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Abstract— We present a new approach to multi-signal ges-
ture recognition that attends to simultaneous body and hand
movements. The system examines temporal sequences of dual-
channel input signals obtained via statistical inference that
indicate 3D body pose and hand pose. Learning gesture patterns
from these signals can be quite challenging due to the existence
of long-range temporal-dependencies and low signal-to-noise
ratio (SNR). We incorporate a Gaussian temporal-smoothing
kernel into the inference framework, capturing long-range
temporal-dependencies and increasing the SNR efficiently. An
extensive set of experiments was performed, allowing us to
(1) show that combining body and hand signals significantly
improves the recognition accuracy; (2) report on which features
of body and hands are most informative; and (3) show that using
a Gaussian temporal-smoothing significantly improves gesture
recognition accuracy.

I. INTRODUCTION
Human communication is inherently both multimodal and

multi-signal. Spoken language is often accompanied by
non-verbal cues, such as body and/or hand gestures, eye
gaze, head nod, or facial expressions that can be essential
to understanding. Gestures in turn are often multi-signal,
e.g., using both body and hand poses simultaneously, with
both necessary for gesture understanding. Successful gesture
recognition thus needs to be able to process multi-signal
data seamlessly. Most current gesture recognition systems,
however, concentrate on dealing with only a single signal.

We developed a multi-signal gesture recognition system
that attends to body and hands, allowing a richer gesture
vocabulary and more natural human-computer interaction.
In this paper, we present the signal understanding part of
the system, i.e., learning to recognize patterns of multi-
signal gestures. The signal processing part (i.e., obtaining
a temporal sequence of body and hand features) is described
in a companion paper [16].

Discriminative hidden-state learning approaches (e.g.,
HCRF [14]) have recently shown promising results in many
pattern recognition tasks. The main advantage of discrim-
inative approaches compared over generative approaches
(e.g., HMM [15]) is that they do not make the conditional
independence assumption, which is often both too restrictive
and unrealistic. It has been shown that when conditional
independence does not hold, the asymptotic accuracy of
discriminative models is higher than generative models [10].

In our task, the input signal patterns tend to exhibit long-
range temporal-dependencies (e.g., body parts move coher-
ently as time proceeds, hand poses are articulated in relation

to body poses in a time-sequence, etc.). Thus, although a
gesture label is given, individual observations may not be
independent of each other; observations rather seem to be
important clues to distinguish similar patterns of gestures.

Also, in our task body and hand pose signals are obtained
by performing statistical estimation and classification, which
themselves are not perfectly accurate; thus the input signal
patterns exhibit high-frequency fluctuations in a time series,
with a low SNR.

Previous work on HCRFs for gesture recognition [18] tried
to resolve the first issue, capturing long-range dependencies
among observation by defining a temporal window and con-
catenating signals within the window, creating a single large
input feature. We take a slightly different approach. Instead
of concatenating signals (which increases the dimensionality
of the input feature vectors), we use a Gaussian temporal
smoothing kernel, capturing long-range dependencies and
making our framework less sensitive to the noise. We show
that this improves upon the performance of previous work on
HCRFs for gesture recognition [18], while at the same time
keeping the same computational complexity of the original
HCRF model [14].

The main contribution of this paper lies in this incor-
poration of a Gaussian temporal-smoothing kernel into the
HCRF framework. Based on the results from an extensive
set of experiments using 10 body-and-hand gestures from
the NATOPS database [16], we (1) show that combining
body and hand poses significantly improves the recognition
accuracy; (2) report on which body and hand features are
most informative for this recognition task; and (3) show that
temporal smoothing improves system performance.

Section II describes related work on multi-signal gesture
recognition and inference framework, Section III gives an
overview of our gesture recognition system, Section IV de-
scribes our HCRFs with temporal-smoothing in more detail,
and Section V describes experiments and results. Section VI
concludes with our contributions and suggests directions for
future work.

