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by Richard H. Lyon

Submitted to the Department of Physics on May 16, 1955, in partial ful-

fillment 6f the requirements for the degree of Doctor of Philosophy.

ABSTRACT

In this work we are concerned with the excitation of continuous

systems by random noise fields. The excitation is interpreted as the

average or mean square displacement, velocity, etc., and is obtained

from a knowledge of certain statistical properties of the source.

The thesis begins with an historical account of the developing use

of the equation of motion with random source terms, the so-called Lan-

gevin equation. This equation is then used to calculate the correlation

functions for the system response when correlations of the same order

of the source are specified.

The formalism is then applied to the finite string for both sta-

tionary and moving noise fields. It is found that correlation lengths

due to the source and viscosity of the surrounding medium strongly affect

the excitation for various wavelengths. As an experimental test a thin

metal ribbon is placed in a flowing turbulent field, and its excitation

for various values of flow is examined. A qualitative agreement with

the predicted results is obtained.

The analysis is then applied to infinite strings where the inter-

pretation is uncomplicated by the effect of boundaries. Substantially

similar results as for the finite string are obtained. If one observes

I_ t'
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the excitation of the string as a functinn of wavelength, the effect of

correlation lengths in the noise field is very striking.

The thesis is concluded by an attempt to create the random noise

fields assumed previously by a superposition of elementary sources. This

superposition creates an ensemble of source functions which may then be

averaged over to obtain the source correlation. An attempt to create

a representation of the turbulent field by this method completes the

work.

Thesis Supervisor: Dr. K. U. Ingard
Title: Assistant Professor of Physics
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I HISTORICAL BACKGROUND

1.1 INTRODUCTION

In this chapter we shall trace the development of some of the ideas

concerned with the excitation of physical systems by sources having

random or unpredictable time dependence. Such an examination leads

to the study of equations of motion having random source functions and

of schemes for drawing physical information from such equations.

Historically this kind of analysis came about from the interest

in Brownian motion, although if there had been high gain amplifiers

in 1900, resistor noise and its excitation of electronic circuits could

just as easily have supplied the physical motivation for the study.

1.2 BROWNIAN MOTION

In 1827 Robert Brown noticed that small particles immersed in fluid

were subject to a strange erratic motion, which he interpreted as resulting

from molecular impacts with the surrounding medium. The irregular motion

of a particle was treated at first very naturally by the method of ran-

dom flights which it visually resembles. In 1880 Rayleigh showed that

for a large number of steps the random walk problem becomes equivalent

to the solution of a partial differential equation of the parabolic type,

2
i.e., a diffusion equation. In 1905 Einstein used such an equation to

solve the distribution of free Brownian particles when they are started

from rest at a specified time and position. This distribution is effec-

1Reference numbers refer to the Bibliography.
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tively the probability of finding the particle in some small region after

a time t. By requiring that the particle have a Maxwellian velocity

distribution after an infinite lapse of time, in accordance with the

equipartition requirement, he was able to get an expression for the mean

square displacement at time t of a Brownian particle. Einstein's result

was

(x 2 >2T t,
ave Nf

where t is the elapsed time, R the gas constant, T the temperature, f

the friction coefficient for a small sphere, and N Avagadro's number.

This equation allowed for the possibility of determining Avagadro's

number -- which Perrin did and for which he was awarded the Nobel Prize

in 1926.

In 1906 Marjan von Smoluchowski, a Polish physicist, extended the

work of Einstein to a more complex diffusion equation to take in the

effect of gravity and other external fields. His results on the mean

square displacement differed from Einstein's by a factor of , and

the new value was supported by measurements done by The Svedberg shortly

therafter. Thus the random flight attack on the problem came to an im-

passe.

The first attack upon the dynamics of the particle was made by

P. Langevin4 in 1908. langevin wrote the equation of motion for the free

mass point as

2
m dk -f L+X(t)
dt2  dt

where the term on the left is the acceleration reaction, and thd terms



on the right represent the forces due to the surrounding fluid. The term

proportional to the first derivative of x is the force due to viscous

drag as given by Stokes,5 and it represents the average force presented

to the particles by molecular impacts. The remaining term X(t) is a

*
non-predictable, random function of time and represents the fluctuating

force resulting from the collisions. This equation, and all such equa-

tions of motion having random sources, have come to be known as Langevin

equations. By assaring the equipartition of energy, Langevin was able

to calcualte the mean square displacement of a particle after a time t

and obtained Einstein's result above. In the paper referred to he ques-

tioned the accuracy of Svedberg's work and the applicability of the

Stokes coefficient to small particles. Later experimental investigations

have confirmed the results of Einstein and Langevin.

0 6
The next major step came in 1917 when L. S. Ornstein used the Lan-

gevin equation to calculate the mean values of the displacement and velocity.

Essentially what is done is to obtain formally the solution of the equa-

tion of motion by variation of parameters. Then one raises each side

of the equation to the desired power and averages. This requires a know-

ledge of the correlation properties of the source function X(t), which

are derived from assumptions concerning the statistics of that function.

The integrals may then usually be carried out over the correlation func-

tions and the mean values obtained.

This plan for obtaining mean values represents the philosophy which

is used in Chapter II for the derivation of response correlation functions

The random function X(t) is sometimes called fortuitous. This is

not a value judgment on its presence but is another term for what is also

called a "chance variable."



-14-

when source correlations are known. However, we are getting ahead of

the story.

6
In the paper above Ornstein assumed an external field and obtained

the diffusion equation developed by Smoluchowski by considering the

Langevin equation for the special case of a harmonically bound particle.

This diffusion equation is known as the Fokker-Planck equation. Its

coefficients are obtained by integrating the Langevin equation over short

time intervals and is more generally applicable than the diffusion equa-

tions resulting from a random flight analogy. The way was then open

for people to apply the work to generalized harmonic oscillators,

8 9
coupled electrical networks, chains of coupled particles, finite strings

and bars, and finally to continuous systems representable by linear

operators.

In 1927 Ornstein10 calculated the Brownian motion of a finite string

by breaking it up into modes and treating each mode as a harmonic oscil-

lator. Using previous results for the single oscillator and assuming

equipartition, he was able to obtain the mean square displacement at

the midpoint of the string after equilibrium had been reached. The next

11
year Houdjik did the same for the finite bar. It is my impression that

these represent the first applications of the Langevin equation to con-

tinuous systems.

12
In 1931 G. A. Van Lear, Jr., and G. E. Uhlenbeck did a more gen-

eral piece of work on the finite string and bar, extending the work of

Ornstein and Houdjik to the non-stationary region of time. They calculated

as a function of time the mean square displacement of the midpoint of

the string starting from rest. Their work as it applies to the finite



-5-

*4 string anticipates the theoretical formulation in this thesis. Never-

theless, their bias toward the problem of Brownian motion leads them to

perform their ensemble averages over an ensemble of strings rather than

sources. This distinction, if unimportant in its results, is important

in terms of the ease of calculating the correlation functions. For exam-

ple, in Chapter VI source correlations are calculated directly by averaging

over an ensemble of source functions.

In this connection should be mentioned the work of G. A. Krutkow,13

who likewise considered the Brownian motion of finite strings, from a

more mathematical point of view. Krutkow has been easily the most out-

standing Russian contributor to the theory of Brownian motion.

Brownian motion represents a rather special case of a random noise

field, as we shall point out in Chapter III. It is possible to enter

other noise fields into the work of Lear and Uhlenbeck, but in 1931

such problems as the excitation of elastic boundaries by turbulent flow

were not so pressing as they are now.

1.3 THE STATISTICS OF TIME FUNCTIONS

In developments parallel to those in Brownian motion, people were

becoming very much interested in the properties of functions like X(t).

The Fourier analysis of functions which do not die down in time and are

1k
without periodic components was performed by N. Wiener in 1930. The

6
correlation function which was used by Ornstein turns out to be the

cosine transform of the power spectrum in frequency of X(t).

Several excellent papers have appeared in this area, particularly

as the results apply to noise theory and stochastic processes in elec-
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trical engineering. A standard in the field is that by S. 0. Rice,15

who has worked out the statistical properties of electrical currents for

many applications. Another paper particularly useful for electrical

16
engineering work is a report by Y. W. Lee. Most of the work mentioned

here assumes statistically stationary time processes (except for some

examples in Rice), but some interest has been displayed in the extension

of the concepts of power spectra and correlation functions to non-sta-

(17,10)
tionary time functions.

(19-22)
In a series of interesting papers Eckart has developed a

theory of the propagation of correlation functions in continuous media.

The idea is that correlation functions are found to obey a partial dif-

ferential equation similar in form to the Langevin equation but of a

higher dimensionality. This is then solved in terms of source convo-

lutions. This formally appears very similar to the results of Chapter

II. This approach, however, has two limitations which that of Chapter

II does not have. The first is the complexity of solutions of the "Lan-

gevin equation" for correlation functions, which is usually much harder

to solve than the equation of motion itself. The second is that the source

function must have a finite convolution, which requires that the source

noise field f(r,t) have a Fourier integral transform. These are both

rather severe limitations. The derivation in Chapter II does not possess

either.

1.4 CONCLUSION

The work in this thesis is designed to be an extension of the theories

which have been worked out so far. It is felt that thero is required
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a more generally applicable formulation of the propagation of correlation

functions and mean values than has existed before. In addition, some

practical methods for testing the results are needed which will be more

in keeping with present-day interests, particularly in acoustics. Some

of these contemporary problems are excitation by flowing turbulence, the

noise generated by a region of cavitation, excitations of large auditoria

by applause, and other such problems. The work which follows offers a

formalism which enables one to attack many problems such as these and

at the same time is intended to have a physical motivation for the

proofs and examples.

0
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II THE PROPAGATION OF MEAN VALUES

2.1 INTRODUCTION

One of the problems encountered when one starts to work with physical

systems excited by sources having random properties is that the questions

to be asked are not obvious. In the case of a coherent source, one might

ask about the directivity, the propagated energy, absorption, phase and

group velocities, diffraction patterns, etc. For incoherent sources, one

expects energy to be radiated, absorption to occur, and so on, but cer-

tainly diffraction patterns will be blurred and phase velocities for such

complex signals may be almost meaningless. In addition, there are prop-

erties of the signal which, although existent in the coherent problem,

assume major significance for noise problems. In short, one must ask

IS the right questions in order to have the analysis produce meaningful

results.

2.2 THE MEANING OF NOISE

The term "noise" has a variety of connotations which extend from

the sixty-cycle hum of a defective amplifier to the hissing signal of

an untuned f-m receiver. The first falls under the category of unwanted

signals -- signals which interfere with the transmission of information

between a transmitter and a receiver. The second has this property also,

but it has another characteristic which connects it more closely with

the purpose of this thesis: namely, the property of randomness.

A. Randomness
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By randomness let us mean that the signal varies in a non-predictable,

and consequently a non-repeatable, manner as a function of one or more

of its arguments. In acoustics problems these variables will generally

be time and space. That is, if the requirements for the creation of

the signal are arranged and all the conditions at our disposal are

reproduced exactly, * then the resulting signal will be unlike the one which

preceded it in another experiment. Obviously, what is lacking on our

part is information concerning the state of the physical system, a lack

of inforaation which produces the randomness of the results of the ex-

periment. Nevertheless, the randomness does occur, and we must find some

way of expressing our ignorance (with the paradoxical result that we

shall be pleased with ourselves when we have done so l.

B. Concept of an Ensemble

As a result of a long series of repetitions of the experiment under

identical conditions (again, those at our disposal), we will have a col-

lection of signals which are unlike each other in detail. I say detail

because we shall find that there may be certain properties of the signal

which are very nearly the same for all the samples collected. We shall

call this collection of signals an ensemble, and each of the individual

results, a member of the ensemble.

In general, we expect that our efforts to control (and by control

we mean the reproduction of the measurement of an external parameter)

the conditions are not entirely for nought, for these rather gross

*These are sometimes referred to as "similarly prepared systems."
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"boundary conditions" govern, and hence fix, certain properties of all

the members individually and of the ensemble as a whole. One property

which we have control over is the set of joint probability distributions

which in general is an infinite set of functions, not entirely unrelated

to each other.

C. The Distribution Functions

For the moment let us assume that the random properties of the

ensemble are only exhibited in terms of a single variable, namely that

of time. If we also assume that each of the experiments above ran for

a time T, we may label the beginning of each member, 0; and the end, T.

Then we call the distance between a point on each experimental time record

and the beginning, t. Hence, the value of each member of the ensemble

at the time t is a number which may be tabulated. If we make a plot of

the density of values at time t versus the value of the signal, letting

the number of members of the ensemble increase without limit while keeping

the area under the plot at unity, then we have a plot of the distribution

of values of the members of the ensemble at time t. We shall call this

plot the first-order probability distribution. If we call the value of

the random variable f at the time t, then this is denoted by W1 (ft).

By our normalization, it is clear that this must satisfy

fW I(ft) df =1 2.01

This process is indicated for an ensemble of five signals in Figure 2.01.

Similarly, one may select two positions in time, t and t2, and form

a two-dimensional probability density such that the value f, at time t1,

and the value f2 at time t2, are governed by the joint probability dis-
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tribution

W2 ( 1l1 f 2 '2 )

with the property

df1dfW 2(f'1  2 t2 ) 1. 2.02

Clearly, one also has the condition,

22 11 f2,t2 ) w (i t ). 2.03

In general, then, one has for n times ti(i 1,2,---,n) the nth order

joint probability distribution Wn (l 1 2 n' n). In the

nature of these distributions, one has the following properties:

(a) Wn . 0

(b) Wn is a symmetric function in the sets of variables (f ,ti)

(c) Wkfl't 1fk'tk) = fdfk -df W (fl,tli . f t). 2.04

The property (c) puts a very definite limitation on the WnIs one may have,

since by integrating over fk' k must drop out. The complete set of

WnIs (as n increases without limit) is said to completely define the

random process. On its surface this would not seem to be a particularly

helpful situation since an infinite set of probability distributions is

a substantial amount of information to be gathered. However, W1 gives

us a fair amount of information about a process, and W2 is usually suf-

ficient to answer most of the questions which arise concerning physical

processes.

