
Product Management in Software as a Service

by

Karthikeyan Rajasekharan

B.A.Sc. (Honors) in Computer Engineering
Nanyang Technological University, Singapore, 1997

Submitted to the System Design and Management Program
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

at the

Massachusetts Institute of Technology

r Feb 2012

© 2012 Karthikeyan Rajasekharan
All rights reserved

>Rct-uV
U BR R IE

APR I/'

LIBRARIES

The author hereby grants to MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thesis document in whole or in part in any medium now

known or hereafter created.

Signature of
Author

Karthikeyan Rajasekharan
A Fellow

System Design and Management Program
Certified
Byv

Michael Davies
Thesis Supervisor

Srnior ecturf\, Engineering Systems Division

Accepted
By

Patrick Hale
Director

System Design and Management Program

1|1P a g e

B

Product Management in Software as a Service

by

Karthikeyan Rajasekharan

Submitted to the System Design and Management Program in
February 2012 in Partial fulfillment of the requirements for the Degree of

Master of Science in Engineering and Management

ABSTRACT

Software product management within Software as a Service is key domain of interest given

the recent advances in Cloud Computing. This thesis explores the product management

challenges within this domain. It makes a contribution to understanding how factors such

as architecture, customer experience measurement, customer driven feature prioritization,

editorial action of product manager and development process affect product success in the

SaaS domain. SaaS product management dictates different priorities from traditional

software and product managers and organizations must adapt to these changes to

innovate.

Thesis Supervisor: Michael Davies

Title: Senior Lecturer, Engineering Systems Division

|Page 2

Acknowledgements

I would like to express my deepest gratitude to my advisor, Michael Davies for his support
and encouragement. I have learnt a lot under his guidance. His probing questions made
writing this thesis, a fruitful learning experience for me.

My heartfelt thanks go to Aunty Lee Fei Chen and Uncle Tan Kong Khoon for their
unwavering support and encouragement. They are wonderful mentors and I am truly
blessed for their interest in me.

I thank my wife, Gayathri, for her patience and love when I disappeared for long hours
working on the thesis. I thank my parents (R.Usha and B.M. Rajasekharan) for all their
support throughout the MIT experience.

I thank my mentor Andy Wilkinson, who was very supportive of my efforts to pursue my
education at MIT. He provided me with both the opportunity and the guidance needed to
handle technology diffusion challenges.

A huge shout-out to my teammates Shirish Nilekar, Sunny Cheung and Ritesh Shukla who
worked with me on the Ask.com case study. I would like to thank Megan Reitan from
Ask.com for providing the data required to make the study possible.

IPage 3

Table of Contents
1 . In tro d u ctio n ..- ... 7

2. Innovation in the Software as a Service Industry .. 10
B ack gro u n d .. 1 0

Evolution of the Software Business into a Services Business...10

Is SaaS primarily a business model Innovation?... 12

Product and Diffusion Process Innovations .. 13

Pure play SaaS Vendors versus Traditional Software Vendors ... 14

Product Portfolio Management in SaaS...15

Becoming a platform - Addressing new markets..15

Impact on other traditional IT Services Industry... 16

Will all Software become Services?.. 16

Chapter Conclusion ... 17

3. Architecture within Software as a Service.. 18
Classic Model View Controller Architecture..18

High Level SaaS Application Architecture.. 19

Unique Architectural Challenges of SaaS... 21

Role of Multi-tenancy ... 22

Impact of Architecture on Product Management / Product Evolution................................ 26

Feature Development Cost: Cost Per Tenant vs. Cost Per Feature 26

Chapter Conclusion ... 29

4. Role of the Development Process in Software as a Service 30
Changing Nature of Development in SaaS.. 30

Agile Methodologies in SaaS..31

Case Study of SCRUM in Ask.com Product Development...32

Research Approach ... 33

F in d in g s ... 3 4

Impact on Fraction Correct and Complete .. 34

Im p act on M orale .. 34

Impact on Requirements Risk... 35

Im p act on Q u ality .. 35

Experience effects in SCRUM ... 36

Using System Dynamics Model to study SCRUM...37

|Page 4

C h ap ter C o n clu sio n ... 4 2

5. Product Feature Ideation and Prioritization through Co-Creation 44

Traditional Product Development Process..44

Collaborating with Customers .. 45

C ase B ack gro u n d .. 4 7

So u rce o f D ata : .. 4 7

Pre-Analysis Data Preparation ... 47

Data issues and Resolutions .. 49

Exploratory Data Analysis..49

A n aly sis of D ataset .. 5 2

Affinity Analysis to validate the tagging taxonomy .. 52

Classification using data mining techniques.. 56

Chapter Conclusion ... 60

K ey tak eaw ay s..6 0

6. Using Customer Experience Data in Software as a Service 61

Product Usage data in SaaS..61

Customer Usage/Experience as a measure of feature performance......................................63

Defining Customer Experience .. 63

Instrumenting For and Measuring Customer Experience... 64

Curse of Dimensionality..65

Chapter Conclusions ... 66

7 . C o n c lu s io n ... 6 7

B ib lio g ra p h y ... 6 9

A p p e n d ix..7 2

Survey Questionnaire...72

Data Set Preparation...74

|Page 5

Table of Figures
Figure 1: Service, Product and Process evolution [Source: Cusumano, Kahl, Suarez 2006].11
Figure 2: MVC Architecture [Source: Krasner, Pope 1998].. 18
Figure 3 : SaaS high level architecture [Source: Chong, Carraro 2006].................................. 20
Figure 4: Comparison of degrees of Multi-tenancy ... 25
Figure 5:Cost per Feature vs. Cost Per Tenant [Source: Carraro 2008].................................. 27
Figure 6: Speed of feature development vs. Multi-tenancy...28
Figure 7: Fraction Correct and Complete .. 34
Figure 8: Impact of SCRUM on morale..34
Figure 9 : Impact of SCRUM on Requirements Risk .. 35
Figure 10 : Experience Effects of SCRUM ... 36
Figure 11: SD Model for SCRUM vs. Waterfall... 37
Figure 12 : Zoomed view of Iterations in SD Model...38
Figure 13: Zoomed view of Task Completion in SD Model... 39
Figure 14: Zoomed View of Defects in SD Model...39
Figure 15 : Non linear relationship of requirement uncertainty .. 40
Figure 16: Fraction Correct and Complete Table Function...41
Figure 17: Simulation Results across various iteration counts 41
Figure 18: Product Development Stage Gate ... 44
Figure 19 : Plot of votes per Idea..50
Figure 20: Plot of votes with Implementation... 50
Figure 21: Box Plots of votes and implementation...51
Figure 22: Scatter Plot of Comments vs. Votes...52
Figure 23: Lift Charts of different data mining techniques .. 59
Figure 24: Causal loop of feature prioritization in SaaS.. 67
Figure 25: A holistic view of product management in SaaS [Causal Loop Diagram]...... 68

IPage 6

1. Introduction

"I think it [Cloud Computing] is one of the foundations of the next generation of

computing" Tim 0 Reilly

Delivering software as a service is trend that has been fueled by advances in software

technology (such as virtualization, multi-tenancy), lower costs of hardware (decreasing

storage costs, compute cycle costs) and better connectivity (cheaper and ubiquitous

internet access). In this model software vendors create and distribute applications on a pay

as you go basis via the Internet. This is replacing more traditional software and services

licensing models in the software industry.

This new paradigm raises new questions about the role of product management. Product

delivered in an on-demand basis place different emphasis on the feature completeness,

market reach tradeoffs. For the Service provider, the SaaS model raises new questions

about development resource allocation to optimize application efficiency, performance,

usage and diffusion. While this model provides rich playing field for analyzing customer

requirements, preferences and feature usage, it presents interesting challenges in

interpreting the new available data.

Is the lead user always right? What is the balance between feature iterations and platform

evolutions? How does the software product manager glean unstated latent needs from

analyzing the usage data? What are the implications of architecture on the speed of

experimentation and delivery? What processes are best suited to be used in this rapidly

changing environment?

IPage 7

Based on the analysis done through the course of this thesis, a few clear trends emerge.

Firstly, innovation in the SaaS industry is disruptive to software that involves high degrees

of user interaction. Software such as workflow management, database driven programs

benefit from the TCO economics that SaaS provides.

Secondly, Architectural decisions are dependent on the total addressable market. Multi-

tenant architectures reduce per tenant costs but increase feature roll out and development

costs. There are varying degrees of multi-tenancy and it has to be chosen with appropriate

consideration to the total addressable market size that the SaaS provider is targeting.

Thirdly, Agile process methodologies work best for Software as a Service offering as the

underlying risk that is being managed is requirements risk (not understanding what the

end user needs) and not necessarily technical risk. Platform development doesn't lend

itself to such an agile model.

Fourthly, User co-creation is a good approach to increase relevancy of new features.

However, the product manager must be conscious of the long tailed distribution of the idea

generation process and also develop efficient taxonomies to classify ideas.

Fifthly, monitoring user experience is a good way to identify user frustrations. It is however

easy to be overwhelmed by the dimensionality of the problem. To handle this effectively

product managers must include Customer Experience measurements and taxonomies

within the design cycle. This allows for efficient monitoring of diffusion and also helps to

determine end of life of features.

