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Abstract

This thesis presents results from experiments of ultracold atomic Fermi gases with
repulsive interaction.

Itinerant ferromagnetism was studied by simulating the Stoner model with a
strongly interacting Fermi gas of ultracold atoms. We observed nonmonotonic be-
havior of lifetime, kinetic energy, and size for increasing repulsive interactions, which
is in good agreement with a mean-field model for the ferromagnetic phase transition.
However, later research showed the absence of enhanced spin fluctuation, which is
definitive evidence against the ferromagnetic phase transition. Still, our work trig-
gered a lot of research on repulsive interactions in ultracold Fermi gases.

A quantitative approach is taken to study ultracold Fermi gases with repulsive
interaction. This is done by careful measurements of density profiles in equilibrium.
First, Pauli paramagnetism is observed in trapped atomic samples which have an
inhomogeneous density due to the harmonic confinement potential. We experimen-
tally measure the susceptibility of ideal Fermi gas. This research shows that ultracold
atoms can serve as model systems to demonstrate well-known textbook physics in a
more ideal way than other systems. Then, Fermi gases with repulsive interactions are
characterized by measuring their compressibility as a function of interaction strength.
The compressibility is obtained from in-trap density distributions monitored by phase
contrast imaging. For interaction parameters kFa > 0.25 fast decay of the gas pre-
vents the observation of equilibrium profiles. For smaller interaction parameters, the
results are adequately described by first-order perturbation theory. A novel phase
contrast imaging method compensates for dispersive distortions of the images.

Thesis Supervisor: Wolfgang Ketterle
Title: John D. MacAurthur Professor of Physics
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Chapter 1

Introduction

1.1 Ultracold Fermi Gases

1.1.1 Ultracold Atomic Gases

At very low temperature where the quantum coherenre length is comparable to the

inter-particle distance, particles obey quantum statistics. In quantum statistics, there

are two kinds of particle: bosons and fermions. Bosons follow the Bose-Einstein

statistics, and fermions follow the Fermi statistics.

According to Bose-Einstein statistics, a large fraction of the bosons occupy the

lowest energy level at very low temperature. This state of matter is called Bose-

Einstein condensate (BEC), and it was first predicted by Satyendra N. Bose and

Albert Einstein in 1924 [9, 21]. The first experimental realization of Bose-Einstein

condensate was achieved in 1995 [2, 16]. This was done by cooling ultracold dilute

atomic gases of 87Rb [2] and 2 3Na [16] to less than 1 pK above the absolute zero

temperature. The- cooling was done by using laser cooling and magnetic trapping

techniques [20,33].

The achievement of Bose-Einstein condensate in ultracold atoms not only enabled

the exciting researches on Bose-Einstein itself [1, 6, 7, 41, 42, 56], but also enabled

achieving the quantum degenerate Fermi gases [17].

Experiments with ultracold Fermi gases have explored many-body physics with
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strong interactions using Feshbach resonance or optical lattices. They have demon-

strated long-predicted phenomena like the BEC-BCS crossover [34] and Lee-Huang-

Yang corrections to the energy of degenerate gases [46, 47, 62]. Experiments have

also explored novel quantum phases like fermions with unitarity limited interac-

tions [34, 36], population imbalanced Fermi gases [48, 75] and Hubbard models in

optical lattices [8,23].

1.1.2 Quantum Simulator

Novel quantum materials such as high temperature superconductors, graphenes, and

colossal magneto-resistance materials are considered as potential driving force behind

further development of technology. Even though understanding the physics behind

these materials is crucial for improving their properties and developing applications, it

is very difficult because of complexity in strongly interacting many-electron systems.

Theoretical studies suggests simple model systems in order to explain the physics,

but these systems cannot be verified directly by experiment on existing materials. In

addition, synthesizing new materials mimicking the simple models is based on trial

and error approaches.

Experiments using ultracold atomic gases are a new approaches to solve this prob-

lem. Using the tools and precision of atomic physics, ultracold atomic samples can be

prepared to realize simple Hamiltonians. This concept of quantum simulator was first

proposed by Richard Feynman [22]. The main benefit of experiments with ultracold

atoms is the controllability. The density of atoms can be varied over three orders of

magnitude. The atoms can be prepared in different hyperfine states, which in turn

can represent different spin states of electrons. The trapping potential to hold the

atomic gases can be manipulated and controlled easily, so that various lattice struc-

tures can be produced using optical lattices. The atomic sample is extremely pure

unlike the materials containing impurities or defects used in condensed matter experi-

ments. The interactions can be controlled using well understood Feshbach resonances.

Usually, interactions in ultracold gases are fully described by the scattering length,

which is a zero-range approximation greatly simplifying the theoretical description.

18



This approximation is valid since the diluteness of the atomic gases implies a particle

separation much larger than the short range of the van-der-Waals interactions. This

almost exact characterization of the interactions by a single parameter, the tunabil-

ity of interaction strength, and precise experimental control over cold atoms systems

have made them an ideal testbed for many-body quantum calculations.

In this thesis, this controllability of ultracold atoms is used to simulate the simple

model system of ferromagnetism, the textbook model system of free electron gas with

and without interaction.

1.2 Repulsive Interaction

The important recent developments in cold atom science reviewed in section 1.1.1

were realized in Fermi gases with strong attractive interactions. Fermi gases with

repulsive interactions didn't capture much attention mainly because they are unstable

against three-body recombination into weakly-bound molecules [52]. Nevertheless,

fermions with repulsive interactions have been the focus of much recent work due to

the prediction of a phase transition to a ferromagnetic state for sufficiently strong

interactions [5,19,37,66,71]. Motivated by these predictions, experimental researches

on fermions with repulsive interactions were done, and they are presented in this

thesis.

As in Fig. 1-1, a Feshbach resonance couples a molecular bound state with an

unbound state of two free atoms. A magnetic field changes the energies of two free

atoms relative to the molecular state and thereby controls the interatomic interaction

strength. The experiment with attractive interaction has been done on the ground

state branch (or so-called lower branch) in Fig. 1-1(b). The fermi gases with repulsive

interaction are realized on the the first excited branch (or so-called upper branch) of

a Feshbach resonance where decay is always possible into the lower branch which

consists of weakly bound molecular states with binding energy h2/ma 2 with a being

the scattering length. The molecules are formed through three-body collisions, and

the collision rate is proportional to n 2a6max(T, TF) (kFa)6n 2 / 3 [18,52].
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(a) (b)
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.- -'---- -- --------- First excited
I tm branch
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-20x103 resonance

543 650 834 Magnetic Field [G]
Magnetic Field [G]

Figure 1-1: Feshbach resonance in 6Li between the two lowest hyperfine states
IF = 1/2; mF = 1/2) and IF = 1/2; mF = -1/2). (a) The red line shows the molec-

ular binding energy, and the blue dash lines show the scattering length. (b) The blue
line below the Feshbach resonance represents the excited state where the interaction
is repulsive.
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1.3 Equation of States

A system is characterized by its equation of state. The equation of state can be ex-

pressed in different forms involving various thermodynamic variables including den-

sity, energy, pressure, temperature and entropy. For cold atom experiments, density,

chemical potential (through the trapping potential) and temperature are directly ac-

cessible to measurement.

In the first thermodynamic studies of ultracold Fermi gases, the thermodynamic

quantities of the whole trapped gas was measured. The trapping potential induces

inhomogeneity in ultracold experiments while most theoretical calculations assumes

homogeneous systems. Thus, the comparison between experiments and theoretical

calculations require integral over the whole trap. Integration smoothes sharp features,

so that it could conceal evidences of phase transitions and make different theoretical

predictions indistinishable.

However, using local density approximation, the ultracold gas can be locally de-

scribed as a homogeneous gas. That is, each local point in the gas can be considered

as homogeneous systems with different conditions. Therefore, the inhomogeneity

problem in ultracold experiments can be resolved by accurate measurement of the

thermodynamic variables at each point in the trap.

This new level of quantitative comparison between theory and experiment was

recently reached by careful measurements of density profiles from which the equation

of state could be determined. These techniques were first proposed by Chevy [12] and

Bulgac [10] and implemented by Shin [61]. Further improvements [27, 28, 36,44-46]

resulted in impressive accuracy without adjustable parameters. These results hinge

on accurate measurements of the equilibrium atomic density distribution. In this

thesis, we extend these work to ultracold Fermi gases with repulsive interaction. In

addition, we use ultracold Fermi gases as model systems to demonstrate well-known

textbook physics of free electron gas in a more ideal way than other systems.
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1.4 Experiment

The details on the experimental setup and production of a strongly interacting de-

generate gas of 6Li can be found in Ref. [25,34]. The design and construction of our

apparatus is thoroughly described in Ref. [13]. The most recent upgrade to from BEC

apparatus to Bose-Fermi mixture apparatus has been reviewed in Ref. [14,30]. Here,

we will only briefly review the procedure.

(a)

22 /2

2 /2

22 1/2

1

16>
|S)

14>

13>
12>
11>

0 50 100 150 200

Magnetic Field [G]

Figure 1-2: 6Li hyperfine structure. (a) Energy level diagram for laser cool-
ing. (b)A repulsive two-component Fermi gas is prepared in the two lowest hy-
perfine states, 1) and |2) states (corresponding to the IF = 1/2; mF = 1/2) and
IF = 1/2; mF = -1/2)).

An atomic vapor is created in an heated oven containing solid 23Na, a boson,

and 'Li, a fermion. This two-species atomic vapor is collimated by a nozzle and

a collimation aperture. A Zeeman slower is used to slow down the thermal atomic

beam, and the slowed atomic beam is loaded into a dual species Magneto-Optical Trap

(MOT). In order to avoid spin-exchange collisions causing unwanted heating, 23Na and
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6Li atoms are optically pumped into their respective stretched states, |F = 2; mF = 2)

and |F = 3/2; mF = 3/2), and they are microwave swept in the presence of bias field

for purification. The atoms are loaded into a magnetic trap of the Ioffe-Pritchard type.

Evaporative cooling of 23Na using microwave sweep leads to sympathetic cooling of

6Li. At this point, we routinely produce a spin-polarized Fermi gas of - 5 x 106 atoms

in the stretched state of |F = 3/2;mF= 3/2), and 23Na atoms are fully evaporated.

The typical temperature of the sympathetic cooled 6Li is T - 0.5TF where TF is the

Fermi temperature.

The 6Li atoms are then loaded into a single-beam optical dipole trap and trans-

ferred into the lowest hyperfine state IF = 1/2; mF 1/2) by a Landau-Zener radio-

frequency (RF) sweep. Additional axial confinement is provided by magnetic field

curvature. A desired population mixture of 1) and |2) spin states (corresponding to

the IF = 1/2; mF = 1/2) and IF = 1/2; mF =-1/2) states at low magnetic field) is

prepared by a Landau-Zener RF sweep at 300 G, followed by 500 ms wait time for

decoherence and evaporative cooling in the optical trap. The Feshbach resonance at

834 G [34] is used to tune the repulsive interactions between 1) and |2). We increase

the magnetic field in 200 ms to 528 G, where the scattering length is zero and our

Fermi gas is non-interacting. The final trap has a depth of 4.1 puK and frequencies of

oz = wY= 390 Hz and w,= 34.7 Hz. The number of atoms per spin state is 8 x 105,

which corresponds to a Fermi temperature TF of 1.4 pK. Note that the experiment

presented in chapter 3 was done in slightly different configuration. The mixture

preparation of 1) and 12) spin states was done at 590 G instead of 300G, and the

magnetic field was lowered to 300 G for decoherence. The wait time for decoherence

was 1 s, and the field was ramped up back to 590 G. The final trap has a depth of

7.1 pK and frequencies of w = w ~ 300 Hz and wz ~ 70 Hz.
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Chapter 2

Quantum Statistical Mechanics for

Ultracold Fermi Gases

2.1 Bosons and Fermions

In classical mechanics, we can always distinguish particles under physical observation

and measurements. In quantum mechanics, particles can be indistinguishable because

a detective's observations inevitably and unpredictably alter the state. This feature

of quantum mechanics determines two kinds of fundamental particles: bosons and

fermions.

Let us consider a collection of N indistinguishable particles. The wave function

(ri, r2 . TN) represents the probability amplitude for finding N particles at the

position of ri, r2 , .. , TN. Since particles are indistinguishable, exchange of any pair of

particles keeps the probability density invariant:

I -(i-.,r I . r , .. ,TN) 12 r 0 T1, -- , rj, -- I ri, -- , rN) 2. 2 1

This results in two degenerate wave functions under particle exchange.

4'(r, .. , ri, -- I rj, .. , TN) = ±4'(ri .. , rj, .. , ri, -. , rN) (2.2)
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For simplicity, let us consider two identical particles. Suppose 'a(ri)4(r2) and

?/b(r1)?a(r2) are two eigenstates of the two-particle system we consider. Then, the

two wave functions satisfying Eq. 2.1 are

±(ri, r2) = A[@$(ri)lb(r 2 ) i 9(ri)0a(r2)]. (2.3)

These two wave functions represent bosons (symmetric wave function, 0+) and

fermions (antisymmetric wave function, 0_). All particles with integer spin are

bosons, and these particles obey Bose-Einstein statistics. All particles with half-

integer spin are fermions, and these particles obey Fermi-Dirac Statistics. One char-

acteristic of fermions is that they cannot occupy the same state, the famous "Pauli's

exclusion principle." If $ba = /b in Eq. 2.3, 0_ = 0. That is, probability of two

identical fermions occupying the same state is zero.

2.2 Quantum Statistical Mechanics for Boson and

Fermion

In grand canonical ensemble, the probability that the system is in any state with

particle number N and energy Etat is given by the Boltzmann factor e-(Eto-pN)/kBT

Let us consider a non-interacting many-particle system with single-particle energy

E, and ni particles in energy state Ej. The grand canonical partition function Z for

this system is then

Z = ( fj e-ni(Ei-p)/kBT (2.4)
ni i

The average occupation number of state i is then

Sln Z _1

(ni) = kBT = e(Ei-p)/kB T 1 (2.5)

with the upper sign corresponding to bosons, the lower sign to fermions. Eq. 2.5
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represents the Bose-Einstein and Fermi-Dirac distributions introduced earlier.