As we shall see later, there are special cases in which this sim-
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plifies even more. Very often the distribution W2 depends only on the

difference between ti and t This is called a stationary process. If

the random dependence is on position as well, and the spatial dependence

is on the relative separation 17.1 -iY2, the system is called homogeneous.

Another important situation arises when W2 is the only unique probability

distribution. Then W is the highest order distribution necessary to
2

determine all the others, namely, W (1,2,3) : W2(1,2)W2 (2,3) . Such a
WI(2)

situation is called a "Markoff process." "Process" is probably an un-

fortunate choice of terms here since it is the number of dynamical variables

for the system under excitation which are included, and not the random

properties of the process, which determines the Markoffian character.

One should say that the work with the probability distributions done in

this chapter is essentially unaffected by whether or not one has a Markoff

process.

D. Distributions in Space and Time

In most of the work in this thesis the noise sources will have a

space dependence as well as a time dependence. This is true whether

or not at a given instant of time the source is a random function of the

space coordinates (just as one may have a probability distribution for

a completely well-defined function of time, albeit a delta function).

In general, however, the distributions will be like

W ( fi -,, y - f'n

and the relationships governing their behavior are basically unchanged

from those in the previous section. When we have such a distribution
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of random sources in space, we shall say that a noise field is present.

Since most of the work in the thesis is concerned with the excitation

of continuous systems by noise fields, then joint probabilities with the

spatial dependence are intended.

E. Ensemble Averages

With a set of probability distributions like this, one would expect

to be able to calculate mean values. In practically any experimental

situation one obtains by sufficient repetition of the experiment a set

of average results and a distribution of points about this average.

This is substantially what we ask for here. From the distribution

W (f,',t) one may obtain mean values of any degree for the variable f,

namely

(fi>ave fW 1 (f,,t)df , 2.05

where the brackets (e*> ave from here on refer to the ensemble average.

This average of course will depend on the "unintegrated" variables r

and t. This is not surprising, but in the important situations of sta-

tionary and homogeneous processes one or both of these variables will

drop out.

One may wish to know the average value of the product of the vari-

able f at two or more different times. As such, one may write the

expression

( 2 - Dave - Jf f 2-- faWn(fl,t, 1--- I fntnin) 2.06

which in general will depend on the set of variables (".,t.); i = 1,2,---,n.
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It is here assumed that the Wn's are known. As we shall see later,

this is not always necessary, but equivalent conditions may be substituted.

Particularly when one knows the mean and the variance of a distribution,

he may calculate mean squares without any further knowledge of the dis-

tribution, since <f2> ave <(f >ave)2 >ave ve

2.3 THE RESPONSE OF PHYSICAL SYSTEMS TO RANDOM NOISE FIELDS

When we speak of the response of a system to a source having random

properties, we are not concerned with the exact shape of signal which

is produced. This in general repeats itself in no detectable way, so

that anything we might wish to infer from such an examination would be

useless. Such unpredictability leads us to consider what questions may

be meaningful to ask.

Since we have, in principle at least, the Wn's at our disposal, we

might ask questions concerning the mean values which are important from

physical considerations. Let us consider a noise field acting as a source

on a physical system. Any member of the ensemble of functions f(F,t)

will produce a corresponding response (16,t) in the system. Let us rep-

resent the system by the partial differential equation describing its

motion, that is

4(?,t) :-4 Wf(,t) , 2.07

where L is a linear operator which includes boundary conditions. For-

mally the solution to this equation is

4(,t) :-4n ~1 f(-,t) , 2.075

where, now, means an integration of the impulse Green's function

L
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times the source function over the region of interest plus an integration

over the surfaces of the region and the initial conditions. If we spell

this out in more detail, when X is the wave operator, one has

)2 - ) ,t - 4n f(',t) , 2.08

and the solution is 23

ftt
( ft :: dt. dvOG(7, r ,t fPO, t )+ dt *(Gl9, -fVG)

) d(( ) - G 2.085
to0=0 

to-0

Above we have assumed that the system is started at t 0 with initial

values and boundary conditions specified, and t means t+ e to ensure

the integration over any singularities which might occur when t .t.

Let us ignore boundary conditions and initial conditions (which we

may do for many important physical situation, and we find the solution

to be

($,t) =ftdt fdv0G(,t I -0t ) , (t) , 2.09

where f is a particular member of the ensemble of source functions.

If we know the distribution of f, we may obtain the average value of i,

,t)> ave o dto jdv G(,t I ,0t0 ) < rto0> ave . 2.10

This result arises from the linearity of the solution,

"m N ::: dtC dv G(ir,tI ,t ) lim 1-l Ot . .11
N40 Jf 0d 0 0 0 N N

It is clear, however, that this may be interpreted as
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(r,t)> ave = dto fdvo G(-,t I o,tJ) f W 3I,t)df , 2.115

which is remarkable since the function W1 (f, r,t 0 ) has passed right

under the integrals over the variables Po.t 0 9 and f has lost its dependence

on Yovt 0 and become a variable of integration itself. If the average

value of the solution over many experiments as a function of 7,t is

required, it may be obtained in this manner.

Let us now go on to the physically interesting second order mean

values.

A. Second Order Mean Values

Usually in acoustics one is not so much interested in the mean value

of a solution as he is its mean square value. The reason is, of course,

that mean squares of the response or its derivative in time or space

is directly related to energy, or energy flow, or similar quantities.

For example, one may write

(9) (AY',&It') d+t dt' dv dy' G(-",t -* i, to)

G(Ir',t'j |Y't') - f (ropt ) f ,r.ot ),

and by averaging over the ensemble again one has

,t) r&(t',tt) ave = t i dtedtdv dv' G( t ri. t

G',t| I rts) r ot )f-",t' )) ave .2.12

This equation we shall use many times in the following chapters. An

expression like this calculates the correlation between the random response
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at two different positions and times. When Y=Y' and t=t', this becomes

the mean square response to the ensemble of source functions. The

methods for obtaining mean values of products of derivatives of XI are

clear.

B. The Stationary Time Process

Thus far, whenever we have spoken of a mean value, we have meant

the ensemble average. This average is satisfactory for situations in

which an experiment is repeated many times, for example in nuclear scat-

tering problems. Many times, however, what is done is the taking of a

time average of a signal, or of its square, either with instruments

designed to perform such averages or by observation of the mean displace-

ment of a fluctuating meter reading. We now wish to explore the relation-

ships between these time averages and the ensemble average with which

we have been occupied. If we take the ensemble which we have obtained

and examine the joint probability distribution W2 (fl' 1 ,' 2' 2

we may be struck by certain symmetry properties among the variables

Y,t1 and 2 ,t 2. In particular, we may have its complete time dependence

through the variable 7 Eti-t 2. If this is so, the process is said to be

stationary in time. In terms of the space variables, an x dependence

merely on -x:-x 2 is said to be homogeneous in x, etc. A dependence on

p =r-r 2 i alone denotes a field which is said to be completely homo-

geneous and isotropic. The requirement that 2 be symmetric in the vari-

ables f 1 ,1 and f2 ' 2 't2 forces the dependence to be even in T for

the stationary time case, even in for the homogeneous in x case, and

-ik so on.

h.
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Suppose we pick two points 1 and r2 and consider the members of

the ensemble for these points. If the members are stationary in time,

the correlation between the functions f1 and f2, as described under

Section A (Second Order Mean Values), is a function of the two points

- and r2 and of the delay T . Since the parity in T is not affected

by the averaging process, the correlation is likewise an even function

of T . We wish to show that the ensemble averaging process may be

replaced by a time averaging process over a single member of the ensemble.

To show this, we must invoke the ergodic hypothesis.

The ergodic hypothesis states that in a system bounded by a set of

fixed parameters (the constant conditions we have spoken of) the system

will reach arbitrarily close to any condition consistent with those

parameters and spend an amount of time in the region directly proportional

to the probability (i.e., the ensemble probability Wn) of its attaining

that condition. More in line with what we have been saying, in a system

operating under fixed conditions, the value of the function f will approach

arbitrarily close to a selected value f and will spend an amount of time

in the interval f1 ,f1+df 1 proportional to the probability Wl(fl)df1 .

This makes the time average equivalent to the ensemble average for a

stationary time process.

We shall denote the time average by (...and form it thus:

<f(Pt) f($,t) dt. 2.13

In the earlier work then, for stationary processes, we have

L
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f tt tatfdavI =r ft tdt fd vG(%
(7,)/$'t)> ave dt dt d 0 dvGqtJ jro'to)

G(',t' -rt,ti) <f (-r,t) f (-r?,t') , 2.114

where the average on the l.h.s. is still an ensemble average. We must

make this distinction since the system was started at t:O with no motion.

Thus far the transients may not have died out. If we had set the lower

variable of integration at t:-*O, the system would have forgotten how

it started, and the average on both sides would be a time average. One

will notice, however, that the time average on the r.h.s. could not have

been applied directly since it must be integrated over the variables

t t,.
0-10

More complicated cases than this may arise, however. Suppose that

is the pressure in an infinite acoustic medium due to the radiation

of random noise sources localized in a finite region of space centered

at the origin. If the sources are turned on at t:O, the sources will

achieve a stationary state immediately, certainly after a time T (long

compared to any fluctuations in the signal). If the velocity of waves

in the medium is c, then for regions of space ir<< cT the response

/ will be stationary. However, for regions Ji1 >> cT the response will

be just beginning, and near Ir = cT the response will be in transition

to the stationary condition. The point is that one may use stationary

assumptions concerning the source, but whether or not one may use such

an assumption for the response depends very much on the kind of domain

and the region of the domain in which he is working.

One might argue for replacing the ensemble average by an average

over space as is done for turbulence, ut in most physical situations
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we stand at fixed positions and record time functions and average them

in time.

C. Convergence Properties of the Solutions

We are aware that one may not just take any kind of time dependence

for the source and apply it to any system and expect the integrals to

converge. The convergence of a solution A to a source f is made subject

to certain requirements of the integral of the square of f over the

region. These same requirements govern the convergence of the correla-

tion response, <(,t)(r>',t') ae , since this is the average of the

product of two solutions.

There are in general only four separate convergence situations which

are of interest to us as they arise in a physical situation. They are

(a) lim r dv f dt f 2 (r,t) is finite
V,T-60 V o

(b) lim dv dt f2( is finite
T,V*** V f f

2.15

(c) lim rdv fdt f 2 (&,t) is finite
VSTweed T V 0

VT~ T

(d) lim L dv dt f2 (;,t) is finite.
V,T4eo VT 0

If (b), (c), or (d) is true, (a) is infinite. If (d) is true, (b) and

(c) are infinite. If (a), (b), or (c) is true, then (d) vanishes. If

(b) is true, (c) vanishes, and vice versa. The time averages and integrals

are obviously closely related to finite energy or finite power. The space

integrals are associated with finite energy or energy density. They
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come out this way.

(a) Finite energy

(b) Finite energy density

(c) Finite power

(d) Finite power, power density.

The terms power and energy should not be taken too literally. One may

have a finite mean square response with no power being transferred at

all, for example in an oscillating resonant system having no losses.

These are very closely related to whether or not f is representable

by a Fourier series or a Fourier integral. For each of the finite

quantities above we may represent f by a Fourier integral in the unaveraged

variable, the transform of which is a kind of power or energy spectrum

in frequency and/or wavelength. Here again the properties of f, or of

its higher order mean values, are not reflected directly in the response

6. We must first integrate over a Green's function which may fall in

either class (a) or (c) above -- in (a) for infinite regions and finite

non-conservative regions, and in (c) for finite conservative regions.

The convergence properties of ' depend on the combined properties of f

and the Green's function G. In any physical situation, however, the

convergence is assured unless one incorrectly specifies the source or

Green's function.

D. Fourier Representations

The Fourier representation for stationary random functions, either

of finite or infinite extent in space and/or time, has been the subject

of many papers and a few books in recent years, and it seems unnecessary
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to duplicate the developments here. We shall recall a few of the major

results which are of particular importance for the present work.

The auto-correlation function is defined by

(r i ) =T f(t)f(t+T)dt, 2.16

which is the Fourier cosine transform of the power spectrum of f, namely

ad

9) (n) = 2 S / (T ) cosWT dT , 2.17
0

where

T46. T

and

FT(W ) T (t) e itt dt.
0

Here fT is zero outside (0,T), and all the limiting processes are assumed

to exist. For case (d) above one must include the space transform

S(~ , T) -lin 1 T dt dv f(r,t)f(Yet ,t+T) , 2.18
VT-0 VT 0 V

and

(lo

OW (2 ,Y d T cos wTfdx Cos (O-) ( k

lim 16 IFT 3( Z ,) 2.19

VT

and

FVT = dv dt fVT (r,t) e
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where fVT is zero outside V;O,T.

Due to the stationary character of these expressions in time (and/or

space), by the ergodic hypothesis they are the same for each member of

2 *
the ensemble. For functions which are class L in a certain variable,

this is not the case; and one must perform an average over the ensemble

in those variables. For example, consider the emitting region mentioned

above. At each point the source is a stationary time series. Hence the

spectrum in frequency may be obtained by a single time record from each

source point. However, the spectrum in wavelength (1c) must be an average

over the ensemble of source realizations.