Finally, the product manager's role as an editor and interpreter has not changed

significantly. However, the pace of change has accelerated. The product manager still has to

IPage 8

look out for technological shift and anticipate latent needs on behalf of the end user. There

is still no perfect measure of latent needs and it requires judgment and intuition on the part

of the product manager. However, increased customer engagement in ideation,

measurement of product usage provides new tools to make this process easier.

In the following chapters, we will analyze each of these factors, their role in SaaS platform

and how we arrive at the recommendations above.

IPage 9

2. Innovation in the Software as a Service Industry

"The customer simply has a job to be done and is seeking to "hire" the best product

or service to do it." (Clayton Christensen, Anthony Ulwick)

Background

Software as a Service is a technological evolution that has been fueled by advances in software

technologies (such as virtualization), lower costs of hardware (decreasing storage costs,

compute cycle costs) and better connectivity (Cheaper and ubiquitous internet access). This

presents a scalable, shared computing architecture in which software companies (Software as a

Service providers) distribute applications and computing resources to enterprises as required

via the Internet. Forrester Research, Inc. defines it as "A standardized /T capability such as

software, application platform, or infrastructure, delivered via Internet technologies in a pay-per-

use and self-service way."This approach is replacing traditional software in the enterprise and

promises to transform computing into a service, thereby, bringing greater efficiency in enterprise

IT systems [Kirkos 2010].

Evolution of the Software Business into a Services Business

The Software business differs from the convectional manufacturing focused industries, as

software is malleable and becomes whatever function or application it addresses. Software is

used in multitude of ways from word processing, to collaboration, to calculating taxes.

[Cusumano 2004] The costs of production in traditional software industry is similar to the

pharmaceutical industry; the first product costs a significant amount of time and resources to

produce but the costs of mass production (e.g. making new CDs) are virtually zero. The

development of the enterprise software industry went through several stages in the past

1. Mainframe related software development.

I Page 10

2. Client - Server related software development

3. Internet fueled software development

During each of these discontinuities there was burst of software product innovations followed by

focus on the process of developing software. This is inline with what has been proposed by the

dominant design model [Utterback 94]. For instance, in the Internet fueled software

development stage, there were rapid product innovations such as web servers for the efficient

delivery of content on the World Wide Web. This was followed by a phase where costs of web

servers and establishing presence on the Internet became extremely low. The focus since then

has been on engineering practices such as Agile, Iterative methodologies to improve the

process of software development to meet customer needs.

The product and process innovation phases do not complete the picture for the software

industry. Following the product and process lifecycle stage, the software industry is likely to

move to into a third stage where the major economic value generator and focus is on services

[Cusumano, Kahl, Suarez 2006]

Focus of
Attention Products

& Importance
Services

Processes

Early Mature
Industry Life Cycle Stage

Figure 1: Service, Product and Process evolution [Source: Cusumano, Kahl, Suarez 2006]

|Page 11

There are three primary sources of revenue in the software Industry

1. License Fee (The upfront acquisition fee that the customer pays to procure the software)

2. Maintenance Fee (The yearly fee that the customer pays for upkeep of the software)

3. Services Fee (Specialist consultancy provided to install, configure & adapt the software)

The importance of each of these buckets varies with the stage the industry sub-segment is in.

Small and Medium sized Industries could not afford to pay the large upfront license fees or

maintenance fees that the traditional enterprise software demanded. This was a latent untapped

market that was poorly served by the traditional software Industry. Small companies could afford

to pay for services, as these were operational expenses rather than large capital investments.

Secondly, software was a means to an end and not the primary value process for these

companies. These companies valued outcomes and didn't consider IT a core process i.e. they

could live with fewer features. These influences when combined with cheaper connectivity and

the maturing of the industry (entering the services phase) provided fertile conditions to create a

new delivery model for software, namely the software as a services (SaaS) paradigm. A recent

study on the drivers of SaaS adoption supports these notions. [Benlian, Hess, BuxMann 2009]

Based on current trends, monthly subscription based fee with hosting may be the most likely

strategy for the future [Cusumano 2007].

Having established how the Software as a Service industry came to being, we shall now focus

on the different aspects of innovation within the Software as a Service Industry.

Is SaaS primarily a business model Innovation?

The notion of business model innovation has been a topic of recent focus and several authors

have dealt with it in significant detail. [Meyer 2007] proposes that software as a service, such as

Salesforce.com is a business model innovation. While there is certain aspect of business model

I P a g e 12

innovation in the SaaS paradigm, the author would argue that this doesn't complete the whole

picture. For instance, the notion of "Pay as you Go" existed prior to SaaS. Time sharing

schemes of mainframe computer resources were available. The notion of renting, versioning or

feature based licensing were all variations of the "Pay as you Go" model and were in existence

well before the advent of SaaS. What separates the SaaS paradigm from purely business model

innovation are the networks effects that SaaS leverages. These include user participation,

higher server efficiency through pooled usage etc. Secondly, to be able to deliver applications at

the scales required, there has been a whole range of software infrastructure innovations such

as Multi-tenancy; browser based rich user interfaces. Without these innovations the paradigm

would not be possible. Thirdly, the notion of a dataset that grows richer with collaboration also

makes the SaaS model more than business model innovation.

Product and Diffusion Process Innovations

From a SaaS service provider point of view, the paradigm where end users execute applications

on hosted servers presents interesting opportunities to optimize application efficiency,

performance and provides new avenues for analyzing customer requirements and preferences.

There are two types of delays in the transmission of technology, adoption delays and realization

delays. Adoption delays are related to price/performance, risk and market structure. Realization

delays are dependent on "opportunity", usability and adaptability of the technology [Barras 86]

Adoption delays can be minimized in SaaS model as price is already included in the

subscription model, there is lower risk as there is no migration plan required to exploit the newer

features. Realization delays are much easier to measure and quantify with the SaaS paradigm.

In the past, fairly expensive processes were required to understand user penetration of

individual improvements or features that are included in each release of software. For instance,

to this day most users of Microsoft Word only use a very small subset of the features of the

I P a g e 13

software. The reason for this reduced penetration is that product developers, engineers and

marketers at Microsoft have not had good means of analyzing the entire product eco-system.

When the information around the usage of a product and its drawbacks are localized and the

cost of transferring this information to the vendor is significant, user driven product innovation

may be a better alternative [Von Hippel 1998]. Software companies had to setup dedicated user

Interaction labs to obtain such information. In the SaaS model, when the user executes software

on a hosted platform, it is fairly easy for the SaaS service provider to get deep analytics on

usage. The rich actionable dataset promises to change the landscape of product development

and roll out in the software Industry.

Pure play SaaS Vendors versus Traditional Software Vendors

Traditional software vendors are attempting to adapt to the SaaS paradigm. But the transition to

this paradigm is not easy. Most software companies rely on maintenance revenues as the

primary source of their economic value generation. Software product firms overall saw about

50% of their revenues come from maintenance and services [Cusumano 2008]. Moving away

from this source of maintenance revenue requires significant upheaval of the business for the

software vendors. Such transitions are possible but not easy.

The difficulty in making this transition can be understood with a simple thought experiment. Most

enterprise servers are idle 93% of the time. Salesforce.com supports roughly 150,000

customers with 5000 servers. If each of the 150,000 customers were to purchase their own

enterprise software and databases that would amount to 150,000 software licenses and

maintenance agreements. In effect, the SaaS model has shrunk the traditional software revenue

for a database vendor to 3% of its potential size. This speaks to the core of the innovators

dilemma argument put forth by Prof Clayton Christensen. [Christensen 1997] However, it

I P a g e 14

doesn't mean the end of the traditional software vendors as Clayton Christensen would argue,

there might be change in leadership but the traditional vendors can adapt to this new paradigm.

Microsoft's move into Azure and their development of office 360 are examples of this transition.

Product Portfolio Management in SaaS

The idea of user collaboration and user community driven development has been central to the

development of the SaaS Industry. The author was the lead architect for Salesforce.com Asia

Pacific. Salesfore.com has 3 product releases a year and almost 30% of new features in each

release is from user submitted ideas. The filtering of those ideas is done by the user community,

which votes for each other's ideas. Leveraging the community of users so deeply in the

development cycle is an innovation that is unique to the SaaS Industry. While other industry's

listen to the customer base, the speed at which this is incorporated is what sets the SaaS

Industry apart. It also allows the technology manager at the SaaS company to better manage

the product portfolio. Development expenses can be better targeted at those features that users

will find most useful.

Becoming a platform - Addressing new markets

SaaS industry is presently in the stages of making a transition to an Industry platform as firms

are opening up their SaaS software infrastructure to other players and complementary product

vendors. Google originally developed their application engine infrastructure to power the various

services such as Gmail, Maps etc. Now that it has matured, the Google App Engine offering

allows enterprises to take advantage of the same Infrastructure that hosts Google's SaaS

offering to derive newer applications. Presently, there is fight for the dominant design of the

platform that will allow custom SaaS application development. The contestants include

Salesforce with Force.com and its AppExchange platform, Microsoft with Azure, Google with

Google App Engine, VMware with its VSphere technology to name a few. All these companies

| P a g e 15

are adopting an "Open But not Open strategy" [Cusumano 2010]. This is a combination of open

innovation (The open part of the strategy) and specific APIs that make switching difficult (The

Not Open part of the strategy).