II. RELATED WORK

Gesture recognition is a broad area of research that is
increasingly used in natural human-computer interaction.
Gestures can range from dynamic human body motion
through pointing device gestures to sign language. In this
work, we are concerned primarily with multi-signal gestures



involving dynamic body movements and static or dynamic
hand pose configurations. Here we review some of the recent
efforts to the similar goal. For a more comprehensive review
of gesture recognition, see [1], [11].

Recently, many efforts have been made to build mul-
timodal gesture recognizers. In [2], Althoff et al. used
trajectories of head and hands to recognize gestures for in-car
control systems. Two different recognizers were developed,
rule-based and HMM-based. When tested with 5 common
in-car control gestures (left, right, forward, backward, and
wipe) using either head or hand gestures, the two recognizers
achieved similar recognition accuracy (90%). In [9], Li et
al. presented multi-signal pointing-direction estimation in a
human-robot interaction scenario, using a combination of
head orientation, body pose, and hand pose information.
Head orientation was determined by tracking eye-gaze using
FaceLAB; body pose was estimated using a particle filter;
and hand pose was classified using a multi-resolution image
querying method. These three signals were then used to
determine the pointing direction. However, all of these efforts
were either tested on fairly simple tasks (i.e., recognizing
single-signal or static gestures) or used statistical inference
frameworks that were not particularly well suited to these
tasks (i.e., unable to capture complex long-range dependen-
cies in the input signals).

There have also been active efforts to build a robust
inference framework for pattern analysis tasks based on
discriminative learning. In [8], Lafferty et al. introduced
CRFs, a discriminative learning approach that does not make
conditional independence assumptions. In [14], Quattoni et
al. introduced HCRFs, an extension to CRFs that incorpo-
rates hidden variables. Many other variants of HCRFs have
been introduced since then [18], [12], [5], but most of these
were tested only on single-signal pattern recognition tasks
(e.g., POS tagging [8], object recognition [14], body gesture
recognition [18], [12], and phone classification [5]) and paid
less attention to dealing with noisy input signals.

In this work, we demonstrate that discriminative hidden-
state learning approaches are well suited to multi-signal
gesture recognition tasks, and that significant improvements
in recognition accuracy can be achieved by incorporating
Gaussian temporal-smoothing into the inference framework.

III. SYSTEM OVERVIEW

Fig. 1 shows an overview of our gesture recognition
system. The system starts by receiving pairs of time-
synchronized images recorded from a Bumblebee2 stereo
camera1, producing 320 x 240 pixel resolution images at
20 FPS.

For the first part in the pipeline, image pre-processing,
depth maps are calculated, and the images are background
subtracted using depth information and a codebook back-
ground model that is trained off-line. For the second part, 3D
body pose estimation, we construct a generative model of the
human upper body, and compare various features extracted

1http://www.ptgrey.com

Fig. 1. Multi-signal gesture recognition framework.

from the model to corresponding features extracted from
input image. We estimate body pose in a multi-hypothesis
Bayesian inference framework with a particle filter [7]. For
the third part, hand pose classification, we define two small
search regions around estimated wrist joint positions and
slide a window within each region to search for hands.
A multi-class SVM classifier [17] is trained off-line based
on HOG descriptors [4] extracted from manually-segmented
images of hands, and is used to classify hand poses. In
the last part, multi-signal gesture recognition, we perform
recognition with a combination of body and hand pose
information. An HCRF with a Gaussian temporal-smoothing
kernel is trained off-line using a supervised gesture data set,



and is used to perform gesture recognition.
The system builds on our previous work [16]; this paper

reports on the gesture recognition part of the system. A
detailed description of the 3D body pose estimation and
hand pose classification part of the system is in a companion
paper [16].

IV. MULTI-SIGNAL GESTURE RECOGNITION

The goal here is to learn a classifier p(y | x) that predicts
a gesture label y ∈ Y given a temporal sequence of input
images x = {x1, · · · ,xT }. For each image xt, we extract
body pose features φ(x1

t ) ∈ RN1 and hand pose features
φ(x2

t ) ∈ RN2 ; each xt is represented as a multi-signal
feature-vector

φ(xt) =
(
φ(x1

t ) φ(x2
t )
)T
. (1)

We briefly review HCRF to set the context for our work,
and describe the formulation of our model in detail.