The number of results which one may obtain from the analysis of the

propagation of mean squares and the representations by Fourier expansion

is almost unlimited. Merely by setting up the solution in terms of

integrations over space, time, frequency, and wave number and integrating

in various orders, many useful (and many more not-so-useful) formulas

may be obtained. One useful result, when one knows the power spectrum

of the source, is obtained as follows:

(fft fdv dvt dt dt' G(,tj r ,t0 )
ave y V 0 o of 0 0o

G(E',t' I r' t') (f(E 't )f(Y'1t')\ .v
o* o* 0 o' o > ave

The source field is assumed to be stationary in time and homogeneous in

space so that we may write,

*A function h is said to be class L2 in the variable y when

h2 (y) dy exists and is finite.
all y
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T

f(ave T 1 dt dv f(r0 3t0 )f, , t0 t)

2V T V

The power density spectrum is given by

(ZW) = do dwT cos&'r o0,

-S0 -CO

where

lim 161 F(j,2)

and

00

do U"Idoe

f(9,t ::: i d00
0

If we should happen to know the spectrum of the source in wave number

and frequency, we could use it to get the response correlation in the

following way.

Cos (0 ' -8' )

4fd w fd J<_( aW) e
(16) n ... -,4

Hence,

0(r(,t)A(, )> S d d d G( ,t ,0 t 0 )

2 -A -' 
CO

-. 84

2.21

e(WI -x

where

(0 2.20

A9

( ,T)dW d'K (XZw)



4 .. to+ t"; to - tol 0 r+ r, to- = -r0-5

Now, fdd G(rtV ,t ) G(-',t' j 't') is what might properly

be called the convolution of the product G(r,t Ir 0 t 0 ) G(%',t' i Vt,tt)

The transform, given by

TV f i(Vr r r

will be denoted by A(Y,',t,t'I XL) , and we have

2 4 Q(r,t)W,tt)> ave = dwfdd f. 2022

-eo

Other relationships like this are possible, and one must examine his

knowledge of the problem in order to determine which formalism is the

most feasible.

We have now considered enough of the theory of the propagation of

mean values in order to proceed with the work in Chapters III and V.

We have at times restricted ourselves to problems in which the joint

probability distributions are invariant to translational shifts of the

time axis in cases where we wished to replace ensemble averages by time

averages. In general, however, we have not been restrictive on this matter

and have allowed freely for the non-stationary time process as well.

Before going on to applications of the methods, it would be well to

consider the non-stationary process.

E. Non-Stationary Time Process

In many problems of statistical dynamics situations arise in which

the statistical properties of the random functions (source, response,
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or both) are not stationary in time. As we have pointed out before, the

response to a source, which itself is a stationary time process, need

not be stationary if the transients have not had a chance to die out.

In order to fix our thoughts, let us take some examples.

Consider a room, with finite absorption at all frequencies, being

excited by a speaker producing a random output. Suppose the speaker

is turned on at time t=O. Then a receiver (microphone) in the room will

first pick up the direct signal, a little later the first reflection,

and so on. As long as new reflections are received and the energy output

of the speaker has not come into equilibrium with the absorption at the

walls, the microphone output will be non-stationary since the power

spectrum is changing with time. As equilibrium is reached, the response

becomes a stationary time process.

As opposed to the situation where a stationary source produces a

non-stationary response, let us consider just the inverse of this. If

one places a speaker in a room having perfectly hard walls and excites

the room with a burst of random noise from t:0 to tit, the response will

be non-stationary until many reflections from the walls have occurred

and the process becomes stationary.

We can also have sources which are non-stationary because the proba-

bility distributions are time dependent, as in the case of noise from a

whirling propellor blade. Usually the response to such sources will be

non-stationary as well. The shot effect from a vacuum tube current

undergoing grid voltage variations is a good example of this. We actually

use the time dependent probability to calculate amplification factors,

and so on.

L.



-28-

We wish to tie in this non-stationary time process with the Fourier

analysis ideas in the last section. Fourier analysis is good because

it transforms the time and space averages which replace ensemble averages

for stationary processes. This limitation to stationary processes is not

17
absolute, however, if we introduce, following Page, the concept of the

instantaneous power spectrum.

The concept of power is that of a rate of change of energy in time.

This may very well change with time, just as a discharging condensor

delivers a power which changes in time to a resistor shunted across its

terminals. Hence, if one considers a signal, he may obtain the instantane-

ous power spectrum by taking the time derivative of the energy delivered

up to the time t. If the signal is random, one takes the derivative of

the ensemble average of the energy spectrum. The following derivation of

18
the instantaneous power is close to that of Lampard, but is more consistent

with the notation and approach in this thesis.

Let us first consider the one-dimensional space situation, so that

(i) (i)
the ensemble member is f (x,t). Let us assume that f started at

a large negative time, -T, and continues up to the present,t. We wish

to know the power spectrum at the present.

-0f i(xsto) = - F( (x,W) e-' d ,o

and 2.23

f (X ,to) = - F)(xWd) e 0 dd
2A

-0@

Then, if x=x',

i(xW)2 yt t (i)(i'(t 0 -t ) dt0 dt .
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We take the ensemble average and introduce

(t,t') E (i)(x,t.) f (x,t)> 2.24

and let

then

F() (x~W) 12 ave- d 2 d + 2td f2-Ad
< ave - 2 _2T - -2T d X+4 I"t4f2

and

<KF(xp) 12 ave = 2 f (tt-Y) coswY dY;VW(x,W) , 2.25

as we let T-4O . In the same way, one may get the instantaneous power

density, given as

V (k,&) 2 J dVfo doctf (xt I x-g, t-y) cos (ki(-WY)

2.26

+ 4 (x-cf,t I x,t-y) cos (ko(+W?)

where

4 (x,tlx',t') (f(x,t)f(x',t') ave . 2.27

One may easily carry this on to two or three dimensions, but the number

of correlation functions to be obtained increases twofold for each new

dimension. Hence, there are four for two dimensions and eight for three
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dimensions.

2.4 CONCLUSION

This gives us sufficient tools to study a class of problems in which

continuous systems are excited by noise fieldb having well defined cor-

relation properties. We now pass on to the first of those examples in

Chapter III.



-31-

III RANDOM EXCITATION OF FINITE STRINGS

3.1 INTRODUCTION

In this chapter we shall apply some of the formalism developed in

the last chapter to the special case of the damped, finite string. The

plan will be to assume a source correlation (f(rO,to)f($,t )a00 ave

and with the knowledge of the Green's function for the system calculate

the mean square response. Although from our analysis it is possible to

calculate the response correlation functions ( (r,t)X(Y',t')>, we shall

in all cases restrict our attention to the mean square response -- partly

because that represents the interesting experimental quantity, partly

because it substantially eases the computation.

3.2 EXAMPLE 1, THE FORCE RANDOM IN SPACE AND TIME

Let us begin our examples with a very simple situation. We assume

that a finite, damped string is being forced by a field which is purely

random in both space and time. Purely random in time means that the

signal at a given instant is completely uncorrelated with itself at any

later time. We then denote such a correlation by a 6 -function, namely

(f(to)f(tt)) ave = D (to-tl)

where 2D is the spectral power density of the source. Hence, for our

one-dimensional system the correlation is

<f(x.,to)f(x',t ) D (x -xl)'(to-t).
00 .o)> 0
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A. The Finite String

The wave equation for the finite string is

T 4 - 2 - I" =-4-x f ,
ax 'bt a

where is the friction coefficient. Dividing through by P gives

2 2
0c2 j .. .. = - 47 f ,3.01

x 2 t 2  at Pt

where

In this equation is the displacement, is the viscous coefficient,

T is the tension, ,p is the linear density, and c the phase velocity.

The string is considered fastened at the points x . 0 , x = L

We expand the solution f into a sum of space eigenfunctions,

/ } (t) Q (x) ,3.02

where

$ m () T sin m = sinkmx , 3.025

and expand the linear forcing function f likewise:

o
f L Fm (t) m (x). 3.03

M~l

m is the displacement of the mth mode, and Fm is the force active on

that mode. Hence, we have

2 -- --- m - F(t , 3.0
m m t2 r t m



-33-

where

m L m

and is the frequency of the mth mode. We define the impulse Green's

function S (x,t x0 ,t ) as the solution to the equation

C2 2 )2 -4 (x-xO) (t-to) . 3.05
x at

If we choose to expand the Green's function in eigenfunctions, we may

write

Gm (xoo,t;t) 41 (x) , 3.06
m

and recognizing that

(x-xo) LPr (x)4m ')
m

we have

2*O Gm+ M, ")~m G - 4-q ( x) ( (t-t9).30

Gm is seen to be an impulse Green's function for the mth mode. By the

method of variation of parameters, one gets the solution of this to be

-a (xd) % (-to) t >to
1m

GM = 3.08

0 t4to

where

--(t-to)
Qm t-t) 2ie 2Sin ' (t-t ) 3.085

L
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and

1,m m

which is the frequency of the mth mode as it is reduced by the action

of the viscosity.

B. The Source

As we have said, the source correlation function is given by

f(x,to)f(x ,tt)) = D S(x-x )S(to-t') . 3.09

This has the unfortunate property of having infinite power, as one may

ascertain by recognizing that the mean square force at a point is just

f 2(xe,t 0)> - D 8 (0) e S (0) .

The meaning of this is that energy is spread over all frequencies and

all wavelengths with constant density, as may be seen by taking the

cosine transform in space and time to get 19(x ,cW) as we did in Chapter

II. However, any particular mode of the string has only a finite pass

band. As long as the actual source has a sensibly constant spectrum

over this band (in frequency and wavelength), the S -function will

represent the actual response and will greatly ease the integration

over certain of the space and time variables. Also, we shall assume

that the source has been turned on at t - o0 so that the response has

became a stationary process.
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C. Calculation of Mean Square Displacements

From Chapter II the correlation function for the response is

2 *

(fAx,t)(x',t') (x{ xt)

n,m=1J l,n l,m

t t 3.10
dt dt (t-to)n(t--t )Rm totfit dt 0 Jdta

where

R (t;tI) dofn om o) o o )f(xt ) . 3.105

Rr(to;t') is seen to be just the correlation of the two source functions

Fn(to), Fm(tt) , and is the n,m element of a correlation matrix. The

R as are inconvenient to use in this example but will be used in the

next where the correlation does not have such a nice forn as in this

problem. As in Chapter II we introduce the variables

p J, - t +~ ti
0o 0

3.11

From the Jacobian of the transformation, one has

dx0 dx : d d' ; and dto dt' = d gA. d

We shall use this transformation repeatedly in other problems. For the

mean square value of X, we set x = x' , t : t' , and get

n p2( x,t)) : n m l, n ,mn L n(X LJ no)m(x) dx dxI



2t - 2(2t-)u.) 2t-,4-
ed e d- 4 s in 04 1 , n

sin 4 1,m jT ) ()b ) * 3.12

The derivation of this expression may be obtained by placing R1 of

3.105 into 3.10. Then the expression for the source correlation from

3.09 is substituted, and the change of variables in 3.11 is used.

Finally the eigenfunctions as defined by 3.025 and the LIs from 3.085

are substituted.

The limits of integration onA, ' come from the rotation of the

axes produced by the change in variables as shown in Figure 3.01a. A

quantity which has experimental

as well as physical meaning is

the mean square displacement of

the mth mode, which gives the -

contribution to the mean poten-

tial energy of the string from

that mode. From our notation

this is <( 2> , which is
Figure .Ola

obtained by picking out from

(02 (aside from space dependence) the term for which m = n. This is then

2 g2D 1 L 2t-P(2t-fA.)
= m UD - * dx dx (xm)(x') 2te d

1,m 0  0 **

2 s in2
2i
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where we have carried out the integration over * Setting -: 2t

one has
L

2 R2D ~0 2A(Y
= : D 4 dx dx 0  

Tm(xO) xT e 
m 2 m 0 0 0

0 0

d Y (1-cos o y1 ) ( IT)
1,m

3.13

2L

4-g2 " f ddCr - (cos k (7
2 4 L m

m 0

where the integration over 9, Oextends over

3.01b. The eigenfunction product

has been replaced by its trigono-

metric identity, and the integra-

tion over Y has been carried out.

The integration over T leaves

2 2 2L
X22L0 d? (1-cos k o).

S m

The cosine integrates out and

leaves us with

- cos k f ) (a ) ,

the shaded square in Figure
I

60
L

V\\V

IL

Figure 3.01b

< 2 8 2 D
m 2 2

m

For the terms n p m , the eigenfunction product is

sin k x sin k x' - cos (k 0-t k
L no m o 2 n- / nt mn 2

cos (k +k
nm2 nm2

The integration over (7 gives cos(k A_- cos(k -- , and the
L ~n-m 2i 'n-m 2 '

integration from 0-*2L on gives 2 . Hence, in the expression

3.114 m represents the total motion of the string. The potential

No

3.1]4

0

PO



energy of the mth mode is 1 P)2 , and if we set this equal to

kT we can evaluate D and obtain an expression for the Brownian mo-

tion of the finite string, as Lear and Uhlenbeck have done. The reader

is referred to their paper for a more extended analysis of this example.

3.3 EXAMPLE 2, THE PIECEWISE DELAYED EXCITATION

Now that the general procedure in obtaining mean squares has been

demonstrated, let us consider the types of problems we have in mind as

the goal of our labor in this chapter. We ultimately want to know how

a moving, random pressure field, such as turbulent flow, would excite

a finite string -- or what is equivalent, a thin metal ribbon. One

possible approximation to a moving noise field which one can make is

to force part of a string with a random noise field, and then delay the

random function and apply it to another part of the string.