This mode of innovation helps to address software markets where the size was not big enough

to attract large vendors. An analysis of amazon.com's sales in 2003 showed that a significant

portion of amazon's sales came from selling books that were hard to find / niche oriented that

traditional book sellers couldn't cater for [Brynjolfsson et Al 2003]. Similarly, these SaaS

platforms are being used by complementary software vendors to address niche markets such as

ERP software for non-profits. It is unclear whether a clear dominant platform will emerge or

whether there would be use case driven balkanization of platforms.

Impact on other traditional IT Services Industry

IBM is looking to leverage cloud and SaaS trends in services. However, while SaaS present a

new opportunity for services, much like the migration to the Internet did, it also promises to

endanger traditional IT outsourcing operations. Companies who have arbitraged the cost of

labor between geographies as the primary value driver face an uncertain future. When software

is delivered as a service there is lesser demand for traditional services as both product and

service is combined into a single package by the SaaS vendor. While there is opportunity for

traditional IT consulting, these are smaller consulting engagements. While the likes of IBM can

navigate these waters due to their extensive R&D investments, companies like Infosys and

Satyam will likely face an uncertain future, as they do not invest significantly in software R&D.

Will all Software become Services?

While there is momentum behind delivering software as a service, the author doesn't believe

that all software will be delivered as services. Applications that require a fair amount of user

interaction and collaboration such as workflow and Enterprise Resource Planning applications

I P a g e 16

lend themselves to the services model. Applications that are computation intensive are not

readily amenable to be delivered as services. Data Mining applications, Video editing

applications are computation intensive and require specialized knowledge to benefit from and

are less likely to be delivered as services in the near future. But this is merely a function of

delivery maturity and cost economics. In time, these will also be delivered as services.

Chapter Conclusion

Delivering software as a service is an evolutionary (not revolutionary) paradigm that been fueled

by cheaper network access, excess computation power and advances in software architecture.

This paradigm has taken traditional shrink-wrapped software and converted them into user

centered service driven industries. In this process, the nature of innovation within the industry

has been driven by higher user participation. Platform innovations have emerged that allow

participants to address previously untapped markets. This trend may also upset existing IT

consulting industries by packaging services and product in a single solution. However, not all

software will be delivered as services. Presently, higher user interaction applications are driving

the industry growth.

I P a g e 17

3. Architecture within Software as a Service

"Architecture doesn't come from theory. You don't think your way through a

building." Arthur Charles Erikson

Classic Model View Controller Architecture

At its core SaaS is software deployed as a hosted service and used over the Internet. Typical

business applications that can be address by SaaS are those that business process and

workflow oriented and have a fair degree of human interaction with the application. These

types of application have been architected around the design paradigm of a model-view-

controller architecture.

The MVC architecture began as a user interface paradigm in the Smalltalk environment.

[Krasner, Pope 1988].

View messages
Controller View

User input Display
S device layout and.............

User interaction interaction
input viewsisplay
sensors outpu

DePendents
cange
messages

messages

Figure 2: MVC Architecture [Source: Krasner, Pope 19981

I Page 18

This architecture separated concerns in three key specific areas.

a) The Model: This functions as the encapsulation of the domain specific objects that

the application has to deal with. It is responsible for persistence of state of the

objects being manipulated upon

b) The View: This is responsible for displaying and rendering of the output for a

particular invocation in a user acceptable format

c) The controller: The controller's job is to control both the manipulation of the

underlying model and also a particular view of the resultant data

The MVC architecture separated the presentation from persistence and allowed loosely

coupled software architectures to be made possible.

This underlying paradigm has since been adopted in several iterations of the software

development industry including Java based application server architectures, .Net based

architectures to the latest web design frameworks such as Ruby on Rails.

High Level SaaS Application Architecture

Following the extension of the MVC paradigm described earlier, SaaS application typically

follows the high level architecture shown below

I P a g e 19

Metadata File System Databases

Figure 3 : SaaS high level architecture [Source: Chong, Carraro 2006]

The key service that enables all of these offerings is the Metadata Services. In architectural

sense it is akin to the model layer of the MVC paradigm we described earlier. However,

unlike traditional software where the model, view and the controller often co-existed on

the same server, within the SaaS environment, horizontal scalability is a key requirement.

This is required both from the perspective of providing fault tolerance and from the

perspective of end user perceived performance.

The controller and the View modules (business services/process services) can be scaled in

a relatively straightforward manner, as they don't manage state persistence (perform

I P a g e 20

immutable write to disk). Hence, the key component that requires architectural effort at

horizontal scalability is the Model layer / Meta data services layer.

The Metadata services layer is typically built on top of a relational database. However, the

partitioning of databases in a distributed system is difficult task from a maintenance and

operational standpoint.

Unique Architectural Challenges of SaaS

Horizontal Scalability of Persistence

Maintaining consistent state in distributed systems (horizontal scaling) is a difficult

proposition. The CAP theorem first conjectured by Eric Brewer [Brewer 2000] and then

proved by [Lynch, Gilbert 2002] places some architectural limits on the ability of a SaaS

vendor to maintain state within a SaaS application. The theorem states that between

Consistency, Availability and Partitioning Tolerance, at most only two of these properties

can be satisfied by any shared data system.

Metadata driven approach to domain modeling and Configurability

SaaS applications typically have to provide the flexibility for end-users (tenants) to

configure the application to their specific needs and requirements. The

requirements/configurations made by one such user should not affect those of another. In

short, the application has to be polymorphic. This places a heavy emphasis on meta-data

driven approach to data modeling. The key is to balance this meta-data approach without

sacrificing performance.

I P a g e 21

Maintenance is part of the architecture

The architectural design of a product feature must also look at the maintenance and

lifetime value of the feature. In SaaS, the maintenance overheads are borne by the provider

and not by the user. "A wrong architectural choice might entail that the SaaS application

becomes a maintenance nightmare" [Bezemer Zaidman 2010]

Role of Multi-tenancy

The economics of SaaS application depends the architectural concept of multi-tenancy. A

multi-tenant application lets customers (tenants) share the same hardware resources, by

offering them one shared application and database instance while allowing them to configure

the application to fit their needs as if it runs on a dedicated environment. [Bezemer Zaidman

2010]

This concept can be implemented in a few different ways

a) Virtualization as a means of partitioning hardware resources

b) Shared application, separate persistence layer instances (database instance)

c) Shared application, shared persistence layer but separate objects (tables)

d) Shared application, Shared tables

These implementation approaches each have their individual advantages and

disadvantages

| P a g e 22

Implementation approach Observations

1) Virtualization driven multi-

tenancy

2) Separate Database Instances

In this approach, the hardware is split into

separate virtual machines and within each

instance a separate instance of the database and

the application are configured per tenant.

Advantages

Provides very good isolation between tenants

Easier to setup initially

Replication is extremely bandwidth heavy

Disadvantages

Memory cannot be shared across tenants and

hence the per tenant costs increase

Maintenance requires modifying individual

machines

Multi-tenant only at the machine level but not at

the application level

In this approach, a single hardware runs several

database instances and application instance

individually and each tenant has access to once

such instance

Advantages

I P a g e 23

virtualiation Lyer

Server ardware

Database Instance

Server Hardware

I Page 24

Single Database Instance

[Aulbach, Jacobs 2007] have analyzed the relative performance merits of each of these

approaches and conclude that the shared process approach is perhaps the most optimal for the

SaaS applications. They claim that the "Shared-table swings too far in the other direction,

potentially compromising performance, customer migration, security, and typing." However, the

shared table approach has been shown to be very successful in large implementation such

as those of force.com [Weissman, Bobrowski 2009]

Presently in the marketplace, there are a wide variety of vendors claiming to be

multitenant and each has one implemented one variation of these schemes. Force.com is an

example of the shared schema (table) approach. On the other end, VMware is touting the

virtualization approach given its isolation benefits.

I P a g e 25

The author feels that there is no one fixed approach that is ideal for all SaaS applications.

The nature of the multi-tenancy adopted is dependent on the scope and scale of the

solution that is being built.

Impact of Architecture on Product Management / Product Evolution

The choice of architecture impacts the product evolution of a SaaS application along the

following parameters

1. Cost of provisioning new features

2. Speed of new product feature development

Feature Development Cost: Cost Per Tenant vs. Cost Per Feature

The cost of providing and developing new SaaS features is significantly higher when the

scale of the application increases. As the degree of multi-tenancy goes up so does the cost of

implementing a new feature. In effect, there is a multi-tenancy tax on each new feature that

needs to be taken into account whilst making product management decisions.

This impact can be viewed Cost per tenant is the cost of providing a new feature to single

client. Cost perfeature is the cost of implementing the specific feature [Katzan, Dowling

2010]

Multi-tenancy incurs a higher cost per feature but lower cost per tenant. While increased

isolation provides lower cost per feature but increases cost per tenant.

I P age 26

Cost MVulti-tenancy (higher) cost per feature

MultI-tenancy (lower) cost per tenant

Mu It -tAen ancy
tax"

SMulti-tenancy
long term gain

Isolated (higher) cost per tenant

isolated (lower) cost per feat ure

t1 t2 3 Time

Developmenttime Operationtime

Figure 5:Cost per Feature vs. Cost Per Tenant [Source: Carraro 2008]

Additionally, the higher architectural complexity of multi-tenancy requires different

development priorities and tradeoffs. Since bulk of the complexity arises from consistency,

the product manager has to analyze in detail the nature of the consistency demanded by a

particular feature. For instance, a status update on communication-oriented feature (such

as tweet) could be engineered to lower consistency guarantees than say a financial

transaction update (which may require full ACID compliance).

