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ABSTRACT

The contribution of the boundary layer to the sur-
face pressure on a long blunt flat plate is calculated
for a free stream Mach number of 7,6 and a free stream
stagnation Reynolds number of 95,700. The plate is
assumed to be insulated and the Prandtl number assumed
to be unity, Non-isentropic effects produced by the
curved bow shock are included by allowing for a variable
stagnation pressure at the edge of the boundary layer,
Isentropic calculations are carried out first in order
to provide asymptotes which non-isentropic results should
approach near the leading edge and far from the leading
edge, The stagnation pressure is then allowed to vary
along the edge of the boundary layer, but as a simplifying
approximation the static pressure is at first assumed to
be constant along the plate, Finally, the complete problem
with variable static and stagnation pressures is solved,
Integral methods are used throughout, in conjunction with
Thwaites' approximate universal relationships.

Thesis Supervisor: Morton Finston

Title: Associate Professor of
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CHAPTER 1

INTRODUCTION

1.1 Statement of Problem

When a blunt body travels through the atmosphere

at a high Mach number, the proximity of the bow shock

to the surface of the vehicle suggests that the boun-

dary layer may have an important effect upon the surface

pressure distribution. Inviscid theories are usually

modified to allow for the presence of a boundary layer

by modifying the actual body thickness to include some

measure of the boundary layer thickness, and applying

the inviscid velocity tangency condition at this modified

surface rather than at the actual body surface. This

procedure must be iterative because some kind of a sur-

face pressure distribution is necessary in order to

calculate the boundary layer thickness in the first place.

One may thus proceed as follows: Calculate a surface

pressure distribution using an inviscid theory, such as

the blast wave analogy or the method of characteristics,

With this pressure distribution, calculate some measure

of the boundary layer thickness - in particular, the dis-

placement thickness. Modify the inviscid pressure distri-
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bution by assuming the body thickness has been increased

by the displacement thickness, The simplest possible

correction to the inviscid pressure distribution may be

calculated by assuming a Prandtl-Meyer expansion about

the modified body shape, with a local slope equal to the

local slope of the boundary layer thickness. This simple

procedure will be used in this paper, It is justified as

long as the body under consideration has a smoothly varying

slope. With the corrected pressure distribution the boun-

dary layer displacement thickness may be recalculated, and

this iterative procedure may be continued until the dis-

placement thickness converges to some final distribution.

If in addition to a blunt nose the body has a large

length-to-thickness ratio, the effect of the curved bow

shock on the boundary layer becomes significant. Stream-

lines intersecting the shock at different points undergo

different entropy losses and consequently different stag-

nation pressure drops. The curved shock will therefore

cause the stagnation pressure to vary within the flow field,

As the boundary layer thickgns along the surface, it will

grow into this region of variable stagnation pressure, which

will affect the velocity and static temperature at the edge

of the boundary layer.

The problem to be solved is the calculation of the

boundary layer influence on the inviscid pressure distri-



bution over a blunt body of large length-to-thickness

ratio, allowing for the effect of variable stagnation

conditions along the edge of the boundary layer. The

approach developed is applicable to two-dimensional

blunt bodies of general shape, provided their slopes

vary smoothly. However, the solution is carried out in

detail for the particular case of a flat plate with a

semicircular leading edge, placed at zero angle of attack

in a stream flowing at a Mach number of 7,6, Experimental

and semi-empirical relationships are used to calculate the

static pressure distribution along the plate, The calcu-

lation of the pressure correction produced by the boundary

layer will then indicate how much of this experimental

surface pressure has been contributed by the boundary

layer. This calculation will therefore show by how much

a pressure distribution calculated from inviscid theory

will differ from the actual pressure distribution,

1,2 Assumptions and Pertinent Experimental Results

The static pressure distribution along the plate has

been obtained from two sources: Along the semicircular

leading edge from the stagnation point to the shoulder,

data obtained from tests conducted at the Aerophysics

Laboratory of the Massachusetts Institute of Technology
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are used. Downstream of the shoulder, a blast wave

formula modified for better agreement with experimental

results is used. This formula has been presented by

Love in Ref, 1. The constants in the pressure formula

have been adjusted to match the experimental results

at the shoulder.

The free stream Reynolds number is high enough to

permit two important assumptions:

1. The boundary layer near the leading edge is

much thinner than the shock layer.

2, The effect of entropy gradients on the boun-

dary layer may be estimated by allowing for

variable stagnation edge conditions, disregarding

the inviscid velocity gradient normal to the

surface (see Ref. 2).

In addition, a hyperbolic shock shape is assumed,

with a standoff distance obtained from semi-empirical

results presented by Love in Ref, 3. Three simplifying

assumptions are also made: The Prandtl number is unity,

the heat transfer at the surface is zero, and the air is

treated as a perfect gas,

1.3 General Approach

In Ref, 4 Hammitt has obtained the pressure influence

of a boundary layer with variable stagnation edge conditions
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for the case of a blunt flat plate. His solution

involves the assumption of a one-parameter sixth-order

polynomial to represent the velocity distribution within

the boundary layer, The simpler, integral approach will

be used in this paper, in conjunction with Thwaites'
5 approxi-

mate relationships between the first and second derivatives

of the velocity at the surface, which hold for a one-

parameter family of solutions,

In the subsequent chapters the solution to the pressure

influence of the boundary layer is given for conditions of

increasing difficulty, In the first place, the entropy

gradient produced by the curved shock is neglected. This

is done to provide limits which the non-isentropic solution

should approach near the leading edge and very far from the

leading edge, as well as to suggest the possibility of rep-

resenting the actual blunt plate with variable static pressure

by a constant pressure plate. Secondly, the assumption of

isentropic flow is relaxed and the edge stagnation pressure

allowed to vary, As a simplifying approximation, however,

the static pressure is assumed to be constant along the

plate. Finally, the complete problem with variable static

and stagnation pressures is solved,
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CHAPTER 2

ISENTROPIC RESULTS

2.1 Asymptotic Approximations

Near the leading edge of the plate the boundary

layer is very thin and the mass flow in the boundary

layer will therefore be small, This small amount of

mass will be bounded upstream of the shock by stream-

lines which lie close together. These streamlines will

all go through an essentially normal shock and consequently

undergo approximately the same entropy change, Conse-

quently, the boundary layer edge conditions near the

leading edge of the plate may be considered to be isen-

tropic, with a stagnation pressuve equal to the stagna-

tion pressure at the nose, Very far from the leading

edge, the boundary layer is thick, and streamlines boun-

ding its mass flow will intersect the shock at points

where it is essentially a Mach line, Boundary layer

edge conditions will again be essentially isentropic,

but in this case the stagnation pressure will be equal

to the free stream stagnation pressure. Furthermore,

as the bow shock approaches a Mach line, the static



7

pressure will approach the free stream static pressure.

When variable stagnation edge conditions are allowed for,

it follows then that they will be bracketed by isentropic

results near the leading edge and far downstream. Because

of this asymptotic behavior of the non-isentropic edge

conditions, it is important to consider the isentropic

problem.