From the Fermi-Dirac distribution, we can obtain the average particle number

N = EZ(ni). If we replace summations over i by corresponding integrations, the

density becomes

n= - 1 Li3 /2(-eICkBT), (2.6)
A3 dB

where AdB= mkBT is the thermal de Broglie wavelength and Lin(A) is the nthrer

Polylogarithm, defined as

Lin(A) = Jd2nr 2 . (2.7)
7rn er2 /A-1

A useful formula for integrals over PolyLogarithms is

0

dxLin(Ae-x) = V'7Lin+ (A). (2.8)

This formula is particularly useful when we obtain column or doubly integrated den-

sity profiles introduced later.

At zero temperature, the fermi occupation number (Eq. 2.5) is one for Ej < p,

and zero otherwise. The limiting value of p is called the fermi energy, EF. In terms

of density, EF= !(67r2 )2/3. From the definition, the density at zero temperature

in terms of p becomes

n 6 2 (.2m/) 3 / 2  (2.9)
67r2 2

At low temperature limit T < p, one can use the Sommerfeld expansion to obtain

the temperature corrections to the density equation in terms of BT [68]. At high

temperature limit T > y, one can use the virial expansion to express the density

equation in terms of fugacity Op , where # = 1/kBT.
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2.3 Fermi gases in a harmonic trap

The density obtained is for a homogeneous system. In the experiments with ultracold

atomic gases, atoms are held in a trapping potential and are thus inhomogeneous.

The trapping potentials can usually be approximated described by a harmonic trap.

Let us now consider particles confined in a harmonic trap, with trapping potential

1
V(r) m(o X2 + w2y 2 + Woz 2 ), (2.10)

where m is atomic mass, and wi is trapping frequency. In the local density approxi-

mation (LDA) the system can be described as locally homogeneous with a spatially

dependent chemical potential pjo = y - V(r). This provides the density distribution

in a harmonic trap, given temperature T and the chemical potential pu:

1
n(r) = - 3 Li3 / 2 (_e(p-v(r))/kBT) (2.11)

A3 dB

In experiments with ultracold atomic gases, in-trap density profiles are obtained in

the form of column density. Column density 5(y, z) can be obtained by integrating

this equation along one axis using Eq.2.8,

5(y, z) = j n(x, y, z)dx = -n(kB$T2 L 2 (-e(p-V(y,z)/kBT)) (2.12)
_oo0 27th o3W

2.4 Interaction Effect : Perturbation limit

So far we considered non-interacting systems. Now let us consider a system with

spin-half fermions with balanced population in each spin state interacting through

a short-range s-wave interactions (contact interactions) with scattering length a. If

the interaction is weakly repulsive, the ground-state energy can be exactly calculated

within standard perturbation theory. At zero temperature, the total energy is given
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to second order in a by the following [38]:

3E =- NEF
5 E l

10

9F
+ 4(11 - 2 In 2)(k)2

S 217r2 F 2

where N is total number of particles, and kF = (37r2 _ 1/3

potential is

= EF 1+
4
4 kFa

31r

Then, the chemical

+ 4(11 - 2 In 2)(k)2
S 1572 (kF 2

29

(2.13)

(2.14)
BE

p =
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Chapter 3

Itinerant Ferromagnetism in a

Fermi Gas of Ultracold Atoms

This chapter presents our research on itinerant ferromagnetism in a strongly inter-

acting Fermi gas of ultracold atoms. This experiment was the first experimental

attempt at the repulsive side oNf Feshbach resonance. The reserch simulated a simple

Hamiltonian which can not be simulated by solid experiments. The experiment was

reported in the publication:

e Gyu-Boong Jo, Ye-Ryuoung Lee, Jae-Hoon Choi, Caleb A. Christensen, Tony

H. Kim, Joseph H. Thywissen,David E. Pritchard and Wolfgang Ketterle

Itinerant Ferromagnetism in a Fermi Gas of Ultracold Atoms

Science 325 , 1521-1524 (2009). Included in appendix D.

More details on this research can be found in Gyu-Boong Jo's doctoral thesis [30].

3.1 Itinerant Ferromagnetism and Stoner Model

Iron, nickel, and cobalt can form permanent magnets, or are attracted to magnets.

This kind of magnetism is caused when electron spins line up parallel with each other

and is called ferromagnetism. Here, the electrons whose spins aligned to create the

magnetic state are the conduction electrons which are not localized to any particular
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atoms in a metal. Thus, the magnetism of iron, nickel, and cobalt is called itinerant

ferromagnetism.

The Stoner model and its extensions [70] have been used to describe itinerant

ferromagnetism. Stoner assumed that the interaction between electrons can be seen

as screened Coulomb interaction, which in turn can be estimated as a short-range

repulsive interaction. This simplified model is not enough to explain real ferromagnets

in a quantitative way [72]. However, this model can be realized and tested using Fermi

gas of ultracold atoms instead of electrons [19].

Here we simulate the Stoner model using an ultracold Fermi gas of 6Li atoms.

The 6Li atom has the total nuclear spin I=1 and the total electron spin S=1/2.

Its ground state where angular momentum L=0 splits into six states under the ex-

ternal magnetic field. We use two lowest energy states, IF = 1/2; mF 1/2) and

|F = 1/2; mF = -1/2), to simulate two spin-states of an electron. The screened

Coulomb interaction of electrons can be realized by the s-wave scattering caused

by Feshbach resonance of the two pseudo-spin states of 6Li atoms. Due to the angu-

lar momentum conservation one state cannot be converted to the other state unlike

electrons. That is, the number of atoms in each state is fixed. Therefore, the net

spin polarization is zero in case of balanced spin mixture, which corresponds to zero

external magnetic field in solid state systems. More detailed comparison can be found

in chapter 4.1.

Intuitively speaking, the Stoner model predicts ferromagnetism based on compe-

tition between kinetic energy and interaction energy. In order to understand this

model, let us consider a simple mean-field model of a two-component Fermi gas.

The total energy of a two-component Fermi gas of density n, (for each spin state)

in a volume V is

Etotaiz =J: 3VE',0qn,+ gVn~nj, (3.1)

where EF,na a2k , =, a. The first part of the equation comes from kinetic

energy, and the second part comes from the interaction energy. Let us consider a
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Figure 3-1: A simple mean-field model of a two-component Fermi gas. n is the density
of the gas. We introduce local density imbalance dn in order to check the instability
toward the ferromagnetic state.

locally polarized case while the net polarization is kept zero (see Fig. 3-1). We define

the local magnetization of the Fermi gas, 1 = $, where dn = nT -ni and n = nt+n.

The total energy can be expressed using the local magnetization q as

Etotai = EF2Vn + 3 + I _ ( )5/3 + 2 kF(i + )(1 - q) (3.2)

The kinetic energy increases when the local magnetization increases. This increase

max out when the cloud is fully polarized. In contrast, the interaction energy of

the balanced cloud continuously increases when the interaction parameter kFa in-

crease, and the interaction energy of the fully polarized cloud becomes completely

zero. Therefore, the fully polarized case becomes energetically favorable when the

increase in interaction energy becomes greater than the increase in the kinetic energy.

This is the simple explanation behind Stoner model. The exact phase transition oc-

curs when the curvature of the energy curve becomes zero at q = 0 (see Fig. 3-2 (a)),

which gives the critical interaction strength kFa = -/2.

We consider the thermodynamic quantities at constant volume for simplicity.

However, the atoms trapped in a harmonic potential is more relevant at constant

pressure. At constat pressure, the system reaches equilibrium when minimizing the

enthalpy H = Ettati - PV, where P = -dEtotail/dV. Fig. 3-2 (b) shows magnetiza-
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tion, kinetic energy, volume, and enthalpy as a function of interaction parameter kFa.

At the phase transition, we can observe the onset of magnetization, the minimum in

the kinetic energy, and the maximum in the size of the cloud. Thus these features

can be interpreted as evidences for ferromagnetic phase transition.

(a)
Energy at Constant Volume

KI
V1

U

(b)
C
0

4-M

LJJ

4-

E

0.

C
LU

76

-1 -0.5 0 +0.5 +1
Magnetization 0.5 1.0 1.5 2.0 2.5

Interaction Parameter kFa

Figure 3-2: Mean-field prediction of ferromagnetism. (a) Total energy at different lo-
cal magnetization r and interaction parameter kFa. (b)Magnetization, kinetic energy,
volume, and enthalpy as a function of interaction parameter kFa. The ferromagnetic
transition occurs at the dotted line.

3.2 Experimental Procedure

An evaporative cooled equal mixture of 1) and |2) spin states is prepared at 590

G as described in chapter 1.4. We increase the magnetic field in order to increase

interaction strength. Due to eddy current, the fasted ramp to the target field was

limited to 4.5 ms.
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Figure 3-3: The experimental procedure. (a) The sequence of the magnetic field

ramp. (b) Image samples.

In order to measure the loss rate, we recorded the atom number for 2 ms right

after the ramp. Then, we obtained the loss rate by fitting linearly over time because

the initial loss rate can be approximated to be linear (see Fig. 3-4 (b),(c)). For

kinetic energy and cloud size measurement, the optical trap and the magnetic fields

were suddenly turned off. After 4.6 ms of ballistic expansion, we imaged the 1) state

atoms at zero field. The kinetic energy was determined by Eki, = , where ox

is the Gaussian radial width and Ato! is the ballistic expansion time. The cloud size

was determined by the Gaussian radial width a,. We measured the temperature by

fitting finite temperature in-trap density profile right after the ramp.
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3.3 Itinerant Ferromagnetism in a Fermi Gas of

Ultracold Atoms

As we reviewed in the section 3.1, ferromagnetic phase transition shows the onset of

magnetization, the minimum in the kinetic energy, and the maximum in the size of

the cloud. Even though these features are not sufficient conditions for ferromagnetic

phase transition, they are necessary conditions.

The onset of magnetization can be observed by measuring the loss rate because the

loss rate is proportional to nt ma 6 max(T, TF)(oC 1 - T2) [52]. In Fig. 3-4, we observe

decreasing loss rate for k 0Fa > 2.2 at T = O.12TF. If there is no magnetization,

the loss rate should increase as the interaction strength increases. Therefore, this

maximum in the loss rate indicates the onset of magnetization.

We also investigate thermodynamic quantities. In Fig. 3-5, we observe the mini-

mum in the measured kinetic energy as in Fig. 3-2. In Fig. 3-6 (a), we observe the

maximum in the measured size of the cloud as well.

Lastly the observed features depends on the temperature. As temperature of the

system increase, the critical interaction strength k0Fa increases. In addition, the

critical kFa is consistent for all three evidences at the same temperature.

The critical value of k0Fa we found is different from the value 7r/2 from the mean-

field prediction in the section 3.1. The mean-field model assumed zero temperature

and homogeneous density. In the experiment, the temperature is finite and the den-

sity is inhomogeneous in the harmonic trap. In addition, we determined the k0Fa

from total atom number assuming zero temperature without interaction, where the

real kFa depends on the local density at finite temperature with interaction. These

condition count for the discrepancy in the critical kFa. Theoretical works support

the discrepancy in the critical k'a by introducing the trap [37], Monte-Carlo simula-

tion [11,53], and the second-order correction to the mean-field interaction [15].

The most powerful evidence of the ferromagnetism would be the observation of

the spin domains. However, we were unable to observe the spin domains using in-situ

phase-contrast imaging. Based on the signal to noise ratio of ~ 10 and the ~ 3 pm
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Figure 3-4: Atom loss rate. (a) Atom loss rate at different interaction strength k0Fa
and at different temperatures of 0.55TF(dashed curve), 0.22TF(dotted curve), and
0.12TF(solid curve) Note that the curves are guides to the eye assuming that the loss
rate saturates. (b),(c) Loss rate determination.
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Figure 3-5: Kinetic energy measurement. The kinetic energy at different interaction
strength k0Fa and at different temperatures.
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Figure 3-6: Cloud size and molecular fraction. (a) Cloud size at different interaction
strength k0Fa and at different temperatures. The chemical potential (b) Measured
molecular fraction in the sample we used.
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resolution of our imaging system, the upper limit of the domain volume is - 5 pm 3

with ~ 50 atoms.

The main difference between this experiment and the Stoner model is the existence

of the molecules in the sample. As in Fig. 3-6 (b), there is about 25 % of molecular

fraction in the sample. Even though the molecules exit, the molecular fraction of

the sample is constant from k0Fa > 1.8 where we observed the evidences of the

transition. Thus, the molecular fraction is not the reason behind the sudden changes.

We confirmed this by conducting the kinetic energy measurement with about 60 %

molecular fraction in the sample. We observed the minimum in the measured kinetic

energy at the same k0Fa.

We measured the temperature by fitting finite temperature in-trap density profile

right after the ramp. Considering the trap frequency, 4.5 ms ramp is about a quarter

of trap period, and it is only marginally adiabatic. Since the temperature fitting

should be done to a sufficiently equilibrated profile, this can be done more accurately.

In addition, at high field imaging, the atoms and molecules are indistinguishable [34].

Therefore, the density profile contains molecular density profiles resulting in errors.

Actually, the lowest temperature accurately measured at repulsive side was about 0.2

TF both in chapter 4 and in Ref. [57].

3.4 Further Development

A recent experimental study using 350 ps ramp to the target field observed that pair

formation occurs on a very short time scale [57]. This work also showed the absence of

a dramatic increase in spin fluctuations, which is evidence against the ferromagnetic

transition. A theoretical study supports this finding by showing that the pairing

growth rate is larger than that of ferromagnetic instabilities [51,65]. In addition, Ref.

[51] has shown that the pairing instability can lead to similar experimental signatures

as we have observed. In conclusion, it turned out that no ferromagnetic phase has

been formed in our experiment. Still, our work stimulated a lot of interest for ultracold

Fermi gases with repulsive interaction.
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Chapter 4

Pauli Paramagnetism in an Ideal

Fermi Gas

In chapter 3, we focused on the qualitative features to observe the evidences of the

phase transition. We measured thermodynamic quantities of the whole trapped gas

whv 11i 1 eal atoms were h1eld in a trapping potential andu Jihmoeeos In1 tisi

chapter, we focus on the more quantitative study of ultracold gases.

