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Abstract 

 

A new stochastic representation of a seastate is developed based on the Karhunen-Loeve spectral 

decomposition of stochastic signals and the use of Slepian Prolate Spheroidal Wave Functions 

with a tunable bandwidth parameter. The new representation allows the description of stochastic 

ocean waves in terms of a few independent sources of uncertainty when the traditional 

representation of a seastate in terms of Fourier series requires an order of magnitude more 

independent components. The new representation leads to parsimonious stochastic models of the 

ambient wave kinematics and of the nonlinear loads and responses of ships and offshore 

platforms. The use of the new representation is discussed for the derivation of critical wave 

episodes, the derivation of up-crossing rates of nonlinear loads and responses and the joint 

stochastic representation of correlated wave and wind profiles for use in the design of fixed or 

floating offshore wind turbines. The forecasting is also discussed of wave elevation records and 

vessel responses for use in energy yield enhancement of compliant floating wind turbines. 
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1. Introduction 

 

The design of ships and offshore structures that are expected to withstand severe storms and 

operate safely over a period of several decades requires an assessment of their structural 

reliability against extreme wave loads and fatigue. Ocean waves and the responses of marine 

structures are usually modeled as stationary Gaussian random processes represented by 

stochastic Fourier series based on the work of Rice (1944, 1945). The standard stochastic model 

of a seastate assumes that the free surface elevation may be represented by the superposition of a 

large number of Fourier components, typically 20-50 depending on the application, with random 

and independent phases drawn from the uniform distribution and amplitudes determined from the 

power spectral density of the seastate [Ochi (1998)]. The use of a seastate representation with a 

large number of independent sources of uncertainty in nonlinear wave body interactions leads to 

a computational task which may become prohibitively expensive when the statistics of extreme 

loads and responses are necessary. Therefore a representation of the seastate with the smallest 

possible number of independent sources of uncertainty would be very beneficial. When coupled 

with theoretical models of the nonlinear wave loads explicit expressions for the nonlinear 

probability density functions and threshold up-crossing rates become possible. The significance 

of a representation of linear and nonlinear random signals in terms of a small number of 

independent canonical components is discussed by Kac and Siegert (1947) and Wiener (1958). 

 

Sines and cosines are but one of all possible orthogonal basis function sets that may be used for 

the representation of deterministic or stochastic signals in the form of a series with stochastic 

coefficients. Given the power spectral density of the signal an optimal orthogonal set of basis 

functions exists that fits the signal with the minimum number of independent sources of 

uncertainty. This basis set follows from the spectral decomposition theorems of Loeve (1945) 

and Karhunen (1947) [see Basilevsky (1994)].  An eigenvalue-eigenfunction problem is 

formulated and cast in the form of an integral equation of the first kind with a kernel equal to the 

autocorrelation function of the signal. The solution of this integral equation allows the 

representation of the signal as the linear superposition of the eigenfunctions multiplied by 

independent random variables with variance equal to the corresponding eigenvalues. A rapid 

decay of the eigenvalues indicates that a small number of independent components are sufficient 
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for the stochastic representation of the signal. This is indeed the case for narrow banded seastates 

for which less than three to five terms in the Karhunen-Loeve representation may provide 

sufficient accuracy. 

 

The solution of the Karhunen-Loeve (KL) eigenvalue problem is a complex task and analytical 

solutions are available only in a few special cases. Such a case was considered by Slepian and 

Pollack (1961) and involves the sinc (sinx/x) function as the kernel in the KL integral equation. 

The eigenfunctions turn out to be the Prolate Spheroidal Wave Functions (PSWF) which form an 

orthornormal basis set with properties analogous to those of Fourier series, Chebyschev and 

Legendre polynomials. A distinct advantage of PSWFs is that they can be maximally 

concentrated in a given interval via the selection of a controllable bandwidth parameter known as 

the Slepian frequency. Moreover, they have the attractive property that they are invariant to a 

finite and infinite Fourier transform. Their application in communication theory is discussed by 

Moore and Cada (2004) and their mathematical properties and computation is presented in Xiao, 

Rockhlin and Yarvin (2001). 