The above discussion suggests that the following

isentropic solutions should be examined:

1) An isentropic blunt plate (V.P,-C.E.) whose

stagnation pressure corresponds everywhere to

the stagnation pressure at the nose,

2) An isentropic sharp plate (S.P.) whose bow shock

is simply a Mach line, and whose.stagnation and

static pressures are everywhere equal to the

free stream values,

In addition, it will be found that the static pressure

distribution over the isentropic blunt plate (V.P.-C.E.)

soon becomes constant and equal to the free stream static

pressure. This fact suggests the introduction of a third

isentropic approximation. For this case, the static pressure

is assumed to be everywhere equal to the free stream static

pressure, while the stagnation pressure is everywhere equal

to that at the nose, This last approximation will be

referred to as the "isentropic-constant pressure blunt

plate" (CP,-C.E.).
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2,2 Pressure Distribution

As stated in Chapter 1, direct wind tunnel results

at a free stream Mach number of 7,6 are used to obtain

the static pressure distribution about the semicircular

leading edge, Downstream of the shoulder, the following

formula, given by Love in Ref. (1) is used to compute

the pressure distribution:

f + X - 1[ / ) ] (2.1)

The symbols used in Eq, (2.1) are identified in

Fig. 1,

shock

Pe Me

POI Figure 1

pS: shoulder static pressure

p,: free stream static pressure
po: leading edge stagnation pressure

a
p? : static pressure far downstream.

p,, P06, M,
P2 M 2

- koundary layer
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It should be noted that according to Eq, (2,1),

( X ) -p MP O1
This limit is consistent with the fact that as x increases

the shock approaches a Mach line, in which case the static

pressure approaches the free stream static pressure,

The edge static pressure ratio (Pe /PoZ) is plotted

in Figure 2, using a dimensionless coordinate -= //I ,

Since for these preliminary computations the flow is assumed

to be isentropic, all conditions at the edge of the boundary

layer may be obtained from the static pressure distribution

by using isentropic relationships, For further calculations,

the edge Mach number distribution will be particularly useful,

and it appears plotted in Figures 3 and 4, Figure 3 shows that

up to the shoulder the edge Mach number increases linearly

with ,

2,3 Momentum Thickness Distribution

In Ref, 6, Rott and Crabtree combine Thwaites' approxi-

mate solution to incompressible boundary layers with the

Illingworth-Stewartson transformation (Ref. 7), to obtain

an explicit formula for the compressible momentum thickness

in terms of the conditions at the edge of the boundary layer,

Their derivation involves the previously stated assumptions

of Prandtl number equal to unity and zero heat transfer at
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the surface, plus the assumption of a linear viscosity-

temperature relationship. The expression for the momentum

thickness & given by Rott and Crabtree may be non-

dimensionalized to yield:

Re = .45 6() e
e e

where 9402

(2.2)

is a stagnation Reynolds number based on

conditions at the singnation point,

Re,
*oz

For purposes of comparison, it will be desirable to

express results in terms of the free stream stagnation

Reynolds number

p ', P, DRe - lto

The relationship between both stagnation Reynolds numberg

using the fact that

7o T

may be found to be

.Po Pe.,=e

- q Ir-

W



(T *4 - 4
o r % = .6 2 Po (2.3)

Equation (2.3) becomes indeterminate at g 0 , an

the stagnation point was therefore treated as follows:

d

From Fig. 3

point Me

it is evident that near the stagnation

is directly proportional to 4 , There-

fore, if

) /S = constant

is small so that , and consequently

*; equation (2.3) becomes

/ .672 (4-P0
DPOZ ~~

VI j(~ 5 d~

/*4(5 Pa
= 4P( - P 2 /

/S may be found to have a value of 2.46 from Fig. 3

and therefore

[e~ I/;~ =1.700
(2.4)

and

l.

or

and therefore

Re,,,---I

=O
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Equations (2.3) and (2.4) are plotted in Figures 5 and 6

For the sharp and constant-pressure isentropic blunt

plates, the boundary layer edge conditions do not depend

on , and Eq. (2.3) may then be integrated to yield

frv 0 ~ (2.5)

for the sharp plate, and

(2,6)
C.PR-C.E. V P, T

for the constant-pressure blunt plate. These parabolic

expressions for 0/, also appear plotted in Figures

5 and 6 ,

2,4 Displacement Thickness Distribution

Following Thwaites' method, the boundary layer

displacement thickness may be obtained from its momentum

thickness by calculating the parameter m , which is

related to the second derivative of the velocity distri-

bution at the surface. The calculation of m will then

yield another parameter H , which is the ratio of dis-

placement to momentum thickness, Since Thwaites' results

hold for incompressible boundary layers, it is necessary
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to reduce the compressible parameter m to an

incompressible m. ; with this m. calculate the in-

compressible 14, ; and finally transform this I/'

back to a compressible

The relationships between compressible and incom-

pressible parameters are again given by Rott and Crabtree

in Ref, 7. For rn, this is

dtlePox 2/T7e-

Using the fact that

dUe d Me- ae + Me d a
dx dy dx

the expression for m7 mfaY be written in terms of the

edge Mach number, the temperature ratio, a non-dimensional

momentum thickness, and a grouping of terms which - not

sur prisingly - turns out to be the stagnation Reynolds

number Pe . Then writing Pe, in term s of Pe,;

m. becomes

rnf D, ) ( - ~ (2.7)
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Table I in Thwaites' paper (Ref. 5) will then yield

the incompressible parameter '6 . The compressible 1-

may finally be obtained from a relationship given by Rott

and Crabtree.

Te 7.er
(2.8)

Finally, the non-dimensional displacement thickness is

obtained from

*

For the sharp and the constant-pressure blunt plates Ms

will be zero because dMe /di = 0 . Thwaitet'

Table I then gives a value for HS

and

of 2,61,

The compressible #ls will be given by

- (-

~~ H 5 7; ~-

(2. 9a)

(2. 9b)

The displacement thickness distribution may then be

obtained for these two cases by merely multiplying the

momentum thickness distributions by the constant factors

given by Eqs, (2,9a) and (2.9b),
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The non-dimensionalized displacement thicknesses

for all three cases appear in Figures 7 and 8

2.5 Boundary Layer Pressure Influence

As suggested in the introduction, the pressure

correction due to the boundary layer is estimated by

considering an inviscid body whose thickness has been

increased by the displacement thickness, and estimating

the pressure increment produced by a Prandtl-Meyer expan-

sion about this new inviscid body. Figure 9 illustrates

this approach.

shock

plate

Figure 9

The local inviscid body inclination is assumed to be

equal to the slope of the displacement thickness at the

point of interest, and it is therefore necessary to obtain

the displacement thickness slope distribution along the plate,
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Since

-~-~~' 1

it follows that

v~7-d( + -- _

FoE,2/

From Eq. (2.)

7 d(~/YZ
(P.72

/
z

r0

~ZJ 7;~j Ale 7

If 
OL7-)

(2.11)
dA

03~

Expanding the derivative in the last term and collecting

terms, (2.11) may be written as

v'~7 672 (,

7 e a O

4 S

2

(r-z~j Fzle ]?
~Te' d~Te

(2.10)

(I

.1 (91Df Dj

d
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and substituting for
d (9D

re7, in (2.10),

the final expression becomes

de = .9~ d_ .672 / (

D1d- 4 g ft

(2.12)

Al2 M_ 'V dde (
C41 5 0 W 1L'

For the sharp and isentropic constant-pressure blunt

plates, 1 and Me are constants and the terms involving

their derivatives in Eq. (2.12) will drop out, The expression

then reduces to

Si?

.336

for the sharp plate and

.336

- r- Y
M~~r.Z PaP( (2.14)

for the constant-pressure blunt plate.