Using local density approximation, the ultracold gas can be locally described as a

homogeneous gas. That is, each local points in the gas can be considered as homoge-

neous systems with different conditions. Therefore, the trapped gas can provide lots

of useful information on the equation of state of the system.

A new level of quantitative comparison between theory and experiment was re-

cently reached by careful measurements of density profiles from which the equation of

state could be determined. These techniques were first proposed by Chevy [12] and

Bulgac [10] and implemented by Shin [61]. Further improvements [27, 28, 36, 44-46]

resulted in impressive accuracy without adjustable parameters. These results hinge

on accurate measurements of the equilibrium atomic density distribution.

In these quantitative researches, ultracold atoms served as model systems for

exploring novel and unknown many-body physics. On the other hand, we can also

use the ultracold atoms as model systems to demonstrate well-known textbook physics

in a more ideal way than other systems.
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Here, we use the tunability of atomic interactions near Feshbach resonances to

create a non-interacting Fermi gas with two components. This is an ideal realization

of a free electron gas (FEG) with spin up and spin down components, as assumed

in the simple theory of metals. We demonstrate how such an ideal Fermi gas will

respond to external magnetic fields, which is described by Pauli paramagnetism.

In all previous studies of paramagnetism, the magnetization was weak since the

applied magnetic field times the magnetic moment was much smaller than the Fermi

energy [32, 58-60]. In addition, the measurements even in simple metals revealed

major discrepancies to the predicted value due to interaction effects [32,58-60]. With

ultracold atoms, we can easily realize the strong field case where the chemical potential

difference is larger than the Fermi energy and therefore fully polarizes the gas. In

addition, we can experimentally demonstrate Pauli paramagnetism in a truly non-

interacting system which is exactly described by basic theory.

4.1 Pauli Paramagnetism: Ultracold Atomic Gas

vs Solid State System

Table 4.1: Comparison between a free electron gas and two-component Fermi gases
in the study of magnetism

Properties Free electron gas Two-component Fermi gases

Magnetization pB(NT - NZ)V An = (NT - N )/V

Magnetic field External B field Ap = pt - A4

Normalized Susceptibility pB(An/n)/&(B/EF) (An/n)/a(Ap/EF)

Pauli paramagnetism explains the magnetization of a free electron gas with two

spin states in the presence of an external magnetic field B neglecting the contribution

from the orbital motions. In the presence of an external magnetic field B, the energy

of a particle is given by
p2

= t pBB, (4.1)
2m
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Figure 4-1: Comparison between a free electron gas(a) and two-component Fermi

gases(b) in the study of magnetism. Curves show density of states for each spin

states g(E). (a) shows the response of free electron gases to the external magnetic
field B. (b) shows the imbalanced two-component Fermi gases.
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with upper sign corresponding to the antiparallel spin state, the lower sign to the

parallel spin state the magnetic field B. The total number NT(4) of electrons in each

spin state changes satisfying at zero temperature (T=0)

NT()= / g(E t pBB)dE, (4.2)

where g(E) is the density of states and p9 is the global chemical potential (see Fig.

4-1(a)). In an zero temperature ideal gas, the global chemical potential is the same

as Fermi energy EF = 2(6 n)2 /3 , where n = (nT + n )/2. The magnetization M is

then given by

M = pB(NT - N)V = pBn. (4.3)

The susceptibility of the electron gas is defined as

x = aB pB B 'A (4'4)
XDB IaB.

In the limit of B -+ 0, the slice of energy thickness transferred AE is pBB. Thus, the

magnetization is

M = 2pBg(EF)AE = 2IBg(EF)pBB. (4.5)

Therefore, we obtain the low-field susceptibility

xo = 2pB2g(EF) = 2pB2 3 EF (4.6)
2 n

In condensed matter physics, the normalized susceptibility T is often used as a di-

mensionless quantity. The susceptibility is normalized using Xo:

1 EF azn _ 1 (1n) (BB(
=X/Xo a-- B -8 )/y .) (4.7)3 n apBB 3 n EF

The last equation is valid because the average density n is constant.

Here we simulate this magnetism using an ultracold Fermi gas of 6Li atoms. We

use two lowest energy states, IF = 1/2; mF = 1/2) and IF = 1/2; mF = -1/2), to
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simulate two spin-states of an electron. As mentioned in chapter 3.1, one state cannot

be converted to the other state unlike electrons. That is, the number of atoms in

each state is fixed. Note that the real external magnetic field is not the source of the

population imbalance (magnetization). The spins here can be regarded nuclear spins,

hence the magnetic field here is only used to split the hyperfine state. Then, what is

the relevant variable in the ultracold atoms that corresponds to the external magnetic

field in the electron gas? In the two-component Fermi gases, the magnetization An

is introduced by preparing different number of atoms in each state. The two different

pseudo spin states have different chemical potentials, pt and puq. In Fig. 4-1(b),

we can observe the chemical potential difference between two states, AP = pt - [q,

corresponds to the energy shift due to the external magnetic field in the electron gas

(Fig. 4-1(a)).

If we compare the corresponding equations, the number in each spin state at T = 0

is given by

N
1t =tg( = g ( E I A.. ()A

I LT = Jy JTAp/2

where p-g is the global chemical potential of each component of gases. We define

pfi= (Mt + ps)/2 and Ay = pt - p4. By comparing this with Eq.(4.2), we again find

that the chemical potential difference Ap corresponds to the energy shift due to the

magnetic field in the electron gas.

Let us now consider the trapped two-component Fermi gases. As we discussed in

the previous section, we can treat each local position (j) in the trap as homogeneous

systems with the local chemical potential pt() (r) = pg - V(F) and the local density

put(4) (r) using the local density approximation. Here, the chemical potential difference

Ap(r') = pt(r) - p(j) is the same throughout the cloud as in Fig.4-3(b). However,

the meaningful measure of the chemical potential difference is its relative value to

the Fermi energy, or the global chemical potential. Therefore, we can still define and

measure the normalized susceptibility of the ultracold atoms corresponding to the

Eq. 4.7 as

(A n = 8 = 4 (A'n) / a (4 9)
n E F
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Figure 4-2: Comparison between a free electron gas and two-component Fermi gases
trapped in the spherical harmonic trapping potential. Figures at the top shows the
response of free electron gases to the external magnetic field B. g(E) is the density
of states. The figure at the bottom shows density distributions of two-component
ultracold Fermi gases at zero temperature, nt and n . Each position in the trap
corresponds to the different magnetization under different strength of the field, This
is illustrated in diagrams inside the plot, where the gaps between two states represent
non-interchangeability of spin state.
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where we define An = (nt - ni)/n and Ayt = (pt - pU)/EF. For fully polarized gas,

An = 2 and Ap = 22/3. In the trapped gases, An and Ap changes throughout the

cloud as in Fig. 4-3. Therefore, we can determine the normalized susceptibility -

by measuring the slope from An versus Ap as in Fig. 4-3(d). The zero temperature

normalized susceptibility in the limit of Ap - 0 (which is equivalent to An -+ 0) is

To = EF 2(An)/ (h(672)2/3 ((n +An) 2/ 3 _ (n - An)2/3) 3 (4.10)
n 2m 2

4.2 Experimental Procedure

An evaporative cooled imbalanced mixture of 1) and |2) spin states is prepared at

528 G where the interaction between two states is zero, as described in chapter 1.4.

In order to obtain the density profiles of each component of atoms, we use the

double-shutter phase contrast imaging technique with two different frequencies. One

is tuned to the middle of the two optical transition frequencies for 1) and |2) and the

other is tuned closer to the state 1) by 12 MHz.

The normalized phase-contrast signal (for negligible absorption) is

= 3 - 2V2 cos(# t r/4), (4.11)

where the phase shift # = - , o-o = 2, = 'o, and h is the column2 1+62, p 27r F/2

density [33]. The sign depends on laser detuning and the sign of the phase shift

imparted by the phase plate. Using Eq. 4.11, we can determine the phase shift from

the normalized phase-contrast signal. The phase shifts from two different frequencies

are

#1 = O " (51 - 52) (4.12)

Oo 61 62#2 = "(1 213151 - 2 2. (4.13)
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Figure 4-3: (a) Simulated density profiles of two-component Fermi gases in a spherical

harmonic trap at zero temperature. The total population imbalance A -- (Nt -
Ng)/(NT + N) = 21%. The shaded and white regions correspond to the partially

and fully polarized regions respectively. (b) The local chemical potential difference
with and without the normalization. (c) The density difference with and without
normalization. (d) An versus Ay from the density profile (a). The linear fit near the
origin (the dashed line) gives the low field normalized susceptibility.
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Figure 4-4: The double-shutter phase contrast imaging with two different imaging
frequencies.

From this equation, we can find find the column density of each spin state.

If we normalized the phase shift by 0 6 , we can simplify the equation as

i - 52 (4.14)

02= am 1 - #5 2 . (4.15)

We know the value of a and # from calculation, but we can also deterniine them

experimentally by taking images of the pure 1) and 12) states.

4.3 Susceptibility Measurement

We measured line-of-sight integrated profiles of column density using in situ phase-

contrast imaging [64]. The signal-to-noise was improved by averaging the four quad-

rants of the images around the center and by averaging the column density along

equipotential lines (which are ellipses for the anisotropic harmonic oscillator poten-

tial).

Fig.4-5(a) is the column density distributions in two states, where the elliptical

density profile is rescaled to be circular. These column density profiles are fitted with
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finite-temperature Fermi gas 2D distribution from Eq. 2.12,

n (r) = - h3 L2  - exp .- . (4.16)
27h3W w kBT _

First, we fit the column density profile of the majority component, t), and determine

the temperature T and the global chemical potential p'. Since the temperature T

of the two components is the same, we fit the minority component to determine P9

with the temperature constrained to be the temperature determined from the ma-

jority component fitting. Three-dimensional density profiles n(r) in Fig.4-5(b) were

reconstructed by applying the inverse Abel transformation to the column densities

hi(r) [64].

The temperature was about 0.2 TF. For finite but low temperatures, the low field

susceptibility is
-r (2 T

S=Xo I--- -- (4.17)
. 12 TF_

from the Sommerfeld expansion [49].

As we can see in Fig. 4-5(c), we cannot use the derivative of An with respect

to Ap at each position because of the noise. Thus, we use the linear fit of An as a

function of Ap in order to determine the susceptibility. We accumulated an vs Ay

plots from 20 images for averaging (see Fig. 4-5(c)). The linear fitting to the origin

near the center of the profile gives y = 1.44, which is in a good agreement with the

theoretical value of 1.45 from Eq. 4.17 at T/TF = 0.2.

Note that the local T/TF and the local susceptibility changes within the fitting

region as in Fig. 4-3(d) because the density n and the normalized chemical potential

difference Ay changes within the fitting region. Thus, we limited the fitting region to

where the deviation of the susceptibility is small within our experimental resolution.

From simulation, the deviation in measured susceptibility from that of the center of

the profile is about 4 %.

Even small difference in T/TF at the center of the profile gets amplified near the

wings of the profile as TF decreases. In addition, the temperature dependence of the

susceptibility is beyond the second order correction from the Sommerfeld expansion.
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Figure 4-5: (a) Column density h. The temperature determined from the fit (solid
curves) is about 0.2 TF. (b) Red line shows difference of three dimensional densities
An. Blue line shows average three dimensional density no of the two states. Green
lines are An and n0 from theoretical calculation using the chemical potentials and
the temperature obtained from (a). (c) The normalized three dimensional density
difference is plotted as a function of the normalized chemical potential difference.
The graph shows averaged plots from 20 profiles. We determine the susceptibility
from the slope of the linear fitting to the origin. The measured T is 1.44.
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Figure 4-6: Susceptibility at high magnetic field. Points are data from a single image.
Dashed line shows the plot from a simulation using the same parameters as the
experiment. Solid line is the linear fitting of the data for susceptibility measurement
around Apt = 1.

Therefore, we cannot use accumulated plots for susceptibility measurement near the

wings of the profile, which corresponds to the susceptibility at strong magnetic field.

In order to measure the strong field susceptibility, we use a An vs Ap plot from a

single profile (see Fig. 4-6). The linear fit around Ap/EF = 1 gives ) = 0.39. Within

the fitting range, T/TF changes from 0.45 to 0.7. The susceptibility obtained from a

simulation with the same parameters is 0.48. About 6 % error comes from the T/TF

and Ap changing fitting region. We observe that the susceptibility approaches zero

as the chemical potential difference (corresponding the applied magnetic field times

the magnetic moment) becomes comparable to the Fermi energy of the system.

We measured the ideal Pauli susceptibility in ultracold Fermi gases. Since we

can control the interaction strength between two pseudo-spin states to be zero, it

is possible to measure the Pauli susceptibility accurately while the experiments in

condensed matter physics observed major discrepancies due to interaction effects. In

addition, the strong field Pauli susceptibility can be measured where the chemical

potential difference is comparable to the Fermi energy. This shows that the ultracold

atoms can be a good tool to study basic physics of many-body systems.
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4.4 Susceptibility Measurement in Systems with

Interaction

In the previous section, we measured the susceptibility of the ideal gas. Let us now

consider the interacting case. Recently, the susceptibility was measured for fermions

with attractive interactions [45]. The susceptibility measurements on the repulsive

side of interaction could address the possible existence of a ferromagnetic transition

in a repulsive Fermi gas (in chapter 3 for which the spin susceptibility would diverge

at the phase transition [54].

However, there are some complications with the repulsive side of interaction.

First, the two-component Fermi gases with repulsive interaction are unstable be-

cause they are realized on the so-called upper branch of a Feshbach resonance where

decay is always possible into the so-called lower branch which consists of weakly bound

molecular states. In order to observe the equilibrated density distribution, a favorable

ratio of lifctimc to cquilibration time is required. Since the lifetime depends on the

interaction strength, we have the upper limit for the interaction strength where we

are able observe the equilibrated density profile.

Second, the achievable lowest temperature is much higher than that of attractive

interaction case. The interaction strength between atoms at the preparation stage

is much smaller in repulsive case, so that thermalization during evaporation is less

effective. Then, why is this a problem? In Ref. [45], they used Thomas-Fermi radius

in order to determine the global chemical potentials for each state. It was possible

because the temperature is an order of magnitude lower than our case. Determining

Thomas-Fermi radius only requires finding the radius where the density becomes zero.

