speed flight in the state-space form

given by Equations (2.65) - (2.67).
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The controller proposed by Arcara, Bittanti, and Lovera is designed to optimize the

performance index

J=E lim -t
t >oo 2t _

E(zTt)Qz,(t) + j (t)R&(t)]

for an equivalent LTP system with the state-space representation

Z (t)

z(t)

where

,a = U(t) + (t)

and d(t) is the input equivalent disturbance.

The equivalent input disturbance has the Fourier series expansion

d(t) j(k)(t)
k=O

where j(k) (t) is a sinusoidal signal with frequency kQ. For practical reasons, only r sinu-

soids are used to approximate j(t). Each d(k) (t) is generated by a harmonic oscillator with

the state-space representation

i k)(t)

d(k) (t)

= AW )xuf)(t) + n(k)(t)

= Cwk)x )(t)

(2.92)

(2.93)

where

[0 -(kQ)2

01

- [i 0 ]

(2.94)

(2.95)

and n(k)(t) is a white noise vector. Combining the r state-space models of g(k) (t), k =
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dt } (2.87)

(2.88)

(2.89)

(2.90)

(2.91)

= AP (t ),(t ) + Bp (t)ju(t )

= Cp (t)z; (t) + D, (t) ii(t)



1,2, ... , r in parallel results in the global disturbance model

= Awxw(t) + n(t)

d(t)

(2.96)

(2.97)= C~xW(t)

The global disturbance model is augmented to the plant model given by Equations (2.88)

and (2.89) to form a combined model with the state vector given by

ill (2.98)

A Kalman filter is designed to estimate the state vector x of the combined model, the

estimated state vector is denoted by

x [ 1P
xW J (2.99)

The input equivalent disturbance is obtained using Equation (2.97), with z(t) in place of

xW(t ).

With the cost functional given by Equation (2.87), and the plant model given by Equa-

tions (2.88) and (2.89), the optimal control law is

(2.100)

where

k(t) = -R- 1BT (t)P(t) (2.101)

and P(t) is the positive semidefinite periodic solution to the periodic Riccati equation [6]

-P(t) A(t )P(t) + P(t)Ap(t) + Q - P(t)Bp(t)R--1B(t)P(t) (2.102)

The state feedback control law in Equation (2.100) is implemented using the estimated state

from the Kalman filter as shown in Figure 2-6.
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Figure 2-6: Implementation of periodic controller for harmonic disturbance rejection

2.4 Summary

In this chapter, we examined three different types of systems that have been used to model

the dynamics of helicopter rotor for control design, and the associated methods for har-

monic disturbance rejection controller synthesis.

The quasisteady T matrix approach was used in Shaw's original HHC formulation in

discrete-time. Estimation of the T matrix can be performed online, resulting in the adaptive

HHC algorithm. A continuous-time version of Shaw's algorithm was presented by Hall and

Wereley. The continuous-time HHC naturally leads to control synthesis using LTI models.

The LTI models allow the controller to account for the dynamics of the helicopter rotor,

which results in improved robustness and performance. A method using the Nichols plot

to improve the gain and phase margin was introduced by Shin, Cesnik, and Hall, who

also extended the continuous-time HHC to attenuate multiple harmonic disturbances using

different modes of actuation. The LTI representation of the helicopter rotor dynamics was

used by Gupta and Du Val in a linear quadratic regulator approach to design harmonic

disturbance rejection controller. For LTP models, Arcara, Bittanti, and Lovera proposed a

procedure to design observer based periodic controllers for harmonic disturbance rejection.

All the methods described above, despite the difference in plant models, make use of a

harmonic oscillator either directly in the controller structure, or in the weighting function

of the performance index. In the case of the periodic controller, the sinusoidal disturbance

model is introduced by the Kalman estimator, which contains the augmented dynamics of

51



the harmonic oscillator.
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Chapter 3

'Hoc Higher Harmonic Controller

In this chapter, we address the problem of higher harmonic vibration reduction in heli-

copters using 7- control theory. We first discuss the nature of the harmonic disturbance

based on wind tunnel test data. Then we define a performance measure for harmonic distur-

bance rejection based on the idea of a weighting filter. Specifically, we use two parameters,

peak sensitivity and bandwidth, to define both the weighting filter, and the controller per-

formance. The weighting filter is used in the synthesis of the full-order 7-K controller for

harmonic disturbance rejection. Using higher order weighting filters, the resulting 7-K con-

trollers establish the performance limits that can be achieved in terms of peak sensitivity

and bandwidth.

In order to examine the performance of the controller using the framework of linear

control theory, we represents the plant by the state-space model

x,(t) = A Xp(t) + Bpu(t) (3.1)

y,(t) = CPx (t) (3.2)

y(t) = Cpx1 (t) + d(t) (3.3)

where x, c R"" is the plant state vector, u e R"' is the control input, y, E R" is the

plant output, y E R"" is the measured output, which includes d E R"Y, the open-loop

disturbance, AP, Bp, and C, are real matrices of appropriate dimensions. In our case,

the plant is a model of the helicopter rotor dynamics at a fixed operating flight condition.
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Our model of the helicopter rotor is a single-input, single-output (SISO) system, with the

input u c R representing the collective voltage applied to the on-blade actuators, y, E R
representing the normal force produced by the rotor minus the nominal lift force, and y C R
representing the measured normal force at the rotor minus the nominal lift force. The

procedure for controller synthesis we describe subsequently is applicable to the general

multiple-input, multiple-output (MIMO) case with appropriate generalizations of the SISO

case.

3.1 Disturbance Rejection Performance

In order to reduce the effect of the disturbance d(t), we use a linear time-invariant output

feedback control law, expressed in the frequency domain as

U(s) = K(s)Y(s) (3.4)

where K(s) is the transfer function of the feedback controller, U(s) is the Laplace trans-

form of u(t), and Y(s) is the Laplace transform of y(s) . The closed-loop transfer function

from the disturbance d(t) to the measured output y(t) is the sensitivity transfer function

S(s)
Y(s)
D(s) = S(s) = (1 - G(s)K(s))-- (3.5)

where D(s) is the Laplace transform of d(t), and G(s) is the plant transfer function from

the control input u(t) to the plant output yp(t) given by

Ye(S)= G(s) = Cp(sI - Ap)- 1 Bp (3.6)

where Y(s) is the Laplace transform of yp(t). The magnitude of S(jW) is the attenuation

(or amplification if |S(jw) > 1) of a disturbance at frequency w by the closed-loop system.
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Figure 3-1: Spectrum of the rotor normal force in Flight Condition 1

Table 3.1: Flight condition for wind tunnel testing

Flight Condition 1
Velocity, V (kt) 83
Advance ratio, p 0.20
Tip Mach number, MT 0.623
Advancing tip Mach number, MAT 0.746
Shaft angle, a (deg) 2.0
Blade loading coefficient, CT/o 0.075

3.1.1 Bandwidth

Data from wind tunnel tests conducted by Hall et al. show that significant levels of vibration

exist at almost all harmonic frequencies within the test frequency range [42]. Figure 3-1

shows spectrum of the open-loop rotor hub normal force for Flight Condition 1, which is

described in Table 3.1. The spectrum at the harmonic frequencies are essentially impulses,

which implies the disturbance d(t) in Equation (3.3) contain sinusoidal components with

frequency nQ, n - 1, 2,. . ., where Q = 1 per rev is the fundamental frequency.

From the definition of the sensitivity function S(s) in Equation (3.5), we can eliminate

the harmonic disturbances in the closed-loop response if

|S(jniQ)I = 0, Vni, i = 1, 2, ... , M (3.7)
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Figure 3-2: Ideal linear notch at w = Q

where njQ, i = 1, 2,... , M are the frequencies of the higher harmonic disturbances to be

attenuated.

Equation (3.7) implies there are notches in the sensitivity function at W = nQ, i

1, 2,. . . , M. The notion of bandwidth of the controller is associated with the width of

these notches. A wider notch corresponds to a greater bandwidth, and a large bandwidth is

desired because it would lead to faster response to changes in the harmonic disturbances.

In particular, we consider an ideal piecewise linear notch as shown in Figure 3-2. The

width of the ideal notch is inversely proportional to its slope, and since the ideal notch is

symmetric about the harmonic frequency, we define the bandwidth wB as the largest WB

such that
1

|S(jw)| <- lo - niQ, Vw E R (3.8)
WB

3.1.2 Peak Sensitivity

The disturbance d(t) in Equation (3.3) may also contain broadband noise in addition to the

harmonic components, and to ensure that the effect of the broadband noise is not amplified
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Figure 3-3: Relationship between Smax and gain and phase margins

significantly, we require that the peak sensitivity, defined as

Smax = sup IS(jOW) = ||S| (3.9)

to be no greater than some specified threshold level. The peak sensitivity will be at least

unity, because the loop gain G(jw)K(jw) -+ 0 as w -± oc, and so S(jw) --+ 1 as w -+ oc.

In general, it is desirable for the peak sensitivity to be as small as possible for two reasons.

First, the peak sensitivity is the maximum amplification of vibration at non-harmonic fre-

quencies. While the vibration away from the harmonic frequency is usually small, it is still

undesirable to amplify those vibrations. Second, and more importantly, lower peak sensi-

tivities correspond to higher gain and phase margins [91]. In particular, the gain margin

(GM) and phase margin (PM) are bounded by

GM> Srnax (3.10)
Smax - 1

PM > 2 arcsin 2i) (3.11)

The relationships between Smax and both the gain and phase margins are shown in Figure

3-3, and as an example, Smax = 1.2 implies GM > 6 and PM > 49.2 deg.
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3.1.3 Controller Performance Analysis

The 71,, framework can be used to determine whether a given higher harmonic control

system has a specified bandwidth WB, and peak sensitivity of Smax. To do this, we first need

to create a function of frequency V(W; WB, Smax) that meets the required bandwidth and

peak sensitivity requirements, such a function is illustrated in Figure 3-2. Then the control

system has peak sensitivity less than Smax and bandwidth greater than WB if and only if

|S(jW) I V(W; WB, Smax), Vw E R (3.12)

The bound in Equation (3.12) can be rewritten as

|W/V(j ; WB, Smax) S (j) I < 1, Vw E R (3.13)

where W(jW; WB, Smax) is any causal transfer function such that

|)V(jw; WB, Smax) IV W B, Smax) (3.14)

Then Equation (3.13) is equivalent to

||WSKl0 < 1 (3.15)

That is, the problem of determining whether the harmonic disturbance rejection controller

meets the desired specification is equivalent to the problem of determining whether the

infinity norm of the transfer function WNS is less than or equal to unity. Numerically ef-

ficient methods have been developed for determining the infinity norm of rational trans-

fer functions expressed in state-space form [25]. Unfortunately, we cannot simply take

W(jo;WB, Smax) = V1(W; WB, Smax), because the resulting transfer function is not ra-

tional. In the following section, rational transfer functions approximating different notch

shapes are developed.

58



3.2 Notch Filters

In this section, we present the linear and parabolic notch filters, both defined in terms of

bandwidth WB and peak sensitivity Smax, that when inverted, can be used as weighting filters

in the analysis of controllers performance.

3.2.1 Linear Notch

We first consider a piecewise linear ideal notch filter H(jw), with the bandwidth defined as

the largest WB that satisfies Equation (3.8)

To simplify the derivation, we develop the filter for the case Q = 0 and WB - 1 first,

and subsequently introduce the transformation to obtain the general filter. The magnitude

of such an ideal linear notch filter is given by

(3.16)
H(jo)~ w1, I <o ;

An approximation to the squared magnitude of H is

Hm(jW) 2 = 2( 2 
- 1) , M = 1, 2 .
- 1m+ - -I2

It is easily verified that as the order of approximation m -- oc,

Hm(j) 2 2 <

1, o >1

as required. Factoring the numerator and denominator of jHm(jw) 2 and eliminating a

common factor of w2 - 1 results in the equivalent representation

"Hr(jo|) 2
2m + W 2 (mt--1) + . . + W2

x2m + ) 2 (m- 1) + . . + W2 +1 (3.19)

A causal approximation Hm, may be obtained as follows. If Hmn(jw) is the transfer
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function of a real system, then Hm(-jw) is the complex conjugate of Hm(jw), and there-

fore

|Hm(jW) 2 =Hm(jW)Hm(-jW) (3.20)

In terms of the Laplace variable s = jw, define

-82 +±84- ... +(1m2M(s) = Hm(S)Hm(-s) = (3.21)
1 - s2 + 84 - .. .+ (-1)ms2m

Because M(s) is a rational function of s2 , the spectral factorization of M(s) results in

factors that are rational functions of s. The stable and minimum phase factor Hm(s) has as

poles and zeros all the open left half-plane poles and zeros of M(S), plus one of the two

zeros of M(s) at the origin. By making the substitution W2  _2 in the numerator of

Equation (3.17), it can be seen that there are two zeros at the origin, one of which belongs

to Hmn(s), and the rest of the zeros of Hm (s) are the left half-plane roots of

s2m + 1 = 0, M = 1, 3, 5, ... (3.22)

s2n - 1 = 0 , m = 2,6, ... (3.23)

The roots of both Equations (3.22) and (3.23) are spaced at an angle of rm rad apart

around the unit circle, starting at s = lj. Similarly, making the substitution W2  -s2 in

the denominator of Equation (3.17) shows the poles of Hm(s) are the left half-plane roots

of

s2(m+) 1 = 0, M = 1, 3,5, ... (3.24)

s2(m+1) + 1 = 0, m = 2, 4, 6, ... (3.25)

For Equations (3.24) and (3.25), the roots also start at s = lj, but are space at an angle

of r/(m + 1) rad apart around the unit circle. Note that pole zero cancellation occurs at

s = lj and s - -lj, thus the resulting Hm(s) has m poles in a Butterworth pattern, and

m - 1 zeros that are also in a Butterworth pattern, plus an additional zero at the origin.

The magnitude of the linear notch approximation Hm for various values of m is shown
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Figure 3-4: Ideal linear notch and various order of notch approximation

in Figure 3-4. As m increases, |Hm(jw) closely approximates the ideal linear notch. As

a practical matter, we have found that increasing the filter order beyond m = 6 has little

effect on the analysis of controller performance.