A. The Correlation of the Source

The string will be defined by the same wave equation as in Section

3.2 - A. Again we shall assume that the source was "turned on" at t : - oo

so that the response will be stationary. The source consists of uniform

forcing of the string from o - by the purely random function f (to)

L
It is then delayed by a time To and fed to the second half --PL as

2
th

shown in Figure 3.02a. We ask what is the mean energy fed into the m

mode as a function of the delay ' 0. The correlation field will be

*Lear and Uhlenbeck, "The Brownian Motion of Strings and Elastic

Rods." THE PHYSICAL REVIEW, Volume 38, page 1583. In this paper, they
have essentially obtained the results of equations 3.10, 3.105, and 3.14.
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4 0described in terms of the R Is of

nim

Section 3.2 - C. If we assume that

the correlation of f is given by

<f(t)f(t)> = D (

we may express the correlation

by the "field" in Figure 3.02b.

The coefficients Rm( t ) are

obtained essentially from the

process indicated in equation

3.105. Hence we must evaluate

the integral 0 "/L L.

Figure 3.02b
L

R( ) = dxodx' (x))(XI)(f(x.,t)f(x,to) ave , 3.105

where the correlation above is given by the field of Figure 3.02b. Since

we are effectively expanding a product of step functions, what we need

are the integrals

L/2
1ml

sin k x dx (cos --
0 Mo o- 2

1)

and

L mfl
sin kmxodx - (cos mnf - cos ) .

L/2 M 
2 frm 3

From these, then, and from 3.105 we have

-39-

U~k* IDELAY

WOgur (e 3cATa

,Figure 3.02a

I.

Xv



R (r ) - ( ) (Cos - 1) (Cos 'A- 1) (cos M%. - cos )rMknkmL 1 ){c 2~- )(o 2 2

cos n1 ( - 'C'o) (cos - 1) (cos m'. - cos )
2 j0 2

+ ( 'to) (cos - 1) (cos nt - cos )

For either n or m = 4t, where . is any positive integer (# 0),

Rn :0 . This is clear when one observes the symmetry of the set up

in Figure 3.02a. If we have m and n even (twice an odd integer), then

(a) R (' ) : f2r() -z(-T( o) .

for m odd, n even,

(b) R m o or * q+r

For im even, n odd,

3.15

(c) R (L )+ o TO) .
nm mn

And for m and n odd,

(d) Rm( ) : 26 ('{ )+ S ( l+ )tS( T9

B. The Calculation of the Energy of the Modes

In this example we shall calculate both the mean potential energy

for the mth mode and the mean kinetic energy. The mean potential energy

is obtained from ( 2 >. From 3.10, by selecting out the terms for

A 1k which n = m, this is seen to be



2 2t
8d e

m 21,m
sin (2- m

2

sin 2 (2t- + )
S-2t

d R ( )

Now, for m even, we have from 3.15 (a)
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Let us now calculate the kinetic energy for the mth mode.

square transverse velocity is given by

2

(2 2(t)2
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where Um : and Q(t-t0 ) .0 Qm is essentially the

velocity response of the mth mode to an impulse. Hence,
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and similarly, for odd m,

2 16LD

m o = m ,m 

(2.)lY2 t0m2

(2 Qj I'm(* ' t Cos 6l.,m fro)

-- sin &Im (To

Since the mean potential energy is given by

2 2

and the mean kinetic energy by

Km

we notice that for both the even and the odd

potential energy for a mode are different by

As the viscosity diminishes, this difference

to the values of the energies involved. The

modes is

E V + K 128LD 1
Em,e m,e m,e - e

and for the odd modes it is

modes the kinetic and

the term 2p sin 01,m(To)

becomes smaller in relation

total energy for the even

Cos 40l,m To 3.22

E : V + K
m,o mo m,o

32LD (1+e

P.m2

C 2
cosG4) T ) .

1,m 0

One can easily verify that the ratio is the q factor of the mth

* " 1 192
mode. In Figure 3.0ha we have plotted the function (1 - e cos W ),,m o

Examine the impedance for the mth mode as given by Morse, Vibration
and Sound, Second Edition.I,

3.21

3.23
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for Q values of 2, 10, 100. This gives the dependence of the energy

in the second mode in units of 32LD as a function of T. In Figure

- ,5 l'r,(/2
3.04b we have plotted the function (1+ e cos 4 n T) for Q

values of 1, 5, 50. This gives, in the same units as before, the de-

pendence on 'T of the energy in the fundamental mode. As one would

expect, for '=0 a 0 there is no energy fed to the even modes, but there

is a maximum fed to the odd ones. As To advances, say for the second

mode, the energy increases until it reaches a maximum at T = ,
21,2

which is a half period for this mode. This maximum represents a sort

of coincidence effect between the source and the mode. It suggests that

if we move a random noise field along so that its velocity equals the

phase velocity of waves on the string, a maximum of excitation will be

attained. We shall study this problem further in later examples.

Another interesting aspect of the curves is that for high damping

(or low q) the maxima and minima die out and approach an asymptote for

large *(' which would be the excitation if the string were driven by

two incoherent random sources over its two halves. The damping, then,

produces a "forgetting" effect such that if one waits too long before

applying the signal to the second half, the string "forgets" that the

signal was ever applied before.

C. Experimental Verification

In an attempt to determine whether the coincidence effects predicted

by the preceding analysis were experimentally observable, an apparatus

like that diagramed in Figure 3.05 was set up. The source is a thermal

noise generator, and the signal is fed to an electrostatic plate which
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drives an aluminum foil ribbon over half of its length. The signal

25
is delayed by a variable time delay system and fed to another elec-

trostatic plate which drives the ribbon over the second half. The motion

of the ribbon is detected by means of a modified Altec-Lansing microphone

base used as a capacitance sensitive probe. A particular mode of vibra-

tion is selected by utilizing the natural selectivity of the mode and

placing a third octave band filter about the resonant frequency on the

output of the probe. The mean square response is obtained electronically

26
by the squaring and integrating facilities of the Goff correlator. The

set up is shown in the photographs of Figure 3.06.

What is measured is essentially the mean square velocity <J .

However, for reasonably high Q the functional dependence is very nearly

that of Figure 3.04. In Figure 3.07 we have plotted the results of this

experiment for the second and third modes of the string as a function

of time delay. The rather high background level is thought to be due

to inhomogeneities of tension in the three-inch-wide ribbon. For the

second mode the measured Q was 10, and for the third it was 15. The

resonant frequencies were 105 cycles and 160 cycles respectively, the

discrepancy in harmonicity very likely being due to motion of the sup-

ports. The agreement in terms of the shape of the curves appears to be

pretty good, with the coincidence effect plainly visible.

Now that we have taken the initial step toward dealing with the

problem of the moving field and have acquired some familiarity with the

procedures of calculation, let us move on to the next example.
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Figure 3.06. Photographs of the Experimental Set-Up of
Example 2.
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3.4 EXAMPLE 3, THE PURELY RANDOM MOVING NOISE FIELD

In this example we shall examine the response of a finite string

when excited by a moving noise field which is purely random in space.

Although this is impossible to realize physically, it still can lead to

useful results and is the simplest kind of correlation function to inte-

grate. Again, we are interested in coincidence effects and will be inter-

ested in what happens when the flow velocity of the noise field is near

the phase velocity of waves on the string.

A. The Correlation of the Source

We consider a force field in space (one-dimensional) which does not

change with time but is a purely random function of x. That is,

(f(xo)f(x')) - D(a)
0 ave -

We then allow this field to be dragged along at a velocity Ur, to the

right, so that the correlation becomes

<f(x - Vt ) f(x' - V t, )> ::e D 6( r)

o o o o ave D(Q-r)

This is the correlation function for the source which we shall use for

our calculations.

B. Calculation of the Mean Square Response

With this kind of source and the Green's function we have been using,

the mean square displacement of the mth mode is
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2 2 L L 2t - (2t- .)

dx dx' Im(xo) (x I) d e

,m 0 0

2t-tA

2 d k sinco~{t- (C+)) - sin l t1 (,.m)

j(a- - WT)a

which is just like equation 3.12 except for the modified source correlation

function. We are interested in obtaining <4$) as a function of the

flow velocity ' . First, we carry out the integration over 4 (= t -t') ,

which merely substitutes q/ for t everywhere in the integrand and

modifies the limits of integration on U as shown in Figure 3.08&.

22 L d2td (x1m(2-1

,m 0 3.25

cos alm 0 U -cos te lm(2t-M.) .

If we substitute y : 2t-t, and t Ir

integrate over Y, we have

2 Lto1

2L Ldx dxI

m 0 to

e cos W,

Figure 3.08a

+ sin (41 V)-(cos kmq -cos kC) . 3.26

The integration over the space variables extends over the region shown
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in Figure 3.08b. It will be noticed

that the integrand is symmetric about

thelinesp :L andur=O . Hence

we may integrate over the shaded tri-

angle and multiply by 4. Our expres-

sion becomes

I

Sm

\ ,

(%
~ \\ \\

~A I L
' Figure 3.08b

L L
8'fl D L d~ di e (2- os(tO1m ot- sinc m~~

1,*m MC 0 0

*(cos kmO - cos kO)

After a good deal of algebra, this becomes

2 2 OD 2 02 g 2_ - -2 1 )
0 ~ 8k L 2 (c -t 12

msin k L -m/2
(in)M 0i(m~L

4 2 8 2 +20 2 _0(4 62 -5 -16S )

± {(g 24.1)2 . 2

f(-) e cos1
M 7t

3.27

where eg : is the ratio of the velocity of
0w

phase velocity of waves on the string, m =
the modified frequency to that of the undamped m

d 0( (2+ 12 j22

the noise field to the

is the ratio of

ode, and =--E is

I*.
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the "quality factor" of the mth mode. This expression is much simplified

when one assumes that N = 1 , which is equivalent to saying that

4 >>1 . This assumption is good over most of the values of O( but

breaks down and leads to a singular response at C:: 1. However, with

viscous dissipation an infinite response is impossible. If we take

m a 1 above, we get

2 3 2

= 1620(2_ 2 2Qm+ - (2m cos 2+ sin )
m=1 kL 2I

m 20( m
(-) e J . 3.28

This has been calculated and plotted for m:1, Q:10; m=4, %10;

m--, Q4=40 and is shown as the solid parts of the curves in Figure

3.09. The dashed part of the first curve was calculated from the exact

expression for the mal mode and indicates the peak in the response of

the system slightly below 0( = 1, or when the phase velocity of waves

on the string equals the flow velocity of the forcing field. The "coin-

cidence effect" occurring at 0( slightly less than one is due to the effect

of viscosity. It is also interesting to note that when o(-o 0, 2

does not vanish, since a static force field will produce in the string

a deflection which will have a non-zero mean square value.

In the next example we shall introduce a correlation time or length

for the source. It is interesting to note that a sort of correlation

time or length is encountered for viscosity, the effect of which may be

seen from equation 3.27. We shall define a length Loc/6 and call this

the correlation length for viscosity. Essentially, this means that two

points on the string separated by a distance greater than Lo have their
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free motion uncorrelated since wavelets started at one point have been

dissipated before they reach the second point. Of course the total

motion at the two points will still be correlated because of the cor-

relation of the source, but not nearly so much as if they were separated

by a distance << Lo* For modes of wavelength greater than Lo, we might

not expect very much of a coincidence effect as o -*l . To test this, let

us consider the simple situation when W(m -2 and choose the first

mode of the string, m =l. Then, 4 9: :/ , or L =2It 2 F 21L,

and Q1 1/2 . Hence, in this situation, we have the correlation length

about one-sixth of the length of the string. Equation 3.27 becomes

2 16t Dc . 1 c 3 cK 2 + 5)(e- 1 -nt 3.295 L ( 2 t 1)2 O 2 1

2
which is plotted in units of 16 Dc as a function of c in Figure

3.10. It is evident that the coincidence effect has disappeared as

expected. Since we have let 40 go to zero, one might object that

this illustration is not conclusive -- that the effect could be due to

the non-oscillatory nature of the mode which prevented coincidence from

occurring. That such correlation lengths do affect coincidence, even if

the motion is oscillatory, shall be seen in the next example and in

Chapter 17. At present we must regard the result in Figure 3.08 as only

a hint of the effect of correlation lengths.

Since it is experimentally very difficult to set up a noise field

like that postulated in this example, we have not attempted to get ex-

perimental verification of Figure 3.09. A flowing turbulent field does
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have properties which are capable of representation by a correlation

function similar to that of equation 3.24, and in the next example we

shall make an attempt to approach the representation in one dimension

of the kind of force field applied to a string or ribbon by a flowing

turbulent field.

3-5 EXAMPLE 4, AN APPROACH TO TURBULENCE FORCING

What we should like to do is to predict the mean square response of

a finite ribbon to a field of turbulence flowing with a velocity 17 in

the direction of the length of the ribbon. This is a situation we are

able to set up experimentally and represents a problem which people in

aerodynamics are concerned about: namely, the excitation of aerodynamic

surfaces by turbulent flow and coincidence effects which occur when the

flow velocity of the strewn reaches the phase velocity of waves in the

structure.

A. The Noise Field

In this section we wish, then, to leave the idealized moving field

and attempt to make the noise field correspond more nearly to turbulence.

Let us examine the previously assumed noise field and see in what manner

it needs to be corrected.

1) The 6 -function correlation: Using a 6 -function correlation

says, in effect, that the spectrum of frequencies and wavelengths exci-

ting the string is perfectly flat. This has a tremendous simplifying

effect on the integrals; and since we measure the response of a particular

mode which usually occupies only a small part of the spectrum, this is
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a satisfactory assumption as long as the actual source is sensibly flat

over the spectrum of the mode.