In finite temperature case, on the other hand, we need to fit at least some range of

the profile in order to determine the global chemical potential. For non-interacting

case, it is easy because we know exact function of the density profile. However, for

strongly interacting case, the exact equation of state is unknown, so that we need

to fit the wing of the cloud where the interaction is small enough for the known

perturbation correction. In addition, the temperature can not be measured at the
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fully polarized wings as in Ref. [45] because the finite temperature profiles don't show

the fully polarized features clearly, due to the extended wings.

In the next chapter, we check the upper limit for the interaction strength where

we are able observe the equilibrated density profile. Then, we measure the compress-

ibility of the Fermi gas with repulsive interaction. The compressibility measurement

does not require the population imbalance nor the absolute value of the global chem-

ical potentials. Thus, the compressibility can be measured more simply than the

susceptibility when we introduce the repulsive interaction.
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Chapter 5

Compressibility of an Ultracold

Fermi Gas with Repulsive

Interactions

As we invieWeu 111 lhaptei 1.2,) Ut uto-UIomUIIpo Friil Wabse wi1thn rulsive i-

teraction are unstable because they are realized on the so-called upper branch of a

Feshbach resonance where decay is always possible into the so-called lower branch

which consists of weakly bound molecular states. In order to observe the equilibrated

density distribution, a favorable ratio of lifetime to equilibration time is required.

Since the lifetime depends on the interaction strength, we have the upper limit for

the interaction strength where we are able observe the equilibrated density profile.

Here we check the upper limit for the interaction strength where we are able

observe the equilibrated density profile. Through this we test the feasibility of exper-

iments requiring equilibrated density profiles of ultracold Fermi gases with repulsive

interactions.

For weakly interacting gases, interaction effects can be explained by perturbative

corrections (see chapter 2.4). For bosons, the first beyond mean-field correction, the

so-called Lee-Huang-Yang term, could be observed, but corrections were necessary to

account for the non-equilibrium profile since the time to sweep to strong interactions

was not long compared to equilibration times and inverse loss rates [47].
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Here we study fermions with repulsive interactions. Within a limited window

for metastability, we can observe equilibrated clouds and characterize the repulsive

interactions by obtaining the compressibility from observed profiles. We observe the

linear term in kFa corresponding to mean-field energy for the first time in density

profiles. In contrast to a Bose-Einstein condensate, the mean-field energy is smaller

than the kinetic energy and also competes with thermal energy, and is therefore much

more difficult to observe. The signal-to-noise ratio (and some heating) prevented

us from discerning the second-order interaction term which is the Lee-Huang-Yang

correction for fermions.

Our work features one technical novelty, a novel implementation of phase-contrast

imaging to address dispersive distortions of the cloud. All studies mentioned above,

with one exception [61], were conducted using resonant absorption where dispersion

(an index of refraction different from one) is absent. However, this severely limits

the cloud size and number of atoms to optical densities of a few. Phase-contrast

imaging has many advantages. It can be applied to clouds with much larger optical

densities by adjusting the detuning. Due to coherent forward scattering, the heating

effect per detected signal photon is reduced by potentially a large number (which is

equal to the resonant optical density divided by four [33]). This can e.g. be used for

repeated nondestructive imaging. However, for precision studies of density profiles,

small dispersive distortions of the density profile cannot be neglected. Previous work

including Ref. [61] was not sensitive to this effect. We have developed an experimental

technique to correct for dispersion.

The experiment was reported in the publication:

e Ye-Ryoung Lee, Myoung-Sun Heo, Jae-Hoon Choi, Tout T. Wang, Caleb A.

Christensen, Timur M. Rvachov, and Wolfgang Ketterle

Compressibility of an ultracold Fermi gas with repulsive interactions

Phys. Rev. A 85, 063615 (2012). Included in appendix E.
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5.1 Experimental Procedure

An evaporative cooled balanced mixture of 1) and 12) spin states is prepared at 528

G. In order to introduce repulsive interaction, we increase the magnetic field.

For loss rate measurements, the magnetic field is quickly ramped to the target

field. For compressibility measurements, the field is ramped up over 50 ms and held

for 30 ms to ensure thermal equilibrium before imaging. The molecular fraction

in the density profile is determined by dissociating molecules with a magnetic field

jump to 20 G above the Feshbach resonance, and comparing with the atom number

after jumping to 528 G where the cross section for imaging molecules vanishes (see

Ref. [74]).

5.2 Loss Rate

In this section, the feasibility of the experiment is tested through loss rate measure-

ment. As expected we find only a limited window for metastability where we can

observe equilibrated clouds and characterize the repulsive interactions by obtaining

the compressibility from observed profiles. For interaction parameters kFa > 0.25

fast decay of the gas prevents the observation of equilibrium profiles.

5.2.1 Loss Rate Estimation

To obtain thermodynamic parameters from atomic density profiles requires equilibra-

tion. One time scale for equilibration is set by the longest trap period, which is 30 ms

for the axial direction. Ref. [47] studied the distortions of profiles of bosonic 7Li due

to non-adiabatic ramping of the scattering length. The authors found that ramping

times longer than ~ 67r/w (which is 90 ms for our parameters) led to only small devia-

tions from equilibrium profiles. Here, w is the smallest of trapping frequencies, which

sets the timescale for equilibration. Assuming that losses sharply increase during the

last 5 ms of the ramp towards stronger interactions and limiting tolerable losses to

10 % leads to an estimate of a maximum tolerable loss rate of about 0.02/ms. The
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fastest relaxation time for excitations created during a non-adiabatic ramp is 1/W

(the damping time for a harmonic oscillator at critical damping). Allowing ~ 10 %

loss during this time, leads to an identical estimate for the tolerable loss rate of

0.02/ms.

5.2.2 Loss Rate Measurement

We measured loss rate as a function of interaction strength kF0 a. Note that kFO is the

Fermi wave vector of the zero temperature noninteracting gas calculated at the trap

center using total atom number. The real kF is somewhat smaller because repulsive

interactions and non-zero temperature lower the density.

First, in Fig. 5-1(a) we measured the number of atoms right before and after the

fastest possible ramp (limited to 7 ms by eddy currents) to the target magnetic field.

During the ramp to the target magnetic field of kF0 a ~ 0.8, ~ 35 % of the sample is

lost. Measuring the loss rate at higher kF0a is difficult because most of the sample is

lost even before reaching the target fields. The loss rate was determined by monitoring

the drop in the number of atoms immediately after the field ramp. The results in

Fig. 5-1(b) show that the measured loss rate reaches the maximum tolerable value

of 0.02/ms at kF0a 0.35, limiting our measurements of equilibrium density profiles

to smaller values of kF0 a. Furthermore, at the same values of kF0 a, the molecular

fraction when we measure equilibrium density profiles exceeded 10 % (see Fig. 5-1(c)).

As we shall discuss in section 5.5 the presence of a molecular component affects the

compressibility measurement.

5.3 Compressibility Measurement

A system is characterized by its equation of state. The equation of state can be ex-

pressed in different forms involving various thermodynamic variables including den-

sity, energy, pressure, temperature and entropy. For cold atom experiments, density,

chemical potential (through the trapping potential) and temperature are directly ac-

cessible to measurement. In the weakly interacting regime, the interaction manifests
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Figure 5-1: Characterizing atomic loss for increasing repulsive interactions. (a) Re-
maining fraction of atom number immediately after the fastest possible ramp to the
target field. (b) Atom loss rates at the target fields. Dashed line shows the estimated
maximum tolerable loss rate of 0.02 /ms. (c) Molecular fraction after the 50 ms ramp
and 30 ms wait time, corresponding to when we measure equilibrium atomic density
profiles.
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itself as a perturbative term in the equation of state. Here we measure this perturba-

tive interaction effect by measuring the derivative of density with chemical potential,

the isothermal compressibility of the gas. We prepare the system at the lowest tem-

perature, but due to heating of the cloud by molecule formation, we have to apply a

correction for the measured finite temperature.

5.3.1 Measurement Method

Using the experimental procedure discussed above we prepared equilibrated clouds

at various magnetic fields and measured line-of-sight integrated profiles of column

density using in situ phase-contrast imaging [64]. The signal-to-noise was improved

by averaging the column density along equipotential lines (which are ellipses for the

anisotropic harmonic oscillator potential). The averaging region was restricted to

an axial sector of +600 to avoid corrections due to transverse anharmonicities [63].
Three-dimensional density profiles n(r) were reconstructed by applying the inverse

Abel transformation to the column densities 5(r) [64].

The isothermal compressibility is obtained from a spatial derivative of n(r), since

in the local density approximation, the local chemical potential is y = po - mW2X2 /2,

where yt is the global chemical potential and w the trap frequency. The compress-

ibility is defined as

1 =n (5.1)

We normalize the compressibility , by the compressibility of an ideal gas at the

given density and zero temperature so = n1/ 3 and obtain the normalized

compressibility,

K h 2 (67r2 ) 2 / 3 an 2/3
im at(5.2)

KO 2m ap

Here n is density, and m is the atomic mass. The normalized compressibility is

obtained as the slope in a plot of n2/ 3 vs. ft (Fig. 2). This plot is in essence the
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observed density profile plotted with the central region to the left and the spatial

wings to the right. Experimentally, we find the slope to be constant over an extended

range of the density profile. Compressibilities were determined from fits to the slope

in the region of 90 to 50 % of the peak density. The region near the center of the cloud

was excluded since the center is singular for the inverse Abel transformation leading

to excessive noise. These compressibilities should be regarded as average values over

the density range used in the fit. The uncertainty of fitting the slope to a single profile

was 4.5 %. By averaging the profiles obtained from 20 images, the uncertainty was

improved to 1.3 %.

(a) 1.0 - -

0.5-

0.0 0.5 1.0 1.5 2.0

(b)-

0.7-

0.6-

II II
0.1 0.2 0.3 2 0.4 0.5

Distance2 MW [pK]
2kB

Figure 5-2: Determination of the compressibility of repulsively interacting Fermi
gases. The compressibility is the slope of a graph showing the density to the power
2/3 versus the square of the distance from the center. (a) Single shot density profile.
(b) Close-up of the region used for determining the compressibility for a plot showing
the average of 20 density profiles.
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5.3.2 Temperature Measurement

The normalized compressibility is a function of T/TF and kFa. At finite temperature

and scattering length a, T/TF and kFa change across a single density profile because

TF and kF depend on the local density. However, this density dependence is small

near the center of the cloud. Simulated density profiles showed that the average

compressibility determined in the way described above agrees to within 0.6 % with

the compressibility at T/TF and kFa at the density in the center of the selected range.

Compressibility decreases for stronger repulsion, but also for higher temperature.

To identify the effect of repulsive interaction requires a careful consideration of fi-

nite temperature effects. First, the temperature of the cloud had to be accurately

determined. This can be done without any special assumptions by fitting the wings

of the cloud using a virial expansion [67], by thermometry with another co-trapped

atom [44], or for population imbalanced clouds by fitting the wings of the majority

component which is an ideal Fermi gas [73]. Here we chose to determine temperature

using a virial expansion,

As
p = + b2e2 + O(e 3 "), (5.3)

kBT

where A= 2 is the thermal de Broglie wavelength, b2 is the virial coefficient, and
mT

e,8' is the fugacity. The virial coefficient for the Fermi gas with repulsive interaction

is b2 = -2-5/2 - a/A [39]. Pressure p was obtained from the doubly-integrated

density profiles [27]. Temperature was determined in the wings of the profile where

p < -0.5. Here, the temperature measured with and without the interaction term

-a/A in b2 differ by about 3%. This suggests that higher-order corrections from

interaction term will be negligible. Note that the virial expansion up to second order

is valid to within 1% for the ideal gas at the density of the fitted wings.
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5.3.3 Interaction Effect

The low temperature normalized isothermal compressibility of a non-interacting Fermi

gas is given by the Sommerfeld expansion [68],

7F2 (T )2+ T
Ro,T = 1T-- - +O[, (5.4)

12 TF TF

where T is temperature and TF is Fermi temperature. To add the effects of interac-

tions, it is useful to work with the inverse normalized compressibility,

1 3 2m n 3p(n, T, a)
K 2 h 2 (672)2/3 9n(

This is a derivative of the chemical potential, which has the following expansion in

temperature and scattering length,

[F r2 { T 2 . 4 4(11 - 2ln 2) 91 .m9 9
In,,a) = PF I - -KFa 2 (F-Fa|- F)~ -

1 12 TF) 37 157r2I

where C is constant, independent of density [50]. Therefore the inverse normalized

compressibility has additive correction terms for temperature and interactions up to

the second order of the interaction effect,

1 _ 1
-- ~ Y(kFa). (5.6)

Ko,T

This equation defines Y(kFa), the interaction correction to the inverse compressibility.

This term is the derivative of the interaction term of the chemical potential. In second

order perturbation theory, one obtains Y(kFa) F 8(11 2ln2) (kFa)2

Fig. 5-3 shows the normalized compressibility, the temperature T/TF, and the

interaction correction to the inverse compressibility. The temperature increases with

kFa due to the increase in three-body recombination where the binding energy of the

molecules (h2/ma 2) is transferred to the remaining atoms. The measured temperature

is higher than that in previous experiments on the repulsive side [31,57]. This differ-
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Figure 5-3: Measured temperature, normalized compressibility, and interaction effect
on compressibility at various interaction strengths. (a) The measured temperature
as a function of interaction strength. (b) Solid circles show the measured normalized
compressibility (R) and open squares show the calculated normalized compressibility
at the measured temperature without interaction (RoT). The difference between the
two indicates the effect of interaction. Open triangles show the calculated normalized
compressibility using the second order perturbation theory, which is consistent with
our measured R. (c) The measured interaction correction to the inverse compressibility
(solid circle) is compared to a linear fit (solid line), and the first (dashed line) and
the second (dotted line) order perturbative result.
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ence can be explained by a smaller kFa since the increase in T/TF is approximately

proportional to 1/kFa [57].

