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Abstract

The efficiency of a solar cell is restricted by the "single junction limit," whereby photons

with energy higher than the bandgap lose energy by thermalization. Singlet exciton

fission splits a high-energy molecular excitation ("singlet" exciton) into a pair of low-

energy ones ("triplet" excitons). In solar cells, it promises to generate two electrons per

photon, potentially overcoming the singlet junction efficiency limit.

In this thesis, we present singlet-fission-based photovoltaic cells that generate

more than one electron per photon. We first demonstrate organic photodetectors with

quantum efficiencies reaching 100% by exploiting singlet exciton fission. Through study

of the magnetic field dependence of the fission process, we find an optimum thickness of

singlet fission layers that guarantees the nearly 100% conversion of a singlet into two

triplets. By employing an exciton blocking layer and a light trapping scheme to the solar

cell, we demonstrate the peak external quantum efficiency exceeding 100% in the visible

spectrum. It is the first time that any solar cell has generated more than one electron per

photon outside the UV spectrum.

We also build a simple model that predicts the rate of singlet fission through

intermolecular coupling, enabling rational designs of singlet fission molecules and

devices. Finally, we propose a future direction-generating three electrons per photon.

As a step toward this goal, we demonstrate singlet exciton fission in hexacene, whose

energetics may allow a singlet to split into three triplets.

Thesis Supervisor: Marc A. Baldo

3



4



Acknowledgments

Like any other PhD students, I had a lot of ups and downs for the last six years. Here I

would like to thank many people who held my hands during this rollercoaster. First of all,

I am so grateful to my awesome advisor Marc Baldo. No matter where I was, Marc

always had faith in my capability as a researcher. During my first three years, my

research wasn't going so well and I seriously doubted my ability to pursue a PhD degree.

But Marc somehow believed that I would do great research-this thesis and my

enthusiasm toward research are the product of his abiding trust. I also learned the joy of

doing research from Marc. Probably the best times in my PhD were not when my papers

were accepted to top-tier journals but when I found some new things in dark optics labs

or during our endless discussions.

I was very fortunate to work with Troy Van Voorhis, my physical chemistry

advisor. My training was supposed to be on devices, but Troy helped me widen my

interest to molecular levels. When I had vague ideas and data which I didn't know what

to do about, Troy knew how to 'cook' my data, turning it to invaluable pieces. I thank

Vladimir Bulovic for making great comments about my dissertation. His questions and

comments allowed me to see a big picture.

I had amazing collaborators outside MIT. I had a good fortune of running into

Koen Vandewal at MRS and writing a paper with him and his advisor Jean Manca. I

thank Matt Sfeir and Chuck Black in Brookhaven National Lab for hosting me in their

lab and training me as a quasi spectroscopist. John Anthony and Matt Bruzek at

University of Kentucky were kind enough to respond to my sudden email asking for

5



collaboration and provide their special molecules. I also thank Mark Wilson and

Professor Richard Friend for their collaboration, which made my last project at MIT

possible.

My works at MIT would have been impossible without my fellow group members.

Michael Segal helped me get on track for research. Carlijn and Priya, I miss our mixture

of girly talks and research discussions. Kaveh showed me how to navigate the world of

nanofabrication. I was supposed to mentor Hiroshi and Lisa, my UROPs, but it was

probably me who learned more by working together. Phil was always patient to listen to

all my concerns, which enormously supported me throughout my PhD. I would always go

to Matthias if I needed advices on mechanical stuffs. Nick and Dan, we wrote a hero

paper; I will never forget our three shifts of making pentacene devices. Shane, my

computational chemistry teammate, made lots of cool molecular pictures and calculations.

Luke, Benjie, Kemal, Paul, Jean Anne, Tony, David, Sebastian, Mihai, Shlomy, Jon,

Mike Currie, Tim, Jason, Amador, Carmel, Eric, thank you for helping me on various

topics and being good friends.

I've spent more than half of my twenties at MIT and it was full of joy thanks to

my buddies: Tim, Jin, Will, and Charles. We're now spread out all over the world, but

let's keep our friendship forever. Mom and Dad, I love you and thank you for being

proud of your daughter. And lastly but most importantly, I've been with Wonyoung, my

husband as well as my soul mate, during this long journey. We share our passion for

work and the world. If I stand on the shoulders of giants, it's Wonyoung who raises me

up every day.

6



7



Table of Contents

Acknowledgments ........................................................................................................ 5

Table of Contents ...................................................................................................... 8

1. Introduction.................................................................................................... 12

2. Fundamentals of Organic Solar Cells ............................................................. 15

2 .1 E x citon s............................................................................................................. 15

2.1.1 Spin of Excitons.................................................................................... 16

2.1.2 Fluorescence and Phosphorescence ...................................................... 16

2.2 Electronic Transition Principle ...................................................................... 20

2.2.1 The Born-Oppenheimer approximation............................................... 20

2.2.2 The Franck-Condon principle............................................................... 20

2.3 M arcus Electron Transfer ............................................................................. 21

2.4 Operation of Organic Solar Cells.................................................................. 25

3. Potentials of Singlet Exciton Fission ............................................................. 27

4. Singlet-exciton-fission-based Photodetectors.............................................. 30

4.1 Introduction................................................................................................... 30

4.2 Device Structures ......................................................................................... 31

4.3 Experiment Setup .......................................................................................... 34

4.4 Efficiency of Singlet Exciton Fission ........................................................ 34

4.5 Magnetic Field Dependence of Photocurrent ....................... 36

4.6 Triplet Dissociation at Pentacene/C 60 Heterojunction ............................... 40

8



4.7 Conclusion................................................................................................... 47

5. Singlet-exciton-fission-based organic photovoltaic cells with external quantum

efficiencies above 100% ........................................................................................ 49

5.1 Introduction.................................................................................................... 49

5.2 Previously Reported Pentacene-based Solar Cells ........................................ 52

5.3 Experimental Technique ............................................................................... 55

5.3.1 Density Functional Theory Calculations ............................................... 55

5.3.2 Device Fabrication............................................................................... 56

5.3.3 Device Characterization........................................................................ 57

5.3.4 Change in Photocurrent under Applied Magnetic Field ........................ 62

5.4 Device Structure and Extemal Quantum Efficiency.................. 68

5.4.1 Device Structure.................................................................................... 68

5.4.2 Singlet Fission Sensitizer...................................................................... 70

5.4.3 External Quantum Efficiency ................................................................... 73

5.5 Current-voltage characteristics ..................................................................... 74

5.6 Determination of Singlet Fission Efficiency Using Magnetic Field Effect...... 75

5.7 Conclusion .................................................................................................... 80

6. Universal Mechanism for Singlet Exciton Fission .................... 81

6.1 Introduction.................................................................................................... 82

6.2 Selection of M aterials ................................................................................... 83

6.3 Theoretical Determination of Coupling ........................................................ 84

6.4 Rate M odel for Singlet Fission ...................................................................... 86

6.5 Experimental Determination of Fission Rates ............................................... 89

9



6.6 Prediction of Fission Rates ........................................................................... 92

6.7 D iscussion ...................................................................................................... 93

6.8 C onclusion .................................................................................................. 94

7. Singlet Exciton Fission in Hexacene: Toward Singlet Fission into Three Triplets95

7.1 Introduction .................................................................................................... 95

7.2 Experimental Technique ......................................... 98

7.2.1 Sample Fabrication .............................................................................. 98

7.2.2 Transient Absorption Spectroscopy............................... 98

7.3 Transient Absorption on Singlet Exciton Fission .................... 99

7.4 Magnetic Field Effect on Photocurrent.......................... 101

7.4.1 Device Structure and External Quantum Efficiency............................. 101

7.4.2 Magnetic Field Dependence of Photocurrent ...................................... 105

7.5 C onclusion ..................................................................................................... 107

8. Charge Transfer State Versus Hot Exciton Dissociation in Organic Solar Cells108

8.1 Introduction ................................................................................. ................. 108

8.2 Charge Transfer State or Hot Exciton Dissociation?................................... 110

8.3 Calculation of Charge Transfer States ........................................................... 111

8.4 Experimental Method................................................................................... 115

8.5 Internal Quantum Efficiency of Below-gap and Above-gap CT States ......... 116

8.6 Temperature Dependence of Photocurrent under Below-gap and Above-gap

E xcitations.. ......................................................................................... ...................... 12 1

9. Conclusion and Outlook ............................................................................... 128

10



11



Chapter 1 Introduction

1. Introduction

Solar energy, radiant light from the sun, can supply an almost infinite amount of clean

energy for human energy uses. The total solar energy absorbed by the Earth is around

3,850,000 exajoules (EJ) per year.2 The solar energy that hits the Earth every hour can

provide the energy human civilization uses every year.3 Figure 1-1 shows the land area

0 5o 100 150 200 250 300 350 W/m 2 = 18 TWe

Figure 1-1 Local solar flux in the world. Solar energy produced by solar panels that

cover the black area could provide the world's total energy demand. Taken from Ref. 1.
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Chapter 1 Introduction

required to provide the world's total energy consumption with solar electricity.'

The development of solar energy technologies will bring huge long-term benefits.

It will decrease countries' reliance on fossil fuels, enhance sustainability on the global

scale, and fight environmental pollutions and climate changes.4

To execute this mission, photovoltaic technologies need to be cheap enough to

compete with coal or gas-fired generation. Silicon solar cells, the current premier solar

technology, have 15-20% efficiencies. In March 2012, mono-crystalline silicon cells are

priced at $1.06 per watt and the price has steadily decreased due to efficient production

from China.5 Organic solar cells can be manufactured with roll-to-roll processing instead

of expensive clean-room processes. If organic solar cells have efficiencies comparable to

other solar cell technologies (-15%), they could provide cheap, efficient solutions to the

solar industry.

The efficiency of organic solar cells has rapidly improved over the last decade;

see Figure 1-2. In 2012, the state-of-the-art efficiency is 10.6% from a cell made by

researchers at UCLA and Sumitomo Chemicals.6 Most of the high-efficiency organic

photovoltaic cells today are tandem structures, where two cells absorbing different parts

of solar spectrum are stacked in series. Tandem cells have better efficiencies, but the

electric currents of the two constituent cells should be matched and the manufacturing

steps become challenging and complicated.

This thesis concerns a way to construct an effective tandem cell in a single-

junction cell structure, which is expected to improve efficiencies at a low cost. We utilize

an energy transfer process that allows a solar cell to convert a photon into two

electrons-called singlet exciton fission.

13
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Chapter 2 Fundamentals of Organic Solar Cells

2. Fundamentals of Organic Solar Cells

Here we summarize essentials for understanding fundamental electronic processes and

device operation principles in organic solar cells. The following material was written

mostly based on the lecture note of Ref. 7, Ref. 8, and Ref. 9.

2.1 Excitons

Perhaps a key characteristic that distinguishes organic semiconductors from inorganic

materials is an excitonic effect. An exciton is a pair of an electron and a hole that are

bound by Coulombic attraction.8 Conventional inorganic semiconductors have large

dielectric constants and, therefore, shield electron-hole interactions efficiently. In contrast,

organic molecules typically have a small dielectric constant; thus their exciton binding

energies are on the order of a few hundred meV, much bigger than kT at room

temperatures.10 This unique excitonic characteristic is where a lot of challenges and

fascinating effects of organic semiconductor technologies-including this thesis's topic,

singlet exciton fission-begin.

15



Chapter 2 Fundamentals of Organic Solar Cells

2.1.1 Spin of Excitons

An exciton consists of an electron and a hole, with each having a spin of 1/2. Each

particle can have a spin of up or down. Consequently, the two-electron system can have

four basis sets: T77, 11, f 1, IT. There are three states with a total spin of 1:

Is = 1, m = 1> = t T

Is = 1, m = -1> = 11,

where s is the total spin number and m is the spin quantum number." These three states

are called "triplets," as there are three states. Note that triplet states are symmetric under

particle exchange. A state with a total spin of 0 is called a singlet 1 :

Is =0, m =0>= (tj - IT) /[

Note that a singlet state is anti-symmetric under particle exchange. Only the optical

transition between the same total spin, i.e. singlet -+ singlet or triplet --- triplet, is

allowed.

2.1.2 Fluorescence and Phosphorescence

First, we will show why the total spin should be preserved during optical transitions. The

transition dipole moment, which predicts whether a transition from an initial state li> to a

final state If> is possible, is given by:

p (f I -er I i) (2.1)
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Chapter 2 Fundamentals of Organic Solar Cells

where r is the position of a particle with respect to the coordinate system. Let us apply

the inversion operation, i.e. r -+ -r. The transition dipole should not change the sign;

thus Ii> and !f> should have different symmetry under inversion.

The electric dipole moment operator for a two-electron system is -eri-er 2 . This

operator is symmetric under particle exchange. Let us construct spatially symmetric ( IF,)

and anti-symmetric (R) wavefunctions under particle exchange:

,- {HOMO(1)LUMO(2) + LUMO(1)HOMO(2)} (2.2)

_= {HOMO(1)LUMO(2) - LUMO(1)HOMO(2)}

where HOMO is the highest occupied molecular orbital and LUMO is the lowest

unoccupied molecular orbital.

The dipole moment for the transition between states of different symmetry is

P =-e(V,(rr 2 ) (rI + r2 ) I1 (rIr 2 )) (2.3)

This dipole moment changes its sign under particle exchange. Since the dipole moment

cannot depend on the labelling of electrons, it must be zero. This concludes that only the

optical transition between the states of the same symmetry is allowed.

The Pauli exclusion principle states that the total wavefunction for two identical

fermions is anti-symmetric with respect to an exchange of the particles. The total

wavefunction is composed of a spatial factor and a spin factor. We showed that the

spatial symmetry should not change during optical transitions. This means that optical

transitions do not alter symmetry of the spin wavefunction. In other words, only the

17



Chapter 2 Fundamentals of Organic Solar Cells

S1  Intersystem crossing
Exchange 

_ _

Interaction T1

Fluorescence Phosphorescence

(~109 s-1) (<1 06 S-1)

so
Molecular Ground State

Figure 2-1 Spin-dependent energy transfer process in molecules

transitions maintaining the total spin, i.e. singlet -+ singlet or triplet -+ triplet, are

possible.

The molecular ground state is usually a HOMO filled with two electrons. The

filled HOMO spatial wavefunction is symmetric under particle exchange; therefore, the

ground state is a singlet. The decay of a singlet exciton into a ground state is spin-allowed;

thus, this process occurs quite rapidly on the timescale of several nanoseconds and the

emitted light is called fluorescence (see Figure 2-1). The transition from a triplet excited

state into a ground state is spin-forbidden and, in some molecules, as slow as a few

seconds.12 Certain processes, such as spin-orbit coupling, may mix singlet and triplet

states, making the decay of triplet excited states emissive. This weakly allowed transition,

called phosphorescence, can be as fast as several microseconds.

Singlet and triplet excited states are non-degenerate in terms of energy due to

electron-electron interactions. The Coulomb integral J is defined by:

18



Chapter 2 Fundamentals of Organic Solar Cells

e HOMO(1)LUMO(2)1 I HOMO(1)LUMO(2) (2.4)

and the exchange integral K is defined by:

K = HOMO(1)L2UMO(MO(1) (2.5)

Electron-electron interaction for wavefunctions which are symmetric in space and anti-

symmetric in spin under particle exchange is obtained by:

E, 2 I
4rrW0 \ r /

SI -H(1)L(2)+L(1)H(2)} I {H(1)L(2) +L(1)H(2)}) (2.6)
47;TEo (,2 r 2 42I

=J+K

where H and L denote the HOMO and LUMO, respectively. Similarly, the energy for

spatially anti-symmetric wavefunctions is:

E_ = e2 111Errs (\ rii/

e {H(1)L(2) - L() H-(2)} 1 1 {H(1)L(2) - L(1)H(2)} (2.7)

= Jg =K il A~~lz. 27
=J-K

Hence the triplet state is lower in energy than the singlet state. The energy gap between

the singlet and triplet states is called the exchange energy.

19



Chapter 2 Fundamentals of Organic Solar Cells

2.2 Electronic Transition Principle

2.2.1 The Born-Oppenheimer approximation

Unfortunately, most electronic states in molecules are complex, and its Schridinger

equation cannot be solved analytically. The Born-Oppenheimer approximation allows us

to overcome this difficulty by taking advantage of the fact that electrons are much lighter

than nuclei. Due to the mass difference, the electrons can respond almost instantaneously

to the movement of the nuclei. Therefore, it is possible to fix the nuclei in position and

solve the Schrdinger equation for the electrons in the static electric potential formed by

given nuclear arrangement. The Born-Oppenheimer approximation is used in the Franck-

Condon principle, an essential theory for explaining molecular absorption and

fluorescence spectra.

2.2.2 The Franck-Condon principle

When an electronic transition, e.g. photoexcitation of a molecule, occurs, the nuclei

configuration is transformed by a Coulombic force as a result of the redistribution of

electrons. The nuclei undergo vibration and the absorption spectrum shows the

vibrational energies of molecules. This vibronic transition-simultaneous electronic and

vibrational transitions--can be analyzed by the Franck-Condon principle.