As each new feature is being considered issues about data residency and ownership and

information security will play higher importance as part of the Market Requirements

Document (MRD) that is typically owned by the Product Manager.

Speed of new feature development

The lower the degree of multi-tenancy, the quicker it is to develop a new product or

feature. However, this speed comes at a cost, as the SaaS application is not able to

effectively exploit the economies of scale that it enjoys with pure multi-tenancy. However,

I Page 27

depending on the market being addressed a purely virtualization based approach (lowest

multi-tenancy) may be the ideal approach.

C

o ~ Virtualization

a,
Separate DB
Instance

Separate Schema
Approach

Shared Schema
Approach

)i

Low Degree of multi-tenancy High

Figure 6: Speed of feature development vs. Multi-tenancy

The speed of feature development is but one aspect of the overall SaaS product

management challenge. Some of the difficulties in the development speed of pure multi-

tenancy can be better managed by separating features into two separate categories

" Platform Features

o These are features that are application independent and focus on the overall

platform on which the SaaS application is run. For instance, implementing a

NO-SQL storage for eventual consistency that is shared across all applications

would be one such feature.

* Application Features

o These are feature that specific to the application domain that the SaaS

application is being engineered for. For instance, implementing a balance

I P a g e 28

check feature within an Accounting application would be an example of this

feature.

Separating feature in this fashion provides the product manager better control over

resource allocation and roadmap scheduling.

Chapter Conclusion

The architecture of the SaaS application indirectly affects the Product Manager and his

ability to manage the new feature roll out and development. Most SaaS applications are a

variation of the Model View Controller paradigm and bulk of the complexity related to SaaS

applications are at the Model (persistence) layer.

SaaS applications exhibit varying degrees of multi-tenancy with different security, ease of

development, maintenance and resource efficiency. The product manager must carefully

consider the implications of the underlying architecture whilst generating requirements

specifications and take into consideration lifetime value of a feature and trade it off against

the cost per tenant implied by the underlying architecture.

I P age 29

4. Role of the Development Process in Software as a Service

"No member of the development effort faces greater change in moving into the

SaaS world than the product manager" Tom Grant, Forrester Research

Changing Nature of Development in SaaS

The nature of software development changes within the SaaS model. The development

process sees greater involvement from the product manager with the development team.

The product manager often becomes an integral part of the process rather than just the

owner of the Market Requirements Document.

The key element of risk in SaaS product feature development is market acceptance and end

user perceived quality. Since there is no upfront license fee and customers can discontinue

product use at anytime, market relevance of product features is extremely important.

Achieving this requires quicker turnaround in development times. Quality of feature rolls

out is critical as losing a customer has a negative impact on new customer adoption (as

SaaS relies heavily on relationship marketing). Traditional development models such as the

CMMI do not adapt themselves well to this highly dynamic environment. In a study

performed on 72 small software firms, it has been demonstrated that Agile methodologies

have a positive effect on product development effectiveness where CMMI does not.

[Peltonen, Fruhwirth, Ronkko 2010]. SaaS firms primarily engage in relationship marketing

rather than transactional marketing. In this paradigm, customer acquisition cost, customer

lifetime value and churn are the key metrics for a sustainable business [Tyrvainen, Selin

2011].

I P a g e 30

These changes in the nature of the software business have required SaaS companies to

handle development process differently.

Agile Methodologies in SaaS

Traditional waterfall development strategy has proved to be hard to use for software

projects that have dynamic requirements. In response to the needs of managing software

projects many different iterative and incremental development techniques emerged.

Collin Murray in his thesis "lean and Agile Software Development A Case Study" states "The

term waterfall is attributed to Winston Royce, through his paper "Managing the

Development of Large Software Systems"', published in 1970. The misinterpretation of

Royce's model led to the standard accepted practice of waterfall development that is used

today. SaaS projects lend themselves well to iterative and incremental development. This

move away from waterfall has been covered under the umbrella term "agile"

The key emphasis of the Agile methodologies are

1. Continuous delivery as opposed to big bang delivery

2. Changing requirements are embraced rather than frowned upon

3. Individual interactions are deemed more important than strict documentation

These principles align themselves very well with the needs of the SaaS product

development approach. In this scenario, the Product Manager morphs into the Product

owner in the agile methodology and is focused on continuously refining the feature set with

the development team. Rather than focus on large MRDs, the product manager focuses on

targeted user stories that address features of highest relevance to the end customer.

I P age 31

Within this paradigm, the traditional activities of requirements collection and functional

specification all exist. However, the approach is focused on smaller increments and new

features are often divided into smaller deliverables. Fixed feature sets are abandoned as

these typically lead to schedule slippage. The product manager engages in constant

reprioritization and refining the features, determining the minimal viable set for the

release. Several leading SaaS companies have made the transition to Agile methodologies.

Salesforce made a big bang transition to the Agile methodology and experienced a 37%

increase in product release productivity and went from 1 major release each year to 3

major releases each year. [Mencke 2008]

Case Study of SCRUM in Ask.com Product Development

*ocom

To study the application of newer agile project management methodologies in SaaS, the

ask.com product development team will be used. The study will focus on the advantages,

disadvantages that SaaS projects will benefit from agile methodologies.

Ask.com has adopted of SCRUM across the organization starting with software

development. They graciously agreed to open up their internal teams and data to us for this

study. Ask.com has teams spread across the globe and practice SCRUM in distributed

teams. They also have dependencies between scrum teams. Some of the challenges Ask.com

faced which lead them to adopt SCRUM were

I P a g e 32

1. Quicker time to marker driven by dynamic business environment and changing

business model

2. Quality issues with waterfall development for their company

3. Help rally the product development to team in a very competitive business

environment

Research Approach

The following approaches were adopted as part of this case study.

1. Literature Survey on SCRUM

2. Regular conference calls with sponsors for sharing of SCRUM PM data

3. Survey of SCRUM practitioners at Ask.com

a. List of 17 questions designed to (Actual Survey is in the Appendix)

i. Measure Fraction Correct and Complete

ii. Measure effect of SCRUM on human factors

4. Assess the impact of

a. Effort Estimation variance

b. Requirements Risk variance

5. Use data as basis for a System Dynamics Simulation of SCRUM to understand how

Agile helps projects with requirements uncertainty as the key risk

I P a g e 33

Findings

Impact on Fraction Correct and Complete

.ro..i --ou- n.i--ts-

T 333

Figure 7: Fraction Correct and Complete

As a proxy measure for fraction correct and

complete, respondents were asked to

estimate how much of their time in a current

sprint, they spent fixing errors from the

previous sprint. The median value was 7.5

%. This is a good indication that bulk of the

activities is done correctly during a sprint.

Impact on Morale

I Page 34

Since the Introduction of SCRUM, my morale has increased Close to 85% of the respondents, stated that

team morale had improved since the

introduction of SCRUM. This is line with

other findings from other authors. [Mencke

2008]

Figure 8: Impact of SCRUM on morale

-I

Impact on Requirements Risk

SCRUM user stores contain enough detaN form to make good decisions

D"" p'int""" ' r "duc "'unc'tak't n my wo

Figure 9: Impact of SCRUM on Requirements Risk

Impact on Quality

" Before SCRUM:

- 6/1/2010 - 7/1/2010 -> 518 bugs created

- After SCRUM:

- 6/1/2011 - 7/1/2011 -> 174 bugs created

~300% Reduction in defects

This impact on quality of product development is significant. For SaaS, the key marketing

tool is word of mouth and the quality delivered acts both a source of reducing customer

churn and allowing network effects of new customer adoption through word of mouth.

I Pa ge 35

'- -

S Q Aq

The results on managing requirements risk were

interesting. The product team was asked if

SCRUM stories contained enough detail for

making good quality decisions. A significant

portion of the respondents (40%) was neutral or

didn't agree with this. However, more than 90%

of the respondents maintained that the daily

sprint meetings reduced uncertainty in the work

being performed.

It is likely that the daily meeting between

product managers and the development helps

refine feature sets and requirements as the build

takes place. Written documentation is static and

within the dynamic environment of a SaaS

platform, the constant communication and

feedback helps reduce development risk and

increases quality.

Experience effects in SCRUM

Complexity Measures

Points Per Sprint Hours Per Sprint

7oo

200 4

120

ICO

90

2C

C

Experience and Resource burn down across sprints

5prmnt il 5print 15 Sprint 1z

Figure 10 Experience Effects of SCRUM

The charts above show the increasing complexity of tasks as the team matures. Both the

points (a measure of complexity of tasks) and the hours per sprint have increased. The

corresponding sprint burn down is getting accurate. For instance at sprint 12, the hours

were 300 and complexity was 39 But sprint 18, the hours are 687 and 94 points but the

I Page 36

a 9 10 11 12 is 14 Is 16 17 is 1 2 5 4 5 6 7 a 9 10 11 12 13 14 Is 16 17 1o

OWe

38a
962

21 124

burn down is nearly as much as the team predicted. The keyfinding is that it takes a

while before things get better and management must stick with the course.

Using System Dynamics Model to study SCRUM

A system dynamics model to capture the impact of SCRUM on requirements uncertainty on

product completion time as we vary the number of iterations (a.k.a sprints) from 1 (i.e.

waterfall model) to 20 was built. The results show that the impact of requirements

uncertainty are reduced as the number of sprints increases.

