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THE RESPONSE OF CONTINUOUS SYSTEMS TO RANDOM NOISE FIELDS

by Richard H. Lyon

Submitted to the Department of Physics on May 16, 1955, in partial ful-

fillment of the requirements for the degree of Doctor of Philosophy.
ABSTRACT

In this work we are concerned with the excitation of continuous
systems by random noise fields. The excitation is interpreted as the
average or mean square displacement, velocity, etc., and is obtained
from a knowledge of certain statistical properties of the source,.

The thesis begins with an historical account of the developing use
of the equation of motion with random source terms, the so-called Lan-
gevin equation. This equation is then used to calculate the correlation
functions for the system response when correlations of the éame order
of the source are specified.

The formalism is then applied to the finite string for both sta=-
tionary end moving noise fields. It is found that correlation lengths
due to the source and viscosity of the surrounding medium strongly affect
the excitation for various wavelengths. As an experimental test a thin
metal ribbon is placed in a flowing turbulent field, and its excitation
for various values of flow is exemined, A qualitative agreement with
the predicted results is obtained.

The snalysis is then applied to infinite strings where the inter-
pretation is uncomplicated by the effect of boundaries., Substantially

similar results as for the finite string are obtained. If one observes



—ii-

the excitation of the string es a functinmn of wavelength, the effect of
correlation lengths in the noise field is wefy striking.

The thesis is concluded by an attempt to create the random noise
fields assumed previously by a superposition of elementary sources. This
superposition creates an ensemble of source functions which may then be
averaged over to obtain the source correlation, An attempt to create
a representation of the turbulent field by this method completes the

work,

Thesis Supervisors Dr. K. U. Ingard
Titles Assistant Professor of Physics
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I HISTORICAL BACKGROUND
l.1 INTRODUCTION

In this chapter we shall trace the development of some of the ideas
concerned with the excitation of physical systems by sources having
random or unpredictable time dependence., Such an examination lesds
to the study of equations of motion having random source functions and
of schemes for drawing physical information from such equations.

Historically this kiné of analysis came about from the interest
in Brownian motion, although if there had been high gain eamplifiers

in 1900, resistor noise and its excitation of electronic circuits could

just as easily have supplied the physical motivation for the study.

1.2 BROWNIAN MOTION

In 1827 Robert Brown noticed that small particles immersed in fluid
were subject to a streange erratic motion, which he interpreted as resulting
from molecular impacts with the surrounding medium, The irregular motion
of a particle was treated at first very naturally by the method of ran-
dom flights which it visually resembles. In 1880 Rayleighl showed that
for a large number of steps the random walk problem becomes equivalent
to the solution of a partial differential equation of the parabolic type,
i.e., & diffusion equation. In 1905 Einstein2 used such an equation to
solve the distribution of free Brownian particles when they are started

from rest at a specified time and position. This distribution is effec-

l2eference numbers refer to the Bibliography.



tively the probability of finding the particle in some small region after

a time t. By requiring that the particle have a Maxwellian velocity

distribution after an infinite lapse of time, in accordance with

the

equipartition requirement, he was able to get an expression for the mean

squaere displacement at time t of a Brownian particle. Einstein's result

was

2 2RT
SPOUEL A

where t is the elapsed time, R the gas constant, T the temperature, f

the friction coefficient for a small sphere, and N Avaegadro's number.

This equation allowed for the possibility of determining Avagadro's

number -- which Perrin did and for which he was awarded the Nobsl Prize

in 1926.

In 1906 Marjan von Smoluchowski,3 a Polish physicist, extended the

work of Einstein to a more complex diffusion equation to teke in
effect of gravity and other external fields. His results on the
square displacement differed from Eingfein's by a factor of g% s
the new value was supported by measurements done by The Svedberg
therafter. Thus the random flight attack on the problem ceme to
passe.

The first attack upon the dynamics of the particle was made
P, L&ngevinh in 1908. lengevin wrote the equation of motion for

mass point as

2
ndE - or Tax(e) ,
at? dt

where the term on the left is the acceleration reaction, and thé

the
mean
and
shortly

an im-

the free

terms



on the right represent the forces due to the surrounding fluid. The term
proportional to the first derivative of x is the force due to viscous
drag as given by Stokes,5 and it represents the average force presented
to the particles by molecular impacts. The remaining term X(t) is a
non~predictable, random function of time* and represents the fluctuating
force resulting from the collisions. This equation, and all such equa-
tions of motion having random sources, have come to be known as Langevin
equations, By assuming the equipartition of energy, Langevin was able

to calcualte the mean square displacement of a particle after a time t
and obtained Einstein's result above. In the paper referred to he ques-
tioned the accuracy of Svedberg's work and the applicability of the
Stokes coefficient to small particles. Later experimental investigations
have confirmed the results of Einstein and Langevin.

The next major step came in 1917 when L. S, Ornstein wused the Lan-‘
gevin equation to calculate the mean values of the displacement and velocity.
Essentially whet is done is to obtain formally the solution of the equa-
tion of motion by variation of parameters. Then one raises each side
of the equation to the desired power and averages. This requires a know-
ledge of the correlation properties of the source function X(t), which
are derived from assumptions concerning the statistics of that function.
The integrals may fhen usually be carried out over the correlation func-
tions and the mean values obtained.

This plen for obteining mean values represents the philosophy which

is used in Chapter II for the derivation of response correlation functions

*The rendom function X(t) is sometimes called fortuitous. This is
not a value judgment on its presence but is another term for what is also
celled a "chance variable."
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when source correlations are known. However, we are getting ahead of
the story.

In the paper above Ornstein6 assumed an external field and obtained
the diffusion egquation developed by Smoluchowski3 by considering the
Langevin equation for the special case of a harmonically bound particle.
This diffusion equation is known as the Fokker-Plenck equation., Its
coefficients are obtained by integrating the Langevin equation over short
time intervals and is more generally applicable than the diffusion equa-
tions resulting from a random flight analogy. The way was then open
for people to apply the work to generalized harmonic oscillators,
coupled electrical networks,schains of coupled particles,9 finite strings
and bars, and finally to continuous systems representable by linear
operators,

In 1927 Ornsteinlo calculated the Brownian motion of a finite string
by breaking it up into modes and treating each mode as a harmonic oscil-
lator. Using previous results for the single oscillator and assuming
equipartition, he was able to obtain the mean square displacement at
the midpoint of the string after equilibrium had been reached. The next
year Houdjik11 did the seme for the finite bar. It is my impression that
these represent the first applications of the Langevin equation to con-
tinuous systems.

In 1931 G. A. Van lear, Jr., and G. E, Uhlenbeck12 did a more gen-
eral piece of work on the finite string and bar, extending the work of
Ornstein and Houdjik to the non-stationary region of time. They calculated
as a function of time the mean square displacement of the midpoint of

the string starting from rest. Their work as it applies to the finite



string anticipates the theoretical formulation in this thesis, Never-

theless, their bias toward the problem of Brownian motion leads them to
perform their ensemble averages over an ensemble of strings rather than
sources., This distinction, if unimportant in its results, is important
in terms of the ease of calculating the correlation functions. For exam-
ple, in Chapter VI source correlations are calculated directly by averaging
over an ensemble of source functions.

In this connection should be mentioned the work of G. A. Krutkow,l3
who likewise considered the Brownian motion of finite strings, from a
more mathematical point of view. Krutkow has been easily the most out-
standing Russian contributor to the theory of Brownlian motion,

Brownian motion represents a rather special case of a random noise
field, as we shall point out in Chapter III. It is possible to enter
other noise fields into the work of Lear and Uhlenbeck, but in 1931

such problems as the excitation of elastic boundaries by turbulent flow

were not so pressing as they are now.
1.3 THE STATISTICS OF TIME FUNCTIONS

In developments parallel to those in Brownian motion, people were
becoming very much interested in the properties of functions like X(t).
The Fourier analysis of functions which do not die down in time and are
without periodic components was performed by N. WienerlLL in 1930. The
correlation function which was used by Ornsteiné turns out to be the
cosine transform of the power spectrum in frequency of X(t).

Several excellent papers have appeared in this area, particularly

as the results apply to noise theory and stochastic processes in elec-



trical engineering. A standard in the field is that by S, O, Rice,1

who has worked out the statistical properties of electrical currents for
many applications., Another paper particularly useful for electrical
engineering work is a report by Y. W. Lee.1 Most of the work mentioned
here assumes statistically stationary time processes (except for some
examples in Rice), but some interest has been displayed in the extension
of the concepts of power spectra and correlation functions to non-sta-

(17,18)

tionaery time functions.
(19-22)

In a series of interesting papers Eckart has developed a
theory of the propagation of correlation functions in continuous media.
The idea is that correlation functions are found to obey a partial dif-
ferential equation similar in form to the Langevin equation but of a
higher dimensionality. This is then solved in terms of source convo-
lutions. This formally appears very similar to the results of Chapter
I1I, This approach, however, has two limitations which that of Chapter
II does not have. The first is the complexity of solutions of the "Lan-
gevin equation" for correlation functions, which is usually much harder
to solve than the equation of motion itself, The second is that the source
function must heve a finite convolution, which requires that the source

noise field f(?,t) heve & Fourier integral transform. These are both

rather severe limitations. The derivation in Chapter II does not possess

either.
1., CONCLUSION

The work in this thesis is designed to be an extension of the theories

which have been worked out so far. It is felt that theré is required



a more generally applicable formulation of the propagation of correlation
functions and mean velues than hes existed before. In addition, scme
practical methods for testing the results are needed which will be more
in keeping with present-day interests, particularly in acoustics. Some
of these ccntemporary problems are excitation by flowing turbulence, the
noise generested by a region of cavitation, excitations of large auditoria
by applause angd other such problems. The work which follows offers a
formelism which enables one to attack many problems such as these and

at the same time is intended to have a physical motivation for the

proofs and examples.



II THE PROPAGATION OF MEAN VALUES

2.1 INTRODUCTION

One of the problems encountered when one starts to work with physical
systems excited by sources having random properties is that the questions
to be asked are not obvious. In the case of a coherent source, one might
ask sbout the directivity, the propagated energy, absorption, phase and
group velocities, diffraction patterns, etec, For incoherent sources, one
expects energy to be radiated, absorption to occur, and so on, but cer-
teinly diffrection patterns will be blurred and phase velocities for such
complex signals mey be almost meaningless. In addition, there are prop-
erties of the signal which, although existent in the coherent problem,
assume major significance for nolse problems., In short, one must ask
the right questions in order to have the analysis produce meaningful

results,
2.2 THE MEANING OF NOISE

The term "noise" has a variety of connotations which extend from
the sixty-cycle hum of a defective amplifier to the hissing signal of
an untuned f-m receiver. The first falls under the category of unwanted -
signals -~ signals which interfere with the transmission of informetion
between a trensmitter end a receiver. The second has this property also,
but it has another characteristic which comnects it more closely with

the purpose of this thesgis: nemely, the property of randomness.

A, Rendomness



By reandomness let us mean that the signel varies in a non-predictable,
and consequently a non-repeatable, manner as a function of one or more
of its arguments. In acoustics problems these variables will generally
be time and space. That is, if the requirements for the creation of

the signal are arranged and all the conditions at our disposal are

reproduced exactly,* then the resulting signal will be unlike the one which
preceded it in another experiment. Obviously, what is lacking on our

part is information concerning the state of the physical system, a lack

of information which produces the randomness of the results of the ex-
periment, Nevertheless, the randomness does occur, and we must find some
way of expressing our ignorance (with the paradoxical result that we

shall be pleased with ourselves when we have done sol).

B. Concept of an Ensemble

As a result of a long series of repetitions of the experiment under
identical conditions (again, those at our disposal), we will have a col-
lection of signals which are unlike each other in detail. I say detail
because we shall find that there may be certain properties of the signal
which are very nearly the same for all the samples collected. We shall
call this collection of signals an ensemble, and each of the individual
results, a member of the ensembls,

In general, we expect that our efforts to control (and by control
we meen the reproduction of the measurement of an external parameter)

the conditions are not entirely for nought, for these rather gross

*These are sometimes referred to as "similarly prepared systems."
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“boundary conditions" govern, and hence fix, certain properties of all
the members individually and of the ensemble as a whole. One property
which we have control over is the set of joint probability distributions
which in general is an infinite set of functions, not entirely unrelated

to each other.
Ce The Distribution Functions

For the moment let us assume that the random properties of the
ensemble are only exhibited in terms of a single variable, namely that
of time. If we also assume that each of the experiments ebove ran for
a time T, we may label the beginning of each member, O; and the end, T.
Then we call the distance between a point on each experimental time record
and the beginning, t. Hence, the value of each member of the ensemble
at the time t is a number which may be tabulated. If we make a plot of
the density of values at time t versus the value of the signal, letting
the number of members of the ensemble increase without limit while keeping
the area under the plot at unity, then we have a plot of the distribution
of values of the members of the ensemble at time t. We shall call this
plot the first-order probability distribution. If we call the value of
the random variable f at the time t, then this is denoted by W (f,t).

By our normalization, it is clear that this must satisfy

to
le(f,t) af = 1. 2.01
-

This process is indicated for an ensemble of five signals in Figure 2.0l.
Similarly, one may select two positions in time, tl and t2, and form
a two-dimensional probability density such that the value fl at time tl,

and the value f2 at time t2’ are governed by the joint probability dis~
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tribution
W8, | £58,)

with the property

~

df df W t = l. .
J’ AL R 2.02

Clearly, one also has the condition,
W = . .
j df,) Jz(fht1| £,%,) Wl(fl,tl) 2,03

In general, then, one has for n times t;(i = 1,2,+++,n) the nth order
joint probability distribution wn(fl’tl‘ f2’t2| ves lfn’tn)' In the

nature of these distributions, one has the following propertiess

(a) W, 20
(b) W, is a symmetric function in the sets of variables (f,,t,)

(c) Wk(fl,tl‘ el gLt = J' dfk+1.'odanh(f1,t1‘ ces lann)' 2.0,

The property (c) puts a very definite limitation on the W, 's one may have,

since by integrating over fk, t, must drop out. The complete set of

k
W 's (as n inoreases without limit) is said to completely define the
random process. On its surface this would not seem to be a particularly
helpful situation since an infinite set of probability distributions is
a substantial amount of information to be gathered. However,'Wl gives
us a feir amount of information about a process, and Wé is usually suf-
ficient to answer most of the questions which arise concerning physical
processes.