The Franck-Condon principle assumes the stationary nuclear framework during

electronic transition. Figure 2-2 describes the electronic transition from the ground state

to the first excited state. Note that the excited state curve is typically displaced to the

right relative to the ground state curve because the excited state has more antibonding

character. Under the Born-Oppenheimer approximation, the transition should happen

20



Chapter 2 Fundamentals of Organic Solar Cells

C

(D

1st
excite

-3 state
2

*27'- 0

Ground
state

d

Configuration coordinate

Figure 2-2 The ground vibrational state makes a transition to the first excited state with a

vibrational state that most strongly resembles the initial vibrational wavefunction. Taken

from Ref. 7. Adapted from Atkins and Friedman.

without changing the nuclear configuration coordinate. Therefore, the transition occurs

from the ground vibrational state in the lower state to the vibrational state in the excited

state that maximizes the overlap of the wavefunctions.

2.3 Marcus Electron Transfer

The Marcus theory of electron transfer is an extremely useful concept to explain various

electron transfer reactions in organic devices-charge transport, charge transfer at the

donor-acceptor interface, charge recombination, and singlet exciton fission.

21
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Chapter 2 Fundamentals of Organic Solar Cells

In a solid bonded by van der Waals forces, the intermolecular interaction is not

significant enough to form an electronic band, which is commonly created in covalently

bonded inorganic crystals. Thus, the movement of charges is best described by hopping

from one molecule to the next. As the molecules are weakly bonded in an organic solid,

the potential associated with a charge carrier distorts local crystal lattices. We call an

electron combined with the local lattice distortion a polaron. Under the Born-

Oppenheimer approximation, the electron responds much quicker than the associated

nuclear rearrangement. Therefore, we can assume that the nuclear reconfiguration limits

the charge transfer reaction.

Let us write the energy of an electron sitting on a molecule as a function of x, the

deviation of the molecule from the original configuration:

E = E0 -Ax (2.8)

where E0 is the increase in energy gained by having an excess charge on the molecule.

The new charge that comes into the molecule changes the nuclear arrangement, forming a

polarization field. The constant A describes the energy relaxation caused by the

polarization dipole. Furthermore, the lattice distortion increases the energy of the

molecule and we can describe it as a spring with the spring constant K:

E =( Kx2 2.9)
2

Therefore, the total energy combining the nuclear and electronic effects is

E = E -Ax+- Kx2 (2.10)
2

22



Chapter 2 Fundamentals of Organic Solar Cells

The distortion at equilibrium is found to be at the minimum of Eq. (2.10): i= K . The

total energy of an electron and a molecule at equilibrium is

E(i)= E0 + Eb (2.11)

where Eb is the binding energy given by

E A2  (2.12)
2K

Now we consider one molecule with the ground state energy Ei and the neighboring

molecule with the ground state energy E2. The charge transfer occurs when the electronic

levels of the two molecules are resonant:

EI + E0 - Ax, = E2 + E0 -Ax 2  (2.13)

The total energies of the first and second molecules are

1
U1 =- Kx + E0-Ax

2 (2.14)
1KX

U2 =- Kx2

A A
The total energy Ui+U 2 given the constraint of Eq. (2.13) is minimized at x, =

2K 2A

with A= E2- E, The total energies for the two molecules are

(A -2Eb) 2

UE +U2 = (+EO +Eb (2.15)
8Eb

The change in total energy provides the activation energy given by

EA =(U +U 2 )-(Eo + E) (2.16)

The hopping rate k is exponentially dependent on the activation energy:

23



Chapter 2 Fundamentals of Organic Solar Cells

A-El
k oc exp k^T (2.17)

_kB _

Often it is convenient to define a reorganization energy as twice the binding energy, i.e.

A=2 IEBI, and the final expression for Marcus electron transfer is obtained:

k oc exp -(A+A)2 (2.18)
14AkBT.

It is possible to graphically understand the Marcus electron transfer. The two

curves shown in Figure 2-3 represent the energy of the electron donor and acceptor

molecules against a common configuration xi. Charge transfer occurs when the energies

of the donor and acceptor are equal. The difference of the ground state energy A can be

induced by applying an electric field: A = aqF. When no electric field is applied, the

activation barrier is 2/4. As the electric field increases, charge transfer becomes faster

until the transfer becomes resonant. However, further increases in the electric field after

the resonant point slow down electron transfer; this regime is called the 'Marcus inverted'

region.
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(a)

(b)

aqF

(c)

aqF

Reaction coordinate

Figure 2-3 Charge transfer in the Marcus theory. (a) No electric field is applied. (b) No

activation barrier is required and the charge transfer rate is at maximum. (c) As the

electric field increases further, the rate starts to drop. This regime is called 'Marcus

inversion'. Taken from Ref. 7

2.4 Operation of Organic Solar Cells

Figure 2-4 illustrates the power conversion process of organic solar cells. Photon

absorption creates a bound electron-hole pair, or exciton. In organic molecules, the

25



Chapter 2 Fundamentals of Organic Solar Cells

exciton has a high binding energy up to leV and therefore cannot be dissociated by the

internal electric field. The excitons diffuse toward the donor-acceptor (DA)

heterojunction. The energy offset at the DA interface dissociates the strongly bound

excitons in organic molecules with near unity efficiency. Excitons are separated into

charge transfer states, which are bound electron-hole pairs across the DA junction. The

charge transfer states can be dissociated into free carriers, which ultimately generate

photocurrent.

(a) 77A (b) G7ED

A4K
Acceptor

(c) (d)

Figure 2-4 The operating principle of organic bilayer solar cells. (a) Upon light

absorption, an exciton is created. (b) Excitons diffuse to the interface. (c) Excitons are

dissociated into charges at the donor-acceptor interface. (d) Charges are extracted to the

electrodes.

26
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Chapter 3 Potentials of Singlet Exciton Fission

3. Potentials of Singlet Exciton Fission

Singlet fission, a process that splits a singlet (spin 0) exciton into two triplet (spin 1)

excitons, promises to allow for photovoltaics with efficiencies beyond the Shockley-

Queisser (SQ) limit.'3 In a conventional single-junction solar cell, an electron-hole pair

photoexcited with energy above the bandgap loses its extra energy via thermalization.14

Singlet exciton fission instead splits a high-energy excited state into two low-energy

states, generating one extra exciton per absorbed photon, which would have been

otherwise wasted as heat.

Although the transition between singlet and triplet states is disallowed by the

conservation of spin symmetry, a pair of triplets can have some singlet character8 ;

therefore, singlet fission, the conversion of a singlet into a pair of triplets, can be a spin-

allowed process.13 If the energy of the singlet exciton is higher than or comparable to

twice the energy of the triplet, singlet fission can be very fast, outcompeting other decay

channels, including prompt fluorescence.' 3

The triplet excitons produced by fission have roughly half the energy of the initial

singlet excitation. Consequently, fission limits the open circuit voltage of the cell to no

more than half its previous value. Triplet excitons are, however, also dark states; the

absorption in the spectral region between the singlet and triplet excitons is spin-

forbidden. This empty absorption region must be filled by adding another material that

27



Chapter 3 Potentials of Singlet Exciton Fission

a b

Si

So 0

Figure 3-1 (a) Energetic structure and state transition in singlet fission materials.

Photoexcitation of singlets splits into pairs of triplet states. The wavelength range

between the singlet and triplet states is not optically accessible. (b) A device structure

example of singlet-exciton-fission-based solar cells. The donor layer performs singlet

fission, where a high-energy photoexcitation splits into two triplet excitons. The acceptor

layer absorbs low-energy photons and has the bandgap similar to the triplet energy of the

donor.

captures low-energy photons; see Figure 3-la. Otherwise, the singlet-fission photovoltaic

system will double the photocurrent, but also cut the voltage by half, leading to no net

benefit in the power conversion efficiency. See Figure 3-lb for an example of device

structures featuring singlet fission donors and low bandgap acceptors. As shown in

Figure 3-2, singlet fission solar cells with absorption in the singlet-triplet gap can bring

the SQ limit to 41% from 33% of conventional single-junction solar cells.13'14
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21

Bandgap [eV]

Figure 3-2 Theoretical maximum power conversion efficiency as a function of bandgap

(Si-So for single-junction; Tr-So for singlet fission) for single-junction (blue) and singlet

fission (green) solar cells.
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Chapter 4 Singlet-fission-based Photodetectors

4. Singlet-exciton-fission-based

Photodetectors

We employ an exciton fission process that converts one singlet exciton into two triplet

excitons to increase the quantum efficiency of an organic multilayer photodetector

beyond 100%. The photodetector incorporates ultrathin alternating donor-acceptor layers

of pentacene and C60 , respectively. By comparing the quantum efficiency after separate

pentacene and C60 photoexcitation we find that singlet exciton fission in pentacene

enhances the quantum efficiency by (45±7)%. In quantitative agreement with this result,

we also observe that the photocurrent generated from pentacene excitons is decreased by

(2.7±0.2)% under an applied magnetic field of H = 0.4T, while the C6o photocurrent is

relatively unchanged.

4.1 Introduction

Organic optoelectronic devices are compatible with flexible plastic substrates and low-

cost manufacturing processes. Within this broad family of devices, efficient organic

photodetectors have been investigated for applications in medical imaging and large area

optical detectors. Peumans et al. reported multilayer organic photodetectors with external

quantum efficiencies of 75% across the visible spectrum using ultrathin (-5 A) electron
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donor and electron acceptor layers. 16 The narrowness of each layer minimizes losses

during exciton diffusion to a charge generation site at an interface between the donor and

acceptor materials. Using multiple layers maintains the optical absorption of the

photodetector, however, the layers also trap charge carriers, and a strong external electric

field is required to drive the carriers out of the device.

In the present work, we enhance the efficiency of an organic multilayer

photodetector by employing exciton fission. In pentacene, the energy of the first singlet

exciton E(Si) = 1.83 eV is more than twice the energy of the first triplet exciton

E(T1 ) = 0.86 eV." Thus, the spin-allowed transition of a singlet exciton into two triplets

S1 -- 2Ti, called singlet fission, is energetically possible in pentacene without thermal

excitation and occurs rapidly (< 1 ps) (See Figure 4-1). 17,19 If charge transfer occurs after

singlet exciton fission, one photon can lead to two carriers, potentially doubling the

quantum efficiency.

4.2 Device Structures

To exploit singlet exciton fission, we built a multilayer photodetector composed of

pentacene and C60 for donor and acceptor, respectively, as illustrated in Figure 4-1. Each

pentacene and C60 layer is 2-nm and 1-nm-thick, respectively; thin enough to allow

efficient exciton separation and charge extraction. There are 30 pentacene/C 60 bilayers in

total, yielding an optically active thickness of 90nm. Devices were fabricated on

precleaned glass substrates coated with indium tin oxide (ITO) and poly(3,4-

ethylenedioxythiophene): poly(4-styrenesulphonate) (PEDOT:PSS). Inserting a buffer

layer of PEDOT:PSS on the anode reduces the dark current at a reverse bias by an order
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of magnitude and aids charge extraction by increasing the built-in potential, as

investigated in Ref. 20. All other layers were deposited by thermal evaporation at high

vacuum (< 3x10-6 Torr). The silver cathode was defined by a 1-mm-diameter shadow

mask.
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Figure 4-1 (a) Energy transfer process in a pentacene/C 60 photodetector. A singlet

exciton created upon photoexcitation of pentacene undergoes singlet exciton fission with

a rate of ksr (< 1 ps), leading to two triplet excitons. They are separated at the

pentacene/C 60 heterojunction at a charge transfer rate of kcT, generating photocurrent

(solid arrow). Singlet excitons in pentacene can also undergo direct charge transfer

(dotted arrow). (b) Schematic energy-level diagram of a pentacene/C 60 multilayer

photodetector. The energy levels are from Ref. 21, 22, and 23. Note that the lowest

unoccupied molecular orbital of C60 is calculated from optical absorption measurements.
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4.3 Experiment Setup

The spectral quantum efficiency was measured by using a xenon lamp with a

monochromator, chopped at -90 Hz, and a lock-in amplifier. The incident light intensity

was measured using a calibrated silicon photodiode and the current-voltage

characteristics were recorded using a semiconductor parameter analyzer. Complex

refractive indices of modeled thin films were characterized by measuring thin-film

reflection and transmission. All devices were packaged in a nitrogen atmosphere before

measurement.

4.4 Efficiency of Singlet Exciton Fission

Figure 4-2 shows the external quantum efficiency (EQE, rEQE) at a voltage bias of

V = -3.5 V compared to the absorption of the optically active layers. We fitted the EQE

spectrum using optical interference modeling,9 obtaining internal quantum efficiencies

(IQE) of (128±2)% and (89±4)% for pentacene and C60, respectively. Optical parameters

were obtained from reflectance and transmittance measurements of organic multilayer

films grown simultaneously with the active layers of the devices. Assuming that all

photogenerated excitons are dissociated in the multilayer structure, and that the charge

extraction efficiency is independent of the source of the excitons, the comparison

between the IQE of pentacene and C60 suggests that singlet exciton fission in pentacene

enhances the EQE by rsr= (145±7)%. In previous work on pentacene/C 60 photovoltaic

cells, Yoo et al. observed a high IQE of 87% at short-circuit conditions under specific
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Figure 4-2 The external quantum efficiency (EQE) spectrum at a voltage of V = -3.5V

and absorption spectrum of a pentacene/C 60 multilayer device. The absorption of

pentacene (dotted line), C60 (dashed line), and both layers (dash-dot line) are shown. The

absorption inside the device structure was acquired using optical interference modeling.

The EQE was fit using internal quantum efficiencies of (128±2)% and (89±4)% for

pentacene and C60, respectively, implying that the efficiency enhancement from singlet

exciton fission is (145±7)%.

21

illumination of pentacene. We presume this result also may be influenced by singlet

exciton fission.

Figure 4-3a is a plot of the peak EQE as a function of the applied voltage at a

wavelength of 660nm or 450nm, where pentacene or C60 dominates the absorption,

respectively. At V- -3.5V, where the EQE of pentacene first exceeds 100%, the dark

current is less than 25% of the photocurrent; see Figure 4-3b. But at higher reverse bias
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Figure 4-3 (a) The external quantum efficiency (EQE) as a function of applied voltage.

To selectively excite pentacene and C60 we employed pump wavelengths of X = 660nm

(squares) and X = 450nm (circles), respectively. (b) The current-voltage characteristics in

the dark (solid) and under illumination at X = 660nm (dotted) and X = 450nm (dashed).

The incident light intensity was chosen to approximately equalize the photocurrent

densities and was 1.54mW/cm2 and 3.21mW/cm 2 for X = 660nm and X = 450nm,

respectively.

(IV > 3.5V), the photocurrent is similar to the dark current, and we cannot distinguish the

24
increase in the EQE in this region from bulk photoconductive gain in pentacene.

4.5 Magnetic Field Dependence of Photocurrent
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Figure 4-4 plots the magnetic field dependence of the photocurrent for the selective

illumination of pentacene and C60. Diode lasers at the wavelength of 670nm and 408nm

are used for photoexciting pentacene and C60, respectively. The incident light intensity

was adjusted using optical density filters to obtain a short-circuit current density of

J = 0.1 3mA/cm2 . The magnetic field was applied parallel to the device plane. Figure 4-4a

0.0 0.2 0.4

Magnetic Field [T]
-3 -2 -1

Voltage [V]

Figure 4-4 (a) The change in photocurrent under varying applied magnetic field at a

voltage of V = -2V. Laser illumination at X = 670nm (squares) and X = 408nm (circles)

is used to separately excite the pentacene and C60 layers, respectively. The photocurrent

decreases by up to 2.7% under illumination of pentacene, confirming the presence of

singlet exciton fission in pentacene. (b) The change in photocurrent change under a

magnetic field of H = O.4T at varying reverse bias. The positive trend near short-circuit

may be due to modulation of charge recombination rates.
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shows the magnetic field dependence of photocurrent for pentacene and C60 absorption at

a voltage of -2V. Pentacene exhibits a modulation of up to -(2.7±0.2)% whereas the

photocurrent change upon CO illumination is negligible.

Johnson and Merrifield's theory accounts for the magnetic field dependence of

the exciton fusion process Ti + Ti -> S1 in polyacene crystals. The fission process is the

reverse of fusion, having a rate constant nine times that of fusion when no thermal energy

is required. In their theory, a singlet is coupled to two triplets via an interacting triplet

26pair. The fission rate is proportional to the fractional singlet character of the interacting

triplet pair which is determined by the triplet-pair spin Hamiltonian incorporating the

Zeeman interaction and the triplet-exciton fine structure. As a magnetic field increases

(H> 0.2T), the Zeeman interaction dominates the spin Hamiltonian and the singlet

character of the pair spin states decreases. As a consequence, the fission rate

decreases. 18,26

Figure 4-4b displays the magnetic-field-induced photocurrent modulation as a

function of voltage. It is notable that the magnetic field effect becomes more positive as

the reverse bias is decreased. Since charge recombination also becomes more significant

at low reverse bias, we speculate that the positive magnetic field effect may be due in part

to the increased lifetime of triplet charge transfer (CT) states split by the Zeeman

27interaction. Indeed, this effect has been observed in other organic photovoltaic

28heterojunctions.2

According to the schematic shown in Figure 4-1, the efficiency enhancement

factor, 7s7T, is
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q, (H)= 2. H (H)kskT H kcr ±k.'(4.1)
" H (H )ksrr +kcr 77H ( H) ksrr + k Cr

where the first term represents the charge carriers generated after undergoing singlet

exciton fission, and the second term represents the charge carriers generated directly from

the singlet exciton. In addition, ksrr is the rate of singlet exciton fission into two triplet

excitons, kcT is the exciton dissociation rate into a charge transfer state, and q77(H)

accounts for the modulation of ksr under an applied magnetic field. In the absence of an

applied magnetic field, qH(H=0) = 1 and the analysis of Figure 4-2 gives

r/srr = (145±7)%. Consequently, we calculate ksr = (0.8±0.2)kcT. The rate constant ksrr

in pentacene microcrystalline thin films measured by pump-probe spectroscopy was

1.3x1013 s' .17 The resulting value of kcr= 1.6x1013 S1 is comparable to the charge

29
transfer rate measured in other organic donor-acceptor heterojunctions.