 

Drawing upon the properties of PSWFs a general solution of the Karhunen-Loeve integral 

equation is developed in the present article. The kernel is given by the autocorrelation function of 

a stationary seastate with a known spectrum. The KL integral equation of the first kind is 

reduced to a spectral matrix eigenvalue problem which accepts an efficient solution.  For narrow 

banded seastates a rapid decay of the eigenvalues is observed. The number of dominant 

components in the Karhunen-Loeve-Slepian (KLS) representation depends on the magnitude of a 

tunable bandwidth parameter known as the Slepian frequency. Its selection for specific 

applications is discussed and its magnitude is found to depend on the bandwidth of the spectrum 

and the time scale of the memory effects in the wave-body interaction problem under 

consideration. 

 

The use of the KLS representation of a seastate is discussed in connection with a recent 

theoretical nonlinear wave load model developed by Sclavounos (2011) which permits the 

derivation of explicit expressions for the extreme statistics for use in design. The use of the KLS 

representation for the design of a critical wave episode in a seastate is also described. The 
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extension of the present solution methodology to the joint KL representation of correlated 

stochastic ocean wave elevations and wind speed profiles is addressed. The KL representation of 

stochastic wind speeds and loads on wind turbines may be derived along lines similar to those for 

stochastic waves. The fundamental orthonormal basis set for averaged wind speeds differs from 

the PSWFs and may also be derived in explicit form from an analytical approximation of the 

wind speed autocorrelation function. This enables the derivation of a parsimonious joint KL 

representation of the wave loads on the floaters and wind loads on the turbine for use in the study 

of extremes and fatigue loads. 

 

The Karhunen-Loeve representations of ocean waves, the responses of floating bodies and the 

wind speeds and loads on wind turbines may be used to generate accurate short-term forecasts of 

the respective quantities. Such forecasts may be generated in real time and used for the safe 

operation of ships and offshore platforms in severe seastates. Short-term forecasts of wind speeds 

coupled with feed-forward blade pitch control strategies may be used to mitigate loads on the 

blades and increase the energy yield of multi-megawatt onshore and offshore wind turbines. 

Analogous forecasts of the responses of floating wind turbines may be used to convert part of the 

kinetic energy of the floater imparted by the waves into wind energy via bladed pitch control 

strategies. Finally forecasts of ocean wave elevations and of the wave exiting forces on floaters 

are known to be essential for the design of efficient wave energy converters. 

  



5 

 

 

2. Spectral Decomposition of Stochastic Wave Records 

 

Consider a wave elevation record ( , , )X Y t  from a stationary and ergodic seatate where (X,Y,Z) 

is an earth fixed coordinate system with Z=0 being the calm water surface and with the positive 

Z-axis pointing upwards. The wave record measured at X=Y=0 has the same statistical 

properties as the wave record measured at other (X,Y) locations. For the sake of brevity the 

following notation is adopted for the signal ( ) ( ,0,0)t t  . The (X,Y,Z) coordinates are 

introduced again later in the article when the space-time dependence of the velocity potential 

corresponding to the seastate is derived. 

 

The autocorrelation function of the signal is given by 

 

(2.1) 

 

The expectation in (2.1) is taken over an ensemble of records at a fixed time t or over time for a 

single stationary record. For a stationary ergodic seastate the two definitions lead to an identical 

result. In practice the use of the temporal average is more convenient. It is hereafter assumed that 

( )R   is a known deterministic even function of the time lag  . The two-sided power spectral 

density of the signal ( )t  is the Fourier transform of the autocorrelation function. The following 

standard relations hold 
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In (2.2) the standard deviation of the signal   is also defined in terms of the one-sided wave 

spectrum ( )S 
 
which accepts a number of standard parametrizations in ocean engineering 

discussed in Ochi (1998). 