When the disturbance contains multiple harmonics ni, i = 1, 2, ... , M, the ideal bound

can be expressed in terms of the ideal linear notch as'

V(w; WB, Smax) = Smax H - H (Jw + jrl (3.26)
i H\ BSmax WB Smax

The product on the right hand side of Equation (3.26) has two notches for each of the

M harmonic frequencies of interest, one for frequency w = njQ, and one for frequency

w = -niQ. Because the maximum magnitude of the ideal linear notch is unity, the product

has a maximum magnitude of unity. The factor Smax is needed to make the maximum of V

be Smax. The notches must also be scaled by WBSmax to achieve the appropriate bandwidth

as defined by Equation (3.8). The finite-dimensional approximation of the ideal linear

'Note that Equation (3.26) is correct only if the individual notches do not overlap, which requires that

Q
2Smax

For practical parameter values, this condition will always hold.
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notch at multiple harmonic frequencies is

l jo - jni(jo( + jnig
V(s) = Smax Hm W Hm WBSmax(3.27)

Finally, we approximate the weighting filter /V (w; WB, Smax) by a finite-dimensional

approximation W(jw), with W defined by

W(s) = V--(s) (Smaxi H (s Q) H9 s -(s+ J ) (3.28)

Note that the resulting W(s) has all its zeros in the open left half-plane, but has poles in

the closed left half-plane, including poles on the jw-axis, because Hn(s) has a zero at the

origin. For any controller that satisfies the bandwidth and peak sensitivity constraints, the

resulting sensitivity transfer function S(s) will have zeros on the jw-axis that cancel the

jw-axis poles of W(s). The analysis problem is then to determine whether for the given

controller K(s),

||Tzad = ||WSl<1 (3.29)

where Tza is the transfer function from d to z in the block diagram shown in Figure 3-5. A

controller that satisfies Inequality (3.29) will also satisfy

|WS||. 1 (3.30)

because |W(jw)| ;> |W(jW; WB, Smax) for all w. The conservatism introduced by using W

instead of W can be reduced by using a high order Hm, at the expense of greater computa-

tional complexity.

3.2.2 Parabolic Notch

If a controller satisfies the inequality ||WS1l < 1, where W is the inverse of the linear

notch filter of Section 3.2.1, then the closed-loop response to the harmonic disturbance will

increase linearly with deviation in the frequency of the disturbance. A notch filter with a
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Figure 3-5: 71... performance analysis block diagram

parabolic shape near the harmonic frequency would be less sensitive to deviations in the

harmonic frequency, as long as the deviation in frequency is not too large. In this section,

we develop the parabolic notch filter with the bandwidth defined as the largest WB such that

1
S(jw)| < - Q 12 , Vw C R (3.31)

B

The magnitude of the ideal parabolic notch, with Q 0 and WB = 1 is given by

|H(jw) {22 (3.32)

An approximation of the squared magnitude of the ideal parabolic notch is

|Hm(jW) |2 = , 4 (W2m - I rM = 1, 2, ... (3.33)
w 2 rn±4 

-1

and as in the case for the linear notch, it can be verified that as the order of approximation

m -4 00,

|Hn(jO)| 2 < (3.34)

as required. By following the same procedure carried out for the linear notch filter in

Section 3.2.1, the approximation of the ideal quadratic notch is obtained from the stable
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Figure 3-6: Ideal parabolic notch and various order of notch approximation

and minimum phase factor Hm (s) of

M(S)~ ~ ~ ~ s = M(). - 6+. +_1)m + 1 2(m+1) mn = 1 3A 5.
MI(s) =Hm(s)Hm(-s) =1 (2+l4-...+(-1)+12+ ,n 1,,, - - - (3.35)

4 +s8 +...+s 2
m m - 2 4 6

i+84+,Ss+...+,2m , - A6 .

where a common factor of W2 - 1 is eliminated from Equation (3.33) in the case m is odd,

and a common factor of w4 - 1 is eliminated in the case m is even. Similar to the linear

notch filter case, the poles of Hm(s) are arranged in a Butterworth pattern, and the zeros

are also arranged in a Butterworth pattern, but the parabolic case has two additional zeros

at the origin. Whereas the subscript m indicates the filter order for the linear notch filter,

the order of the parabolic filter depends on whether m is odd or even. For odd m, the filter

has m + 1 poles and zeros. For even m, the number of poles and zeros are both equal to

m. The approximations of the parabolic notch for various values of m are shown in linear

scale in Figure 3-6.

The derivation for the ideal bound V(w; WB, Smax) in the parabolic notch case also fol-
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lows the derivation in linear notch case. The ideal bound for parabolic notch is given by

V(W; WB, Smax) = Smax H .H( (3.36)

and the resulting weighting filter is

A (ss -(fniQN H (s + JniQ)W1s)m= Smax Hm Hm (3.37)
LJB NfmxLB m

In this case, the argument is scaled by 1/(wB nax) instead of 1/(WBSmnax) in the linear

notch. Since Hm(s) has two zeros at the origin, W(s) has two poles at w = niQ and two

poles at o = -niQ. Thus, any controller that satisfies

|WS < 1 (3.38)

where W(s) is the weighting filter of the parabolic notch given in Equation 3.37, must have

two poles at w = niQ, and two poles at Lo = -niQ, in order to generate the necessary zeros

in S(s) to cancel the jw-axis poles of W(s).

While the notch could be made even flatter in the vicinity of the harmonic frequencies

by including more zeros at the origin in the notch filter, a strong argument against using

more than two zeros at the origin can be made by considering the root locus of such a

system. In order for the sensitivity transfer function to have k zeros at the origin, the

controller and plant combined must have k poles at the origin. While it is possible to direct

the two branches of the root loci at the origin to the left-half plane with the correct phase

adjustment, this is not possible when there are more than two poles at the origin. At least

one branch of the resulting root loci will initially venture into the right-half plane, resulting

in a conditionally stable closed-loop system. Since a decrease in the static gain could cause

the conditionally stable system to destabilize, it would in general not be practical to go

beyond a parabolic notch filter.
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3.3 7c Controller Synthesis

The analysis framework presented above can be used to develop an W'L" controller synthesis

methodology, albeit with some complication for the cases with complete harmonic distur-

bance rejection. In theses cases, because W(s) has poles on the jw-axis, any controller for

which ||WSll, is finite will result in system zeros in S(s) on the jw-axis that cancel the

jw-axis poles in W(s), as discussed above. However, the usual N synthesis procedure

will fail, because the poles of W(s) on the jw-axis are both unstable and unobservable.

The problem is similar to that encountered when an integral weighting filter is used to

ensure rejection of constant disturbances, as discussed by Zhou and Doyle [112]. One way

to remedy this problem is to factor W(s) into two not strictly proper transfer functions as

W (s) = W2 (s) W1(s) (3.39)

such that W1(s) contains all the poles of W(s) on the jw-axis, and W2(s) contains the rest

of the poles of W(s) and is minimum phase. The control synthesis is performed as if the

plant were W1(s) G(s), and the weighting were W2 (s), which results in a controller K .(s)

that acts on the augmented plant W1 (s)G(s). The controller acting on the plant G(s) is

then

K,,(s) = Z.(s)W1(s) (3.40)

The inclusion of W1 (s) in the W,, controller as shown in Equation (3.40) implies the con-

troller contains poles on the jw-axis at the harmonic frequencies. The controller thus gener-

ates infinite gain at these harmonic frequencies, which is necessary for the complete rejec-

tion of the harmonic disturbances. The block diagram for the modified controller synthesis

problem is shown in Figure 3-7.

3.3.1 Augmented Plant and 'H, Higher Harmonic Control

Another way to remedy the problem of the unstable and unobservable poles on the jw-axis

in the weighting filter is presented in this section using a state-space formulation. The main

difference is that the decomposition of the weighting filter in Equation (3.39) is in series,
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Kj(s)- G(s) Z (S) W2(S)

Figure 3-7: 7H, control synthesis setup when weighting filter contains poles on jo-axis

while a parallel decomposition is used in this section.

We first partition the state-space realization of the weighting filter

(s)~( Aw Bw

Cw Dw
(3.41)

into

A1

Cw

[
- [4

0

0 A2

B1

B2

C 1 C 2

(3.42)

I
(3.43)

(3.44)I
where the eigenvalues of A1 are all the poles of W(s) that are on the jw-axis, and the eigen-

values of A2 are the remaining poles of W(s) that are not on the jw-axis. The restriction

that Aw be block diagonal can be easily accomplished by realizing W(s) in modal form,

or Jordan form if W(s) has repeated poles.

The augmented plant for ',H controller synthesis in terms of the decomposed weighting
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= B 1 Cp

B2Cp

A 1  0 x 1

0 A 2 x 2

DwCp C1 C2

0 I 0
rXi

[2

I+ [0

B1

B 2

0] d
0

U
0 - -

I
(3.45)

(3.46)

It is also possible to include a weighting on the control effort. For example, a constant

scalar weighting We, on control effort could be incorporated in the augmented plant by

appending Equation (3.46) with

Z3 = [0 0 ][xp

X1

X2

Wi ] d (3.47)

Applying the R,, synthesis procedure to the augmented plant of Equations (3.45) and

(3.46) results in an N controller K, (s) with the state-space realization

A - BR
KO(s) ) (3.48)

T Cb D o

The block diagram of the 'H, controller synthesis setup is shown in Figure 3-8, where

Wi(s)

W2(S)

A1 B2

I 0

A2 B 2

C2 Dw

(3.49)

(3.50))
The controller K, (s) is combined with the harmonic part of the weighting filter W1 (s) to
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Figure 3-8: Block diagram of augmented plant in W,, controller synthesis

form the W-. higher harmonic controller Ko(s) with the state-space representation

A1 0 B1

KoK(s) ~ Bk Ak 0 (3.51)

[Dk Ck 0

The order of the 'H,, higher harmonic controller K, (s) is

r1c = n1p + nw + nw, (3.52)

where np is the order of the plant, nw is order of the weighting filter W(s), and nwi is the

order of W1 (s).

3.4 'Ho HHC Performance

In this section, the performance of the W, controllers designed using the different notch

shapes is examined using an LTI model of the helicopter rotor. The model is derived from

wind tunnel test data at Flight Condition 1, the output is the rotor hub normal force, and

the input is the collective voltage to the rotor on-blade actuators. The parameters for Flight

Condition 1 are shown in Table 3.1. Details of the model and the system identification

process used to obtain them are described in Chapter 5. The plant model is of order n, =

19. All controllers examined below are designed to eliminate the disturbances at the first
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(a) Sensitivity transfer function (b) Close-up view at the first harmonic frequency

Figure 3-9: Sensitivity transfer function with linear notch

five harmonics, i.e., n, = i, i = 1, 2, 3, 4, 5. Because there are five harmonic frequencies

in the disturbance to be rejected, the weighting filter W(s) has order nw = 2mM =

10m, where m is the order of the weighting filter, and M = 5 is the number of harmonic

frequencies to be rejected. The order of W1(s) is nw, = 2M = 10 for the linear notch filter,

and nw, = 4M = 20 for the parabolic notch filter. The resulting ?I,, higher harmonic

controller is of order Nc = np + 10m + 2M = 29 + 10m for the linear notch case, and

Nc = n, + 10m + 4M = 39 + 10m for the parabolic notch case.

3.4.1 Linear Notch Performance

The magnitude of a sensitivity transfer function with linear notch is shown in Figure 3-9.

The W-, controller was generated using weighting filters of order m = 6, and the peak

sensitivity is selected to be Smax 1.1, resulting in a bandwidth WB 0.043 per rev. The

magnitude of the sensitivity functions matches the shape specified by the weighting filter

to the specified tolerance used in the W,,, synthesis procedure. Figure 3-9b shows the detail

of the notch shapes at the first harmonic.

A Pareto frontier in terms of peak sensitivity Smax and bandwidth WB can be established

using the W,, method for harmonic disturbance rejection. This is because the -t method

will generate a controller that makes the magnitude of the sensitivity transfer function arbi-

trarily close to the finite dimensional notch approximation, and the finite dimensional notch

approximation approaches the ideal notch shape as the filter approximation order m - o.
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Figure 3-10: Pareto frontier of peak sensitivity and bandwidth for linear notch

The Pareto frontiers are shown in Figure 3-10, where each individual curve represents the

achievable performance within a family of controllers of the same order. Because the per-

formance is better with either larger bandwidth or smaller peak sensitivity, improvement in

performance is indicated by a movement of the curve down and to the right. For the W-&"

method, little improvement is obtained beyond m = 6, thus the curves corresponding to

m = 6 is a good representation of the achievable Pareto frontier for continuous-time higher

harmonic control performance.

3.4.2 Parabolic Notch Performance

Similar to the linear notch case above, the W,, controller for parabolic notch was generated

using weighting filters of order m = 6, and the peak sensitivity is selected to be Sma = 1.1,

resulting in WB - 0.023 per rev. The sensitivity function is shown in Figure 3-11.

Pareto frontiers in terms of peak sensitivity Smzax and bandwidth WB can also be es-

tablished for the parabolic notch case, as shown in Figure 3-12. Note that the bandwidth

WB is defined differently for the parabolic notch, thus the Pareto frontiers are not directly
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(a) Sensitivity transfer function (b) Close-up view at the first harmonic frequency

Figure 3-11: Sensitivity transfer function with parabolic notch

comparable to the linear notch case.

3.4.3 Transient Response

The bandwidth and peak sensitivity are metrics that we can address directly in the design

of controllers. While we defined the performance metrics with the transient performance

in mind, it is important to verify the transient behavior of the closed-loop system through

simulation.

For the transient performance, we look at the settling time of the closed-loop system to

a harmonic disturbance

d (t) = 0,t<0(3.53)
A sin(not + r), t ;> 0

where the independent variable t represents the azimuthal position of the rotor, A is the

amplitude of the harmonic disturbance, and T is the phase of the harmonic disturbance. For

A = 1, n = 1, = 0, the responses produced by the closed-loop system with the different

controllers are shown in Figure 3-13. While the larger bandwidth value of the linear notch

case implies a shorter settling time than the parabolic notch case by approximately a factor

of 2, the settling time to -20 dB for the linear notch case is actually shorter by a factor of

nearly 4 (7.81 rev for the linear notch case, 26.77 rev for the parabolic notch case). The
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Figure 3-13: Normalized response of the closed-loop system to a harmonic disturbance
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discrepancy in the ratio of settling time and ratio of bandwidth can be attributed to the

difference in the shape of the notch in the sensitivity function. Since the controllers for this

comparison have the same value of Smax, the only way for the parabolic notch controller

to approach the transient performance of the linear notch controller is to relax Smax, which

will lead to increased broadband vibration level, and reduced gain and phase margins.

3.4.4 RMS Performance

The parameters A, T, and Q of the disturbance in Equation (3.53) may vary during heli-

copter operation, even at constant flight condition. The changes in A, T, and Q may be

stochastic in nature, for example, they could be caused by wind gust, which will change

the power spectral density of the disturbance from an impulse to one with finite width.

In order to examine the RMS performance, Hall and Wereley [44] suggested model-

ing the narrow band disturbance using a Gauss-Markov process with the autocorrelation

function

Rdd(t)= o exp -LL cos(wot) (3.54)

where Od is the standard deviation of the disturbance, T is the correlation time of the Gauss-

Markov disturbance, and wo is the central frequency of the disturbance. The power spectral

density of the narrow band disturbance is

Sdd(s)= F(jw)F(-j)S.(jw)

where Sdd(S) is the power spectral density of the disturbance, Sm(s) is the power spectral

density of the Gaussian white noise with intensity a' , and F is the shaping filter is given

by

2 s T +o
F(s) = - 1 (3.55)

The RMS vibration level of the closed-loop system can be obtained by computing

_= -|S(s)F(s) 12 (3.56)
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Figure 3-14: RMS vibration level for wo Q

Again, we consider the two controllers with Smax = 1.1, but different notch shapes. The

RMS vibration level as a function of correlation time T for wo = Q is plotted in Figure

3-14, which shows that the linear notch has lower RMS vibration level for all values of

T. The RMS vibration level as a function of T for wo = 1.01Q is plotted in Figure 3-15,

in this case, the linear notch case has lower vibration level for small values of T, while

the parabolic notch case has lower vibration level for larger values of T. Although the

RMS vibration level is an important aspect of controller design, the utility of the RMS

analysis is dependent on the nature of the disturbance. Unfortunately, the knowledge about

the random characteristics of the disturbance on the rotor is currently lacking, more data

or better modeling is required to make the RMS vibration analysis a useful tool for design

purpose.