In crystals of tetracene, another acene closely-related to pentacene, 77H is saturated

at high fields (H> 0.3T) and varies between 0.75 < 77H< 0.9 depending on the crystal

orientation with reference to the magnetic field direction. Since our films do not have a

preferential crystal direction, we let r/7(H = 0.4T) = 0.85 by averaging r/(H > 0.3T, 0, #)

in all crystal directions. The photocurrent change induced by magnetic field is calculated

from Eq. (4.1) to be A r/srr = -(2.7±0.1)%, which agrees well with the measured value

presented in Figure 4-4.
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4.6 Triplet Dissociation at Pentacene/C60 Heterojunction

Because the pentacene triplets have such low energy, E(TI) = 0.86 eV, it has been

questioned whether the pentacene/C 60 donor-acceptor interface separates pentacene triplet

excitons into charge. In this section, we review experimental and theoretical evidences

from literature that confirm pentacene triplet excitons can dissociate at the C60 interface

despite their relatively low energy.

The dissociation of pentacene triplets into charge at the pentacene/C 60 interface

has been studied by pump-probe spectroscopy3 1 and time-resolved second harmonic

generation (TR-SHG) spectroscopy . Rao et al. probed the kinetics of triplet excitons

and charges in pentacene/C 60 bilayer films by employing transient absorption

spectroscopy.3 In Figure 4-5a, the photoinduced absorption (PIA) signal integrated over

the probe wavelengths of 810-910nm corresponds to the triplet states and charges,

although the contribution from triplets dominates. The electroabsorption (EA) signal

comes from the electric field generated by charge generation at the heterojunction. The

population of charges (the EA signal) grows over 2-1Ons as the number of triplets (the

PIA signal) decreases. 3 1

Chan et al. probed transient charge transfer dynamics at the pentacene/C 60

junction by performing TR-SHG experiments, which detect the local electric field created

by electron-hole pairs; see Figure 4-5b.32 The kinetics of triplet populations at the

pentacene/C 60 interface was also measured by two-photon photoemission (2PPE)

spectroscopy. The comparison of TR-SHG and 2PPE signals shows that the charges are

created at the same rate as the decay of triplets.32 Note that the charge generation in this

work occurs within a few picoseconds, much faster than what Rao et al. observed,
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Figure 4-5 (a) Transient absorption dynamics of pentacene/C60 bilayers. The decay of the

photoinduced absorption (PIA) averaged over the probe wavelengths of 810-910nm

(black) is attributed to the decrease of triplet populations. The electroabsorption (EA)

signal (green), created by charge generation at the heterojunction, grows as the PIA

signal decays. Courtesy of Rao et al.3 1 (b) Second harmonic generation (SHG) intensity

(blue) as a function of pump-probe delay from a pentacene/C 60 bilayer film. SHG probes

the transient electric field, established by charge transfer at the donor-acceptor interface.

Also shown is normalized two-photon photoemission signal (red) of the triplet state

population at pentacene/C60 bilayers. Courtesy of Chan et al.32 Both data shown in (a)

and (b) suggests that the population of electrons and holes grow at the same rate as the

triplets decay.

because the pentacene layer used by Chan et al. was almost a monolayer, whereas Rao et

al. used 150nm-thick pentacene films.

Jadhav et al. and Ehrler et al. probed the dissociation of pentacene triplet excitons

in devices by changing the HOMO level of donors and the LUMO level of acceptors33' 3

see Figure 4-6. Collectively, three classes of acceptors were examined in these studies:

fullerenes, perylene diimides, and lead selenide (PbSe) and lead sulfide (PbS)

nanocrystals (NCs). Jadhav et al. also used two types of pentacene molecules to vary the

ionization potential of donors: unsubstituted pentacene and diphenyl-pentacene (DPP).
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First, triplet exciton dissociation at pentacene/C 60 interfaces was investigated by

examining the contribution from pentacene in EQE spectra; see Figure 4-7a. It is notable

that the DPP/C60 junction generates very little current from photoexcitation of DPP

relative to pentacene in junctions with C60. As DPP has slightly deeper HOMO than

pentacene (5.2±0.1 eV versus 4.9±0.1 eV, respectively), the tentative conclusion is that

triplets in DPP cannot break up into charges due to the high barrier to charge transfer

states.3 3 Indeed, when DPP is paired with acceptors with deeper LUMO, such as NN'-

dioctyl-6,12-dicyano-3,4,9,10-tetracarboxyperylene diimide (PDI-CN2) and N,NO-

lH,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN2), charge transfer from

triplets starts to work again.
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Figure 4-6 A summary of the energy levels and molecular structures used in the study on

triplet exciton dissociation by Jadhav et al. Courtesy of Jadhav et al.33
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Second, the polarity of magnetic field effect to photocurrent can be employed to

probe the dissociation of triplets.3 3 As shown in Figure 4-8, pentacene/C 60 and

DPP/PDIF-CN2 junctions, which convert triplets into charges efficiently, show the

negative magnetic field effect in the photocurrent, because singlet fission slows down
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Figure 4-7 (a) Measured EQEs of small molecule acceptor devices. (b) Measured (solid)

and calculated (dashed) EQEs of a pentacene/C60 device. Absorptions from pentacene

and C60 layers are plotted together. Optical modeling finds that the IQE of pentacene is

63%. (c) Measured EQEs of pentacene/PbS nanocrystal devices. (d) Measured (solid)

and calculated (dashed) EQEs of pentacene/PbSe nanocrystal devices. The IQE of

pentacene is determined to be 35%. Courtesy of Jadhav et al.33
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Figure 4-8 Photocurrent changes under magnetic fields for various donor-acceptor

multilayer devices. Courtesy of Jadhav et al.3 3

under a magnetic field and fewer charges are formed. On the contrary, the DPP/C60

interface, where the triplet dissociation is disabled, exhibits a positive magnetic field

effect. The reduced rate of singlet fission under applied magnetic field results in more

singlet excitons, leading to more charges at the junction where triplets cannot be

dissociated.3 3

Beyond the archetypal pentacene/C60 junction, Jadhav et al. and Ehrler et al. both

studied junctions between pentacene and infrared-absorbing NCs.,33 34 Figure 4-9a shows

the pentacene/PbSe NC device structure and the EQE spectra with varying NC bandgaps

in Ref. 34. The presence of the pentacene absorption in the EQE means that the excited

state in pentacene has sufficient energy to dissociate at the donor-acceptor

heterojunction.3 4 By detecting the pentacene contribution from the EQE data, Ehrler et al.
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showed that the pentacene triplet energy is at least 0.85eV and at most 1.00eV in

operating devices. 34 As shown in Figure 4-7c-d, Jadhav et al. observed a similar

phenomenon in the EQE of pentacene/PbS NC devices with varying NC LUMO levels.33

The contribution to photocurrent from pentacene absorption changes from positive to

negative as the LUMO level of the acceptor increases.
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Figure 4-9 (a) Normalized external quantum efficiency spectra of pentacene solar cells

prepared with a size series of PbSe NCs. A contribution from pentacene is observed in

devices with NCs up to 1.08eV, indicated with an arrow. The inset shows the device

structure studied. (b) EQE of the best PbSe-pentacene device. The inset shows the

current-voltage data with a power conversion efficiency of 4.7% under AM 1.5G

illumination. The NC bandgap in the film is 0.98eV. Courtesy of Ehrler et al.34
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Figure 4-10 summarizes the relations between the CT energy and the

effectiveness of triplet dissociation.33 The junctions dissociating triplets are colored in

blue and those not dissociating are represented in red. It was found that the pentacene/C60

interface is sensitive to small changes in the donor and acceptor energy levels, suggesting

that pairing with proper acceptors is significant when studying pentacene derivatives.

Theory also suggests that the pentacene/C60 junction is capable of dissociating

pentacene triplet excitons. Jadhav et al. calculated the charge transfer (CT) state using

constrained density functional theory.3 3' 35 As shown in Figure 4-11, the CT state energy

was computed to be 0.9-1.0 eV for the head-to-tail geometry, potentially low enough to

break up the pentacene triplet state.33 The face-to-face geometry is predicted to have a CT
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Spectroscopy in Air
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Figure 4-10 ELumo,acceptor-EOMO,donor, approximate energy of charge transfer states, for

various donor-acceptor heterojunctions. Blue indicates that the EQE measurement and

magnetic field effects in photocurrent confirmed the dissociation of triplets of those

junctions, while red means that triplets cannot be separated into charges. Courtesy of

Jadhav et al.33

46



Chapter 4 Singlet-fission-based Photodetectors

(a) (b)

0.9-1.0 eV 1.1-1.3 eV

Figure 4-11 Calculated charge transfer state energies for pentacene-C 60 donor-acceptor

pairs in (a) head-to-tail and (b) face-to-face configurations. Courtesy of Jadhav et al. 33

state energy of 1.1-1.3 eV, not low enough to separate the pentacene triplet.33 The

calculation supports the conclusion that the pentacene triplet and the pentacene/C 60 CT

state are roughly isoenergetic. 33

Finally, it is important to note that pentacene/C 60 bilayer solar cells show high

EQEs up to ~70%36. Considering that the pentacene triplets are formed almost

3237,38
instantaneously (-80 fs) after photoexcitation ,8 such high efficiencies are hard to

explain if the photocurrent is only created by residual pentacene singlet exctions.

4.7 Conclusion

To summarize, we improved the quantum efficiency of organic photodetectors by

utilizing singlet exciton fission in pentacene. We measure an exciton multiplication factor

of (145±7)%. The photocurrent reduction of -2.7% during selective illumination of

pentacene under a magnetic field confirms the presence of singlet exciton fission in
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pentacene/C60 multilayer heterojunctions. These results suggest that singlet exciton

fission can be employed to improve the quantum efficiency of various organic

photodiodes including photodetectors, photovoltaics and dye-sensitized solar cells.
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5. Singlet-exciton-fission-based organic

photovoltaic cells with external

quantum efficiencies above 100%

Singlet exciton fission transforms a molecular singlet excited state into two triplet states,

each with half the energy of the original singlet. In solar cells, it promises to double the

photocurrent from high energy photons. We demonstrate organic solar cells that exploit

singlet exciton fission in pentacene to generate more than one electron per incident

photon in a portion of the visible spectrum. Using a fullerene acceptor, a poly(3-

hexylthiophene) exciton confinement layer, and a conventional optical trapping scheme,

we show a peak external quantum efficiency of (109±1)% at A = 670 nm for a 15-nm-

thick pentacene film. The corresponding internal quantum efficiency is (160±10)%.

Analysis of the magnetic field effect on photocurrent suggests that the triplet yield

approaches 200% for pentacene films thicker than 5 nm.

5.1 Introduction

Conventional solar cells generate one electron for each photon that is absorbed. The

output voltage is defined by the bandgap, and solar cells waste any excess photon energy

49



Chapter 5 Photovoltaic Cells with EQE exceeding 100%

as heat. Summing the thermal loss over the solar spectrum yields the Shockley-Queisser

efficiency limit of 34% for solar cells containing a single, optimized semiconductor

junction14

Splitting excited states, or excitons, generated after the absorption of high energy

photons presents one pathway beyond the single junction efficiency limit. Instead of

harvesting a single electron, several charges can be obtained by dissociating the child

excitons. For example, so-called multiple exciton generation mechanisms have been used

to produce an average of more than one electron from an ultraviolet photon with energy

four times the bandgap39

Singlet exciton fission is a type of multiple exciton generation mechanism found

in organic semiconductors 40' 41. It is notable because spin conservation disallows the

usual competing loss process: thermal relaxation of the high-energy exciton into a single

low-energy exciton. In fission, the low energy exciton is a dark state, inaccessible by a

direct transition from either the high energy exciton or the ground state. Only the

evolution of the high-energy state into two dark excitons is spin-allowed. Consequently,

prior studies have suggested that singlet fission can be efficient even in the visible

spectrum, harnessing photons of just twice the energy of the child excitons1 7, 42-46

There is a side effect of spin in singlet fission, however. The dark exciton controls

the electrical properties of the cell. These are decoupled from the optical absorption,

which is controlled by the bright, high-energy exciton. Thus, fission does not itself

increase the power efficiency of a solar cell. It potentially doubles the photocurrent at the

cost of losing at least half the open circuit voltage. To overcome the Shockley-Queisser

limit, solar cells could combine fission with a conventional material that fills in the
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absorption spectrum above the dark exciton 3 3 , 47 -50 . First, however, singlet-fission must

demonstrate that it can break the conventional barrier of one electron per photon.

The best understood fission material to date is pentacene, an acene with five rings.

Its dynamics are illustrated in Figure 5-1. Optical excitation generates a delocalized spin

0, or singlet, exciton. Within about 80 fs17 , 42-46, the pentacene singlet exciton splits into a

Photoexcitation

Singlet exciton
Singlet Singlet
fission dissociation

Charge transfer
state

Triplet excitons

Triplet
dissociation

AT

Photocurrent

Figure 5-1 A schematic of singlet exciton fission in pentacene based on calculations of

the singlet and triplet excitons and charge transfer states at the pentacene/fullerene

interface, with the purple (orange) density indicating where less (more) electron density

is found in the excited state. The delocalized singlet exciton and two localized triplet

excitons are circled in red. The loss pathway for singlet excitons is direct dissociation

into charge prior to singlet exciton fission.
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pair of spin 1, or triplet, excitons. A pair of triplet excitons can be combined in nine

different spin states. As some triplet-pair states have singlet character (total spin of 0),

singlet fission is spin-allowed. Under an applied magnetic field, the singlet character of

the triplet-pair states is redistributed, changing the number of states with singlet character.

Thus, the rate of singlet fission is dependent on the local magnetic field, offering a unique

probe of fission dynamics in thin films and devices25,33,41,47, 51. Although triplet excitons

are dark states, energy may be extracted from them if they are dissociated into charge.

This is possible at a junction between pentacene and the fullerene C60 when the pentacene

is oriented approximately perpendicular to the interface33

5.2 Previously Reported Pentacene-based Solar Cells

In pentacene, singlet fission occurs exothermically since the energy of the singlet exciton,

E(Si) = 1.83 eV, is slightly higher than twice the triplet energy, E(TI) = 0.86 eV.52, 53

Singlet exciton fission in pentacene has been observed to occur extremely rapidly, on the

order of 80 fs. 37 ,38 The ultrafast nature of singlet fission in pentacene enables the efficient

conversion of a singlet into two triplets in a photovoltaic device because singlet fission

can outcompete or match other decay channels such as singlet exciton dissociation into

charge. Indeed, several researchers have observed high external and internal quantum

efficiency from pentacene-based photovoltaic cells.