The Model

Hours Pet Day Term Size

Avaable Hous

HoTksPerTask
Per

TssPer Sprit

25 1
No of Spints

scope

Impact of Reqirtenet_
un-tt~

S:p per

Renrunnt

Figure 11: SD Model for SCRUM vs. Waterfall

The Rationale

Here is a brief explanation of the stocks and important variables in this model.

I P a ge 37

No ofSprints

I I

Iterations

Time:>

Tasks

|| T-cir R %to

Figure 12: Zoomed view of Iterations in SD Model

A Task Backlog is a stock of tasks to finish for a project. It has an initial value of 1000 and

rework discovered during each sprint (the defects) is fed back into the task backlog after it

goes through a defect discovery mechanism.

Sprint Tasks is a stock of tasks which a SCRUM team works on in each sprint. Tasks move

from the Task Backlog to the Sprint Tasks stock at the beginning of each sprint at the rate

of Tasks Introduced Per Sprint (This variable is explained more later)

The Tasks Introduced Per Sprint rate variable denotes the number of tasks that are

handled in each sprint. This is modeled via a PULSE TRAIN as follows:

PULSE TRAIN(O,1,Sprint Duration,1000)*(IF THEN ELSE(Time>((No of Sprints-1)*Sprint Duration), MIN(Scope per sprint, Task Backlog) ,

Scope per sprint))/Task Rate Unit Constant

The Scope Per Sprint variable in the formula above denotes the amount of tasks ideally

addressed per sprint during the planned project duration. After the planned project

duration, we put a IF-THEN-ELSE condition, in addition to a MINO constraint in order to

handle the reducing number of tasks in the task backlog.

I P age 38

Task Completion and Impact of Uncertainty

Figure 13: Zoomed view of Task Completion in SD Model

The Done Tasks are tasks, which are considered complete. Tasks move from the stock of

Sprint Tasks Stock to Done Tasks stock depending on the Development Effort. Not all

Done Tasks are 100% done - some of these might be defective in which case they go to the

stock of Defects. The remaining tasks which are done correctly go to the stock of Done

Done Tasks. Tasks from the stock of Defects move back to the Task Backlog depending on

the Defect Discovery Rate.

Sope per

ScoP O ptc ouratecnta

h~~acen ofeqwemenWts
uscatmky e ca tuudety

Figure 14: Zoomed View of Defects in SD Model

The Requirements Uncertainty Defect Rate represents the rate at which defects are

generated in the system due to uncertainty in requirements. The uncertainty itself is

I Page 39

represented by a constant called latent requirement uncertainty. The total Requirements

uncertainty depends not only on this latent uncertainty, but also on the sprint duration and

the scope of each sprint. This is modeled as follows:

Scope per sprint*Lmpact of Requirement Uncertainty*latent requirement uncertainty/Sprint
Duration
Graph Lookup - Impact of Requirement Uncertanity

This models the impact of requirements uncertanity on the overall defects that are introduced into the
backog. The smaller the scope, the more easier it is to actualy clarify requirements easily. When the Print

-maic

0.03135 003947

0.04893 0.06579 Dmnl

0.06651 0.09649

0.07569 01272

10.08104 0. 1 53 5 -- - - - - - -- - - - - - - -- - - -- - - - - -
!0.08792 0.193

0.1063 0.3026

0.1154 0.38-i10.1208 0.4868
0.1246 0.5746 Y-min:

New

X-nirtI0 x-.ao2064 y-1.8772 X-maicl .25 v Reset Scaling

_ K I ClearPoints I ClearAlPoints Cur->RefI ClearReference Ref->Cuu Cancel

Figure 15: Non linear relationship of requirement uncertainty

Finally, we modeled the Fraction Correct and Complete (FCC) as a table lookup of the

ratio of the number of outstanding Defects to the total Tasks to Accomplish. As the

number of defects goes up, the work pressure also mounts and the FCC goes down.

I Page 40

Graph Lookup - Fraction correct and complete

ST he ability of the team to do things correctly. We have mdeled ths to bcontinent on a
elationship to the ratio of defects to tasks to accomplish. When this ratio is low, the team morale is Print
inut Output Y-max:

10.08868 0.7 41 2

0.1865 0. 4912 Dmnl
4 2 - - - - - - - - --- - - - -- -- -

10.2844 10.3114
!0.4006 [0.1798

10.5566 10.0895

10.7309 10.05702

Y-mirt

New F

X-rin: 0 x=0 y=O X-max: 1 Reset Scaring

OK Clear Points Clear All Points Cur->Rel Clear Reference Ref->Cur Cancelj

Figure 16: Fraction Correct and Complete Table Function

The Simulation Results

Total Effort Expended

2,000

1,500

1,000

500

0

0 50 100 150 200

Total Ext Expended: Base
Total Efrt Expended : 20Spnta
Total BEtt Expended: IBSpdata
Tota Brt Expended: 13prinm

250 300 350 400 450 500
Time (Day)

Total lilart Expended 6 ddat
Total Mirt Expended: 19aprints
Tota Eit Expended: 17ita -
Tot Emt Expended: 1Oprinta

Figure 17: Simulation Results across various iteration counts

| P a g e 41

Based on the model, the author varied the number of sprints and looked at the effect on

overall project effort. At between 17-20 sprints, the system stabilizes and the project

finishes with only a 10% variance in the project duration and efforts.

When the number of sprints is reduced, the FCC rates starts to drop and the defects start to

grow significantly. As a results the "Error on Error mechanism kicks in and the project

doesn't't stabilize. Taking the product scope and running it through iterations makes a

significant difference when the key risk is market risk (understanding customer needs) and

not technical risk.

Possible Improvements to the Model

1. The impact to team size is not directly reflected in this model. Increasing time sizes

in a SCRUM (beyond a certain number) leads to a decrease in the quality of

communication and hence less reduction in requirements uncertainty. This aspect

can be modeled better.

2. Learning effects are not included in this model. When tasks move from Done to

Defects, currently it is assumed that it takes the same amount of time to re-do the

task. This is not always true in real life as there is some learning going on and the

next time around, it will very likely take less time to finish. The model can be

improved to handle this learning effect.

Chapter Conclusion

SCRUM and other agile methodologies have taken over the traditional waterfall model in

the SaaS world. This is because the primary role of the SaaS company is to focus on the

features that resonate the highest with the largest section of customers. The market risk

I P a g e 42

involved is much higher and methodologies such as SCRUM help mitigate this risk better

than the traditional waterfall approach. The system dynamics model built in this section

shows how the SCRUM methodology is superior in managing development uncertainty

related to requirements risk. In this agile world, the Product Manager works much more

closely with the development team than before and is responsible for continuously refining

features sets during the development cycle. Past practices such as slipping schedule to

meet a feature set are now replaced with pruning feature sets to meet a fixed schedule

date.

I Page 43

5. Product Feature Ideation and Prioritization through Co-Creation

"In a world of abundant knowledge, not all smart people work for you."

Henry W Chesbrough

Traditional Product Development Process

Product Management is typically viewed as stage-gate funnel. The steps involved are

ideation, scoping, business case development, development, testing and launch [Cooper

2010]. Different authors [Ulrich and Eppinger 2003] label the stages of the funnel using

different terminology but the core stage gate approach remains the same.

Figure 18: Product Development Stage Gate

The engagement of the customer varies with each stage, but typically a customer subset is

involved in the ideation stage and through the testing and launch stage. The traditional

approach to ideation requires sampling the customer base with questionnaires and surveys

where customer tell surveyors what they want and what frustrates them. As well

intentioned as this process is, it suffers from the following flaws

1. It views value creation as a firm-centric activity and customers as passive recipients

of new product innovation

2. Surveys and questionnaires require sampling and this approach doesn't always

elicit the right ideas

| Page 44

3. The traditional ideation process produces a bias towards the most advanced users.

These users are not necessarily representative of the greatest number of customers

4. The importance attributed to an idea is dependent on the product manager's own

situational biases and there is no external filter to validate the relevance of ideas

prior to testing and launch

The root cause of many failed product initiatives is due to the inability to capture the

customer inputs that are needed to successfully manage innovations [Ulwick 2003]. The

traditional approach to ideation and new product development is ill suited for the dynamic

nature of the SaaS world.

Collaborating with Customers

As opposed to closed innovation, that assumes a strategy of vertical integration and

exclusive control [Chesbrough 2003], co-creation strategies are better suited to the service

innovation that SaaS entails. "People are inherently creative and want to engage with

organizations; they don't want to have products and processes imposed on them"

[Ramaswamy and Gouillart 2010]. Through Internet enabled virtual communities,

customers are not only able to participate in ideation but are also able to communicate,

share and shape their experience with the product platform.

Customer engagement through virtual platforms provides enhanced reach, interactivity,

flexibility and speed for collaborative product innovation. One key area where the SaaS

firm can benefit from is the area of ideation. Through virtual communities, the SaaS

enterprise has a new interaction channel through which many more customers could be

incorporated in the ideation process without incurring significant cost penalties associated

I Page 45

with traditional survey mechanisms. Secondly, by engaging a much wider section of the

target base, the risk of being hijacked by advanced users can be reduced. Finally, the virtual

community can be tapped to filter ideas by their expressions of support through voting,

comments etc. These provide invaluable knowledge about the exact nature of the customer

need rather than the product manager having to guess based on survey and questionnaire.

