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The Adversarial Joint Source-Channel Problem

Yuval Kochman, Arya Mazumdar and Yury Polyanskiy

Abstract—This paper introduces the problem of joint source-
channel coding in the setup where channel errors are adversarial
and the distortion is worst case. Unlike the situation in the
case of stochastic source-channel model, the separation principle
does not hold in adversarial setup. This surprising observation
demonstrates that designing good distortion-correcting codes
cannot be done by serially concatenating good covering codes
with good error-correcting codes. The problem of the joint code
design is addressed and some initial results are offered.

I. INTRODUCTION

One of the great contributions of Shannon [1] was creation

of tractable and highly descriptive stochastic models for the

signal sources and communication systems. Shortly after, his

work was followed up by Hamming [2], who proposed a

combinatorial variation of the channel coding part. This com-

binatorial formulation has become universally accepted in the

coding-theoretic community. Similarly, for the case of lossy

compression Shannon [3] proposed a stochastic model and the

rate-distortion formula, while shortly after Kolmogorov fol-

lowed up with a non-stochastic definition of the ǫ-entropy [4].

The research that followed demonstrated how both ways of

thinking, stochastic and combinatorial, naturally complement

each other, reinforcing intuition and yielding new results.

To the best of our knowledge, in the setup of joint source-

channel coding, however, only the stochastic approach has

been investigated so far, starting with [1], [3]. This paper aims

to fill in this omission.

In Section II we define the adversarial separate source and

channel coding problems and present known results about

them. Then, we build on these definitions to define the

adversarial joint source channel coding (JSCC) problem. Next,

in Section III we prove asymptotic bounds on the performance

limits of adversarial JSSC codes. It turns out that the celebrated

separation principle [1], [3] does not hold in the adversarial

model. Therefore, the problem of constructing asymptotically

optimal adversarial JSSC codes requires a joint approach

and cannot be solved by combining good compressors with

good error-correcting codes. In Section IV we focus on the

binary case and propose methods for designing such codes

and analyzing their performance.

II. PRELIMINARIES

A. Source coding

A source problem is specified by a source and reproduction

alphabets S, Ŝ, a distribution P on S and a distortion metric
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d : S × Ŝ → R+. The distortion between a source string sk

and a reproduction ŝk is given by:

d(sk, ŝk)
△
=

1

k

k
∑

j=1

d(sj , ŝj) . (1)

In the stochastic setting, an (k,Mk, D)-source code is

specified by a surjective map φ : Sk → C for some C ⊆ Ŝk

such that |C| = Mk and the expected distortion is at most D,

where the mean is taken with Sk ∼ P k (memoryless source).

The rate of the source code is defined by 1/k · logMk and

asymptotically, the best possible rate for the distortion D is

given by [3]:

R(P,D)
△
= min

P
Ŝ|S :E [d(S,Ŝ)]≤D

I(S; Ŝ) .

In the adversarial setting, a source set F ⊆ Sk is selected

and then the smallest cardinality of a covering of F upto

distortion D is sought; cf. [4]. Here we restrict ourselves to

the case of F being the set of all source sequences that are

strongly typical1 with respect to the source distribution P .

The adversarial (k,Mk, D) source code is defined by a

collection of Mk points C ⊂ Ŝk such that for any P -

typical source sequence sk there exists a point ŝk in C such

that d(sk, ŝk) ≤ D. The asymptotic fundamental limit of

adversarial source coding is defined to be

Rad(P,D)
△
= lim

k→∞

1

k
logmax{Mk : ∃(k,Mk, D)

-adversarial source code} .

Not only does this limit exist, but remarkably it coincides with

R(P,D):

Theorem 1 (Berger’s type covering [6]):

Rad(P,D) = R(P,D).

As an example, take S = Ŝ = F2 and P is the uniform

distribution, with the Hamming distortion measure. It is known

that

Rad(P,D) = R(P,D) = 1− h2(D),

where h2(x) = −x log x − (1 − x) log(1 − x) is the binary

entropy function. Indeed the same rate is achievable even if

the source set is entire F
k
2 [7].

1Here and in the sequel, strong typicality is in the sense of [5, Chapter 2].