Using the Prandtl-Meyer expansion approximation to

calculate the pressure influence of the boundary layer,

the non-dimensional pressure influence JP/pe is given

to the first order by

(2.13)

X Jd 'f ( J D

T 

c.R-c.g.
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Yle d~ d({

To provide a common reference for purposes of com-

parison, it is desirable to evaluate the ratio AP/p,

which is given by

Pe

P0po~ LpSPe] (2.16)

For the sharp plate, Eq. (2.16) becomes

Pe,. &L5A

and for the constant-pressure blunt plate

fP)0L M.7 - )Y
__AD (2.18)

POL C.P-c.E

Equations (2.16), (2,17) and (2.18) may now be evaluated

by using the corresponding expressions for _e

They are plotted in Figures 10 and 11

In order to evaluate the boundary layer pressure

influence at the particular testing conditions for which

experiments were carried out at the Aerophysics Laboratory,

F~e (2.15)
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it is necessary to calculate the free stream stagnation

Reynolds number 1e., . The test conditions were

Al,= 7.6 = /z/T *oFbs.

/00pS/Cf. D= a/ in.

With these quantities, the free stream stagnation Reynolds

number is found to have a value of

Re = 951 700

With this value of the Reynolds number the pressure dis-

turbance for the blunt plate is plotted in Fig, 12 . It

may be seen to be everywhere smaller than 10ox; and to become

very small for values of greater than 7 or 8.

2.6 Discussion of Isentropic Results

Figures 5 and 6 show that the momentum thickness dis-

tribution for the blunt plate may be closely approximated at

the higher values of 4 by that for the constant-pressure

blunt plate. The momentum thickness for the sharp plate is

seen to be considerably smaller than for the other two plates,

over the entire range of ( , Figure 8 shows, however,

that at the higher values of , , all three displacement

thickness distributions lie very close together, including

the sharp plate di.splacement thickness. This may be explained
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by examining the transformation of the compressible H

for the sharp plate. This was

Since is greater than af or T0fy.

will be greater for the sharp plate than for the other

two cases; this will tend to cancel out the effect of a

smaller G/O and make the displacement thickness for

the sharp plate roughly equivalent to that for the other

two cases.

The calculations performed for the isentropic case

have shown that it is possible to approximate the actual

blunt plate by a fictitious blunt plate with a constant

surface static pressure equal to the free stream static

pressure. Since the results show that this approximation

becomes particularly good at large values of -which

is precisely the region wherenon-isentropic effects become

important - the calculations suggest that it may be possible

to replace the actual non-isentropic plate by a fictitious

constant-pressure non-isentropic plate, and thus considerably

simplify the solution of the non-isentropic case, Because

the solution is simpler, the variable entropy case will be

first solved under the assumption that the static pressure

remains constant along the plate, at a value equal to the



free stream value. The complete variable-pressure,

variable-entropy case will be solved last, and these

more exact results will be compared to the simpler,

constant pressure approximations,

The calculations for the isentropic sharp plate

have provided an upper asymptote which the non-isentropic

results should approach as the coordinate ' approaches

infinity .
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CHAPTER 3

DERIVATION OF PERTINENT BOUNDARY LAYER EQUATIONS

3.1 As discussed in Chapter 2, the boundary layer along

a blunt plate submerged in a hypersonic stream will have

non-isentropic edge conditions. The static pressure

will be assumed to vary as in the isentropic case, but

the curved bow shock will produce a variation of stag-

nation pressure which does not occur in the isentropic

case. The non-isentropic edge conditions should approach

isentropic values near the leading edge and far downstream

from the leading edge.

The solution of the variable entropy problem differs

from the solution of the isentropic case in two respects,

First, the velocity at the edge of the boundary layer

cannot be obtained directly from the static pressure dis-

tribution, because Bernoulli's equation does not apply.

Secondly, Bernoulli's equation cannot be used in the solution

or transformation of the boundary layer momentum equation,

Figure 13 illustrates the pertinent variables and

reference quantities for the variable entropy problem.

Along the streamline a , the entropy is constant and

stagnation conditions are therefore constant, If a shock



: Free stream conditions

: Leading edge stagnation point conditions

: Boundary layer edge conditions

: Boundary layer stagnation edge conditions

Shock

Boundary Layer

P. i To.

Figure 13 Variables and Reference Quantities for the Variable

Entropy Problem.
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shape is assumed it is possible to obtain the stagnation

conditions immediately behind the shock (at y, ) because

the local shock inclination angle will be known. These

stagnation conditions will correspond to the edge stag-

nation conditions at the point where the streamline er

intersects the boundary layer, This discussion suggests

that it is therefore possible to obtain the variation of

boundary layer edge conditions with x by relating the

streamline-shock intersection height y, to the spatial

variable x

3,2 Energy Equation

The assumptions of Prandtl number equal to unity

and zero heat transfer at the wall lead to a simple

expression for the temperature distribution in the boun-

dary layer.

--T + /" M2 2(31

Since at the surface of the plate the velocity is zero,

the temperature T at the surface is simply given by

. T -
ra e e r r
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3,3 Momentum Integral

The purpose of integral methods is to reduce the

boundary layer continuity and momentum partial differential

equations to total differential equations, by integration

with respect to the y coordinate and the introduction

of integral properties of the boundary layer, The bound-

ary layer equations are

Continuity: Ip 3p) = 0 (3.3)
dx ay

Momentum: Ofu a"- +v 'a_ __T+ A-- U ( .4)
x dx ay 'ay

If the boundary layer thickness c is defined as

the value of y' for which the velocity in the boundary

layer is very close to the free stream velocity ("very

close" meaning a ratio (u U,) of approximately ,999),

Eq. (3.4) may be integrated with respect to y from y=0
to /=d to give

8 a

u X 0 v y 0 d -Y (3. 5 )

It should be noted that the last term on the right-

hand side of (3.5) involves the assumption that

~a eUe] 0
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This is not strictly true, because the entropy gradient

normal to the surface will produce an inviscid velocity

gradient. However, as mentioned in Chapter I, the Reynolds

number considered is high enough to permit the assumption

that

f Jef

IY y=8 D)' y=O

and consequent neglect of the inviscid velocity gradient

compared to the viscous velocity gradient.

After some algebraic manipulation described in detail

in Appendix A, the boundary layer momentum equation may be

written as

dx dx d ~

where G: momentum thickness

3 : displacement thickness

thickness

which is the integrated momentum equation, and which will

reduce to the Karman momentum integral for the isentropic

case, where

dxb U dx



From (3.4), since at y - 0 ; u=O, v=O

3,4 Transformation of Momentum Integral

In subsequent work, use will be made of the relation-

ship found by Thwaites5 between the first and second

derivatives of the velocity at the surface, and the ratio

of displacement to momentum thickness, Since Thwaites'

results hold for incompressible boundary layers, it is

necessary to find some relationship between the compressible

boundary layer variables and those of an equivalent incom-

pressible boundary layer, This is accomplished, following

Hammitt , by the use of the Howarth transformation,

which replaces the coordinate y by a coordinate S

such that

dy .-- d
Te

In that case,

eP |_ ue

IPT ,

P f_ U T
o Pee
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and since T= /

r te

where the subscript6

(3.8)d_ =s.ged

denotes incompressible variables,

Also,

dy (3.9)
- _e

and

0

Substituting for (t-T)

T

a e
C/5 (3.10)

in (3.10) from the energy equation

17/ -zUZ)7d5
Cez

<U /

(6 + 
(s

' e

S =f
0

I +2

S

(/-

or

=- + e

CS = CIS

(;-- a*

- (U d6OI

*311



F

dS 37Ys=Q 0 T e s -o

T

The transformed momentum equation and boundary con-

dition will therefore become

+ z Te

and

dpe (dS /sro
3.5 Thwaites' Results for Incompressible Boundary Layers

A brief discussion of Thwaites' approximate solution

for incompressible boundary layers with arbitrary pressure

gradients is presented in this section. Thwaites' approach

39

The first and second derivatives of the velocity

at the surface are transformed as follows:

and

(3.12)