As we shall see later, there are special cases in which this sim-
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plifies even more. Very often the distribution W, depends only on the

difference between t, and t This is called a stationary process. If

20
the random dependence is on position as well, and the spatial dependence
is on the relative separation \?1 -‘?él, the system is called homogeneous.,

Another important situation arises when Wé is the only unique probability

distribution. Then Wé is the highest order distribution necessary to
Wa(1,2)05(2,3)
W1(2)

determine all the others, namely, W3(1,2,3) = Such a

situation is called a "Markoff process." "Process" is probably an un-
fortunate choice of terms here since it is the number of dynemical variables
for the system under excitation which are included, and not the random
properties of the process, which determines the Markoffian character.

One should say that the work with the probability distributions done in

this chapter is essentially unaffected by whether or not one has a Markoff

process.
D, Distributions in Space and Time

In most of the work in this thesis the noise sources will have a
space dependence as well as a time dependence. This is true whether
or not at a given instant of time the source is a random function of the
space coordinates (just as one may have a probability distribution for
e completely well-defined function of time, albeit a delta function),

In general, however, the distributions will be like

Wn(fl’rl’tl‘ e lfn’rn’tn) 3

and the relationships governing their behavior are basically unchanged

from those in the previous section. When we have such a distribution



of random sources in spece, we shall say that a noise field is present.
Since most of the work in the thesis is concerned with the excitation
of continuous systems by noise fields, then joint probabilities with the

spatial dependence are intended.
E. Ensemble Averages

With a set of probability distributions like this, one would expect
to be able to calculate mean values. In practically any experimental
situation one obtains by sufficient repetition of the experiment a set
of average results and a distribution of points about this average.

This is substantially what we ask for here. From the distribution

Wi(f,?,t) one may obtain meen values of any degree for the variable f,

namely

°0
<fn>,ve = Ifnwl(f,?,t)df s 2.05

-

where the brackets (-"> ave from here on refer to the ensemble average.

This average of course will depend on the "unintegrated™ variables T
and t. This is not surprising, but in the important situations of sta-
tionary and homogeneous processes one or both of these variables will

drop out.

One may wish to know the average value of the product of the vari-
able £ at two or more different times. As such, one may write the

expression

d 6‘.00 v o P PP v 'y = eve
<f1 £f £ )ave = jfl £, £, V\n(fl,tl,rll 'f‘n,tn,?n) 2406

which in general will depend on the set of variables (?i,ti); iz 1,2,se9,n,



It is here assumed that the Wh's are known, As we shall see later,
this is not always necessary, but equivalent conditions may be substituted.
Particularly when one knows the mean and the variance of a distribution,

he may calculate mean squares without any further knowledge of the dis-

. . . 2 2
tribution, since {f2) ave = <(f = {f)ave)"D gve T £ “vor
2.3 THE RESPONSE OF PHYSICAL SYSTEMS TO RANDOM NOISE FIELDS

When we speak of the response of a system to a source having random
properties, we are not concerned with the exact shape of signal which
is produced. This in general repeats itself in no detectable way, so
that anything we might wish to infer from such an examination would be
useless. Such unpredictability leads us to consider what questions may
be meaningful to ask,

Since we have, in principle at least, the Wn's at our disposal, we
might ask questions concerning the mean values which are important from
physical considerations. Let us consider & noise field acting as a source
on a physical system. Any member of the ensemble of functions f(r,t)
will produce a corresponding response ﬁ(?,t) in the system., Let us rep-

resent the system by the partial differential equation describing its

motion, that is
L dz.0) =ureze) 2,07

where IL is a linear operator which includes boundary conditions. For-

melly the solution to this equation is
§(F,0) =L [ £(E,0) 2.075

where, now, lv—l means an integration of the impulse Green's function
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times the source function over the region of interest plus an integration

over the surfaces of the region and the initial conditions. If we spell

this out in more detail, when 1; is the wave operstor, one has

@2-L 25 4z (2,4)
\Y} ‘;25;5)¢r3t)=‘hﬂf st N

e3

and the solution is

g &t -
P(#,t) _-,j; dtofdvoG(‘i,tl?o,to) f(‘fo,to)+j; dtofdso‘(GVﬂ -WOG)

1 3G u o
- = j‘dvo(sgg ¢o(ro) - Gto'O'S%; ) .

t,=0 to_o

Above we have assumed that the system is started at t = O with initial

values and boundary conditions specified, and ft means t4 € to ensure

the integration over any singularities which might occur when to-t.
Let us ignore boundary conditions and initial conditions (which we

may do for many important physical situationg), and we find the solution

to be

)

‘,(1) (2,4) _f dt fdv G(r,tlro,t ) f(i)(r

2,08

2,085

2.09

i
where f( ) is a particular member of the ensemble of source functions.

If we know the distribution of f, we may obtain the average value of ¢,

+
- t -h
{H(2,6)) ave =fo at jdvo a(?,t | ro,to)<f(ro,to)>ave .
This result arlses from the 1inearity of the solution,

2'. é‘“(r.t)

N

2.10

(1)

(

-

Tosts)

lim a1 f dt fdv 6(F,6 |7 ,t)) 1lim 12;'1

N N oo

It is clear, however, that this may be interpreted as

2.11
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[

+
t

CH(2t)) Loe =f dtofdvo a(F,t | F,,t,) j £ W (£,%,,t,)df , 2.115
o

~0
which is remarkable since the function Wl(f,Fo,tO) has passed right
under the integrals. over the variables ?o,to, and f has lost its dependence
on ?g,to and become a variable of integration itself., If the averags
value of the solution over many experiments as a function of T,t is
required, it may be obtained in this manner.

Let us now go on to the physically interesting second order mean

values.
A, Second Order Mean Values

Usually in acoustics one is not so much interested in the mean value
of a solution as he is its mean square value. The reason is, of course,
that mean squares of the response or its derivative in time or space
is directly related to energy, or energy flow, or similar quantities.

For example, one may write

. _ t .t
@A e < [P ey [ ameny otteptn)

- - i)/a i
G(E, e | FL,t0) - £t )(ro,to) f(l)(?é,té) ,
and by averaging over the ensemble again one has

t ¢
t 1
(#(7,t) ;zf(?',t')) ave =fo ./: dtdt! ff dv dv! G(T,t 12,¢,)

. 2.12

a(Pr,er | FLe,) (E(Ft)0(R,e0 ) ),

This equation we shall use many times in the following ochapters. An

esprossion like this calculates the correlation between the random response
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at two different positions end times. When T=T' and t=t', this becomes
the mean square response to the ensemble of source functions. The
methods for obtaining mean values of products of derivatives of & are

clear,
B. The Stationary Time Process

Thus far, whenever we have spoken of a mean value, we have meant
the ensemble average. This average is satisfactory for situations in
which an experiment is repeated many times, for example in nuclear scat-
tering problems. Many times, however, what is done is the teking of a
time average of a signal, or of its square, either with instruments
designed to perform such averages or by observation of the mean displace-
ment of a fluctuating meter reading. We now wish to explore the relation=-
ships between these time averages and the ensemble average with which
we have been occupied. If we take the ensemble which we have obtained
and exemine the joint probability distribution Wé(fl,?l,tli SRR
we may be struck by certain symmetry properties among the variables
o In particular, we may have its complete time dependence
through the variable T Etl-tz. If this is so, the process is said to be

rl,t1 and re,t

stationary in time. In terms of the space variables, an x dependence
meraly'cn1§ =Xy=%, is said to be homogeneous in x, etc. A dependence on
P E\rl- 2{ alone denotes a field which is said to be completely homo-
geneous and isotropic. The requirement that'W2 be symmetric in the vari-
l’tl and fz,?é,tz forces the dependence to be even in T for
the stationary time case, even in ; for the homogeneous in x case, and

ables fl,?

SO Onl.



Suppose we pick two points ?1 and ?2 and consider the members of
the ensemble for these points. If the members are stationary in time,
the correlation between the functions fl and f2’ as described under
Section A (Second Order Mean Values), is a function of the two points
?1 and T, end of the delay T . Since the parity in T is not affected
by the averaging process, the correlation is likewise an even function
of T . We wish to show that the ensemble averaging process may be
replaced by a time averaging process over a single member of the ensemble.
To show this, we must invoke the ergodic hypothesis.

The ergodic hypothesis states that in a system bounded by a set of
fixed parameters (the constant conditions we have spoken of) the system
will reach arbitrarily close to any condition consistent with those
parameters and spend an amount of time in the region directly proportional
to the probability (i.e., the ensemble probability Wn) of its attaining
that condition. More in line with what we have been saying, in a system
operating under fixed conditions, the value of the function f will approach
arbitrarily close to a selected value fl and will spend an amount of time

in the interval fy,f,+df, proportional to the probability Wl(fl)dfl' .

1

This makes the time average equivalent to the ensemble aversge for a

stationary time process.

We shall denote the time average by(uo) and form it thus:

(f(?,t)) = %fo(?,t) dt. 2.1%
(o]

In the earlier work then, for stationary processes, we have



-2 O

© t'tdt at! ' G(T 7
f o off dv _dv! Tt Foot,)
(o]

(AE0HF ) = f

[s)
G(Er,e0 | F1,e0) (£(F L) f(?é,té)} , 2.1

where the average on the l.h.s. is still an ensemble average. We must
make this distinction since the system was started at t=0 with no motion,
Thus far the transients may not have died out. If we had set the lower
variable of integration at t=-%, the system would have forgotten how
it started, and the average on both sides would be a time average. One
will notice, however, that the time average on the r.h.s. could not have
been applied directly since it must be integrated over the variables
toatle

More complicated cases than this may arise, however. Suppose that
# is the pressure in an infinite acoustic medium due to the radistion
of random noise sources localized in a finite region of space centered
at the origin. If the sources are turned on at t=0, the sources will
achieve a stationary state immediately, certainly after a time T (long
compared to any fluctuations in the signal). If the velocity of waves
in the medium is ¢, then for regions of space \;|<< c¢T the response
# will be stationary., However, for regions |F| ) cT the response will
be just begimning, and near |¥| = cT the response will be in transition
to the stationary condition. The point is that one may use stationary
assumptions concerning the source, but whether or not one may use such
an assumption for the response depends very much on the kind of domain
and the region of the domain in which he is working.

One might argue for replacing the ensemble average by an average

2
over space as is done for turbulence,L%ut in most physical situations
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we stand at fixed positions and record time functions and average them

in time.
C. Convergence Properties of the Solutions

We are aware that one may not just take any kind of time dependence
for the source and apply it to any system and expect the integrals to
converge. The convergence of a solution # to a source f is made subject
to certain requirements of the integral of the square of f over the
region, These same requirements govern the convergence of the correla-
tion response, (ﬂﬂ?,t)ﬂ(?',t')) e’ since this is the average of the
product of two solutions.

There are in general only four separate convergence situations which
are of interest to us as they arise in a physical situation., They are

T -
(a) 1lim j‘ dvf dt £2(%,t) is finite
V,T+' ¥ Y

(b) 1im .lfdv det £2(?,4) 1is finite
T,V VYo

° 2,15
T -
(¢) 1lim lfav f dt £2(%,t) 1is finite
v,Tee TYy Y,

T -
(4) 1lim }-fdvf at £2(%,t) is finite.
VT,V

1

V, T4

If (b), (e), or (d) is true, (a) is infinite, If (d) is true, (b) and

(¢) are infinite, If (a), (b), or (c) is true, then (d) vanishes, If

(b) is true, (c) vanishes, and vice versa. The time averages and integrals
are obviously closely related to finite energy or finite power. The space

integrals are associated with finite energy or energy density. They
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come out this way.

(a) Finite energy

(b) Finite energy density

(¢) Finite power

(d) Finite power, power density.
The terms power and energy should not be taken too literally. One may
have a finite mean square response with no power being transferred at
all, for example in an oscillating resonant system having no losses.,
These are very closely related to whether or not f is representable
by a Fourier series or a Fourier integral. For each of the finite
quantities above we may represent f by a Fourier integral in the unaveraged
variable, the transform of which is a kind of power or energy spectrum
in frequency and/br wavelength, Here again the properties of f, or of
its higher order mean values, are not reflected directly in the response
#. We must first integrate over a Green's function which may fall in
either class (a) or (c) above =- in (a) for infinite regions and finite
non-conservative regions, end in (c) for finite conservative regions.
The convergence properties of ¢ depend on the combined properties of f
and the Green's function G. In any physical situation, however, the
convergence is assured unless one incorrectly specifies the source or

Green's function.
D, Fourier Representations

The Fourier representation for stationary random functions, either
of finite or infinite extent in space and/br time, hes been the subject

of many pepers and a few books in recent years, and it seems unnecessary
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to duplicate the developments here. We shall recall a few of the’ major
results which are of particular importance for the present work,

The auto-correlation function is defined by

. T
Y (T) = %_-’;1’; _%_j; £(t)e(t +T)dt , 2.16

which is the Fourier cosine transform of the power spectrum of f, namely
()
V) (w)=2f\y('f) coswT d7T , 2,17
0

where

and

7
Fo(w ) = f £ (t) ot 4t.
o T

Here f, is zero outside (0,T), and all the limiting processes are assumed

to exist. For case (ﬂ) above one must include the space transform

> T -» -h
(¢ ,7) clm 1 0% ap [av 2(7,6)0(Feg ,t4T) 2.18
v (g, V, T FT Jy ‘/;r ’ 5 ’
and
o8
q) (e ,w) - Efd"rcosw'rfdi: cos (1'2? )\V (?,‘T)
0
- V,T*“ t4
VT
and
T ., (et -%eT)
Fyp = fvdv J; dt fVT(r,t) ) .
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where fVT is zero outside V;0,T,

Due to the stationary character of these expressions in time (and/or
space), by the ergodic hypothesis they are the same for each member of
the ensemble. For functions which are class I? in a certain variable,*
this is not the case; and one must perform an averare over the ensemble
in those variables. For example, consider the emitting region mentioned
ebove. At each point the source is a stationary time series. Hence the
spectrum in frequency may be obtained by & single time record from each
source point, However, the spectrum in wavelength (5E) must be an everage
over the ensemble of source realizations.

The number of results which one may obtain from the analysis of the
propagation of mean squares and the representations by Fourier expansion
is almost unlimited. Merely by setting up the solution in terms of
integrations over space, time, frequency, and wave number and integrating
in various orders, meny useful (and meny more not-so-useful) formulas

meay be obteined. One useful result, when one knows the power spectrum

of the source, is obtained as follows:

(FEFF,e)) = ffvdvodv; ffdtodt; o(F,6) 7 ,t_)

ave

=1 BRI 4 - '
G(r »t ‘ rO’to) <f(r0’to)f(ro’to)> ave °

The source field is assumed to be stationary in time and homogeneous in

space so that we may write,

*A function h is said to be class 12 in the varieble y when

J 12(y) dy exists and is finite.
all y
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<f(i‘°,to)f('f';,t;)) Lim fdt dv £(%5,4,)0(Fr§, taT) 250

ave  VI¥eo oy7
v

=y(E.7) .