A. HCRFs: A Review

An HCRF [14] is a discriminative framework for building
probabilistic models to label segmented sequential data (i.e.,
data that has been divided at signal boundaries, such as
gesture start and end). The framework extends CRF models
[8], which assumes a tree-structured undirected graph G,
by incorporating hidden state variables into the graphical
structure. The framework is designed to capture complex
dependencies in observations efficiently, without attempting
to specify exact conditional dependencies. The goal is to
learn a mapping function of observations x to class labels
y ∈ Y , by introducing hidden state variables h ∈ H to
compactly represent the distribution of observations. The
conditional probability distribution p(y |x; θ) of a class label
y given a set of observation x with parameter vector θ is
constructed as

p(y | x; θ) =
∑
h

p(y,h | x; θ) =
1

Z

∑
h

eΨ(y,h,x;θ) (2)

where Z is a partition function defined as

Z =
∑
y∈Y

∑
h

p(y,h | x; θ) (3)

and Ψ(y,h,x; θ) is a potential function defined as

Ψ(y,h,x; θ) =
∑
v∈V

θV · f (v,h|v, y,x)

+
∑

(i,j)∈E

θE · f
(
(i, j),h|(i,j), y,x

)
. (4)

The potential function models dependencies in the graphi-
cal structure, where θV and θE are parameters that determine
dependencies within h|S , a set of components of h associated
with the vertices and edges in subgraph S of G. Therefore,
it is crucial to design the potential function carefully. We
describe our potential function below.

Following previous work on CRFs [8], parameter opti-
mization is performed using:

L(θ) =

N∑
i=1

log p(yi | xi; θ)−
1

2σ2
||θ||2 (5)

where the second term, the regularization factor, is intro-
duced to prevent overfitting of the training data. The optimal
parameter values are obtained by solving the maximum
log-likelihood function θ∗ = arg maxθ L(θ) using belief
propagation [13]. Finally, a class label for a new observation
is determined as

y∗ = arg max
y∈Y

p(y | x; θ). (6)

Similar to [8], we assume that the underlying graph
satisfies the first-order Markov property, forming a tree-
structured chain. Therefore, belief propagation [13] can be
used for efficient parameter estimation and inference.

B. HCRFs with Gaussian Temporal-Smoothing
Our potential function is defined as

Ψ(y,h,x; θ) =
∑
t

K (φ(x), g(ω), t) · θ(ht)

+
∑
t

θ(y, ht) +
∑
t−1,t

θ(y, ht−1, ht) (7)

where K (φ(x), g(ω), t) is a Gaussian temporal-smoothing
kernel, which performs a convolution of the input feature
vector φ(x) and the ω-point Gaussian window g(ω). The
Gaussian window is computed as

g(ω)[n] = e−
1
2 (α n

ω/2 )
2

(8)

where −ω−1
2 ≤ n ≤ ω−1

2 , and α is inversely proportional to
the standard deviation of a Gaussian random variable. 2 The
Gaussian window g(ω) is normalized so that

∑
n g(ω)[n] =

1. Intuitively, the kernel computes for each time frame a
weighted mean of ω neighboring feature vectors with a
Gaussian filter, centering the filter at the current time frame.
This process produces a feature vector at each time frame
that both incorporates observations some time distance away
from the current frame, and reduces signal noise.

The first term in Eq. 7 captures dependencies between the
temporal smoothed input feature vectors and hidden state
variables; the second term captures dependencies between
class labels and hidden states variables; and the last term
captures dependencies among class labels and two time-
consecutive hidden state variables.