The first high-efficiency pentacene/C 60 solar cells were reported by Yoo et al.,

36,54exhibiting high peak external quantum efficiencies (EQEs) up to 69%. Their device

structure was indium tin oxide (ITO)/pentacene (50nm)/C6o (50nm)/bathocuproine (BCP;

6nm)/Al. Figure 5-2 displays their EQE spectrum and its analysis. Optical interference
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modeling revealed that the internal quantum efficiency (IQE), defined as the external

quantum efficiency divided by the absorption of active layers, was 85% for pentacene

absorption 36; see Figure 5-2c. While not considering the possibility of singlet fission, the

authors determined the exciton diffusion length of -70nm for pentacene thin films. 3 6

Subsequent work by Pandey et al. demonstrated EQEs as high as 83% in bulk

heterojunction solar cells based on pentacene and N,N'-ditridecylperylene-3,4,9,10-

tetracarboxylic diimide (PTCDI-C 3H27).s1, s6 A 100-nm-thick blend of pentacene and

PTCDI-C 13H27 in the ratio of 3:1 (by wt %) was grown on ITO anodes covered with

poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The cathode

was 8nm BCP/60nm Ag. The blend device delivered the maximum EQE of 83%55; see

Figure 5-3 for the EQE spectrum. The optical modeling shows that the absorption of

active layers at X = 670nm is around 80%,56 indicating that the IQE is close to 100%.
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Figure 5-2 External quantum efficiency of pentacene/C60 bilayer solar cells. The device

structure was ITO/pentacene (50nm)/C 60 (50nm)/BCP (6nm)/Al. (a) Measured (circle)

and calculated (solid) external quantum efficiency with pentacene exciton diffusion

length of 20, 40, 60, 70, 80, and 100nm (from bottom to top). (b) Calculated absorption

by both active layers (solid), absorption by pentacene layers (dashed), and absorption by

C60 layers (dotted). (c) Internal quantum efficiencies (IQE), defined by the ratio of EQEs

and absorption. Note that the IQE of pentacene is roughly double that of C60 . This may

reflect the presence of singlet exciton fission, although differences in exciton diffusion

lengths in the two materials may also be influential. Courtesy of Yoo et a,. 36
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Wavelength Jnm)

Figure 5-3. External quantum efficiency spectra for blend (open squares) and bilayer

(filled triangles) devices. The active layers were 100-nm-thick pentacene:PTCDI-Ci 3H27

(3:1) blend and pentacene (45nm)/PTCDI-C13H27 (45nm) layers for blend and bilayer

devices, respectively. Courtesy of Pandey et al.55

5.3 Experimental Technique

5.3.1 Density Functional Theory Calculations

All plots in Figure 5-1 show the difference in the excited state density and the ground

state density. The purple (orange) regions are where less (more) electron density is found

in the excited state. In order to model the delocalization of the singlet state in a pentacene

crystal, the two molecules in the unit cell is surrounded by their nearest neighbors, giving

a total of ten pentacene molecules for the quantum region. The triplet-triplet state and the

delocalized singlet state are calculated using the PBEO functional and 3-2 1G basis set for

the ten pentacene system. A ASCF calculation57 is performed to acquire the delocalized

singlet state and its density. The triplet-triplet state is obtained by a normal DFT
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calculation with a total of 4 more alpha electrons than beta electrons. The face to face

type geometry is used for the charge transfer state between pentacene and C60, with a

separation distance of 3 A. The charge transfer state is calculated using constrained

DFT8 , with an extra electron on C60 and one less electron on pentacene.

5.3.2 Device Fabrication

Pentacene, PTCBI, and C60 were purchased from Luminescence Technology Corporation

and further purified twice by vacuum sublimation. BCP, P3HT (Regio-regular trace metal

basis 99.995% purity, MW 54,000-75,000), and anhydrous chlorobenzene were

purchased from Sigma-Aldrich and used as received. PEDOT:PSS (Clevios PVP Al

4083) was used as received.

Organic photovoltaic structures were fabricated on pre-patterned indium tin oxide

(150 nm) purchased from Luminescence Technology Corp. with a resistance of 15 Ohm

per square. The substrates were cleaned in order of Micro90 detergent solution, deionized

water, acetone, boiling isopropanol and then subject to 5 minutes of oxygen plasma

cleaning. PEDOT:PSS was filtered by a 0.45 ptm PVDF filter and spun on the pre-cleaned

substrates in air at 4000 rpm for 60 seconds. The substrates were baked in a nitrogen

glovebox (base level with less than 1 ppm 02 and H2 0) for 20 minutes at 135 *C. In the

glovebox, P3HT was dissolved in chlorobenzene at a concentration of 4 mg/mL and

heated and stirred at 60 'C for 30 minutes. Once fully dissolved, the P3HT was filtered

with a 0.2 ptm PTFE filter and spun at 2000 rpm for 60 seconds onto the PEDOT:PSS

coated substrates. Substrates were then baked at 110 'C for 20 minutes to remove any

residual solvent.
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Deposition of the anti-reflection (AR) coating began with the previously stated

cleaning procedure followed by a deposition of 120 nm MgF2 on the front surface of the

substrate. The substrate was subsequently cleaned using the previously stated cleaning

procedure but starting with acetone sonication as water might damage the MgF2 coating.

Further processing continued as usual.

All other layers were thermally evaporated at pressures less than 3x 10-6 Torr at -1

A/s. The thermal evaporator was directly attached to the glovebox. The metal cathode

was defined by a 1.44 mm diameter shadow mask. Devices were packaged in a dry

nitrogen environment using UV curing epoxy and glass substrates sized to cover all the

active area. Thin film thicknesses were determined in-situ through use of quartz crystal

oscillators. The tooling factor, the ratio between the nominal thickness and the actual

thickness of thin films, was determined for each material before any device fabrication,

and confirmed again at the conclusion using a Veeco optical interferometer using the

monochromatic PSI mode (accurate 1-35 nm step heights). Rotation of the substrate

holder during thermal evaporation resulted in a thickness variation of ±10% across the

width of the substrate holder.

5.3.3 Device Characterization

External quantum efficiency measurements were performed using a 150 W Xenon lamp

coupled to a Newport monochromator with the output light mechanically chopped at a

frequency greater than 200 Hz. The photocurrent was measured with a lock-in amplifier

under low light intensities (< 100 ptW/cm2). A Newport 818-UV silicon photodetector

calibrated by Newport and reported accurate to within 1% was used to determine the
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incident light intensity. This detector was also checked against a second Newport

calibrated photodetector. A Keithley 2400 SourceMeter applied a reverse bias to the

organic photodetectors reported in Figure 5-12.

In light-trapping geometries, devices were illuminated with a NKTPhotonics

Supercontinuum laser. The photocurrent was collected with a lock-in amplifier while the

laser was chopped. The device was then turned to 100 or 45*, and a mirror was placed

such that the light reflected from the device was returned to it. Photocurrent

measurements were taken for both s and p polarizations at each wavelength and then

averaged to obtain the efficiency under incoherent illuminations.

Light-trapping experiments were designed to simulate pinhole and sawtooth solar

cell configurations; however, they likely underestimate the realistic EQE when

simulating the pinhole geometry, as the experiments with light incident at 100 simulate a

single extra bounce, while a true pinhole structure provides multiple extra bounces.

We tested three different EQE illumination schemes using the lamp and

monochromator system: illumination smaller than the device, illumination of the full

device, and illumination of a thin strip of light that ran the full height of the device. For

the latter two cases, the silicon photodetector was shielded by the shadow mask used for

defining cathodes; in the first case it was not. A systematic error of an extra 2%

photocurrent was observed when the illumination covered the full device, possibly due to

incidental illumination of the device bus-bars; therefore, this configuration was not used

in the measurements. Similar techniques were used to characterize the tunable laser used

in the light-trapping geometries. By cross checking laser measurements at normal

incidence to measurements performed using the lamp and monochromator, the collimated
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beam of the laser was found to cause a 2% underestimate in the EQE at X = 670 nm due

to slight spreading of the initial laser spot outside the device boundaries. With the

systematic errors corrected, we determine an overall error of 1%, largely due to the

photodetector responsivity. The lamp intensity and lock-in amplifier output were both

found to have the errors well below 1%.

P3HT is a key component of solar cells built with thin pentacene films. When the

P3HT film is absent, the open circuit voltage drops to 0.24 V and the EQE is 24% at the

peak pentacene absorption wavelength A = 670 nm; see Figure 5-4. The P3HT likely acts

to block triplet diffusion to the anode. Judging from changes in the open circuit voltage

and the current-voltage characteristic in reverse bias, it appears to suppress recombination
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Figure 5-4 External quantum efficiency of a pentacene-C 60 device without the exciton

confinement of the P3HT layer. The device structure was ITO/pentacene 15 nm/C 60

35 nn/BCP 15 nm/silver.
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and improve hole extraction. As shown in the atomic force micrographs of Figure 5-5,

the P3HT underlayer appears to slightly lower the surface roughness of the pentacene

film, but its effect, if any, on molecular orientation will need further characterization.

Charge extraction across exciton confinement layers was found to be sensitive to

the hole transport level, which should lie above the 4.9 eV HOMO level of pentacene.

We tested several materials that have HOMO levels of -4.9 eV, including hole injection

materials developed for OLEDs (m-MTDATA, MeO-TPD, spiro-TPD, but also a-6T);

however, only P3HT did not hinder charge extraction.

Current-voltage characteristics were measured using a Keithley 2602

SourceMeter. The light current-voltage traces were obtained under illumination of a

150 W Xe arc lamp that is spectrally corrected to AM 1.5G light and attenuated to

100 mW/cm 2 . The active area of the device was measured using an optical microscope

and the bus-bar was shadowed during the measurement.

The optical constants n and k were determined from measured reflection (R) and

40 nm 20 nm

Figure 5-5 Atomic force microscopy images of 15-nm-thick pentacene films on (a) ITO

and (b) ITO/PEDOT:PSS/P3HT. The scale bar is 200 nm long. The surface roughness

was 3.7 nm rms and 2.4 nm rms for a and b, respectively.
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transmission (T) of films deposited on a quartz substrate. As pointed out by Nitsche and

Fritzs9 a simple calculation of k (from the absorption coefficient) and a Kramers-Kronig

transform of k to obtain n are inaccurate when the frequency range over which k is

measured is not infinite. Following their technique, we initially generated n by

performing a Kramers-Kronig transform of k and refined both n and k iteratively until the

simulated R and T curves had the least variance from the experimentally measured R and

T. The n and k determined by this method are plotted in Figure 5-6 for each of the active

materials.

Using the optical constants and the transfer matrix method9' 5 9, we calculated the

absorption of the active layers for the given cavity structure. To determine each

material's IQE, we varied the IQE of a given material until the IQEs multiplied by the

3

2.5

oo

C 1.5

1

0.5 J-.

400 500 600 700 800

Wavelength (nm)

Figure 5-6 The real (-) and imaginary (- -) components of the index of refraction for

pentacene (-), P3HT (-), and C60 (-) determined from layers deposited on quartz

substrates.

61



Chapter 5 Photovoltaic Cells with EQE exceeding 100%

absorption summed across all materials most accurately fit the measured EQE.

5.3.4 Change in Photocurrent under Applied Magnetic Field

Measurements of the change in photocurrent with application of magnetic field were

performed using a 1000 W Xe arc lamp (OBB) coupled to an OBB monochromator or

with monochromatic light emitting diodes. Results using either system were identical.

Light incident on the devices was mechanically chopped. While the device was under

illumination, an electromagnet was energized at a frequency of 13 mHz with a duty cycle

of 50%. The device current (measured by a lock-in amplifier) and the magnetic field

(measured by a FWBell 5100 gaussmeter) were queried at a frequency of 1 Hz.

Calculations of the change in photocurrent occurred in the following steps: i) averaging

the photocurrent when the applied magnetic field is at its maximum, ii) averaging the

photocurrent when the applied magnetic field is zero, and iii) taking the difference

between the two values and dividing by the current when the field is zero. Low incident

light intensities (< 1 mW/cm 2) were used to prevent device degradation during the

experiment.

The change in photocurrent with applied magnetic field traces the inverse of the

change in the prompt fluorescence intensity or the change in the delayed fluorescence

intensity as a function of magnetic field for tetracene60 ; see Figure 5-7. The shape of the

photocurrent modulation versus magnetic field is a fingerprint for singlet fission as the

photocurrent rises under a small magnetic field (B < 0.1 T) and decreases at a high

magnetic field (B > 0.2 T). The singlet fission lineshape is distinct from other magnetic

field dependent processes that occur in organic photovoltaic cells, such as triplet-charge
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0 0.1 0.2 0.3
Magnetic Field (T)

Figure 5-7 Change in photocurrent as a function of external magnetic field for a

photodetector (o) and a solar cell (o). The photodetector curve was taken at a reverse bias

of -4 V. Both curves first increase and then decrease before saturating at magnetic fields

greater than 0.4 T. The same behavior is observed for delayed fluorescence in tetracene

60. The large difference in the change in photocurrent observed at B = 0.4 T is due to the

increased dissociation of the singlet into charge in the photodetector structure.

annihilation. All photodetector devices were reverse biased until the change in

photocurrent was only attributed to singlet fission. The change in photocurrent reported

in Figure 5-12 was measured at this reverse bias for an applied magnetic field of 0.4 T,

where the photocurrent modulation is saturated with respect to the magnetic field.

We also studied the magnetic field dependence of P3HT within the device

structure shown in Figure 5-9 to confirm that excitons generated in P3HT can be

transferred to pentacene and subsequently split into two triplets, resulting in P3HT IQEs
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above 100%. The wavelength dependence of the magnetic field effect is shown in Figure

5-8 and observed to be correlated with the optical absorption of pentacene and P3HT.

Devices fabricated with only P3HT and C60 active layers, illuminated at A = 530 nm, had

no magnetic field dependence, demonstrating that there is no singlet fission in the

absence of pentacene. This is consistent with prior studies that found no singlet fission in

regio-regular P3HT, but suggested that singlet fission can occur in regio-random P3HT

only under illumination of high energy photons 61. Excitation of the acceptor in any device

structure resulted in no magnetic field modulation of photocurrent.

We used the following kinetic scheme, which includes the rates essential to

1 a 0.6

0.8 - 0 0 )O
>Pentacene o 0

0060.6 - -

46 0.4 - (PD
C a* 0.2 00 o

(* 0 4

0.2 - o 0 Only 0
o*- Pentacene

0 0
400 450 500 550 600 650 700

Wavelength (nm)

Figure 5-8 The absolute value of the change in photocurrent as a function of wavelength

(o) for a solar cell with a 5-nm-thick pentacene film, so chosen to enhance the magnetic

field effect. The shape is very similar to the fraction of photocurrent due to P3HT and

pentacene (-) and distinct from the photocurrent contribution only from pentacene (-).

The similarity is a secondary proof that P3HT is sensitized by pentacene.
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Merrifield's theory of singlet fission, to explain the magnetic field dependence of

photocurrent.

hv (TT) 9

SO+ Si T+ T
ks 4/ / . kT kT

(TT)= 1
le- le- le-

Scheme S1. Detailed kinetic scheme of singlet fission. ki is the conversion of a singlet

exciton into a triplet-triplet pair. k-1 represents the reverse process, i.e. recombination of

the triplet-triplet pair to a singlet excited state. A triplet-triplet pair is separated into two

free triplets (k2), which dissociate to charge (kT). ks is defined in the main text.

In Merrifield's theory, a singlet fission event takes place by way of one of nine

spin-coupled triplets (TT)', where I = 1,...,9 designates the quantum spin state. The factor

IS;2 is the singlet character of the spin state of (TT) and changes under a magnetic field.

We do not include backward recombination of the free triplets, i.e. TI+Ti - (TT)',

because such a process is endothermic by -0.leV; there are no reports of delayed

fluorescence in pentacene.

Under steady-state conditions, the concentrations of all species are constant,

leading to the following equations:
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d[S1 ] 9_1

dt + k Ij
1=1

TT) 
9

1=1

d([(TT)]
dt = k1 IS, 2 [S1] - k_1 S 12 [(TT)'] - k2 [(TT)'] = 0

d[T1] 2 k2
dt =1

(TT)' ] - kT [ T1 ] = 0

(5.1)

(5.2)

(5.3)

(5.4)dct = ks [S ] + kT [T]- kout [e- =0

where # is the rate of singlet generation, and k,,, is the rate constant for charge extraction.

Solving Eq. (5.2) for [(TT)], substituting into Eqs. (5.1) and (5.3), and simplifying gives

9 1 2 k1|S9 2 [

-=1 k 1 |SI +k 2 1=1
|2 [ S1 ] - ks I.St]

92

= IS 2 k ] -ks [1]
= 0- ' I k- IS1 12 +I1

k2

=#0--kgi ( B) [S1]-ks[1]=0

and

d[T1 ] 2 k2 [(TT)'] - k [T1]

= 2k 12 [S]- k [T1]
k1 IS 1
k2

=2kfis(B)[S1]-kT [T1I =0

where we have defined an overall rate constant kfis(B) for the process of going from Si to

2T1 (i.e. singlet fission):
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|S1I2
kfps (B)-k (5.

_ 1 | 2 +1
k2

Note that the expression for kfi(B) in Eqs. (5.5)-(5.7) is identical to the one

Merrifield's theory62. Our kinetic scheme can thus be simplified to Scheme S2:

hv

So+S 1

le-

tT
1

kT

le-

7)

in

lk

1e~

Scheme S2. Simplified kinetic scheme of singlet fission. ks and kT are defined in the main

text and Scheme S1.

Combining Eqs. (5.4) through (5.6) gives an expression relating the photocurrent I(B) to

the rate constants:

Ik(B)rock ks +2 kfs(B)

# kLk s(B)+ks kfs (B)+ks
(5.8)

For convenience, we write kfis (B)= ,(B)k ,, where X(B) is the modulation of

the zero-field fission rate k, due to an external magnetic field. The normalized change

in photocurrent is thus given by

(5.9)
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which is Eq. (5.10).

Finally, we note that while Merrifield's theory allows one to calculate

z(B)= kfi, (B) /k from first principles, it requires knowledge of the zero-field-splitting

parameters D and E in the Hamiltonian for pentacene triplet excitons and also the ratio

k-1/k 2. These were fitting parameters in Merrifield's work. As shown in the main text, we

were instead able to obtain an expression for Y(B = 0.4 T) requiring only the experimental

values of 3ma at B = 0.4 T (see Eq. (5.11)). This leads to an expression that gives the

fission yield of a device simply by measuring its J at B = 0.4 T (see Eq. (5.12)). We do

not need to calculate or fit the line shapes of the change in photocurrent versus magnetic

field.