2) The correlation period: Thus far we have assumed that if we

measured, as a function of time, the source at two points separated by

a distance T, then we could obtain perfect correlation if we only delayed

one time function by the time 47/j, . This is a result of assuming that

the field does not change as it flows along, but in turbulence there are

three processes at work changing the field. These we shall call inter-

nal flow, turbulence production, and decay. Internal flow is just a

result of the existence of pressure gradients in the fluid, and is

predicted, as is the decay, by the Navier-Stokes equation. The field of

turbulence is constantly replenished by the creation of vortices by

disruptions in the boundary layer. This creates a loss of correlation

by the introduction of random components of flow between the measuring

points. Also there is the decay of motion due to the viscous terms in

the Navier-Stokes equation, which transfer energy from the fluid motion

to heat. These processes tend to decrease the amount of correlation which

one will obtain after a given time delay. It is reasonable and useful

to assume that they cause a loss of correlation by the factor e ,

where tr is a sort of lifetime for the state of turbulence to be determined

by experiment.

3) The dependence of the amplitude of fluctuations on flow velocity:

In addition, we shall assume that the strength of the fluctuations depends

on the flow velocities, as one may easily demonstrate by experiment. In

fact, the dependence seems to be linear, but we shall leave it general

for the moment as a function 9 (o ). Hence the correlation will go as
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Taking account of these modifications, the source correlation is

{f ( K o- te)f( t - 9 t2 ave OeD
~~ave oc . 3.31

B. Calculation of the Mean Square Response

Proceeding as we did in the previous example but using 3.31, the mean

square response of the mth mode is

2 2

jP 1,m(

L 2t

dx dxt (x) \(x') d he

0

2t-,4

of

*4 -2t

dk e costolm -0csC (2t-.) (
lVm l'M

3.32

Integrating over and changing the variables x0 , x' to ,cr according

to the transformation 3.11, one has

2 2 L-(+ )
2 BrE D I P>mp fd e -f

+' m2)2 I1, L t 0 0

+ sin 40 l'm r+2 1 s in k (1+ ) a -

-b cos k (1+S ) cos k (1m

It would be very laborious to

evaluate this exactly. The 4

integral over r from 0 -*

is allowed to go to + 0 since

cos kQ( 2 1, Cos W __
m A 1,m

sin k(1-

- ) . 3.325

most of the contribution is

2
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- (2t- ,)
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near the line q . 0 . This means that in order to expect our results

to be valid, we must have cf<<L . In the intermediate situations,

where the correlation length is a half or a third the length of the string,

one expects to find features like those in the solution of the last sec-

tion and also properties based on the assumption that the correlation

length is small compared to the length of the string. In particular,

it seems like the small sub-peaks, which appear in Figure 3.07 between

0 and Ok: 1 for m : 4, are a result of the integration limit

of on 0, which we neglect here. With this approximation, the in-

tegrals are quite straightforward and one obtains

2 2 )Drg m 2 2 2 mnA
<42~ 167(_ 8 (oC)DK Q (Q.+ M1) -(Mit Q)

m 2 m nRA) 2+2Qm(mwA) 2 (C2 l. )(Q+mnA)t(m (

where ), L , the ratio of the correlation length to the length of

the string. This function has interesting properties which we may inves-

tigate by plotting it for various values of the parameters. Let us assume

that A is 0.1 and examine the effect of coincidence between wave and

flow velocities by plotting the bracketed expression in 3.33 as a function

of 0( for.various values of m. The results are as shown in Figure 3.12.

Coincidence is hardly visible for m : 1,2 , but becomes increasingly

manifest as the mode number becomes higher and the wavelength shorter.

This is what we expected on the basis of the viscosity correlation length

in the previous example.

If we set t((o( :(-- as is suggested by experimental results --

and include maQm, then we have the results for <j 2) in units of

16 Dm
, which should suggest a functional dependence for the experimental

2c



-61-

O0 2

Figure 3.12 Coincidence Factor Versus Flow Velocity.

1.0

0.8

z

w

w

0.6

0.4

0.2

0

5

50 20 10

L

I



-62-

results in the next chapter. These curves are plotted in Figure 3.13.

We notice from the expression 3.325 that -1 and enter into the

exponential in the same manner. It is basically this exponential which

determines whether or not the coincidence effect occurs. If we multiply

1 nb1 1 1- and Iby -, we have and - , respectively, which tell us that
o 2 c i 2L0
the correlation lengths of the source and of the viscous string both have

a similar effect on the coincidence phenomenon. However, since Lo = 3.18L

in this example, there is no observable effect due to the viscosity. In

Chapter V when we consider the infinite string, the viscous correlation

length will be seen to have an effect very similar to that produced by

the source correlation length cT in this example.

3.6 CONCLUSION

In the next chapter we shall study experimentally the excitation

of finite strings and bars by turbulent flow. We shall expect the former

to bear out somewhat our work of Section 3-5, while the latter is included

for its experimental interest. That is, when the bar mode number is high

enough so that the end effects are negligible, the excitation versus flow

velocity should be very similar to that of the string. In addition we

wish to measure the properties of a flowing turbulent field as a random

noise field and evaluate some of the quantities introduced in this chapter

as parameters, namely % (0t) and T.
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IV EXCITATION OF FINITE STRINGS AND BARS BY FLOWING TURBULENCE

4.1 INTRODUCTION

In the preceding chapter we spent a great deal of time calculating

the mean square displacement of strings which are excited by stationary

and moving noise fields. In the case of the moving noise field, in sec-

tion 3.5 we made several intuitive assumptions concerning its correlation

function with the intention of approximating a field of turbulent flow.

With these assumptions the excitation of modes of the string was predicted.

The first part of this chapter is concerned with testing the validity

of our hypothesized noise field. Subsequently, we experimentally set

up a finite ribbon in a pipe carrying turbulent flow and compare the mean

square deflection of various modes of the string with that predicted by

the theory.

Finally, a thin elastic bar is set up in an arrangement similar to

that of the ribbon in the preceding paragraph. Its motion as a function

of frequency and flow velocity is likewise studied and the similarities

with and differences from the string are noted.

4.2 TURBULENCE AS A NOISE FIELD

We shall consider the forcing effect in turbulent flow to lie in

the pressure fluctuations which it contains. At a boundary of a system

containing flow, there are two forces due to the passage of the fluid --

a tangential force due to viscous shear and a normal force due to the

pressure. If the boundary can move in a direction normal to its surface

but not tangentially, the pressure fluctuations will excite it into vi-

L
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bration. A ribbon of finite width and length, fastened at its ends,

with turbulent flow passing along its length may be considered such

a boundary. We are interested, then, in the correlation field of the

pressure fluctuations in turbulent flow. In terms of our assumptions

concerning the noise field in Section 3.5, we are interested in the

spectrum of the pressure fluctuations, the correlation decay constant

, and the dependence of the fluctuations on the flow velocity.

All of the work done with strings and bars was done in rectangular

brass tubing, one-quarter by one-half inches inside ddzensions. The

walls were one-sixteenth inches thick, and for all practical purposes

would be considered rigid. Air flow was introduced at one end of the tube.

There were no precautions taken to obtain a smooth entry flow pattern,

and the fluid motion was fully turbulent by the time it reached the ex-

perimental apparatus.

A. Mean Square Pressure

For the measurement of the mean square pressure fluctuation a very

small hole (.020 inches in diameter) was drilled in the side of the tubing.

An Altec 29-B microphone was then mounted on the side of the tube to pick

up the pressure fluctuations as they were transmitted by the small hole.

A photograph of this set-up is shown in Figure 4.01. In the photograph

there are shown several microphone mounts, which were used for the work

described in the next paragraph. The results of this experiment are

shown in Figure 4.02, which shows two fairly linear regions. This is the

reason for the assumption of a linear dependence in Chapter III. Further

interpretation is deferred to the following paragraph.
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Figure 4.01. Photograph of Pressure Measuring Experiment.
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B. Pressure Correlation

In order to measure the correlation function of the pressure fluc-

tuations in space and time, one must make the rather reasonable assumptions

that the noise field is spatially homogeneous in the direction of flow,

and the fluctuations at a point produce a stationary time function.. One

then uses two microphones, separated by some known distance, and cross

correlates the signals coming from the two microphones as a function of

time delay. For each separation the maximum correlation is plotted in

Figure 4.03 on a semi-log scale. The minimum separation possible for

the set-up shown in Figure 4.01 is five-eighths inches, and the maximum

is twelve and one-eighth inches. The correlation seems to have two very

distinct decay constants, a steep one for small separation and a long slow

decay for large separations. The flow velocity in this measurement was

2500 cm./sec., which is about 1000 inches/sec.

A hint at the reason for these two decays was obtained when it was

noted that the peak correlation at 12 - inches occurred at a 1 millisecond
8

(msec.) time delay. The flow traveling at 1000 inches per second would

take 12 msec. to traverse the distance so that the pressure fluctuations

being correlated at this separation were not travelling with the flow.

Since sound travels about 1000 feet/second, the time delay of one msec.

leads one to believe that the pressure fluctuations are acoustic. The

initial drop-off is due to the hydrodynamic fluctuations which decay

rapidly but travel with the flow.

It is the fluctuations that travel with the flow which we expect

must excite the ribbon and bar. One reason is that acoustic plane waves

travel much too fast to achieve coincidence with the waves on the ribbon.
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The other is that an acoustic plane wave would push on both sides of the

ribbon and bar equally, thus forcing it very little, if at all.

*
Velocity correlation measurements taken perpendicular to the flow

in a tube of similar dimensions to the rectangular one above indicate

that correlation as a function of separation extends only about one or

two millimeters across the stream, which may be interpreted as a mean

eddy size for the turbulence.27 If one takes pressure correlation measure-

ments around the circumference of a tube which contains turbulent flow

moving along the tube's axis, the correlation function has a peak about

one or two millimeters wide, leveling off to a constant value as one

separates the probes farther apart. This constant value is about fifty

per cent of the correlation at zero separation. The fifty per cent asymp-

totic correlation is interpreted as being due to plane waves of acoustic

noise in the tube, while the width of one to two mm. enables us to inter-

pret the other fifty per cent as hydrodynamic fluctuations. It is clear

that direct measurement of the pressure fluctuations is not a satisfactory

way to measure the property of the hydrodynamic fluctuation field which

travels with the average flow velocity of the stream.

*

C. Velocity Correlation Functions

Since we are concerned with the pressure fluctuations which travel

with the mean velocity of the flow, we should like to be able to separate

out these hydrodynamic pressures, as we have called them, from the acoustic

pressures, or aerodynamic noise. From elementary considerations it is

apparent that measurements of the velocity fluctuations should do this for

The experimental-work in this section was done with the help of Stuart
C. Baker.
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us. The relation between the acoustic pressure pa and the corresponding

particle velocity ua is for plane waves

Pa cua

where I is the fluid density and c is the sound velocity. From Ber-

noulli's law, the hydrodynamic pressure ph and velocity uh are related by

1 2

ph 2 h

Since p and p were observed to be of the same order of magnitude, then

we must have

2 u a uh
cu t u , or - 4 - .

a h uh c

That is, the hydrodynamic velocity forms a geometric mean between u

and c; and since c is ordinarily very much larger than uh' it follows

that uh is larger than ua by the same factor. As expected, all trace

of the acoustic motion disappeared when velocity correlations were used.

In particular, with the pressure correlation we had particular difficulty

with the setting up of acoustic standing waves in the pipe. When velocity

measurements were taken, this trouble vanished.

The velocity cross correlations were taken with the set-up shown

in Figure 4.Oh. The velocity fluctuations were picked up by two hot

wires entering the tube from opposite sides. The hot wires were mounted

so that they were sensitive to velocity fluctuations in the direction of

the flow. The position of one of them was adjustable so that it might

be moved cross stream or downstream from the other. The two hot wires were
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'Figure h4.0.. Photograph of Velocity Correlation Experiment.
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adjusted for zero separation, and a cross correlation of the signals

coming from them was taken as a function of time delay. As one would

expect, the maximum correlation occurred at zero delay. The movable

probe was then moved downstream, and cross correlations were taken at

1, 2, 5, 10, 20 mm. separation for two flow velocities -- 1800 and 3600

cm./sec. In all cases the peak correlation as a function of delay occurred

when the delay ( was equal to the separation c- divided by the flow

velocity v, i.e.,

Max>

This is in agreement with the concept of a moving noise field which was

represented by 6 (q - v V), which has its maximum when 4 = Cr/v. Since

the turbulence, as well as our instruments, had a finite spectrum, a

-function was not obtained, but a very sharp correlation maximum was

obtained having half width #v- msec. -- indicating a spectrum up to about10
10 kc.

In Figure !.05 we have plotted on semi-log paper the maxima of the

correlation functions above as a function of delay (or separation) for

the two flow velocities used -- 1800 and 3600 cm./sec. Aside from an

initial steep decay, the plot is fairly linear, indicating that an assump-

tion of exponential decay of the correlation function is quite adequate

in describing the turbulence correlation function. The initial steep

decay near 0 is thought to be due to turbulence created by the hot

wires themselves.

1 th
It is seen from L.05 that the ; delay for 1800 cm./sec. is 1.30

msec., while for 3600 cm./sec. it is 1.0 msec. From these values one may
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lth
obtain a linear expression for the - delay as a function of velocity --

e

0 - v+ 1.6

where V is in msec. and v is in om./sec. Since the pressure goes as

2 it
u , the -th delay for pressure correlations would be just half this value

10 - +,
p 12

as defined in Section 3.5. In Chapters III and V we assume that the

critical delay is independent of the flow velocity. We see from this

that such an assumption is not quite accurate.