2yzy. (3,13)

(3.15)

?U ~o
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is then used to derive a method for obtaining the dis-

tribution of a new boundary layer parameter needed in

the solution of the non-isentropic equations,

In Ref. 5, Thwaites attempts to find some universal

relationship between the first and second derivatives of

the velocity at the surface for one-parameter families

of solutions. He defines non-dimensional parameters

/sd

0. S

(3.16a)

(3.16b)

(',16c)-s -

The parameter M5 is related to the pressure gradient

through the boundary condition at the surface, and it may

therefore be determined if this pressure gradient is known,

Thwaites then proceeds to plot the parameters is and A/I

as functions of r, for several special forms of the

pressure gradient, for which the boundary layer equations

have been solved exactly. He notes that these curves lie

fairly close together, particularly for the case of negative

pressure gradients (negative /s ). By fitting the best

average curve to the s -m, and /-/ - m. plots for

the different exact solutions, he finds a fairly universal

relationship between these parameters, which he presents in
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tabular form in Table I of his paper. For the solution

of an isentropic boundary layer (for which Bernoulli's

equation may be used), a combination of the previous

parameters in the form

LSe - 2 [(S+2). 7+ ()] (31

is important, and Thwaites shows that the parameter

lies within close limits for all the exact solutions

throughout the entire range of ms , Furthermore, the

average variation of L. with ms is very close to

linear, and Thwaites then assumes a universal relationship.

L,= .4sj- 6rm (3.18)

With Thwaites' definitions of the incompressible para-

meters, Eqs. (3.12) and (3.13) may be written as

d U, 9.
dx J

dPT74L7e- (35.19)

and

_ s (3,20)
z
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As will be seen later, a new non-dimensional parameter

appears in the solution of the non-isentropic case. This

is the difference between boundary layer and displacement

thicknesses, divided by the momentum thickness. This

parameter has been shown in Section 3.4 to be independent

of the coordinate transformation, That is,

K -s

It is desirable to obtain some relationship between this

parameter Ks ahd the parameter ,n , This has been

done following an approach analogous to Thwaites', k
*

was plotted as a function of M. for three know cases

The Faulkner-Skan11 solution, the Karman-Pohlhausen8

solution and the Howarth8 solution for pressure gradients

of the form P. = a +/bX' . The results appear plotted

in Figure 14 , It may be seen that they lie fairly close

together. From Figure 14 , a simple linear "universal"

relationship was fitted:

K , -. 60 m e h6.2 (3.21)

was assumed to be the height at which (U/Ue) =.999.
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3.6 Shock-Boundary Layer Continuity Equation

In Section 3,1 it was suggested that the variation

in boundary layer edge conditions with x could be

obtained by relating x to the height y, at which

the streamline intersecting the edge of the boundary

layer at x intersects the curved shock, This may be

done by writing a mass-balance equation between a station

ahead of the shock and a station at X (see sketch in

Figure 13), Since the mass flow in the boundary layer

is equal to A Ue (f- 0) , this relationship will

be - for unit length along the span

Ap,iY, <660*)e Ue

or

jol ' = e U 1< Oe(3,22)

3.7 Shock Shape

As stated in the Introduction, a hyperbolic shock

shape following the results of Love (Ref. 3) has been

assumed. Figure 15 illustrates the important variables

and parameters in Love's damplified calculation of the

shock shape. Figure 15 is a reproduction of Figure 9 in

Love's paper, with some of the letters changed to avoid

confusion with other variables being used in the present

discussion,
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Asymptote

Hyperbolic Shock

Sonic Point Control Lineon Shock es

0

d' :Diameter at which body has a slope equal to
tan S det

6 det Angle at which shock detachment first occurs
for a wedge in a stream at M1

: Mach angle corresponding to M

es Angle at which the Mach number behind the
shock is equal to unity

Local shock inclination angle

Figure 15 Shock Shape,
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The assumption of a hyperbolic shock shape which

is asymptotic to a Mach line yields an expression of the

form

It is necessary to evaluate the quantity ,/D)

which for semicircular noses is related to (Yo/d) by

0 = 0.* c (3.24)
D d' det.

Love evaluates the quantity (X0/d') by a method which

is essentially based on a large number of experimental

results obtained at different Mach numbers, He presents

an empirical graph of the inclination angle o( of a

"control line" which is representative of, though not

equal to, the sonic line. He then uses trigonometric

relationships derived by Moeckel, to relate oc to the

quantity (x0/d) . The relationship is

\|, - '(M,-)tan~e 5 / [ + ( .25)

d' ( - |(vtan _ 7z L 4 tanca
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where (x'/d') is the shock-standoff distance, which Love

assumes to be simply given by

. det. (=o.26)

The coefficient C is also obtained from experi-

mental results, It will be equal to unity if the shock

is attached, and have a value close to unity when the

shock is detached, Love's Figure 2 gives the variation

of this coefficient with free stream Mach number,

For the purposes of the present analysis, it will

be useful to relate the coordinate y, to the local

shock inclination angle . This may be done as follows:

From Eq. (3.23)

dyi tan,

Solving for X,/D

(A=-)tanp -9

Finally, substituting for X,/D)z in (3.23) and solving
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for 4

tan~f I _'"/ _ / (,3.27)

-H (H :--!)(y

For the particular free-stream Mach number being con-

sidered (Hl, = 7.6),

det. = 430

Mfz-I =56.76

C 4 t and e have been obtained from the NACA isen-

tropic flow charts and tables (Ref. 10)).

Love's Figure 2 yields a numerical value for C of

.951, at Al, = 7.6. (X'/d) may therefore be calculated.

In orderto obtain a , it was necessary to extrapolate

Love's graph for the experimental variation of a with

M/, This extrapolated distribution is shown in Fig, 16.

a for 7, = 7.6 is then found to have a numerical value

of 76.5 . (xo/d') may then be evaluated, and finally (1/D)

may be found to have a value of 57.3. Substituting then

into (3.25), the expression for 9 becomes

= tan /32 5784 4. (3.28)I,



49

1 2 3 4 5 6 7 8

Figure 16 Variation of c with M .
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CHAPTER 4

CONSTANT PRESSURE-VARIABLE ENTROPY CASE

4.1 The results described in Chapter 2 have pointed out

the possibility of replacing the actual isentropic blunt

plate by:.a fictitious isentropic plate with constant static

pressure. The results in both cases were shown to be

approximately equivalent, especially at the higher values

of t , This approximation will now be carried into the

non-isentropic region, because the assumption of constant

static pressure considerably simplifies the analysis. For

the constant-pressure, variable-entropy (C.P.-V.E.) case,

therefore,

dx

This means that the Thwaites parameter n. will therefore

be zero everywhere. All other parameters which are functions

of m , i.e., 1 , and k , will therefore remain

constant at the values corresponding to n 0 . It

should be noted, however, that since Bernoulli's equation
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no longer applies, dUe/dX will in general not be

equal to zero.