Using Customer suggestions to make product management decisions is a recent trend that

has been embraced in the Software as a Service industry.

Creating virtual communities that can actively participate in ideation requires trust

building that includes dialogue, access, risk-assessment and transparency. This

methodology (DART) proposed by [Prahald and Ramaswamy 2004]. Similar approaches

are actively being used my many SaaS companies.

When an organization opens up for suggestions, it is important to understand what key

influences a product manager must take into account to implement user suggestions. Care

must be taken to ensure that the wisdom of crowds doesn't degenerate into the tyranny of

the masses. Adopting co-creation strategies actually helps to improve the perception of

firm's innovativeness.

In addition to improving mutual learning mechanisms between customer and provider,

customer relationships are better enabled and the co-creation process becomes an effective

marketing channel to better communicate innovative aspects of the product offering. This

enhances customer loyalty with the SaaS platform, thereby customer churn risk and

increasing lifetime value of the customer. [Stoyan Tanev et al 2011]

I P a g e 46

The co-creation ideation process is still in its nascent period and this area of SaaS platform

can benefit from the application of data mining and machine learning techniques to

enhance the product manager's effectiveness in identifying relevant features for his or her

SaaS application.

Case Background

The trend in the SaaS industry has been to focus on customer led innovation where the

features enhancements to a product are suggested by the end users themselves and the

leading proponent of such an approach is Salesforce.com and its Idea exchange platform.

In this case study, we will use data extracted from Saleforce.com's idea exchange platform

and apply data mining techniques to aid in the identification of feature suggestions that are

promising. The output will be classification based on historic data that is currently

available to gauge/model product management decisions.

Source of Data:

Salesforce.com is a leading player in the Software as a Service field and it has led the field in

the area of crowd sourcing as a way to handle new feature introduction. Typically in any

release, a fair number of the features that are released come from end user suggestions.

Saleforce.com's Idea Exchange is an online platform where the suggestions from end user

are posted. This is a public database where the suggestions are listed and tagged with the

feature / area that it belongs to. It is also tagged with information such as user, number of

comments that it received and the community votes such a suggestion received. For each of

the user it is also possible to view characteristics of the user such as the number of

comments they have made, how many answers to technical problems they have provided

in the community.

Pre-Analysis Data Preparation

The dataset was not directly available in a structured form; it was however accessible

through a web interface where the user can query for the suggestions. The public access to

the suggestions is restricted to 1000 suggestions and the analysis is based on those 1000

I P a g e 47

records. Please refer to the appendix for the layout of the webpage where the data was

extracted from. The author wrote a web-crawler using PERL language to crawl the

Salesforce web page and extract data from the page to the following structured format.

No Numerical The recorded

Tags Categorical A list of all the functional tags associated with the

idea.

Title Text The summary of the idea

Votes Numerical The number of community votes that the idea

garnered

Comments Numerical The number of comments that the idea generated

from the community

Status Categorical The current status of the idea, such as no action,

implemented, under consideration etc.

Date Date Date when the idea was submitted

UserName Categorical User who submitted the idea

userideaCount Numerical The number of ideas this particular user has

submitted

UsercommentCount Numerical The number of comments on the forum this user

has made

UserreviewCount Numerical The number of reviews this user has contributed

UserreviewCommentCount Numerical The number of comments on reviews (discussion

threads) this user has contributed to

UseranswerCount Numerical The number of answers to forum questions the

user has contributed

UserbestAnswerCount Numerical The number of answers contributed by the user

that were vote the best answer

I P a g e 48

UservoteCount Numerical The number of votes that this user has cast

Data issues and Resolutions

The following issues were encountered with the data and were resolved using the

techniques in data mining.

1. The Tag field has many values and needed to be converted to a binary array. Each

Tag was assigned a separate column and if an idea has a tag it was given the value

"1" else "0". This effectively produced about 52 binary variables, each dealing with a

different Functional area or Tag (an idea can belong to several functional areas)

2. The status response variable contained too many classes. What is of interest is

whether the feature was implemented or not. So a new variable called Response was

introduced that was binary. It took on the value 1 if the feature was implemented or

under consideration etc. It was zero if there was no action on product management

on the idea. This would become the dependent variable that was tracked.

3. A new variable tracking the ratio of the votes to the comments was introduced for

use as an explanatory variable.

Exploratory Data Analysis

The final data set had 1000 rows of data with 65 explanatory variables. TIBCO Spotfire was

used to explore the data set prior to applying classification algorithms.

I Page 49

Plot of votes per idea

Plot of Votes peride

IV

Figure 19: Plot of votes per Idea

As shown in the above graph, the distribution of votes seems to follow a power law with a

very long tail. This kind of a distribution is to be expected given the nature of the crow-

sourcing and user collaboration on the Internet. It was very satisfying to see the pattern

emerge from the data as opposed to intuitive guesswork.

Figure 20: Plot of votes with Implementation

I Page 50

................ - -

In the graph above, the colors represent the dependent variable, Response. A Red color

indicates the situation where the feature was ignored and green indicates when the feature

was implemented. As the data shows, it is important not to ignore the tail of the

distribution and implement features across the entire tail as they represent higher number

of customers.

Box Plot Votes against Response

0

350000

0

2OXO
00

00

2 Plots of votes and implementation

The box plot of votes against response indicates that there is generally a higher trend in the

number of votes for ideas that are implemented (Which is to be expected as this is user led

innovation). The mean votes for non-implemented ideas are 1958 and that for

implemented ideas is 4058. However, given the long tail distribution, the means are

sensitive to the outliers.

I Page 51

Scatter Plot of Comments vs Votes

Markng,

450 Parker by'
(Raw Nurrberi

color try
Response

400 so

360

300

250

E
E

200

160

10

1000 2000 3000 4000 5000 5000 7000 5000 9000 10000

Votes

Figure 22: Scatter Plot of Comments vs. Votes

Analysis of Dataset

Affinity Analysis to validate the tagging taxonomy

The binary matrix generated by the Tagging field was used to run affinity analysis to

extract rules. The results indicated a large amount of redundancy in the Tagging

Taxonomy. This is likely due to the fact that the Tagging taxonomy evolved as the product

grew and a proper review of the Tag cloud has not be undertaken. For instance, the Tags

Applications, Large Enterprise, Large Enterprise Ideas, Force.com platform seem

redundant and can be eliminated.

Unlike traditional affinity analysis which is used to club items of economic value together,

in my case, very strong affinity actually indicates poor tagging diversity and can used

to fine-tune the tag hierarchy.