We perform a linear fit of the interaction effect Y(kFa) versus kFa (constrained

to pass through the origin) and obtain 0.680±0.147 for the slope, in agreement with

the perturbative prediction of = 0.637. This is the first observation of the mean-

field term for repulsively interacting fermions in a thermodynamic quantity. The

repulsive interaction has been seen as line shifts in RF spectroscopy experiments

(which, in contrast to many thermodynamic quantities, are measured independently

of the kinetic energy of the atoms) [24, 55]. In principle, it is possible to obtain

the mean-field term directly by fitting the density profiles with an extra mean field

term. In such fits, we obtained clear evidence for such a term, but with low accuracy.

It appears that the averaging over profiles for determining the compressibility(as in

Fig. 5-2) is superior. Figure 5-3 (c) shows the predicted effect of the second-order

term on Y(kFa). With some improvements in signal-to-noise ratio, one should be

able to observe this term which is analogous to the Lee-Huang-Yang correction for

bosons.

5.4 Dispersive Effect in Phase-Contrast Imaging

Phase-contrast imaging has several advantages over resonant absorption imaging.

However, for precision studies of density profiles, small dispersive distortions of the

density profile cannot be neglected. Previous work including Ref. [61] was not sen-

sitive to this effect. We have developed an experimental technique to correct for

dispersion.

Our work features one technical novelty, a novel implementation of phase-contrast

imaging to address dispersive distortions of the cloud. All equation of state studies,

with one exception [61], were conducted using resonant absorption where dispersion

(an index of refraction different from one) is absent. However, this severely limits

the cloud size and number of atoms to optical densities of a few. Phase-contrast

imaging has many advantages. It can be applied to clouds with much larger optical
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densities by adjusting the detuning. Due to coherent forward scattering, the heating

effect per detected signal photon is reduced by potentially a large number (which is

equal to the resonant optical density divided by four [33]). This can e.g. be used for

repeated nondestructive imaging. Thus, the phase-contrast imaging has been applied

to many studies of cold Bose and Fermi gases [3,64,69]. The standard assumption has

been that dispersive imaging is quantitative when the phase shift # across the cloud

is less than 7/4. The normalized phase-contrast signal (for negligible absorption) is

3 - 2x/dcos(# ± 7r/4), which is equal to 1 t 2# for small phase shifts [33]. The sign

depends on laser detuning and the sign of the phase shift imparted by the phase plate.

5.4.1 Phase-Contrast Imaging

All equation of state studies, with one exception [61], were conducted using resonant

absorption where dispersion (an index of refraction different from one) is absent.

However, this severely limits the cloud size and number of atoms to optical densities

of a few. Phase-contrast imaging has many advantages. It can be applied to clouds

with much larger optical densities by adjusting the detuning. Due to coherent forward

scattering, the heating effect per detected signal photon is reduced by potentially a

large number (which is equal to the resonant optical density divided by four [33]).

This can e.g. be used for repeated nondestructive imaging. Thus, the phase-contrast

imaging has been applied to many studies of cold Bose and Fermi gases [3, 64, 69].

The standard assumption has been that dispersive imaging is quantitative when the

phase shift # across the cloud is less than 7/4. The normalized phase-contrast signal

(for negligible absorption) is 3 - 2V 'cos(# ± 7/4), which is equal to 1 ± 2# for small

phase shifts [33]. The sign depends on laser detuning and the sign of the phase shift

imparted by the phase plate.

5.4.2 Compensation for Dispersive Effect

Here, we apply phase-contrast imaging for rather precise quantitative studies of ul-

tracold Fermi gases and found that even for small phase shifts systematic dispersive
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distortions of the image cannot be neglected. Phase-contrast imaging relies on col-

umn density dependent phase shifts. However, if the object is not thin, but extended

along the line of sight, some lensing will affect the images. These distortions should

vary inversely proportional to the probe light detuning and become negligible for far

detuning.

le>
Probe
beam

6< -------------5<012

076 MHz

S>0 __ __ _ _ _ _ <

Figure 5-4: Phase-contrast imaging of a balanced spin mixture in states 1) and |2).
White images (phase shift # >0) were obtained for a probe beam red-detuned from
the 12) - le) transition, corresponding to 6 < 0. Black images (# <0) were obtained
for a probe beam blue-detuned from the 11) - Ie) transition, corresponding to 6 < 0.

We investigated positive and negative detuning of 40, 80, and 120 MHz (see

Fig. 5-4). The normalized phase contrast image had a maximum signal of 0.35/1.85,

0.55/1.6, and 0.7/1.4 for the three positive/negative detuning. The lensing effect is

opposite (focusing vs. defocusing) for positive and negative detuning, and can there-

fore be identified by comparing profiles obtained with positive and negative detuning.

Fig. 5-5 shows that at 40 MHz, the two profiles show a visible difference, but for

profiles at 80 MHz and 120 MHz, the differences are smaller than the noise level.

However, the compressibility is determined by the slope of the profiles and very

sensitive to small distortions even if they are not perceptible in the profiles. Fig. 5-5(c)

shows that even at 120 MHz detuning, the compressibilities obtained from profiles

with the two signs of the detuning differ by about 10 %. Since further detuning would

have resulted in a smaller signal we evaluated the average value of the compressibility

for positive and negative. When the dispersive distortions are small, the effect on

the compressibility should be a first-order effect in the phase shift and cancel for
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Figure 5-5: Comparison of column density profiles obtained from positive and negative
detuning of (a) 40 and (b) 80 MHz, respectively. (c) The measured compressibility (at
kFa = 0) from positive (open triangle) and negative (open square) detuned profiles
and their averages (solid circle) are shown. The average value stays constant above

80 MHz detuning.
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the average. Indeed, the average value stays constant above 80MHz detuning. Our

conclusion is that for reasonable signal levels (i.e. 50 % of the baseline set by the probe

light) dispersive effects are relevant for quantitative studies, but can be eliminated by

performing averages over positive and negative detunings. The best solution would

be using double shutter imaging with the positive and negative detunings. Then, we

can find both positive and negative detuned profiles from a single atomic sample, so

that we can correct the dispersive effect in each profile. However, this is technically

complicated because it requires about 240 MHz imaging frequency change in about

10 ps. We use tandem AOM setup for double shutter imaging, but the frequency

range is about 80 MHz with 80 MHz AOMs.

5.4.3 Imaging Focus Fine Tuning

We could take advantage of the lensing effect for imaging focus fine tuning. Since

positive and negative detuning result in opposite lensing effect, we apply symmetri-

cally positive and negative detuning from the resonance frequency to a single state

sample using double shutter technique. We used two steps to tune the focus. For

coarse tuning, we used the aspect ratio as a parameter. For our elongated cloud,

negative and positive detuning gives different aspect ratio when the image is out of

focus. The aspect ratio is the same when the image is in focus. For fine tuning, we

divided profiles obtained with negative and positive detuning. The divided profile is

flat in focus and has slope or curvature out of focus. Note that the divided profile is

not perfectly flat when the detuning is large because the dispersive effect exists even

at the perfect focus position.

5.5 Discussion

5.5.1 Molecular Fraction in the Density Profile

We address now to what extent a small molecular fraction contributes to the observed

density profiles. The presence of molecules is unavoidable since they form during the
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Figure 5-6: Imaging Focus Fine Tuning. We divided the black and white image of a
single state sample. (a) shows the flat profile at the focus, and (b) shows slope out
of focus.

ramping and equilibration time. At the highest magnetic field used in the experiment,

679 G, the molecular fraction was determined to be - 10 % (Fig. 1). Ref. [4] reported

that molecules at 650G showed an absorption cross section of about half the value of

the atoms for probe light at the atomic resonance. For phase-contrast imaging with

large detuning molecules and atoms should contribute equally to the signal.

We performed simulations to address how the presence of molecules would affect

the compressibility measurements. We considered as possible scenarios (i) that the

molecular fraction is constant throughout the cloud, (ii) that the molecular fraction is

proportional to the loss rate (ns/ 3 ), and (iii) that the molecular fraction is well equi-

librated at the same temperature as atoms. The atomic profile is then the difference

of the measured density profile minus the simulated molecular density distribution.

Scenario (iii) is ruled out since it would result in a rather sharp peak in the density

profile which was not observed. The first two scenarios with a 10 % molecular fraction

resulted in a value for the normalized compressibility which was increased by 3.3 %

and 4.4 % respectively. This shows that for our largest value of kFa the presence

of molecules starts to become a systematic effect. In addition to the contribution

to the density profiles, molecules can affect the atomic density distribution through

atom-molecule interactions.
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5.5.2 Interaction Strength Limitation

Lower density

Our work shows that the interaction effect on the compressibility at the maximum

possible values of kFa is about 15 %. We could identify this effect only by careful

thermometry (to distinguish it from thermal effects) and by correcting small disper-

sive distortions of the cloud. It is desirable to study fermions for stronger repulsive

interactions where stronger and non-perturbative effects are predicted. The maxi-

mum possible kFa value for obtaining equilibrium density profiles is determined by

the loss rate which is proportional to n2a6max(T, TF) = (kFa)6 n 2/3 [18, 52]. There-

fore, the maximum possible kFa for a given loss rate is proportional to n-1/9 and

stronger interaction effects can be seen at lower density. This should be accomplished

by reducing the radial confinement and not the axial confinement which determines

the equilibration time. However, the weak density dependence will allow only modest

increases in kFa. A recent experiment used density ten times smaller than ours [57]

and reported ramping from kF0a = 0 to kF0a = 0.35 in 500 ms losing only 5 % atoms.

Assuming the loss happened during the last 50 ms, we can roughly estimate a loss

rate of - 0.001 ms- 1 at kF0a = 0.3 which is lower than our measurement, consistent

with the lower density.

Narrow Feshbach Resonance

Longer lifetimes for a given kFa should be realized using narrow instead of broad

Feshbach resonances. For narrow Feshbach resonances the low-lying molecular state

has a dominant closed-channel character. Therefore, three body recombination of

atoms (which are in the open channel) has a smaller overlap to the molecular state

and therefore a reduced loss rate. Recent experiments using RF spectroscopy [26,35]

confirm this. However, for such narrow resonances the zero-range approximation is

no longer valid, the interaction is no longer described by the scattering length alone

and becomes (through an effective range parameter) momentum dependent. As a

result, the narrow Feshbach resonances realize a different Hamiltonian.
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5.5.3 Outlook

We have addressed the question to what extent Fermi gases with strong interactions

can be studied by observing equilibrium density profiles. The range of sufficiently long

metastability to reach equilibrium is limited to values of kFa < 0.25. In this range,

interaction effects are comparable to thermal effects, but we were able to observe how

interactions reduce the compressibility and obtained quantitative agreement with the

first-order mean field term. An observation of the second order Lee-Huang-Yang

correction is in experimental reach.

If experiments can be performed at stronger interactions, a natural extension of

our work would be a measurement of the spin susceptibility using population im-

balanced Fermi systems. This was performed recently for fermions with attractive

interactions [45]. Such measurements could address the possible existence of a fer-

romagnetic transition in a repulsive Fermi gas [31] for which the spin susceptibility

would diverge at the phase transition [54].
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Chapter 6

Conclusion

Ultracold Fermi gases with repulsive interaction live on an excited branch of the

states coupled by a Feshbach resonance. This branch is unstable against molecular

formation. Nevertheless, the theoretical predictions of itinerant ferromagnetism in a

two-component Fermi gas with repulsive interaction drew attention to this excited

branch. B1y simlating11 the Stoner mode we) obser vedL t oc iniiiu'i JX3CLUO aiU

two-component Fermi gas near a Feshbach resonance, which agree with signatures of

ferromagnetic transition. These features were not definitive evidences, and we were

not able to observe ferromagnetic domains, the direct evidence of ferromagnetism.

Even though it turned out later that the features were not caused by ferromagnetic

transition, this pioneering experiment attracted attention to the repulsive side of the

Feshbach resonance.

Since the spin susceptibility would diverge at the ferromagnetic phase transition,

quantitative measurement of spin susceptibility could provide a convincing evidence

for the ferromagnetic phase. This lead us to quantitative study of ultracold Fermi

gases with repulsive interaction. First, we started with a non-interacting case. We

could simulate the free electron gas system with ultracold atoms and measured sus-

ceptibility of ideal gas. This measured susceptibility showed excellent agreement with

the calculation. This couldn't be done in condensed matter experiments because even

the simplest materials still include defects or complicated interaction effect.

Then, we introduced weak repulsive interaction to the system. We checked possible

73



window for metastability, which turned out to be kFa < 0.25. Within this window,

we could observe equilibrated clouds and characterize the repulsive interactions by

obtaining the compressibility from observed profiles. We observe the linear term in

kFa corresponding to mean-field energy for the first time in density profiles. The

maximum possible kFa for a given loss rate is proportional to n-1/ 9 and stronger

interaction effects can be seen at lower density. The density dependence may be

too small to reach sufficiently strong interaction, but at least an observation of the

second order Lee-Huang-Yang correction is in experimental reach. If it is possible to

reach sufficiently strong interaction, measuring the spin susceptibility could provide

possible evidence of a ferromagnetic phase transition.

One of the important findings of this thesis work is the dispersive effect in the

phase-contrast imaging. We found that the dispersive effect was inevitable even at

very large detunings for quantitative studies. The averaging method correcting for

the dispersion could be improved by double shutter imaging. This would require fast

switching technique between two probe beam frequencies which are far detuned to

each other.
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Appendix A

Tips for Precise Imaging

I list a few tips for precise imaging which can be easily overlooked.

* Fine tweak the polarization of the imaging beam.

" Block all stray light along the beam/image path.

" Carefully find the center of the phase spot, so that the phase plate does not

create any fringes.

* Tilt all the optics slightly, so that no back reflection creates any fringes.

* Be careful with the imaging beam intensity (see details in the following section).

A.1 Imaging Beam Intensity

For careful imaging of atom clouds, we need to be careful with the intensity of the

probe beam and the total number of photons absorbed by each atom during probing.

The intensity of the light has to be much smaller than the saturation intensity,

ISAT. For resonant probe beam, the saturation intensity is

hol'
'SAT 2u0 '

2so-= , (A.1)
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where o- = A2 . Since F is 2r Fx 6 MHz for lithium, ISAT is about 2.6 mW/cm2 . For

probe beam with detuning 6 (as in phase-contrast imaging), the saturation intensity

is

ISAT hwF (1 + ( 26)2). (A.2)2a- F

This assumes that the polarization of the light matches the transition polarization.

If not, only the useful portion of the polarization should be considered. In addition,

this is valid only for the cycling transition.