4.2 Solution of Momentum Equation

For constant static pressure, the transformed momentum

equation (3.19) will reduce to

~~20 ) e d6 T *
d~~~~~ (Ze~ p 4  <44 (4. 1)

dx e ( AO

and the boundary condition at the surface yields

d p, /V T e1 ,

dx ~(T)

or

MS=

These equations hold, of course, under the assumptions of

and qf = O for which (3.19) was derived,

Equation (4,1) will be solved using the shock-boundary

layer continuity condition (3,22) to obtain a relationship

between f, and the boundary layer edge conditions. Equation

(3.22) may be written

K S

and substituting for 0Uintc (4.1),
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KS dx d 1

Multiplying through by 2 Ks

AU,
derivative,

and expanding the first

12 U , 4' +2(f - A<, , /<e 2 e2U_ 
- gU S 7dIX dx t?,U, 'g&

and multiplying through by (y,

/ due
Ue C/X

S ,(.la

(4.1a)

-/
(4.2)

using the iso-energetic flow equation for the temperature

ratio, Taking the logarithm of both sides, (4.2) becomes

2 / Un ao = 2

z

sdx

Now

e r
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Differentiating implicity and collecting terms,

Ne_ / +Mz

Substituting into (4.Ja).,

-.I z 2 -

OgU p U "/o

where j - 1D has been substituted for x

The right-hand side of Eq. (4.3) may be modified to

simplify calculations as follows:

2 1s ks a, P, Re Me. 7

V|( 
4 .3 a )

[_ 2 s s

where Rep? = (aC42o A is the stagnation Reynolds

number based on conditions at the nose of the plate.

The bracketed quantity in (4.34 will be a constant for

any given free-stream conditions, and will be denoted by B

Equation (4.3) may therefore be written as

d
/2

(Y 2.(/- s) df

- B Me(7
0z

(4.4)

_ dUe _

edu

d4 *d

(4.3)

,

Pe, p,1 M, aj p, M, a, o

07 Tj
z ;;I_) (7, TO-2
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Equation (4.4) is an ordinary first order differential

equation in the variable

which are functions of

Y ( 7 2 , with coefficients

. It may be solved exactly,

and the solution (Ref. 12) is given by

f)P(e)d
0

- int/ cons /an/
(4.5)

where

Xj/)

P(4)

Q(4)

= 2(/ -ks) de

Me(/#lie d$

= BMZ

The integration constant will be zero because

7(0) = 0

Carrying out the integration of P{(,)

to obtain that

P(u)d = (-) /n{

Equation (4.5) then becomes

, it is possible

[To meZ
I O -

( i- )
Tor

/12.

e? e
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(k-) -Z3-z1,

eO Me ' 2 d{ (4.6)
0

With given boundary layer edge conditions, Eq, (4.6)

yields the shock intersection point of streamlines inter-

secting the boundary layer at J() , By assuming an

edge Mach number distribution, it is then possible to

calculate the shock intersection parameter 7 as a

function of ' , With the assumed hyperbolic shock

shape it is then possible to obtain the local shock inclination

angle d as a function of , , (See Fig. 17.)

Figure 17,
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Using oblique shock relationships the stagnation

pressure behind the shock can be obtained, which is equal

to the local edge stagnation pressure boe , aat ,

The ratio Pe/p,, will then yield a new edge Mach number

distribution through the isentropic relationship between

pressure ratio and Mach number

Y

This isentropic relationship may be used in this case because

the entropy along the streamline in Fig, 17 is constant, With

the new edge Mach number distribution, a new 7, may be

calculated by using Eq, (4,6), and the iterative procedure

may be continued until the edge conditions converge to some

final distribution,

When the final edge conditions have been calculated,

the momentum thickness may be obtained from the shock-boundary

layer mass balance equation, which has been seen to be

(4.7)

From the momentum thickness, the displacement thickness

and displacement thickness slopes may be calculated; and

finally, the boundary layer pressure influence coefficient

obtained from the Prandtl-Meyer expansion relationship,
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4.3 Calculations and Results

4.3.1 Calculation of Edge Conditions

The constants in Eq, (4.6) must be evaluated before

proceeding with calculations. The constant

is computed from the Blasius solution to the flat-plate

problem, and is found to have a numerical value of 6.43,

Table .f in Ref, 8 has been used, choosing as 3 the

point where (./Ue) = ,99898. The constant B has

been calculated from the NACA Compressible Flow Tables

(Ref. 10) and is found to have a numerical value of

1,837 x 10~ , Equation (4.6) then becomes

1g9 I -4.9I

/.3 0 /Z M4fM1 0'1 (4.8)

For the first iteration the edge conditions are assumed to

be those for the isentropic case, i.e.,

Me = 3.4868 = constant

A value (O) = 6.43 from the Blasius solution was

assumed rather than the value given by the "universal"

relationship K5  - /.6rm,+6.2 , because the Blasius

case is exact,
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Once has been calculated from Eq. (4.8), the

shock inclination angle > at > can be obtained

from Eq. (3.28). Three distributions of were cal-

culated following the iterative scheme described above

and the results are shown in Figure 18, # lies close

enough to so that it was not necessary to compute

any further approximations. The final shock angle distri-

bution /3 yields the final edge Mach number distri-

bution Me , which is shown in Figure 19, together with

the Mach number distributions found for the other iterations.

It is evident that the edge Mach number varies between the

isentropic constant-pressure (C.P.-C.E.) value of 3.487,

and the free stream value of 7.6.

4,3,2 Calculation of Momentum Thickness

With the final edge Mach number distribution

Eq. (4.7), transformed to

V T~c-(4,9)

where

C = - = 4/87:3

was used to compute the momentum thickness distribution which

appears in Fig. 20. In Fig. 20, the momentum thickness is

seen to vary between those of an isentropic constant pressure

blunt plate (C.P.-C.E.) and the isentropic, sharp plate (S.P.)
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4.3.3 Calculation of Displacement Thickness

For the non-dimensional incompressible case, the

displacement thickness is given by - following Thwaites5

*o D

where can be obtained from Thwaites' Table I. For

the case of Ms = O , which corresponds to the constant

static pressure assumption, / has a numerical value

of 2.61.

The compressible displacement thickness may be obtained

from a similar expression

(*2/ -D P)
(4.10)

provided an equivalence between the compressible parameter 1'

and the incompressible parameter can be found. This

relationship is obtained as follows:

By definition, the compressible displacement thickness

is given by

( - _./ )dy
o PeUe

A/ 



r
with the Howarth transformation

dy= dS
T

4~ (T 6)

)

dS

From the energy equation for the case of and zero

heat transfer at the surface,

_T = / + / -z
2

Substituting into Eq. (4.11), collecting terms and using the

definitions for the incompressible momentum and displacement

thicknesses,

6*:: C~5
4 Y_/M2

2 le (Gs 4 s/

or, since 0 ,

~ 2 /
(4.12)

Writing Eq. (4.12) in terms of the temperature ratio,

the non-dimensional compressible displacement thickness will

finally be given by

~~DI Z M4l
0
D

(4.11)

(4.13)
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With the edge conditions given by M( in Fig, 19,

Eq. (4.13) has been plotted in Fig. 21. The values of

for the sharp and constant-pressure isentropic flat plates

are also displayed in Fig. 21 for purposes of comparison.

4.3.4 Calculation of Displacement Thickness Slope

From Eq. (4.10), the non-dimensional displacement slope

is given by

L5 (4.14)

where 
_e

(4.14a)

+ Z 
(4.14b)

The differential terms in Eq. (4.14) will be transformed

until they appear as a function of a single derivative - the

edge Mach number slope.