3.5 Summary

In this chapter, we showed that the performance in harmonic disturbance rejection can be

quantified by the bandwidth WB and the peak sensitivity Smax. The bandwidth WB and peak

sensitivity Smax are defined relative to the shape of the ideal notch. We presented two types
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Figure 3-15: RMS vibration level for wo - 1.01W

of notch filters: the linear notch filter and the quadratic notch filter. The notch filters are

approximations of the ideal notch shape, and when inverted, are used as the weighting filter

W(s) in the W-t, frame work for analysis and synthesis. Based on the transient performance

of the controllers, the linear notch shape is a better metric than the parabolic notch. Fur-

thermore, controllers designed using high order W(s) provide the achievable performance

in terms of WB and Sma. However, it is important to note that in many cases, the W-,

controllers are unstable, although the closed-loop system is stable. Unstable controllers

are unacceptable for higher harmonic control systems in practice, because if the actuators

ever saturate, the system effectively operates in open-loop, and the control system will be

destabilized.
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Chapter 4

Fixed-Order 7-oc Controller Synthesis

One difficulty with the full-order N higher harmonic control (HHC) approach outlined

in the previous chapter is that the resulting controller order can be quite high. The order

of the 'H,, controller is the order of the plant plus the order of the weighting filter. For

example, the order of the linear weighting filter is 2mM, where n is the order of the notch

approximation, and A is the number of harmonics to be suppressed. In the HHC problem,

it would not be unusual to have M = 5, and we have found that we need up to m = 6 to

adequately approximate the notch. The order of the helicopter plant model is at least twice

the number of significant rotor modes within the bandwidth of interest, and so can easily

be 10 to 15. Thus, a typical weighting filter would be of order 60 or higher, leading to

controllers of order 70 or more. Another difficulty with the full-order 'HL HHC approach

is that the controller itself may not be stable. An unstable controller is problematic because

if the actuator becomes saturated, the closed-loop system effectively operates in open-loop

with an unstable element, causing the entire system to become unstable.

In this chapter, we describe a methodology for obtaining stable fixed-order controllers

that optimize the W,, performance objective for harmonic disturbance rejection. The aim

of the fixed-order W... controller is to strike a balance between controller complexity and

performance, while ensuring the controller itself does not cause instability in the event of

actuator saturation.
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4.1 Fixed-Order Controller Synthesis Parameterization

In this section, we develop the fixed-order 'H, controller by using the linear notch filter

V(s) developed in Chapter 3 as the performance measure. The bandwidth WB and peak

sensitivity Smax associated with V(s) are the metrics used to quantify the performance of

the controller, while the inverse of the linear notch filter W(s) = V- 1 (s) is used in the

synthesis procedure as the weighting filter. As in the previous chapter, we consider the

plant with the state-space representation

4(p = px(t ) + Bpu(t ) (4.1)

y,(t) = CPx(t) (4.2)

y(t) = Cpx(t) + d(t) (4.3)

in the development of the fixed-order 'R, controller for harmonic disturbance rejection.

The transfer function from u(t) to y,(t) is

G(s) = Cp(sI - Ap)-'B, (4.4)

The sensitivity transfer function S(s), which is the closed-loop transfer function from d(t)

to y(t) is

S(s) = (I - G(s)K(s))- (4.5)

where K(s) is the transfer function of the output feedback controller.

4.1.1 'R-,, Cost Function

In the 'H, framework, the specified closed-loop performance is quantified by a weighting

filter W(s). The weighted sensitivity function is formed by connecting the weighting filter

W(s) in series with the sensitivity transfer function as shown in Figure 4-1. The weighted

sensitivity function is the closed-loop transfer function from d(t) to the performance vari-

able z(t), and is denoted by

Tzd(s) = W(s)S(s) (4.6)
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Figure 4-1: W,,, performance analysis block diagram

The W-[ analysis problem for a given stabilizing controller is to check whether

||TzdK|| < 1

Since the infinity norm can be efficiently computed using state-space methods [25], we

proceed with the state-space realization

( Aws Bws

Cws Dws
(4.7)

for the weighted sensitivity function

The necessary conditions [112] for |ITzda|| < 1 are that

(4.8)|Dws| < 1

and that the algebraic Riccati equation

AQ + QAT + BBT + QCCQ = 0 (4.9)

has a symmetric, positive definite solution Q, where

A= Aws + BwsR- 'Divsws

B = BwsR-

C (I + DwsR-1D s) Cws

(4.10)

(4.11)

(4.12)
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and

R I - DwsDws (4.13)

Both Inequality (4.8) and the existence of a symmetric, positive definite solution to

Equation are essentially binary conditions, not suitable for gradient based optimization

methods. In order to obtain a continuous cost function that may be optimized via gradient

methods, we define (following Mustafa [75]) the auxiliary cost Ja as the negative of the

entropy of Tad(s), given by

Ja = trace [CQO T]

where Q is the positive definite, symmetric solution of Equation (4.9). This entropy cost

approaches infinity as ||Tzd||. approaches unity, so minimizing the entropy cost tends to

make ||Tza.o smaller. The cost function J is the auxiliary cost, augmented via a Lagrange

multiplier P with the constraint imposed by Equation (4.9), so that the performance index

is

J = trace [QCT + P (AQ + QAT + BBT + QCTCQ)] (4.14)

The performance index J is a function of A, B, and C, which are constructed using the

state-space realization of the weighted sensitivity function

W(s)S(s) = W(s)(I - G(s)K(s))-1  (4.15)

Thus, the fixed-order 7-i synthesis problem can be formulated as the optimization problem

min J(K) (4.16)
K

In the next section, we present the parameterization of the state-space realization of the

controller K, which enables the optimization problem posed in Expression (4.16) to be

solved.
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4.1.2 Fixed-Order Controller Parameterization

As in the case of the full-order R-t synthesis with linear notch filter, we want to achieve

complete disturbance rejection at the harmonic frequencies niQ, i = 1, 2, .. . , M. In order

to have complete harmonic disturbance rejection, we impose that the controller must have

poles at the harmonic frequencies to be attenuated. The poles of the weighting filter W(s)

on the jw-axis are to be retained in the fixed-order controller by a decomposition as shown

in Figure 4-2. The weighting filter is represented as

W Cw W1(S) + Dw (4.17)
[ W2(s)

where W1 (s) is a 2M x 1 transfer function matrix, with poles on the jW-axis at each of

the harmonic frequencies, W2(s) is a 2(m - 1)M x 1 transfer function matrix, Cw is a

1 x 2mM matrix, and Dw is a scalar.

The fixed-order controller K(s) is given by

K(s) = kW1(s) + Kc(s) (4.18)

where

k = ki k2 ... k2J (4.19)

and Kc(s) is a scalar transfer function, with fixed order nc that can be varied as a design

parameter. As a result, the order of the controller K(s) is

Nc = nc + 2M (4.20)

The decomposition of the weighting filter in Equation (4.17) ensures that the R... cost can

be calculated using state-space methods, and that there is an appropriate representation

for the fixed-order controller K(s), which must have poles on the jW-axis for complete

harmonic disturbance rejection.

The transfer functions described above are realized as follows. The weighting filter
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Figure 4-2: Fixed-order 'Hoo controller setup

W(s) is realized in modal form as

W(S)~ Aw Bw (4.21)
Cw Dw

where Aw and Bw have the following partitions

Aw A1 (4.22)
L0 A2

Bw [B 1  (4.23)
B2

The matrix A1 is real, block-diagonal, and contains all the poles of W(s) on the jW-axis, it

has the form

0 n1Q

-n1Q 0

0 n2Q

A 1 - -n2 0 (4.24)

0 nuQ

-nMQ 0

The matrix A2 is also real and block-diagonal, but may contain first and second order blocks
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so that its eigenvalues are the poles of W(s) not on the jw-axis. The matrix B1 is

B1 = 1 0 1 0 ... 1 0 (4.25)

and B 2 is also a matrix of ones and zeros, so that the system is completely controllable.

The matrices Cw and Dw are chosen so that the open-loop transfer function from d to z is

the desired weighting filter W(s). The transfer functions W1(s) and W2(s) then have the

state-space realizations

W1 (S) ~ , B (4.26)
( 1211 02Mx1I

W2(S) ( A 2  B 2  
(4.27)

1 2M(n-1) 
0 2M(m-1)x1

The transfer function Kc(s) has the state-space realization

K, ~ Ac Be (.8K(s ( ~ )(4.28)
cc 0)

In order to reduce the number of free parameters in the optimization, we place some con-

straints on the realization of Kc(s). In particular, we parameterize the controller state-space

matrices as

ai ac+1 0 -.. 0

-anc+1 a 2  arinc+2

Ac 0 -anc,+ 2  . . 0 (4.29)

anc, -1 a2nc- 1

0 - 0 -a2n i a c

Be = b1 b2 -.. bc (4.30)

Cc = 1 ... 1 (4.31)

This parameterization of Kc(s) allows for the representation of any proper transfer function
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of order nc, with only a few more free parameters than in canonical realizations that are

numerically more sensitive, such as phase variable canonical form. In addition, the form of

Ac allows one to easily add a constraint requiring that Kc(s) be stable, because a sufficient

(but not necessary) condition for stability of Ac is that its diagonal elements are all negative.

For practical higher harmonic control implementations, Kc(s) must be stable to ensure that

the control system remains stable in the event of actuator saturation. For the result presented

in this thesis, we always constrain the fixed-order controller to have poles in the closed left

half-plane in order to obtain a stable controller.

The controller K(s) as given in Equation (4.18) has the state-space realization

K AK BK(4.32)
CK 0

where

AK Ac Oncx2AI (4.33)
0

2Mxnc A1

BK B B] (4.34)
B1

CK Cc k (4.35)

The unknown parameters of the fixed-order controller K(s) are combined into a single

vector as

0 = [1 02 ... 13nc+2 - (4.36)
] T

= ai... a an+1 ... a2nc-1 b1 ... bnc ki ... k2 1 (4.37)

The fixed-order control synthesis problem is to find 0 C R3 nc+2M-1 to achieve the desired

performance in terms of bandwidth and peak sensitivity.

Finally, the state-space realization of the weighted sensitivity function Tda(s) for the

84



fixed-order setup is

Tas~ ( Aws Bws

Cws Dws

where

L

F

A,

B1Cp

B2C,

0

Bc

BI

BACe

AC'

Bpk

0

0 A,

0

0

0

0 0 A 2

1

Cws = Dw p 0 CwJ

Dws Dw

and 0 represents the zero matrix of the appropriate dimensions.

The state-space realizations given above allows value of the cost function J in Equation

(4.14) to be computed. Furthermore, we can formulate the stable, fixed-order harmonic

disturbance rejection controller synthesis problem as the optimization problem

min J(9) subject to S(s) stable, K(s) stable
0-

(4.43)

4.1.3 Fixed-Order Controller Optimization

The 7-t0 cost function J defined by Equation (4.14) is a function of P, Q, and the controller

K(s). Because the controller K(s) is parameterized by 8, the necessary conditions for a

stationary point of J are
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(4.39)

(4.40)

(4.41)
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= Q + QA + QCQ + PBT 0 (4.44)

aJ
(A+QTC) T P+ P (A +QOTC) +CTC =0 (4.45)

0 (4.46)

For a given controller, the cost function J is computed by solving the Riccati equation

given by Equation (4.44) for Q, and solving a Lyapunov equation given by Equation (4.45)

for P. To ensure that the controller is stabilizing, we require the solution Q of Equation

(4.44) to be symmetric and positive definite. To guarantee the controller is itself stable, we

add the constraint that all the diagonal elements of Ac in Equation (4.29) be negative.

Since the desire to maximize bandwidth WB and minimize peak sensitivity Smax are

generally in conflict, we can find a Pareto frontier of achievable performance by varying

one parameter in an outer loop, and optimizing the other in an inner loop. Here, we describe

an algorithm to obtain the Pareto frontier by varying WE over a range of bandwidths in the

outer loop, and Smax is minimized in the inner loop. The algorithm for the inner loop

optimization consists of the following steps:

1. For the given value of WB, find an initial feasible controller.

2. Find Smax such that sup {||TdJ| =I 1.

3. Define the weighting filter W(s) based on WE and Smax.

4. Obtain a new controller by performing a conjugate gradient search on 8 to minimize

J.

5. Iterate steps 2, 3, and 4 until the parameters of K(s) converge.

We use the continuous-time HHC (CTHHC) approach of Hall and Wereley [44] to generate

the initial feasible controller used in the inner loop optimization. The time constant param-

eter T,1 for the CTHHC controller are all set to T, which yields a baseline controller with

approximate bandwidth WE ~ 1/T. The actual bandwidth achieved is found directly from
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the sensitivity transfer function. The desired values of the bandwidths in the outer loop

of the algorithm can be obtained by varying the value of T used to generate the baseline

controllers.

To initialize the parameter vector 0, the baseline CTHHC controller Ko(s) is realized

in state-space as

Ko(s) ( A 1 B1  
4.47)

(ko 0

where A1 and B1 are the same matrices as in Equation (4.26), and ko is used as the initial

k in Equation (4.35). With the CTHHC given by

Ko(s) = (4.48)
i=1 s2 + (niQ)2

the initial k is simply

ko [ ai -01 " 2 -- #2 ... C -# ] (4.49)

The initial values for the diagonal elements of Ac, ai, i 1, 2,. .T. , n are set to any

negative number (we used -1 for most cases), the superdiagonal and subdiagonal elements

of Ac, ai, i = nc + 1, nc + 2,... , 2nc - 1 can be set to any number (we used 0 for most

cases). The initial values for the elements of Bc are all set to zero. Since Bc is the zero

vector, the output of the initial Kc(s) is identically zero, and the initial controller is equiv-

alent to the baseline CTHHC. Note that while Kcjs) could be implemented in series with

kW 1(s), resulting in a fixed-order controller K(s) = Kc(s)kW 1(s), we choose the parallel

implementation of Equation (4.18) because it allows us to easily obtain an initial set of

controller parameters as described above.