Implicit in our model is the assumption that ;r(B) is invariant with pentacene layer

thickness. This assumption might break down for very thin layers (< 2 nm) of pentacene,

as X represents a balance of the forward and backward rates linking the singlet exciton

and the triplet-triplet pair. Direct dissociation of the triplet-triplet pair would alter the

balance and increase Z(B) closer to one, resulting in a change in photocurrent trending

toward zero as the pentacene layer thickness is decreased. Nevertheless, we assume that

the change in X(B) for very thin pentacene films is small because triplet dissociation into

charge (-400 fs) is slower than singlet fission (80 fs) for pentacene monolayers on Co*6 .

5.4 Device Structure and External Quantum Efficiency

5.4.1 Device Structure
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The structure of our pentacene-based solar cell is shown in Figure 5-9a. The core of the

device is a pentacene/C60 donor-acceptor junction33 4, 4. To minimize triplet exciton

losses, we used a thin pentacene layer and also introduced an exciton blocking layer of

regio-regular poly(3-hexylthiophene) (P3HT), which was placed between the pentacene

and the anode. The combination of the wide energy gap and 1.5 eV triplet energy 67 of

P3HT confines pentacene triplet excitons, and its highest occupied molecular orbital

12
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Figure 5-9 (a) Chemical structures and architecture of the solar cell with the thickness of

each layer in nanometers and energy levels of the lowest unoccupied and highest

occupied molecular orbitals in eV 33, 54, 63-66. The anode is composed of indium tin oxide

(ITO) and poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS). The

cathode employs bathocuproine (BCP) and a silver cap. (b) External quantum efficiency

of devices without optical trapping (-), and device measured with light incident at 100

from normal with an external mirror reflecting the residual pump light (-). Optical fits

from IQE modeling are shown with dashed lines: modeled pentacene EQE (- -), modeled

P3HT EQE(- -), and modeled device EQE (--) for comparison to the measured device

efficiency without optical trapping.
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(HOMO) of 4,7 eV63 helps extract holes from pentacene. To maximize light absorption,

devices were fabricated with MgF 2 antireflection coatings on the front surface of the

glass substrate.

5.4.2 Singlet Fission Sensitizer

Although the P3HT/pentacene/C 60 device was designed to prevent quenching of

pentacene excitons at the anode, it also shows singlet fission sensitization. In this section

I introduce Reusswig et al.'s demonstration of singlet sensitization by rubrene. 68 Singlet

fission molecules, including acenes, often exhibit low absorption coefficients (< 105

cm'), which limits the efficiency of singlet-fission-based solar cells. To overcome this

problem, Reusswig et al. devised a solar cell architecture where a singlet fission

sensitizer is inserted between a singlet donor and an acceptor; see Figure 5-10a for the

device operation principle.68 Excitons created by photon absorption of singlet donors

migrate to a singlet fission sensitizer, where the number of excitons doubles. In this

device, the process of singlet exciton fission is decoupled from photon absorption,

exciton diffusion, and charge transport.68 This architecture can convert a variety of highly

light-absorbing molecules to effective singlet fission materials. 68

Reusswig et al. built a tris[4-(5-phenylthiophen-2-yl)phenyl]amine (TPTPA)/PDI-

CN2 planar heterojunction device with rubrene as the singlet fission sensitizer (see Figure

5-10b).68 Figure 5-10c presents the boost in the efficiency of singlet donor

photoexcitations by the singlet fission sensitizer. The EQEs at X < 450nm, where TPTPA

absorption dominates, doubles as a thin layer of rubrene is inserted.
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The magnetic field effect on photocurrent confirms that the EQE enhancement

owes to energy transfer from TPTPA to rubrene and consequent singlet fission in

rubrene; see Figure 5-10d. 68 The singlet fission sensitizer device shows reduction in

photocurrent down to -14% upon photoexcitation of TPTPA under applied magnetic

fields, meaning that TPTPA absorptions undergo singlet fission. The control device

shows almost no magnetic field effect.
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Figure 5-10. (a) Energy flow in photovoltaic devices that exploit a singlet exciton fission

sensitizer. Optical excitation populates singlets on TPTPA. The singlet excitons are

transferred to rubrene, a singlet fission sensitizer, where they undergo singlet fission,

followed by charge transfer at the donor-acceptor interface. (b) A device structure of

TPTPA/PDI-CN2 bilayer photovoltaic cells incorporating a singlet fission sensitizer. (c)

EQE spectra of the TPTPA/rubrene/PDI-CN2 photovoltaic device compared to the

control device. (d) Comparison of magnetic field dependence of photocurrent for

TPTPA/PDI-CN2 devices without rubrene (dashed) and with rubrene (solid). The

illuminations at X = 365nm (blue) and X = 500nm (green) photoexcite TPTPA and

rubrene, respectively. Courtesy of Reusswig et al. 68
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5.4.3 External Quantum Efficiency

The external quantum efficiency (EQE) is defined as the ratio between the number of

electrons flowing out of the device and the number of photons incident upon it. We

measured the EQE (Figure 5-9B) for a device that features a 15-nm-thick pentacene

layer. The EQE at normal incidence is (82±1)% at the peak pentacene absorption

wavelength A = 670 nm. Optical modeling predicts that the internal quantum efficiency

(IQE), which is defined as the number of electrons collected per photon absorbed, for

photoexcitation of pentacene and P3HT is (160±10)% and (150±10)%, respectively. The

IQE of pentacene in this structure is approximately double that reported previously for

pentacene5 ' 70, and the high IQE of P3HT is consistent with the expected sensitization of

P3HT by pentacene, as singlet excitons generated in P3HT are transferred to pentacene

and then split into triplets71 . The peak EQE drops to 24% when P3HT is absent. The

P3HT appears to block triplet diffusion to the anode and suppress recombination by

improving hole extraction; see Figure 5-4, 5-5, and 5-6 and accompanying text for further

discussion of both sensitization and the efficiency enhancement due to P3HT.

The 15-nm-thick film of pentacene in the solar cell microcavity absorbs only 49%

of the incident light at 2 = 670 nm according to optical modeling and hence the efficiency

should improve if a light-trapping scheme is employed. Therefore, we measured the

EQE in configurations designed to simulate two conventional optical trapping schemes.

The first scheme mounts the cell at 450 to the incident light, with a mirror that directs

reflected photons back to the device. This configuration models a saw tooth geometry

such that incident light bounces at least twice within the structure7 2' 7. In the second

scheme, the incident angle is reduced to 100 from the normal, modeling an optical
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collector that focuses light through a small hole in a mirror held parallel to the surface of

the cell9 . The peak EQE at A = 670 nm for the solar cell mounted at 450 is (102±1)%,

increasing to (109±1)% for incidence at 100 from the normal. Both light-trapping

schemes yield efficiencies that meet or exceed the one electron per incident photon

benchmark.

5.5 Current-voltage characteristics

The current-voltage characteristics of the planar pentacene solar cell are shown in Figure

5-11. The short circuit current measured at AMI.5 matches the integrated EQE measured

at < 1 mW/cm 2 to within 6%, demonstrating that the fission process in pentacene is not

significantly intensity dependent. As expected, the enhanced EQE does not correspond to

a high power efficiency. The open circuit voltage is 0.36 V, identical to the values of

previous pentacene devices 54. It is defined by the pentacene triplet energy of 0.86 eV 4 0' 4 9 .

With C60 as the acceptor, the device absorbs light only above the pentacene singlet

energy at 1.8 eV. Consequently, the power efficiency is (1.8±0. 1)%.
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Figure 5-11 The current-voltage characteristic of the pentacene solar cell measured under

dark (- -) or AM1.5 (-) conditions without optical trapping. The power efficiency is

(1.8±0.1)%.

5.6 Determination of Singlet Fission Efficiency Using Magnetic Field

Effect

Independent confirmation of the high internal quantum efficiency within the cell is

provided by analysis of the photocurrent under a magnetic field. The crucial rates are

identified in Figure 5-1. The singlet exciton can either directly dissociate into a single

electron-hole pair, ks, or undergo fission resulting in generation of two electron-hole

pairs, kfis(B). In absence of a magnetic field, three out of nine triplet-pair states have
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singlet character. Under a high magnetic field (B > 0.2 T), the number of triplet-triplet

pairs with singlet character reduces to two, reducing the singlet fission rate, kfis(B). The

photocurrent yield changes if there is effective competition between fission and the

dissociation of the singlet exciton. Note that it is not possible to generate a magnetic field

effect on the photocurrent yield unless there is a singlet loss mechanism that competes

with the fission process.

For convenience, we write k, (B) = X(B)k' , where X(B) is the modulation of

the zero-field fission rate k, . The normalized change in photocurrent in steady state, (5,

is then given by

I (B) -I1(0) ks k' ( 1)1(- ) (5.10)
I(0) (2k , +ks )(Zk4, + ks

where I(B) is the photocurrent as a function of magnetic field strength. Dissociation of

the singlet exciton directly into charge is only likely to compete with fission for

pentacene molecules directly adjacent to the acceptor. Indeed, reductions in the singlet

exciton lifetime of pentacene have been observed in very thin pentacene films (0.6

monolayer) adjacent to a C60 layer4 . Thus, we can approximately model pentacene films

of varying thickness by changing the effective rate of singlet dissociation in Eq. (5.10).

Analytically, we can solve for x at a given value of the magnetic field by noting

that the magnitude of 5 is maximized when ks = k,fi. This yields

_25 '+ 3=+1+ 2429mV3:+1
X ax (mx )2 -(5.11)
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The result for x can be used to directly obtain the triplet yield of singlet fission from the

magnetic field modulation in photocurrent:

2 _ -)X -1k 3(X + 2) - X + 1) -_8,52X
7 -I+.kko (5.12)

To obtain an independent measure of the yield of singlet fission, we fabricated

multiple devices while varying the thickness of pentacene, see Figure 5-12. For thin

layers of pentacene (d < 5 nm) we increased the optical absorption by employing the

multilayer photodetector architecture9 4 1 . Photodetectors were measured in reverse bias to

improve charge extraction. As a test of generality, both C 60 and 3,4,9,10-perylene

tetracarboxylic bisbenzimidazole (PTCBI) were used as acceptor molecules and found to

yield similar results. Devices with thicker layers of pentacene employed the same device

architecture as Figure 5-9. The magnetic field modulation of photocurrent at 0.4 T is

shown in Figure 5-12A. It peaks at 5,ax = -(2.7±0. 1)% in 2-nm-thick layers of pentacene

sandwiched between acceptor layers. From Eq. (5.11), we obtain x = 0.85, identical to the

value assumed in Ref. 41 based on tetracene measurements74.

In Figure 5-12b we apply Eq. (5.12) to transform the magnetic field modulation

data into the expected yield of triplet excitons from singlet fission. We find that singlet

fission is incomplete in pentacene films with thickness d < 5 nm, accounting for the

relatively low IQE in the photodetector structures. The triplet yield approaches 200% in

thicker films, providing independent confirmation of the high IQE calculated for the

device structure shown in Figure 5-9.

The IQE as evaluated using optical modeling9 , is shown in Figure 5-12c and

compared to predictions based on the magnetic field effect. The IQE is suppressed in thin
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layers of pentacene, increases to a maximum for d - 15 nm, and then is reduced in thicker

films. Decreases in IQE for thicker films are presumably due to triplet exciton diffusion

limitations and lower than unity charge collection efficiency. There are two important

conclusions from this IQE comparison. First, the yield of singlet fission can be

conveniently determined directly from the normalized change in photocurrent under a

magnetic field. A high yield is characterized by a vanishing modulation of photocurrent

under magnetic field. Second, singlet fission in pentacene requires a relatively thick film

to minimize losses due to singlet exciton dissociation. Fission is not effective in fine-

grained blends of pentacene and fullerene or perylene-based acceptors.
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Figure 5-12 (A) The magnetic field dependent change in photocurrent measured at

B = 0.4 T as a function of pentacene layer thickness. Square symbols are measured in

photodetector structures and each pentacene layer is sandwiched between C60 (o) or

PTCBI (n) acceptor films. Measurements in the solar cell architecture of Figure 5-9A are

circles (o). (B) The triplet yield from singlet exciton fission as obtained from Eq. (5.12).

(C) A comparison of the maximum achievable quantum yield determined from the

magnetic field effect (-) with the internal quantum efficiency as determined from EQE

measurements and the calculated optical absorption. The reduction in quantum efficiency

observed in thin layers of pentacene is found to originate in incomplete singlet exciton

fission. Grey dashed lines are a guide to the eye.
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5.7 Conclusion

The observation of external quantum yields exceeding 100% in the visible spectrum

represents a significant advance in the application of singlet fission to solar cells. Next,

fission should be paired with a low bandgap material that harvests photons below the

singlet exciton energy. This could be an organic material47, inorganic semiconductor

nanocrystal33, 48, 49, or a conventional inorganic semiconductor 50. High quality

contemporary silicon solar cells show an AMi.5 efficiency of approximately 25%75;

singlet fission materials such as tetracene or rubrene could be integrated with silicon cells

to double the photocurrent from high-energy solar photons (A < 550 nm), ultimately

boosting the efficiency of the silicon cell to over 30%.
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6. Universal Mechanism for Singlet

Exciton Fission

Exciton fission is a process whereby one singlet exciton splits into two independent

triplets. It has the potential to increase the power conversion efficiency of single junction

solar cells above 40% by doubling the current from high energy photons. Here, we

measure fission dynamics using ultrafast photoinduced absorption and derive a first

principles expression that successfully predicts the rate of fission for a range of materials

with vastly different intermolecular structures, spanning more than three orders of

magnitude in fission rates. Our results show that the experimental rates are consistent

with a nonadiabatic Marcus-like mechanism in weakly interacting systems and an

adiabatic, coupling independent pathway at larger interaction strengths. Unlike

alternative multiple exciton generation and inverse Auger processes, singlet exciton

fission is found to be robust against both variations in nanostructure and thermalization

losses, yielding unity efficiency across the wide range of materials studied. The success

of the kinetic model developed here paves the way for the rational design of singlet

fission photovoltaic materials.
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6.1 Introduction

69
Singlet exciton fission was first observed in crystalline acene materials in the 1960s . In

a simple dimer picture, labeling the monomer electronic states as So, Si and T,

SOSO > 13 '"kfiS 7T

Because fission generates two independent triplet excitons from a single high energy

photon, fission-based solar cells can produce quantum yields in excess of 100%41 and in

principle could lead to single junction photovoltaics with power efficiencies above

40%".

Singlet fission has only been observed in a handful of materials - primarily

several acenes 32 , 37, 41, 69, 76, an isobenzofuran77 and some carotenoids78 . The rational

design of new materials for singlet fission-based devices has been limited because the

mechanism of singlet fission is not well understood. Numerous time-resolved studies

have confirmed that fission can occur very quickly - on timescales as short as 80 fs32, 37,

38. However, it is not clear why it is so fast or what material properties must be controlled

to ensure efficient fission. In this article, we resolve this mystery by presenting a

theoretical model that correctly predicts measured fission rates across three orders of

magnitude in kfis.

From a physical perspective, the dominant pathway for fission will be determined

by the sizes of two different parameters: the coupling, V = (SiSo I H 17T), between the

singlet excited state and the triplet pair state and the energy difference, AEer = Es, - Ecr I

between the singlet and charge transfer excited states. We can then identify four possible

mechanisms, each with its own rate expression (See Figure 6-1): 1) Activated charge
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transfer when AEcr is very small7 9 and V is negligible 2) Superexchange (or CT mediated

fission3 ) when AEcr is on the order of the electron hopping integral, t,'' 3) Direct

fission when V is moderately large82 and 4) Coherent fission when V is of the same order

of magnitude as the energy difference between S1So and TT.

6.2 Selection of Materials

In order to quantify which of these models is correct, we study thin films of the six

different pentacene derivatives shown in Figure 6-2: pentacene, 6,13-bis(triisopropyl-

silylethynyl) pentacene (TIPS-P), 6,13-diphenylpentacene (DPP), 6,13-di-biphenyl-4-yl-

pentacene (DBP), 6,13-di(2'-thienyl)pentacene (DTP), and 6,13-di-benzothiophene-

pentacene (DBTP). The crystal structures were either obtained from literature8
4-

86 or

determined from X-ray crystallography. As is clear from the Figure, while chemically

Activated Charge Transfer Coherent Fission

4- *4-4* 4--+J

k oct 2 e Ec7/kT
pis fs dephasing

(SS0l/IjTT) 10-2 10-1 100 101 102
Coupling

(meV)

Superexchange Direct Fission

k 2 5(A E)
k +V 2 d (A E)

Figure 6-1 Four possible mechanisms for singlet fission: 1) Activated charge transfer, 2)

Superexchange, 3) Direct singlet fission, and 4) Coherent fission.
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Pentacene TIPS-P DTP DBTP DBP

Structure Edge-to- Cofacial Side Side
Name face, 2D TT stack slip stack slip stack slip stack Orthogonal

herringbone
Distace 3.5 3.3 3.6 5.0 5.5 5.0

Coupling 63.6 119.0 17.6 5.80 1.75 0.791
(meV)
Time

Constant 0.090 0.10 0.16 0.90 3.8 11.8
(pS)

Figure 6-2 Pentacene derivatives examined in this study and their crystal structures,

structure characteristics, intermolecular distances, coupling (V =(SS0 I H I TT)), and

time constants for singlet fission.

similar, these compounds adopt radically different crystal structures from one another.