V. EXPERIMENT AND RESULT

We conducted an extensive set of experiments using our
gesture recognition system with a body-and-hand gesture
dataset [16]. We briefly describe the dataset, and (1) show
that combining body and hand poses significantly improves
the recognition accuracy; (2) describe which body and hand
features are most informative for this recognition task; and
(3) show that temporal smoothing significanly improves
performance.

2Following [6], we set α=2.5.



#2 All Clear #4 Spread Wings #10 Remove Chocks #18 Engage Nosegear Steering #20 Brakes On

#3 Not Clear #5 Fold Wings #11 Insert Chocks #19 Hot Brakes #21 Brakes Off

Fig. 2. Ten NATOPS aircraft handling signal gestures [16]. Body movements are illustrated in yellow arrows, and hand poses are illustrated with
synthesized images of hands. Red rectangles indicate hand poses are important in distinguishing the gesture pair.

A. NATOPS Aircraft Handling Signal Dataset

We used the NATOPS dataset [16], a body-and-hand
gesture dataset containing an official gesture vocabulary
used for communication between carrier deck personnel and
Navy pilots (e.g., yes/no signs, taxing signs, fueling signs,
etc.). The dataset contains 24 gestures, with each gesture
performed by 20 subjects 20 times, resulting in 400 samples
per gesture. Each sample had a unique duration; the average
length of all samples was 2.34 sec (σ2=0.62).

We selected five pairs of gestures (see Fig. 2) that are
particularly interesting because in general the gestures in
each pair are very similar, and in fact two pairs (#2 &
#3 and #20 & #21) are indistinguishable in the absence of
knowledge of hand pose. For example, gestures #20 (“brakes
on”) and #21 (“brakes off”) are performed by raising both
hands, with either open palms that are closed (“brakes off”),
or vice versa (“brakes on”). Here, the role of hand pose
is crucial to distinguishing two very similar gestures with
opposite meanings. As a more subtle case, gestures #10
(“insert chocks”) and #11 (“remove chocks”) are performed
with both arms down and waving them in/outward. The only
difference is the position of thumbs: inward (“insert chocks”)
and outward (“remove chocks”).

Experiments were conducted using combinations of body
and hand features extracted in our previous work [16]. There
were 4 body features and 2 hand features. The four body
features were joint angles (T), angular velocities (dT), joint
coordinates (P), and the corresponding velocities (dP).

The joint angle features (T and dT) are 8 DOF vectors
(3 for shoulder and 1 for elbow, for each arm), and the
joint coordinate features (P and dP) are 12 DOF vectors
(3D coordinates of elbows and wrists for both arms). The
uniform-length relative joints are obtained by configuring
a generative model with the estimated joint angles with
uniform limb lengths (so that their joint coordinates have
less variance), and recording joint coordinates relative to the

chest point.
The two hand features were a “soft decision” and “hard

decision.” The soft decision (S) is an 8 DOF vector with
probability estimates obtained from the SVM (4 hand poses
for each hand), while the hard decision (H) is a 2 DOF
vector obtained by selecting the highest probability estimate
for each hand. Intuitively, S has richer information about the
shape of hands, while H has a lower degree of freedom,
which can reduce the computational cost in an estimation
step.

All experiments were conducted with n-fold cross valida-
tion (n-CV), allowing us to perform a cross-subject analysis,
i.e., train the model with a dataset that does not include ges-
ture examples performed by subjects in a test dataset, result-
ing in more accurate measurement of performances. We mea-
sured accuracy with an F1 score (F1=2∗ precision·recall

precision + recall ).
In all tests, we set the regularization factor in Eq. 5 at 1,000
which, based on our preliminary experiments, helps prevent
overfitting.

B. Does Combining Body and hand Pose Really Help?

The first question was whether combining body and hand
poses helps to improve recognition performance. To de-
termine this, we compared recognition performance under
two conditions: body feature only (BO) and body and hand
features (BH), i.e., BO contained only body features, while
BH contained body and hand features. Since there were two
hand features (S and H), we averaged the two test results
for the BH condition. For each test, we performed 4-CV
analysis, varying the number of hidden states from 3 to 4
and taking an average. Since a 4-CV analysis performs four
repetitive tests, we get variances in the results; we performed
independent samples T-tests to see if the differences between
two conditions (BO and BH) were statistically significant.