For each initial controller, the peak sensitivity is found by performing a binary search

for the smallest Smax for which |ITd < 1. The performance metric J, which depends

on WB, Smax, and K(s), is then minimized with respect to the parameters of K(s) by a

conjugate gradient search. Analytical expressions for the gradient are provided in the next

section.
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The algorithm described above requires a stabilizing initial controller. However, the

baseline CTHHC algorithm does not produce controllers with bandwidths beyond a thresh-

old value, which depends on the plant transfer function. The reason is that increasing the

value of the bandwidth corresponds to increasing the value of the static gain in the CTHHC,

eventually resulting in an unstable system. In order to obtain fixed-order controllers with

bandwidths greater than the threshold value, we can instead find an initial controller with

the desired peak sensitivity, and iterate on WB in the inner loop.

4.1.4 Analytical Gradient

The optimization in the fixed-order controller synthesis requires the gradient of the cost

function, which can be obtained using numerical approximation. Since the controller pa-

rameter 8 given in Equation (4.37) are arranged such that the diagonal elements of Ac are

listed first, the superdiagonal elements of Ac are listed second, elements of Cc are next,

followed by the elements of k, the elements of the gradient are grouped similarly as

0 - [i 0i 01 (4.50)50 1  DO2  * 
0

3nc+21 -1

- J a i BJ BJ 1J aJ (J (4.51)
L ai ' ' anc Oanc+1 I ' ' a2c- -1 Obi ' bc Dk 1  ' k2M

FDJ DJ ai a (4.52)Ddiag(Ac) Dsuperdiag(Ac) DBc OkT

where

]Tdiag(Ac) = ai a 2 ... an, (4.53)

]Tsuperdiag(Ac) = anc+1 anc+2 ... a2nc-i 1 (4.54)

The ith element of the gradient can be approximated using the forward finite difference

formula
dJ J(8 + 60ej) - J(()(
- - 6 (4 .5 5 )
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where 60i is a small perturbation in the ith element of 0, and

(4.56)i = [ 0 ... 0 1 0 ... 0

ith element

The numerical approximation in Equation (4.55) requires solving Equation (4.14) with

perturbed values of the controller parameters for each element of the gradient. Since com-

puting the cost function J requires the solution of a Riccati equation (Equation (4.44)) and

a Lyapunov equation (Equation (4.45)), it is computationally expensive to use the finite

difference method to obtain the gradient for optimization purpose.

The gradient can be computed in a more efficient manner using analytical expressions.

The analytical expressions are dependent on the formulation and parameterization of the

fixed-order control synthesis problem. Here, we provide the analytical expressions for the

gradient of the cost function, defined by Equation (4.14), with respect to ( as defined by

Equation (4.37).

Using the chain rule of

element of the gradient is

differentiation for matrices, the general expression for the ith

aJ trace
00i

(8)T (OA) ± ( 0iT

+ (CT)( 0(CC))

( (BB T )
00i )

(4.57)
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= (Qp)T + PQ = 2PQ

8+ w R- 1DwsCws

+BI8 OR-) DTSW
0 0 i

+BwsR-'Dw s Cws
WS0i

OBws RBT +
R0i ws

OCT 
T)W'0cS (I + DwsR- 1D&w) Cws00i

S(I + DwsR 1 Dw) T
Cws 0i Cws

+CT S (I + DwsR-'DT) Cws
W WS)0

ODT
+ BwsR-1 WS CWS

00i

(4.61)

BwsOR BT s+ BwsR OB S

0 (1 + DwsR Dw)T
00i

ODws 1 T

- 0Rws+
ODT

+DwsR-1 w s
(0

Dws DT00i W

(4.64)

To compute the gradient using Equations (4.57) to (4.64) requires the expressions for
aAWs aBws aws aDws and D.0DO, ' ~ D , 0 D , ' ~ D , ' DO

With the matrices R-1, Aws, Bws, Cws, and

Dws defined by Equations (4.13), (4.39)-(4.42), the partial derivatives with respect to 0,

are matrices whose elements are mostly, if not entirely, zeros. Substituting the required

partial derivatives into Equations (4.57) to (4.64) results in the analytical expressions for
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OJ

O(BB T )
OJ

0(CTC)

0

=QPQ-FQ

(4.58)

(4.59)

(4.60)

OAws
0i

O(BBT)

0i

00i

(4.62)
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Table 4.1: Flight condition for wind tunnel testing

Flight Condition 1 2
Velocity, V (kt) 83 124
Advance ratio, p 0.20 0.30
Tip Mach number, MT 0.623 0.623
Advancing tip Mach number, MAT 0.746 0.805
Shaft angle, a (deg) 2.0 -9.1
Blade loading coefficient, CT/o- 0.075 0.075

the gradient

Oj

O'jBJ
Oanc,+i

OJ

Obi

Oki

2e+iPQ, +i, i - IL . . .

2enp+PQn,+1+i - 2efj+i+iPQel+i, i = 1, . - - , c

(4.65)

1 (4.66)

= 2Cp I 0 ] QPenp,+ + 2DsCwsQPenp+i

+ B SPe~n1 +i, , - - -

= 2B I 0 PQen 1,+c+i,

(4.67)

(4.68)i = 1. . - -. m

where ei is defined by Equation (4.56), I is the identity matrix of dimension np x np, and

0 is the zero matrix of dimension n, x (nc + nw, + n 2 ).

We note that the gradient is dependent on the parameterization of the problem, what we

show in this section provides a template in obtaining analytical expression of the gradient

for problems with different parameterizations.

4.2 Fixed-Order 'Ho Controller Performance

In this section, we examine the performance of the fixed-order'h controllers. We consider

the vibration reduction performance at two different flight conditions that are listed in Table

4.1. The helicopter rotor models for the two flight conditions were identified from wind

tunnel test data collected by Hall et al. [42]. The order of the plant for Flight Condition 1 is
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n, = 19, and the order of the plant for Flight Condition 2 is n, = 15. The fixed-order -(

higher harmonic controllers in this section are developed using the linear notch filter, hence

its performance, in terms of peak sensitivity Smax and bandwidth WB, can be compared to

the Pareto frontier established by the full-order 71,, controller developed in Chapter 3 for

the linear notch case.

One of the main motivations for the fixed-order methodology is to reduce the order of

the controller. The baseline CTHHC is of order 2M, where M is the number of harmonic

frequencies to be attenuated, is the minimum order required for the HHC problem. The

full-order R-, controller is of order n, + 10m + 2M, where m is the order of the weighting

filter, where m = 6 provides controllers with performance that approaches the performance

limit. The order of the fixed-order -( controller is

Nc = nc + 2M (4.69)

where n, is the order of Kc(s). Unlike the full-order W... controller, the order of the fixed-

order 71,, controller is not dependent on the order of the plant or the weighting filter. For

the results produced here, an 80th order weighting filter W(s) is used (M = 5, m = 8),

and we consider cases with nc < 5. While the order of the weighting filter does not affect

the order of the controller, it does impact the size of the optimization problem, since the

matrices A, B, and C in Equations (4.44) and (4.45) are dependent on W(s).

4.2.1 Sensitivity Transfer Function

The sensitivity transfer functions with fixed-order 71,, controllers of order Nc = 11, 13, and

15 are shown in Figure 4-3 for Flight Condition 1, and in Figure 4-4 for Flight Condition

2. For both flight conditions, the bandwidths of the controllers are fixed at WB = 0.04 per

rev. From both Figure 4-3a and Figure 4-4a, it can be seen that a substantial decrease of

peak sensitivity from the baseline CTHHC controller can be achieved with an increase in

controller order of just one. It can also be seen that the peak sensitivity values decrease as

the controller order Nc increases, and the sensitivity transfer functions become smoother

with increasing Nc. While the sensitivity transfer functions of the full-order W,, cases
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in Chapter 3 are smoother, the order of the full-order 7-, controller, with comparable

performance to the 15th order fixed-order controller, is greater than 30.

The details of the notches in the sensitivity function are shown in Figure 4-3b and

Figure 4-4b. As the controller order Nc increases, the notches become more symmetric

about the first harmonic frequency of 1 per rev. Because the definition of the bandwidth is

the inverse of the steepest slope at either side of the harmonic frequencies to be attenuated,

the optimization would try to keep the slopes the same (in magnitude) on either side of the

harmonic frequencies, resulting in notches that are more symmetric.

4.2.2 Pareto Frontier

For Flight Condition 1, the performance achieved by the fixed-order 7-K controller is

shown in Figure 4-5. Within the range of bandwidths where Sax < 1.2, both the 14th

order and the 15th order fixed-order N- controllers (nc = 4, and nc = 5, respectively)

have peak sensitivity values within 0.01 of the peak sensitivity for the full-order nK con-

troller of 39th order. The 15th order fixed-order 7HK controller has lower peak sensitivity

than the 39th order full-order 7-K controller when WB > 0.056 per rev. Similar results ap-

ply to Flight Condition 2, as shown in Figure 4-6. Thus, the fixed-order 7-K optimization

technique may be preferable to the full-order W-K technique, especially if computational

complexity of the controller is an important consideration for implementation.

4.3 Summary

Two problems associated with the full-order W, controllers, namely the high controller

order and lack of guarantee on the stability of the controller itself, led to the development

of the fixed-order W-L control synthesis methodology. The fixed-order controllers are ob-

tained by optimizing a cost function that reflects the R-K optimality of the closed-loop

system. To ensure that the fixed-order controllers are stable, we use a controller parame-

terization that allows the stability of the controller to be formulated as a constraint in the

optimization problem. We present the analytical expressions for the gradient, and use them

in the optimization algorithm for better efficiency. Compared to the baseline CTHHC con-
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trollers, the optimized fixed-order N controllers have approximately twice the bandwidth,

for a given peak sensitivity, with only a small increase in the controller order. Compared

to the full-order -H, controllers, the optimized fixed-order controllers of order Nc = 15

provide performance comparable to full-order R-[, controllers with orders that are higher

by a factor of at least two.
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Chapter 5

Helicopter Rotor Model for Higher

Harmonic Control

For this thesis, the purpose of the helicopter rotor model is to enable the design of con-

trollers for harmonic disturbance rejection. To achieve effective harmonic disturbance re-

jection, it is necessary to understand the behavior of the physical system, and in particular,

the characteristics of the disturbance. Instead of formulating a model of the helicopter rotor

from first principles, we derived the model using data from previously conducted wind tun-

nel tests and nonlinear simulations. In this chapter, we first analyze the wind tunnel data to

quantify the harmonic disturbance and examine the effects of periodicity. We then obtain

parametric models of the helicopter rotor plant suitable for control synthesis. Because the

effect of periodicity does not appear to be significant, we proceed to implement a system

identification procedure to obtain linear time-invariant (LTI) models of the helicopter rotor

at different flight conditions. Since the wind tunnel data is limited to only two different

flight conditions, we use nonlinear simulation data generated by the Boeing Company to

obtain additional LTI models to cover the flight envelope. The models identified from the

simulation data show the same qualitative characteristics as the wind tunnel data, enabling

us to determine the relative importance of different flight parameters on the plant behavior.
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SMART rotor

Figure 5-1: Simplified block diagram of helicopter control system in wind tunnel test

5.1 Plant Models from Wind Tunnel Test Data

To demonstrate our control synthesis techniques, we use plant models based on the Boeing

Smart Material Actuated Rotor Technology (SMART) helicopter rotor. The SMART rotor

has N = 5 rotor blades, with a nominal rotor rotational speed of Q = 392 rpm. Each blade

of the rotor contains an active partial span trailing edge flap that can be driven indepen-

dently, via a piezoelectric actuator, to produce a change in the rotor forces and moments.

Details on the SMART rotor and its piezoelectric actuators can be found in [43, 97].

5.1.1 Wind Tunnel Test Setup

The test data we used to generate the plant models were collected by Hall et al. in 2008

[42] at the Air Force National Full-Scale Aerodynamic complex 40- by 80-foot anechoic

wind tunnel. The test setup consisted of a full-scale SMART rotor supported on top of the

Large Rotor Test Stand, and the necessary instrumentation to record the data. Figure 5-1

shows a simplified block diagram of the components and the recorded signals in the wind

tunnel test. The recorded signals relevant for our purpose are the controller output u, the

individual on-board trailing edge flap deflections 6, the rotor azimuthal position @, and the

rotor hub normal force y. We consider the collective voltage generated by the controller'

as the input to the plant, and the deviation from the nominal hub normal force of the rotor

as the output of the plant.

'For the collective command, the voltage generated by the controller is supplied to the actuators with-
out any phase shift. The voltage generated by the controller is amplified before it reaches the individual
piezoelectric actuators.
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Table 5.1: Flight conditions for wind tunnel testing

Flight Condition 1 2
Velocity, V (kt) 83 124
Advance ratio, p 0.20 0.30
Tip Mach number, MT 0.623 0.623
Advancing tip Mach number, MAT 0.746 0.805
Shaft angle, a (deg) 2.0 -9.1
Blade loading coefficient, C1/- 0.075 0.075

The wind tunnel test session included open-loop tests with no control input to deter-

mine the baseline harmonic vibration level, open-loop tests with three successive sinusoidal

sweeps as control input for system identification purpose, and closed-loop tests to examine

the performance of the baseline higher harmonic controllers. The frequency of the sinu-

soidal sweep signal for system identification varied linearly from 0 Hz to 80 Hz over a

span of 40 seconds, with a pause of 5 seconds in between each sinusoidal sweep. All of

the tests were conducted for two different flight conditions. Flight Condition I simulates

descending flight, and Flight Condition 2 simulates level cruising flight. The parameters of

the two flight conditions are shown in Table 5.1

Since there was some variation of the rotor frequency Q during the wind tunnel test,

the period of the system is not constant in terms of time. Although the variation in Q was

small, it nevertheless complicates the analysis. However, if the independent variable is the

azimuthal position of the rotor, instead of time, the period of the system will be constant,

almost by definition. Thus, it is convenient to use the azimuthal position of the rotor as

the independent variable in describing rotor dynamics. Since the azimuthal position 0 of

the rotor was collected during the wind tunnel test, we re-sample the time stamped input

and output data in constant azimuthal intervals, and use the azimuthal position as the inde-

pendent variable in our analysis of the data and for the models 2. The unit of the azimuthal

position is revolution, abbreviated by rev, and rad/rev is the unit of the corresponding an-

gular frequency. The frequency has the unit per rev (/rev).

2The "time" in linear time-invariant and linear time-periodic system refers to the independent variable,

which for our case is the azimuthal position of the helicopter rotor.
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5.1.2 Open-Loop Spectrum

The open-loop wind tunnel tests allow us to characterize the disturbance experienced by the

helicopter rotor. The spectrum of the disturbance is obtained by applying the fast Fourier

transform (FFT) to the hub normal force data. However, since the FFT is a discrete Fourier

transform, in order to correctly represent the harmonic components in the time history

as impulses in the spectrum, the length of the data must contain an integral number of

periods of all the harmonic components, and the sampling rate must result in an integral

number of data points within each period. Thus, we have to regularize the time stamped hub

normal force data before the application of the FFT. The regularization procedure consists

of interpolating and re-sampling the time history data so that the independent variable is in

constant azimuthal increment of 1/360 rev, then the data is truncated to the nearest multiple

of a complete revolution. Once regularized, any pure harmonic component of the data will

appear as impulses in the spectrum. Not regularizing the data will result in spectral leakage

when the FFT is applied, which is manifested as the broadening of the peaks at the harmonic

frequencies in the spectrum.