From Eq. (4.14a),

Zm / __

d'e d 2 He (4.15)

The derivative in the last term of (4.15) may be written as

d(T 7) _ _ dM*+

d(7/rt- e
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and substituting for from Eq, (4.4),

( T2 32d 7db

de (0

Combining terms,

dr(= e 2 dMe 7  7
d(7N /cr zAle dL e

Substituting in (4.15) and combining terms,

dj%) cB ( T 2/ dle (
2T M Ale dTo

r 7e- (4.16)

From Eq, (4.14b),

(4.17)

and substituting (4.16) and (4.17) into (4.14),

___ CI /7~' / /1 d~le (9
d(002 (2"IDd

02 Mie('%9 M dj d

e -t- 4 -~I I-Ds



and collecting terms

d( J/o) = C21 A/ Te (12s) 1dA1e

Tz Me L1D To 'a

OZ Ta(4.18)

Equation (4.18) has been plotted in Figure 22, The

edge Mach number slope was calculated by drawing a large-

scale graph of the edge Mach number distribution and fitting

tangent lines at the points of interest, The displacement

thickness slopes for the two isentropic plates are also

displayed in Fig. 22,

4,3,5 Calculation of the Pressure Influence of the

Boundary Layer

In order to calculate the pressure increment produced

by the presence of the boundary layer, a Prandtl-Meyer ex-

pansion about an effective inviscid body whose local surface

slope is equal to the local slope of the displacement thick-

ness is assumed, The expression for the pressure disturbance

will then be, to the first order,

P0~ (4.19)
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With the edge Mach number and displacement thickness

slope previously computed (Pb/po) may be calculated, Equation

(4.19) has been plotted and appears in Fig, 23, where the

values for both isentropic flat plates also appear,
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CHAPTER 5

VARIABLE PRESSURE-VARIABLE ENTROPY CASE

5.1 The simplified non-isentropic solution derived in

Chapter 4 included the assumption of constant static pressure.

This is an approximation to the real case, where both the

static and stagnation pressures vary along the plate. The

solution of this more complex problem requires the use of

the complete equations (3.17) and (3.18), which are rewritten

below:

dfpe 1-]~L //0- +

d77 2 (5.1)

and

dp T z U
(T)Z (5.2)

Equation (5.2) implies a dependence of the parameter rn

upon edge static pressure, temperature and velocity. Entropy

gradients are assumed not to affect the static pressure dis-

tribution, but T and U will be affected by the entropy

gradient. A variable r, will, of course, imply variable
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I( and K , which was not the case in the constant static

pressure solution. The static pressure distribution remains

as given in Chapter 2.

5.2 Derivation of the Momentum Equation

As in the constant static pressure case, the momentum

equation (5.1) will be written in terms of the shock height

y, ($) at which streamlines intersecting the boundary layer

at Off) intersect the shock (see Fig. 17).

Equation (5.1) may be written as

+ 2 + +
<:/,74

+ 2 * e 9 +/ =O -2 Toz e sdx S7(S22L ~

Then, introducing the boundary condition (5.2) and collecting

terms,

2U 4 Oee Ly) + 2Uz

2 z (5.3i)

The term (/- K5) and the brackets on the right-hand

side of (5.3) may be written solely in terms off ms as follows:

.s - ( + Zs= 5~s

-2U U&/s 6,d a
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where s is the Thwaites parameter

= 2 Z/ +-(A/ +2)s>=.45+6trGm

assuming Thwaites' linear universal relationship. Therefore,

Z,+ s-+ )ms = .45 +4m

With the universal relationship between and mn

found in Chapter 3,

/ - /, = /.6m, -65.2

If terms containing M. in Eq. (5.3) are grouped to-

gether and the boundary condition (5.2) is used to substitute

for n 5 , the result is

2 UeG5 !, 4-
dIX 144.z (eed

+ ]~ --G /0.4(pe&e*+ )+ 4 0,z dpd+ . z1 dxx, - T- d><j

:/Vdx

(5.4)

oz

Equation (5.4) illustrates the difficulty inherent in

the variable pressure-variable entropy problem. The second
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Essentially, then, the mathematical simplification intro-

duced in the solutions previously found was a linearization

of the momentum equation.

The shock intersection height y', will now be intro-

duced by again using the shock-boundary layer mass balance

equation.

Y,
(5.5)

Again, it must be noted that in (5.5), ks will be a variable

for the variable pressure case.

Substituting for p Ue es in (5.4) from (5.5), and

non-dimensionalizing the result, (5.4) becomes

74

term on the left of (5.4) is non-linear. It will drop

out for the isentropic case when

d!!Pe -) e4 dUe

and it will also vanish for the constant static pressure

case when
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d 43. (79 e
d{ fo {(U

2

(OeC~Q 4

/0. 4 p
()e d pe- UPez d 7e

D 1
T p U

7& ( p , 3 ~

D
D

Equation (5.6) is of the general form

The coefficients in (5.6) have been rewritten in terms of

Mach number and temperature and pressure ratios to simplify

calculations, The results are

p4 P Te1d Te le

C/ JPye be

7 (5.8a)

dpe 7?d4if

(5.6)

where

and

(5.7)
dz. 4- PA z 7-
- / P- 70



'I = ;e& 3O2. 26

+ 4 Po d(Pe 6#

r"Me Pe d

PA) [ Tef3e

where

.45 T ~

AP6eW3xI-
Ox) 2- TOZ

The boundary condition (5.2), after introducing (5.5)

and non-dimensionalizing, becomes

m,- 'ji/ 7A) d Pe/AJ)

lTe/ (5.9)

where

T" z

TT Ti / z J

76

where

(5.8b)

(5.8c)
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5.3 Solution of the Momentum Equation

It has been argued previously that near the leading

edge of the plate the flow will be isentropic, and that

for downstream the static pressure will be constant. It

will be useful to determine the range over which these

assumptions can be made, because in both cases the momentum

equation becomes linear and the solutions found in Chapters

2 and 4 will apply. The intermediate region will have to be

treated by the complete non-linear equation (5.7), but the

effort required to obtain a solution will be reduced by

applying (5.7) to only this intermediate range, rather than

the complete range of , For purposes of determining

the extent of this intermediate region, Figure 24 has been

plotted. It shows the edge Mach number distributions for

the variable pressure-constant entropy case treated in Chap-

ter 2, and for the constant pressure-variable entropy case

treated in Chapter 4. For O< < 6 , Fig. 24 shows

that non-isentropic effects are unimportant, because the

assumed edge Mach number in the constant pressure-variable

entropy solution has remained constant, For 200< 4 < CD

Fig. 24 shows that variable pressure .effects are not important,

because the isentropic Mach number distribution is constant,

indicating that the static pressure is constant. Non-linear

effects must therefore be considered in the range 6< <200

Due to the non-linear nature of Eq. (5,7), the problem

requires a numerical eolution, In addition, an iterative
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scheme analogous to that used in Chapter 4 must be devised.

The procedure may go as follows:

1. Assume an edge Mach number distribution over the range

6< 4 4 200.

2, With coefficients obtained from this edge Mach number

distribution, solve Eq. (5.7) for 4' by some numerical

scheme.

3. Use the boundary condition (5.9) to obtain mn.

4. Obtain /< from mn, by the universal relationship

found in Chapter 3,

5. With k, and Z obtain

6. With this distribution of obtain the shock inlination

angle at the intersection point y, from the relationship

0' =$anr-/.328 V57845

7
-7t

derived in Chapter 3 from Love's approximate shock shape.

7. With the local shock inclination angle 9 obtain the

stagnation pressure immediately behind the shock, which

is the same as the stagnation pressure 'Pe

of the boundary layer.

at the edge

A",
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8. With this value of the stagnation pressure calculate

the ratio

Poe PZ Poe

from which a new edge Mach number distribution may be

obtained by using isentropic relationships.

9. Continue the iterative scheme until two consecutive

edge Mach number distributions lie as closely as desired,

5.4 Calculation of Edge Mach Number Distribution

The numerical scheme described above was programmed for

the IBM 709 computer of the MIT Computation Center. The range

considered was .6 i 4 - /000 to insure that the variable

pressure-variable entropy solution would fair into the variable

pressure-constant entropy and constant pressure-variable entropy

solutions, as expected. The program devised is described in

Appendix B. Only details concerning inputs and the criterion

for convergence are given here.