The hot wires have an upper frequency cutoff at about 7000 cps.

The turbulence spectrum is essentially flat below this frequency. Hence,

the spectrum of the turbulence cannot be measured with the hot wire.

In the next section we shall analyze the response of the finite ribbon

for some of its modes. From the measurements here we can be sure that

the spectrum will be sensibly constant for the modes chosen.

4.3 THE RESPONSE OF A FINITE RIBBON TO TURBULENT FLOW

As mentioned above, a steel ribbon was used to simulate a string

in the experiments. The ribbon had a width of three-sixteenths inches

and a thickness of .01 inches. The experimental set-up is shown in the

photographs of Figure 4.06. The air supply passes through a "Flowrater"

meter which allows the air flow to be adjusted and measured. The air

1" 1"
is then passed through a - x - rectangular tube in which the ribbon is

24

mounted. Since the Reynolds number for the flow is well above the critical

value, the flow is fully turbulent. As it passes along the ribbon, the
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Figure 4.06 Photograph of Ribbon Excitation Experiment.
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ribbon is excited, and its motion is then detected by a photoelectric

device.

The detector is shown by the diagram in Figure 4.07. A collimated

light beam enters the tube through a small hole in its side. The light

is then reflected by the steel ribbon and is partially transmitted out

of another hole on the other side of the tube. The part of the beam which

is allowed to escape enters a photoelectric cell. In the normal position

of the ribbon about one-third to one-half of the light escapes to the cell.

Then as the ribbon vibrates, the light beam is modulated, and a signal is

obtained from the photo cell which corresponds to the motion of the

ribbon.

This signal, of course, represents the total motion of the string,

and we would like to examine the response of each mode separately. We

can do this by utilising the natural frequency selective properties of

the modes. That is, if we consider a mode with a natural frequency f, most

of the motion in this mode will have frequencies very close to f if the

Q has a reasonable value. Accordingly, in the experiment we have used

a one-third octave band analyzer to select out the motion of the various

modes. We obtain the mean square by squaring the output of the filter

and then integrating (time averaging). By using a long enough integration

time, the fluctuations in the signal may be smoothed adequately for record-

ing.

The length of the ribbon was 44 cm. The tension was adjusted by a

screw so that the fundamental resonance was 50 cycles. This gave a wave

velocity of 400 cm./sec. Third octave bands centered at 50, 100, 250,

500, 1000 cps were chosen to duplicate the modes plotted in Figure 3.13,
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that is, m : 1, 2, 5, 10, 20. The mean square displacement for these

modes as a function of the flow velocity for the various modes is indicated

in Figure 4.08. It is interesting to compare these with the theoretical

results of Section 3-5. As the theory predicts, we observe that there

are no coincidence effects for m = 1,2. For m = 5, 10, 20 a coincidence

effect is in evidence with a response peak at 3600 cm./sec. for ni = 5, 10,

and 4500 cm./sec. for m = 20. The theory predicted this peak to occur

at 4400 cm./sec. for all modes.

One possibility of explaining the discrepancy between the flow velocity

and wave velocity lies in the assumed length of the ribbon. Since the

supporting ends for the ribbon are less flexible than the center, due to

the method of attaching the ribbon to the metal rods which support it,

the effective length of the ribbon may be somewhat shorter than the 4 cm.

assumed. The upward shift of frequency for m = 20 may be due to the flow

coincidence (if 144 cm. length is correct); but part of the increase in

phase velocity is probably due to the action of the bending stiffness

of the ribbon coming into play. For m = 50 the coincidence effect has

vanished, probably because of the viscosity coefficient increasing with

frequency.

In order to see whether the peak response continued to bear the same

relationship to the phase velocity when the latter was varied, the funda-

mental frequency of the ribbon was lowered to forty cycles. The phase

velocity was then 3520 cm./sec. The mode m = 5 was chosen to check the

response. The result of this experiment is shown in Figure 4.09. The

peak response is about 3000 cm./sec., which is again lower than the phase

velocity.
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Figure 1408b Response of Fifth and Tenth Modes of Ribbon to
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Figure 408c Response of Twentieth and Fiftieth Modes of Ribbon
to Turbulence Versus Flow Velocity for 4400 cm./sec.
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The uncertainty in the accuracy of the flow meter at these flows

is about t 100 cm./sec. This, coupled with the uncertain length of the

ribbon, could account for the discrepancy. Another possibility is unequal

dividing of the flow above and below the ribbon so that the flow might be

faster than the computed value on one side, slower on the other. When

the faster flow reached o6incidence, the peak would be observed although

the average flow had not attained the phase velocity.

In an attempt to evaluate the effect of flow on the "Q" value of

the ribbon for the fundamental mode, a small electromagnet was connected

to an audio-oscillator and used to excite the steel ribbon. The half power

points of the response were located, and the Q value was calculated for

several values of flow. The results are shown in Figure 4.10. It is

striking to note the rapid increase in the viscous coefficient (propor-

tional to l/Q) as the flow is increased. This may partially account for

the lack of coincidence effect for the mode m = 50 above. In any case

the effect of the flow on viscous dissipation is very striking, and it might

be worthwhile to follow this up by careful experiments and some theoreti-

cal work.

One may say that in general the effects of coincidence and dependence

of mode excitation on the correlation length of the source are experimen-

tally verifiable. Certain details do not check because of deviations in

experiment from the assumed properties of the system.

1.4 THE RESPONSE OF A FINITE BAR TO TURBULENT FLOW

As an experimental continuation of the work on the string, it was

thought feasible to repeat the experiment above for another physical
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system. For this purpose the finite bar was chosen as a system which

has important differences from the string but becomes more like a string

as the wavelengths become shorter and the end effects become less impor-

tant.

The experimental set-up for the bar excitation is shown in the photo-

graph of Figure 4.11. The flow set-up is the same as before, with the

bar mounted in the rectangular tube. At the end of the bar can be seen

the phonograph cartridge which was used to detect its vibration. The

bar is nineteen inches long, 15/32 inches wide, and one-sixteenth inches

thick. It is made of brass, and as such the flexural velocity is 3900

cm./sec. With these dimensions the fourth mode is 250 cps, and the bar

is supported by pins at the outermost nodes for this mode.

The scheme of the measurements is diagramed in Figure 4.12. The

output of the phono pickup is fed to a third octave band filter to select

the mode, and the mean square is taken as for the ribbon. The results

of this experiment are shown in Figure ).13. The coincidence effect is

again missing for the lower frequencies but comes in plainly for the

higher ones.
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Photograph of Bar Excitation Experiment.Figure 4.11.
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V EXCITATION OF INFINITE STRINGS

5.1 INTRODUCTION

In this chapter we shall study the response of infinite, damped

strings to noise fields having certain correlation properties. The source

correlations will be the same as in Examples 3 and 4 in Chapter III.

We shall do this for two reasons. First, we want to extend the methods

of analysis from the finite domain to the infinite and obtain some of

the interesting results of correlation analysis. Second, the results

for finite strings have some interesting similarities to and differences

from those for the infinite case. We shall point these out as the exam-

ples are discussed. We shall attempt no experimental verification of

the results in this chapter, partly because of the difficulty of getting

the proper conditions and partly because the essential results are not

different fran those of the preceding chapter.

5.2 EXAMPLE 1, EXCITATION BY A PURELY RANDOM AND MOVING NOISE FIELD

In this section we shall consider an infinite string excited by a

moving noise field having the correlation properties assumed in Section

3.4. We shall then examine the mean square energy density in the string

and the spectral distribution of the energy.

A. The Infinite, Damped String

We now require the Green's function for the infinite string in a

viscous medium. If we write down the equation, it must satisfy

L
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2
2 9g~

22 - 14 (-x) 6 (t-t0 ) . 3.05
21x t bt

If we expand this in a double Fourier integral

ik(x-dmt)

g 2 'dkd W g(k, w ) e , 5.01

then g is given by

- e-i(kxo-wt 0)
g = 14 ' 2 2

k c2- -icp

Hence,

1 0 e i (k(x-xo)- (4t-te )l
g(x,t j z,t 0 ) = -- jdkdw kxx-ott)(U+ /2 - k c)(C+ iP/2+k c)-. 00 0

when k - 2 2t

If we now integrate this expression

over O) , taking care to choose the path

so that the integrand is zero as we -kff,-

close the "loop," then we have by the ot>t

Cauchy integral theorem, Figure 5.01

1 (-i a d qijk(x-xo)-(-i4 koc)(t-tedl

c J k

eitk(x-xz)-(-i4 - koc)(t-to)J for t>t .
-k0

There are no poles in the upper half plane, so g : 0 for t <t 0 , as would

be expected from considerations of causality.
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ko

g(x,t Ix 0,t 0)

0

sin koc(t-t0) ; (t > t0 )

5.02

(t<t 0 )

Since later on we shall want to have the spectrum of the response, let

us leave the Green's function in this integral form. For the infinite

string the mean energy is just <u2) , and so we are really interested

in the velocity response of the source rather than the displacement response.

If we define -a: , then we have
2t 1 ik(x-xo) - At-tO)
- ( dk - e sin koc(t-t0 )

S(x~t I x0,at) - ro ['2

-ko cos k0c(t-t)] ; (t >to
0 (te t

The mean square velocity, where u -, , is

-u2(x,t) dtdt I dxdx (x,t 1 x9,t )r (xt t x ,t )

-0 -c0ov

0

5. o4

B. The Source Correlation

As before, we shall picture a stationary force field, purely random

in the x dimension and then dragged along with a velocity v to produce

the source correlation

<f(x,-vt )f(xt-vt)> ave- DS(qr- vC) - 5-05

This will now be placed in the expression 5.04 and the energy of motion

calculated.

5.03

)

ik(x-xo)- (t-t.)
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C. Calculation of the Energy

2t - -(2t-, ) A.-2t

u2(xD) d2 e 2

2t-,A-

d d

d~j d j5'dkdkl
-kS.

ik(x-xo)+ ik'(x-x' ) sin k c(t-t 0

- c sin k'c(t-t') cos k c(t-t ) -
2 0 0 0 0

cos k'c(t-t')+k c2 cos k c(t-t )
0 0 o 0 0

) sin koc(t-t')

sin k c(t-t

cos kbc(t-t')}

Picking out the terms depending on P , one has

- (k+ k)
df 2 = 4gCS(k+k) .

Integrating over k' and , one obtains easily

<4- Y/2 -ikCr( 2c2
(u2> D-d- i dY e 2 k

-o0 sn 0k c k ,
- ~.2-sin k 22Y cos ko.}

2 c

- cos k cy

5.07

where we have again put y : 2 t-AA and o( a v/c . The integration over

Y is involved but has a simple result.

00

2) 4c D qe

-4o

o k
"# 1/2v Ide- iki

46e 1 |Wcos k - -k sin k )oI 0C 2k0

This expression must be integrated over positive and negative values of

T independently and then the two integrals added. With this done, the

result is
1)

5.06

)0

5.08

h (a -V g;) .
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eG

2 8 D £ dk
(u > : - k22 k--1 5.09

.*.

where A= - . This result is interesting because it tells

us how the energy is spread over wave numbers. First of all, let us define

a correlation length for viscosity as we did in Chapter III by

o 510

If we assume that the viscosity is the same as before, then L 0 : 21 L,

where L was the length of the finite string. This artifice enables us

to compare results for the same wavelengths on the finite and infinite

strings. We shall then define the variable t , where b is the

wavelength :2- . The values : - (m : 1, 2, ---) represent values
k 'm

of which are equivalent to the eigenmode wavelengths for the finite

string. If we do this, then the spectrum in terms of wavelengths is

80 ( A )0:80 2-2 5-11

400( - 1)+ 2

such that

( ) d :(u2>
-00

In this equation, we have been able to evaluate L0 (or g ) by assuming

the viscosity mentioned above. When we do this, we know that Q1 (from

IrcL 10
Chapter III) . 10. , or - - . The spectrum % is plotted in

0 L L 7t

Figure 5.02 in units of 80 c2L0. There are several interesting fea-

tures of these curves which one may notice before going on to the calcu-

lation of (u2>

The first interesting property is the wavelength cutoff (the point



0.0125

0 0 2 3 40 50 .
0 10 20 30 40 50 0 10 20 30 40 50

Figure 5.02 Spectral Response to Purely Random Moving Noise Field.

9

I

U,0



-96-

where the spectrum is 1/2 its value at 0), given by

2 71 LO
- 5.12

cutoff L
L

Here the viscosity correlation length, along with the flow velocity,

governs the spectral excitation of the string such that for wavelengths

>'L tff one does not get excitation, but for bc<L cutoff the

excitation is large. This cutoff phenomenon is more pronounced as one

approaches o( a 1. The diverging result at 0( = 1, namely (I) = ,

is limited by the finite bandwidth of the source. Actually, any source

has a finite bandwidth and the finite values of 9 ( ) at 0 are

idealized. This explains the reason why, experimentally, coincidence

for turbulence becomes sharper as the mode number is increased.

If we now select various values of I and plot the spectrum % as

a function of 0t, we get the curves in Figure 5-03. Since a value of

3.18 is the correlation lenghh due to viscosity (3.18 = F= ),

we expect that for values much smaller than this the coincidence ef-

fect will be strong, and for those larger the effect will diminish. In

general, for short wavelengths the coincidence effect is strong, and for

long wavelengths it is weak. Thus, after deferring the question in Chap-

ter III, we see that the length L 0 : does behave as a correlation

length in much the same way as does the characteristic length of the

source I : cl.