Table I shows means and standard deviations for overall
recognition accuracy rates averaged over 10 gestures, as



TABLE I
BODYONLY VS. BODYHAND

Body Feature
Hand Feature

T-test result
BO, µ(σ2) BH, µ(σ2)

T 20.09 (3.57) 27.02 (3.83) t(22)=1.00, p=.326

P 23.26 (11.07) 32.73 (20.57) t(22)=1.21, p=.240

dT 62.47 (7.21) 76.23 (8.10) t(22)=4.06, p=.001

dP 70.94 (6.73) 80.65 (5.30) t(22)=3.82, p=.001

Fig. 3. Per-gesture comparisons of BodyOnly and BodyHand.

well as the results from independent samples T-tests. In all
our test cases, using body and hand pose together resulted
in higher recognition accuracy rates. For two of the body
pose features (dT and dP) the differences were statistically
significant (p=.001).

Fig. 3 shows per gesture comparisons of the two conditions
(BO and BH). Note that the graph used only the higher
performing body features dT and dP. As expected, the
performance difference was significant for the 4 gestures (#2,
#3, #20, and #21) where the hand pose plays an important
role in defining the gesture (see Fig. 3). The difference
is especially obvious for gesture pair #2 and #3, where
recognition without knowing hand pose was no better than
random. Our result indicated that using body and hand pose
together on these 4 gestures achieved on average 27.5%
higher accuracy; for the other 6 gestures there were slight
differences, but none were significant.

C. Which features are most informative?

Various types of body or hand features have been explored
in gesture recognition research, but there is no clear sense
as to which features are most informative. In response, we
compared the system’s recognition accuracy using various
combinations of three body features (dT, dP, and dTdP) and
two hand features (S and H). For each test case we performed
10-CV analysis, varying the number of hidden states from 3
to 5 and taking an average.

Table II shows comparisons of the resulting perfor-
mance. Hand feature S performed significantly better than H
(t(178)=2.24, p=.018), achieving on average 3.44% higher
accuracy rate. For body pose, dP performed the best, while
the performances obtained using dT and dTdP were similar.
We found no statistical significant in body feature differ-
ences.

TABLE II
VARIOUS COMBINATIONS OF BODY AND HAND FEATURES

Body Feature
Hand Feature

H, µ(σ2) S, µ(σ2) Average

dT 78.02 (10.97) 82.27 (10.42) 80.15 (10.82)

dP 80.72 (9.85) 86.02 (8.32) 83.37 (9.37)

dTdP 80.08 (8.21) 80.86 (9.51) 80.47 (8.82)

Average 79.61 (9.67) 83.05 (9.60 ) ·

Fig. 4. Recognition accuracy for different window sizes.

For the features we used, a combination of dP (uniform-
length relative body joint velocity) and S (probability esti-
mates of a hand pose) was the most informative feature for
this task.

D. Does Gaussian Temporal-Smoothing Help?

The third experiment aimed to measure the advantage of a
Gaussian temporal smoothing HCRF. Based on the previous
results, we selected dPS as a feature combination (joint
velocities for body and soft decision for hands). All tests
were performed with 10-CV analysis, fixing the number of
hidden states at 5, and varying the Gaussian window size
from 1 to 21 (using only odd numbers).

As can be seen in Fig. 4, Gaussian temporal-smoothing
significantly improved the performance: when compared
to non-smoothing (ω=1, 12.1% error), a half-second sized
Gaussian window (ω=11, 6.3% error) was able to reduce
48% of remaining errors. The performance dropped as the
window size increased beyond ω=11, indicating that it started
losing some important local/high-frequency gesture informa-
tion when the Gaussian window size was larger than half a
second. Fig. 6. shows confusion matrices comparing ω=1 and
ω=11 (best performing setting). We can see that both false
positives and false negatives were decreased for all individual
classes, with the highest gain achieved for gesture #10 (22%
improvement).