We need to consider the total number of photons absorbed by each atom because

the absorption of photons results in atoms' recoil. The recoil velocity can be calculated

from

mvrecoi = -. (A.3)

For lithium, Vrecoil is about 10 cm/s. The mean velocity in one direction is

Vrecoil = N recol (A.4)
3

where N is the number of recoils. If we limit the recoil displacement of atoms to 1

im during 10 pus of probing, 10 photon absorption per atom is allowed. Assuming

random walk, the number of recoil can be determined by

Nrecoii = I ( tprobe, (A.5)
1 + ( 2 1) 2

where I is intensity of the probe beam and tprobe is probing time.
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Appendix B

Exact Breit-Rabi Formula for the

Ground States of 6Li

In order to know the exact rf frequencies for single-photon transitions between ground

states of 6Li, we use the Breit-Rabi formula,

1 AE AE 4 mFX
E(mF)-- 2 1 1 -IuBmF+ 2 21+1 (B.1)

where the + sign is from F = I + 1/2, and the - sign is for F = I - 1/2, AE is the

zero field energy separation, ah (2 ), and x A

For the ground states of 'Li, useful numbers for the calculation are summarized in

Table B.1. Physical constants from Ref. [43] and 6Li magnetic moment from Ref. [29]

are used.

Table B.1: Constants for 6Li Breit-Rabi formula
Quantity Numerical value

91 4.47701 X 10

ge 2.0023193043622

pB 1.399624604 MHz/G

AE 228.20527 MHz
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Appendix C

RF Antenna in BEC3's Main

Chamber

The main chamber of BEC3 was originally designed for RF evaporation. Thus, the

antenna inside the chamber was designed with the resonant frequency being around

30 MHz. In order to optimize the antenna for lithium hyperfine state transitions, we

tried to match the resonant frequency of the antenna to around 80 MHz by impedance

matching. We could shift the resonant frequency using capacitors and inductors with

a toy antenna which has the same dimension as the one in the chamber. However, this

was not successful for the antenna in the vacuum chamber probably due to various

structures and connections in the chamber.

Re-entrant
bucket window

2.5 cm

14 cm
5.1 cm

Feedthrough

Figure C-1: Dimensions of RF antenna in BEC3's main chamber.
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Appendix D

Itinerant Ferromagnetism in a

Fermi Gas of Ultracold Atoms

This appendix contains a reprint of Ref. [31]: Gyu-Boong Jo, Ye-Ryuoung Lee, Jae-

Hoon Choi, Caleb A. Christensen, Tony H. Kim, Joseph H. Thywissen, David E.

Pritchard and Wolfgang Ketterle, ItinerantFerromagnetism in a Fermi Gas of Ultra-

cold Atoms, Science 325 , 1521-1524 (2009).
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ble spectra could easily push this effect to higher
frequencies that are beneficial for a variety of
practical applications (30).
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Itinerant Ferromagnetism in a Fermi
Gas of Ultracold Atoms
Gyu-Boong Jo,1* Ye-Ryoung Lee,' Jae-Hoon Choi,' Caleb A. Christensen,' Tony H. Kim,1

Joseph H. Thywissen,2 David E. Pritchard,1 Wolfgang Ketterle1

Can a gas of spin-up and spin-down fermions become ferromagnetic because of repulsive
interactions? We addressed this question, for which there is not yet a definitive theoretical answer,
in an experiment with an ultracold two-component Fermi gas. The observation of nonmonotonic
behavior of lifetime, kinetic energy, and size for increasing repulsive interactions provides strong
evidence for a phase transition to a ferromagnetic state. Our observations imply that itinerant
ferromagnetism of delocalized fermions is possible without lattice and band structure, and our data
validate the most basic model for ferromagnetism introduced by Stoner.

Magnetism is a macroscopic phenome-
non with its origin deeply rooted in
quantum mechanics. In condensed-

matter physics, there are two paradigms for
magnetism: localized spins interacting via tun-
neling and delocalized spins interacting via an
exchange energy. The latter gives rise to itin-
erant ferromagnetism, which is responsible for
the properties of transition metals such as cobalt,
iron, and nickel. Both kinds of magnetism in-
volve strong correlations and/or strong interac-
tions and are not yet completely understood. For
localized spins, the interplay of magnetism with
d-wave superfluidity and the properties of frus-
trated spin materials are topics of current research.
For itinerant ferromagnetism (1-7), phase tmnsi-
tion theories are still qualitative.

We implemented the Stoner model, a text-
book Hamiltonian for itinerant ferromagnetism
(8), by using a two-component gas of free fer-

'Massachusetts Institute of Technology-Harvard Center
for Ultracold Atoms, Research Laboratory of Electronics,
Department of Physics, Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139, USA. 2Department of Physics,
University of Toronto, Toronto, Ontario M5S1A7, Canada.
*To whom correspondence should be addressed. E-mail:
gyuboong@mit.edu

mions with short-range repulsive interactions,
which can capture the essence of the screened
Coulomb interaction in electron gases (8). How-
ever, there is no proof so far that this simple
model for ferromagnetism is consistent when the
strong interactions are treated beyond mean-field
approaches. It is known that this model fails in
one dimension, where the ground state is singlet
for arbitrary interactions, or for two particles in
any dimension (3). In our work, cold atoms were
used to perform a quantum simulation of this
model Hamiltonian in three dimensions, and we
showed experimentally that this Hamiltonian
leads to a ferromagnetic phase transition (2).
This model was also realized in helium-3 (9), but
the liquid tum into a solid phase and not into a
ferromagnetic phase at high pressure. It has also
been applied to neutrons in neutron stars (10).

To date, magnetism in ultracold gases has
been studied only for spinor (11, 12) and dipolar
(13) Bose-Einstein condensates (BECs). In these
cases, magnetism is driven by weak spin-
dependent interactions, which nevertheless de-
termine the structure of the condensate because
of a bosonic enhancement factor. In contrast,
here we describe the simulation of quantum mag-
netism in a strongly interacting Fermi gas.

An important recent development in cold C
atom science has been the realization of super- 41
fluidity and the BEC-Bardeen-Cooper-Schrieffer
(BCS) crossover in strongly interacting, two-
component Fermi gases near a Feshbach reso-
nance (14). These phenomena occur for attractive
interactions for negative scattering length and for
bound molecules (corresponding to a positive
scattering length for two unpaired atoms). Very
little attention has been given to the region of A
atoms with strongly repulsive interactions. One
reason is that this region is an excited branch,
which is unstable against near-resonant three-
body recombination into weakly bound mole-
cules. Nevertheless, many theoretical papers
have proposed a two-component Fermi gas near
a Feshbach resonance as a model system for itin-
erant ferromagnetism (15-22), assuming that the
decay into molecules can be sufficiently sup-
pressed. Another open question is the possibility
of a fundamental limit for repulsive interactions. L
Such a limit due to unitarity or many-body phys-
ics may be lower than the value required for the
transition to a ferromagnetic state. We show that
this is not the case and that there is a window of
metastability where the onset of ferromagnetism
can be observed.

A simple mean-field model captures many
qualitative features of the expected phase transi-
tion but is not adequate for a quantitative de-
scription of the strongly interacting regime. The
total energy of a two-component Fermi gas of
average density n (per spin cpmponent) in a
volume V is given by EF2 Vn V- [(1 + n5/3
(1 - )/] kFa(I + 1)(1 - 11)}, where EF
is the Fenrni energy of a gas, kF is the Fermi wave
vector of a gas, a is the scattering length charac-
terizing short-range interactions between the two
components, and ii = An/n = (ni - n2)/(ni + n 2)
is the magnetization of the Fermi gas. The local
magnetization of the Fermi gas is nonzero when
the gas separates into two volumes, where the
densities ni and n2 of the two spin states differ
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by 2An. We studied an ensemble in which the
number of atoms in each spin state is conserved.
This is equivalent to a free electron gas at zero
external magnetic field where the total magne-
tization is zero. The interaction term represents
any short-range spin-independent potential. When
the gas is fully polarized, it avoids the repulsive
interaction but increases its kinetic energy by a
factor of 22/3. The phase transition occurs when
the minimum in energy is at nonzero magneti-
zation (Fig. IA) at kFa = 7r/2. This onset was
previously discussed in the context of phase sep-
aration in a two-component Fermi gas (15-18).
Figure lB shows several consequences of the
phase transition for a system at constant pres-
sure. First, for increasing repulsive interactions,
the gas expands, lowering its density and Fermi
energy; kinetic energy is therefore reduced.
When the gas enters the ferromagnetic phase,
kinetic energy increases rapidly because of the
larger local density per spin state. Furthermore,
the volume has a maximum value at the phase
transition. This can be understood by noting that
pressure in our model is (2/3)Eki/V + Eft/f,'
where Ek, is kinetic energy and Eit is interaction
energy. At the phase transition, the system in-
creases its kinetic energy and reduces its inter-
action energy, thus reducing the pressure. This
maximum in pressure at constant volume turns
into a maximum in volume for a system held at
constant pressure or in a trapping potential. We
have observed three predictions of this model: (i)
the onset of local magnetization through the
suppression of inelastic collisions, (ii) the mini-
mum in kinetic energy, and (iii) the maximum in
the size of the cloud. These qualitative features
are generic for the ferromagnetic phase transition
and should also be present in more-advanced
models (19).

We start with an atom cloud consisting of an
equal mixture of 6Li atoms in the lowest two
hyperfine states, held at 590 G in an optical
dipole trap with additional magnetic confine-
ment (23). The number of atoms per spin state is
approximately 6.5 x 105, which corresponds to
a Fermi temperature TF of -1.4 pK. The ef-
fective temperature T could be varied between
T/TF = 0.1 and TITF = 0.6 and was determined
immediately after the field ramp by fitting the
spatial distribution of the cloud with a finite
temperature Thomas-Fermi profile. We define
k' as the Fermi wave vector of the noninteract-
ing gas calculated at the trap center. Applying
the procedure discussed in (24) to repulsive in-
teractions, we estimate that the real temperature
is approximately 20% larger than the effective
one. The effective temperature did not depend
on k' a for k a < 6. At higher temperatures,
additional shot-to-shot noise was caused by
large fluctuations in the atom number. From
the starting point at 590 G, the magnetic field
was increased toward the Feshbach resonance at
834 G, thus providing adjustable repulsive inter-
actions. Because of the limited lifetime of the
strongly interacting gas, it was necessary to ap-

ply the fastest possible field ramp, limited to
4.5 ms by eddy currents. The ramp time is ap-
proximately equal to the inverse of the axial trap
frequency (23) and therefore only marginally
adiabatic. Depending on the magnetic field dur-
ing observation, either atoms or atoms and
molecules were detected by absorption imaging
as described in fig. Sl (25).

The emergence of local spin polarization can
be observed by the suppression of (either elastic
or inelastic) collisions, because the Pauli exclu-
sion principle forbids collisions in a fully po-
larized cloud. We monitored inelastic three-body
collisions, which convert atoms into molecules.
The rate (per atom) is proportional tof(a,T)nin2
or f(a,T) n2

(l - 11
2) and is therefore a measure

of the magnetization 9. For kFa << 1, the rate
coefficient f(a,T) is proportional to a6 max(TF)
(26). This rate can be observed by monitoring
the initial drop in the number of atoms during
the first 2 ms after the field ramp. We avoided
longer observation times, because the increasing
molecule fraction could modify the properties of
the sample.

A sharp peak appears in the atom loss rate
around kFa ~ 2.5 at TITF = 0.12 (Fig. 2), in-
dicating a transition in the sample to a state with
local magnetization. The gradual decrease is con-
sistent with the inhomogeneous density of the
cloud, where the transition occurs first in the
center. The large suppression of the loss rate
indicates a large local magnetization of the cloud.

The kinetic energy of the cloud was deter-
mined by suddenly switching off the optical trap
and the Feshbach fields immediately after the
field ramp and then imaging state 1l) atoms at
zero field using the cycling transition after a
ballistic expansion time of At = 4.6 ms. The ki-
netic energy was obtained from the Gaussian
radial width ax as Ek = [(3maq2)/(2At 2)] where
m is the mass of the 6Li atom. A minimum of
the kinetic energy at kga ~ 2.2 for the coldest
temperature T/TF = 0.12 nearly coincided with
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the onset of local polarization (Fig. 3). The peak in
the atom loss rate occurs slightly later than the
minimum of kinetic energy, probably because
fla,T) increases with a (22). Because the temper-
ature did not change around kga ~ 2.2, the in-
crease in kinetic energy is not caused by heating
but by a sudden change in the properties of the
gas, which is consistent with the onset of ferro-
magnetism. The observed increase in kinetic ener-
gy is approximately 20% at T/TF = 0.12, smaller
than the value (22/3 _ 1) = 0.59 predicted for a
fully polarized gas. This discrepancy could be
due to the absence of polarization or partial po-
larization in the wings of the cloud. Also, it is
possible that the measured kinetic energy of the
strongly interacting gas before the phase transition
includes some interaction energy if the Feshbach
fields are not suddenly switched off. For the cur-
rent switch-off time of -100 ps, this should be
only a 5% effect, but the magnetic field decay
may be slower because of eddy currents.

Finally, Fig. 4 shows our observation of a
maximum cloud size at the phase transition, in
agreement with the prediction of the model. The
cloud size may not have fully equilibrated, because
our ramp time was only marginally adiabatic, but
this alone cannot explain the observed maximum.

The suppression of the atom loss rate, the
minimum in kinetic energy, and the maximum
in cloud size show a strong temperature depen-
dence between T/TF = 0.12 and 0.22. The prop-
erties of a normal Fermi gas approaching the
unitarity limit with k' a >> 1 should be insensitive
to temperature variations in this range; therefore,
the observed temperature dependence provides
further evidence for a transition to a new phase.