 

Consider a signal over a finite time interval (-T,T). The Karhunen-Loeve theorem states that 

( )t  accepts the expansion 

 

(2.3) 

 

Assuming that ( )t   is a stochastic process, the coefficients n  are independent random 

variables such that 

 

(2.4) 

 

 

The deterministic functions ( )nf t  are solutions of an eigenvalue problem cast in the form of an 

integral equation of the first kind with the autocorrelation function as its kernel 

 

 

 

 

(2.5) 
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A number of observations follow from the KL stochastic series expansion (2.3)-(2.5):  

 

 The independent random variables n  
are Gaussian if the signal ( )t  is Gaussian which 

is often the case with ocean waves. Yet the expansion applies to non-Gaussian signals. 

 

 The eigenfunctions 
 
are even and odd functions for positive and negative values of 

their argument in the range (-T,T). They are obtained from the solution of the eigenvalue 

problem derived below. 

 

 The rate of decay of the eigenvalues n  with increasing n suggests the number of terms 

that are sufficient to keep in the stochastic series expansion (2.3). If this number is small 

the signal is governed by a small number of independent sources of uncertainty with 

statistical properties given by (2.3)-(2.5).  

 

 The basis set ( )nf t  is optimal in the sense that it allows the representation of the 

autocorrelation function with the minimum number of terms in the series in the third 

equation of (2.5). 

 

 The KL representation maximizes the Shannon entropy measure which reveals the 

minimum number of terms that are sufficient for the representation of the variability of 

the signal. 

 

These and other optimality properties of the KL representation are discussed in Basilevsky 

(1994). 

 

The analytical determination of the eigenfunctions and eigenvalues corresponding to the 

autocorrelation function of the signal is a non-trivial task. A general solution that applies to 

ocean waves and other signals with known power spectral densities and autocorrelation functions 

is developed in the next section. 

( )nf t
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3. Solution of the Karhunen-Loeve Integral Equation 
 

The autocorrelation function of the signal introduced in (2.5) is seen to accept an expansion in 

terms of the eigenfunctions ( )nf t which however are yet unknown. These eigenfunctions should 

ideally have a shape similar to that of the autocorrelation function. Figure 1 plots the 

autocorrelation function of two seastates with significant wave heights 4sH  equal to 6m and 

10m, respectively. 

 

Figure 1: Seastate Autocorrelation functions: Hs=10m (Red Curve); Hs=6m (Blue curve) 

 

 

Figure 2: Spectral Densities of seastates with Hs=10m (Red Curve); Hs=6m (Blue curve)  
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Figure 3 plots the sinc function which is the autocorrelation function of a band limited signal 

with a power spectral density constant  for    and zero for    . The sinc function 

shares strong similarities with the seastate autocorrelation function and will guide the derivation 

of the solution of (2.5) described below. 

 

Figure 3:  Sinc function
sin  
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David Slepian observed that the eigenvalue problem (2.5) accepts an explicit solution when its 

kernel is the sinc function. This follows from the identity 

 

(3.1) 

 

The eigenfunctions are the Prolate Spheroidal Wave Functions (PSWFs) ( , )n t c which  satisfy 

the following relations [Xiao, Rokhlin and Yarvin (2001)] 
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The PSWFs ( , )n u c  form an orthonormal basis set in the interval (-1,1). They are symmetric 

functions of u for even values of n and anti-symmetric functions of u for odd values of n. The 

eigenvalues ( )n c  are real for the even and purely imaginary for the odd PSWFs. The PSWFs 

depend parametrically on the bandwidth parameter c T  known as the Slepian frequency 

which controls the degree of their concentration within the interval (-1,1). The bandwidth 

parameter must be selected properly for each application a topic discussed in more detail below. 

The proper selection of the bandwidth parameter enlarges the space of available PSWFs 

introducing a flexibility not present in Fourier series. 