The baseline levels of the harmonic vibrations can be seen in the spectra of the hub

normal force for Flight Conditions 1 and 2, shown in Figure 5-2. The unit of the vertical

axis for the spectrum plot is arbitrary, because the magnitude of the harmonic components

is proportional to the length of the data, and hence the ratio of the magnitude between the

harmonic and the broadband part of the spectrum is dependent on the number of sample

points in the FFT. The spectra show impulses at almost all the harmonic frequencies, in-

stead of at just multiples of 5 per rev as typically expected for a symmetric rotor with 5

blades. The existence of vibration at nearly all harmonics is indicative of asymmetry in the

rotor, which could result in blade-to-blade tracking error. The non-harmonic and slightly

broadened peak at approximately 6.2 per rev is due to transmission gear-tooth mesh fre-

quency.
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5.1.3 Harmonic Transfer Functions

Due to the periodicity of the helicopter rotor in operation, it may be modeled as a linear

time-periodic (LTP) system. The general state-space representation of an LTP system is

(5.1)

(5.2)

y(t) = A(t)x(t) + B(t)u(t)

y(t) = Ct)x(t) + D(t)u(t)

where the matrices A(t), B(t), C(t), and D(t) are periodic with period T, i.e., A(t~kT) =

A(t), k c Z.

LTP systems cannot be represented in the frequency domain by transfer functions, since

multiple input frequencies contribute to the output at a given frequency. Wereley and Hall

[102] introduced the harmonic transfer function (HTF) to describe the frequency response

of LTP systems. For the purpose of LTP system identification, Siddiqi [89] proposed an

input-output relationship of the form

00

Y(jOW) = gE(jo)U(j(o - iNQ)) (5.3)

for an N-bladed helicopter rotor with rotor frequency Q. In Equation (5.3), gi, i

-1, 0,1,.. ., are the harmonic transfer functions of the helicopter rotor, Y is the Fourier
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Figure 5-3: Spectrograms of rotor response to linear sinusoidal sweep input

transform of the output y, and U is the Fourier transform of the input u. To estimate the har-

monic transfer functions, it is only necessary to consider a finite number of g. To determine

the number of terms to include in the summation of Equation (5.3), we can qualitatively

examine the effect of periodicity using the spectrogram of the output data.

The spectrograms of the hub normal force measured in the wind tunnel are shown in

Figure 5-3. The x-axis of the spectrogram represents the independent variable, which in our

case is the rotor azimuthal position. The y-axis of the spectrogram represents frequency.

The amplitude of the data is represented by the color intensity, with lighter color corre-

sponding to higher amplitude. The spectrogram is obtained by dividing the measured hub

normal force into overlapping segments, and applying FFT to each segment. The color in-

tensity of a vertical slice of the spectrogram at azimuthal position 4 = #1 is a snapshot of

the relative magnitude of the FFT for the segment of hub normal force data that starts at 0b1.

A horizontal slice of the spectrogram at frequency f - fi shows the relative amplitude of

the component of hub normal force with frequency fi as a function of azimuthal position.

Because a linear sinusoidal sweep was used as the excitation signal, the color intensity of

the diagonal line starting at the lower left corner represents the response of go to the input.

The magnitude of the response of g, i = 1, 2, .. ., are represented by the color intensities

of the diagonal lines that are 5i per rev above the main diagonal line, while those below

correspond to g, i = -1, -2,. . .. Since the responses of g, Iil > 1, appear negligible,
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we consider only three terms, i = -1, 0, 1, in Equation (5.3). Also apparent in the spec-

trogram are the harmonic disturbances, which appear as horizontal lines at the harmonic

frequencies.

We follow the identification procedure developed by Siddiqi [89] to obtain the values

of the harmonic transfer functions g 1, go, and g1 . First, both the input and output data

are regularized as described in the previous section. We then remove all the harmonic

components from the data, since we will include them as additive output disturbances in our

model. Next, the processed input data u(t) is modulated by complex exponential functions

to generate the modulated input signals

u+1 (t) = u(t) exp (j5Qt) (5.4)

u_1(t) = u(t) exp(-j5Qt) (5.5)

The Fourier transform of the signals u+1 and u_1 are

U+1(jw) - U(j( -5Q)) (5.6)

U (jw) U(j(w + 5Q)) (5.7)

which are frequency shifted version of the Fourier transform of u. Substituting the modu-

lated input signals into Equation (5.3) results in

1(O) 1(O)

Y(jw) = U+1(jo) Uo(jw) U i(jw) 1 o(jo) 1 U(jw) [9(jw) (5.8)

L 01 (jw) 1(jo)

where 91, go, and g- are, respectively, the estimates of the harmonic transfer functions

g1, go, and g-1 . The empirical harmonic transfer functions g1, g0, and g_1 are obtained

by solving
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[ 1(jo)1Suy (jo) = SDUU(j9) So(jw) (5.9)

where

[u+iY (jW)

DuY(jW) = iy (jW) (5.10)

41U_ 1Y(jw)

Du+ivii(jW) 4)usiv(jw) U+U_ 1 (jOW)

4SUU(jO) = , () W 4 (jw) SJy_ 1 (jOW) (5.11)

(DU_1v.1(jb) (DU_1U(jW) 4U_1v-1(jW)

The elements of the matrices in Equations (5.10) and (5.11) are estimates of the auto-

and cross-spectral densities obtained using the Blackman-Tukey procedure [10], with a

Gaussian window used for smoothing [14].

The magnitude of g_1, g0, and 91 for both flight conditions are shown in Figure 5-4.

The empirical harmonic transfer functions are only plotted up to a frequency of 7 per rev,

because the highest frequency in the sinusoidal sweep signal only excites 9_1 to 7 per rev.

As evident in Figure 5-4, the magnitude of the empirical harmonic transfer functions g_1

and 9+ 1 are approximately an order of magnitude lower than the magnitude of !o, which

leads to our conclusion that the helicopter rotor blade at a constant flight condition can

effectively be treated as an LTI system.

5.2 Parametric Models for Control Synthesis

Since the wind tunnel test data showed that the effect of periodicity on the helicopter rotor is

small, we proceed to model it as an LTI system, with the harmonic disturbance treated as an

additive disturbance to the output of the system. In this section, we first find the empirical

transfer functions from the data, and then derive parametric models of the helicopter rotor.

The empirical transfer function is a nonparametric model, which allows us to generate the

initial parameters needed for obtaining a parametric model. The parametric model is in the
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form of a rational transfer function, whose coefficients in the numerator and denominator

are obtained by optimizing the output prediction error.

5.2.1 Empirical Transfer Functions

In this section, we use the wind tunnel data to obtain the empirical transfer function esti-

mates (ETFE) for both flight conditions. The process for generating the ETFE is similar

to the process of generating the empirical harmonic transfer function described in Section

5.1.3, and is summarized in the following steps:

1. The input and output data are interpolated and re-sampled, so that the samples occur

at regular azimuthal increments. The data are then truncated to the nearest integral

number of rotor revolutions. This step is necessary so that the resulting power spec-

tral densities, obtained using FFT, appropriately represent the periodic vibrations as

line spectra at the harmonic frequencies.

2. The harmonic components of the data are removed for the first 12 harmonics 3, the

transmission gear-tooth mesh noise at 6.2 per rev is also removed. This step is nec-

essary because almost all of the energy in the output at the harmonics is due to the

disturbance, not the control input.

3. Estimates of the autospectral density of the input 1?uu(jw), and the cross-spectral

density of the input and output S y(jw), are obtained using the Blackman-Tukey

method with a Gaussian window [10, 14].

4. The ETFE at jw is calculated as the ratio of the spectral density estimates at each

frequency [69]

$JUy(jw)
GETFE (j) = (5.12)

4uu(jw)

The ETFE for the two flight conditions are shown in Figure 5-5 . While the empirical
3The bandwidth of the sinusoidal sweep input signal is 80 Hz, which corresponds to 12.25 per rev. We do

not remove harmonic components beyond 12 per rev since the data only allows the model to be valid up to
12 per rev.
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transfer function can be used in the frequency response methods of classical control the-

ory for control design, our optimization based methods require a state-space model of the

system. In the next section, we obtain a rational transfer function model based on the wind

tunnel data, with initial parameters generated from the empirical transfer function. The

rational transfer function can be realized in state-space form, providing the model we need

for control synthesis.

5.2.2 Parametric Model

For the purpose of parametric system identification of the helicopter rotor, we consider a

rational transfer function of the form

N

O(s; 8) = + di (5.13)
s2 + ais + ai2

where M is the number of second order systems in the model, and the real coefficients di,

bi1, bi2 , ail, ai 2 , i = 1, 2, ... , M, form the unknown parameter vector E, which we seek to

determine.
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The output error E is defined as

E(jw; 8) Y(jw) - $(jw; E)U(jw) (5.14)

where U and Y are, respectively, the input and output data from the wind tunnel test. In

order to obtain the unknown coefficients in Equation (5.13), we minimize the cost function

J, defined as the weighted squared output error

J = ||E(jw; 8)|1w12 |W(jw)E(jw; 0) 2 dw (5.15)

where W(jw) is a frequency dependent weighting function. Without the weighting func-

tion W(jw) in Equation (5.15), the transfer function near the complex poles of the system

where the transfer function's magnitude is large will be fitted well, but since the response

around the system zeros is small, the transfer function in the vicinity of the zero generally

will not be fitted well. Thus, we select the weighting function to be the inverse of the

empirical transfer function

W(jOW) = G-FE (jw) (5.16)

to fit the transfer function well at all frequencies. See Ljung [69] for a more in-depth

discussion on parametric system identification.

To optimize the cost function shown in Equation (5.15), a computer program was writ-

ten to compute the value of the cost function J. The gradient a is obtained through the

use of automatic differentiation software [18]. The automatic differentiation software ana-

lyzes the lines of the computer program that computes the value of J, and then produces a

computer program that computes the values of the gradient.

Based on the data from the wind tunnel test, we know the plant is stable, so we impose

a stability constraint on the identified system. The stability constraint is formulated as

ary > 0, i = 1co2n diti M, j = 1, 2 (5.17)

which is the necessary and sufficient condition for the stability of the system shown in
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Equation (5.13).

The initial parameters of the parametric model are obtained from the magnitude of the

empirical transfer function GETFE - We first locate all the peaks in GETFE that indicate

the likely presence of complex poles, the total number of peaks is denoted by M. For each

peak, a stable second order system of the form

A82

-W2+ iljw+ c i2 = 1,2,... ,M (5.18)

is fitted to GETFE using the least squares method. The range of data used to obtain the real

parameters al, ai2, and #3 2, i = 1,2,... , M, in Equation (5.18) is dependent on the width

of the peak. We typically use a frequency range of 0.1 per rev or less around each peak.

The initial parameters needed for the optimization are

bi = 0, i 1,2, ... , M (5.19)

bi2 = 2, i 1, 2,... , M (5.20)

ail = ail, i = 1, 2, -..) M (5.21)

ai2 = ai2, i = 1,12,1-.. M (5.22)

di = 0 (5.23)

A conjugate gradient optimization algorithm is used to obtain the optimal parameter

vector 8, with the automatic differentiation software generated program used to compute

the gradient. In our cases, the resulting transfer functions are just proper (di is not zero

for both flight conditions). To facilitate control design, an additional pole at s = -27r50

rad/rev (50 per rev) is added by multiplying the identified models by

1 (5.24)
s/27r50+1

The additional pole makes the model strictly proper, and has only a small effect on the

transfer function within the frequency range in which the model is valid. The resulting

rational transfer function models of the helicopter rotor are plotted in Figure 5-6, with the
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ETFE for the corresponding flight condition plotted for comparison. The models for Flight

Conditions 1 and 2 are 19th and 15th order, respectively. For both flight conditions, the

phase of the parametric model closely matches the phase of the ETFE, and the magnitude

is relatively close as well.

In the case that the parametric model does not match the ETFE well, a different set of

initial parameters could be generated using different range of frequencies around the peaks

of GETFE , and different combinations of the peaks could be selected as well. In addition,

in the frequency ranges that are poorly fitted, additional second order systems could be

added with i2 = 0, i = M + 1,..., and the denominator chosen to reflect frequency

ranges.

5.2.3 Actuator Model and System Delay

Besides providing the information for creating the plant models, the wind tunnel test data

can also be used to obtain the delay in the system, as well as the dynamics of the actuator.

Since we treat the collective input voltage to the amplifier instead of the piezoelectric ac-

tuators as the plant input, the plant contains the dynamics of the actuator and the amplifier.

Using the closed-loop wind tunnel test data, we can examine the transfer function from the

controller output u to the averaged flap deflection 6, denoted by T6 . The empirical transfer

function T6, obtained using the procedure described in Section 5.2.1, is shown in Figure

5-7. The combined dynamics of the actuator and amplifier has relatively flat frequency

response as expected, but adds approximately 28 deg of phase lag to the system throughout

the bandwidth of the model. Unfortunately, since the amplifier voltage was not recorded,

we cannot determine the individual transfer functions of the amplifier and the actuators.

In addition to T6m, the empirical transfer function from the plant output (rotor hub nor-

mal force) to the controller output, denoted by Tuy, can also be examined. Ideally, Tuy
should be identical to the baseline controller K used in the closed-loop wind tunnel test,

implying that

H = TcyK~-oi~ 1 (5.25)

However, computing H = TuyK--I results in the frequency response shown in Figure 5-8.
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The magnitude response of HI is close to unity, with notches at the harmonic frequencies re-

sulting from the poles of the baseline controller K at the harmonic frequencies, which also

cause the spikes in the phase response plot. The phase can be seen to be linearly decreas-

ing, indicative of a pure time delay element. The amount of time delay can be estimated by

the slope of the phase response plot. A best fit line is superimposed on the phase plot, this

line has a slope of 7.0' per rev. The time delay adversely affects the performance of the

controller, so knowing the amount of time delay allows the design to account for it in order

to achieve better performance. The estimated delay of 7.0' per rev in effect represents the

total delay in the closed-loop system, including the amplifier, the actuator, the A/D con-

verter, the sensors, and the computation time of the controller. However, it is surmised that

the amplifier is the main contributor to the total delay.

5.3 CAMRAD Simulation

The wind tunnel test provided data for two different flight conditions, from which we ob-

tained two different LTI models of the helicopter rotor for controller synthesis. Each of
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our controllers is designed for a specific flight condition, and the performance will degrade

when the flight condition changes. In order to design a harmonic disturbance rejection con-

trol law that is effective throughout the entire flight envelope, we need to know the behavior

of the plant throughout the flight envelope. To obtain additional plant models at flight con-

ditions that span most of the flight envelope, we use data generated by the Boeing Company

using CAMRAD II from Johnson Aeronautics, a commercially available aeromechanical

simulation program for helicopters [58].