I P age 52

I uu

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

AdministrationANDShanng, LargeEnterprise=>

Customization, LargeEnterpriseIdeas=>

AdministrationANDSharing, LargeEnterpriseldeas=>

Customization, LargeEnterprise=>

Customization, LargeEnterprisedeas=>

AdministrationANDSharing, LargeEnterprise=>

AdministrationANDSharing, LargeEnterprise ldeas=>

Customization, LargeEnterprise, LargeEnterprisejldeas=>

AdministrationANDSharing=>

Customization, LargeEnterprise=>

Customization=>

AdministrationANDSharing, LargeEnterprise,

LargeEnterpriseideas=>

Force.comPlatform, LargeEnterpriseideas,

UserExperience=>

AdministrationANDSharing, Force.comPlatform,

LargeEnterpriseldeas=>

LargeEnterpriseIdeas, ReportsANDDashboards=>

Force.comPlatform, LargeEnterprise_Ideas,

ReportsANDDashboards=>

Large_tnterprise-ieas

LargeEnterprise

LargeEnterprise

LargeEnterprise-ideas

53 1P 3 a ce

Force.comtiatorm,

Force.comPlatform,

Force.comPlatform,

Force.comPlatform,

Force.comPlatform

Force.comPlatform

Force.comPlatform

Force.comPlatform

Force.comPlatform

Force.comPlatform

Force.comPlatform

Force.comPlatform

LargeEnterprise

LargeEnterprise

LargeEnterprise

LargeEnterprise

138

206

138

206

206

138

138

206

143

206

210

138

226

138

147

143

649

649

649

649

672

672

672

672

672

672

672

672

944

944

944

944

138

206

138

206

206

138

138

206

143

206

210

138

226

138

147

143

1.540832

1.540832

1.540832

1.540832

1.488095

1.488095

1.488095

1.488095

1.488095

1.488095

1.488095

1.488095

1.059322

1.059322

1.059322

1.059322

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

Applications, Force.comPlatform,

LargeEnterpriseIdeas=>

Applications, LargeEnterpriseIdeas,

SalesForceAutomation=>

Customization, Force.comPlatform,

LargeEnterpriseIdeas=>

LargeEnterpriseIdeas, SalesForceAutomation=>

Applications, LargeEnterpriseldeas=>

Force.comPlatform, LargeEnterprisejldeas=>

LargeEnterpriseIdeas, UserExperience=>

Delivered_ldeas=>

DeliveredIdeas=>

Delivered_Ideas, LargeEnterprise Ideas=>

AdministrationANDSharing, LargeEnterpriseIdeas=>

Customization, LargeEnterprisejIdeas=>

AdministrationANDSharing, Force.comPlatform,

LargeEnterprise=>

Customization, LargeEnterprise=>

Force.comPlatform, Large_Enterprise,

ReportsANDDashboards=>

Applications, LargeEnterprise=>

Force.comPlatform, Large_Enterprise, UserExperience=>

Deliveredideas=>

DeliveredIdeas, LargeEnterprise=>

| P a g e 54

LargeEnterprise

LargeEnterprise

LargeEnterprise

LargeEnterprise

LargeEnterprise

LargeEnterprise

LargeEnterprise

LargeEnterprise

LargeEnterprise, LargeEnterprise-ideas

LargeEnterprise

LargeEnterprise

LargeEnterprise

LargeEnterpriseIdeas

LargeEnterpriseIdeas

LargeEnterpriseIdeas

LargeEnterpriseIdeas

LargeEnterpriseIdeas

LargeEnterpriseIdeas

LargeEnterprise_Ideas

228

150

206

151

445

649

227

150

150

150

138

206

138

206

143

445

226

150

150

944

944

944

944

944

944

944

944

944

944

944

944

945

945

945

945

945

945

945

228

150

206

151

445

649

227

150

150

150

138

206

138

206

143

445

226

150

150

1.059322

1.059322

1.059322

1.059322

1.059322

1.059322

1.059322

1.059322

1.059322

1.059322

1.059322

1.059322

1.058201

1.058201

1.058201

1.058201

1.058201

1.058201

1.058201

70

71

72

73

74

75

76

77

78

127

100

100

100

100

100

100

100

100

100

51.24

Applications, LargeEnterprise, SalesForceAutomation=>

Applications, Force.comPlatform, LargeEnterprise=>

AdministrationANDSharing, LargeEnterprise=>

LargeEnterprise, ReportsANDDashboards=>

LargeEnterprise, SalesForceAutomation=>

Customization, Force.comPlatform, LargeEnterprise=>

LargeEnterprise, UserExperience=>

LargeEnterprise=>

Force.comPlatform, LargeEnterprise=>

Applications, LargeEnterprise, LargeEnterprisejldeas=>

LargeEnterpriseIdeas

LargeEnterpriseIdeas

LargeEnterprise_Ideas

LargeEnterprise_Ideas

LargeEnterpriseIdeas

LargeEnterprise_Ideas

LargeEnterprise_Ideas

LargeEnterpriseIdeas

LargeEnterpriseIdeas

Force.comPlatform

150

228

138

147

151

206

227

944

649

445

945

945

945

945

945

945

945

945

945

672

___ I _____ I _______________________________ .L ________________________ ± _____ I _____ A _____ ________

I Page 55

150

228

138

147

151

206

227

944

649

228

1.058201

1.058201

1.058201

1.058201

1.058201

1.058201

1.058201

1.058201

1.058201

0.76244

Classification using data mining techniques

Now the data set was partitioned into Training, Validation and testing data (500 Training, 300 Validation and 200 Testing) and

different data mining techniques were applied to determine if the dataset could potentially be mined for features that should

be implemented. The techniques that were used are

1. Discriminant Analysis

2. Logistic Regression

3. K nearest neighbors

4. Classification and Regression trees

The table below compares the Lift charts of the respective techniques for the Validation and Test partitions.

56 1 P a g e

Technique Test Lift Chart Validation Lift Chart

Discriminan
Lift chart (test dataset) Lift chart (validation

t analysis 80 - dataset)
60 - 150 -

40 - "0100 -

20 - 50 -

0 0
0 50 100 150 200 250 0 100 200 300 400

cases # cases

| P age 57

_ _ _ _ _ _I I

Logistic

Regression
Lift chart (test dataset)

a)
$a

Cu

80
70
60
50
40
30
20
10
0

0 50 100 150 200

cases

250

Lift chart (validation
dataset)

150 -

Cu
100

50

0
0 100 200

cases

Classifncatio,

n Trees

Lift chart (validation
dataset)

150 -

100 -

50 -

0
0 100 200

cases

300

I I _________________

I P a g e 58

300 400

Lift chart (test dataset)
80 -

70 -
60

- 50 ~

S40 -
| 30 -

20 -

10

0=
0 50 100 150 200 250

cases

400

Lift chart (test dataset)

-

K-Nearest

Neighbors

(Best K = 5)

2500 50 100 150 200

cases

Lift chart (validation
dataset)

140
120
100

80
60
40
20

0
0 100 200 300

cases

Figure 23: Lift Charts of different data mining techniques

Of the techniques investigated, the K-Nearest Neighbors with a value of K=5 provides the best ability to predict whether a

feature should be implemented or not.

|Pa ge 59

80

70

60

50

40

30
20

10
0

400

I

Chapter Conclusion

Engaging end users to suggest features for product iterations is a good approach to

ensuring that the product is sensitive to market demands.

Key takeaways

1. When soliciting user ideas, the nature of the idea distribution tends to follow a long

tail distribution. It is important for a product management organization to take care

of the tail end of the distribution and not just focus on the most vocal users. As the

Salesforce.com data indicates success likes in being able to discriminate and satisfy

different sections of users.

2. It is important to develop a tagging taxonomy for feature suggestions and actively

manage the tagging taxonomy. As product features emerge, use techniques such as

affinity based rule extraction to validate and improve the tagging taxonomy,

3. It is useful to use data mining techniques to get an indication for the value of the

suggested idea for product management. Such an approach could save product

management search time and focus on the important ideas more quickly. This could

be implemented as a dashboard that the product manager can look at to establish

feature priorities based on user suggestions. Although Logistic Regression or K

nearest neighbors looks good techniques to handle this, it may be better to adopt a

bagging approach for determining an idea's value.

60 | P a g e

6. Using Customer Experience Data in Software as a Service

"Data is the new plastic", Om Malik

Product Usage data in SaaS

Within the SaaS platform, there is a significant potential to monitor customer usage and

behavior. Unlike traditional software development, the product is being used on the

servers run by the provider thus allowing for a wide range of client behavior analysis. This

however must be done with significant consideration to client privacy as SaaS business

model relies on trust. The end user has traded convenience for some privacy but this

should be taken into account while designing monitoring schemes.

Product usage as the central measure of client behavior is nothing new. This has been dealt

with in fair amount of detail in the consumer market. Product usage within SaaS can be

used critically in a couple of junctures. Firstly, it is applicable during the testing and

validation stage prior to feature rollout. Ask.com perform such testing on platforms such as

Usertesting.com to perform this. This allows the product manager to study end user

behavior with the actual feature developed and make adjustments as necessary. Secondly,

in the post roll out stage, the product usage can be monitored to glean intelligence on

feature viability and also as a source for new feature ideas that are not readily expressed by

the end user.

Product usage in the SaaS world can be done on two dimensions,

1. Usage Frequency. A measure of how often the client makes use of the application

611 P a g e

2. Usage Variety. A measure of how deep the usage of the product within the client

organization is.

(Adapted from Consumer behavior concepts, presented in [Ram and Jun 1989])

Usage Frequency has been traditionally measure in web-site analytics as "Visits" to a page.

Third party analytics companies such as Google analytics often support tracking this.

However, unlike a web site where the primary value is content delivery, SaaS application

focuses on interactivity to accomplish business oriented tasks. Purely, looking at "Visits" to

a page is not sufficient to measure feature usage.

Usage Variety is a measure how varied the end-user relationship to the application is? For

instance, does the end user modify business objects in the SaaS application through

multiple modes of usage (Web browser, mobile phone, tablet). Does the end user link

internal systems through vendor provided APIs?

It is important to conduct usage measurement in SaaS on two different levels

a) Intra-tenant behavior. How do users within a single client organization (tenant)

make use of feature portfolio within a SaaS application?

b) High-level tenant level behavior. I.e. how does the tenant organization behave in

relation to other tenants within the same SaaS infrastructure?

Within the traditional website analysis paradigm, the data for performing usage analysis is

typically collected in a couple of ways

a) Tagging or Injecting application pages

b) Looking at the log files of the web-server in the backend to look for interaction

patterns

| P a ge 62

For the case of SaaS monitoring, while both of these are applicable. It is also important to

directly look at the business objects that are modified by the end user in their interactions

with the application. A SaaS application as discussed earlier is a modern day incarnation of

the MVC paradigm. While one can instrument the view (through tagging), look at log files

(requests arriving at the controller), it is also crucial to see how the model layer is

manipulated as well.

Customer Usage/Experience as a measure of feature performance

The usage of customer engagement data for making product management decisions in SaaS

is a relatively new concept. [Latner and Ricardo 2011] proposed a framework where the

SaaS product features are segmented according to their location relative to the value to

cost trend line into: most valuable features, outperforming, underperforming and

fledglings. The rationale in this approach is to potentially discard the underperforming

features. However, the author contends that the scenario isn't that straightforward. While

the mechanism proposed is good for portfolio analysis, it is not a foregone conclusion that

underperforming features should necessarily be discarded. Underperformance might be

related to other factors such as lack of awareness, lack of complementary services to

exploit the feature etc. Thus the editorial action and judgment of the Product manager is

still required in making these decisions.

Defining Customer Experience

It is important to take a systems thinking approach to customer usage measurement and

approach the problem holistically from all layers of the SaaS application. Secondly, it is

important to have a singular user authentication (identification) mechanism that will tie a

I Page 63

user across the SaaS application's service front end, virtual community and the actual

application. This will allow the product manager to not only measure a user's experience

but also be able to cluster the user with other representative users. This can be used later

in the process of feature evaluation.