 

The first equation in (3.2) shows that the PSWFs are invariant with respect to the finite Fourier 

transform. This Fourier invariance of the PSWFs proves very convenient in surface wave 

problems since it permits the transition from time to frequency domain representations using the 

same basis set. This property will be used later in the article to derive the velocity potential and 

flow kinematics of a seastate starting from the representation of the free surface elevation as the 

stochastic signal. Another property of PSWFs is that they decay at infinity for a large value of 

their argument at a rate that depends on the value of the bandwidth parameter c. This permits 

their use as an ambient wave signal that starts and ends with a calm free surface. This is an 

attractive property in numerical simulations carried out over time window (-T,T) of finite 

duration that circumvents the need for an artificial ramp up of the computation. The decay of 

PSWFs at infinity also permits their use with conservation theorems that make use of the 

assumption that the ambient seastate and the radiation-diffraction disturbances generated by 

floating bodies decay at infinity [Sclavounos (2011)]. 

 

The PSWFs are used next to solve the Karhunen-Loeve integral equation for a general two-sided 

power spectral density. This solution is used in the next section to generate a representation of a 

seastate and its associated velocity potential in terms of a small number of independent sources 

of uncertainty.  

 

The third equation in (3.2) is a key addition theorem which allows the representation of the 

complex exponential in terms of a series of products of PSWFs. Its introduction in the definition 

of the autocorrelation function allows the reduction of the kernel of the KL integral equation into 
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a separable form which opens the way for the derivation of a symmetric matrix eigenvalue 

problem.   

 

 

 

 

(3.3) 

 

 

 

 

 

The third equation in (3.3) provides a series expansion of the autocorrelation function in terms of 

PSWFs and the function ( )j  . This series allows the conversion of the convolution kernel into a 

separable one that is tractable analytically. Introducing the third equation of (3.3) in the 

Karhunen-Loeve integral equation (2.5) we obtain 
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(3.6) 
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The eigenvalues 
n  and corresponding eigenvectors , 0,1,2,...n

iA i   are indexed by n and 

provide the solution of the Karhunen-Loeve integral equation. The eigenfunctions are determined 

from (3.5) 

 

The eigenvalue problem (3.9) consists of even and odd parts that are independent. This follows 

upon inspection of the elements of the matrix kiE . Its elements are non zero only if (i,k) are 

either both even or both odd. If one is even and the other odd the last integral in (3.8) is 

identically zero by virtue of the symmetry of the spectral density ( )S   with respect to its 

argument and the symmetry/anti-symmetry of the PSWFs of even/odd order, respectively. The 

even/odd eigenvalue problems correspond to the even/odd eigenfunctions ( )nf t  by virtue of their 

definition in (3.5). The eigenvectors 
n

jA
 
follow from the solution of (3.9) for the even/odd 

problems respectively. The rate of decay of the eigenvalues n  determines the number of terms 

that are sufficient to keep in the Karhunen-Loeve series representation of the signal. 

 

The elements of the matrix kiE decrease with increasing ( , )i k  since the magnitude of the last 

integral in (3.8) decreases as ( , )i k increase due to the oscillatory behavior of the PSWFs as their 

order increases. The eigenvalue problem (3.8) and (3.9) is well conditioned and its solution is 

straightforward using a standard matrix package and a subroutine for the evaluation of the 

PSWFs and their eigenvalues. Numerical results are presented in Section 5.  
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4. Flow Kinematics of Karhunen-Loeve Seastate 

 

The solution of the KLS integral equation leads to the representation of the free surface elevation 

at X=Y=0 in the form 

 

 

(4.1) 

 

 

The coefficients 
n  are independent random variables with zero mean and variances 
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The representation (4.1) of the free surface elevation and the Fourier invariance of the PSWFs 

stated in (3.2) allows the direct representation of the velocity potential in the fluid domain 

corresponding to (4.1).  Using (3.2) the second equation in (4.1) may be cast in the form 

 

 

 

 

(4.2) 

 

 

 

The last equation in (4.2) expresses the free surface elevation corresponding to the basis function 

( )nf t in terms of a Fourier integral over the frequency range    . It is noted that the 
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eigenvalues 
j are real for even PSWFs and purely imaginary for the odd PSWFs therefore the 

right-hand side of the last equation in (4.2) is always real. 