In order to calculate (u2> , we now integrate the expression

(( () from - 0-4teo. That is, we perform the integration 14.09. By

the Cauchy integral theorem this is

* See Figure 14.08.
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22
<2> 81D d( (21X

c t( ) 2 A

8 -tDL 0 5-13

Since this is such a simple function, we can point out its features

without a graph. It starts from zero at 0( : 0 and has a singularity

at g(:1 .It then trails off slowly for of>> 1 with (u : 0 as

an asymptote. Sinceip (, ( 0) i 0 and( ( 0, = 1) . ,the

first integral over vanishes and the second diverges as we stated above.

We now wish to consider the response of the infinite string to the

moving and changing field of Example 4 of Chapter III.

5.3 EXAMPLE 2, THE RESPONSE TO A MOVING AND CHANGING NOISE FIELD

Let us now use the source correlation function of Example 4 in Chapter

III to obtain some idea of the response of an infinite string to turbulent

flow in the direction of its length. We are now particularly interested

to see how the correlation length 4 T for the source affects the

excitation spectrum of the string. We expect that the effect will not

be dissimilar to that produced by the viscous correlation length Lo

in the preceding section.

A. The Noise Field

As in Chapter III we assume that the correlation function is

where we have set the dependence of fluctuation strength on flow velocity
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equal to one. The integration over P , W is now from -0o++oo since

we are concerned with an infinite string.

B. Calculation of the Average Energy Density

We start with the relation

t 00

(U2>- dtedt I dxodx r(x, t I x .t, t S ti xst?)
-* -(I

- D$(g -y )e.

Since the first integration is over' , the exponential becomes e

and since the integration over C' does not occur until very late in the

calculation, we may omit the analysis (which appears in the previous

example) up to the q integration. Referring to equation 5.08, we get

SD- 1 ) 1 ik

(u 2 > dO e v j dke (2. cos k - sin

-at - as0 2

If we again define c T : , the correlation length for the source, and

Lo , the viscous correlation length for the string, we see the

almost equivalent roles they play in the exponential term. The primary

difference is that also affects ko, the wave number modified by vis-

cosity ( k2 . 2 /40 2) For the part of the integral where CF> 0,

the result is

D + ik
dLkj'd

.. k2 ( -1 )+ (0+ )

and for 0< 0 it is

hirD dk 0-ik-

2 2( 1 i)+Lki,
k. VT vOC v vV'

)

- Iy.

k )

0
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The result is then the sum of these, or

2i (1 +
u2 k k + 1) + 2

2 811 D dk- - -- - - -- at
C2 (k 2 + k2)(k 2 + k2) 2

-00 1 2

where

2 0(2 t --. (y42
2 2 __

1* J 1 2=+2)

L OL

2

- L)2+ t 1 -)+ .k4

These expressions give us the excitation of the string in wave number.

If we set k : ., asLefre, a. : L .and t i we can obtain

a spectrum to be compared wi th at in the previous example.

If we make these substitutions, the spectrum f(fi )such that

L2 *
a 81e ( d )i 5-17

is 2

2 4 t, ( +1 + . V (I + ) - 5 1
1c2 2, 2t k_ 2LV 2k 2L2)

This is plotted in Figure 5.04 as a function of ',for various values

of 6(, for A = 0.1, as before, and Lo : 10/'ItL. It is interesting to

note that the shortening of the correlation due to the decay constant

has a very profound effect, particularly for the curves near the value

q[ .: 1. In general one may say that the effect of finite correlation

distances (or times) in the noise field is to produce an excitation

cutoff, particularly near the condition where the flow velocity coincides

with the phase velocity.
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Let us now proceed to integrate 5-17 so as to obtain the kinetic

energy density, which is the only energy in the infinite string. By

Cauchy's integral theorem, the integral is

ri2J L L i i2~2 2+ 20 2 k l-(t1)j (1+

uK2> 81Lo o( (2Ki) - 2
2ik (k+ Sk)

2ik2 (k1
2+ k2 )

By using 5.16 this becomes

222
2 8 L c (k k2 ) L 2  2

(u ~ k L :c I -( -ltC L

-- (~~ t 1)2+)

Thi sngotted6inhunitscof

This is plotted in units of 812 2 in Figure 5.05 for the same values

of ) = /L and Lo as in Figure 5.04. Again we get the singular be-

havior at o( = 1. A source with a finite spectrum would modify this

behavior a good deal, depending on how much high frequency component

it had.

5.4 CONCLUSION

The infinite string is of particular interest since it tells us the

excitation pattern of the source uncomplicated by boundary effects. For

the higher modes it seems reasonable that the finite string should be

excited very much to the same degree as an infinite string would be over

the same length. This also indicates to us the advisability of carrying

out theoretical analysis for more complicated systems assuming infinite
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extent, particularly when the dimensions of the actual object are long

compared to the correlation lengths of the source.

With this chapter we complete the examples which illustrate the

response of strings to random noise fields and now consider the problem

of the creation of the random noise field. We shall attempt to form,

by a random superposition of elementary sources, the noise field cor-

relations which we assumed in the two examples in this chapter.
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VI THE EDDY PROBLEM

6.1 INTRODUCTION

Thus far in our work we have assumed that a noise field exists in

space, which we are able to represent by its correlation function. In

many problems it is not convenient to measure the correlation of the

source directly, and one would like to infer its properties from a know-

ledge of the elementary processes which create the total source noise

field. There are many situations in which a noise field may be thought

of as being made up of a random superposition of elementary sources.

One familiar example is the "frying" of a teapot before it begins to

boil, where the elementary source is created by the impulsive collapse

of vapor bubbles when they emerge from a super-heated region into a cold

environment. One feels (quite accurately) that a knowledge of the

spectrum of the elementary process and the distribution of events should

go a long way in predicting the source correlation field. It should

be added that any correlation between the events of the elementary proces-

ses must also be considered.

Although in this chapter it will be assumed that the elementary

events take place independently of one another, it should be borne in

mind that in many important processes this is not the case. Consider,

for example, the excitation of a lecture room by applause. If it is a

large room, I have observed that people seem to applaud independently of

each other -- at least the correlation would be rather short range compared

to the dimensions of the room. On the other hand, in a small room the
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applause is so well correlated that the excitation seems to be nearly

periodic. An analysis assuming independent source events would almost

certainly be in error for this situation.

15
In a well known paper, Rice has analyzed thoroughly the statistical

properties of noise currents when they are caused by the superposition

of a large number of elementary pulses. These pulses are thought to occur

randomly in time; and by assuming a probability distribution for their

occurrence, such quantities as the signal spectrum, correlation function,

and distribution may be calculated.

Extending Rice's treatment of the "shot effect" to the space dimen-

sions as well, we shall assume that our noise field is a superposition

of elementary sources and obtain the spectrum, correlation function, and

the first order probability distribution function in terms of the proper-

ties of the elementary sources. These elementary sources will be termed

"eddies" in deference to the central position of the turbulence problem

in this thesis.

These results will then be applied to some simple distributions of

elementary sources in order to create some of the source correlations

assumed in Chapters III and V. In addition, an attempt will be made to

approximate the turbulent field by a random superposition of vortex ele-

ments.

6.2 CALCULATION OF W (f ,,t)

Let a particular eddy, say the ith one, be denoted by

k
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where i,T is the point in space and time at which the eddy is created

(or attains some specified value). We shall require that a possess a

Fourier transform in time and space. That is, we insist that

n dt Id a2(r,t) 6.01
VT** 0 V

exists and is non-zero.

The amplitudes b. are independent random variants and are governed
1

by a probability distribution w(b). We assume that a(r,t) is of such

a form that

S w(b)db =1, 6.02

all b

since this can always be accomplished by normalization.

The probability distribution which governs the occurrence of eddies

is often easily inferred from the physical situation. We shall place

no particular restrictions on its space and time dependence at the moment,

but shall merely represent it by P(y,T). We shall define it by saying

that, if in the period 0,T and the region V, a single eddy occurs,

P(Y,r)dydr is the probability that it will occur in the region and time

di,d'. This places the restriction

fd&I djb P(&,Tr) 1 . 6.03
0 v

The forcing function f is thought to be a superposition of the eddies,

that is,

( t) b a(-, )
f ~~~ b 1-,.t C60

1

L
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This notation requires some explanation. The superscript (i) on f means

that this is the noise field resulting from a particular set of random

parameters b ,yI, i From this summation of independent random variants,

we should like to calculate the first order probability distribution for

f, W (f,4,t).. We first select out all those situations which have a certain

number, K, of eddies from 0-+T. Then we can write

00

W (f,$,t) = (Probability of K arrivals) * (Probability that
K=C 6.05

if there are K arrivals, f will lie between f and f df).

If there are K arrivals, the source function is

K

f K(,t) : b.a(r-F.,t-'T) . 6.045

Since each term is an independent random variable, the sum has the

28
distribution,

00 ldf W (f -fiuf 1(ibja(jP,3j)>ave du , 6,06

where 0. = r-y, t-'. Since the distributions for yT and b are

known, these averages may be calculated. The distributions for each

value of j are the same. Hence we may write

if W(fK): S du e-iuf (S dT d'S dbw(b) P('yr) exp iuba(0,1)}) . 6.07

We now need to know the probability that K, and only K, eddies will

occur in the region 0,T; V. This is obtained from Poisson's law of small

probabilities. The probability that the eddy will occur in the region

k
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dy,dt is extremely small, and under such conditions the distribution

of the number of eddies over a given region of space and time is

K

p(K):-e , 6.08
K I

where V is the average number of eddies occurring in V from 0-+T.
29

This is known as Poisson's distribution and has many convenient properties

(one being that I equals the mean as well as all the semi-invariants

of the distribution). Placing 6.08 and 6.C07 in 6.05 and summing gives

0 T

W,(f,r,t) f du exp -iuft9 drdyS dbw(b) P(y,T )
-A)t I 0 f TY

6.09

(exp t iubal - 1

by virtue of the Taylor expansion of the exponential and equations

6.02, 6.03.

We are interested in seeing just what the distribution W is for

given values of a and '9 . To do this we introduce the semi-invariants

of a distribution as the coefficients in the expansion

in (eifu hM ( iu)m , 6.10

30
where A m is the mth semi-invariant. From 6.09 we have

n <eifu > = # T df dy f dbw(b)P(yT ) (exp ( iubal - 1) , 6.11

And the expansion of the expression of the r.h.s. of 6.11 is

ao m
(iu)T

L -- J d'1 dy dbw(b) P(y,') - bm am (V, ) . 6.115
m:1 m. O. V
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Since a(C ,)) may be considered localized in extent in space and time

(because the Fourier transform exists), let the temporal extent be given

by 4 and the spatial extent by6 . Within A ,of the time limits 0

and T and within 6 of the surfaces of V, the integrations above over 'T

and may be replaced by infinite integrals. Hence, by identification,

the mth semi-invariant of 6.09 is

m I d'r df dbw(b) P(ft) bm am (O',') . 6.12

By placing 6.11 into 6.09 and integrating term by term, one obtains

Edgeworth's series,

-14 (15
W r (0) X3 C 9 () X +(4(x

If31i 41 9
2 6.13

Ar (6)

72 (

where x=A, A 2  '2 and en) -2 /2
- ("2"A dx"

which is the nth eigenfunction of the harmonic oscillator. The terms

in Edgeworth's series are in decreasing powers of V in the order *-9 2

9 1, and the term in square brackets goes as V-2 . Hence, as the

frequency of occurrence of eddies increases, the distribution of f ap-

proaches a normal distribution, provided that the semi-invariants Am

converge. From equation 6.12 it is evident that if we use a point source

for a( , T ), the A 's above m.1 do not converge; hence T-+0 0 and the

distributionld(f) does not exist. There is nothing catastrophic about

this. In many problems we are not concerned about the distribution, and

in nature 4 -functions do not exist anyway. We shall merely not concern

k
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ourselves about Wi(f,',t) when we use 4 -functions as elementary sources.

6.3 THE CORRELATION FUNCTION rf(-,t0 ) 0 t o ave

On the face of it, the last sentence in the preceding paragraph would

seem to destroy the theoretical basis for the examples of Chapters III

and V. That is, the basic equations which were used were derived on the

basis of the validity of equations like 2.115, which use W1(f), W2(fft')

etc. However, the examples used correlation functions like S (4 -ri ),

which as we shall see, may be obtained by a superposition of 6 -functions,

in which case the Wn's do not exist. We shall avoid this difficulty,

however, by averaging over the parameters b., y , and T since this

is an equally valid procedure for ensemble averaging. That is, any

particular ensemble member f(i)(4,t) may be considered as defined by

a particular set of parameters bi,,y., i and the ensemble average per-

formed by averaging over these parameters.

(i) (i) tt sgvnbAccording to this the product fK (ro K (r',t') is given by

K

fKc os') K ' ba r ) j) , 6.14

where - y , : t' -.

We now average over the total number of eddies, i.e., we form the sum

p(K) f (r 0 ,t 0 ) t (r',t ) L *
K=0 K K 0 0 K=O KI

K

bhm fr iah j ) a( tre )

There are K terms for which i=j, and there are K(K-1) terms for-which
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i / j. Integrating over the parameters b,, T, one gets

f(r ,t ) f( r',t') ave e
00 00 v

-10 so- {KKf TdT 1 .. T di -C a lK d * 0* d{K d;-
K=0

dyK~ db, - dK'K) w(bl) --

w(bK) a(C ,C) ( + K(K-1) 0d T-e dT

d Sdb-e fdbK 'K'

w(bK) a( , r) a(

The first term on the right is

d T dyg db w(b)b2a -y'T)a(r y, t?- 'r)
0 fV0

which will be denoted b5 fa(E'0 to) a(''t)J

fO T ddb do w(b)w(c) be

'lK) w(bl)

* The second term is

a(r-y,to-T )- a(r -,t-Q) ,

which may properly be written

(1~)2 a t )l a(rjo ) -

This second term represents the steady part of the force. If we do

not wish to work with "d.c." forces, we may choose w(b) such that b0.