The power density spectrum is given by

\I) (K, w) = S‘df ng coswT cos (i'g)\P(%,'T) s
Yo Yw
where
J (Rw) - lin 16|F@ @) *
V,T»0a T
and
2] ) -
o(#,0) z — | ak fdwe“"r"“’“ PR w)
(en)™ Y Y

If we should happen to know the spectrum of the source in wave number

and frequency, we could use it to get the response correlation in the

following way.

% -
"P (ﬁ’T) = %ﬁ‘r dw di@(i‘,w) cos (wT -i.s)
0

-

Hj dwf (Fa) o2 D)

(16)

Hence,

{A(7,6)8(7,t )> 25131‘& S‘df,,f d{f ag 5 &(F,t | T ,t)

i(lwrt-% ‘F)

2.21
a(Fr,t (?g),té)vﬁ dmdfc‘{)(i,w) e
-

where
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-

Pz totth 5= to -t po=F+T, T =T~ T

Now, fdﬂ‘ dm G(F,t | B,t,) G(T1,t] ?:),t:)) is what might properly
be called the convolution of the product G(¥,t | Fot,) G(F1,81 ) L) .

The transform, given by

3 > =~ 2 a(n = X X ' i(W'T-i")
Sdrjx‘; ds{‘.r.:irfv if &7, rO’to) w(ELe T ’toz} ) ; ’

will be denoted by H(T,F',t,t'] X,w) , and we have

«
2B (R AE ) |, = (2[R D, 2.22

Other relationships like this are possible, and one must examine his
knowledge of the problem in order to determine which formelism is the
most feasible.

We have now considered enough of the theory of the propagetion of
mean values in order to proceed with the work in Chapters III and W,
We have at times restricted ourselves to problems in which the joint
probebility distributions are invariant to translational shifts of the
time axis in cases where we wished to replace ensemble averages by time
sverages., In general, however, we have not been restrictive on this matter
end have allowed freely for the non-stationary time process as well,
Before going on to applications of the methods, it would be well to

consider the non-stationary process.
E. Non-Stationary Time Process

In many problems of statistical dynamics situations arise in which

the statistical properties of the rendom functions (source, response,
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or both) are not stationary in time. As we have pointed out before, the
response to a source, which itself is & stationary time process, need
not be stationary if the transients have not had a chance to die out.

In order to fix our thoughts, let us take some exemples.

Consider e room, with finite absorption at all frequencies, being
excited by a speaker producing a random output. Suppose the speaker
is turned on at time t=0. Then e receiver (microphone) in the room will
first pick up the direct signal, e little later the first reflection,
and so on. As long as new reflections are received and the energy output
of the spesker has not come into equilibrium with the absorption at the
walls, the microphone output will be non-stationary since the power
spectrum is changing with time. As equilibrium is reached, the response
becomes a stationary time process.

As opposed to the situation where a stationary source produces a
non-stationary response, let us consider just the inverse of this. If
one places a speaker in a room having perfectly hard walls and excites
the room with a burst of random noise from t=0 to te«t, the response will
be non-stationary until meny reflections from the walls have occurred
and the process becomes stationary.

We can also have sources which are non-stationary because the proba-
bility distributions are time dependent, as in the case of noise from a
whirling propellor blede. Usually the response to such sources will be
non-stationary as well. The shot effect from a vacuum tube current
undergoing grid voltage variations is a good example of this. We actually
use the time dependent probability to calculate emplification factors,

and so on.
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We wish to tie in this non-stationary time process with the Fourier
analysis ideas in the last section. Fourier analysis is good because
it transforms the time and space averages which replace ensemble averages
for stationary processes. This limitation to stationary processes is not
absolute, however, if we introduce, following Page}7the concept of the
instantaneous power spectrum.

The concept of power is that of a rate of change of energy in time,
This may very well change with time, just as & discherging condensor
delivers a power which changes in time to a resistor shunted across its
terminals, Hence, if one considers a signal, he may obtain the instentane-
ous power spectrum by taking the time derivative of the energy delivered
up to the time t. If the signal is random, one takes the derivative of
the ensemble average of the energy spectrum., The following derivation of
the instantaneous power is close to that of Lampard}eﬁut is more consistent
with the notation and approach in this thesis.

Let us first consider the one-~-dimensional spece situation, so that

(i) started at

i
the ensemble member is f( )(x,t). Let us essume that f
a large negative time, -T, and continues up to the present,t. We wish

to know the power spectrum at the present.
oo
. 1 s ~iwt
f(l)(x,to) = - jF(l)(x,w) ) °dw ,
27
-0

and 2.23%

i v 3 141
f(l)(x',tg,) = é-{\j' P’ ) o W g

Then, if x=x',

t nt . : i !
[fH ea[® = [ j:T 28 (x,80) o8 (x,08) o19(b0788) at ary .



We teke the ensemble average and introduce

Yo ltetn) m (el Bmye) £ 8,e0)y 2.2l

and let

N=t0+té’ E:to-t:);

then

< lF(i)(x’w)l2> e

ey o5

on=

t-T  M¥er 2t 2t-p
U-er * Sh-2T B +‘£—T i f -2T dS]

M

and

-]
<]F(x,w)|2> ave = 2 j‘o‘}lx(t,t-v) coswy dYsW(x,w) , 2425

as we let T=e0, 1In the same way, one may get the instantaneous power
density, given as

o o

W (k: = X, X=0ly T~ c -
W) 2}\0 dY‘/O‘ du{\‘i( t | x-a, t-y) cos (ka-wv)
2.26
+{ (x-et,t | x,t=¥) cos (karw?)

where

Y (et xn,n) 2 (elxt)e(xt,en)) o0 2,27

One may easily carry this on to two or three dimensions, but the number
of correlation functions to be obtained increases twofold for each new

dimension. Hence, there are four for two dimensions and eight for three
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dimensions.

2.l, CONCLUSION

This gives us sufficient tools to study a class of problems in which
continuous systems are excited by noise field having well defined cor-
relation properties, We now pass on to the first of those examples in

Chapter III.



III RANDOM EXCITATION OF FINITE STRINGS

3.1 INTRODUCTION

In this chapter we shall apply some of the formalism developed in
the last chapter to the special case of the damped, finite string. The
plan will be to assume a source correlation (f(;o,to)f(?c'),’c('))) ave
and with the knowledge of the Green's function for the system calculate
the mean square response. Although from our analysis it is possible to
calculate the response correlation functions (ﬁ(?,t)ﬂ(?',t')zv., we shall
in all cases restrict our attention to the mean square response ~-- partly
because that represents the interesting experimental quantity, partly

because it substantially eases the computation.
3,2 EXAMPLE 1, THE FORCE RANDOM IN SPACE AND TIME

Let us begin our examples with a very simple situation. We assume
that a finite, damped string is being forced by a field which is purely
random in both space and time. Purely random in time means that the
signal at a given instant is completely uncorrelated with itself at any

later time. We then denote such a correlation by a @ -function, namely

(£lto)e(e)) = D(t,-82)

where 2D is the spectral power density of the source. Hence, for our

one-dimensional system the correlation is

(£lxgst)0(xg588)) = D blxomxp) b (£o-t3)



-32-

A, The Finite String

The wave equation for the finite string is

T—g atE 11_.?!- he st

where vl is the friction coefficient., Dividing through by & gives

22_2‘ J p_g,-):Llf , 3,01
322 fe

where

In this equation ﬂ is the displacement, ;z is the viscous coefficient,
T is the tension, /3 is the linear density, and ¢ the phase velocity.
The string is considered fastened at the points x =0, x=1L.

We expand the solution ﬁ into a sum of space eigenfunctions,

F=7% WY ) , 3.02
m=1 m m

where

\‘)m(x)gﬁsin%‘—f:}_% sin k x , 3,025

and expand the linear forcing function f likewise:

(4
< 2;1 F, (0) Y (x). 3,03

o

@m is the displacement of the mt? mode, and F, is the force active on

that mode., Hence, we have

w @ 2—-——‘“ '8 < ER R (y) 3,00
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where

muwc
wm - L = kmc

and is the frequency of the mth mode, We define the impulse Green's
function g(x,t I xo,to) as the solution to the equation
P}
2 -5- 25 g -5- = LS (xx,) §(t-t) . 3,05
dx° Qt

If we choose to expand the Green's function in eigenfunctions, we may

write

€:L (xgut03t) Y (x) 3,06
and recognizing that

$ (x-x,) = Lbn D4, (=)

we have

2 2
} G @-——muo ¢z Lmdy (x,)§(t-5) . 3.07

m

G, is seen to be an impulse Green's function for the nth mode. By the

method of variation of parameters, one gets the solution of this to be

- foﬂlim P (%) & (-t,) t>t,
G, = 3,08
0 tet,
where
-- (t-t,)
Q, (t-t,) = 2ie ° sin @ m(t-to) 3,085
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snd

2 2
wl’m=[wm -p/h s

which is the frequency of the nt? mode as it is reduced by the action

of the viscosity.
B. The Source

As we have 8aid, the source correlation function is given by
{Ex0st0)0(x2,t8)) = D 8 (xoxp)§(t0-t2) 3409

This has the unfortunate property of having infinite power, as one may

ascertain by recognizing that the mean square force at a point is just

(£B(xosty)) = D§(0) » §(0) .

The meaning of this is that energy is spread over all fregquencies and
all wavelengths with constant density, as may be seen hy taking the
cosine trensform in space and time to get Q)(% s) as we did in Chapter
II, However, any particular mode of the string has only a finite pass
band., As long as the actual source has a sensibly constant spectrum
over this band (in frequency and wavelength), the 8 -function will
represent the actual response and will greatly ease the integration

over certain of the space and time variables. Also, we shall assume
that the source has been turned on at t = -o® so that the response has

become a stationary process.



Ce Calculation of Mean Square Displacements

From Chapter II the correlation function for the response is

)
CHx, 000 20)) = ';‘“ L oo v o
L ’

t t! 3,10
5 dtoJ dt! Qn(t-to)Qm( t-té)Rm(to;té) .
-0 - 06

where

L L
R_(t5t1) = fo axg fo axy, (o), () {olmortg)2(xgte)y o 3105

Rmn(to;tc") is seen to be just the correlatiom of the two source functions
Fn(to), Fm(t(')) , and is the n,m element of a correlation matrix. The
an's are inconvenient to use in this example but will be used in the
next where the correlation does not have such a nice form as in this

problem. As in Chapter II we introduce the veriables

P=x0+xé /“-t +té
3,11
q-:xo-xé z:to-té .

From the Jacobisn of the transformation, one has

dlu.d‘-s .

[Ae R R

- . LI
dxo dx(‘) = d/o do ; and dto d’co =

We shall use this transformation repeatedly in other problems. For the

mean square value of ﬁ, we set x = x' , t = t' , and get

2 1 L
(F0) = 1;‘; nZ’Lm eyt AL A | I RCRIACTERSY
L
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~R(2t-p) [ 2tepe
e }AL dg * I} sin w Ilt" (f""'T )}

2t

2t

o 1

25 dr.e
-0

3012

s:.nw {‘t-— (}& I)}S(O’)é(r) .

The derivation of this expression may be obtained by plecing R of
3,105 into 3,10, Then the expression for the source correlation from
3,09 is substituted, and the change of variables in 3.11 is used.
Finally the eigenfunctions as defined by 3.025 and the Q;m's from 3.085
are substituted.

The limits of integration on /u., ‘S come from the rotation of the

axes produced by the change in variables as shown in Figure 2.0la., A

’
quantity which has experimental pto
as well as physicel meaning is ",‘S
~
the mean square displacement of ‘{5’ IY
t f ’
the mth mode, which gives the L’ £
R
contribution to the mean poten=- N . L
Ny N ‘t
tial energy of the string from K S °
N
that mode. From our notation R
N
this is < °) , which is g
Figure 3.0la

obtained by picking out from

<¢2> (aside from space dependence) the term for which m = n. This is then

(@ ) 8I( D f( ix dx"‘*m(xo)(l/m(x J- é(?c /“') /A

. sin2 -‘:%-’-9} (St-fk) . 5(0') s



where we have carried out the integration over ¥ ., Setting ¢ - 2t -fs

one has
- 0 A7)
2 _La® : 9 (e
(¢, y- 75’2;'2” x gy o (x) g (x) [ o B ey Geooswy v)8(a)
¢ |m 4 0

3.1%
2L
2
= p dg = (cos kmO' cos km ) s
i “’m{ ’ i

where the integration over P, Textends over the shaded square in Figure

s
3.,01b. The eigenfunction product ff"
e
7/
has been replaced by its trigono- 0’/ r
7
metric identity, and the integra- L 6:
NANN\N NN TR %
\\\\\\ o
tion over ¥ has been carried out. SS&:\\\\‘ \\"\\w
R LR
The integration over ¢ leaves N };:?\\\\\\Q‘\\\\\\
DA N
2 2. &L IR
{(f "y LZD T dp (1-cos k p). B LOAIINS - Xo
m 2,,2 2N
# P @wcL 0 N
¢ T \
The cosine integrates out and , \\
\‘q’
leaves us with Figure 3.0lb
2y 8WD
(ém ): —-g'a—;—z . 3.1
PR “n

For the terms n ;( m , the eigenfunction product is

2 . . , 1 < g
£ sin knxo sin kmxo = é{ccs (kn_m]% +k -5) - cos (kn+m £ 3k 2)

n=-nm

. . . 1
The integration over G gives 7 {cos k #2)— cos (kn+m 7% )} , and the

integration from O-+2L on f gives 2 Smn. Hence, in the expression

3,1l <§m2> represents the total motion of the string. The potential
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energy of the n? mode is %f wm (CEm ), and if we set this equal to

1

5 kT we can evaluate D and obtain an expression for the Brownian mo-
*

tion of the finite string, as lear and Uhlenbeck have done. The reader

is referred to their paper for a more extended analysis of this exemple.
3.5 EXAMPIE 2, THE PIECEWISE DELAYED EXCITATION