At higher temperature (e.g., T/TF = 0.39 as
shown in Fig. 3), the observed nonmonotonic
behavior becomes less pronounced and shifts to
larger values of kga for 3 < k a < 6. For all three
observed properties (Figs. 2 to 4), a nonmonotonic
behavior is no longer observed at T/TF= 0.55(27).
One interpretation is that at this temperature and

Fig. 1. Ferromagnetic phase tran-
sition at T = 0, according to the
mean-field model described in the
text. The onset of itinerant ferro-
magnetism occurs when the energy
as a function of magnetization flips
from a U shape to a W shape (A).
(B) Enthalpy, volume, and kinetic
energy, normalized to their values
for the ideal Fermi gas, and mag-
netization as a function of the inter-
action parameter kFo. kF is defined
by the density of the gas. The dotted
line marks the phase transition.
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above, there is no longer a phase transition. In
mean-field approximation, a ferromagnetic phas,
would appear at all temperatures but for increasinj
values of kja. Our observations may imply tha
the interaction energy saturates around kFa ~ 5.

Fig. 2. Atom loss rate as a probe
for local spin polarization, for
different temperatures. TTF = 0.55
(triangles, dashed curve), TTF = 200 -
0.22 (open circles, dotted curve),
and T/TF = 0.12 (solid circles, solid 150 -
black curve). The curves are guides a
to the eye, based on the assump- 100 -
tion of a loss rate that saturates for 'o

increasing a in the normal state. The so
shaded area around the phase 5
transition at TITF = 0.12 highlights 0 -
the same region as in Figs. 3 and 4.

Fig. 3. Kinetic energy of
a repulsively interacting 600 75,
Fermi gas determined for | |
different interaction pa- 0.60-
rameters kFa and tem-
peratures. The measured 0.55-
kinetic energy is normal-
ized by the Fermi energy . 4
Ei of the noninteracting
Fermi gas at T = 0, cal-
culated at the trap center 0.45

with the same number of
atoms per spin state. Each
data point represents the 0.ss-
average of three or four
measurements.
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We were unsuccessful in imaging ferromag-
netic domains using differential in situ phase-
contrast imaging (28). A signal-to-noise level of
~ 10 suggests that there were at least 100 do-
mains in a volume given by our spatial resolution
of -3 pm and by the radial size of the cloud. This
implies that the maximum volume of the spin do-
mains is -5 pm3, containing -50 spin-polarized
atoms. We suspect that the short lifetime prevented
the domains from growing to a larger size and
eventually adopting the equilibrium texture of the
ground state, which has been predicted to have
the spins pointing radially outward, like a hedgehog
(20,22). All our measurements are sensitive only
to local spin polarization and are independent of
domain structure and texture.

The only difference between our experiment
and the ideal Stoner model is a molecular ad-
mixture of 25% (Fig. 4). The molecular fraction
was constant for k a > 1.8 for all temperatures and
therefore cannot be responsible for the sudden
change of behavior of the gas at kja ~ 2.2 at the
coldest temperature TITF = 0.12. This prediction
was confirmed by repeating the kinetic energy
measurements with a molecular admixture of 60%.
The minimum in the kinetic energy occurred at the
same value of kja within experimental accuracy.

For a comparison of the observed phase tran-
sition at kja ~ 2.2 to the theoretical predictions, the
ideal gas kg has to be replaced by the value for the
interacting gas, which is smaller by -15% because
of the expansion of the cloud (Fig. 4), resulting in a
critical value for kFa 1.9± 0.2. At T/TF=0.12, the
finite temperature conection in the critical value for
kma is predicted to be less than 5% (19). The
observed value for kFa is larger than both the mean-
field prediction of ir/2 and the second-order pre-
diction of 1.054 at zero temperature (19). Depend-
ing on the theoretical approach, the phase transition
has been predicted to be first or second order This
could not been discemed in our experiment because
of the inhomogeneous density of the cloud.

It has been speculated (19) that earlier experi-
ments on the measurement of the interaction ener-
gy (29) and radio frequency spectroscopy of Fermi
gases (30) showed evidence for the transition to a
ferromagnetic state at or below kFa= 1. This inter-
pretation seems to be ruled out by our experiment

Our work demonstrates a remarkable asym-
metry between positive and negative scattering
length. Early work (15) predicted that for kFIaI =
x/2, both an attractive and a repulsive Fermi gas
become mechanically unstable (against collapse
and phase separation, respectively). In an attract-
ive Fermi gas, however, the mechanical in-
stability does not occur [due to pairing (31)], in
contrast to our observations in a repulsive Fermi
gas. This suggests that the maximum total re-
pulsive energy [in units of 3/5(2Vn)EF] is larger
than the maximum attractive energy 11 of 0.59
(32) that is realized for infinite a (23).

The interpretation of our results in terms of
a phase transition to itinerant ferromagnetism
is based on the agreement with the prediction
of simplified models [Fig. 1, (15-22)]. Future
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work should address how the observed signa-
tures are modified by strong interactions and
correlations. Additional insight can be obtained
by varying the magnetic field ramp time over a
wide range and studying the relaxation toward
an equilibrium state (33).

Heisenberg and Bloch's explanation for fer-
romagnetism was based on exchange energy;
that is, the Pauli principle and spin-independent
repulsive interactions between the electrons.
However, it was unknown what other "ingre-
dients" were needed for itinerant ferromagnetism.
It was not until 1995 (6, 7) that a rigorous proof
was given that, in certain lattices, spin-independent
Coulomb interactions can give rise to ferromag-
netism in itinerant electron systems. Our finding
suggests that Heisenberg's idea does not require a
lattice and band structure but already applies to a
free gas with short-range interactions. Our exper-
iment can be regarded as quantum simulation of a
Hamiltonian for which even the existence of a
phase transition was unproven. This underlines the
potential of cold atom experiments as quantum
simulators for many-body physics.
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Fermi gases with repulsive interactions are characterized by measuring their compressibility as a function of in-
teraction strength. The compressibility is obtained from in-trap density distributions monitored by phase-contrast
imaging. For interaction parameters kFa > 0.25, fast decay of the gas prevents the observation of equilibrium
profiles. For smaller interaction parameters, the results are adequately described by first-order perturbation theory.
We have developed a phase-contrast imaging method that compensates for dispersive distortions of the images.

DOI: 10.1103/PhysRevA.85.063615

I. INTRODUCTION

Experiments with ultracold atoms explore many-body
physics with strong interactions. They have demonstrated
long-predicted phenomena like the BEC-BCS crossover [1]
and Lee-Huang-Yang corrections to the energy of degenerate
gases [2-4]. Experiments have also explored novel quantum
phases like fermions with unitarity-limited interactions [1,5],
population-imbalanced Fermi gases [6,7], and Hubbard mod-
els in optical lattices [8,9]. More recently, they have been used
to provide precision tests of many-body theories [5]. Usually,
interactions in ultracold gases are fully described by the
scattering length, which is a zero-range approximation greatly
simplifying the theoretical description. This approximation is
valid since the diluteness of the atomic gases implies a particle
separation much larger than the short range of the van der
Waals interactions. This almost exact characterization of the
interactions by a single parameter, the tunability of interaction
strength, and precise experimental control over cold-atom
systems have made them an ideal test bed for many-body
quantum calculations.

A new level of quantitative comparison between theory and
experiment was recently reached by careful measurements of
density profiles from which the equation of state could be
determined. These techniques were first proposed by Chevy
[10] and Bulgac and Forbes [11] and implemented by Shin
[12]. Further improvements [4,5,13-16] resulted in impressive
accuracy without adjustable parameters. These results hinge
on accurate measurements of the equilibrium atomic density
distribution. Since all cold-atom systems are in a metastable
phase, this requires a favorable ratio of lifetime to equilibration
time.

Long lifetimes and strong interactions were realized in
Fermi gases with strong attractive interactions since the
decay to lower-lying molecular states is suppressed by the
Pauli exclusion principle [17]. This is different for repulsive
interactions which are realized on the so-called upper branch
of a Feshbach resonance, where decay is always possible into
the so-called lower branch, which consists of weakly bound
molecular states with binding energy h2 /ma 2 where a is the
scattering length.

For bosons, the first beyond-mean-field correction, the
so-called Lee-Huang-Yang term, could be observed, but
corrections were necessary to account for the nonequilibrium

PACS number(s): 03.75.Ss, 67.85.Lm, 05.30.Fk

profile, since the time to sweep to strong interactions was not
long compared to equilibration times and inverse loss rates [3].
Here we study fermions with repulsive interactions. They have
been the focus of much recent work due to the prediction
of a phase transition to a ferromagnetic state for sufficiently
strong interactions [18,19]. Recent experimental [20,21] and
theoretical studies [22] addressed the competition with strong
decay to the lower molecular branch.

As expected we find only a limited window for metastability
where we can observe equilibrated clouds and characterize
the repulsive interactions by obtaining the compressibility
from observed profiles. We observe the linear term in kFa
corresponding to mean-field energy in density profiles. kF
is the Fermi wave vector. In contrast to a Bose-Einstein
condensate, here the mean-field energy is smaller than the
kinetic energy and also competes with the thermal energy, and
is therefore much more difficult to observe. The signal-to-noise
ratio (and some heating) prevented us from discerning the
second-order interaction term which is the Lee-Huang-Yang
correction for fermions.

Our work employs phase-contrast imaging using two
different laser detunings to identify and correct for dispersive
distortions of the cloud. All studies mentioned above, with
one exception [12], were conducted using resonant absorption
where dispersion (an index of refraction different from 1)
is absent. However, this severely limits the cloud size and
number of atoms to small optical densities. Phase-contrast
imaging has many advantages. It can be applied to clouds
with much larger optical densities by adjusting the detuning.
Due to coherent forward scattering, the heating effect per
detected signal photon is reduced by potentially a large number
(which is equal to the resonant optical density divided by
4 [23]). This can, e.g., be used for repeated nondestructive
imaging. However, for precision studies of density profiles,
small dispersive distortions of the density profile cannot be
neglected. Previous work including Ref. [12] was not sensitive
to this effect. We have developed an experimental technique
to correct for dispersion.

II. EXPERIMENTAL SETUP

A spin-polarized Fermi gas of 6Li in the
IF = 3/ 2 ;mF = 3/2) state is produced by sympathetic
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cooling with bosonic 23Na atoms in a magnetic trap as
described in [24]. The 6Li atoms are then loaded into a
single-beam optical dipole trap and transferred into the lowest
hyperfine state IF = 1/2; mF = 1/2) by a Landau-Zener
radio-frequency (rf) sweep. Additional axial confinement is
provided by magnetic field curvature. An equal mixture of 11)
and 12) spin states (corresponding to the IF = 1/ 2 ;MF = 1/2)
and IF = 1/ 2 ;mF = -1/2) states at low magnetic field) is
prepared by a rf sweep at 300 G, followed by 500 ms wait
time for decoherence and evaporative cooling in the optical
trap. The Feshbach resonance at 834 G [1] is used to tune the
repulsive interactions between |1) and 12). We increase the
magnetic field in 200 ms to 528 G, where the scattering length
is zero and our Fermi gas is noninteracting. The final trap has
a depth of 4.1 y.tK and frequencies of o, = cy = 390 Hz and
oz = 34.7 Hz. The number of atoms per spin state is 8 x 105 ,
which corresponds to a Fermi temperature TF of 1.4 pIK. The
temperature of the atoms is 0.3 TF at this point. For loss rate
measurements, the magnetic field is quickly ramped to the
target field. For compressibility measurements, the field is
ramped up over 50 ms and held for 30 ms to ensure thermal
equilibrium before imaging. The molecular fraction in the
density profile is determined by dissociating molecules with a
magnetic field jump to 20 G above the Feshbach resonance,
and comparing with the atom number after jumping to 528 G
where the cross section for imaging molecules vanishes (see
Ref. [25]).

III. LOSS RATE

To obtain thermodynamic parameters from atomic density
profiles requires equilibration. One time scale for equilibration
is set by the longest trap period, which is 30 ms for the
axial direction. The authors of Ref. [3] studied the distortions
of profiles of bosonic 7Li due to nonadiabatic ramping of
the scattering length. The authors found that ramping times
longer than ~67r/w (which is 90 ms for our parameters) led
to only small deviations from equilibrium profiles. Here, co is
the smallest of the trapping frequencies, which sets the time
scale for equilibration. Assuming that losses sharply increase
during the last 5 ms of the ramp towards stronger interactions
and limiting tolerable losses to 10% leads to an estimate of
a maximum tolerable loss rate of about 0.02/ms. The fastest
relaxation time for excitations created during a nonadiabatic
ramp is 1/w (the damping time for a harmonic oscillator at
critical damping). Allowing ~10% loss during this time leads
to an identical estimate for the tolerable loss rate of -0.02/ms.

We measured loss rate as a function of interaction strength
kO a. Note that ko is the Fermi wave vector of the zero-
temperature noninteracting gas calculated at the trap center
using total atom number. The real kF is somewhat smaller
because repulsive interactions and nonzero temperature lower
the density.

First, in Fig. 1(a) we measured the number of atoms right
before and after the fastest possible ramp (limited to 7 ms by
eddy currents) to the target magnetic field. During the ramp to
the target magnetic field of ko a ~ 0.8, -35% of the sample is
lost. Measuring the loss rate at higher kO a is difficult because
most of the sample is lost even before reaching the target
fields. The loss rate was determined by monitoring the drop
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FIG. 1. Characterizing atomic loss for increasing repulsive inter-

actions. (a) Remaining fraction of atom number immediately after

the fastest possible ramp to the target field. (b) Atom loss rates at

the target fields. Dashed line shows the estimated maximum tolerable

loss rate of 0.02/ms. (c) Molecular fraction after the 50 ms ramp

and 30 ms wait time, corresponding to when we measure equilibrium

atomic density profiles.

in the number of atoms immediately after the field ramp. The
results in Fig. 1(b) show that the measured loss rate reaches
the maximum tolerable value of 0.02/ms at ko a ~ 0.35,
limiting our measurements of equilibrium density profiles to
smaller values of k a. Furthermore, at the same values of
k4a, the molecular fraction when we measure equilibrium
density profiles exceeded 10% [see Fig. 1(c)]. As we discuss
in Sec. IV the presence of a molecular component affects the
compressibility measurement.

IV. COMPRESSIBILITY MEASUREMENT

A system is characterized by its equation of state. The
equation of state can be expressed in different forms involving
various thermodynamic variables including density, energy,

063615-2
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pressure, temperature, and entropy. For cold-atom experi-
ments, density, chemical potential (through the trapping poten-
tial), and temperature are directly accessible to measurement.
In the weakly interacting regime, the interaction manifests
itself as a perturbative term in the equation of state. Here we
measure this perturbative interaction effect by measuring the
derivative of density with chemical potential, the isothermal
compressibility of the gas. We prepare the system at the lowest
temperature, but due to heating of the cloud by molecule
formation, we have to apply a correction for the measured
finite temperature.