In any case, we have

(f(rt) fd ,"'tO$ ave - 2 aot ) a(CZ',t ) + v

6.15
Sta(r ,to)l ta($',tt)f

f

,P

i
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0 K Kd K

since e - K = y, and L(K e 2-K) = )
0, K! 0 1(1

The equations for the coefficients can be obtained from the properties

of the Poisson distribution, which were stated above. If we set

(K)ave i il <, )ave = m2 '

then, by straightforward expansion of the probability functions, one

can show that

me

2
m2 = 2 X171 2 *ml.

It was stated that for the Poisson distribution all the semi-invariants

were equal to 'P . Hence

m : K >ave - V

and

Y2-K Kave a ) v + V2 2

This gives us, then, a way of calculating the correlation function for

f when we know a and the distribution of its occurrence. Since we

have the correlation function, we shall not derive the spectrum of f

directly. If the probability P(7,t) is a constant, the noise field is

stationary and homogeneous, and the relations between the spectrum and

the correlation function in Section 2.3 - D, under Fourier Representations,

must be used. If P(7,t) is truly a function of r and/or t, the source



will be non-homogeneous and/or non-stationary. In this case the relation-

ships in the same section under non-stationary processes (2.3 - E) may

be used.

6.h THE CALCULATION OF SOURCE CORRELATIONS

We shall now attempt to combine elementary point sources in such

a manner as to produce the source correlations for the moving noise field.

Let us first picture a string of length 2X with its ends at *X, -X.

We shall assume that at a time t there are point sources created with

equal probability along the length of the string, and they imediately

begin to move to the right with a velocity % . The elementary source

is given by

a(x-yi,t- T): 6(x-yi- V.(t- T)} (t >T.)

6.16
0 (tCi T.

We shall assume that the amplitudes b. have a distribution like

w(b) = { S(b-1) +(b +1) , 6.17

in which case

li w(b) bdb : (-)=0
2

= w(b) b2db = 1 (1+1) 1
2

and

w(b) db -(14 1) = 1 ,as required by 6.02.
j 2
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The probability P(y, 'r) becomes

P(y, T) L 6 ('C - ta) 6.18
2X

Then

T X
(f(x0 ,t0 ) f(xt' av d?T -taX dy 8 (x -y-- J-

tx'-y-v(t'-')
o 0

V Xdy8 tx -y-v (to-ta )I o-y-vdte-tO , t''

-X 6.19

0 either t or t' <t0 o a

For the upper possibility we let XvO and define

n lim V

Since V is the average of the total number of eddies created, n is the

average number of eddies per unit length. Integrating over y and letting

the creation time t- - , we have, using the transformation defined in
a

equation 3.11,

(f(x,t 0 ) f(x ,t')) ave -n(q -ts) , 6.19

which is the correlation function for Sections 3.14 and 5.2.

Let us now proceed to another situation. Suppose we assume that

eddies are created randomly in time and space uniformly along the string

and uniformly in time. We assume that they are created with magnitudes

(or strength) equal to t 1 and that they immediately move with a velocity

L
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V to the right. As they move, they decay according to an exponential

law. Hence for an eddy created at T.,y. we have

b
b a(x-yi ,t - Ti) : 4 (xO-yi-v(t0 - T')) u(to- Ti) e~(t i/ , 6.20

where the decay constant Q is included as a coefficient to make the total

integrated force of a single eddy independent of 9; and u(to- 'T ) is

the unit step function which is zero for to C and equal to one for

t > '. Again we have
0 1

: 0, =1

If we assume that the string extends from -X to X and the time interval

is from -T to T, then the probability P(y,T ) is just . Accordingly,

we have

(f(xot 0 ) f(x,t)) ave T dT dy u(to-T) u(tt-T)
0-9to ave Q4XT -T _

6.21

-(t +tA)+ 21
*(XO-y-V(tO- T x. -y-v(t o-T~ e

If we let the space and time limits extend to t a, then we define

lim I
X; T -T

where m is the average number of eddies created per second per unit length.

We now integrate over y and obtain

0 -(to t t)t- 2I

I ff ae 2 d u(t T ) u(t - T) e

In the case that to) t', or Y > 0, we have

k
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( ~ ~ -(, a0 26 e 7- 2 OV/g

-o0

( d-v V e.

And similarly, if t < t' or 3 ( 0 , we obtain

(ffI) ave - (G' -v) e

Hence we obtain the correlation function

(f(x,,to) f(x ,t) a . 6 (1-v ) e , 6.22
0 0))ave 29

which is identical to that used in Sections 4.5 and 5.3.

We have illustrated how a knowledge of the elementary source may

be used to form the correlation function of the total noise field. It

would be interesting to see if one could obtain a representation of the

turbulent field by such a procedure.

6.5 THE SPECIFICATION OF TURBULENC

The problem of the description of turbulent flow has been actively

dealt with during the past few decades, with the names of A. N. Kolmogaroff,

W. Heisenberg, A. A. Tovmsend, G. I, Taylor, and 0. Reynolds in prominence.

The problem is complicated primarily by the non-linear character of the

Navier-Stokes equation, namely

.t - p +Y Vu , 6.23

D A

where D 6+u*V is the rate of change in time of any quantity as
Dte t

we move along with the flow; ufis the flow velocity as a function of
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r and t; p is the pressure; f is the fluid density; and N is the kine-

matic viscosity. The second equation governing the flow is the equation

of conservation of mass, commonly referred to as the continuity equation

0(P .) 0. 6.24

If the flow is incompressible, the density is constant as the fluid

moves along,

DE 0 0
Dt

which is equivalent to

div u : 0. 6.25

This situation would seem to be primarily concerned with the motion

of incompressible fluids and to be inaccurate when applied to compres-

sible fluids. However, we can always write any vector u like

u a - rad + curl. 6.26

Now uI is the acoustic part of the motion, while u2 represents the

"hydrodynamic," which is vortical. If we take the curl of the Navier-

Stokes equation, we get

DW 2 nr- =, 6.27
Dt

where WJ : curl u : curl curl A. This is not to imply that the ul does

not contribute to the random pressure and velocity fluctuations in

turbulent flow, but these will propagate with the velocity of sound and

not with the average flow velocity, as we saw in Chapter IV. The fluctuations
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due to u are commonly called aerodynamic noise. Hence, if we are primarily

concerned with the fluctuations which travel with the flow, we shall con-

centrate on the "incompressible" part of compressible fluid flow.

W' is called the vorticity and is related to the density of angular

31
momentum in the flow. When the fluctuations are small enough, one

may ignore the second order terms like u-. W and write

la 2 -6- - 0ea: 6.28

31
which is a standard diffusion equation. It is well known that vorticity

may be introduced only at the boundaries of the medium and that it then

diffuses into the fluid. The diffusion operator is a statement of the

conservation of the quantity which it operates on, indicating, as is

well known, that vorticity is conserved in any unbounded region of fluid.

If we then associate vorticity with the hydrodynamic part of the

turbulence and assume the correctness of the linearized equation 6.28,

then we may obtain the elementary solutions which are the impulse Green's

functions for the diffusion equation. That is, if we have the operator

Lin Chapter II become

=9 2 -6.29

then the Green's function is 32

n 12

(,t I rto) : 4W (A) e /4-V (t-to)
2 J (t-to)

6.30
u(t-to)

As usual, "small enough" is not an adequate phrase, but the consi-

deration. of scale length and decay times is too involved to be dealt

with here.
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Again, 'r0,t0 is the source point, u(t-to) is the unit step function which

is zero for t < t0 and 4 1 for t )to, and n is the number of dimensions

equal to 1,2, or 3. In order to save ourselves the complications of

dyadic Green's functions, let us assume that we are concerned with two-

dimensional flow in the x-y plane, in which case n : 2 and the single

non-vanishing component of the vorticity is C4.0 By our formalism from

Chapter II we may immediately write the expression for the vorticity

correlation function,

<W (Pt) to ("I',t') v dtodttT dvodv'z z a vet)(-f
-00

.1 , /4v(t-to) 01/-VI(t'-to)
6.31

*(re1 t0) 0,to> ave

This formula would be appropriate for use in situations where the vorticity

is created in more or less open regions, as in the widely used situation

of turbulence created by passing flow through a wire gauze. Should the

turbulence be created on boundaries and there be no volume sources, one

can use a similar expression replacing the volume integrals by surface

integrals (or line integrals for two-dimensional flow). For a region

"driven" from its boundaries in two dimensions the solution may be

written

r (,t) dto d -0 - 6.32
z o C 4) no z n 0

where is now the appropriate Green's function for the bounded domain.

The integration is a contour integral around the surface profiles in
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the x-y plane whence d 0 : (dxo) 2 + (dyo) , and means the deri-
bno

vative with respect to the outward normal of these surfaces. Since it

is the production of vorticity itself which we specify along the boundary,

we choose to be zero on the boundary. This determines for the

domain and one may then write

r r dt tt t d
z z ,) 0 0 d0d

6.33

r(at 1oto b(rftf I InOth) at ,,a(' t
_____ o z o0' ave

where we have averaged the product of two solutions over the ensemble.

The superscript 8 refers to values on the surface of the domain. This

kind of calculation could predict the vorticity correlation in flow

between two parallel planes, and we would expect it to give reasonable

results as long as the turbulent camponents did not become too large

compared to the average flow. If there is an average flow, we may either

transform the "I,t,r',tt system above to a moving frame of reference,

or we might replace the operator L above with

2 - it h ) , 6.34

where v is the average flow velocity.

The method above has the advantage of structural unity with the

procedures set forth in Chapter II. However, the integrals to be evaluated

are extremely involved for even the simplest kind of vorticity source

assumptions. We shall then proceed to a treatment of turbulence correlation

functions which uses the results of work done by G. I. Taylor on the

33
decay of a single eddy.
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6.6 TBE SUPERPOSITION OF DECAYING EDDIES

Taylor's analysis of the single decaying eddy assumes a flow pat-

tern in the x-y plane. The eddy is centered at r S = 0 and

has only tangential velocity u# . He considers the forces operating

on a cylinder of the fluid, and from the equations of rotary motion

he derives the following differential equation:

2
d 1 d$ 1 d$
dr2 "dr dt .a . 6.35

where u# dr.- It is not hard to show from the definition of

and the condition of incompressibility that is just the negative of

the single non-vanishing component of the vector potential for the flow.

That is,

A - -k '6.36

where k is the unit vector in the z-direction. The solution to 6.35 is

LK e~2 , 6.37

where . When this is differentiated, the velocity u # is

u : Bt-3/2 a . 2 6.38

K
where B : -

This is Taylor's result. It is easy to show that this velocity

distribution will not satisfy the vorticity equation 6.27. This need

not concern us, however, since many approximate solutions which give

very good results for asymptotic regions do not satisfy the fundamental

exact equations. A good example of this is the solution of the equation
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of motion for bending waves on a thin rod which does not satisfy the

equations of equilibrium for an elastic solid.

Since we believe that it is primarily the hydrodynamic pressure

fluctuations which excite the ribbon in Chapter IV, we would like to

know the pressure field resulting from the velocity distribution in

6.38. Accordingly, we write the component Navier-Stokes equation in

the radial direction,

r ru r 2u . 6.39

The first term on the l.h.s. is zero, and in the second term we use

giving us

2
u.. . 6.40

r r

Since we know u , we can integrate the r.h.s. of 6.40 and obtain for p

2 2
p(r,t) u 4t-- e-2 6.41

Thus, the pressure is a Gaussian having amplitude and a spread dependent

on its age t. If this pressure distribution travels along the ribbon

of Chapter IV, the total pressure exerted on the ribbon may be taken to

be

60 2

f(t) = 2Krr(r ) dr 2 2

0 2

as long as the spread of the eddy is less than the width of the ribbon w, or
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w2

If t represents a time over which the total pressure of the eddy

has decayed considerably, we can take this pressure pulse to be a 6-

function. In such case, for the one-dimensional analysis of the ribbon,

the eddy would be assumed to be ,2B (x). Since the eddy strength
2t

goes to infinity as t-0, we shall assume that the eddy is created at

some time ) . This is reasonable for the Taylor analysis, which would

not be expected to be valid for t near zero since this means very high

values of u 4, and no linear theory could be adequate. We choose the

amplitude B such that the elementary excitation is

a(x,t) : 1 (x - vt) , 6.42
(t +e )2

where the eddy immediately begins to move to the right after it is

created. We may now calculate the one-dimensional pressure correlation

field using equation 6.15. Because we are only interested in the fluc-

tuations in the pressure and not in the average "d.c." terms, we shall

only calculate the first term on the r.h.s. of equation 6.15- calling

the creation place y. and the time T. ,we shall assume that the eddies

are created uniformly in time and space, that is

P(y, . --

In such a case we have

uim 'o T+ (x-y-v(t- T)J~x I -y-v(t'-g T)}
XS V (a(x,t)a(x',t')j m Idy Id ti o 2 t r) 6.432

woo* -,

where
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-t t if t<t'

't=t' ift>t', and m: lim
X, T-9 ).yXT

Integrating over y yields

-d - (t+6- 't)2 (t'-G- )2

where g x-x' , . t-t' . This integration is straightforward but

rather involved. The result is

_n @( (- -I) 0) -

9(a,(x,t)a(x', t') = 1 i 6.4

1+ -$ G-e );( 0)

The use of this expression as a source correlation would complicate the

integrations substantially. However, one could attempt to compare the

hydrodynamic pressure correlations in a turbulent field with the depen-

dence as predicted by 6.44.
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