Now that the general procedure in obtaining mean squares has been
demonstrated, let us consider the types of problems we have in mind as
the goal of our labor in this chapter. We ultimately want to know how
a moving, random pressure field, such as turbulent flow, would excite
a finite string -- or what is equivalent, a thin metal ribbhon., One
possible approximation to a moving noise field which one cen meke is
to force part of a string with a random noise field, and then delay the

random function and apply it to another part of the string.
A. The Correlation of the Source

The string will be defined by the same wave equation as in Section
%.,2 - A. Again we shall assume that the source was "turned on" at t = - co
so that the response will be stationary. The source consists of uniform

L
forcing of the string from O + 5 by the purely random function f (t)) .«
L

It is then delayed by a time T  and fed to the second half é-oL as
th

shown in Figure 3,02a. We ask what is the mean energy fed into the m

mode as a function of the delay ’ro « The correlation field will be

*Lear and Uhlenbeck, "The Brownien Motion of Strings and Elastic
Rods." THE PHYSICAL REVIEW, Volume 38, page 158%. In this paper, they
have essentially obtained the results of equations 3,10, 3.105, and 3.14.
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described in terms of the R 's of
nm 0 Lr2
Section %.2 - C, If we assume that b : t L ' :
, guo) F6tT)
the correlation of f is given by 7
[

<f(to)f(té)> =D4(a) , @ Decay

Nois€ GENERATOR

we may express the correlation < Figure 3.02a
[ 3
by the "field" in Figure 3.02b, a:
The coefficients Rmn(‘g ) are 06(‘5’-7) Di&)
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Rm<<)=jfo axodx (59 (1) (£lxg 8 )e(xa,t ), 34105

where the correlation above is given by the field of Figure %.02b. Since
we are effectively expanding a product of step functions, what we need

are the integrals

and

L
sin k x dx = = (cos mM - cos m__'u) .
mo o 2

j L/2

From these, then, and from 3.105 we have
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+ é(‘{ +7,) (cos %‘1 - 1) (cos nU - cos 1-'l—;-‘--)] .
For either n or m = L4 f , where [ is any positive integer (# 0),

Rom = 0. This is clear when one observes the symmetry of the set up

in Figure 3.02a., If we have m and n even (twice an odd integer), then
8DL _ _ .
(a) R (F)= nm{ 28(%) -§(g-7,) 5(§+'r}
For m odd, n even,
L
() R_(3)= %{s (§-7,) -85+ 'ro)} .
For m even, n odd,

(o) my(g) e B {S(yaT) - é(g-wo)} :

And for m and n odd,

315

(@  R_(g) = ;”L{28(g>+5(;+r0»3(g—70)} :

mn

B. The Calculation of the Energy of the Modes

In this example we shall calculate both the mean potential energy
for the m'! mode and the meen kinetic energy. The mean potential energy
. 2 .
is obtained from <§m ). From 3.10, by selecting out the terms for

which n = m, this is seen to be
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Now, for m even, we have from 3.15 (a)
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This integretion is straightforward to Y‘
end yields
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pl?'o\/z 3.17 4,\ / o
‘{ewl,m(e ~-co8 wl’m-ro) 4,44, \
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Figure 2,03

For m odd, we had in 3.15 (d)

Rn(§) 2 Spp {28548 (£4 743 (5 - m} ,



which gives

o 2t - B(2t-p) f 1-cos w, (2t-u)
N I Ot e
R @™ | %

’

2t-jg) - B(2t-w)
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and the result of this integration is

e 1D 2
<§m)°= 2 £ 2 2 ° / { 2wl,m (e P 2+ cos wl,m'ro)
f!_ wl,mmp wm

2.18
+psin~1,ml-c°;} :

th

Let us now calculate the kinetic energy for the m™ mode. The mean

square transverse velocity is given by

ot
' i(t)) T L ” at,att R () Q (t=t,) Q(t=t1) ,  3.19
@ |

c l,m =00

d . dQ (t=t,) .
where Um - St—m and Qﬁn(t-to) - -—&‘-——-—-2- . Q is essentially the

ot
velocity response of the nth mode to an impulse. Hence,
. - Aot
Q (t-t,) = 2ie {- ,% sin @, (4=t )t @, = oos wl’m(t-to)} .

For even m, this becomes, after some algebra,

Uiy, - 'P""'/Z{

'TO .
P%I‘QP” e 2w (ep & e
/3 l,m

1,m -cos wl,m To)-l- Psin wl,mvro'} ’
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and similarly, for odd m,

o -214 17l
16D A1) 2w, (o s /i cosdy o 7]
m/3'“J1,m

WLy, :

s

3,21
-p sin @) ('(o)}

Since the mean potential emergy is given by

} o)

and the meen kinetic energy by

SRV ICANE

we notice that for both the even and the odd modes the kinetic and

potential energy for a mode are different by the term 2/6 sin “’1 m( "(o) .
I’

As the viscosity diminishes, this difference becomes smaller in relation

to the values of the energies involved. The total energy for the even

modes is

E -V <X =--2—-(1-e coswlm'ro) , 3,22

E =V K =22 (14 . .2
o m,o+ o0 > (1+e cos wl’m"(o) 323

One can easily verify that the ratio fﬂm is the @ factor of the woh

A -p T,
. I /2008 .1,

mode.” 1In Figure 3.0La we have plotted the function (1 - e

*Exemine the impedance for the m? mode as given by Morse, Vibration
and Sound, Second Editionm.
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for ¢ values of 2, 10, 100. This gives the dependence of the energy

in the second mode in units of ég%? as a function of Toe In Figure
e - 3 (Tl
%3,04b we have plotted the function (l+ e £ °/200$ wl n‘(o) for §
3

values of 1, 5, 50. This gives, in the same units as before, the de-
pendence on Q'o of the energy in the fundamental mode, As one would
expect, for ’Zo = O there is no energy fed to the even modes, but there
is a maximum fed to the odd ones. As T, advances, say for the second
mode, the energy increases until it reaches a maximum at T = §7Z§EE »
which is a half period for this mode. This maximum represents a sort
of coincidence effect between the source and the mode., It suggests that
if we move & random noise field along so that its velocity equals the
phase velocity of waves on the string, e maximum of excitation will be
attained, We shall study this problem further in later examples.
Another interesting aspect of the curves is that for high deamping
(or low Q) the maxima and minima die out and epproach an asymptote for
large T, which would be the excitetion if the string were driven by
two incoherent rsndom sources over its two halves, The damping, then,
produces a "forgetting" effect such that if one waits too long before
applying the signal to the second half, the string "forgets"™ that the

signal was ever applied before.
Ce Experimental Verification

In an attempt to determine whether the coincidence effects predicted
by the preceding analysis were experimentally observable, an apparatus
like that disgramed in Figure 3.05 was set up. The source is a thermal

noise generator, and the signal is fed to an electrostatic plate which
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drives an aluminum foil ribbon over half of its length. The signal

2
is delayed by a veriable time delay system E5and fed to another elec-

trostetic plate which drives the ribbon over the second half. The motion
of the ribbon is detected by means of a modified Altec-Lansing microphone
base used as a capacitance sensitive probe. A particular mode of vibra-
tion is selected by utilizing the natural selectivity of the mode and
placing a third octave band filter about the resonant frequency on the
output of the probe. The mean square response is obtained electronically
by the squaring and integreting facilities of the Goff correlator.z26 The
set up is shown in the photographs of Figure 3%.06,

What is measured is essentially the mesn square velocity (U i) .
However, for reasonably high @ the functional dependence is very nearly
that of Figure 3.04. In Figure 3.07 we have plotted the results of this
experiment for the second and third modes of the string as a function
of time delay. The rather high background level is thought to be due
to inhomogeneities of tension in the three-inch-wide ribbon., For the
second mode the measured & was 10, and for the third it was 15, The
resonant frequencies were 105 cycles and 160 cycles respectively, the
discrepancy in harmonicity very likely being due to motion of the sup-
ports. The agreement in terms of the shape of the curves appears to be
pretty good, with the coincidence effect plainly visible,.

Now that we have taken the initial step toward dealing with the
problem of the moving field and have acquired some familiarity with the

procedures of calculation, let us move on to the next example.,
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Figure 3,06, Photographs of the Experimental Set-Up of
Example 2.



~L,9%-

S0 T T 7T —T—T 1 T
- m=2 .
105y
40
N
Y 20
\2 o
)
20 o-
[
ol—L 1 1 S| L1
0 10 20 30
w, > T
50 T T 1 | S e — T 1
160"L
40
o i
20
| | ] | | | | | 1 | |
0 10 20 30
W, 3T

Figure 2,07 Measured Mean Square Response for

Second and Third Modes.



-50=

3,y EXAMPLE 3, THE PURELY RANDOM MOVING NOISE FIELD

In this example we shall examine the response of a finite string
when excited by a moving noise field which is purely random in space.
Although this is impossible to realize physically, it still cen lead to
useful results and is the simplest kind of correlation function to inte-
grate. Agein, we are interested in coincidence effects and will be inter-
ested in what happens when the flow velocity of the noise field is near

the phase velocity of weves on the string.
A. The Correlation of the Source

We consider a force field in space (one~dimensional) which does not

change with time but is a purely random function of x, That is,

<f(xo)f(x<'))> ave = DS(O’) .

We then allow this field to be dragged along at a velocity U, to the

right, so that the correlation becomes
Celx,- vt )e(xg-wty)) = Dé(T -vy).

This is the correlation function for the source which we shall use for

our calculations,
B. Calculation of the Mean Square Response

With this kind of source and the Green's function we have been using,

th

the mean square displacement of the m~™™ mode is
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2
(B2 = 250 [[anam o [ ape
g wl,m 04 m m %
21:-/.0.

Ldla-vy)

which is just like equation 3.12 except for the modified source correlation
function. We are interested in obtaining <§z) as 8 function of the
flow velocity W . TFirst, we carry out the integration over ¥ (= to-tl) ,
which merely substitutes Q'/U. for g everywhere in the integrand end
modifies the limits of integration on M 88 shown in Figure 3.08a.

L k=il - f(ot-
<@ ) __121,_1:?1)_ gg ax dx'\v (x )\vm(x' § /gr;e é( /’.)

-0

t l,m 0 3.25
g/ - -
{ cos wl,m /U‘ 'cos ul,m(Zt ,u-)}
to
If we substitute Y = 2t~ /u. and t

integrate over ¥, we have

<@ > vw wa dxdxé

- P""/au' ™~
(—-P-Lm cos wl N

qlq
/

Figure 3, 08a

+sinw1 --) +(cos k @ -cos k ‘o) . 3,26

The integration over the space variables extends over the region shown
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in Figure 3.,08b, It will be noticed

that the integrand is symmetric about
the lines P =L and g=0 , Hence

we may integrate over the shaded tri-

angle and multiply by L. Our expres-

sion becomes

» N
g Figure 3,08b

L
2 f -pr
8 M p S\ df r i e @ /20-(2%..111 coswl’m O’/u.f sincul’mo'/“-)

0 0
(cos kT - cos kmfb) .

After a good deal of algebra, this becomes

(@ °y - 8 % D gue(auzéﬁﬂaéﬁ-«h-zuz-l-lééﬁg__
k5L Sm{(uz"' 1)2 _ 1&650(2}2

m -mN /2
(_) sinkmam L/qe /O‘Qn

ho®Q,(8 u?§2 42082 - -6u” -5 -16§1)

+ {(u24_1)2_h6§«2}2
- mn 321
2o
o oa{(x“¢1)% - LgZa®}

where ¢ = T s the ratio of the velocity of the noise field to the
c

phase velocity of waves on the string, 6m ——L— is the ratio of

w
the modified frequency to that of the undemped mode, and Qm =z —& is



the "quality factor" of the 0" mode. This expression is much simplified
when one assumes that 8m = 1 , which is equivalent to saying that

Q,%)) 1 . This assumption is good over most of the values of & but
breeks down and leads to a singular response at (X = 1. However, with
viscous dissipation an infinite response is impossible. If we take

6m = 1 above, we get

2 3 2
{2 . 10T D 2Q +20 - (2Q cos R4 X T gy BT
ém)émﬂ kngzg(Olz-l)2 LR ;3 Q, cos = “2-1 sin -
mW

T 2u
(-)" e 24 | 3.28

This has been calculated and plotted for m=1l, Q;=10; m=l, Qh=10;

m=ly, Qh-_-l;o and is shown as the solid parts of the curves in Figure

3,09. The dashed part of the first curve was calculated from the exact
expression for the mel mode and indicates the peak in the response of

the system slightly below @ = 1, or when the phase velocity of waves

on the string equals the flow velocity of the forcing field, The "coin-
cidence effect" occurring at ¢ slightly less than one is due to the effect
of viscosity., It is also interesting to note that when - O, (@ i)
does not vanish, since a static force field will produce in the string

a deflection which will have a non-zero mean square value.

In the next example we shall introduce a correlation time or length
for the source. It is interesting to note that a sort of correlation
time or length is encountered for viscosity, the effect of which may be
seen from equation 3.,27. We shall define a length Lo‘-'-c/P and call this
“the correlation length for viscosity. Essentially, this meens that two

points on the string separated by a distance greater thean L, have their
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free motion uncorrelated since wavelets started at one point have been
dissipated before they reach the second point. Of course the total
motion at the two points will still be correlated because of the cor-
relation of the source, but not nearly so much as if they were separated
by a distence <K L,. For modes of wavelength greater then L,» we might
not expect very much of a coincidence effect as ¢ 1 . To test this, let
us consider the simple situation when wm = oaé- and choose the first
mode of the string, m =1l. Then, wl = —11:9 -.-/2-g s, or L= 21(% = 21!L0 s
and Q) = 1/2 . Hence, in this situation, we have the correlation length

about one-sixth of the length of the string., Equation 3,27 becomes

2 2 2 -z
@°y .16 . __2 {“B(au-s)(e d*l)_,,n} . 3.29

5p° 2, 112 2
®, )2 L («°¢1) o+ 1
2
which is plotted in units of 1;1‘ D°5 as a function of & in Figure
Lw.
1

3.10. It is evident that the coincidence effect has disappeared as
expected., Since we have let 601,1 go to zero, one might object that
this illustration is not conclusive -~ that the effect could be due to
the non-oscillatory nature of the mode which prevented coincidence from
occurring. That such correlation lengths do affect coincidence, even if
the motion is oscillatory, shall be seen in the next example and in
Chepter M., At present we must regard the result in Figure 3,08 as only
a hint of the effect of correlation lengths.