 

Assuming a unidirectional seastate propagating in the positive X-direction, and invoking the 

linear dispersion relation, the velocity potential corresponding to the free surface elevation 

record ( )nf t  takes the form 

 

 

 

(4.3) 

 

 

 

The velocity potential ( , , )n X Z t is a linear superposition of plane progressive monochromatic 

wave components with amplitudes given by the second equation in (4.3). The last equation of 

(4.3) states that the velocity potential corresponding to each Fourier component is the complex 

conjugate of itself when the sign of the frequency is reversed. This property combined with the 

fact that the eigenvalues 
j of even PSWFs are real while the eigenvalues of odd PSWFs are 

purely imaginary ensures that the velocity potential given by the first equation in (4.3) is a real 

quantity. 

 

The velocity potential of the KLS representation of a stochastic seastate with elevation given by 

(4.1) follows in the form 

 

(4.4) 

 

This completes the derivation of the velocity potential of the seastate. The flow velocity follows 

by taking the gradient of (4.4) and the pressure follows from Bernoulli’s equation. 
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5. Numerical  Results 

 

The numerical solution of the eigenvalue problem (3.9) was carried out with Matlab. The 

elements of the matrix kiE involve the evaluation of integrals of the seastate spectral density 

multiplied by the product of two spheroidal wave functions and was carried out by quadrature. 

The integration is restricted to the range    with the cut-off frequency 
 
selected to 

include the power spectral density band of pertinence to each application. The PSWFs and their 

eigenvalues
j were evaluated using the algorithms presented in Xiao, Rokhlin and Yarvin 

(2001). 

 

A key attribute of the PSWFs as an othronormal  basis set is their parametric dependence on the 

parameter c T . The proper selection of c for each application leads to the selection of 

PSWFs that lead to a rapid decay of the eigenvalues of (3.9), the minimum number of terms in 

the series expansion (4.1) and the minimum number of sources of uncertainty. In the case of the 

two seastate spectra plotted in Figure 2 the cut-off frequency was selected to be 

0.6 / secrad .  

 

The selection of the time window ( , )t T T  depends on the type of response being studied. A 

seastate represented by a KLS expansion would be used as input in a time-domain numerical 

simulation of the nonlinear loads or responses of ships, offshore structures and fixed or floating 

wind turbines. The time window of the numerical simulation is typically selected so that 

transients of the response have died out and do not affect the useful part of the force or response 

simulation record. The time scale of transients is of the same order as the time scale of the 

memory effects of the load or response under consideration. The memory effects of the 

diffraction wave disturbance generated by the legs of offshore structures with diameters of 10-

20m or the floaters of wind turbines with diameters of 5m are weak. Consequently, it is often 

sufficient to select the time window ( , )T T to be as wide as 2 wave periods. For a seastate 

modal period of  12secT , 0.6 12 7.2c T   . The memory effects associated with of the 

responses of ships on the other hand are stronger and persist longer since ships are large volume 

structures. Therefore for wave load and ship response simulations the time window ( , )T T needs 
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to be 5-10 wave periods wide depending on the type of ship response of interest. For the same 

seastate modal period and cut-off frequency this leads to values of 18 36c T  . 

Consequently the PSWFs appropriate for each application have different bandwidth parameters 

c.   

 

 

 

Figure 4: First four even basis functions for c=10 [Eq. (4.1)] 

 

Figures 4 and 5 plot the first four even and odd basis functions ( )nf t obtained from the solution of 

the eigenvalue problem (3.8) and (3.9). The power spectrum corresponds to a seastate with 

Hs=10m and peak period Tp=13.6 and the value of the Slepian frequency is c=ΩT=10.  
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Figure 5: First four odd basis functions for c=10 [Eq. (4.1)] 

 

Figure 6 plots the autocorrelation function of the seastate and its expansion in terms of the even 

basis functions ( )nf t given by (2.5). It may be seen that 2-3 terms in the series (2.5) are sufficient 

for the accurate representation of the exact autocorrelation function. The rapid convergence of 

the KLS expansion is also shown in Figure 7 that plots the relative error of the variance of the 

signal given in (2.5) in the form of a KLS series of squares of the basis functions. It is seen that a 