Pentacene packs in a herringbone arrangement, TIPS-P creates a 2D it-stacked structure,

DTP shows cofiacial 1D stacking, while in DBP, DPP, and DBTP the sidechains prevent

significant n overlap between the pentacene cores. The structural variations in these

materials are expected to have a dramatic impact on the electronic coupling (V) between

monomers, leading to significant variation of kfis.

6.3 Theoretical Determination of Coupling

For each material, we compute the coupling V using constrained density functional theory

(CDFT) 8 8. We model the electronic states of a dimer embedded in the crystal

electrostatic field89 . For each dimer, we obtain localized, diabatic states by constraining
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the charge and spin of each monomer (M) to match the appropriate physical state: SiSo,

SoS1, M*M , M M*, TT. Using these states to compute V directly 90 , we obtain couplings

spanning a range of almost three orders of magnitude for the materials in Figure 6-2. This

prescription has been shown previously to quantitatively predict triplet hopping rates in

acenes9 1 . Because triplet hopping relies on a coupling (Vrr = (TS 0 I H 0 I S7i)) that is

physically similar to the fission coupling, one thus expects that these theoretical estimates

should be reliable. For pentacene, our calculations are in semi-quantitative agreement

with existing theoretical estimates of V 92

In agreement with electroabsorption data, CDFT predicts the energy gaps AECT

are fairly small (0.3-1.0 eV). Thus, superexchange might play a significant role in

fission 0 ' 81. Indeed, the absorption spectra (see Figure 6-3) for pentacene, TIPS-P and

DTP show the clear signature of CT mixing in the bright excited state93 . We can account

for superexchange and direct fission simultaneously by mixing the four states (SiSo, SoS 1,

M*M~, M M*) to obtain four quasi-adiabatic states that account for superexchange-type

CT mixing. Then, selecting the bright state from among these four, we compute the

modified coupling V = (Bright I H I TT), shown in Figure 6-2. In agreement with the

experimental spectra, we find that superechange only appreciably changes the coupling

for materials (Pentacene, TIPS-P and DTP) where CT mixing is significant in the bright

state.
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Figure 6-3 Absorbance spectra of toluene solutions (blue solid) and thin-films (green

dashed) of (a) pentacene, (b) TIPS-P, (c) DTP, (d) DBTP, (e) DBP, and (f) DPP. The red

dotted line in (c) shows the spectra of annealed DT-P thin-films.

6.4 Rate Model for Singlet Fission

To model the rate of fission, we borrow from the extensive literature on electron transfer

rates as a function of electronic coupling8 2, 94-96. For weak coupling, kfps is expected to

follow the celebrated Marcus nonadiabatic rate expression: kn,,= 27r/h(DWFC)

(AG+Af 2

~V 2e 4"T . DWFC is the density weighted Franck-Condon factor, which can be
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approximated classically for low frequency modes . kna assumes activated motion in the

bright diabatic state and sudden, rare transitions to the TT state, as illustrated in Figure

Figure 6-4. For large coupling, this nonadiabatic picture ceases to be appropriate. Instead,

the system follows the adiabatic state, which evolves continuously from Si-like to TT-

like as the reaction progresses. In the adiabatic limit, the rate is governed by the speed of

nuclear rearrangement (which may or may not be activated) and thus kfps will become

independent of V for large enough V. These two limits can be unified into a single rate

expression as shown by Bixon and Jortner (BJ)8:

k V 2kn
k 1 +r" V

1 2 (AG+nhco+A)-

k X{ |{0|(On}|2e 4^k'

(6.1)

ad =k r \ I{|n}|2

The BJ rate predicts kfi will follow the nonadiabatic rate (kn) when V is small but be

Nonadiabatic
Increase Coupling

Reaction Coordinate Reaction Coordinate

( S,1S I I | TT) < 20 meV (SSO I h I TT) > 20 meV

Figure 6-4 Nonadabatic versus adiabatic models for singlet fission.
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limited by the adiabatic timescale (rd) for large V. This rate expression depends on

several parameters - the reorganization energy (A), the driving force (AG), the frequency

and displacement of the primary accepting mode (o, A) - all of which can be estimated

based on experimental spectra and simple monomer calculations.

We fix AG based on the experimental estimates of the Si-TT energy gap in

pentacene: AG = -0.1 eV. Meanwhile, we fix the frequency of the accepting mode based

on the frequency of the vibrational progression in the Si absorption spectrum:

c9 = 1450 cm'. Next, we estimate the displacement to be A ~ 0.75, based on the

vibrational progression in acene absorption and emission spectra. Next, we compute the

overall reorganization energy using PBE0/6-31G* geometry optimizations of the So, Si

and T states of each monomer in conjunction with the four point rule:

2 furII= ([SiSoITT] + [TTISiSo] - [SiSolSiSo] - [TT ITT])

-> 2sU H ([SilT] + [SoIT] + [TISI] + [TISo] - [SilSi] - [SolSo] - 2[TIT])

where [AIB] means "the energy of state A at the relaxed geometry of state B". The

reorganization energy in the BJ formula is the total reorganization energy minus the

amount accounted for by the accepting mode: A = 41 - hoaA. Finally, we can estimate ia

(which is basically the attempt frequency) based on the C-C stretching frequency in

acenes,so 0ad~ 40 fs.

Finally, in order to apply Eq. (6.1) to the materials here, we note that for a given

singlet state, there will always be two equally likely final states after fission. Expanding

our notation to include three monomers: ISoSISo> -> ISoTT> or ITTSo>.. Since there are

two equally likely final states, each generated with a rate according to Eq. (6.1), we
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assume the observed rate (which corresponds to the total rate of triplet generation)

corresponds to 2kfis. A more sophisticated treatment would involve proper treatment of

the periodic boundary conditions and coupling of the manifold of delocalized excitonic

states onto the manifold of final TT states. Multiplying the rate by two is a rough

approximation to these effects.

6.5 Experimental Determination of Fission Rates

To test Eq. (6.1), we measure the fission rate by photoinduced absorption (PIA). The

bright state is excited by a 610 nm pump and the formation of triplets is probed by

monitoring the intensity of T 1--+T2 (880 nm) and T 1-+T3, (520 nm) transitions at various

time delays. We obtain the rate of singlet fission by fitting the PIA signal to a single

exponential in time.

Figure 6-5 presents the transient absorption (TA) spectra of various pentacenes to

identify the triplet absorption region. The pump wavelength was 550-650 nm and the

pulse irradiance was 30-45 pJ/cm 2. The TA spectrum of pentacene is from Ref. 37. Our

TIPS-P spectrum is consistent with previously reported results. 98 The broad peak around

480 nm that appears immediately upon photoexcitations was previously attributed to the

Si-+Sn transition."
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Figure 6-5 Femtosecond transient absorption spectra of (a) pentacene, (b) TIPS-P, (c)

DTP, (d) DBTP, (e) DBP, and (f) DPP with various time delays.

The broad photoinduced absorption around 880 nm has been assigned as the

T1->T 2 transition from previous theoretical calculations9 and experimental reports. 37 52,

100 Yet this T1-+T 2 transition has not been observed for isolated pentacene molecules in

solutions 0 1 and Pabst et al. estimated that the T1->T 2 transition at 880nm would be much

weaker than the T 1->T 3 transition.9 We observe the T1-*T 2 transition only in the films

with strong coupling: unsubstituted pentacene, TIPS-P and DTP, which suggests that the

T1--*T2 transition becomes strengthened from enhanced intermolecular interactions.
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The photoinduced absorption around 520 nm, which appears in all the pentacene

derivatives investigated here except unsubstituted pentacene, has been attributed to

T1-T 3 transition 9 and observed in pentacene dissolved in solution'01. Rao et al. showed

that this peak is not observable in pentacene thin films due to a minimum overlap

between the polarization of the triplet-triplet absorption and the pump laser electric

field.100 Also, they demonstrated that the triplet dynamics probed at 520nm (T,-T 3) and

880nm (T,-+T2) are identical.100

Figure 6-6 presents the transients of triplet formation in a series of pentacene

derivatives. The peak of the transient absorption spectra at 520 nm (880 nm) was chosen

for DBTP, DBP and DPP (pentacene, TIPS-P and DTP). The pump intensity was 5-

40 pJ/cm2 , and we verified the absence of singlet-singlet annihilation by confirming the

independence of the transient shape on intensity dependence. We obtained the rate of

0.5--

0 b

Cd0 0.5 0 0.5 1 0 0.5

1

0.5

0 d f

0 1 2 3 0 20 40 0 20 40 60 80

Time (ps)

Figure 6-6 Photoinduced absorption kinetics of triplets (blue) for (a) pentacene, (b)

TIPS-P, (c) DTP, (d) DBTP, (e) DBP and (f) DPP. Green lines are exponential fittings for

the corresponding data.
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singlet fission by fitting an exponential curve to the data. Figure 6-2 summarizes the time

constant of singlet fission in various pentacenes.

6.6 Prediction of Fission Rates

Figure 6-7 compares the observed fission rates to the values of kfls predicted by Eq. (6.1)

for the compounds in Figure 6-2. The theoretical expression reproduces the experimental

rates to within the anticipated accuracy in all cases. For compounds with V < V ~

20 meV the rates increase as V2 while materials with V > 20 meV show essentially the

identical fission rates. Thus the experimental data are in quantitative agreement with the

expected picture of a nonadiabatic-to-adiabatic transition in kfs,.

102

0 -

Clo

10---
10~4 107 10-2 10 10,

<S1SO|H1T 1T1> (eV)

Figure 6-7 Measured (o) and predicted (o) rates of singlet fission for various pentacene

derivatives. The values of parameters used for prediction were AG = -0.1 eV, ra - 40 fs,

and A = 0.15 eV. The yellow area represents the range of predicted fission rates when the

parameter values were varied by ±30%.
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6.7 Discussion

Our results are in qualitative agreement with recent theoretical predictions that

superexchange can significantly increase the coupling80'81 (i.e. V can be much larger than

V). However, we do not find compelling evidence that superexchange is necessary for

fast, efficient fission. Even neglecting the contributions of CT mixing, we find that a

direct coupling governed by V still results in ultrafast fission rates in every material

studied (see Figure 6-2). In particular, for cases where CT mixing significantly increases

the coupling (Pc, TIPS-P, DTP) the reaction occurs adiabatically, so that changes in the

coupling have a negligible effect on the rate. This observation is significant for the

purposes of rational design, as it implies that one need not control AEcT in order to ensure

fast fission. A reasonably large V is sufficient.

The most significant loss mechanism for singlet fission is radiative decay from S1,

which typically occurs on the nanosecond timescale. Thus, every material in Figure 6-2

undergoes efficient fission, as confirmed by the absence of significant photoluminescence

from any sample. This stands in contrast to the situation for MEG, where exicton

multiplication must outcompete thermal relaxation on a sub-picosecond timescale,

necessitating an MEG mechanism analogous to coherent fission. Thus, organic materials

have a larger dynamic range and more freedom to accomplish carrier multiplication than

their inorganic counterparts.
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6.8 Conclusion

We have presented experimental confirmation of a fundamental model that correctly

predicts the kinetics of singlet fission across a wide range of organic materials. Our

results suggest that the rational design for novel fission materials should focus primarily

on two features: 1) Making Es _ 2 ET and 2) Maintaining a reasonable coupling, V. It is

not necessary, for example, to control the value of AECT or to maximize V. As long as the

crystal is reasonably well-packed, V can be large enough to guarantee efficient fission.

The necessary ingredients for rational design of singlet fission-based photovoltaic

materials are now in place.
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7. Singlet Exciton Fission in Hexacene:

Toward Singlet Fission into Three

Triplets

Hexacene, an acene with six benzene rings, is notable for its exceptionally small triplet

energy, around one third of the singlet energy. We demonstrate singlet fission,

conversion of a singlet exciton into two triplets, in a thin film of hexacene derivative

employing both transient absorption spectroscopy and magnetic field effects on

photocurrent.

7.1 Introduction

Singlet exciton fission, a process that converts a singlet exciton into two triplet excitons,

has the potential to realize a high-efficiency solar cell that exceeds the Shockley-Queisser

limit.13 Singlet exciton fission has been previously employed to improve the photovoltaic

efficiency of organic nanostructured solar cells,10 2 photodetectors,41 and hybrid organic-

inorganic solar cells containing quantum dots.33' 3 103 It is typically observed when the

energy of the singlet is close to or larger than twice the energy of the triplet. Tetracene

and pentacene satisfy this criterion and have been shown to exhibit singlet fission.13, 38, 69

Here, we confirm the presence of singlet fission in a derivative of hexacene, a six-ringed
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acene, by employing both transient absorption spectroscopy and photovoltaic device

measurements.

Singlet fission in hexacene attracts attention due to hexacene's exceptionally

small triplet energy relative to the singlet energy. Whereas singlet exciton fission is

approximately isoenergetic in tetracene and pentacene, hexacene is notable for its

extremely small triplet energy, around one third of the singlet energy; see Figure 7-lb.

The triplet energy of hexacene is predicted to be 0.46 eV from density functional

calculations.104 Extrapolation of triplet energies of smaller acenes estimates the hexacene

triplet energy of 0.54±0.5 eV. 10 5 Optical absorption measurements yield singlet energies

of 1.82 eV 105 and 1.65 eV (Figure 7-4b) for unsubstituted hexacene and substituted

hexacene used in this study (Figure 7-la), respectively. Thus, in hexacenes, the singlet

energy (E(Si) = 1.65-1.82 eV) is around 0.6-0.8 eV higher than twice the triplet energy

(E(T1 ) = -0.5 eV), placing a singlet fission process in the Marcus inverted region,1 in

contrast to tetracene and pentacene. Furthermore, the unusual energy structure of

hexacene satisfies the energetic requirements for fission of a singlet into three triplets, a

potentially useful phenomenon in solar cells.

Unsubstituted hexacene is known to be very unstable and dimerize quickly in

solution.io6 Its stability can be improved by functionalization. 107' 108 Alternatively, it has

been recently reported that hexacene crystals can be synthesized by heating solid-state

precursors, avoiding the problem of low stability in solution.109 In this work, we use

hexacene substituted with tricyclohexylsilylethynyl (TCHS) groups, which increases

stability and solubility' 08; see Figure 7-la for the molecular structure. The improved
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stability has been used to demonstrate charge transport through TCHS-hexacene thin

films on a field-effect transistor.'10
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Figure 7-1 (a) The molecular structure of TCHS-hexacene. (b) Singlet fission process in

hexacene. The singlet energy level is from optical absorption measurements. The triplet

energy is from density functional calculations (E(TI) = 0.46eV) 104 and extrapolation of

triplet energies of smaller acenes (E(T1) = 0.54±0.5eV) 105. (c) Schematic energy diagram

of a photovoltaic device incorporating TCHS-hexacene. The energy levels are from Ref.

110, 111, and Polyera Corp.
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7.2 Experimental Technique

7.2.1 Sample Fabrication

TCHS-hexacene was synthesized as reported in Ref. 108. Devices were fabricated on

precleaned glasses coated with ITO. PEDOT:PSS was spin-coated on the glass. TCHS-

hexacene was dissolved in chlorobenzene at the concentration of 10 mg/ml and spin-

coated on the substrates. All other layers were thermally evaporated at the pressure of

3x10-6 torr. The silver cathode was defined by a 1 mm diameter mask. Devices were

packaged in a nitrogen environment. The samples for transient absorption measurements

were prepared by spin-coating TCHS-hexacene solutions on quartz substrates and

packaged in nitrogen. The optical absorption of thin films was measured using integrating

spheres.