B. Channel coding

A channel problem is specified by input2 and output alpha-

bets X , Y , and a conditional distribution W : X → Y .
In the stochastic setting, an (n,M, ǫ)-channel code is

specified by a pair of maps f : {1, . . . ,M} → Xn and

g : Yn → {1, . . . ,M} such that

P[g(Y n) = i|Xn = f(i)] ≥ 1− ǫ , i = 1, . . . ,M ,

where PY n|Xn = Wn (a memoryless channel). The rate of the

code is defined as 1/n · logMn and asymptotically the largest

achievable rate is given by Shannon capacity [1]:

C(W ) = max
PX

I(X ;Y ) .

In the adversarial setting, for each input sequence xn ∈ Xn

the channel output may be arbitrary within a subset of Yn. We

choose this set to be A(xn) ⊆ Sn, the set of strongly typical

sequences yn given xn with respect to W. The adversarial

(n,Mn) channel code is defined as a collection of Mn points

C ⊂ Xn such that for any pair of different points xn, zn ∈ C,
A(xn) ∩ A(zn) = ∅. The asymptotic fundamental limits of

adversarial channel coding are defined to be

Cad(W )
△
= lim sup

n→∞

1

n
logmax{Mn : ∃(n,Mn)

-adversarial channel code} (2)

Cad(W )
△
= lim inf

n→∞

1

n
logmax{Mn : ∃(n,Mn)

-adversarial channel code} . (3)

Note that because the limits are not known to coincide for

most channels of interest, we have to define both upper and

lower limits.

It is known that Cad(W ) ≤ C(W ). Furthermore, in contrast

to source coding, this inequality is known to be strict in the

next example.

The most studied case of the adversarial channel coding is

that of a binary symmetric channel with crossover probability

δ, BSC(δ). Let A(n, d) be the cardinality of a largest set in F
n
2

with minimal Hamming distance between any pair of elements

not smaller than d. We have3:

Cad = lim sup
n→∞

1

n
logA(n, 2nδ + 1) ,

and similarly for Cad. Therefore, by the classical results on

A(n, d):

RGV (δ) ≤ Cad(δ) ≤ Cad(δ) ≤ RMRRW (δ) < C(δ), (4)

where the MRRW II bound [8] is

RMRRW (δ) = min
0<α≤1−4δ

1+ ĥ(α2)− ĥ(α2+4δα+4δ) , (5)

2A cost function on X may also be present. We omit it to save space.
3Traditionally, one considers the case when the adversary is free to choose

noise vectors e satisfying wt(e) ≤ δn, whereas in our setting the typicality
constrains wt(e) = δn ± o(n). This is asymptotically immaterial, since in
Hamming space two spheres of the same radius are disjoint if and only if the
corresponding balls are.

with ĥ(x) = h2(1/2 − 1/2
√
1− x), and the Gilbert-

Varshamov bound [9] is

RGV (δ) = 1− h2(2δ). (6)

C. Adversarial JSCC

A JSCC problem is specified by:

• Adversarial source: S, Ŝ, PS , d(·, ·)
• Adversarial channel: X , Y , WY |X .

At source and channel blocklengths (k, n), a JSCC scheme is

specified by:

• an encoder map Sk → Xn from the source to channel

input: xn = f(sk).
• a decoder map Yn → Ŝk from the channel output to

reconstruction: ŝk = g(yn).

We say that a JSSC scheme is (k, n,D) adversarial if for

all P -typical source sequence sk and corresponding channel

outputs yn ∈ A(f(sk)), d(sk, g(yn)) ≤ D.

The asymptotically optimal tradeoff between the achievable

distortion and the bandwidth expansion factor ρ = n
k
is given

by

D
∗

ad(ρ) = lim sup
k→∞

inf{D : ∃(k, ⌊ρk⌋, D)

adversarial JSCC} , (7)

D∗
ad(ρ) = lim inf

k→∞
inf{D : ∃(k, ⌊ρk⌋, D)

adversarial JSCC} . (8)

As in the source and channel cases, we use the stochastic

setting performance as a benchmark. In this setting, the source

and channel are i.i.d. according to P = PS and W = WY |X ,

and the requirement is for expected distortion to be at most D.