6% accuracy is achieved with three terms in the series and near perfect accuracy is achieved with 

four terms. The rate of decay of the even and odd eigenvalues is illustrated in Figure 8. 
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Figure 6: Autocorrelation function of seastate with Hs=10m, Tp=13.6 and c=10 

 

 

Figure 7: Variance of seastate elevation with Hs=10m, Tp=13.6 and c=10 
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Figure 8: Rate of decay of even and odd eigenvalues for c=10 

 

 

Figure 9: First four even basis functions for c=20 [Eq. (4.1)] 
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Figure 10: First four odd basis functions for c=20 [Eq. (4.1)] 

 

The corresponding results for a Slepian frequency c=20, the same cut-off frequency of Ω=0.6 

rad/sec and twice as large a time window are shown in Figures 9-13. It is seen that the 

convergence of the KLS expansion is very fast and near perfect convergence of the variance is 

achieved with six terms in the series. The rate of convergence of the eigenvalues for the case 

with c=50 corresponding to the same cut-off frequency and a time window of 100 sec is 

illustrated in Figure 14. 

 

It may be observed from Figures 8, 13 and 14 that consecutive even and odd eigenvalues are 

nearly equal but not identical. In the Fourier series representation of a stochastic signal the 

random coefficients multiplying the even basis functions (cosines) and the odd basis functions 

(sines) have the same variance a consequence of the Pythagorian identity. This identity does not 

hold for the even and odd basis functions in the KLS series which are not periodic functions of 

time, a desirable property in simulations. 
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Figure 11: Autocorrelation function of seastate with Hs=10m, Tp=13.6 and c=20 

 

 
Figure 12: Variance of seastate elevation with Hs=10m, Tp=13.6 and c=20 
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Figure 13: Rate of decay of even and odd eigenvalues for c=20 

 

 
Figure 14: Rate of decay of even and odd eigenvalues for c=50 
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Figure 15: Shannon Entropy Information Criterion 

 

An alternative measure of the variability of the signal is the Shannon entropy measure or 

Information Criterion.  In the case of the KLS expansion it is given as the sum of the product of 

the eigenvalues times their natural logarithm. Figure 15 plots the Information Criterion as a 

function of the number of terms in the KLS series for three values of the Slepian frequency c. 

Convergence is achieved with n=3, 5 and 15 terms for c=10, 20 and 50 respectively. No more 

information about the variability of the signal is revealed by including more terms in the series. 
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6. Discussion 

 

The Karhuenen-Loeve-Slepian representation of a seastate derived in this article enables the 

representation of the ocean environment with the minimum number of independent sources of 

uncertainty by selecting a tunable bandwidth parameter c optimally for each application. This 

representation proves particularly useful for the representation of critical wave episodes in a 

seastate and the study of the extreme statistics and threshold up-crossing rates of nonlinear loads 

and responses. 

 

Critical Wave Episodes 

 

In a number of ocean engineering applications the derivation of the shape of a critical wave 

episode with a given amplitude is often of interest. This is often referred to as the Design Wave 

which may be used for the evaluation of the loads and responses of ships and offshore structures. 

Traditionally this wave is assumed to be a sinusoid with a large and prescribed amplitude. Yet 

this is often a conservative assumption and a more realistic representation is necessary. 

 

Consider an ambient seastate with Hs=10m and Tp=13.6. The shape of the most probable Design 

Wave in such a seastate with a height Hd=20m may be readily determined from the KLS 

expansion. Assume that this wave will be used for the design of an offshore structure over a time 

window corresponding to a Slepian frequency of c=20. Without loss of generality the maximum 

wave height is assumed to occur at t=0. It follows from (4.1) that 

 

(6.1) 

 

Four terms were kept in (6.1) leading to a 6% error in the KLS representation of the seastate 

elevation. The equality (6.1) enforces a linear constraint on the independent random variables n  

which are assumed to be Gaussian with variances equal to the eigenvalues n . Admissible values 

of n therefore lie on  a hyper plane in a four-dimensional space. The values of n that lead to 
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the most probable Design Wave are the ones that maximize the joint Gaussian probability 

density function of , 0,...,3n n   

 