In order to calculate the coefficients PA) Q{

and of Eq. (5,7), it is necessary to start out with an

edge Mach number Ae ($) , a slope of the edge Mach number

(dMe /d ,) , a pressure ratio (Ae/pz) , and a slope

of this pressure ratio fd(Pe/p dJ . The initial guess

at the Mach number distribution was obtained by fairing in a

smooth curve between the V,.P,-CE, and C.P.-V.E. curves of

Fig. 24, and then simply reading input values of Me off
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this curve, (dMe/d() was obtained by a numerical

scheme which gave this quantity as a function of the value

of Me at different points (see Appendix B), Since all

the points considered were downstream of the shoulder,

Love's pressure formula (Eq, (2,1)) was used to obtain

(pe /po) , This equation was differentiated to obtain

d The result is

(5,lo)

It should be noted that this equation becomes singular at

, but since this point was not included in the

calculations this singularity is of no concern here,

Calculations were stopped when all consecutive values

of 1',A at corresponding values of were found to be

within .005 of each other,

The results of these calculations are plotted in Fig,

24 - indicated by the dotted curve labeled (VP,-V,E,), It

is evident that at high values of this curve does not

merge with the C,P.-V,E, solution, as it should, This arises

from an inconsistency in the choice of the numerical value

of the parameter /(m,)



82

For the variable pressure case, this parameter is given

by the universal relationship found in Chapter 3.

/.6 m, + 62

This equation will yield a value

K(o) =6.Z

for m=-o 0

pressure case <s

), For the constant

was a constant everywhere and was

found to have a numerical value of 6.43, from the Blasius

solution. The smaller /<, in the variable pressure-

variable entropy solution will give a smaller

This smaller

angle b

as

will give a larger local shock

, since enters into the expression for 0

(see Eq. (3.28)). This greater will give

a smaller value of A/e . The difference between the dotted

and solid curves of Fig. 24 is, however, quite small (of the

order of 4%). At low values of the VP,-V.E, curve

does fair smoothly into the V.P.-CE, solution.

5,5 Calculation of Boundary Layer Properties and Pressure
Influence

5.5.1 Momentum Thickness

The momentum thickness may again be obtained from the

since



shock-boundary layer mass balance condition (4."), as was

done in Chapter 4. The result is

0 C _ Te

(5.11)

where

C'= 'A,ZTo _ .3597
*z ' (5.lla)

With the Mach number distribution shown in Fig. 24,

this equation has been plotted in Fig, 25, where the momen-

tum thickness for the VP,-C.E. and CP,-VE, cases also

appears,

5.5.2 Displacement Thickness

The displacement thickness may be obtained from

(5.12)

where

~e ~ ~2e - ( 5 .1 2 a )

as given by the Howarth transformation (see Section 4.3,3).

As previously stated, [, corresponds to the ratio of an

incompressible displacement thickness to an incompressible

momentum thickness, and with the values of' /775 found in

the calculation of A'(t) , it may be obtained from Thwaitesf5)
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Table I. This non-dimensional displacement thickness is

plotted in Fig. 26, where the V.P.-C.E. and Q,P.-V.E. cases

also appear.

5.5.3 Pressure Influence

In order to obtain the contribution of the boundary

layer to the pressure distribution along the plate, it is

necessary to calculate the displacement thickness slope

d($/D) =

Wd

With Equation

From Equation (5.12)

d(%/D) G d A
C D d

(5.11) and the non-linear momentum equa-

tion (5.7),

d/(%/) _ C'/
& = 1e /c - LtR+ (Q -4

e r. /[2

7 (- 5

(5.14)

pe/ dePz7 
Me d

po. d(e/9
Pe d

where /, 0, and P are given by Eqs. (5.8a,

With the transt~rmation for A/

b, c).

(5.12a),

+-_ -//- 7l +/ eTed7L-
d~ T (5.15)

(5.13)
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Equations (5.13), (5.14) and (5.15) will then yield

the displacement thickness slope which may then be used

for calculating the boundary layer contribution to the

pressure distribution through the Prandtl-Meyer relation-

ship

A___ Pe dOD

z 
(5.16)

This last expression has been plotted in Fig, 27, where the

V.P.-C.E. and C.P,-V,E, cases also appear,
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

6,1 Restatement of Problem Solved and Outline of Solutions

The object of this paper has been to calculate the

contribution of the boundary layer to the surface pressure

distribution along a blunt flat plate of large length-to-

thickness ratio submerged in a hypersonic stream. Account

was taken of variable stagnation conditions at the edge of

the boundary layer produced by the curved bow shock.

The problem was approached by integral methods coupled

with Thwaites' approximate relationships between first and

second derivatives of the velocity at the surface. The flow

was at first assumed to be isentropic to provide limits which

non-isentropic results should approach near the leading edge

and far from the leading edge, The isentropic assumption

was then removed and the stagnation pressure allowed to vary

along the edge of the boundary layer. As a simplifying assump-

tion, however, the static pressure was considered to be constant

along the plate, Finally the complete problem with variable

static and stagnation pressures was solved, This last solu-

tion was seen to faIr smoothly into the variable pressure-

constant entropy solution near the leading edge and to be



90

very close to the constant pressure-variable entropy

solution far downstream, The reason for the small dis-

crepancy found in the latter asymptote is explained in

Chapter 5.

6,2 Effects of the Entropy Gradient

The entropy gradient produced by the curved bow shock

reduces the momentum thickness below its isentropic value

(see Fig, 20). Figure 21 shows that the displacement thick-

ness is increased by a small amount by the entropy gradient.

The pressure disturbance produced by the boundary layer is

seen to be small everywhere, and to be increased by the

entropy gradient (Fig, 23). All of these quantities approach

the correct asymptotes near the leading edge and far downstream,

This behavior has been discussed and explained in previous

chapters.

This paper has shown that the presence of the boundary

layer will only modify inviscid results by a maximum of about

10% at the leading edge (see Fig, 12). It should be pointed

out, however, that as the free stream Mach number is increased,

driving the shock closer to the surface, and as the Reynolds

number is decreased, making the boundary layer thicker, the

boundary layer should contribute a greater percentage of the

surface pressure, For long plates, the entropy gradient
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produced by the curved bow shock tends to increase the

contribution of the boundary layer to the pressure distribution,

6,3 Suggestions for Further Work

The results presented in this paper should be confirmed

experimentally and extended theoretically,

Experimentally, it would be interesting to obtain bound-

ary layer profiles for plates of large length-to-thickness

ratio, The large length-to-thickness ratio at which non-

isentropic effects become important will make impractical

the testing of plates at the free stream Mach and Reynolds

numbers considered here, However, an increase of Mach num-

ber and a reduction of Reynolds number may be expected to

increase the importance of non-isentropic effects as well as

reduce the length-to-thickness ratio at which they become

significant. The most practical of these possibilities is

perhaps the reduction of the Reynolds number, Since the bound-

ary layer will then be thicker, it will be "swallowed" into

the variable entropy region sooner, and the interesting length-

to-thickness ratio will thus be reduced, It should be noted

that the Reynolds number should not be reduced too much, because

if this is done, difficulties will arise for the following cases:

1. The boundary layer near the nose may no longer be

distinct from the shock layer,
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2. The inviscid velocity gradient at the edge of

the boundary layer may become significant, thus

eliminating the possibility of considering non-

isentropic effects to affect only the stagnation

pressure at the edge of the boundary layer,

The theoretical predictions presented here should be

extended to other free stream Mach and Reynolds numbers,

mainly to determine the range of these parameters at which

experimental studies could be conducted, Furthermore, it

would be interesting to remove the assumption of zero heat

transfer at the surface and obtain an indication of how

shock-induced entropy gradients affect the heat transfer

at the surface, The study of non-isentropic effects in the

axisymmetric case will also be of interest, since axisymmetric

bodies of large length-to-thickness ratio are often encountered

in practice. The body of a blunt missile traveling at high

speeds would provide such an example.