It is well known that any k-to-n stochastic JSCC must satisfy

[3],

k ·R(P,D) ≤ n · C(W ). (9)

In the asymptotic limit this can be approached, yielding the

asymptotic fundamental limit:

D∗(ρ) = inf{D : R(P,D) ≤ ρC(W )} .
D. The separation principle

We say that an (k, n) JSCC scheme is separation-based if

for some space M (“the message space”) the encoder consists

of a source encoder fS : Sk → M and a channel encoder

fC : M → Xn. The decoder consists of a channel decoder

gC : Yn → M and a source decoder M → Ŝk . Furthermore,

following e.g. [10] we introduce a bijection σ : M → M that

is applied at the encoder and reversed in the decoder, which

is meant to ensure that there the mapping of source messages

to channel ones is arbitrary. The encoder and decoder are thus

given by

f = fS ◦ σ ◦ fC ; g = gC ◦ σ−1 ◦ gS (10)

where performance is required to hold for any bijection σ.
The asymptotic performance limits of the separation

schemes are denoted asD
∗

ad,sep(ρ) andD
∗
ad,sep(ρ) and defined



in complete analogy with (7) and (8). In the stochastic setting,

the asymptotic performance of the optimal separation scheme

coincides with D∗(ρ) and thus does not need a special

notation.

III. BOUNDS ON ADVERSARIAL JSCC

We start this section with an immediate lower bound on the

fundamental limit of adversarial asymptotic distortion.

Theorem 2 (Converse):

D∗
ad(ρ) ≥ D∗(ρ) .

Proof: Any adversarial JSCC can be used as a usual

(probabilistic) JSCC, in which case by typicality arguments

it will achieve (maximal) distortion D with vanishing excess

probability (namely, we assume excess distortion whenever the

source or channel behavior are not strongly typical). Thus D
must not be smaller than D∗(ρ).

A. Separated schemes

Theorem 3 (Separated schemes): If R(P,D) > ρCad(W )
then

D∗
ad,sep(ρ) ≥ D . (11)

If R(P,D) ≤ ρCad(W ) then

D
∗

ad,sep(ρ) ≤ D . (12)

We will show shortly, that (11) demonstrates (in special

cases) that D∗
ad,sep > D∗

ad.

B. Single-letter schemes

Another special class of JSCC schemes is single-letter

codes. In that case, the mappings f(·) and g(·) are scalar,

and when applied to a block they are computed in parallel

for each entry. Some examples where single-letter schemes

yield the optimum D∗ have been known for a long time, and

Gastpar et al. [11] give the sufficient and necessary conditions

for that to hold.

Theorem 4: If in the stochastic setting a single-letter

scheme achieves some Dsl, then

D
∗

ad(1) ≤ Dsl. (13)

We omit a simple proof of this result, but its essence will

be clear from the example in the next section.

Corollary 5: Whenever single-letter codes are optimal in

the stochastic setting, i.e., Dsl = D∗(1) we have

D
∗

ad(1) = D∗
ad(1) = D∗(1).

Using Theorems 3 and 4, one may find examples in

which single-letter schemes achieve D∗ while separation-

based scheme do not, leading to the surprising conclusion that

separation is not optimal in the adversarial setting.

C. Binary example

We now combine the binary examples presented in sections

II-A and II-B: the source is binary symmetric with Ham-

ming distortion, and the channel is BSC(δ). The information-

theoretic optimum D∗(ρ) is given by the solution D to:

1− h2(D) = ρ(1− h2(δ))

whenever the r.h.s. is lower than one, zero otherwise. Bounds

on the performance of separation-based schemes are given by

the solutions to:

1− h2(D) = ρ · RMRRW (δ)

1− h2(D) = ρ · RGV (δ),

where again the bounds are zero for r.h.s. above one. Since

RMRRW < 1 − h2(δ) for all δ > 0, it follows that

D∗
ad,sep(ρ) > D∗(ρ) strictly whenever ρRMRRW (δ) < 1.
For ρ = 1 the optimum D∗(1) is achievable by a trivial

single-letter scheme (namely, the identity encoder and de-

coder). Therefore, for ρ = 1 and any δ > 0,

D∗(1) = D∗
ad(1) < D∗

ad,sep(ρ).

For other values of ρ, separation may also be suboptimal:

Proposition 6: For any positive integer ρ, repetition coding

(i.e., xn is constructed by ρ repetitions of sk) achieves

asymptotically:

Drep(ρ) =
2ρδ

1 + ρ
(14)

By (4) and Theorem 3, it is easy to see that D
∗

ad,sep(ρ) =
D∗

ad,sep(ρ) = 1/2 whenever δ = 1/4. Thus, comparing

with (14) and by continuity for any positive integer ρ there is

an interval of δ for which simple repetition coding outperforms

any separation-based scheme.