(6.2) 

 

In (6.2) f(x) denotes the Gaussian probability density function and the independence of the n

has been invoked. The numerical solution of (6.2) for the values n that maximize their joint 

density subject to the constraint (6.1) is a straightforward maximization problem. Substituting the 

values of n obtained from the solution of (6.2) in (4.1) the shape of the Design Wave as a 

function of time is obtained. By definition it achieves its maximum value Hd at t=0 and decays to 

zero for t<0 and t>0 when the even basis functions ( )nf t  are expressed in terms of PSWFs as in 

(4.1). In this particular example the odd basis functions do not enter the definition of the Design 

Wave since their values vanish identically at t=0.  

 

A similar approach may be used for other design studies where instead of the Design Wave other 

critical load episodes of interest in offshore applications are desired. The maximum likelihood 

estimation described above for the selection of the coefficients n forms the basis of the First 

Order and Second Order Reliability methods (FORM & SORM) in structural design discussed in 

Kiureghian (2000) for linear and nonlinear problems. 

 

Nonlinear Statistics of Loads and Responses 

 

In most applications of interest in offshore engineering the ambient seastate is assumed to be 

Gaussian. This is however not always an accurate assumption for the loads and responses of 

ships and offshore structures in severe seastates which exhibit significant departures from  

Gaussianeity. Nonlinearities in the loads and responses affect their probability distributions 

which in turn affect significantly their extremes, threshold up-crossing rates and fatigue loads. 

 

The literature on theoretical and computational models for the prediction of the nonlinear loads 

and responses of floating structures is extensive. Fully nonlinear simulations often lead to 
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prohibitive computational efforts when used in a stochastic seastate for the estimation of the 

statistics of extremes via Monte Carlo simulations. Therefore approximate methods are often 

used. Offshore structures typically consist of slender cylindrical members with diameters small 

compared to the wavelength of waves encountered in severe seastates. Ships are slender floating 

structures with beam and draft small compared to the wavelength of design waves. These 

geometric attributes justify the linearization of the radiation-diffraction wave disturbance due to 

the body about the ambient seastate profile which may be assumed to be nonlinear and with 

amplitude comparable to the characteristic dimension of the structure. This approximation was 

used by Sclavounos (2011) to derive compact expressions for the nonlinear time domain loads on 

ships and offshore structures that are explicit functions of the ambient seastate kinematics. 

Combined with a parsimonious KLS representation of the ambient seastate the stochastic 

nonlinear loads and responses may be expressed as quadratic and cubic functionals of a small 

number of random coefficients n  which are independent Gaussian random variables with 

variance n . The probability density functions of quadratic or cubic functionals of n  are 

available in closed form in terms of their characteristic functions discussed by Kac and Siegert 

(1947) and Ochi (1998). This allows the derivation of explicit expressions of threshold up-

crossing rates of extremes and fatigue loads for use in structural design discussed by Winterstein 

(1988). 

 

An alternative approach often used for the study of the statistics of extremes is based on the 

derivation of the envelope of the process under consideration. In the case of the KLS 

representation of the free surface elevation given by (4.1), the envelope is obtained as the square 

root of the sum of the squares of the free surface elevation and its conjugate process defined as 

the Hilbert transform of the free surface elevation. The Hilbert transform of the basis functions 

( )nf t  is a linear combination of the Hilbert transform of the PSWFs. The invariance of PSWFs 

with respect to the Fourier transform and an application of the Fourier convolution theorem 

yields the Hilbert transform of PSWFs in the form of a finite Fourier integral which may be 

evaluated easily by quadrature. The probability distribution of the envelope may again be 

evaluated explicitly using the theory of characteristic functions. 
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Joint Extreme Statistics of Wave and Wind Loads on Offshore Wind Turbines 

 

Offshore wind turbines based on fixed foundations or supported by floaters are exposed both to 

wind and wave loads. Their analysis and design therefore presents an increased level of 

complexity since models of the wind loads on the turbine must be coupled with models for the 

wave loads on the supporting structure. This task has been undertaken for floating wind turbines 

by Sclavounos et. al. (2010) and Tsouroukdissian et. al. (2011). 