5.3.1 Simulation Setup

The CAMRAD simulation is set up to replicate the wind tunnel system identification test

of the SMART rotor, although for practical reasons, there are some differences. The input

in the CAMRAD model is the collective flap displacement in degrees, instead of voltage to

the amplifier. The output is the rotor normal force in lbs, which is consistent with the wind

tunnel test. The data are produced at an interval of 0.001 sec, and the rotor frequency Q =

392 rpm is constant throughout the simulation. Due to limitations in the computer hardware

and data resolution requirements, instead of using a continuous sinusoidal sweep from 0
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Table 5.2: Sinusoidal sweep signal for CAMRAD simulation

Segment 1 2 3 4
Starting frequency (Hz) 0 18.7 38.7 58.7
Ending frequency (Hz) 21.307 41.3 61.3 79.998

Duration (sec) 21.308 22.6 22.6 21.299

Hz to 80 Hz, the simulation for each flight condition is performed in four segments. For

each segment, the input data is a linear sinusoidal sweep with unit amplitude that starts at 1

second into the simulation. The starting frequency, ending frequency, and sweep duration

of the input signal for each segment are shown in Table 5.2. The duration of each individual

segment is 24.6 seconds. The overlaps in the starting and ending frequencies ensure the

input signal contains enough power in the overlapped frequency ranges to properly excite

the system.

5.3.2 CAMRAD Simulation Results

In our attempt to capture the plant behavior throughout the flight envelope, we used simu-

lated rotor data at 21 different flight conditions that consisted of different combinations of

the advance ratio (p), the shaft angle oz, and the blade loading coefficient CT/o-, as shown in

Table 5.3. For each flight condition, the simulation data from each individual segment are

first regularized, and then the four segments are concatenated into one set of input-output

data. The ETFE is then obtained by following the procedure outlined in Section 5.2.1.

To validate the CAMRAD model, simulations were conducted with the same flight

conditions as the two flight conditions in the wind tunnel tests. The empirical transfer

functions obtained from the wind tunnel data and the simulation data are shown in Figure

5-9. To be consistent with the simulation data, the wind tunnel empirical transfer functions

were obtained using the measured flap deflection as the input. While the CAMRAD models

have some qualitative similarity to the wind tunnel data generated models, the difference in

magnitude and phase are significant, and we acknowledge that further development of the

CAMRAD model is needed for better agreement with wind tunnel data.

The empirical transfer functions for all 21 flight conditions simulated in CAMRAD are

shown in Figures 5-10, 5-11, 5-12, and 5-13. Within each figure, the empirical transfer
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Table 5.3: CAMRAD simulation flight conditions

CAMRAD Case ID pt a (deg) CT/o

F01D3C 0.15 -10.0 0.075
FO1D3D 0.15 7.0 0.075
FO1D3E 0.15 -3.7 0.075
F01D3F 0.15 -3.7 0.090
F01D3G 0.15 -10.0 0.040
FO1D3H 0.15 -3.7 0.040
F01D5C 0.20 2.0 0.075
FO1D7C 0.20 -5.5 0.075
FO1D7D 0.20 -5.5 0.040
FO1D7E 0.20 -5.5 0.090
FO1D8C 0.20 -10.0 0.075
FO1D6G 0.30 -9.1 0.040
FO1D6E 0.30 -9.1 0.075
FO1D6F 0.30 -9.1 0.090
FO1D6H 0.30 -15.0 0.040
FO1D6I 0.30 -15.0 0.070
FO1D6J 0.30 -5.0 0.040
FO1D6K 0.30 -5.0 0.100
FO1D9C 0.375 -12.0 0.075
FO1D9D 0.375 -12.0 0.040
FO1D9E 0.375 -12.0 0.065
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functions represent flight conditions with different combinations of shaft angle a and blade

loading coefficient CT/a, but the same value for the advance ratio P. It can be seen that with

the advance ratio y fixed, there is not much variation in the transfer functions. However,

there is a clear trend of increase in the magnitude of the transfer functions with increase in

the advance ratio p, which is consistent with the wind tunnel test result. Thus, the empirical

transfer functions show that the behavior of the helicopter rotor is highly dependent on P,

and only weakly dependent on az and CT/U.

5.3.3 Parametric Models

For each flight condition simulated in CAMRAD, the simulation data were used to create

a parametric model of the helicopter rotor. The parametric models are rational transfer

functions obtained using the procedure described in Section 5.2.2. Four representative

models, one for each value of the advance ratio At used in the simulations, are shown in

Figure 5-14. The plots show good agreement between the CAMRAD simulation results

and the identified LTI parametric models, and are typical of all the parametric models

obtained from the CAMRAD simulations.

5.4 Summary

In this chapter, we analyzed available wind tunnel test data of a full-scale rotor to iden-

tify the characteristics of the disturbance, quantify the effect of periodicity, and to obtain

parametric models for control design. The data show that significant vibrations in the rotor

normal direction exist at nearly all harmonic frequencies, not at just frequencies that are

multiples of NQ, where N is the number of rotor blades, and Q is the rotor frequency.

Based on the magnitude of the empirical harmonic transfer functions, we conclude that

the effect of periodicity on the dynamics of the rotor appears to be negligible, leading us

to model the helicopter rotor as an LTI system, with the harmonic vibrations modeled as

additive output disturbance. We obtained the parametric models of the helicopter rotor in

the form of rational transfer functions. The parametric models enable us to apply our con-

trol synthesis methods developed in the previous chapters. Since the wind tunnel test data
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were only for two flight conditions, in order to obtain models that span most of the flight

envelope, we used nonlinear simulation data generated using CAMRAD. The CAMRAD

simulation data span a range of advance ratio yu, rotor shaft angle a, and blade loading

coefficient CT/o-, and were processed and analyzed in a similar manner as the wind tunnel

data. The analysis shows that the plant behavior is only weakly dependent on a and CT/U,

but highly dependent on p, which is in agreement with the wind tunnel results. In the next

chapter, we use the LTI models identified from CAMRAD simulation data to develop a

harmonic disturbance rejection control law for the entire flight envelope that is scheduled

on p only.
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Chapter 6

Full Flight Envelope Harmonic

Disturbance Rejection

The full-order and the fixed-order 7- higher harmonic control (HHC) methods devel-

oped in Chapters 3 and 4 are linear control methods intended for harmonic disturbance

rejection at a fixed flight condition. In Chapter 5, we provided justification for using the

linear control methods to suppress harmonic disturbances by showing that it is reasonable

to model the helicopter rotor at a fixed flight condition as a linear time-invariant (LTI) sys-

tem. However, a helicopter operates in varying flight condition, and the LTI models are

in effect snapshots of a linear time-varying (LTV) plant at specific flight conditions, and

offer no information on the dynamics of the plant in the transition between different flight

conditions. Instead of developing an LTV model and employ LTV control techniques, we

extend the fixed-order '71, control method to account for the variations in the plant dynam-

ics at different flight conditions. In this chapter, we first present a simple extension of the

fixed-order R, controller synthesis for multiple plants, then we describe a gain-scheduled

harmonic disturbance rejection control law for the entire flight envelope. The full flight

envelope control law schedules the fixed-order W-K controllers designed for different val-

ues of the advance ratio y, since the dynamics of the helicopter is most sensitive to P. The

gain-scheduled full flight envelope control law is implemented in two different nonlinear

simulations to demonstrate its effectiveness in harmonic disturbance rejection during the

transitions between different flight conditions.
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6.1 Harmonic Disturbance Rejection for Multiple Plants

The metrics we used to define performance in harmonic disturbance rejection, the band-

width WB and peak sensitivity Smax, are in effect also measures of robustness of the con-

troller. The controller's robustness to changes in the harmonic disturbance is addressed by

the controller bandwidth oB. The peak sensitivity Smax is an indicator of the controller's

stability robustness to plant variation, since it is related to both gain margin and phase

margin. However, gain and phase margins do not address the robustness of the controller

performance with respect to changes in the plant dynamics. In this section, we use the

fixed-order RN-L, control method to design a controller for multiple plants, and examine the

achievable performance using a single controller for different flight conditions.

6.1.1 Simultaneous Harmonic Disturbance Rejection

The controller synthesis methods developed in Chapter 3 and Chapter 4 are only applicable

to a single LTI plant model, so they are suitable for any one of the plant models obtained

in the previous chapter. In this section, we demonstrate a method to design a single fixed-

order harmonic disturbance controller based on multiple LTI plant models of the helicopter

rotor. The method is based on the fixed-order No controller synthesis procedure described

in Chapter 4, with the main difference being a simple modification to the cost function, and

the associated changes to the gradient.

Denoting the available LTI plant models for control design by Gk(s), k = 1, 2,... , N,

the objectives of a single controller K(s) for multiple plant models are to maximize the

bandwidth and minimize the peak sensitivity in all the sensitivity functions

Sk(s) = (1 - Gk(s)K(s))-1 , k = 1,2, . .. N (6.1)

The bandwidth WB and peak sensitivity Smax achieved by the single controller K(s) is

quantified by a weighting filter W(s) for all plant models as in

Sk(s) < W(s), k = 1, 2,... , N (6.2)
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The controller K(s) is obtained by modifying the fixed-order 'H" control synthesis proce-

dure described in Chapter 4. The main modification is that the cost function is a summation

of the cost functions for individual plant models

N

J 1 = Ja (6.3)
k=1

where Jk is the fixed-order W?,K synthesis cost function for the plant Gk(s) with weighting

filter W(s), and controller K(s). The gradient of the cost function J is similarly modified

as

= -0A(6.4)

k=1

where 0 is a vector containing the parameter of the fixed-order controller K(s). The op-

timization procedure for obtaining the fixed-order controller is essentially the same as de-

scribed in Chapter 4, with the cost function given by Equation (6.3), and the gradient given

by Equation (6.4).

The initial parameter vector () is obtained from the baseline HHC controller for any

Gk(s), k = 1, 2,. . . , N, or from the baseline controller for the average plant

N

Gavg = kEGk(s) (6.5)
k=1

For our optimization procedure, the initial controller must stabilize each Gk(s), k =

1, 2 . . , N. For the low bandwidth cases, the baseline HHC algorithm can typically be

used to generate the initial controller. In the case that the initial controller does not of-

fer sufficient bandwidth, the weighting filter can be updated on bandwidth instead of peak

sensitivity within each iteration step of the optimization. Once the desired bandwidth is

reached, the optimization procedure can be repeated with weighting filter updated on peak

sensitivity to further improve controller performance.

The feasibility of the problem can be determined from the phase of the plants at the

harmonic frequencies. Since HHC can be interpreted as phase stabilization at the harmonic

frequencies to be attenuated, the phases of all the plant models at these harmonic frequen-
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Figure 6-1: Performance of a single fixed-order Wec controller for both Flight Condition 1
and Flight Condition 2

cies must be in a 180' sector. Of course, feasibility does not imply any performance guar-

antees, and the performance of the single controller would degrade with larger variation in

phases at the harmonic frequencies.

6.1.2 Simultaneous Harmonic Disturbance Rejection Performance

The achievable performance of a single fixed-order Woc controller of various orders Nc

designed for both Flight Condition 1 and Flight Condition 2 is shown in Figure 6-1. The

Pareto frontier for Flight Condition 1 using a 10th order fixed-order We, controller is shown

in a green dashed line for comparison. The performance achieved by using the same 10th

order fixed-order Wec controller for Flight Condition 2 is shown in a red dashed line. Con-

sidering the performance for Flight Condition 1 only, the fixed-order controller designed

specifically for Flight Condition 1 offers much better performance than the single fixed-

order 71,o controller designed for both flight conditions. However, as shown by the red

dashed line, the fixed-order R-4c controller designed for Flight Condition 1 is not a viable

controller for Flight Condition 2.

Although the single fixed-order R-oo controller offers better performance than the case
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Figure 6-2: Feedback structure for gain-scheduled controller

of controller and plant mismatch, it nevertheless compromises the performance. The re-

duced performance of the single fixed-order harmonic disturbance rejection controller is a

direct result of the large variation in rotor dynamics between Flight Condition 1 and Flight

Condition 2. In the next section, we use the single fixed-order controller approach to cover

the small variations in the dynamics at a constant advance ratio, while accounting for the

large variations in the dynamics by scheduling a series of fixed-order controllers designed

for different values of advance ratios.

6.2 Gain-Scheduled Harmonic Disturbance Rejection Con-

troller

In this section, we develop a gain-scheduled approach to achieve harmonic disturbance

rejection for the entire flight envelope using the plant models obtained from the CAMRAD

simulations. We use the advance ratio y as the scheduling variable, since the dynamics of

the helicopter rotor is most sensitive to variations in p. We account for the slight variations

in the plant dynamics due to variations in a and CT/o at a fixed p by using the single

fixed-order 7-(. controller for multiple plants approach of Section 6.1. As in the previous

chapters, the gain-scheduled controller is designed to reject the first five harmonics, i.e.,

ni = i, i = 1, 2, 3, 4,5.

The block diagram of the gain-scheduled feedback control system is shown in Figure

6-2. In addition to the measured hub normal force y, the controller requires the value

of the advance ratio p. We exploit the inherent structure of the higher harmonic con-

troller embedded in the fixed-order U, controller to obtain a decomposition suitable for
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Table 6.1: Advance ratios used for control design

1 0.15
2 0.20
3 0.30
4 0.375

controller scheduling. The decomposition also allows the implementation of the demod-

ulation/modulation scheme developed by Hall and Wereley [44], and the associated anti-

windup algorithm developed by Shin, Cesnik and Hall [88]. The demodulation/modulation

implementation is necessary in the case that azimuthal position of the rotor is used as the in-

dependent variable in our controller synthesis procedure. A benefit of using the azimuthal

position as the independent variable is that the disturbance frequency will always be at

integral multiples of the fundamental rotor frequency.

6.2.1 Fixed-Order Controllers at Constant Advance Ratios

The analysis of the simulation data shows that while the helicopter rotor dynamics is most

sensitive to variations in the advance ratio i, it is not completely independent of the rotor

shaft angle a, and the blade loading coefficient CT/c-. We address the variations due to

changes in p by scheduling the controller on p. In this section, we account for the variations

in a and CT/o- by designing a controller based on all available models for a fixed value of

P.

For each value of p in Table 6.1, LTI plant models obtained from CAMRAD simulations

are available at different values of rotor shaft angle a, and blade loading coefficient CT/o-.

Instead of selecting the controller for a specific plant model to be used in the gain-scheduled

controller, we use a single fixed-order W,-L controller designed using all available models

at the specific value of pt. Denoting the LTI plant models available at P =uy by Gjk,

k = 1, 2,.. . , Nj, where Nj is the total number of LTI plant models at p = j, the cost

function and the gradient for the single fixed-order W,, controller, as given in Section 6.1,
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are

Nj
J ZJjk (6.6)

k-i
k=1

N3

(6.7)

k=1

The procedure to optimize the cost function in Equation (6.6) using the gradient in Equation

(6.7) is discussed in Section 6.1, and in Chapter 4. The resulting Pareto frontiers for the

fixed-order controllers designed for p = 0.15, 0.20, 0.30, 0.375, are shown in Figure 6-3

and Figure 6-4. The fixed-order W... controller for yt = p provides adequate performance

for all plant models with p =- pj, regardless of the values for a and CT/o-, since the

dynamics of the helicopter rotor is only strongly dependent on the advance ratio p.