IV. BINARY SYMMETRIC SOURCE-CHANNEL (BSSC)

In this section we slightly change the problem definition, in

order to make it closer in spirit to that of traditional approach

taken in the coding-theoretic literature for the Hamming space.

Namely, we drop the strong typicality constraints on the source

and the channel. Instead, we let the source outputs be any

binary sequences in F
k
2 , while the (adversarial) channel is

allowed to flip up to δn bits.

Definition 1: A (k, n,D) adversarial JSSC code for the

BSSC(δ) is a pair of maps f : F
k
2 → F

n
2 , g : Fn

2 → F
k
2

such that

wt(x+ g(f(x) + e)) ≤ kD ,

for all x ∈ F
k
2 and all wt(e) ≤ δn. The asymptotic fundamen-

tal limits D
∗

ad(ρ) and D∗
ad(ρ) are defined as in (7)-(8).

Note that while in channel coding the two definitions lead

to similar results (recall Footnote 3), it is not clear whether the

same holds for JSCC. For example, in Proposition 6, for even

ρ the decoding relies on the fact that the adversary must flip

approximately δn bits, and if this assumption does not hold,

repetition with even expansion ρ is equivalent to repetition

with expansion ρ − 1 followed by channel uses that can be

ignored.



A. Information theoretic converse

Note that by Theorem 2, we have that any asymptotically

achievable distortion D over BSSC(δ) satisfies

1− h2(D) ≤ ρ(1− h2(δ)). (15)

In fact, if there exists a JSCC that achieves distortion D,

then any ball of radius δn in F
n
2 must not contain more than

T k
Dk codewords, where Tm

r is the volume of a ball of radius

r in F
m
2 . However there exists a ball of radius δn in F

n
2 that

contains at least 2k−nT n
δn codewords. Hence D must satisfy

2kT n
δn ≤ 2nT k

Dk . (16)

Asymptotically (16) coincides with (15), but otherwise is

tighter.

B. New coding converse

The above lower bound on achievable distortion D can be

improved for a region of δ if we consider the fact that any

JSCC also gives rise to an error-correcting code. Recalling

the cardinality A(n, δ) defined in Section II-B, we have the

following.

Theorem 7: If a k-to-n JSCC achieves the distortionD over

BSSC(δ), then

A(k, 2Dk + 1) ≤ A(n, 2nδ + 1).

Proof: Suppose there is a code D ⊂ F
k
2 that corrects up to

any Dk errors. Let D̂ be the image of this code in F
n
2 under

the JSCC encoding. We claim that D̂ is a code in F
n
2 that

corrects any up to δn errors. Indeed, up to δn errors can be

reduced to at most Dk errors in F
k
2 with the JSCC decoding.

These errors are then correctable with the decoding of D.

Asymptotically, applying (4) to Theorem 7 we obtain:

Corollary 8: For the BSSC(δ) the distortion D∗
ad(ρ) satis-

fies:

RGV (D
∗
ad(ρ)) ≤ ρRMRRW (δ) . (17)

C. Achievability and converse for separation scheme

As explained in Footnote 3, the limits for channel coding

are the same for strongly typical channel and for maximum

number of flips. Thus, by Theorem 3, the asymptotic perfor-

mance of the separation schemes must satisfy

ρRGV (δ) ≤ 1− h2(D
∗
ad,sep(ρ)) ≤ ρRMRRW (δ). (18)

Remark: Note that, although the exact value of Cad or Cad

is unknown, the argument in Theorem 7 demonstrates that in

the regime of distortion D → 0, separation yields an optimal

(but unknown) performance.

Just as in Section III-C it is clear that in the case ρ = 1
separation is strictly suboptimal for all δ > 0. Comparison of

the different bounds for this case is shown in Fig. 1. Next, we

show examples of codes that beat separation for other ρ 6= 1.

D. The optimal decoder for BSSC

Let Bn(x, r) denote a ball of radius r centered at x in F
n
2 .

For any set S ∈ F
n
2 , the radius of the set rad(S) is defined

to be the smallest r such that S ⊆ Bn(x, r) for some x ∈ F
n
2 ,

with the optimal x’s called the Chebyshev center(s) of S.
Consider some JSSC encoder f : Fk

2 → F
n
2 for the BSSC(δ).