Since it is experimentally very difficult to set up a noise field
like thet postulated in this example, we have not attempted to get ex-

perimental verification of Figure 3.09. A flowing turbulent field does
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have properties which are capable of representation by a correlation
function similar to that of equation 3.2l;, and in the next example we
shall make an attempt to approach the representation in one dimension
of the kind of force field applied to a string or ribbon by a flowing

turbulent field,
3,5 EXAMPLE |;, AN APPROACH TO TURBULENCE FORCING

What we should like to do is to predict the mean square response of
a finite ribbon to a field of turbulence flowing with a velocity V' in
the direction of the length of the ribbon., This is a situation we are
able to set up éxperimentally and represents a problem which people in
serodynamics are concerned about: namely, the excitation of @erodynamic
surfaces by turbulent flow and coincidence effects which occur when the
flow velocity of the stream reaches the phase velocity of waves in the

structure.
A. The Noise Field

In this section we wish, then, to leave the idealized moving field
and attempt to make the noise field correspond more nearly to turbulence.
let us examine the previously assumed noise field and see in what manner
it needs to be corrscted.

1) The & -function correlation: Using a 6 -function correlation

says, in effect, that the spectrum of frequencies and wavelengths exci-
ting the string is perfectly flat. This has a tremendous simplifying
effect on the integrals; and since we measure the response of a particular

mode which usually occupies only a small part of the spectrum, this is



a satisfactory assumption as long as the actual source is ssnsibly flat

over the spectrum of the mode,

2) The correlation periods Thus far we have assumed that if we

measured, as a function of timé, the source at two points separated by

a distance @, then we could obtain perfect correlation if we only delayed
one time function by the time @/ . This is a result of assuming that
the field does not change as it flows along, but in turbulence there are
three proocesses at work changing the field., These we shall call inter-
nal flow, turbulence production, and decay. Internal flow is just a
result of the existence of pressure gradients in the fluid, and is
predicted, as is the decay, by the Navier-Stokes equation. The field of
turbulence is constantly replenished by the creation of vortices by
disruptions in the boundary layer. This creates a loss of correlation

by the introduction of random components of flow betwsen the measuring
points. Also there is the decay of motion due to the viscous tems in

the Navier-Stokes equation, which transfer energy from the fluid motion

to heat. These processes tend to decrease the smount of correlation which
one will obtain after a given time delay. It is reasonable and useful

to assume that they cause a loss of correlation by the factor e-‘tbﬁr,
where fr is a sort of lifetime for the state of turbulence to be determined
by experiment,

3) The dependence of the amplitude of fluctuations on flow velocity:

In addition, we shall assume that the strength of the fluctuations depends
on the flow velocities, as one may easily demonstrate by experiment. In
fact, the dependence seems to be linear, but we shall leave it general

for the moment as a function ¢ (¢ ). Hence the correlation will go as
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Taking account of these modifications, the source correlation is

(f(x -ut )e( % !- vt')> - gz(u )6(c-v§)e-l§'/7 . 3,31

ave

B. Calculation of the Mean Square Response

Proceeding as we did in the previous example but using 3.31, the mean

square response of the mth

> L 2/ 9) L 2t . é_
<¢m> = ?‘zar—- ff dx dx! \pm(xo)\‘)m(xé) g dm e
J) 1l,m 0 -0

mode is

(2t-w )

T ;
dg e {coswl’mg - cos a.i’m(2t-/u)} (o -vg). 3,32

Integrating over g and chenging the variables X, xc') tojo » T according

to the transformation 3.1, one has

L “(2+B)
3 p +3)
<@ ) o 81R DS_ fd/) fd - cOos ka(z_%m cos &) ng‘;

..\n-'
clq

w2
+ sinw E).Q-l sink(l-l-sm) -smk(l 8 )U’
1:mv 2 m T Ve

@
+ —éﬂ(cos 6,14 8T oos 11 - 82)g /} . 3
Xo /’f

It would be very laborious to
evaluate this exactly. The

integral over @ from O-DP

is allowed to go to + o0 since PN
vl
4

most of the contribution is

Figure 3.11
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near the line ¢ = O . This means that in order to expect our results

to be valid, we must have oT<L . In the intermediate situations,

where the correlation length is a half or a third the length of the string,
one expects to find features like those in the solution of the last sec-
tion end also properties based on the assumption that the correlation
length is small compared to the length of the string. In particular,

it seems like the small sub-peaks, which appear in Figure 3.07 between
ol=0 and @=1 form =L, are a result of the integration limit

of P on O , which we neglect here, With this approximation, the in=-

tegrals are quite straightforward and one obtains

3.33]
16 T 8o )DmAQy (Q+ nx) )%k (2x2Q) (n 3 WEM)

2
@) - /220“ (Quf mnd)52Q (mmd)® (w241) (QemmA W (mmh Y (4-1)%Q2

+a°} J

where )\ = CT/L » the ratio of the correlation length to the length of
the string. This function has interesting properties which we may inves-
tigate by plotting it for various values of the parameters. Let us assume
that A is 0.1 end examine the effect of coincidence between wave and
flow velocities by plotting the bracketed expression in 3.3% as a function
of & for various values of m. The results are as shown in Figure 3.12.
Coincidence is hardly visible for m = 1,2 , but becomes increasingly
menifest as the mode number becomes higher and the wavelength shorter,
This is what we expected on the basis of the viscosity correlation length
in the previeus example.

If we set %(0() = -~ as is suggested by experimental results --
and include mAQy, then we have the results for <§ i) in units of

2

l%g » which should suggest a functional dependence for the experimental
c

4
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results in the next chapter. These curves are plotted in Figure 3.13.
We notice from the expression 3,325 that 1% and 4% enter into the

exponential in the same menner, It is basically this exponential which

determines whether or not the coincidence effect occurs. If we multiply

1
%: and gi by é, we have i and —— , respectively, which tell us that

2 2L
the correlation lengths of the soSrce and of the viscous string both have
e similar effect on the coincidence phenomenon. However, since Ly = 3.18L
in this example, there is no observable effect due to the viscosity. In
Chapter V when we consider the infinite string, the viscous correlation

length will be seen to have an effect very similar to that produced by

the source correlation length ¢¥ 1in this example,.
3,6 CONCLUSION

In the next chapter we shall study experimentally the excitation
of finite strings and bars by turbulent flow. We shall expect the former
to bear out somewhat our work of Section 3.5, while the latter is included
for its experimental interest. That is, when the bar mode number is high
enough so that the end effects are negligible, the excitation versus flow
velocity should be very similar to that of the stringe In addition we
wish to measure the properties of a flowing turbulent field as a random

noise field and evaluate some of the quantities introduced in this chapter

as paremeters, namely § (ot) and T.
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IV EXCITATION OF FINITE STRINGS AND BARS BY FLOWING TURBULENCE
L1 INTRODUCTION

In the preceding chapter we spent a great deal of thnekcalculating
the mean square displacement of strings which are excited by stationary
and moving noise fields. In the case of the moving noise field, in sec-
tion 3.5 we made several intuitive assumptions concerning its correlation
function with the intention of approximating a field of turbulent flow.
With these assumptions the excitation of modes of the string was predicted.
The first part of this chapter is concerned with testing the validity
of our hypothesized noise field. Subsequently, we experimentally set
up e finite ribbon in a pipe carrying turbulent flow and compare the mean
square deflection of various modes of the string with that predicted by
the theory.

Finelly, a thin elastic bar is set up in an arrangement similar to
that of the ribbon in the precediﬁg paragraph. Its motion as a function
of frequency and flow velocity is likewise studied and the similarities

with and differences from the string are noted.
,,2 TURBULENCE AS A NOISE FIELD

We shall cﬁnsider the forcing effect in turbulent flow to lie in
the pressure fluctuations which it conteins. At a boundary of a system
conteining flow, there are two forces due to the passage of the fluid -~
a tangential force due to viscous shear and a normal force due to the
pressure. If the boundary cen move in a direction normal to its surface

but not tangentially, the pressure fluctuations will excite it into vi-
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bration. A ribbon of finite width and length, fastened at its ends,

with turbulent flow passing along its length may be considered such

2 boundary., We are interested, then, in the correlation field of the

pressure fluctuations in turbulent flow. In terms of our assumptions
concerning the noise field in Section 3.5, we are interested in the
spectrum of the pressure fluctuations, the correlation decay constant
T, and the dependence of the fluctuations on the flow velocity.

All of the work done with strings and bars wes done in rectangular
braess tubing, one-quarter by one-half inches inside ddimensions. The
walls were one-sixteenth inches thick, and for all practical purposes
would be considered rigid, Air flow was introduced at one end of the tubse.
There were no precautions taken to obtain a smooth entry flow pattern,
and the fluid motion was fully turbulent by the time it reached the ex-

perimental apparatus.
A. Mean Square Pressure

For the measurement of the mean squere pressure fluctuation a very
small hole (.020 inches in diameter) was drilled in the side of the tubing.
An Altec 29-B microphone was then mounted on the side of the tube to pick
up the pressure fluctuations as they were transmitted by the small hole.

A photograph of this set-up is shown in Figure [.0l. In the photograph
there are shown several microphone mounts, which were used for the work
described in the next paregraph. The results of this experiment are
shown in Figure 4,02, which shows two fairly linear regions. This is the
reason for the assumption of a linear dependence in Chapter III. Further

interpretation is deferred to the following paragraph.
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Figure lj«0l. Photograph of Pressure Measuring Experiment.
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B. Pressure Correlation

In order to measure the correlstion function of the pressure fluc-
tuations in space and time, one must meke the rather reasonable assumptions
that the noise field is spatially homogeneous in the direction of flow,
and the fluctuations at a point produce a stetionary time function.. One
then uses two microphones, separated by some known distence, and cross
correlates the signals coming from the two microphones as a function of
time delay. For each separation the maximum correlation is plotted in
Figure L.03 on a semi-log scale. The minimum separation possible for
the set-up shown in Figure LL.01 is five-eighths inches, and the maximum
is twelve and one-eighth inches. The correlation seems to have two very
distinct decay constants, a steep one for small separation and a long slow
decay for large separations. The flow velocity in this measurement was
2500 cm./sec., which is about 1000 inches/sec.

A hint at the reason for these two decays was obtained when it was
noted that the peak correlation at 12 é inches occurred at a 1 millisecond
(msec.) time delay. The flow traveling at 1000 inches per seconé would
teke 12 msec. to traverse the distance so that the pressure fluctuations
being correlated at this separation were not travelling with the flow.
Since sound travels about 1000 feet/second, the time delay of one msec.
leads one to believe that the pressure fluctuations are acoustic. The
initial drop-off is due to the hydrodynamic fluctuations which decay
rapidly but travel with the flow.

It is the fluctuations thet travel with the flow which we expect
must excite the ribbon and bar. One reason is that acoustic plane waves

travel much too fast to achieve coincidence with the waves on the ribbon.
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The other is that an acoustic plane wave would push on both sides of the
ribbon and bar equally, thus forcing it very little, if at all,

Velocity correlation measurements* taken perpendicular to the flow
in a tube of similar dimensions to the rectangular one above indicate
that correlation as a function of separation extends only about one or
two millimeters across the stream, which may be interpreted as a mesan
eddy size for the ’curbulence.e7 If one takes pressure correlation measure=-
ments around the circumference of a tube which contains turbulent flow
moving along the tube's axis, the correlation function has a peak about
one or two millimeters wide, leveling off to a constant value as one
separates the probes farther apart. This constant value is about fifty
per cent of the correlation at zero separation, The fifty per cent asymp-
totic correlation is interpreted as being due to plane waves of acoustic
noise in the tube, while the width of one to two mm. enables us to inter-
pret the other fifty per cent as hydrodynsmic fluctuations. It is clear
that direct measurement of the pressure fluctuations is not a satisfactory
way to measure the property of the hydrodynamic fluctuation field which
travels with the average flow velocity of the streeam,

%*
C. Velocity Correlation Functions

Since we are concerned with the pressure fluctuations which travel
with the mean velocity of the flow, we should like to be able to separate
out these hydrodynemic pressures, as we have called them, from the acoustic
pressures, or aerodynamic noise, From elementary considerations it is

apparent that measurements of the velocity fluctuations should do this for

*
The experimental work in this section was done with the help of Stuart
C. Bakero



us. The relation between the acoustic pressure Py and the corresponding

particle velocity u, is for plane waves

P, = fcu; ,

where ji is the fluid density and c is the sound velocity. From Ber-

noulli's law, the hydrodynamic pressure ph and velocity u, are related by

h

[AST R ]

u 2
ph- gh .
Since P, eand p were observed to be of the same order of magnitude, then
a

we must have

o

2

cu 2 u or
a h °

134

Q 'B‘ﬂ

Sl P

That is, the hydrodynamic velocity forms a geometric mean between uy
and c¢; and since c¢ is ordinarily very much larger than Uy it follows
that u, is larger than u, by the same factor., As expected, all trace
of the acoustic motion disappeared when velocity correlations were used.
In particular, with the pressure correlation we had particular difficulty
with the setting up of acoustic standing waves in the pipe. When velocity
measurements were taken, this trouble vanished.

The velocity cross correlations were taken with the set-up shown
in Figure L.Oli. The velocity fluctuations were picked up by two hot
wires entering the tube from opposite sides. The hot wires were mounted
so that they were sensitive to velocity fluctuations in the direction of
the flow. The position of one of them was adjustable so that it might

be moved cross stream or downstreem from the other. The two hot wires were
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adjusted for zero separation, and a cross correlation of the signels

coming from them wes taken as a function of time delay. As one would
expect, the meximum correletion occurred at zero delay. The movable

probe was then moved downstream, and cross correlations were teken at

1, 2, 5, 10, 20 mm. separation for two flow velocities -- 1800 and 3600
cm./sec. In all cases the peak correlation as a function of delay occurred
when the delay ¢ wes equal to the separation g divided by the flow

velocity v, i.e.,

S nax

s lq

This is in egreement with the concept of a moving noise field which was
represented by § (¢ - v§), which has its meximum when & = T/, Since
the turbulence, as well as our instruments, had a finite spectrum, a
& ~function was not obtained, but a very sharp correlation maximum was
obtained having half width «o%a msec. -=- indicating a spectrum up to about
10 ke,

In Figure L.05 we have plotted on semi-log paper the maxima of the
correlation functions above as a function of delay (or separation) for
the two flow velocities used -- 1800 and 3600 cm./sec. Aside from an
initial steep decay, the plot is fairly lineer, indicating that an assump=~
tion of exponential decay of the correlation function is quite adequate
in describing the turbulence correlation function. The initial steep
decay near & = O is thought to be due to turbulence created by the hot
wires themselves.