 

The design of offshore wind turbines also requires models for the joint extreme statistics of the 

wave and wind loads exerted on the structure in severe weather environments. The wind speed 

profile at hub height and the associated seastate elevation are correlated and this correlation must 

be modeled and taken into account in the design of the offshore wind turbine. The number of 

sources of uncertainty governing the wind and wave environments is greater than that governing 

each individually. Therefore the development of a joint-KL representation of the stochastic wind 

and wave loads that takes into account their correlation and leads to a minimum number of 

independent wind-wave sources of uncertainty would be very valuable.  

 

Stochastic wind speeds are described by well understood spectra and experimental data exist that 

contain information about the covariance structure of wind speeds and seastate elevation. These 

attributes may be used to develop a joint wind-wave KL representation of a particular 

environment extending the methods developed in the present article. The auto-correlation 

function of wind speeds and their averages may be estimated from the Fourier transform of the 

Von Karman or Kaimal spectra that are routinely used by the wind energy industry. The rate of 

decay of the resulting auto-correlation function with increasing time lag is exponential-like and 

conforms to a multi-step auto-regressive process. The KL representation of wind speeds may be 

carried out by starting from the KL expansion of the autocorrelation of wind speeds averaged 

over selected intervals. Such KL expansions are available in closed form for autocorrelation 

functions with exponential like decay. Their explicit orthogonal eigenfunctions may be used as 

the basis function set for the derivation of the KL representation of wind speeds with more 

general but similar auto-correlation functions, in a manner analogous to the use of the sinc 

function for ocean waves described above. An analogous process may be followed for the 
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derivation of the KL representation of the loads on wind turbine rotors obtained using standard 

computer programs. 

 

Following the derivation of the KL representations of the wave loads on the fixed or floating 

foundation and the wind loads on the rotor, their statistical correlation may be studied by using 

the canonical correlation analysis discussed in Anderson (2003). The canonical correlation 

analysis leads to a parsimonious statistical model of the joint wave and wind loads on offshore 

wind turbines and their joint extreme statistics for use in design. 

 

Forecasting of Seastate Elevation Records and Vessel Responses 

 

The ability to forecast wave elevation records and the responses of ships, offshore structures, 

floating wind turbines and wave energy converters has a wide range of applications for the safe 

operation of marine structures and the enhancement of the energy yield of ocean energy systems. 

Wave elevation records can be forecasted reliably several periods into the future in seastates 

which are reasonably narrow banded using multi-step autoregressive methods [Fusco and 

Ringwood (2010)].  The parsimonious KLS representation of ocean wave elevation records 

developed in the present article allows the derivation of explicit expressions the minimum 

number of auto-regressive coefficients necessary to predict the wave elevation record into teh 

future and over a time window of interest for each particular application. This is the result of the 

optimality of the Karhunen-Loeve expansion and the selection of the optimal Slepian frequency. 

The coefficients of the auto-regressive model follows from the explicit solution of the Yule-

Walker equations discussed in Box, Jenkins and Reinsel (2008) using the representation of the 

KLS representation auto-correlation function in terms of PSWFs discussed above. In the present 

forecasting problem knowledge of the signal is assumed over a finite time interval T. When the 

time interval T is infinite the solution of the forecasting problem has been given by Wiener 

(1949). In the case of non-stationary seastates the forecasting method described above may be 

generalized to account for time-dependent and stochastic coefficients using a state space 

representation and Kalman filtering as described in Durbin and Koopman (2001). 
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Applications of auto-regressive forecasting models of seastate elevations and vessel responses 

include the prediction of ship responses in severe seastates in order to prevent excessive motions, 

ship-to-ship or ship-to-offshore-platform loading operation, the enhancement of the energy yield 

of compliant Tension-Leg-Platform floating wind turbines via the feed-forward control of the 

wind turbine blade pitch angle and the development of optimal algorithms for the maximization 

of the yield of wave energy converters. 
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