There exists a decoder achieving distortion D for this if and

only if

∀y ∈ F
n
2 : rad(f−1Bn(y, δn)) ≤ Dk .

The optimal decoder is then:

g(y) = Chebyshev center of f−1Bn(y, δn) . (19)

In other words, the distortion achievable by the encoder f
is given by

D(f, δ) =
1

k
max
y∈F

n

2

rad(f−1Bn(y, δn)) .

E. Repetition of a small code

In contrast to channel coding, repetition of a single code

of small block length leads to a non-trivial asymptotic perfor-

mance.

Fix an arbitrary encoder given by the mapping f : Fu
2 → F

v
2.

If there are t errors in the block of length v, t = 0, . . . , v the

performance of the optimal decoder (knowing t) is given by

r0(t) = max
y∈F

v

2

rad(f−1Bv(y, t)). (20)

Consider also an arbitrary decoder g : F
v
2 → F

u
2 and its

performance curve:

rg(t) = max
wt(e)≤t

max
x∈F

u

2

wt(g(f(x) + e) + x).

Clearly

rg(t) ≥ r0(t)

and the decoder g achieving this bound with equality is called

a universal decoder. Some trivial properties: r0(0) = 0 if and

only if f is injective, rg(0) = 0 if and only if g is a left inverse

of f , r0(v) = rg(v) = u.
Example: Any repetition code F2 → F

v
2 is universally

decodable with a majority-vote decoder g (resolving ties

arbitrarily):

rg(t) = r0(t) =

{

0, t < v
2 ,

1, t ≥ v
2 .

From a given code f we may construct a longer code by

repetition to obtain an F
k
2 → F

n
2 code as follows, where Lu =

k, Lv = n:

fL(x1, . . . , xL) = (f(x1), . . . , f(xL)) .

This yields a sequence of codes with ρ = n/k = v/u. We want

to find out the achieved distortion D(δ) as a function of the

maximum crossover portion δ of the adversarial channel.
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Fig. 1. Trade-off between δ and D in a BSSC(δ) for ρ = 1. An identity
map (single-letter scheme) is everywhere optimal.
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Fig. 2. Trade-off between δ and D in a BSSC(δ) for ρ = 3. 3-repetition
code achieves better distortion than any separation scheme for δ > 0.22

Theorem 9: The asymptotic distortion achievable by fL
(repetition construction) satisfies

lim inf
L→∞

D(fL, δ) ≥
1

u
r∗∗0 (δv) . (21)

A block-by-block decoder g achieves

lim inf
L→∞

Dg(fL, δ) =
1

u
r∗∗g (δv) , (22)

where r∗∗0 and r∗∗g are upper convex envelopes of r0 and rg
respectively.

Example: Repetition code: Consider using a [v, 1, v] repeti-
tion code. Since for such a code rg(t) = r0(t), the upper and

lower bounds of Theorem 9 coincide. For odd v we have:

D =
2δv

v + 1
. (23)

(Compare this with Proposition 6 for the strong-typicality

model of Section II-C.) In Fig. 2 the performance of the

3-repetition code is contrasted with that of the separation

schemes. In the same plot the converse bounds (17) and (15)

are plotted. For δ > 0.23 it is clear that 3-repetition achieves

better performance than any separation scheme.

Example: [5,2,3] linear code for ρ = 5/2: Consider the

linear map f : F2
2 → F

5
2 given by the generator matrix

(

0 0 1 1 1
1 1 0 0 1

)

.

It can be shown that r0(t) = {0, 0, 1, 2, 2, 2} for t =
{0, 1, 2, 3, 4, 5} and there exists a universal decoder g. Thus
by Theorem 9 this code achieves D = 5δ/3. For δ > 0.22, this
is better than what any separation scheme can achieve. This

example demonstrates that in the JSSC setup one should not

always use a simple decoder that maps to the closest codeword.

In fact, further analysis demonstrates that perfect codes, Golay

and Hamming, are among the worst in terms of distortion

tradeoff.

Remark: Note that there exist [12] linear codes of rate ρ−1

decodable with finite list size and capable of correcting all

errors up to the information theoretic limit n h2
−1(1 − ρ−1).

However, by the converse bound (17) it follows that the

radius of the list in F
k
2 must be Ω(k) regardless of the map

between Fk
2 and the codewords. This provides some interesting

complement to the study of the properties of lists of codes

achieving the information theoretic limit [13], [14].
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