It is seen from ;.05 thet the ; th delay for 1800 cm./sec. is 1.30

msec., while for 3600 cm./%ec. it is 1.0 msec. From these values one may
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t
obtain a linear expression for the i h delay as a function of velocity -~

10
gv - - —g-— V+1.6 ’

where {V is in msec. and v is in cm./sec. Since the pressure goes as
th
u2, the % delay for pressure correlations would be just half this value
-3
10 -
= - = v+40,8 =
gp 12 =T

as defined in Section 3.5. In Chapters III and V we assume that the
critical delay is independent of the flow velocity. We see from this
that such an assumption is not quite accurate.
The hot wires heave an upper frequency cutoff at about 7000 cps.

The turbulence spectrum is essentially flat below this frequency. Hence,
the spectrum of the turbulence cannot be measured with the hot wire,
Invthe next section we shall analyze the response of the finite ribbon
for some of its modes. From the measurements here we can be sure that

the spectrum will be sensibly constent for the modes chosen.
L3 THE RESPONSE OF A FINITE RIBEON TO TURBULENT FLOW

As mentioned above, a steel fibbon was used to simulate a string
in the experiments. The ribbon hed a width of three-sixteenths inches
and a thickness of .0l inches. The experimental set-up is shown in the
photographs of Figure L.06. The air supply passes through a "Flowrater"
meter which allows the air flow to be adjusted and measured. The air

n n
is then passed through a 5 x = rectangular tube in which the ribbon is

L

mounted. Since the Reynolds number for the flow is well above the critical

value, the flow is fully turbulent. As it passes along the ribbon, the



Figure 4.06 Photograph of Ribbon Excltation Experiment.



ribbon is excited, and its motion is then detected by a photoelectric
device,

The detector is shown by the diagrem in Figure L.07. A collimated
light beam enters the tube through a small hole in its side. The light
is then reflected by the steel ribbon and is partially transmitted out
of another hole on the other side of the tube. The part of the beam which
is allowed to escepe enters a photoelectric cell. In the normal position
of the ribbon about one-third to one-half of the light escapes to the cell.
Then as the ribbon vibrates, the light beam is modulated, and a signal is
obtained from the photo cell which corresponds to the motion of the
ribbon.

This signal, of course, represents the total motion of the string,
and we would like to examine the response of each mode separately. We
can do this by utilising the natural frequency selective properties of
the modes, That is, if we consider a mode with a natural frequency f, most
of the motion in this mode will have frequencies very close to f if the
Q has & reasonable value. Accordingly, in the experiment we have used
a one-third octave band analyzer to select out the motion of the various
modes. We obtain the mean square by squaring the output of the filter
and then integrating (time averaging). By using a long enough integration
time, the fluctuations in the signal may be smoothed adequately for record-
ing.

The length of the ribbon was L), em. The tension waes adjusted by a
screw so that the fundemental resonance was 50 cycles. This gave a wave
velocity of 1,00 cm./sec. Third octave bands centered at 50, 100, 250,

500, 1000 cps were chosen to duplicate the modes plotted in Figure 3.13,
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that is, m = 1, 2, 5, 10, 20, The mean square displacement for these

modes as a function of the flow velocity for the various modes is indicated
in Pigure [;,08. It is interesting to compare these with the theoretical
results of Section %.5. As the theory predicts, we observe that thers

ars no coincidence effects form = 1,2. Form = 5, 10, 20 a coincidence
effect is in evidence with a response peak at 3600 cm./sec. form = 5, 10,
and 14500 cm./%ec. for m = 20, The theory predicted this peak to ococur

at 1);00 om./sec. for all modes.

One possibility of explaining the discrepancy between the flow velocity
and wave velocity lies in the assumed length of the ribbon. Since the
supporting ends for the ribbon are less flexible than the center, due to
the method of attaching the ribbon to the metal rods which support it,
the effective length of the ribbon may be somewhat shorter than the Ll cm.
assumed. The upward shift of frequency for m = 20 may be due to the flow
coincidence (if L} cm. length is correct); but part of the increase in
phase velocity is probably due to the action of the bending stiffness
of the ribbon coming into play. For m = 50 the coincidence effect has
vanished, probably because of the viscosity coefficient increasing with
frequency.

In order to see whether the peak response continued to bear the same
relationship to the phase velocity when the latter was varied, the funda-
mental frequency of the ribbon was lowered to forty cycles. The phase
velocity was then 3520 cm./%ec. The mode m = 5 was chosen to check the
response. The result of this experiment is shown in Figure L.09. The

peak response is about 3000 cm./sec., which is again lower than the phase

velocity,
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The uncertainty in the accuracy of the flow meter at these flows
is about ¥ 100 cm./sec. This, coupled with the uncertain length of the
ribbon, could account for the discrepancy. Another possibility is unequal
dividing of the flow above and below the ribbon so that the flow might be
faster than the computed value on one side, slower on the other., When
the faster flow reached coincidence, the peak would be observed although
the average flow had not attained the phase velocity.

In an attempt to evaluate the effect of flow on the "Q" value of
the ribbon for the fundamental mode, a small electromagnet was connected
to an audio-oscillator and used to excite the steel ribbon. The half power
points of the response were located, and the Q value was calculated for
several values of flow. The results are shown in Figure l;.10., It is
striking to note the rapid increase in the viscous coefficient (propor-
tional to 1/Q) as the flow is increased. This may partially account for
the lack of coincidence effect for the mode m = 50 above. In any case
the effect of the flow on viscous dissipation is very striking, and it might
be worthwhile to follow this up by careful experiments and some theoreti-
cal work.

One may say that in general the effects of coincidence and dependence
of mode excitation on the correlation length of the source are experimen-
tally verifiable. Certain details do not check because of deviations in

experiment from the assumed properties of the system.
L.y THE RESPONSE OF A FINITE BAR TO TURBULENT FLOW

As an experimental continuation of the work on the string, it was

thought feasible to repeat the experiment above for another physical
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system, For this purpose the finite baer was chosen as a system which
has important differences from the string but becomes more like a string
as the wavelengths become shorter and the end effects become less impor-
tant.

The experimental set-up for the bar excitation is shown in the photo-
graph of Figure lj.11. The flow set-up is the same as before, with the
bar mounted in the rectangular tube. At the end of the bar can be seen
the phonogreph cartridge which was used to detect its vibration, The
bar is nineteen inches long, 15/32 inches wide, and one-sixteenth inches
thick. It is made of brass, and as such the flexural velocity is 3900
cm./sec. With these dimensions the fourth mode is 250 cps, and the bar
is supported by pins at the outermost nodes for this mode,

The scheme of the measurements is diagramed in Figure lj.12. The
output of the phono pickup is fed to a third octave band filter to select
the mode, and the mean square is taken as for the ribbon. The results
of this experiment are shown in Figure lj.13. The coincidence effect is
again missing for the lower frequencies but comes in plainly for the

higher ones.
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Figure ljs1le Photograph of Bar Excitation Experiment.
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V EXCITATION OF INFINITE STRINGS
5.1 INTRODUCTION

In this chapter we shall study the response of infinite, demped
strings to noise fields having certain correlation properties. The source
correlations will be the seme as in Examples 3 and l; in Chapter III,

We shall do this for two reasons. First, we want to extend the methods
of enalysis from the finite domain to the infinite and obtain some of
the interesting results of correlation analysis. Second, the results
for finite strings have some interesting similarities to and differences
from those for the infinite case. We shall point these out as the exam-
ples are discussed., We shall attempt no experimental verification of
the results in this chapter, partly because of the difficulty of getting
the proper conditions and partly because the essential results are not

different from those of the preceding chapter.

5.2 EXAVMPLE 1, EXCITATION BY A PURELY RANDOM AND MOVING NOISE FIELD

In this section we shall consider an infinite string excited by a
moving noise field having the correlation properties assumed in Section
3.l,s We shall then examine the mean square energy density in the string

and the spectral distribution of the energy.
A. The Infinite, Deamped String

We now require the Green's function for the infinite string in a

viscous medium. If we write down the equation, it must satisfy
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If we expand this in a double Fourier integral

o0
| ik(x-ewt)
g = LTT:-é Sfdkdwg(k,w) e s 5,01
-0

then g is given by

_ ) e-i(k:xo- wt 0)
g - “ .
;202_ wa-iw p

Hence,
o0

g(x,t § x5,t,) = %‘- “dkdw

o {lxmx,)- w(t-tc )i

(W« ig/o . koc)(w+i P/Zi'koo)

3

when k = /kz- ﬁz/hOQ . ,forf<to

w-plane
If we now integrate this expression

> \ o

%
l k=i F/?_

over @) , taking care to choose the path —-*

so that the integrand is zero as we

close the "loop," then we have by the

Cauchy integral theorem, Figure 5,01

" E‘dk [ei{k(x—xo)-(-ié+ k o)(t-to)}
x

-] 8

g =

Q1

ei{k(x-xo)-(—i-% - ko )(t-t,)}
+ , for >t .

-k
o

There are no poles in the upper half plane, so g = 0 for t<t , as would

be expected from considerations of causality.
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e
o 1 ik(x-xo)- é(t-to) )
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g(x,t 'xosto) = 5.02
| © (t<t,)

Since later on we shall want to have the spectrum of the response, let

us leave the Green's function in this integral form. For the infinite
string the mean energy is just é ‘g(uz) » and so we are really interested

in the velocity response of the source rather than the displacement response.

If we define [ = 3z , then we have

ot ° ‘e ik(x-xy) - £{t-t_)
’?Idkkl o e [ﬁ sia k o(t-t,)
T Gotlx,b) = |°d 2 5403

A
~ke cos koc(t—-to)] ; (¢ )to)

O ' .
L 0t<to)

The mean square velocity, where u = —g{—, is

+ (- -]
(u2(x,t)) =“ dt dt! [Idxodxér(x,t lxo,to)r' (x',tr | x(’),t(’))
-0 -00
5404
<f(xo,to) £(x!,61)) v

Bs The Source Correlation

As before, we shall picture a stationary force field, purely random
in the x dimension and then dragged along with a velocity v to produce

the source correlation

{elx vt )r(xt-vt2)) = D§(a-vg) . 5,05

This will now be placed in the expression 5.0, and the energy of motion

calculated.



Ce Calculation of the Energy
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Picking out the terms depending on ,P » one has

O - Lleaxr)
Sdpe e = hrd(k+xr) .

Integrating over k' and ¥ , one obtains easily

L xD P M 2 74 ”dk -ikg [ 2.2 o
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2

where we have again put y = 2‘0-/;. and o = v/c . The integration over

¥ is involved but hes a simple result.

ry P 1T A
<u2> = L-L'Lg fdo' e /ﬁfdke‘
- ¥ —oo

-

(E- coskz--—-]-'—sink E!-).
‘5 ot 2k, o o
This expression must be integrated over positive and negative values of

O independently and then the two integrals added. With this done, the

result is

5.08
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where A = éi 1555_5. . This result is interesting because it tells
-o

us how the energy is spread over wave numbers. First of all, let us define

a correlation length for viscosity as we did in Chapter III by
L = . 5.10

If we assume that the viscosity is the same as before, then Lo =20L,
where L was the length of the finite string. This artifice enables us
to compare results for the same wavelengths on the finite and infinite
strings, We shall then define the variable E = E s, Where b is the
wavelength = ggi . The values ; = E (m = 1, 2, ---) represent values
of ; which are equivalent to the eigenmode wevelengths for the finite
string, If we do this, then the spectrum in terms of wavelengths is
o‘-l

, 5.11
° hOO(;l-g - 1)+ ge

q)(;) = 8011621.

such that

-S\p(g)dg - (B

In this equation, we have been able to evaluate L0 (or p ) by assuming

the viscosity mentioned above., When we do this, we know that Ql (from

L 0
Chapter III) = 10 = %—E , or 2 = 1? . The spectrum ¥ is plotted in
Figure 5,02 in units of 80 °2Lo‘ There are several interesting fea-

tures of these curves which one may notice before going on to the calcu-
lation of (u2> .

The first interesting property is the wavelength cutoff (the point
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' 1
where the spectrum is /2 its value at g = 0), given by
1
eMloy=gn-1
; cutoff ~ L

L 5.12

Here the viscosity correlation length, along with the flow velocity,
governs the spectral excitation of the string such that for wavelengths

>?L ;c one does not get excitation, but for bee¢L ;cutoff the

utoff
excitation is large. This cutoff phenomenon is more pronounced as one

approaches o = l. The diverging result at o = 1, namely Q(s) = _EZ ,
is limited by the finite bandwidth of the source. Actually, any sourice
hes a finite bandwidth and the finite values of \f(g) at $= 0 are
idealized. This explains the reason why, experimentally,*coincidence
for turbulence becomes sharper as the mode number is increased.

If we now select various values of g and plot the spectrum \P as
a function of ® , we get the curves in Figure 5.03. Since a value of
; = 3,18 is the correlation lenghbh due to viscosity (3.18 = ;—:2 = %)),
we expect that for g values much smaller than this the coincidence ef-
fect will be strong, and for those larger the effect will diminish. In
general, for short wavelengths the coincidence effect is strong, and for
long wavelengths it is weak. Thus, after deferring the question in Chap-
ter III, we see that the length L = €. does behave as a correlation
length in much the same way as does the characteristic length of the
source l =c¢cT.

In order to calculate (uz) s we now integrate the expression
\P(;) from - 00<44e0. That is, we perform the integration 4.09. By

the Cauchy integral theorem this is

*See Figure l.08.
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Since this is such a simple function, we can point out its features

without a graph. It starts from zero at ¢ = O and has a singularity

at o = 1 . It then trails off slowly for O{»> 1 with (ue) =0 as

an asymptote. Sinceq) (g ,o=0)E0O and@ (i sol=1) = -il-z , the

first integral over % vanishes and the second diverges as we stated above.
We now wish to consider the response of the infinite string to the

moving and changing field of Example li of Chapter III.
5.3 EXAMPLE 2, THE RESPONSE TO A WOVING AND CHANGING NOISE FIELD

Let us now use the source correlation function of Example l; in Chapter
III to obtain some idea of the response of an infinite string to turbulent
flow in the direction of its length. We are now particularly interested
to see how the correlation length £ = ¢ for the source affects the
excitation spectrum of the string. We expect that the effect will not
be dissimilar to that produced by the viscous correlation length Lo

in the preceding section.