6.2.2 Controller Blending

In this section, we incorporate the fixed-order 71,, controllers designed for different values

of p into a gain-scheduled control law to attenuate harmonic disturbances for the entire

flight envelope. We schedule the controller by blending the outputs of the fixed-order

controllers based on the value of p. For the current value of p, with p < p < llj+1, the

control signal from the gain-scheduled controller is obtained as

U(s; 1) = (1 - a(p)) Us (s) + a(P)U +1(s) (6.8)

where Us (s) is the output of the controller K (s) designed for y = pj, U +1(s) is the output

of the controller Kj+1 (s) designed for p = pij+1 , and the blending function a is given by

a(p) - - p, Ad P < P j+1 (6.9)
I'j+i - P

When the value of p in Equation (6.8) moves out of the interval [pj, pIj+), another

control signal must be available for the blending of controller output to continue. Instead of

switching on the individual controller Kj 1(s) or Kj+2(s) as needed, we keep all individual
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controllers online and blend their control signals. In the case that controllers K (s) are

designed for pu, j = 1, 2,... , N,, the blending rule is

U(s; p) =
j=1

(6.10)

where the blending functions are given by

1

ai~gP2 { [11

0

0

J--Pj-1

0

Y < p i

pi P < p2

Y ; p2

P < y - _1

ji -1 11 < [j

pI y < pj+1

p > py+1

c1~N~(I1)

0 t < N1-

1-t~ N1,N~ 1 < P< 1 11Nf -Ny -1 N

1 y ;> pNt

(6.13)

The blending of all the individual fixed-order controllers ensures the control signal is con-

tinuous, resulting in bumpless transfers between the different intervals of p during opera-

tion. In our case, we use four values of p that are given in Table 6.1 to span the entire flight

envelope, and the four blending functions are shown in Figure 6-5,

6.2.3 Blended Model and Blended Controller

The controller blending outlined above linearly interpolates the output of the fixed-order

controllers designed for specific values of p. Ideally, stability and performance of the gain-

scheduled controller should be verified with a suitable model of the helicopter rotor that

captures the dynamics as a function of [p. Because we do not have a nonlinear model that

136

(6.11)

j = 2,3 ... , N -- 1 (6.12)

aj (P)Uy~ (S)



6 .5
0

5 0.5

0 0.1 0.2 0.3 0.

S0.5
0
0 0.1 0.2 0.3 0.

S0.5
0
0 0.1 0.2 0.3 0

y

4

4

.4

.4

Figure 6-5: Blending functions for gain-scheduling control law

describes the helicopter rotor as it performs a maneuvering flight with a change in P, we

cannot verify whether the gain-scheduled controller even stabilizes the closed-loop system,

much less provide the level of performance that can be achieved .

From a practical perspective, the blended controller at an intermediate value of P should

at a minimum not destabilize the LTI plant at the same value of P. Since we do not have

any additional LTI plant models of the helicopter rotor at values of p besides those shown

in Table 6.1, a possible method to obtain additional LTI models at intermediate values of P

is to apply the blending rule

4

G(s; p) = Z ca (p)G(s; pij)
j=1

(6.14)

where aj(p), j - 1, 2, 3, 4, are given by Equations (6.11), (6.12), (6.13), and G(s; pj) is

the LTI model of the helicopter rotor at p = pj. As shown if Figure 6-6a, the transfer

function of the blended plant at p = 0.20 is relatively close to the plant model at y - 0.20

identified from the CAMRAD simulation. However, the blended plant for P = 0.30, shown

in Figure 6-6b, is not very close to the actual plant models identified from the CAMRAD

simulations.

Since we have the LTI models of the helicopter rotor at values of p = yj shown in Table
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6.1, we can check the performance of the closed-loop system at yi = 0.20 by blending the

controllers designed for y = 0.15 and t = 0.30. Similarly, the performance at P = 0.30 can

be checked by blending the controllers designed for p = 0.20 and p = 0.375. Figures 6-7a

and 6-7b show the performance of the blended controller on the helicopter plant for p =

0.20 (CAMRAD Case FO1D7C) and p = 0.30 (CAMRAD Case FO1D6E), respectively.

The blending was accomplished by using the corresponding fixed-order controllers used to

generate the Pareto frontiers in Equation (6.8). Note that blending fixed-order controllers

of higher order did not necessarily produce improved performance.

The discrepancy between the blended model and identified model at y = 0.30 indi-

cates that additional plant models at smaller intervals of p are required for accurate model

blending. The relatively poor performance of the blended controllers suggests that the con-

troller used for interpolation must have adequate performance at the intermediate values of

p where plant models are not available.

6.2.4 Gain-Scheduled Controller Structure

The structure of the controller in the fixed-order W-L synthesis procedure of Chapter 4 con-

sists of a dynamic filter in parallel with a harmonic disturbance rejection filter. The parallel

structure allows us to use the baseline HHC algorithm to generate an initial controller for

the optimization. For the purpose of implementation in the gain-scheduled controller, the

fixed-order 71O controllers for p = pj, j = 1, 2, 3, 4, are decomposed in series as

Ky (s) B (s) Bhj(s) Bd (s) = Kh) s 2d 3 '15)
As(s) Ahj (s) Ad -S1

where the harmonic disturbance rejection filter Khj (s) contains all the jw-axis poles of

Kj (s) that correspond to the frequencies of the harmonic disturbances to be attenuated,

and the dynamic filter Kd (s) contains the remaining poles of Kj (s). The zeros of Khj (s)

and Kda (s) are chosen so that the polynomials Bhj (s) and Bda (s) have real coefficients. In
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addition, Khy (s) is strictly proper, with the general form

K~~ 3(s)i s1 + b jrniQ j-, 3
Khj (S) S2 +(niQ) 2 2A (6.16)

which resembles the form of the baseline controller. The state-space realizations of Khj (s)

for gain-schedule control law implementation can readily be obtained from the transfer

function in Equation (6.16) as

Ah Bhj
Khj(s) ~ 

Ch 0
(6.17)

0
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Since the disturbance rejection filters Khj (s), j = 1, 2, 3, 4, all have the same state-

space matrices Ah and Ch, they can be replaced by a single gain-scheduled disturbance
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rejection filter with the state-space realization

(6.21)Kh(S; P) Ah h

Ch 0

The state-space matrices Ah and Ch in Equation (6.21) are given, respectively, by Equations

(6.18) and (6.20), and the matrix Bh(t) is given by

... a5 (p') b5 WI

4

ai(M) = aj (#)aij,
j=1

4

bi() = a (#i)bij,
j=1

i = 1,2,3,4,5

i 1, 2, 3, 4,5

with aj (p,) given by Equations (6.11), (6.12), and (6.13). The block diagram of the imple-

mentation is shown in Figure 6-8.

6.3 Simulation Results

In order to evaluate the effectiveness of the gain-scheduled controller, we used both Simulink

and CAMRAD to simulate the vibration levels under different flight profiles. In this sec-
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Figure 6-9: Simulink model for nonlinear simulation

tion, we describe the nonlinear simulation setups and present the results.

6.3.1 Simulink Model

The closed-loop Simulink model is composed of four main parts, the plant model, the

disturbance model, the controller, and the flight profile, it is shown in Figure 6-9. The

blending functions oj(p), j = 1, 2, 3,4, defined by Equations (6.11) - (6.13) are used in

the plant model, the disturbance model, and the controller.

The plant is obtained by blending the output of the LTI models identified from the

CAMRAD simulation data as

4

G(s; pi) = (p)Gj (s) (6.25)
j=1

where G (s) is a plant model that corresponds to p = pj. For the simulation results

discussed in the next section, we used Gj (s), j = 1, 2, 3,4, identified from the CAMRAD

simulations performed with parameters shown in Table 6.2.

The disturbance is modeled by blending the harmonic disturbances obtained from the

CAMRAD simulation data. Because the CAMRAD rotor model is symmetric, the data

from CAMRAD simulation only contain harmonic disturbances with frequencies that are

multiples of NQ, where N = 5 is the number of rotor blades, and Q is the rotor frequency.

For the Simulink model, we only included the harmonic disturbance with frequency 5Q.
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Table 6.2: CAMRAD simulation parameters of the identified models used in Simulink

j Ip I a(deg) CT/o

1 0.15 -3.7 0.075
2 0.20 -5.5 0.075
3 0.30 -9.1 0.075
4 0.375 -12.0 0.075

The harmonic disturbance is modeled as

4

d (t; pt) = v ( p) dj(t ) (6.26)
j=1

where

dj (t) = (aj cos(5Qt) + bj sin(5Qt)), j 1, 2, 3,4 (6.27)

are the harmonic components, with a frequency of 5Q, of the hub normal force from CAM-

RAD simulation performed with parameters shown in Table 6.2. The coefficients aj and bj

are, respectively, the magnitude of the cosine and sine components of the disturbance at the

fifth harmonic. With the CAMRAD simulation data regularized as discussed in Chapter 5,

a, is the real part of the FFT of the output data at the harmonic frequency 5Q, and by is the

negative of the imaginary part of the FFT of the output data at the harmonic frequency 5Q.

For the closed-loop Simulink model, the controller is given by

4

K (s; p) =: az (p) Kj (s) (6.28)
j=1

where Kj (s), j = 1, 2, 3, 4, are the fixed-order N, controller designed for the different

values of p as discussed in Section 6.2.1. We used fixed-order W" controllers of orders 10,
12, and 14 in the gain-scheduled controllers. Each individual fixed-order WL, controller

was designed to have Smax ~ 1.2, so in effect, the higher order fixed-order 'H"' controllers

have larger bandwidths. Note that the blending of the output signals allows different orders

of controllers to be used in the gain-scheduled controller, so it is possible to fix both the

bandwidths and peak sensitivities for all the fixed-order W," controllers. The baseline

levels of vibrations were obtained from the same Simulink model, except the controller
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was disconnected from the plant.

6.3.2 Simulink Simulation Results

The simulations were performed with two different flight profiles. The flight profiles we

considered only varied pi linearly as a function of time. The flight profiles are shown in

Figure 6-10a and Figure 6-11 a, both start at y = 0.10, and increase linearly to p = 0.40.

The duration of Flight Profile 1 is 30 seconds, the duration of Flight Profile 2 is 60 seconds,

and they were initiated after the initial transient responses have died out. Note that the

blending functions azj(p) used in the Simulink simulation effectively limited the range of

the model to be between y = 0.15 and y = 0.375.

The open-loop vibration levels for Flight Profiles 1 and 2 are shown in Figures 6-1 Gb

and 6-1 1b, respectively. The root-mean-square (RMS) values of the open-loop vibrations at

the fifth harmonic frequency within the duration of the flight profiles are tabulated in Table

6.3, and serve as the baseline for comparing the effectiveness of the gain-scheduled con-

troller. The closed-loop responses of system with the gain-scheduled controller composed

of 10th order fixed-order W-. controllers for Flight Profile 1 and Flight Profile 2 are shown

in Figure 6-1 Oc and Figure 6-11c, respectively. The RMS vibration level was reduced by

94.6% for Flight Profile 1, and 97.2% for Flight Profile 2. Slightly larger reductions in

the fifth harmonic vibration levels were achieved with higher order controllers, since these

controllers have larger bandwidths, and thus respond more quickly to changes in the distur-

bance. For the gain-scheduled controllers composed of 12th and 14th order fixed-order 7-K

controllers, the amount of vibration reductions, tabulated in Table 6.3, exceeded 96% for

both flight profiles. The closed-loop responses of the gain-scheduled controllers composed

of 12th and 14th order fixed-order R, controllers are shown in Figures 6-12 and 6-13.

The control signals for all cases examined are plotted in Figures 6-10d, 6-li d, 6-12d, and

6-13d, the magnitudes of the commanded flap deflections were all less than 1 degree, so no

saturation occurred in the simulations. However, the Simulink simulation only contained

disturbances at the fifth harmonic frequency, while wind tunnel tests showed the helicopter

experiences disturbances at almost all harmonic frequencies, thus actuator saturation may
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Table 6.3: RMS vibration levels at the fifth harmonic frequency with gain-scheduling of
controllers of various orders from Simulink simulations

Flight Profile ] Flight Profile 2

RMS (lb) Reduction (%) RMS (lb) Reduction (%)
Baseline (no control) 57.24 - 57.24 -

10th order 3.08 94.6 1.60 97.2
12th order 2.15 96.2 1.09 98.1
14th order 1.20 97.9 0.61 98.9

occur in real applications. To mitigate the effects of saturation, the fixed-order R-t con-

trollers should be implemented as discussed in Section 6.2.4, which allows the use of the

anti-windup scheme developed by Shin, Cesnik and Hall [88].

6.3.3 CAMRAD Closed-Loop Simulation

The closed-loop CAMRAD simulations were conducted by the Boeing Company. The

helicopter rotor model used for the closed-loop simulation was the same model used for

plant identification in the previous chapter. The hub normal force was used as the feedback

signal. Since the controllers were designed for the linearized plant with the deviation of the

hub normal force from the nominal value as the feedback signal, direct implementation of

the controller described above resulted in a static offset of the trailing-edge flaps. A direct

feed-through term was used for each controller to ensure the controller's DC gain was zero

to negate the static offset. The fixed-order W-L controller designed for the advance ratio

pj= with the direct feed-through term has the state-space realization

K( (s) ~) , j=1,2,3,4 (6.29)

where Akj, Bk3 , Ck, are the state-space matrices of the fixed-order W" controller Kj(s),

and the direct feed-through term Dk, is obtained as

Dk= -K (0) (6.30)
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Figure 6-10: Simulation results from Simulink for Flight Profile 1, gain-scheduled control
law using 10th order controllers
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Table 6.4: p schedules for the CAMRAD simulations

Flight Schedule Starting y Final y Duration (sec)

1 0.15 0.2 4
2 0.15 0.3 12
3 0.15 0.375 18

The Dk, terms are interpolated in the gain-scheduled controller using the blending func-

tions given by Equations (6.11), (6.12), and (6.13). Alternative ways to eliminate the flap

static offset are to incorporate a high-pass filter in the control loop, or feedback the devia-

tion of the hub normal force from the nominal hub normal force.

To verify the implementation of the controller in CAMRAD, the fixed-order controller

K (s) was first implemented using Fortran subroutines in the CAMRAD simulation with

fixed y = - j. The input and output of the controller Kj (s), which are the hub normal force

and the flap displacement, respectively, were used in a linear regression to validate that the

coefficients of Kj (s) were correctly implemented. It was determined that the integration

routine used by CAMRAD caused frequency warping that affected the performance of

the controller. The harmonic poles of Kj (s) were prewarped to cancel the effect of the

integration routine. Once the Fortran subroutines were verified to implement the fixed-

order controller correctly, they were extended to incorporate the blending functions for

gain-scheduling.