APPENDIX A

DERIVATION OF THE BOUNDARY LAYER MOMENTUM INTEGRAL

The boundary layer equations are:

Continuity

Momentum

..-. dP)
4 x

- V- T .

Integrating (A.2) with respect to from o to :

fpu dy +fpv d/ d
Tt letsd ,

The second term on the left-hand side of (A.3) may be integrated

by parts to give

v Y = /e e - av ) d y

Then from the continuity equation (A.1),

, Ve = - PU)dy
0

(A.1)

(A.2)
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Equation (A.3) therefore becomes

pu dy-Ud4 ad=
0

(A. 4)
-dy 

r>)LU

dx -yy=o0
0

If, as customary, the static pressure is assumed constant

across the boundary layer, and account is taken of the fact

that from the energy equation , and therefore

,,~ /U-o2 then after collecting terms, (A.4) becomes

fL-~,d d

This may be written as

a OP
dx u (U -Ue dy d pu d.-

or

S )dyj +peUe dy +
Q(X 0 )e Ue 0Pie 1 4

(A.5 )dx y=0

'7- Tz
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dy

L)dO y =6 - dy)

- f dy
o 'p, U

Equation (A.5) may then be written as

d f4§e]
dx dx

-) 
0/ L

This last equation is the same as Eq, (3.6) in the text,

Now

9
f

and a
0

or

d~~=
dx

(A,6)

(j - j*)-
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APPENDIX B

COMPUTER PROGRAM

B,1 The computations required in the variable pressure-

variable entropy solution described in Chapter 5 were

performed by the IBM 709 computer of the MIT Computation

Center, A brief outline of the salient features of the

program is given in this section. As described in the

text, the inputs were an assumed Mach number distribution

[1e ( )] , and a pressure distribution [pe/Az (p)J
Figure B.1 is a simplified flow chart of the program, Two

steps in the procedure are worthy of further note, The

first of these is the calculation of the coefficients P(),

Q( ) and R( ) which enter into the non-linear differen-

tial equation (5.7). The second is the numerical solution of

this non-linear equation to obtain ,

B,2 Calculation of Coefficients

The expressions for P4) and Q(t) given by Eqs.

(5.8a) and (5.8b) involve the derivatives fd(pOO )d]

and de/d) , pzd was obtained by differentiating



INPUTS: R/ejpo and

Figure B,1 Computer Program Flow Chart

Calculations were performed at t = .8, 2, 4, 6, 10, 20, 40, 60, 100, 200, 400, 600, l000,
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Love's pressure formula, as described in the text, There

is, however, no analytic expression describing the first

assumed Mach number distribution, It was therefore necessary

to obtain dYA dC by a numerical scheme which consists

of differentiating Lagrange's interpolation formula for uneven

intervals of the independent variable (Ref. 13). Lagrange's

polynomial matches a given set of points exactly at the inter-

val desired, and approximates the function between these points

by a polynomial, For this particular calculation, four points

were taken at which the function was forced to have the correct

value, Between these points Me was approximated by a

third order polynomial, Figure B,2 illustrates this approach

for an arbitrary function y x)

y(X)

Y4

Y2

Y,

X/ X, X3 X 4

Figure B,2
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Lagrange's polynomial approximation is written then as

t.. .. .. .

Equation (b.1) gives the

Y/I

4
-T
'= 7f (xm

,n=/
n/m

correct values of /x)M

X = X =/)4) and spans the space between these points

by a sum of third-order polynomials.

Differentiating (B.1), the slope is given

4

mz/
n /m

4

+X /- )]

r _ (x
dx n='1 k=1 p=1

(Yx

)Y (X))
(x, -X2)(XI - As)(Xi -X4)

/_(X - N, (x -X.)(x- X4)- Y, +

(Xz -Y)(Xz - X,)(Xz " X4)

- X,) (,X -xYr)
B.1)

at

dy

dIX

by

4

dx (X , n

or

dy
dx

4

M=1 7(Xm -' n
n=1

Now

4
lF fx -x.)

(B, 2)
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and (B.2) then becomes

YPP

n~m

r2..
44

h4 X X7)

4

( 2)2

(B.3)

It is helpful to write out completely one of the terms

in the braces of (B.3), For rn = 2 , for instance,

will be

7L* (X
(X-)

-I-~

(x -x,)(x- x')(X-X4)

(x -x.)
-/-

(x - X, ) (x - xX )(Xx-x)(x -x.0)

(x-xZ)

-xx - X4) -x,)(x -X 4 ) + (x-

If the derivative at the point x/ is now desired (.e)
d (,X) , the only

(x, -- s)(xi

term surviving in (B.4) will be

(B.5a)

4

ZZ
,n=I

dx

thi s

4 (x -xi(x -x2)(X

(x - x2)

(B.4)

-xi)(X - X3) {X -X4)(X - X X 3 Xs -X-X4)

XIy x

~ X4)
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For 7= 3 , the only term left in the braces will be

(X ~ Xz X- X4) (B.5b)

and for m =4

Xj X-Y X X3)(B, 5c)

It may also be verified that for m =/ , the brackets

of (B,3) reduce to the sum of equations (B,5), i.e.,

(X, -X5)(X , - X4 ) 4- (XI -x-2X, -x 4) + (x, -xzx, -3) (B,6)

If these products are then arranged in a one-row matrix,

this matrix will have the last three elements equal to all

possible products of differences (X, -- X where Z is

not equal to the row of the matrix and not equal to the column,

The first element in this matrix will be equal to the sum of

the last three elements, Such a matrix was set up by the

computer program in order to calculate the derivative

at =

For calculating the derivative at other points , (L= 2,/3)

the procedure was repeated by shifting the range of four points

down by one, so that the point at which the derivative was cal-

culated was always the first of a set of 4. This procedure is

illustrated in Fig, B,3,
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l~e3

e

ptints sed f+c1de (0)]

points used for [dfeA (k,)]

Figure B, 3

In order to calculate dlMe /d4 at the thirteen

points listed in Fig. B,1, it was therefore necessary to

introduce seventeen values of and seventeen corres-

ponding values of M ).e
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B.3 Calculation of 4

After the quantities P and R

obtained, it is necessary to calculate

have been

from the

ordinary non-linear first order differential equation

TiZ w o(u 2 - s( m dsidb

This was done by a numerical scheme described below,

For any arbitrary function yfx) , the following is

dX

An = Y (x,)

where

In terms of (B.7),

zA'7 4-

then

+ d7d+

or

z n4
4,, (B.9)

The question is how to approximate the integrand in

(B,9) in order to calculate when Z,7

An iterative scheme was used, A first approximation

true:

(B.7)

(B.8)

is known,Z"*/
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was calculated by using the value of the integrand at

With this , , an average value of the integrand was

computed to obtain a . This value was then

used to obtain a second average for the integrand. This

iterative scheme was continued until two consecutive values

of Z0 were found to lie within .05% of each other.

The first value of 4 (at ,, = .8 ) was calculated from

the isentropic solution (V.P.-C.E.).
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