7.2.2 Transient Absorption Spectroscopy

Broadband transient absorption spectra in the visible and near-infrared were obtained

using a 1 kHz repetition rate Ti:Sapphire amplified laser system and optical parametric

amplifier (OPA). Briefly, a typical pump-probe setup is employed whereby materials are

resonantly excited with -100 fs laser pulses generated by the OPA and probed with a

broadband supercontinuum pulse produced by focusing a small portion of the amplified

laser fundamental into a sapphire plate 112. Multi-wavelength transient spectra are

recorded at various time delays between the pump and probe pulses using dual

spectrometers (signal and reference channels) equipped with fast Si or InGaAs based

array detectors.
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7.3 Transient Absorption on Singlet Exciton Fission

Figure 7-2 presents a demonstration of singlet fission in TCHS-hexacene thin films using
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Figure 7-2 (a) Transient absorption spectra of TCHS-hexacene thin films. The

photoinduced absorption spectra of singlets (solid green) and triplets (solid blue) were

captured at 0.5 ps and 30 ps after laser excitations, respectively. GSB means ground state

bleaching. The photoinduced absorption spectrum of triplets of unsubstituted hexacene in

solution (dotted black) is from Ref. 105 and its scale is arbitrary. (b) Photoinduced

absorption kinetics of the 535 nm (green) and 570 nm (blue) peaks, where singlets and

triplets dominate, respectively. The black solid line is an exponential fitting with t=

5.1 ±0.3ps.
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Chapter 7 Singlet Fission in Hexacene

transient absorption spectroscopy. Figure 7-2a shows the change of transient absorption

spectra over time. The pump wavelength was 750 nm and the pulse irradiance was

~10 pJ/cm2 and we verified the absence of singlet-singlet annihilation by confirming the

independence of the transient shape on the pump intensity. The signal around A = 750 nm

was omitted due to the scattering of incident pump light. The broad peak around 535 nm

is assigned as photoinduced absorption of singlets as it appears immediately after

photoexcitation. The spectrum changes to the peak around 570 nm over tens of

picoseconds, which is attributed to the Ti-+Tn transition, because the spectrum resembles

the triplet photoinduced absorption spectrum of unsubstituted hexacene measured in

solution 105. Previously, the triplet-triplet absorption spectrum of silylethynyl-substituted

pentacene was shown to be almost identical to that of unsubstituted pentacene 98; thus we

assume that the insertion of TCHS groups does not greatly alter the photoinduced

absorption spectrum of hexacene triplets. However, the TCHS group could be responsible

for the 20 nm redshift of the triplet photoinduced absorption in TCHS-hexacene thin

films compared to unsubstituted hexacene solutions. Alternatively, the redshift may be

due to the higher polarizability in solid-state films than in solutions; a similar effect was

observed in pentacene 98 and tetracene 113, 114

The small negative signal at 2= 770-800 nm is assumed to originate from

bleaching of the ground state as the spectrum agrees with the absorption spectrum shown

in Figure 7-4b. The analysis of time-resolved dynamics in this region was obscure

because the signal was noisy and a residual of triplet photoinduced absorption may also

contribute to this region.
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Figure 7-2b displays the kinetics of singlet and triplet photoinduced absorptions.

The 535 nm and 570 nm peaks represent singlets and triplets; however, note that the

singlet and triplet photoinduced absorption spectra overlap and the 535 nm (570 nm)

signal includes some contribution from the triplet (singlet) photoinduced absorption. As

the singlets decay, the triplets rise, demonstrating singlet fission in TCHS-hexacene thin

films. The rate of triplet formation is determined to be 1/(5.1±0.3) ps-1 by fitting the

growth of triplet populations. It is much faster than the fluorescence decay rate

(1/1.5 ns-1) of hexacene in solution.1 15 The attachment of silylethynyl groups does not

induce intersystem crossing as shown in silylethynyl-functionalized pentacene exhibiting

the fluorescence time constant of 11.8 ns 116. Both 535 nm and 570 nm signals start to

drop after t = 40 ps; quenching of the excitons could be caused by the air/molecule

interface and the bulk trap states inside thin films.

7.4 Magnetic Field Effect on Photocurrent

7.4.1 Device Structure and External Quantum Efficiency

Confirmation of singlet fission in TCHS-hexacene thin films is obtained by

monitoring the photocurrent change of TCHS-hexacene photovoltaic devices under

magnetic fields. We built a bilayer photovoltaic cell with the heterojunction based on

TCHS-hexacene and N,N'-bis(lH, 1H-perfluorobutyl)-(1,7 & 1,6)-dicyano-perylene-

3,4:9,10-bis(dicarboximide) (PDIF-CN2) "3. The LUMO level of PDIF-CN2 is low

enough to dissociate the triplets of TCHS-hexacene; see Figure 7-1c for the device

structure and energy diagrams. The device structure was indium tin oxide (ITO)/poly(3,4-
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CN

C3F7H2C-N N-CH2CaF 7

CN

PDIF-CN2

Figure 7-3 The molecular structure of PDIF-CN2

ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS, 38 nm)/TCHS-hexacene

(50 nm)/PDIF-CN2 (30 nm)/ bathocuproine (BCP, 7 nm)/aluminum (100 nm).

Figure 7-4a plots the external quantum efficiency (EQE) spectrum of a TCHS-

hexacene photovoltaic cell. It is notable that TCHS-hexacene shows photocurrent

responses at 600 < X < 800 nm; see Figure 7-4b for the absorption spectrum of a TCHS-

hexacene layer. The low external quantum efficiency is likely due to the poor charge

extraction at the heterojunction of TCHS-hexacene and PDIF-CN2. The photocurrent at

V = -1 V is 15 times larger than at V = 0 V, indicating severe charge recombination in the

device; see Figure 7-5 for the dark and light current-voltage characteristics. Poor charge

collection may be due to the low charge mobility of TCHS-hexacene (1.7x10-4 cm2 V-is)

110 and the small energy gap of charge transfer states (-0.5 eV), which results in fast

charge recombination under Marcus theory17 .
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Figure 7-4 (a) Short circuit external quantum efficiency as a function of wavelength for a

TCHS-hexacene photovoltaic cell. (b) Absorption spectra of TCHS-hexacene and PDIF-

CN2 thin films.
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Figure 7-5 (a) Current-voltage characteristics of hexacene photovoltaic cells under dark

(blue) and 1 sun illumination (green) conditions. (b) The difference between light and

dark current. The photocurrent, obtained by subtracting the dark current from the current

under illuminations, exhibits 15 times more current at V= -1V than at V= OV.
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7.4.2 Magnetic Field Dependence of Photocurrent

Figure 7-6 plots the magnetic field dependence of the photocurrent for the selective

illumination of TCHS-hexacene and PDIF-CN2. LEDs with the wavelengths of 660 nm

and 530 nm are used to photoexcite TCHS-hexacene and PDIF-CN2 layers, respectively.

A voltage of -0.25 V was applied to promote charge extraction and minimize the

secondary magnetic field effect coming from triplet-polaron annihilation.41, 118 It is

notable that TCHS-hexacene exhibits the strong positive modulation up to 4.7 % at a

small magnetic field of H < 0.1 T and the negative response down to -5 % at a magnetic

field of H > 0.2 T, whereas the photocurrent upon PDIF-CN2 illumination exhibits nearly

constant positive modulation of 1-2 %. Similar phenomena were observed in tetracene-

and pentacene-based photovoltaic devices,4 ' verifying the existence of singlet fission.

The magnetic field effects from the donor and acceptor sides are distinct, confirming that

the energy transfer from the acceptor to the donor is negligible.

Johnson and Merrifield's theory explains the characteristic shape of the magnetic-

field-induced photocurrent change upon TCHS-hexacene illuminations.8 2 5 The rate of

singlet fission is proportional to the fractional singlet character of a pair of triplet excitons

resulting from singlet fission, which has nine different spin configurations. In the absence

of a magnetic field, three configurations out of nine have singlet character. Under a small

magnetic field, i.e. H < 0.1 T, the singlet character is distributed over six states,

increasing the rate of singlet fission. At a high magnetic field, i.e. H > 0.2 T, there are

only two states with singlet character, slowing down a singlet fission process. This

behavior of the fission rate under a magnetic field agrees well with our magnetic field

effect on photocurrent, which rises at H < 0.1 T and decreases at H > 0.2 T. Also, the
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Figure 7-6 Photocurrent change under magnetic fields upon photoexciting TCHS-

hexacene (2= 660nm) and PDIF-CN2 (A = 530nm) in a hexacene solar cell. A voltage of

-0.25 V was applied during the measurement.

negative magnetic field effect under a high magnetic field confirms that TCHS-hexacene

triplet excitons indeed break up into charges; the positive magnetic field effect has been

observed in the donor-acceptor system where triplet excitons generated from singlet

fission cannot dissociate into charges due to the large energy barrier to charge transfer.33

It is also notable that the magnetic field effect can be observed only when triplet

generation competes with dissociation of singlet excitons into charge.4 ' This implies that

singlet exciton diffusion and charge transfer processes in TCHS-hexacene devices take

place on the picosecond timescale, comparable to singlet fission.
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The small positive magnetic field effect upon PDIF-CN2 photoexcitation may be

due in part to the magnetic field response from triplet-polaron annihilation '18 and was

41
also observed in pentacene/C 60 photovoltaic devices upon C60 illumination

7.5 Conclusion

To summarize, we demonstrated singlet fission in substituted hexacene, which features

an extremely small triplet energy compared to the singlet energy, by employing transient

absorption spectroscopy and magnetic field effect on photocurrents produced from singlet

fission. We measure the fission rate of 1/(5.1±0.3) ps- 1 in TCHS-hexacene thin films. In

TCHS-hexacene/PDIF-CN2 heterojunction devices, we observe the photocurrent

reduction of -5 % during selective illumination of TCHS-hexacene, confirming the

presence of singlet fission. Our findings should provide the device and spectroscopic

basis for further work on molecules with low energy triplet excitons where fission may

yield more than two triplets per singlet exciton.
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8. Charge Transfer State Versus Hot

Exciton Dissociation in Organic Solar

Cells

We examine the significance of hot exciton dissociation in two archetypical polymer-

fullerene blend solar cells. Rather than evolving through a bound charge transfer state,

hot processes are proposed to convert excitons directly into free charges. But we find that

the internal quantum yields of carrier photogeneration are similar for both excitons and

direct excitation of charge transfer states. The internal quantum yield, together with the

temperature dependence of the current-voltage characteristics, is consistent with

negligible impact from hot exciton dissociation.

8.1 Introduction

The conversion of excitons into charge within organic solar cells is complicated by the

uncertain role of bound electron-hole pairs, or charge transfer (CT) states at donor-

acceptor interfaces."-1 In this report, we perform direct photocurrent spectroscopy on

CT states within organic solar cells. Our techniques allow us to decisively conclude that

bound CT states mediate the conversion of excitons into charge. In contrast with
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expectations,'19'122-125 we find that charge generation is efficient despite the absence of

'hot' dissociation of excitons directly into charge. These findings confirm prior

suggestions 20' 121, 126 that the photocurrent generation in organic solar cells is controlled

by the recombination dynamics of thermally relaxed CT states.

Spectroscopy by Muntwiler et al. has determined that the binding energy of CT

states is typically well in excess of 0.1 eV.i9, 122 However, modern organic solar cells

exhibit near-unity quantum yield, demonstrating that charge is efficiently generated

despite the large binding energy of the CT state.1 2 7 To resolve this possible conflict, a hot

process of charge transfer has been proposed, whereby the excess energy from exciton

dissociation, Ecr = Ex - EcT, contributes to the dissociation of CT states. Here, Ex and

Ecr are the energies of the exciton and CT states, respectively. In support of this model, it

was observed that the population of free charge carriers increases as ECT gets larger, 2 3'124

and Pensack et al. showed that the rate of free carrier formation is temperature-

independent; implying that charge separation is barrier-less.12s

In this report, we investigate the significance of hot exciton dissociation processes

by comparing CT states generated from either excitons or direct photoexcitation. This

approach is feasible because mixtures of polymers (donors) and fullerene molecules

(acceptors) exhibit a new absorption band at infrared wavelengths. This broad absorption

band is attributed to the formation of bound CT states, mediated by the interaction of the

highest occupied molecular orbital (HOMO) of donors with the lowest unoccupied

molecular orbital (LUMO) of acceptors. 12-130 Thus, one can create thermally-relaxed CT

states by optically exciting the CT transition band directly.
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8.2 Charge Transfer State or Hot Exciton Dissociation?

As shown in Figure 8-1, CT states are excited directly and indirectly by below-gap and

above-gap illumination, respectively. The existence of a hot CT process should yield

observable differences in free carrier generation. First, we compare the internal quantum

efficiency of directly-excited CT states and CT states generated from excitons. Second,

we measure the open-circuit voltage (Voc), a key charge recombination metric, under

below-gap and above-gap illuminations with equivalent CT state generation rates. We

FExciton
%4IPCBM*I3.0 eVPCM

(1.69 eV)

h CT state
1.5 eV FPCBM-/PPV+ (1.28 eV) Hot process?

PCBM~/P3HT+ (1.05 eV)

Recombination Dissociation\

Ground state Free charge

Figure 8-1 Hot exciton dissociation processes are probed by comparing the output of

solar cells under direct photoexcitation of either excitons or CT states. In a hot

dissociation process, a donor or acceptor exciton breaks directly into free charge carriers

without populating a bound, relaxed CT state. Alternatively, direct photoexcitation of CT

states creates these bound CT states. The energy levels of excitons on PCBM molecules

and CT states at the MDMO-PPV (P3HT)/PCBM interface are determined from the

luminescence spectra.13
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also evaluate the temperature dependence of photocurrent for those two excitations. 13 1

We study two archetypical photovoltaic systems: bulk heterojunctions of poly[2-

methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and poly-

3(hexylthiophene) (P3HT) mixed with 1-(3-methoxycarbonyl)-propyl-1-phenyl-[6,6]C61

(PCBM). Goris et al.132, 133 and Vandewal et al.129 previously demonstrated weak

absorption and photocurrent generation from CT states in these heterojunctions. Time-

resolved transient absorption spectroscopy by Drori et al. on polymer-fullerene blends

has shown that below-gap excitation efficiently produces polarons on the polymer chains

and fullerene molecules.1 34

8.3 Calculation of Charge Transfer States

The existence of below-gap CT states in these blends is supported by constrained density

functional calculations.88 Several MDMO-PPV/PCBM and P3HT/PCBM heterodimers

were simulated with various intermolecular orientations. The surrounding molecules were

assumed to provide a uniform dielectric surrounding the pair with F = 4. The resulting CT

states were bound by 0-0.4 eV for MDMO-PPV/PCBM and 0-0.5 eV for P3HT/PCBM.

The HOMO-LUMO band offset at the interface was 1.6 eV (1.6 eV) for MDMO-

PPV/PCBM (P3HT/PCBM) suggesting CT absorption should be active between 1.2-

1.6 eV for MDMO-PPV/PCBM and 1.1-1.6 eV for P3HT/PCBM. The calculated CT

energies may be redshifted because the density functional calculation over- delocalizes

the electrons and, consequently, underpredicts the ionization potential of the polymers

significantly. 3- The predicted CT energies are in agreement with the optical

characterization by Goris et al.'13 2,133 and Vandewal et al.12 9
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Here we describe the details of our constrained density function calculations. Two

different sets of calculations were performed on MDMO-PPV/PCBM and P3HT/PCBM

heterodimers. In the first set, the transport gaps (TGs) of each polymer and PCBM were

(a)

4 I.

(b)

Figure 8-2 (a) The calculated charge-density difference between the CT state and the

ground state of an MDMO-PPV/PCBM heterodimer. The violet (orange) surfaces show

where the CT state has more (less) electron density. In each picture PCBM is constrained

to have an extra electron and a 5-unit MDMO-PPV is constrained to have a hole. (b) The

corresponding picture for a P3HT/PCBM pair. The PCBM is constrained to have an extra

electron and the 7-unit P3HT is constrained to have one less electron.

112



Chapter 8 CT State versus Hot Exciton Dissociation

calculated using Turbomole. In the second set, the charge transfer (CT) states were

simulated using constrained density functional theory (CDFT)136 in Q-Chem. Both sets

used the B3LYP functional. Due to the limits of our computational power, the calculated

CT energies and TGs of finite chain lengths (n = 3-6 for MDMO-PPV, n = 4-8 for P3HT)

were exponentially fitted to extrapolate the energies of infinite chain length. For the same

reason, the CT state calculations with the larger basis set (6-311++G**) could not be

completed. Therefore, we computed the TG and CT states with a smaller basis set (6-

31G*) to obtain the binding energy, which is an energy difference between free and

bound charges, because it will change by very little when the basis set is increased. Final

TG calculations were done in the larger basis set (6-311 ++G**) in order to approach the

basis set limit for these calculations and obtain a more accurate prediction.

The CT state geometries were created by placing the geometry-optimized donor

and acceptor at varying intermolecular distances and orientations, while optimizing each

polymer and PCBM geometry in Q-Chem with the 6-31G* basis set in gas phase. Our

goal in this simulation is to find a lower bound to the CT state energy. Thus, we selected

the geometry in which the plane of a polymer is parallel to one of the hexagonal faces on

PCBM, maximizing the orbital overlap; see an example for MDMO-PPV/PCBM and

P3HT/PCBM in Figure 8-2, respectively. PCBM's solvation group was pointed away

from the interface. The separation distance was varied (d = 3-4.3 A), and the CT energy

with PCBM rotated by 900 was also probed. The chosen geometries are optimal for

electron transfer, and any distortion of the planes of polymers or large separation between

the two molecules leads to a higher CT energy.
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The TGs were calculated in Turbomole with the COSMO solvation model and the

6-31 1++G** basis. A dielectric constant of s = 4 was used for MDMO-PPV and PCBM,

and c = 3.5 was used for P3HT'3 7 ,138 . For each geometry, the anion (cation) energies Ea(c)

and ground state energies Eg were computed for PCBM (MDMO-PPV, P3HT). Figure

8-3 displays the ionization potential (IP = Ec - Eg) of MDMO-PPV and P3HT with

different chain lengths. The electronic affinity (EA = Eg - Ea) of PCBM was found to be

3.27 eV. Thus, the TG (TG = IP - EA) calculated in the 6-311++G** basis is 1.6 eV (1.6

eV) for MDMO-PPV (P3HT)/PCBM pairs.