Using the experimental procedure discussed above, we
prepared equilibrated clouds at various magnetic fields and
measured line-of-sight integrated profiles of column density
using in situ phase-contrast imaging [26]. The signal-to-noise
ratio was improved by averaging the column density along
equipotential lines (which are ellipses for the anisotropic
harmonic oscillator potential). The averaging region was
restricted to an axial sector of ±60' to avoid corrections due
to transverse anharmonicities [27]. Three-dimensional density
profiles n(r) were reconstructed by applying the inverse Abel
transformation to the column densities i(r) [26].

The isothermal compressibility is obtained from a spatial
derivative of n(r), since in the local density approximation,
the local chemical potential is ,t = Io - mo2 x 2 /2, where so
is the global chemical potential and a> the trap frequency. The
compressibility is defined as.

1 an
K = --. (1)

n2 apt
We normalize the compressibility K by the compressibility of
an ideal gas at the given density and zero temperature Ko =
n 

1
/
3  

3m2'
h2( and obtain the normalized compressibility

K h2 (6r 2 )2 /3 an 2/3
2~ca . (2)

Ko 2m apl.
Here n is density, and m is the atomic mass. The normalized
compressibility is obtained as the slope in a plot of n2/ 3 vs /y
(Fig. 2). This plot is in essence the observed density profile
plotted with the central region to the left and the spatial wings
to the right. Experimentally, we find the slope to be constant
over an extended range of the density profile. Compressibilities
were determined from fits to the slope in the region of 90%
to 50% of the peak density. The region near the center of
the cloud was excluded since the center is singular for the
inverse Abel transformation, leading to excessive noise. These
compressibilities should be regarded as average values over
the density range used in the fit. The uncertainty of fitting the
slope to a single profile was 4.5%. By averaging the profiles
obtained from 20 images, the uncertainty was improved to
1.3%.

The normalized compressibility is a function of T/ TF and
kFa. At finite temperature and scattering length a, T/ TF and
kFa change across a single density profile because TF and kF
depend on the local density. However, this density dependence
is small near the center of the cloud. Simulated density profiles
showed that the average compressibility determined in the way
described above agrees to within 0.6% with the compressibility

(a)

0.5 -

(b) i C: 0.0-eq
os
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0.6,
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FIG. 2. Determination of the compressibility of repulsively in-
teracting Fermi gases. The compressibility is the slope of a graph
showing the density to the power 2/3 versus the square of the distance
from the center. (a) Single-shot density profile. (b) Closeup of the
region used for determining the compressibility for a plot showing
the average of 20 density profiles.

at T/ TF and kFa at the density in the center of the selected
range.

Compressibility decreases for stronger repulsion, but also
for higher temperature. To identify the effect of repulsive in-
teraction requires a careful consideration of finite temperature
effects. First, the temperature of the cloud had to be accurately
determined. This can be done without any special assumptions
by fitting the wings of the cloud using a virial expansion [28],
by thermometry with another cotrapped atom [14], or for
population imbalanced clouds by fitting the wings of the
majority component which is an ideal Fermi gas [29]. Here
we chose to determine temperature using a virial expansion,

-= e' + b 2 e2put + O(e3pyt),
kBT (3)

where X = 27rh2 is the thermal de Broglie wavelength, b 2

is the virial coefficient, and e#l is the fugacity. The virial
coefficient for the Fermi gas with repulsive interaction is b 2 =
-2-5/2 - a/X [30]. The pressure p was obtained from the
doubly integrated density profiles [13]. The temperature was
determined in the wings of the profile where #st < -0.5. Here,
the temperature measured with and without the interaction
term -a/X in b 2 differ by about 3%. This suggests that higher-
order corrections from the interaction term will be negligible.
Note that the virial expansion up to second order is valid to
within 1% for the ideal gas at the density of the fitted wings.

The low-temperature normalized isothermal compressibil-
ity of a noninteracting Fermi gas is given by the Sommerfeld

063615-3
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expansion [31]

2 
2  [( 4T

FOT = 1 -- - O -(4)
12 TF TF/'

where T is the temperature and TF is the Fermi temperature.
To add the effects of interactions, it is useful to work with the
inverse normalized compressibility

1 _ 3 2m n1/3 a(n, T, a) (5)
- 2 h2

(6r2)2/3 an

This is a derivative of the chemical potential, which has the
following expansion in temperature and scattering length:

7T2 ( T 2 4
g(n,T,a) = EF I - - - + -kFa

L 12 TF ) 37r

+ 4(11 -21n 2) (kFa)2 ± 2 a 2,
157r2 I

(6)

where C is a constant, independent of density [32]. Therefore
the inverse normalized compressibility has additive correction
terms for temperature and interactions up to the second order
of the interaction effect,

1 1
- =- + Y(kFa). (7)
K KOT

This equation defines Y(kFa), the interaction correction to
the inverse compressibility. This term is the aerivative of
the interaction term of the chemical potential. In second-
order perturbation theory, one obtains Y(kFa) = -kFa +
8(11-21n2) (kFa)2 .

Figure 3 shows the normalized compressibility, the tem-
perature T/ TF, and the interaction correction to the inverse
compressibility. The temperature increases with kFa due to
the increase in three-body recombination where the binding
energy of the molecules (h2 /ma 2 ) is transferred to the
remaining atoms. The measured temperature is higher than
that in previous experiments on the repulsive side [20,21].
This difference can be explained by a smaller kFa since the
increase in T/ TF is approximately proportional to 1/kFa [2 ].

We perform a linear fit of the interaction effect Y(kFa)
versus kFa (constrained to pass through the origin) and
obtain 0.680 ± 0.147 for the slope, in agreement with the
perturbative prediction of - = 0.637. Thus we have observed
the mean-field term for repulsively interacting fermions in a
thermodynamic quantity. The repulsive interaction has been
seen as line shifts in rf spectroscopy experiments (which,
in contrast to many thermodynamic quantities, are measured
independently of the kinetic energy of the atoms) [33,34]. In
principle, it is possible to obtain the mean-field term directly
by fitting the density profiles with an extra mean-field term.
In such fits, we obtained clear evidence for such a term, but
with low accuracy. It appears that the averaging over profiles
for determining the compressibility (as in Fig. 2) is superior.
Figure 3(c) shows the predicted effect of the second-order term
on Y(kFa). With some improvements in signal-to-noise ratio,
one should be able to observe this term, which is analogous to
the Lee-Huang-Yang correction for bosons.
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FIG. 3. Measured temperature, normalized compressibility, and
interaction effect on compressibility at various interaction strengths.
(a) The measured temperature as a function of interaction strength.
(b) Solid circles show the measured normalized compressibility (k)
and open squares show the calculated normalized compressibility at
the measured temperature without interaction (0T). The difference
between the two indicates the effect of interaction. Open triangles
show the calculated normalized compressibility using the second-
order perturbation theory, which is consistent with our measured k.
(c) The measured interaction correction to the inverse compressibility
(solid circle) is compared to a linear fit (solid line), and the first-
(dashed line) and the second- (dotted line) order perturbative results.

V. DISPERSIVE EFFECT IN PHASE-CONTRAST IMAGING

As mentioned in the Introduction, phase-contrast imaging
has several advantages over resonant absorption imaging,
and it has been applied to many studies of cold Bose and
Fermi gases [26,35,36]. Absorption imaging is usually done
with absorptively dilute clouds, typically with 10% to 70%
absorption (or optical densitites below 1). The standard
assumption has been that dispersive imaging is quantitative
when the phase shift 4 across the cloud is less than -r/4. The
normalized phase-contrast signal (for negligible absorption)
is 3 - 2V/Zcos(# ± 7r/4), which is equal to 1 i 2# for small
phase shifts [23]. The sign depends on the laser detuning and
the sign of the phase shift imparted by the phase plate.

Here, we applied phase-contrast imaging for rather precise
quantitative studies of ultracold Fermi gases and found that
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FIG. 4. Phase-contrast imaging of a balanced spin mixture in
states 11) and 12). White images (phase shift # >0) were obtained for a
probe beam red detuned from the 12) -- |e) transition, corresponding
to 8 < 0. Black images (# <0) were obtained for a probe beam blue
detuned from the |1) -> |e) transition, corresponding to 8 < 0.

even for small phase shifts systematic dispersive distortions of
the image cannot be neglected. Phase-contrast imaging relies
on column-density-dependent phase shifts. However, if the
object is not thin, but extended along the line of sight, some
lensing will affect the images. These distortions should vary
in inverse proportion to the probe light detuning and become
negligible for far detuning.

We investigated positive and negative detunings (8) of 40,
80, and 120 MHz (see Fig. 4). The normalized phase-contrast
image had a maximum signal of 0.35 (1.85), 0.55 (1.6),
and 0.7 (1.4) for the three positive (negative) detunings.
The lensing effect is opposite (focusing vs defocusing) for
positive and negative detuning, and can therefore be identified
by comparing profiles obtained with positive and negative
detunings. Figure 5 shows that at 40 MHz, the two profiles
have a visible difference, but for profiles at 80 and 120 MHz,
the differences are smaller than the noise level.

However, the compressibility is determined by the slope
of the profiles and very sensitive to small distortions even if
they are not perceptible in the profiles. Figure 5(c) shows that,
even at 120 MHz detuning, the compressibilities obtained from
profiles with the two signs of the detuning differ by about 10%.
Since further detuning would have resulted in a smaller signal,
we evaluated the average value of the compressibility for posi-
tive and negative detuning. When the dispersive distortions are
small, the effect on the compressibility should be a first-order
effect in the phase shift and cancel for the average. Indeed,
the average value stays constant above 80 MHz detuning. Our
conclusion is that for reasonable signal levels (i.e., 50% of the
baseline set by the probe light) dispersive effects are relevant
for quantitative studies, but can be eliminated by performing
averages over positive and negative detunings.

VI. DISCUSSION

We address now to what extent a small molecular fraction
contributes to the observed density profiles. The presence of
molecules is unavoidable since they form during the ramping
and equilibration time. At the highest magnetic field used in
the experiment, 679 G, the molecular fraction was determined
to be -10% (Fig. 1). The authors of Ref. [37] reported that
molecules at 650 G showed an absorption cross section of
about half the value of that of the atoms for probe light at
the atomic resonance. For phase-contrast imaging with large
detuning, molecules and atoms should contribute equally to
the signal.
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FIG. 5. Comparison of column density profiles obtained from
positive and negative detunings of (a) 40 and (b) 80 MHz, respectively.
(c) The measured compressibility (at kFa = 0) from positive- (open
triangle) and negative- (open square) detuned profiles and their
averages (solid circle) are shown. The average value stays constant
above 80 MHz detuning.

We performed simulations to address how the presence
of molecules would affect the compressibility measurements.
We considered as possible scenarios (i) that the molecular
fraction is constant throughout the cloud, (ii) that the molecular
fraction is proportional to the loss rate (ns/3 ), and (iii) that the
molecular fraction is well equilibrated at the same temperature
as atoms. The atomic profile is then the difference of the
measured density profile and the simulated molecular density
distribution. Scenario (iii) is ruled out since it would result
in a rather sharp peak in the density profile, which was
not observed. The first two scenarios with a 10% molecular
fraction resulted in a value for the normalized compressibility
which was increased by 3.3% and 4.4%, respectively. This
shows that for our largest value of kFa the presence of
molecules starts to become a systematic effect. In addition
to the contribution to the density profiles, molecules can
affect the atomic density distribution through atom-molecule
interactions.
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Our work shows that the interaction effect on the compress-
ibility at the maximum possible values of kFa is about 15%.
We could identify this effect only by careful thermometry (to
distinguish it from thermal effects) and by correcting small
dispersive distortions of the cloud. It is desirable to study
fermions for stronger repulsive interactions where stronger
and nonperturbative effects are predicted. The maximum
possible kFa value for obtaining equilibrium density profiles
is determined by the loss rate, which is proportional to
n2a 6max(T, TF) = (kFa)6n 2/13 [38,39]. Therefore, the maxi-
mum possible kFa for a given loss rate is proportional to
n-1/ 9 and stronger interaction effects can be seen at lower
density. This should be accomplished by reducing the radial
confinement and not the axial confinement which determines
the equilibration time. However, the weak density dependence
will allow only modest increases in kFa. A recent experiment
used a density ten times smaller than ours [21] and reported
ramping from ko a = 0 to koa = 0.35 in 500 ms, losing only
5% of the atoms. Assuming the loss happened during the last
50 ms, we can roughly estimate a loss rate of -0.001 ms-- at
ko a = 0.3, which is lower than our measurement, consistent
with the lower density.

Longer lifetimes for a given kFa should be realized using
narrow instead of broad Feshbach resonances. For narrow
Feshbach resonances the low-lying molecular state has a
dominant closed-channel character. Therefore, three-body
recombination of atoms (which are in the open channel)
has a smaller overlap to the molecular state and therefore a
reduced loss rate. Recent experiments using rf spectroscopy
[40,41] confirm this. However, for such narrow resonances the
zero-range approximation is no longer valid; the interaction is
no longer described by the scattering length alone and becomes

(through an effective range parameter) momentum dependent.
As a result, the narrow Feshbach resonances realize a different
Hamiltonian.

In conclusion, in this paper we have addressed the question
to what extent Fermi gases with strong interactions can be
studied by observing equilibrium density profiles. The range
of sufficiently long metastability to reach equilibrium is limited
to values of kFa < 0.25. In this range, interaction effects are
comparable to thermal effects, but we were able to observe
how interactions reduce the compressibility and obtained
quantitative agreement with the first-order mean-field term. An
observation of the second-order Lee-Huang-Yang correction
is within experimental reach.

If experiments can be performed at stronger interactions,
a natural extension of our work would be a measurement
of the spin susceptibility using population-imbalanced Fermi
systems. This was performed recently for fermions with
attractive interactions [15]. Such measurements could address
the possible existence of a ferromagnetic transition in a
repulsive Fermi gas [20] for which the spin susceptibility
would diverge at the phase transition [42].
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