A, The Noise Field

As in Chapter III we assume that the correlation function is

- 1%l
(f(xo-—vto)f(xg-vt;)) =Dé(a-vyg) e Y ,

where we have set the dependence of fluctuation strength omn flow velocity



equal to one. The integration over L ,@ is now from -00?+e0 since

we are concerned with an infinite string.
B. Calculation of the Average Energy Density

We start with the relation

(o ) = “ dt dt! Sde ax! Tyt | x L8 )0 (0,8 |50, 810)

* D9(g -v ) e-‘n/T

- o
Since the first integration is overyg , the exponential becomes e /Vv't R

and since the integration over @ does not occur until very late in the
calculation, we may omit the analysis (which appears in the previous

example) up to the @ integration. Referring to equation 5.08, we get

2. Lad [ (g_*_)m o KT o o 1 .
(u)::-gj (EGOSKO;-EE; lnko
C
- 60 -~ 09

If we agein define ¢ ¢ = Q@ , the correlation length for the source, and
°/p = Lo , the viscous correlation length for the string, we see the
almost equivalent roles they play in the exponential term. The primary
difference is that p also affects k,, the wave number modified by vis-
cosity ( k2 - pz/l.;ce)'/t.' For the part of the integral where T > O,
the result is

L4 i—

«D o:#‘?
Lé f Plgp - D+l + B) vk D)

and for ©°< 0 it is
1

[ )
7 dk 2 1 v .kll 2 .
we™ I E(gm - ”*#%*ﬁ- Fe+ %)
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The result is then the sum of these, or

o L, 1 1 L 1 .1
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These expressions give us the excitation of the string in wave number.
2N 10

If we set k=-5—,Lo L, £ = )L,and? ,wecanobtaln

a spectrum to be compared with that in the previous exa.mple.

If we meke these substitutions, the spectrum Q(; ), such that

> %8
GRS ETVI 5.17
is
Doy . %2 {102 (Zee 1)+ 2 - 22t D)
(A |1 - «2|2 (b '{lk-sz)(uu +% k22L2) '

This is plotted in Figure 5.04 as a function of i for various values
of &, for A = 0.1, as before, and L, = l()/‘Y(L. It is interesting to
note that the shortening of the correlation due to the decay constant
has a very profound effect, particularly for the curves near the value
o = 1. In general one may say that the effect of finite correlation
distances (or times) in the noise field is to produce an excitation

cutoff, particularly near the condition where the flow velocity coincides

with the phase velocity.

5.18
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Figure 5.0l Svectral Response to Moving and Changing

Noise Field,
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Let us now proceed to integrate 5.17 so as to obtain the kinetie
energy density, which is the only energy in the infinite string. By

Cauchy's integral theorem, the integral is

Lo 1 } 1 L 1.1

1—(721' 1) t57 —iﬁ(—!——-l' E-o)
%)

. 2
21k1(k1 + K

. 2f 14
<u2> - 8NP P2 ki) [ ! {

By using 5.16 this becomes

8’!(202(k1‘\' k2)

2 (doa1)(ypip L
Al a A gl

X
"

L
{H- 19(-5-2 - 14 0(2)} .

This is plotted in units of 8‘!!.202 in Figure 5.05 for the same values

of A = 2/1, ana L, as in Figure 5.04. Again we get the singular be-
havior at ¢ = l. A source with a finite spectrum would modify this
behavior a good deal, depending on how much high frequency component

it had.
5.]; CONCLUSION

The infinite string is of particular interest since it tells us the
excitation pattern of the source uncomplicated by boundary effects. For
the higher modes it seems reasonable that the finite string should be
excited very much to the same degree as an infinite string would be over
the same length. This also indicates to us the advisability of carrying

out theoretical analysis for more complicated systems assuming infinite
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extent, particularly when the dimensions of the actual object are long
compared to the correlation lengths of the source.

With this chapter we complete the examples which illustrate the
response of strings to random noise fields and now consider the problem
of the creation of the random noise field, We shall attempt to form,
by a random superposition of elementary sources, the noise field cor-

relations which we assumed in the two exemples in this chapter.
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VI THE EDDY PROBLEM

6,1 INTRODUCTION

Thus far in our work we have assumed that a noise field exists in
space which we are able to represent by its correletion function. 1In
many problems it is not convenient to measure the correlation of the
source directly, and one would like to infer its properties from a know-
ledge of the elementary processes which create the total source noise
field. There are many situations in which a noise field may be thought
of as being made up of a rendom superposition of elementary sources.

One femiliar exemple is the "frying" of a teapot before it begins to

boil, where the elementary source is created by the impulsive collapse

of vapor bubbles when they emerge from e super-heasted region into a cold
environment. One feels (quite accurately) that a knowledge of the
spectrum of the elementary process and the distribution of events should
go e long way in predicting the source correletion field. It should

be added that any correlation between fhe events of the elementary proces-
ses must also be considered. _

Although in this chapter it will be assumed that the elementary
events teke place independently of one another, it should be borne in
mind that in many importent processes this is not the case. Consider,
for exemple, the excitation of a lecture room by applause. If it is a
large room, I have observed that people seem to applaud independently of
each other -- at least the correletion would be rather short range compared

to the dimensions of the room. On the other hend, in a small room the
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applause is so well correlated that the excitation seems to be nearly
periodic. An analysis assuming independent source events would almost
certainly be in error for this situation.

In a well known paper, Ric;u;as analyzed thoroughly the statistical
properties of noise currents when they are caused by the superposition
of a large number of elementary pulses. These pulses are thought to occur
rendomly in time; and by assuming a probability distribution for their
occurrence, such quantities as the signal spectrum, correlation function,
and distribution may be calculated.

Extending Rice's treatment of the "shot effect" to thé space dimen-
sions as well, we shall assume that our noise field is & superposition
of elementary sources and obtain the spectrum, correlation function, and
the first order probability distribution function in terms of the proper-
ties of the elementary sources. These elementary sources will be termed
"eddies" in deference to the central position of the turbulence problem
in this thesis.

These results will then be applied to some simple distributioné of
elementary sources in order to create some of the source correlations
assumed in Chapters III end V. In addition, an attempt will be made to

approximate the turbulent field by a random superposition of vortex ele-

mentse.
6.2 CALCULATION OF Wl(f,'x‘-,t)
let a particular eddy, sey the ith one, be denoted by

- -
bio'(r 'yi,t - T':l) F)
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where ;i,Ta is the point in space and time at which the eddy is created
(or attains some specified value). We shall require that a possess a
Fourier transform in time and space. That is, we insist that

T
lim f at [ af o2(3,¢) 6.01
V,T=+e Yo v

exists and is non-zero.

The emplitudes bi are independent random variants and are governed
by a probability distribution w(b). We assume that a(T,t) is of such
a form that

J wo)aw =1, 6002
all b

since this can always be accomplished by normalization.

The probability distribution which governs the occurrence of eddies
is often easily inferred from the physical situation. We shall place
no particular restrictions on its space and time dependence at the moment,
but shall merely represent it by P(§,7). We shall define it by saying
thet, if in the period O,T and the region V, a single eddy occurs,
P(¥,7)dydT is the probability thet it will occur in the region and time

d§,d¢. This places the restriction

j(\) Tdrfvd'§ Py, T) = 1. 6.03

The forcing function f is thought to be a superposition of the eddies,

that is,

f(2,6) = T v,a(35,,6-7), 6.0l
1
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This notation requires some explanation. The supersecript (i) on f means
that this is the noise field resulting from a particular set of random

parameters bi;§i’1§‘ From this summetion of independent random varients,
we should like to calculate the first order probability distribution for

f, Wl(f,?,t).v We first select out all those situations which have a certain

number, K, of eddies from O-+T, Then we can write

oo

W (£,2,¢) = J_ (Probebility of K arrivals) + (Probability that
K=0 6005

if there ere K arrivals, f will lie between f and f df).

If there are K arrivals, the source function is

K
£ (r,t) = L b.a(fy.,t-T) . 6,045
K j=1 J J J

Since each term is an independent random variable, the sum has the

28

distribution,

0 X .

af -iuf ib-a(°3,5.)
dfw(fK_)-_--nIe T"(e I3 3>ave du , 6,06

- 00 J=1

where &‘j =TF., §, = t-T. Since the distributions for ¥,Tand b are
773 J

known, these averages may be calculated., The distributions for each

value of j are the same, Hence we may write

¢ —iuf - K
df wie,) = %{_‘f du o (fav§ of favw(v) B(3,7) exp{iuba(c,‘g)}) . 6,07
g, 0 v

We now need to know the probability that K, and only K, eddies will
occur in the region O0,T; V. This is obtained from Poisson's law of small

probabilities, The probebility that the eddy will occur in the region
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d}",d‘t is extremely small, and under such conditions the distribution

of the number of eddies over a given region of space and time is

F
p(K) = = &V

=3 s 6.08

.-

where ¥ is the average number of eddies occurring in V from 0-T,

29
This is known as Poisson's distribution and has many convenient properties
(one being that Y equals the mean as well as all the semi-invariants

of the distribution). Placing 6.08 and 6.07 in 6.05 end suming gives

)

T
Wl(f’,?,t) = L sdu exp[ -iuf+vf dT d; jdbw(b) P(§,T)

2n g 0

6.09
* (exp { iuba} - 1)]

by virtue of the Taylor expansion of the exponential and equations
6.02, 6.030

We are interested in seeing just what the distribution Wl is for
given values of a and v . To do this we introduce the semi-invariants

of a distribution as the coefficients in the expansion

o9

Rn (eifu> = Z A-E (i)™ , 6,10

1
ave M=l me

30
where A o is the mth semi-invariant. From 6.09 we have

. T
Ln <9lfu>ave = vj; a-:Ad’:} fdbw(b)P(‘{r,'r) (exp {1uba} - 1) , 6.11

And the expansion of the expression of the r.h.s. of 6.11 is

(- )
L
me=1l

(1u)"
m!

T -~y
vj; dc:/vd'}'r‘fdbw(b) P(y,T) - b a" (@,%) . 64115
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Since a(a' ,‘S) may be considered localized in extent in space and time
(because the Fourier transform exists), let the temporal extent be given
by & and the spatial extent by—g « Within A of the time limits O

and T and within ; of the surfaces of V, the integrations above over

a.ndzj may be replaced by infinite integrals. Hence, by identification,

the mtP semi-invariant of 6.09 is
oo
vId1Id§ f dbw(b) P(¥,T) b" o™ (3’,‘; ) . 6.12
-08

By placing 6.1l into 6,09 and integrating term by term, one obtains

Edgeworth's series,

-l -5
s elglo)y AZT " (3) a’ W
(et 2 olglolx) - el A [ Aﬁz— o M)
6.13

"7
<+ .A_E..._.. ?(6)( )].'.....

£-Ay  p- &£ C a2 and f0)(x) o L &
z po ,)2-6,811}5( x-ﬁdxn s

where x=

which is the nth eigenfunction of the harmonic oscillator. The terms

-1/5

in Edgeworth's series are in decreasing powers of ¥ in the order ¥ s
¥ -1, and the term in square brackets goes as 9-3/2. Hence, as the
frequency of occurrence of eddies increases, the distribution of f ap-
proaches a normal distribution, provided that the semi-invariants Am
converge. From equation 6,12 it is evident that if we use a point source
for a(a'",'s’ ), the A's above mel do not converge; hence T*02 and the
distributionVW(f) does not exist. There is nothing catastrophic about

this. In many problems we are not concerned about the distribution, and

in nature 6 -functions do not exist anyway. We shall merely not concern
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ourselves about Wl(f:f'.t) when we use § -functions as elementary sources.

]

6.3 THE CORRELATION FUNCTION {£(F,,t.) f(ra,tr°;>aye

On the face of it, the last sentence in the preAceding paragraph would
seem to destroy the theoretical basis for the examples of Chapters III
and V, That is, the basic equations which were used were derived on the
basis of the validity of equations like 2,115, which use Wi(f), Wé(ff'),
etc. However, the examples used correlation functions like 3 (g - U']' ),
which as we shall see, may be obtained by & superposition of § -functionms,
in which case the W 's do not exist. We shall avoid this difficulty,
however, by averaging over the paremeters bi’ ‘;i’ and Ti since this
is an equally vealid procedure for ensemble averaging. That is, any
particular ensemble member f(i)(?,t) may be considered as defined by
a particular set of parameters bi ’3;5. s ‘[i and the ensemble aversage per-

formed by averaging over these paremeters.

According to this the product f(l)(r ,t,) f(l)( 1.t1) is given by
o> - L - -
£(Foat,) f(T80) = T vboal(w ¥ )al@l YY), 6. 1L
i,qel =Y 1 373

-> -l
where g' = r! - '=t! - .
VJ o} yj * S'j (s} T:j

We now average over the totel number of eddies, i.e., wo form the sum

Z— P(K) f( )(I’O,t ) f(l)( ’ t ) _ 9 -v.
X=0 K1
K —
. 5_5}1 bibja(fi:r ;) a(qs_’ xs) .

There are K terms for which i=j, and there are K(K-1) terms for which
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i ;_/ j. Integrating over the pareameters b,'fr,'r s one gets

o
-A a' 1 -v vK T T o
(f(ro,to) f(ro.’co» ave = © ZE{K-‘; d'l'l"j; dTK.!; dy; -°
K=0

\‘f;dnydeHSde * MYy, T,) o P(§K, T w(oy) =
R . T T
W(bx) a(o'i,'gi) a<°"1'§'1) +K(K-1)fo d?l-vf; dTK55§1°'

Y - -
JV‘ dYK sdbl.. fde ° P(YJ_: q‘l) . P(}’K, TK) W(bl) o

w(by) (@, Y, a<§3,33>} :

The first term on the right:is

T
f ar j‘ day S' ab w(b)Pa(FoF,t,-T) alF!-5,6:-0)
o Jv

which will be denoted B {a(?o,to) a('::'c'),té)} . The second term is

T AT
f d'rf ao fvd§fd? fdb J‘dc w(bw(c) be a(Fy-y,t,-T ) » alri-Z,t2-0) ,
o Vo v

which may properly be written

()2 {a(?o,to)} {a(;{),té)} .

This second term represents the steady part of the force. If we do
not wish to work with "d.c." forces, we may choose w(b) such that b=0.

In any case, we have

- ") - - =2 2
(f(ro,to) f(?-é,t:,)) ave = DOV {a(ro,to) a(ré,té)} t by

. {a(?o,to)} {'a(?('),t(‘))} ,

6¢15
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ol K od K
since Z ?- e‘)’- K=y, and L b e'p(Ke-K) = 92 .
0 K! 0 K!