Fig. 5 shows distributions of hidden states for each gesture
class, when the dPS feature combination was used with
|H|=5 and ω=11. Here we can see that the hidden states
are roughly evenly distributed over the gesture classes,
suggesting that the number of hidden states was appropriate.

One important thing to notice is that temporal-smoothing
not only improves recognition accuracy significantly (by con-
sidering long-range input features and increasing SNR), but



Fig. 5. Distributions of assigned hidden states (|H|=5, ω=11). The numbers
enclosed in each area indicates the hidden state assignments.

TABLE III
CONFUSION MATRICES COMPARING ω=1 AND ω=11.

#2 #3 #4 #5 #10 #11 #18 #19 #20 #21
#2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#3 0.00 0.98 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
#4 0.00 0.00 0.79 0.03 0.08 0.01 0.01 0.01 0.00 0.01
#5 0.00 0.00 0.06 0.92 0.01 0.01 0.01 0.01 0.00 0.00

#10 0.00 0.00 0.06 0.01 0.73 0.11 0.00 0.00 0.00 0.00
#11 0.00 0.01 0.03 0.02 0.14 0.86 0.01 0.00 0.00 0.01
#18 0.00 0.01 0.01 0.00 0.01 0.00 0.90 0.08 0.01 0.04
#19 0.00 0.00 0.02 0.01 0.00 0.01 0.07 0.88 0.03 0.03
#20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.87 0.06
#21 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.01 0.09 0.85

No Temporal-Smoothing (|H|=5, ω=1)

#2 #3 #4 #5 #10 #11 #18 #19 #20 #21
#2 1.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#3 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
#4 0.00 0.00 0.87 0.01 0.01 0.00 0.02 0.00 0.00 0.01
#5 0.00 0.00 0.03 0.98 0.00 0.01 0.00 0.00 0.01 0.00

#10 0.00 0.00 0.03 0.00 0.95 0.09 0.00 0.00 0.00 0.00
#11 0.00 0.00 0.01 0.01 0.03 0.89 0.00 0.00 0.01 0.01
#18 0.00 0.00 0.02 0.00 0.01 0.01 0.95 0.07 0.00 0.02
#19 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.93 0.01 0.00
#20 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.92 0.07
#21 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.05 0.88

Gaussian Temporal-Smoothing (|H|=5, ω=11)

it does so without increasing the computational complexity
of inference. Previous work on HCRF for gesture recogni-
tion [18] defined a window to concatenate neighboring input
features, thus increasing the dimensionality. Our approach
computes a weighted mean of neighboring input features,
thus it does not increase the dimensionality, and there is no
added complexity to the original HCRF model (additions
and multiplications in the kernel operation can be negligible
compared to the complexity of the inference algorithm).

VI. CONCLUSION AND FUTURE WORK

We presented a Gaussian temporal-smoothing HCRF ca-
pable of capturing long-range dependencies, increasing SNR,
and improving performance, while at the same time keeping
the same computational complexity of the original HCRF
model [14]. Through an extensive set of experiments, we (1)
showed that combining body and hand signals significantly
improves the recognition accuracy; (2) reported on which
features of body and hands are most informative; and (3)

showed that using a Gaussian temporal-smoothing HCRF
significantly improves the performance.

Our current system can be improved in a number of
ways. Of the most interest is allowing non-segmented con-
tinuous time-series input. In [12], Morency et al. presented
an LDCRF that does not require its input sequence to be
segmented, and showed that it is suitable for a number of
gesture recognition tasks. However, the experiments were
conducted with binary classification tasks only (e.g., head
nod or eye gaze-aversion). Our gesture dataset includes 10
body-and-hand gesture classes, and exhibit many similar sub-
patterns during gesticulation; tasks that are not clear to work
well with non-segmented input stream. We plan to implement
this for our future work.
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