Simulations of the helicopter rotor controlled by the gain-scheduled controller were

conducted for three different Flight Schedules shown in Table 6.4. The gain-scheduling

was accomplished by using the 10th order fixed-order 7L, controllers. The advance ratio p

was varied linearly in the CAMRAD simulations starting after four seconds, which allowed

the large initial transient hub normal force caused by the direct feed-through term Dkj to

dissipate. The CAMRAD simulations also continued for three seconds after the final value

of p was reached. The baseline levels were obtained by running the simulations with the

controller disconnected from the helicopter rotor model. For Flight Schedule 1, the open-

loop hub normal force is shown in Figure 6-14a. Because the inflow in the CAMRAD

simulations was not set up to vary with the advance ratio y, the average hub normal force

varied as p increased. The hub normal force for the entire closed-loop simulation of Flight
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Table 6.5: RMS vibration levels of the band-pass filtered hub normal force from CAMRAD
simulations

Flight Schedule Baseline (lb) Closed-loop (lb) Reduction (%)
1
2
3

I
104.96
113.57
110.59

I
3.04
2.26
2.37

97.1
98.0
97.9

Schedule I is shown in Figure 6-14b. Figure 6-14c shows the details of the hub normal

force between t = 3.8 sec and t = 4.2 sec, note that the dominant vibration is at 10 per rev,

which is equivalent to 65.3 Hz. A band-pass filter was used to examine the effectiveness

of the gain-scheduled controller at 5 per rev. The band-pass filter consisted of a high-pass

Butterworth filter in series with a low-pass Butterworth filter. The high-pass filter had a

cutoff frequency of 4.5 per rev, and the low-pass filter had a cutoff frequency of 5.5 per

rev. The filtered open-loop hub normal force for Flight Schedule 1 starting at t = 3 sec is

shown in Figure 6-15a. The closed-loop case is shown in Figure 6-15b with Figure 6-15c

showing the details between t = 3.8 sec and t = 4.2 sec.

For Flight Schedule 2 and Flight Schedule 3, the CAMRAD simulation results are

shown in Figure 6-16 and Figure 6-17, respectively. The performance of the gain-scheduled

controller is tabulated in Table 6.5, which shows over 97% reduction in the RMS value of

the band-pass filtered hub normal force during the time span in which the advance ratio p

was increasing.

A second set of CAMRAD simulations were conducted with the swashplate collective

adjusted at the end of the simulations to provide the same level of nominal hub normal

force. The open-loop and closed-loop simulation results for Flight Schedule 1 are shown

in Figure 6-18. The average hub normal force still varied as P was increased, but the

adjustment of the swashplate collective ensured the final average hub normal force matched

the nominal value. The band-pass filtered results for the reduction of the 5 per rev vibration

are shown for the three different Flight Schedules in Figures 6-19, 6-20, and 6-21. The

RMS values are tabulated in Table 6.6, with similar levels of reduction as in the case without

the collective adjustment.
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simulation result for

Table 6.6: RMS vibration levels of the band-pass filtered hub normal force from CAMRAD
simulations with collective adjustment

Flight Schedule Baseline (lb) Closed-loop (lb) Reduction (%)

1 103.84 2.99 97.1
2 110.01 2.53 97.7
3 104.88 2.52 97.6
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Figure 6-20: Band-pass filtered open-loop and closed-loop CAMRAD simulation result for
Flight Schedule 2. Simulations conducted with swashplate collective adjustment

159

10

0

-10



200

0 0

E
o -200
z 0 5 10 15 20 25

Time (sec)
(a) Filtered open-loop simulation result

9 10

, 0

E
o -0z 5 10 15 20 25

Time (sec)
(b) Filtered closed-loop simulation result
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6.4 Summary

In this chapter, we first applied the fixed-order -t control synthesis method developed

in Chapter 4 to design a single controller for multiple LTI plant models. Due to the large

variations in the plant dynamics, the single fixed-order 'H,, controller is not a viable option

for both flight conditions used in wind tunnel testing. However, for multiple plants with

similar dynamics, such as the case in CAMRAD simulations with a constant advance ratio

p, but different rotor shaft angle a, and blade loading coefficient CT/o-, the single fixed-

order controller achieves some performance improvement over the controller designed for

just one particular plant model. For full flight envelope harmonic disturbance rejection, we

proposed using a gain-scheduled controller that is based on the fixed-order W,' controllers

designed for different values of the scheduling variable P. We developed a structure for the

gain-scheduled controller that allows the implementation of a previously developed anti-

windup algorithm. The performance of the gain-scheduled control law was analyzed using

nonlinear simulations. In the relatively simple Simulink simulations with flight profiles that

consisted of linearly increasing p, reductions of greater than 94% were achieved. The more

sophisticated CAMRAD simulations with linearly varying p showed over 97% reduction

in the 5 per rev vibration.
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Chapter 7

Conclusions and Future Work

The subject of this thesis is the analysis and design of controllers for vibration reduction

in helicopters. The controllers are based on Shaw's higher harmonic control (HHC) algo-

rithm, and are designed to attenuate the main source of vibration in helicopters, namely the

harmonic disturbance originating from the main rotor. As a first step towards designing

effective controllers, we examined the dynamics of the helicopter rotor relevant to control

design, and the characteristics of the harmonic disturbance. Our analysis of both wind tun-

nel test data and aeromechanical simulation results showed that the effect of periodicity on

the rotor dynamics is small at various constant flight conditions within the flight envelope.

The lack of significant effects from periodicity allows us to model the rotor at a constant

flight condition by a linear time-invariant (LTI) system. However, the dynamics of the he-

licopter rotor is dependent on the advance ratio. Hence, models of the helicopter rotor at

different advance ratios must be represented by different LTI models.

In order to quantify the performance of a harmonic disturbance rejection controller, we

defined the bandwidth and peak sensitivity of the closed-loop system in the context of har-

monic disturbance rejection. The bandwidth and peak sensitivity are incorporated into the

specifications of a notch filter, which allows us to analyze the performance of harmonic

disturbance rejection controllers using a method from W... control theory. Two new opti-

mization based control design methodologies for harmonic disturbance rejection were pre-

sented, using notch filter as weighting functions. The full-order W,, methodology produces

controllers that achieve the maximum performance possible for the given plant dynamics, if
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bandwidth and peak sensitivity are used as measures of performance. The fixed-order W"

methodology yields controllers that have performance still significantly better than baseline

HHC controllers, but with lower controller order than the full-order N controllers, which

may have very high order. In addition, the fixed-order N controllers are guaranteed to

be marginally stable, which is not the case for the full-order 71(, controllers. A method to

obtain a gain-scheduled control law to reduce vibration throughout the flight envelope was

also presented. In simulations, the gain-scheduled control law showed significant reduction

in the RMS vibration level.

7.1 Summary of Contributions

Contributions in three areas of helicopter vibration control were made in this thesis. The

three areas are the dynamics of the helicopter rotor for control design, the achievable per-

formance in harmonic disturbance rejection, and the control design methods for helicopter

vibration reduction.

In the area of the helicopter rotor dynamics relevant to control design, we have the

following conclusions:

1. Experimental data in the literature and in this research suggest that the helicopter

dynamics associated with higher harmonic control can be well modeled as linear and

time-invariant (LTI), allowing LTI control theory concepts to be applied to the higher

harmonic control problem.

2. Analysis of the simulation data shows that the helicopter rotor dynamics is strongly

dependent on the advance ratio y, and only weakly dependent on the rotor shaft angle

a and blade loading coefficient CTro-. The implication is that high performance full

flight envelope control law must account for the changes in y during flight.

3. In constant forward flight conditions, wind tunnel data showed that significant dis-

turbances exist at nearly all harmonics of the main rotor frequency. To effectively

reduce vibration in a helicopter, the controller should be designed to attenuate multi-

ple harmonics.
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In the analysis of harmonic disturbance rejection performance, the contributions are:

1. We defined two useful measures of higher harmonic control performance, the band-

width and peak sensitivity of the HHC control system. The bandwidth is a measure

of the speed of response of the control system to changes in vibration level; the

peak sensitivity is a measure of the robustness of the closed-loop system stability to

changes in the plant. The bandwidth and peak sensitivity can be expressed in a single

function of frequency in the form of a notch filter.

2. Using analysis techniques from the N control theory, the notch filter can be used

to verify whether a given controller meets a specified bandwidth and peak sensitiv-

ity requirement. Synthesis techniques from the W-L control theory can be used to

design full-order controllers that meet a specified performance level, if such a con-

troller exists. Furthermore, for a given plant, the limits of performance in harmonic

disturbance rejection can be established with the N- methodology.

In the design of harmonic disturbance rejection controller, we have developed two con-

troller design methodologies leading to the following conclusions :

1. The full-order W-,, methodology can be used to produce controllers that achieve the

maximum performance possible for the given plant dynamics, if bandwidth and peak

sensitivity are used as measures of performance. Hence the harmonic disturbance

performance limits can be established with the full-order W... methodology.

2. Because of the high order of the weighting filters, the full-order R-t' controller is

generally of high order. Another disadvantage of the N controller is that it is not

guaranteed to be stable, which is problematic in the event of actuator saturation.

3. The fixed-order W-t, methodology optimizes the same performance measures as the

full-order W-L methodology. The imposed structure in the optimization setup results

in marginally stable controllers with lower orders. The fixed-order R... controllers

contain poles on the jw-axis as required for complete harmonic disturbance rejection,

and all other poles are in the open left half-plane.
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4. Both the full-order and fixed-order 71, controllers can be implemented using a de-

modulation/modulation scheme developed for the baseline HHC controllers, which

allows a previously developed anti-windup algorithm to be used.

5. For a representative rotor system (the SMART rotor), the full-order 71,, controllers

designed to reject the first five harmonics have significantly higher bandwidth (3-4

times) for a given peak sensitivity than the baseline HHC controllers.

6. For a representative rotor system (the SMART rotor), the fixed-order W" controllers

designed to reject the first five harmonics have significantly higher bandwidth (1.5-

2.5 times) for a given peak sensitivity than the baseline HHC controllers, sometimes

with only a small increase in controller order over that of baseline HHC controllers.

7. The fixed-order W,, methodology can be used to design a controller for the helicopter

rotor at different flight conditions. The performance of a single fixed-order +H, con-

troller designed for plant models representing the helicopter rotor at very different

values of p is poor, but the single controller approach appears to be effective when

the plant models are at the same value of p, but different values of the shaft angle a

and blade loading coefficient CT/o-.

8. The fixed-order W-,,, controllers are used in a gain-scheduled control law for full flight

envelope disturbance rejection. The control law is scheduled on y, with the control

signal from the fixed-order N controllers blended to achieve bumpless transfer.

CAMRAD simulations of accelerating forward flights show that the gain-scheduled

controller reduces the 5 per rev normal vibration by over 97%.

7.2 Future Work

Helicopter vibration reduction remains an important area of research. Reducing the vibra-

tion levels would increase the utility of the helicopter and reduce the operating cost. Several

areas related to the work presented in this thesis warrant further research:
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1. The control methodologies introduced in this thesis need experimental verification.

In particular, the simplicity and stability of the fixed-order 7-K controller make it

a good candidate to be further examined in wind tunnel testing. The fixed-order

7HK controller synthesis procedure sets up the controller as two parallel filters, one

responsible for the harmonic disturbance rejection, the other used to improve the con-

troller performance. It is possible to implement the fixed-order 7- controller as two

filters in series, which would allow the anti-windup algorithm developed by Shin,

Cesnik and Hall [88] to be deployed. The anti-windup scheme minimizes the degra-

dation in performance when the actuators are saturated. Furthermore, the harmonic

disturbance rejection filter can be implemented using the demodulation/modulation

scheme developed by Hall and Wereley [44]. By using the actual rotor speed in the

demodulation/modulation scheme, the controller can account for variations in the

rotor angular speed.

2. In this thesis, the harmonic disturbance controllers were designed to reduce the vi-

bration in the direction normal to the rotor using only the collective control mode of

the active flaps. We did not consider the effects of the controller on the vibrational

forces and moments in the other directions. In addition to examining the amplitude

of the vibrational forces and moments in the other directions, it would be useful to

generalize the fixed-order 7-K control methodology to the multi-input/multi-output

(MIMO) case. In the MIMO case, longitudinal and lateral cyclic controls could be

used in addition to the collective, and multiple vibrational forces and/or moments

could be attenuated.

3. The individual controllers we used for gain-scheduling were all of the same order,

but in fact the control blending method will allow controllers of different orders to

be used, and that may lead to improved performance. Furthermore, we did not quan-

tify the effects of the bandwidth and peak sensitivity of the fixed-order controllers

on the performance of the gain-scheduled controller. It would be useful to define

metrics to measure the performance of the gain-scheduled controller, and know how

the specification of the individual fixed-order controllers affect the performance of
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the gain-scheduled controller.

4. We used plant models at four values of p = pj, j = 1, 2, 3, 4, as shown in Table

6.1, to span the entire flight envelope. But we found that additional models at dif-

ferent values of p are needed to generate good interpolated models at intermediate

values of p between pj's. For the plant models at each of the four values of P = y,

we obtained the fixed-order controller by optimizing the performance in terms of

the bandwidth and peak sensitivity. However, the performance of the interpolated

controllers at intermediate values of p were not as good as expected. Further de-

velopment can consider increasing the number of plant models spanning the flight

envelope, such that good interpolated models can be obtained. Then the design pro-

cess can be modified to optimize the fixed-order controller for the plant model at

t = tj and the nearby interpolated models. Doing so would give up some of the

performance at y = yj, but may improve the performance on the average during

maneuvering flight.

5. The gain-scheduled controller design method could be further developed. The ad

hoc procedure used to create the gain-scheduled control law is mostly due to the

lack of knowledge on how the helicopter rotor dynamics vary with changes in flight

condition, especially with respect to the advance ratio. To illustrate the problem,

consider the helicopter rotor modeled by a linear parameter-varying (LPV) system

with the state-space description

zi(t) = A(0)x1(t) + B(0)u(t) (7.1)

where 0 = 0(t). The dynamics of the rotor resulting from a transition from one

flight condition to another flight condition can be obtained by applying the parameter

varying transformation

xi(t) = T(0)x 2(t) (7.2)
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to Equation (7.1). The transformed system is

z 2 (t) T -1(0) A(o)T(o) -- T() ] x2(t) + T '(0)B(0)u(t) (7.3)

Our LTI models contains no information on the rate of change in the parameter 0

that is present in the second term in the square bracket of Equation (7.3), and so

the performance of our gain-scheduled control law could certainly be improved by

incorporating information on the parameter 0. Knowledge of the dynamics due to

parameter variations could be used to analyze the performance of the gain-scheduled

control law, and to improve the performance of the gain-scheduled controller.

6. The CAMRAD simulation could be further fine-tuned to better match the wind tun-

nel test results. Once better agreement with the wind tunnel data is achieved, the

CAMRAD simulation could be leveraged to provide the necessary insight for under-

standing the nonlinear behavior of the helicopter rotor and used for actual controller

design.
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