The equations for the coefficients can be obtained from the properties

of the Poisson distribution, which were stated above. If we set

<K>ave Em , <K2)ave ey,

then, by straightforward expansion of the probability functions, one

can show that

mt;‘:Al

2
A2+ Alml = A2 +oo .

Mo

It was stated that for the Poisson distribution all the semi-invariants

were equal to Y . Hence

ml = <K>ave v

and

(k) = K)o = (KD pro = V4 v2 -y =v° .

This gives us, then, a way of celculating the correlation function for

f when we know a and the distribution of its occurrence. Since we

have the correlation function, we shall not derive the spectrum of f
directly. If the probability P(T,t) is a constant, the noise field is
stationary and homogeneous, and the relations between the spectrum and

the correlation function in Section 2.3 - D, under Fourier Representations,

must be used. If P(?,t) is truly a function of T and/or t, the source



~11-

will be non-homogeneous and/br non-stationary, In this case the relation-
ships in the same section under non-stationary processes (2.3 - E) may

be used.
6.l; THE CALCULATION OF SOURCE CORRELATIONS

We sheall now attempt to combine elementery point sources in such
e manner as to produce the source correlations for the moving noise field.
Let us first picture a string of length 2X with its ends at +X, =X,
We shall assume that at a time ta there are point sources created with
equal probability along the length of the string, and they immediately
begin to move to the right with a velocity V'. The elementary source

is given by

a(x-yit- 1) = [ 8xy- v(e- T} (6>7)
6.16
0 (teT;) .
i
We shall assume that the amplitudes bi have a distribution like
w(b) = 2 {é(b-l)i-S(b +1)} , 6.17

in which case
Y= Sw(b) bdb = = (1-1) = O

W = Sw(b) vedb

=

%(1+1)=1 ,
and

1
j'w(b) db = 5 (1+1) =1 , as required by 6.02.
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The probability P(y, 7) becomes

Py, T) = = & (T~-1t,) & 6.18

R

Then

T X
{£(xg,t,) f(x(;,t(;))ave -2 fod'ré('t -ta)f.x dyg(xo-y_v(to_”)

2X
$ {xc"-y-V(tc')- T )}
1Xd8(x -v (t -t ) ' (-t % (t.,t'>t
= ZXI Y o™ ° a}é(x JRAMARCH oj ( o’ 0? 8)
-X 6,19
0 either to or té(ta

For the upper possibility we let X942 and define

_lim ¥

B e 2X

[

Since VY is the average of the total number of eddies created, n is the
average number of eddies per unit length. Integrating over y and letting
the creation time ta—. - #, we have, using the transformation defined in

equation 3.11,
(2lx,t,) 2(xg,80)) = nél@-vy) 6.19

which is the correlation function for Sections 3.l and 5.2.

Let us now proceed to another situation. Suppose we assume that
eddies are created randomly in time and space uniformly along the string
and uniformly in time. We assume that they are created with magnitudes

(or strength) equal to 1 and that they immediately move with a velocity
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v to the right. As they move, they decay according to an exponential

law, Hence for an eddy created at T _ ,y. we have
i™vi

b. ~{t, =T
boalx =y, b~ T;) = = & (xo-y;-v(t,- T3)) ulto- Ty) o (ts=%) /e s 6420

[}

where the decay constant @ is included as a coefficient to make the total
integrated force of a single eddy independent of ©; and u(’co- '!i) is
the unit step function which is zero for t, < Ti and equal to one for

t 2 ?;,' Agein we have

5=0, =1 .

If we assume that the string extends from -X to X and the time interval
is from -T to T, then the probability P(y,T ) is just L%—T o Accordingly,

we have

v AT pX
(£lxgut,) £x3,t0)) oo = ;--%{-;fT drfx dy u(to=T) u(tl-7)
T 6.21

+ § {momylto= T} § {xgmy-vley-T)) g lat )t 2T

If we let the space and time limits extend to £ o® , then we define

lim v

X;Te%  [xr "

where m is the average number of eddies created per second per unit length.

We now integrate over y and obtain

>’ S(to+ L) 2T
£ z J’ ki
( >ave = ;2_0:1‘! u(t -T) u(tl-7) $ (®-vy) e .

In the case that t,Y tc'), or J’ ? 0, we have
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X
(v

<ff'>ave _m e-(t°+t6)/9 5 (T -V'S) fté dTeZw/e

)

ol S(U’-v‘g) 9-3/6 .

1]

And similarly, if t < t§ or § €0, we obtain

S/e

n +
“2-§£(¢-v3-)e .

22 o

Hence we obtain the correlation funoction

-1%l/e

(f(xo,to) f(xg),tg))) ave = 1-2‘1-9 $ (f—vx) e . 6.22

which is identical to that used in Sections .5 and 5.3.

We have illustrated how a knowledge of the elementary source may
be used to form the correlation function of the total noise field. It
would be interesting to see if one could obtain a representation of the

turbulent field by such a procedure.

6.5 THE SPECIFICATION OF TURBULENCE

The problem of the description of turbulent flow has been actively
dealt with during the past few decades, with the nemes of A. N. Kolmogaroff,
W. Heisenberg, A. A. Tovmsend, G. I Taylor, and O. Reynolds in prominence.
The problem is complicated primarily by the non-linear character of the

Navier-Stokes equation, namely

o

el | =y 6.2
v PVP*'VVu s 3

o

where =— =2 2 4+ U*V is the rate of change in time of any quantity as

pt Ot

we move along with the flow; U is the flow velocity as a function of
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T and t; p is the pressure;f is the fluid density; end ¥V is the kine-
matic viscosity. The second equation governing the flow is the equation

of conservation of mass, commonly referred to as the continuity equation
P1g.(pd)=o. 6.2
2 F b

If the flow is incompressible, the density is constant as the fluid

moves along,

Dp
5 = °

s

which is equivalent to
div @ = O, 6.25

This situation would seem to be primarily concerned with the motion
of incompressible fluids and to be inacocurate when applied to compres-

sible fluids. However, we can always write any vector 2 like
e - grad £ +curl Xz ?11-\»?12 . 6.26

Now '131 is the acoustic part of the motion, while ?12 reprasents the

®

"hydrodynamic," which is vortical, If we take the curl of the Navier-

Stokes equation, we get

(= R

:vvaa’ » ) 6.27

A ‘ A . . s A
where @ = curl u = curl curl A. This is not to imply that the u; does
not contribute to the random pressure and velocity fluctuations in
turbulent flow, but these will propagate with the velocity of sound and

not with the average flow velocity, as we saw in Chapter IV. The fluctuations
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due to '1:1 are commonly called aerodynamic noise. Hence, if we are primarily
concerned with the fluctuations which travel with the flow, we shall con-
centrate on the "incompressible" part of compressible fluid flow.

@ is called the vorticity and is related to the density of angular -

1
momentum in the fla:mr.3 When the fluctuations are small enough,* one

may ignore the second order terms like QWD and write

-l
w 2

-9

[ 4

@=0 , 6428

CARS
I
t

which is a standard diffusion equation. It is well knom:?]%hat vorticity
may be introduced only at the boundaries of the medium and that it then
diffuses into the fluid. The diffusion operator is a statement of the
conservation of the quantity which it operates on, indicating, as is
well known, that vorticity is conserved in any unbounded region of fluid,.
If we then associate vorticity with the hydrodynamic part of the
turbulence and assume the correctness of the linearized equation 6.28,
then we may obtain the elemehtary solutions which are the impulse Green's
functions for the diffusion equation. That is, if we have the operator

i‘in Chapter II become

=g2._.123
L9 -5 ¢ 6.29
%2
then the Green's function is
n '? 'r' |2/
- 1 - “to
(rst ) F,,t,) = Lhnw ( ) e Ly (t-t0)
g oo 2 Jnv(t-to)
6630

« u(t-t,) .

*As usual, "small enough" is not an adequate phrase, but the consi-
deration: of scale length and decay times is too involved to be dealt

with here.
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Again,'?o,to is the source point, u(t-to) is the unit step function which
is zero for t<t and + 1 for t ?t,, and n is the number of dimensions
equal to 1,2, or 3. In order to save ourselves the complications of
dyadic Green's functions, let us assume that we are concerned with two-
dimensional flow in the x-y plane, in which case n = 2 and the single
non-vanishing component of the vorticity is an. By our formalism from
Chapter II we may immediately write the expression for the vorticity

correlation function,

t ¢!

{w, (7,t) wz(?',t')> ave j‘r dt dt? S‘dv dv! {(t-t )(t_t')‘

I#-7.]° /v (t-t) 'r w3 /v (£7-t3)

e
- (H(F0t,) 2(70,60)) gre

This formula would be appropriate for use in situations where the vorticity
is created in more or less open regions, as in the widely used situation
of turbulence created by passing flow through a wire gauze, Should the
turbulence be created on boundaries and there be no volume sources, one

can use e similar expression replacing the volume integrals by surface
integrals (or line integrals for two-dimensional flow), For s region
"driven" from its boundaries in two dimansions the solution may be

written
ow ?
(r,)-ﬂ-xdtfdl[ganz- 7-5;?] , 632

where g is now the appropriate Green's function for the bounded domain.

The integration is a contour integral around the surface profiles in
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2
the x-y plane whence d f.o = ((cﬁto)2 + (dyo) , and a—%; means ’the deri-
vative with respect to the outward normal of these surfaces. Since it
is the production of vorticity itself which we specify along the boundary,
we choose g to be zero on the boundary. This determines %’ for the

domain and one may then write

. R 1 ot et
w,(Ft)w (F1,21)) = == _S; go dt dt! SSC a0 af

ave
6.33
) T,t | T,,t O0¢(T',tt) Tr.t - s a8
£ £ %o to) 9%(F 'Nic',l Aat8) . (W, (F,%,8,) 0 (F 142)) ave
o

where we have averaged the product of two solutions over the ensemble,
The superscript ° refers to values on the surface of the domain. This
kind of calculation could predict the vortieity correlation in flow
between two parallel planes, and we would expect it to give reasonable
results as long as the turbulent components did not become too large
compared to the average flow. If there is an average flow, we may either
transform the ‘f,t,'z"',t' system above to a moving frame of reference,

or we might replace the operator L above with
- ol _1 (3 7V) 6
L: v - 9 3t ¥ v s 3L

where v is the average flow velocity.

The method above has the advantage of structural unity with the
procedures set forth in Chapter II., However, the integrals to be evaluated
are extremely involved for even the simplest kind of vorticity source
assumptions. We shall then proceed to a treatment of turbulence correlation
functions which uses the results of work done by G. I, Taylor on the

33
decay of a single eddy.
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6.6 THE SUPERPOSITION OF DECAYING EDDIES

Taylor's analysis of the single decaying eddy assumes a flow pat-
tern in the x~y plane., The eddy is centered at r & x2+y2 =0 and
has only tangential velocity Ug He considers the forces operating

on a cylinder of the fluid, and from the equations of rotary motion

he derives the following differential equations

2 '

4% 14% _14¥ :

are + rdr ¥4 ’ : 635
where u 4 = g—g- . It is not hard to show from the definition of &

and the condition of incompressibility that § is just the negative of
the single non-vanishing component of the vector potential for the flow.

That is,
Ao kb, - 6436

where ¥ is the unit vector in the z-direction. The solutiozi to 6.35 is

4 - E o1 , 6.37
where 1 :Fr; .« When this is differentiated, the wvelocity ug is

ug = Bt~/ '1 0_12 6438
where B = - % .

This is Taylor's result. It is easy to show that this velocity
distribution will not satisfy the vorticity equation 6.,27. This need
not concern us, however, since many approximate solutions which give
very good results for asymptotic regions do not satisfy the fundamental

exact equations. A good example of this is the solution of the equation
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of motion for bending waves on e thin rod which does not satisfy the
equations of equilibrium for an elastic solid.

Since we believe that it is primarily the hydrodynamic pressure
fluctuations which excite the ribbon in Chapter IV, we would like to
know the pressure field resulting from the velocity distribution in
6¢38. Accordingly, we write the component Navier-Stokes equation in

the radial direction,

2 ap Us 13 2 2p .2 Ch
| P T Pre i pp ede) = - SRR Y IR . 639

The first term on the l.h.se. is zero, and in the second term we use

o
a ‘ s - :r ’
giving us
u2
-%'5 - "—": . 6.)40

Since we know u* » we can integrate the r.h.s. of 6.0 and obtain for p

P 2
p(r,t) = LB e“2 K . | 6.141
3

Thus, the pressure is a Gaussian having emplitude and a spread dependent
on its age t. If this pressure distribution travels along the ribbon
of Chapter IV, the total pressure exerted on the ribbon may be taken to
be

0 2
£(t) = jo 2xrp(r) dar = rEVE

242

as long as the spread of the eddy is less than the width of the ribbon w, or
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Wzmc

If t = %? represents a time over which the total pressure of the eddy
has decayed considerably, we cen take this pressure pulse to be a 6-—
function., In such case, for the one-dimensional analysis of the ribbon,
the eddy would be assumed to be lt—v-%ﬁ 6 (x). Since the eddy strength
goes to infinity as t+0, we shallezssume that the eddy is created at
some time & . This is reasonable for the Taylor analysis, which would
not be expected to be valid for t near zero since this means very high

values of u g, and no linear theory could be adequate. We choose the

amplitude B such that the elementary excitation is
alx,t) = (-—l-—- §(x - ve) , 6.2

where the eddy immediately begins to move to the right after it is
created. We may now calculate the one-dimensional pressure correlation
field using equation 6.,15. Because we are only interested in the fluc-
tuations in the pressure and not in the average "d.c." terms, we shall
only calculate the first term on the reh.s. of equation 6.15. Calling
the creation piace vy and the time 't'i , we shall assume that the eddies

are created uniformly in time and space, that is

1
P(y:‘r)Iﬁ .

In such a case we have
+

é (x-y-v( t- T)}“x'-y-v(t '- "t')}

°0 T
lim
A d a(x,t)a(x',t') =m dyjd'c'
X,Twes { } .‘L it (£+@-7 )2 (tw® -1)° -

where

6. 3
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Tt if t<t!

+ lim v
T'=t' if t>t! and m = —
’ X,T9e [XT
Integrating over y yields
.T‘l'
1
- (t+@- 1)< (¢'-O-7)

where ¢ = X-x' , g = t-t' . This integration is straightforward but

rather involved, The result is

; (5<0)

\" a(x,t)a(X',t')} z 6.14y
('g) 0)
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The use of this expression as a source correlation would complicate the
integrations substantially. However, one could attempt to compare the
hydrodynemic pressure correlations in a turbulent field with the depen-

dence as predicted by 6.Ll.
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