The CT calculations could not be completed in the 6-31 1++G** basis due to

computational limits. Therefore, in order to determine the CT binding energies, we

repeated the TG calculations in the 6-31G* basis; see Figure 8-3. The EA of PCBM was

found to be 2.87 eV. We obtained the TGs for MDMO-PPV/PCBM (P3HT/PCBM) of

1.7 eV (1.8 eV) in the 6-31G* basis. The CT binding energies were finally determined

from the difference between the TG and CT state energies.

The CT state energies were calculated using the 6-3 1G* basis with CDFT and the

SM8 solvation model in Q-Chem. The constraints of the model placed an extra electron

on PCBM and removed one electron from MDMO-PPV and P3HT. Hexanoic acid was

selected as the solvent for the SM8 model, ensuring that the solvation energy acquired

from Q-Chem is comparable to that from Turbomole. Figure 8-3 shows the calculated CT

state energies; note that both systems have a negligible variance up to 0.04 eV for

different intermolecular geometries. We find that the CT states are bound by up to a

maximum of 0.4 eV (0.5 eV) for MDMO-PPV/PCBM (P3HT/PCBM). The resulting CT

state energies range between 1.2-1.6 eV (1.1-1.6 eV) for MDMO-PPV/PCBM
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Figure 8-3 (a) The CT state energies of MDMO-PPV/PCBM with respect to chain

lengths for different donor-acceptor separations. The configuration with PCBM rotated

by 900 was also investigated. (b) The ionization potentials (IP) of MDMO-PPV with

respect to chain lengths calculated in the different basis sets. (c), (d) The equivalent of (a)

and (b) for P3HT/PCBM.

(P3HT/PCBM). These results verify that the below-gap illuminations for the MDMO-

PPV/PCBM and P3HT/PCBM systems are most likely to excite the CT states directly.

8.4 Experimental Method

The spectral quantum efficiency and the absorption coefficient of organic layers were

measured with a high sensitivity using Fourier-transform photocurrent spectroscopy

(FTPS) and photo-thermal deflection spectroscopy (PDS), respectively, as described in
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Ref. 129 and 132. PDS was performed on ~200nm-thick MDMO-PPV:PCBM and

-250nm-thick P3HT:PCBM films on quartz substrates. FTPS was carried out on devices

prepared with the same film thickness, sandwiched between indium tin oxide

(ITO)/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulphonate) (PEDOT:PSS) and

Ca/Al electrodes.

For electric-field- (Figure 8-9) and temperature-dependent (Figure 8-7)

characterization, devices were fabricated on precleaned glass substrates coated with a

1600A-thick layer of ITO and a 300A-thick layer of PEDOT:PSS. MDMO-PPV, P3HT,

and PCBM were dissolved in chlorobenzene and spin coated to a thickness of -70nm. A

LiF/Al contact was deposited by thermal evaporation at high vacuum (< 3x10-6 Torr),

and defined by a 1-mm-diameter shadow mask. After contact deposition, P3HT:PCBM

devices were annealed for 5 minutes at 1OOC in a nitrogen environment. For temperature-

dependent measurements, devices were kept inside a continuous flow of helium. Diode

lasers with photon energies of 3.0 eV and 1.5 eV were used as light sources. The current-

voltage characteristics were recorded using a HP4156 semiconductor parameter analyzer.

8.5 Internal Quantum Efficiency of Below-gap and Above-gap CT

States

Figure 8-4 shows the external quantum efficiency (EQE) at short-circuit conditions

compared with the optical absorption of blends of MDMO-PPV:PCBM (1:4 by weight)

and P3HT:PCBM (1:1 by weight). The absorption coefficients of each component in the

blends are also shown. The weak absorption under 1.6 eV, observed for mixtures of the
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polymer and PCBM, is attributed to CT absorption.129, 130 The lowest energy part of the

absorption spectra, below 1.4 eV and 1.2 eV for MDMO-PPV:PCBM and P3HT:PCBM

systems, respectively, can be attributed to light- and aging-induced features and not CT

transitions, as the absorption in this region increases upon repeating measurements on the

same film; see Figure 8-5.

Figure 8-4 shows the optical absorption of blends of MDMO-PPV:PCBM (1:4 by

weight) and P3HT:PCBM (1:1 by weight) compared with the external quantum

efficiency (EQE) at short-circuit conditions. The lowest energy part of the absorption

spectra, below 1.4 eV and 1.2 eV for MDMO-PPV:PCBM and P3HT:PCBM systems,

respectively, can be attributed to light- and aging-induced features and not CT transitions,

as the absorption in this region increases upon repeated measurements on the same film.

We fitted the EQE spectrum calculating the absorption of organic layers, i.e., A=

Ao(1-exp(-2a-d)), where A0 accounts for the loss from ITO and PEDOT:PSS layers and

is assumed to be 0.85, a is the absorption coefficient measured with PDS, and d is the

thickness of the blended films. Consequently, we obtained internal quantum efficiencies

(IQE) of (45±10)% and (80±10)% for MDMO-PPV:PCBM and P3HT:PCBM devices,

respectively; see Figure 8-6 for the IQE as a function of energy. The fit, constant across

full wavelength range from above to below the optical gap, strongly suggests that the

energies of excited CT states do not greatly influence CT state dissociation. Every

optically-accessible exciton and CT state exhibits a similar probability of charge

generation or recombination. Even if our below-gap optical excitation generates hot CT

states, we find no change in the efficiency of charge generation despite varying the below

gap excitation energy by several tenths of an eV.
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Figure 8-4 (a) The external quantum efficiency (EQE) spectrum (circles) under short-

circuit conditions compared to the absorption spectrum of an MDMO-PPV:PCBM

device. The absorption coefficients of MDMO-PPV (dash-dotted line), PCBM (dotted

line), and blends (dashed line) are shown. The EQE was fit using IQEs of (45±10)%. (b)

The EQE spectrum (circles) and absorption spectrum of a P3HT:PCBM device. An IQE

of (80±10)% was obtained. For both heterojunctions, the CT state absorption band

exhibits a charge collection efficiency similar to that of the polymer or PCB3M.
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Figure 8-5 (a) The absorption spectrum of an MDMO-PPV:PCBM device compared

with external quantum efficiency (EQE) spectrum (circles) under short-circuit conditions.

The absorption spectra measured on the first (solid) and second (dash) runs are shown.

For comparison with the EQE, the absorption spectra were multiplied with the internal

quantum efficiency (IQE) of (45±10)%. (b) The equivalent of (a) for a P3HT:PCBM

device. The IQE is (80±10)%.
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Figure 8-6 The internal quantum efficiency spectra of MDMO-PPV:PCBM (squares) and

P3HT:PCBM (circles) devices, respectively. The IQE was obtained by calculating

IQE(E) = EQE(E) /A(E), where A is the absorption of organic layers. A is given by A = AO

(1-exp(-2a-d)), where AO accounts for the loss from ITO and PEDOT:PSS layers and is

assumed to be 0.85, a is the absorption coefficient measured with PDS, and d is the

thickness of the blended films. The average IQEm, calculated as log(IQEm) = 1

log(IQE(E)) / n, are (45±10)% and (80±10)% for MDMO-PPV:PCBM and P3HT:PCBM

devices, respectively. The internal quantum efficiencies are energy-independent across

full wavelength range from above to below gap.
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8.6 Temperature Dependence of Photocurrent under Below-gap and

Above-gap Excitations

Figure 8-7 compares Voc and photocurrents under below-gap and above-gap excitations

at varying temperatures. Diode lasers with photon energies of 3.0 eV and 1.5 eV were

used as light sources. Details of the device structure, fabrication, and characterizations

are described in Section 8.4. In order to equalize the initial CT generation rate for both

excitations, the incident light intensity was adjusted using optical density filters to obtain

a short-circuit current density of J = 32 A/cm 2 (for MDMO-PPV:PCBM) or J = 0.11

mA/cm2 (for P31T:PCBM) at 280K for both laser wavelengths. For both heterojunctions,

the photocurrent density decreased by more than an order of magnitude when the

temperature was reduced from room temperature to below 50K; see Figure 8-8.

11 8888888888BU o ,(a) 08 0 0 ooo@ss oS0 o (c)
1.0 0 0.7 0

V0[V 0-9 0.6 0
Voc[ 0. ohv=3.0eV 0 hv=3.0eV
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Figure 8-7 (a) The open-circuit voltage of an MDMO-PPV:PCBM device as a function

of temperature under above-gap (hv = 3.0 eV, squares), and below-gap (hv = 1.5 eV,

circles) excitations (b) The photocurrent ratio of above-gap and below-gap excitations at

a voltage of V= OV (V) and V= -lV (A). (c), (d) The equivalent of (a) and (b) for a

P3HT:PCBM device, respectively.
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Voc is a key indicator for charge recombination in organic solar cells, and is

logarithmically proportional to the photocurrent under the electric field at an open-circuit

condition. 13 9, 140 In both heterojunctions, we cannot resolve a difference in Voc for

temperatures above 130K when CT states are excited rather than donor or acceptor

excitons. But Voc is (30±5) mV higher for above-gap excitation in MDMO-PPV:PCBM

devices at temperatures below 130K. The initial CT generation rates are not expected to

change with temperature since the exciton diffusion yield in bulk heterojunctions is close

to unity and hardly dependent on temperature.141 Indeed, under reverse bias at V = -1V,

we observe similar photocurrent densities for above-gap and below-gap excitations; see

Figure 8-7b and d. Therefore, the slightly higher Voc for above-gap excitations might

mean that a hot CT process reduces the CT recombination loss by dissociating hot CT

states into deeper Coulomb potential wells. The effect is weak and only observable at low

temperature, perhaps because the relaxation of hot CT states slows down with decreasing

phonon densities.

122



Chapter 8 CT State versus Hot Exciton Dissociation

(a)(b A A A&A AA

10-2 .0A &V A A "Wv

E
>V 10-2

10-3 . VV=OV . vv=OV
AV=-1V AV=-1V

0 50 100 150 200 250 300 0 50 100 150 200 250 300

Temperature [K]

Figure 8-8 (a) The photocurrent density of a MDMO-PPV:PCBM device as a function of

temperature under the excitation of hv = 3.0 eV. Voltages of V = OV (V) and V = -1V (A)

were applied. The arrow indicates the sequence at which the measurement was taken. The

discrepancy of the data measured in upward and downward directions is attributed to the

device degradation. (b) The equivalent of (a) for a P3HT:PCBM device.

It is also notable in Figure 8-7b and d that the above-gap and below-gap

excitations show the same temperature dependence of photocurrent. Under the concept of

thermally assisted charge separation (J- exp(-EB/kT), where EB is the binding energy),' 20

this implies that the binding energy of CT states created from exciton dissociation is

equal to that of directly photogenerated bound CT states. We confirm this conclusion

again by observing that below-gap and above-gap excitations generate the equivalent

photocurrent under varying electric-field; see Figure 8-9.

Figure 8-9 plots the current-voltage (IV) characteristics given above-gap

(hv = 3.0 eV) and below-gap (hv = 1.5 eV) excitations. The incident light intensity was

modulated with optical density filters to match the photocurrent at V = -2V and, thus,

roughly equalize the initial CT generation rate for both excitations. For the two
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heterojunction systems, nearly equal IV curves were produced regardless of whether

excitons or CT states are initially excited. The largest difference is observed in the short-

circuit current of MDMO-PPV:PCBM devices. But even this accounts for less than 10%

of collected charges, implying negligible hot processes. The IV characteristics are the

outcome of charge separation under the internal electric field determined by the applied

voltage.12 0 This result confirms that the CT states created from exciton dissociation have

the same electric-field dependence and, presumably, the same binding energy, as the

thermally-relaxed CT states generated by sub-gap illumination.
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Figure 8-9 (a) The dark-current and photocurrent densities of an MDMO-PPV:PCBM

photovoltaic cell under above-gap (hv = 3.0 eV, dashed line) and below-gap (hv = 1.5 eV,

dotted line) excitations. The incident light intensity was chosen to equalize the

photocurrent densities at V = -2 V and was 5.7 mW/cm 2 and 0.65 W/cm 2 for hv = 3.0 eV

and hv = 1.5 eV, respectively. (b) The equivalent of (a) for a P3HT:PCBM cell. The

incident light intensity was 5.7 mW/cm2 and 1.7 W/cm 2 for hv = 3.0 eV and hv = 1.5 eV,

respectively.
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4.7 Conclusion

To summarize, we observe evidence at low temperatures that may be tentatively

attributed to weak hot CT state phenomena. At temperatures close to room temperature,

where solar cells usually operate, we find that the CT states formed from exciton splitting

are indistinguishable from bound CT states.

Our photocurrent and voltage measurements results provide direct confirmIation in

solar cells of prior spectroscopic studies on above-gap and below-gap excitations. In

optical pump-probe spectroscopy on P3HT or MEH-PPV blended with PCBM, both

above-gap and below-gap excitations yielded similar carrier dynamics.14 2 1" These

studies, however, use below-gap pump wavelengths that excite the high energy part of

the CT band. By varying the excitation wavelengths through the CT band we show that it

is the thermally-relaxed CT states, not hot CT states, which mediate the conversion

between excitons and free charge carriers.

We also extend prior electrical studies on the CT states. Zhou et al. reported that a

modest quantum yield of photocurrent is produced even when the driving force for

exciton dissociation ZECT is only -100 meV. 12 6 Additionally, it has been shown that the

electric-field-induced quenching of CT emission matches the field dependence of

photocurrent, meaning that it is the thermally-relaxed, light-emitting CT state that is

formed right before charge separation. 2 1 , 126

Our results imply that excess exciton energies at the donor-acceptor interface are

not required for efficient photocurrent generation, at least at room temperature. The

absence of hot exciton dissociation processes is expected to be especially significant for
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the Voc of low-energy gap organic solar cells because the necessity for a large ECT

might otherwise dissipate a substantial fraction of the potential open-circuit voltage. 130, 140
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9. Conclusion and Outlook

Singlet fission photovoltaics are in their infancy. There are still a lot of issues to be

solved in both fundamental understanding and device implementation of singlet fission

process.

Regarding a theory governing singlet exciton fission, I and my co-workers

developed a simple model that can predict the rate of singlet exciton fission through

intermolecular coupling. We constructed our model based on data collected from

pentacene, an archetype that exhibits exothermic singlet fission. In pentacene, transfer of

a singlet to two triplets is almost resonant. Our model can be expanded to test the

dynamics of singlet fission in molecules that have a different amount of driving

energies-for example, singlet fission in tetracene is slightly endothermic and hexacene

may generate two triplets from one singlet in the Marcus inverted regime. A model that

can predict the behaviour of singlet fission over molecules with different driving forces

would significantly benefit the design of efficient singlet fission molecules and device

structures.

Our pentacene multilayer photodetectors, for the first time, demonstrated

photocurrent generation from singlet fission. Our photodetector showed the external

quantum efficiency approaching 100% under a high reverse bias. Concurrently, the

magnetic field effect on photocurrent confirmed the presence of singlet fission in
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photocurrent. Moreover, magnetic field probes with varying pentacene thicknesses

revealed that one of the major loss mechanisms is direct dissociation of singlet

photoexcitations before undergoing singlet fission.

By analysing the loss mechanism of singlet fission devices, we demonstrated

pentacene-based photovoltaic cells that generate more than one electron per photon in the

visible spectrum. Using an exciton blocking layer and light trapping schemes, our solar

cells exhibited a peak external quantum efficiency of 109%. To our knowledge, this is the

first time that any solar cell has achieved quantum efficiencies over 100% outside the UV

spectrum. The main bottleneck for better efficiencies is short exciton diffusion length of

pentacene thin films and its limitation on pentacene absorption. The exciton diffusion

toward donor-acceptor junctions can be improved by engineering morphologies of

pentacene thin films. Nanophotonic structuring of optical cavities may also improve the

absorption from a thin layer of pentacene.

Singlet exciton fission doubles photocurrent, but halves open-circuit voltages. To

increase the net efficiency, singlet fission materials need to be combined with long-

wavelength absorbing materials that can capture the photons between the singlet and

triplet level of the singlet fission molecule. So far this scheme has been implemented in

two device architectures: singlet-fission photovoltaic cells with low bandgap donors (e.g.

tetracene/CuPC/C 60 ) and infrared absorbing acceptors (e.g. pentacene/semiconductor

nanocrystals). At present, the heterojunction of pentacene and lead selenide nanocrystals

appears to be the most promising system. But these devices generate the vast majority of

their photocurrent from the nanocrystals. Performance from the singlet fission material is

relatively weak. This may be due in part to solution processing the nanocrystal film on
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top of the pentacene layer. An inverted structure may better preserve the properties of

pentacene. New organic/inorganic architectures and devices are one amongst many

promising directions for the field.

Finally, splitting one singlet into three triplets could lead to efficient management

of ultraviolet photons, although this process has yet to be experimentally observed. Using

singlet fission into three triplets, one could imagine building 'ultimate' singlet fission

photovoltaic cells that produce three electrons from the ultraviolet, two from the visible,

and one in the infrared. As an important step toward this goal, we demonstrated singlet

exciton fission in hexacene, the energetics of which may allow for generating three

triplets per photon.
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