Instrumenting For and Measuring Customer Experience

Measuring the user perceived experience is important and current work has targeted these

in separate silos. [Duan et al 2011] have proposed a tenant behavior analysis methodology

wherein the mining of the usage data is done through the business object layer and

collaboration indices around the business object in question are measured as a proxy for

the feature usage or behavior of a tenant. This is an interesting approach, however it is but

one part of a much larger analysis framework that is required.

The author proposes the following framework as a basis for instrumentation and

measurement of customer experience through usage data.

Instrumentation Analysis Value to Product

Tool I techniques Mana.er

Model

View vaScript Injection and Page start and Page Navigation patterns
gging of product feature calls end time analysis whilst a user is

within the SaaS
Sequential pattern application can be
extraction ascertained

I Page 64

This information
helps to validate
user profile and
helps gauge user
suggestion and
service requests

Measure such as
Time to Interact can
be used to ascertain
usability of features

Controller

The key element in the above framework is the singular user identification that can be used

across all the layer and services to ascertain client behavior.

Curse of Dimensionality

Based on the above framework, it is possible for the product manager to be overwhelmed

with amount of data that is generated by the instrumentation. It is important that the

product manager remain firmly in control of the mechanisms that he/she will think will

provide new insight. This is a fine balance between exploratory data gathering and analysis

and targeted instrumentation and tagging. Ultimately, some of this is determined by the

organization's resource availability to perform such analysis. In light of the complexity of

this problem, new startups such as Totango.com are now providing this analysis as a SaaS

in its own right. The product managers the author interviewed presently are overwhelmed

I P a g e 65

by the amount of data that can be collected and often rely on their experience and editorial

action to manage this complexity.

Chapter Conclusions

Usage data within the SaaS platform is a double-edged sword. One on hand it allows

unprecedented insight actual customer interactions with the product. One the other hand,

the sheer volume of data that can be collected can be overwhelming. Product Managers

need to think about the user experience and craft instrumentation that measure specifically

those user experience measures that they would like to track (due to lack of resources).

Alternately, product managers in resource constrained SaaS companies can resort to third

party services such as Totango and user testing.com to provide the analysis and feedback

on these issues. The future of user data based portfolio optimization is not far off.

I P age 66

7. Conclusion

"When the wind blows strong, some people build walls, others build windmills"

Chinese Proverb

Innovative organizations live and die by the quality of their product management. Product

Managers are responsible for feature prioritization, development resource allocation,

vision and direction of the product platform. Being a Product Manager for a SaaS

application is not the same job as that for an on-premise product.

The author started the work on this thesis based on the premise that Software as a Service

is an 80/20 representation of the features that an on-premise application. In this view as

more end users use the application, the relevancy of the product feature portfolio can be

enhanced in a positive feedback loop. The following causal loop diagram shows this

premise.

Raw Ifmuet
ReqPerd Fp

F 2au

Rdcma o

Fiure 24:Casal loo offaur rorttori Sa

I P a g e 67

Based on the analysis that the author has done in this thesis, a more refined model of the

role of product management within Software as a Service emerges

Technology , 7

change Features Newfear

introductionrate

SDinssicis of User o
measurement Data Editoril action of

Raw Internet Product Managers User Participation

Request Logs

Customer Profile R -;
No ofusers of Undersad Customer Needs User sugested -ors ss
Apptationre list

Feature List in v

Intrmnttinof+1-sg dmaeta to rae S+

Rmnco +lecs

Arhte'*eco ce n h'" u innis
Product Features

Figure 25: A holistic view of product management in SaaS [Causal Loop Diagram]

In this refined view we find that there are 5 separate individual areas (architecture,

process, customer experience data, customer participation and editorial action of product

manager) that contribute to the efficiency of product management operations within the

SaaS. Each of these individual actors is important and their relative importance changes

with context of operations. In a nutshell, SaaS dictates different product management

priorities [Grant 2008] and requires product managers to adapt to this new innovative

environment.

I Page 68

Bibliography

[Kirkos 2010] Alex Kirkos, Disruptive Technology Business Models in Cloud Computing,
SDM Thesis, 2010, MIT

[Cusumano 2004] Michael A Cusumano, The business of Software, Simon and Schuster

[Cusumano, Kahl, Suarez 2006] Michael Cusumano, Steve Kahl, Fernando F Suarez, Product,
Process and Service: A new Industry Lifecycle Model

[Utterback 1994] James Utterback, Mastering the Dynamics of Innovation, Harvard
Business School Press

[Meyer 2007] Marc H Meyer, The Fast Path to Corporate Growth

[Cusumano 2007] Michael A Cusumano, The changing Labyrinth of Software pricing,
Communications of the ACM.

[Cusumano 2008] Michael A Cusumano, The changing software business moving from
products to services, Computer, IEE Computer Society

[Benlian, Hess, BuxMann 2009] Dr. Alexander Benlian, Dr. Thomas Hess, Dr. Peter
Buxmann, Drivers of SaaS Adoption - An empirical study of different application Types,
Business and Information system Engineering

[Christensen 1997] Clayton Christensen, The Innovator's Dilemma, Harvard Business
School Press

[Barras 86] Richard Barras, Towards a theory of Innovation in Services

[Von Hippel 1998] Eric Von Hippel, Economics of Product Development by Users: The
Impact of "Sticky" Local Information

[Brynjolfsson et Al 2003] Erik Brynjolfsson, Yu (Jeffrey) Hu, and Michael D. Smith
Consumer Surplus in the Digital Economy: Estimating the Value of Increased Product
Variety at Online Booksellers

[Krasner, Pope 1988] A Description of the Model-View-Controller User Interface Paradigm
in the Smalltalk-80 System, Glenn E. Krasner and Stephen T. Pope

[Lynch Gilbert 2002] Nancy Lynch and Seth Gilbert, "Brewer's conjecture and the feasibility

of consistent, available, partition-tolerant web services", ACM SIGACT News, Volume 33
Issue 2 (2002), pg. 51-59.

I P a g e 69

[Brewer 2000] PODC Keynote, July 19, 2000 Towards Robust Distributed Systems Dr. Eric

A. Brewer
[Chong, Carraro 2006] Frederick Chong and Gianpaolo Carraro, Microsoft Corporation,
Architecture Strategies for Catching the Long Tail, http://msdn.microsoft.com/en-
us/library/aa479069.aspx

[Bezemer Zaidman 2010] Cor-Paul Bezemer, Andy Zaidman. Multi-tenant SaaS

applications: maintenance dream or nightmare? Proceedings of the Joint ERCIM Workshop
on Software Evolution (EVOL) and International Workshop on Principles of Software
Evolution (IWPSE)

[Aulbach, Jacobs 2007] Ruminations on Multi-Tenant Databases, BTW Proceedings, volume
103 of LNI, Pages 514-521 Dean Jacobs, Stefan Aulbach

[Weissman, Bobrowski 2009] Craig D. Weissman, Steve Bobrowski Proceedings of the 35th
SIGMOD international conference on Management of data, The design of the force.com
multitenant internet application development platform

[Katzan, Dowling 2010] Harry Katzan, Jr., William A. Dowling, Software-As-A-Service
Economics, The Review of Business Information Systems. Littleton: First Quarter 2010.
Vol.14, Issue. 1; pg. 27

[Peltonen, Fruhwirth, Ronkko 2010] Examining the Effects of Agile Methods and Process
Maturity on Software Product Development Performance, Mikko R6nkk6, Juhana Peltonen,
and Christian Fruhwirth, ICSOB 2011, LNBIP 80, pp. 85-97, 2011

[Tyrvsinen, Selin 2011] How to Sell SaaS: A Model for Main Factors of Marketing and
Selling Software-as-a-Service, Software Business, Pasi Tyrviinen and Joona Selin, Lecture

Notes in Business Information Processing 2011

[Mencke 2008] A Product Manager's Guide to Surviving the Big Bang Approach to Agile

Transitions, Rasmus Mencke, Agile 2008 Conference

[Cooper 2010] Winning at New Product, Creating Value through Innovation, 4th Edition

[Ulrich and Eppinger 2003] Product Design and Development

[Ulwick 2003] The Strategic role of customer requirements in Innovation, Anthony W
Ulwick, Strategyn Inc, 2003 - marketing4entrepreneurs.org

[Sawhney, Verona, Prandelli 2005] Collaborating to create: The Internet as a platform for

customer engagement in product innovations, Journal of Interactive Marketing

I Page 70

[Chesbrough 2003] A better way to Innovate, Henry W Chesbrough, Harvard Business
Review 2003
[Prahald and Ramaswamy 2004] The future of Competition: Co-creating value with
Customers, Prahalad, C.K., Ramaswamy, Venkat, Harvard Business School Press 2004

[Ramaswamy and Gouillart 2010] Building the Co-Creative Enterprise, Venkat
Ramaswamy, Francis Gouillart, Harvard Business Review, October 2010

[Stoyan Tanev et al 2011] How do value co-creation activities related to the perception of
firm's innovativeness? Stoyan Tanev, Tony Bailetti, Steve Allen, Hristo Milyakov, Pavel
Durchev, Petko Ruskov, Journal of Innovation Economics 2011, Page 131

[Ram and Jun 1989] The link between involvement, Use innovativeness and Product Usage,
S Ram, Hyung-Shik Jung, Advances in Consumer Research, Volume 16, 1989

[Latner and Ricardo 2011] Feature Performance Metrics for Software as a Service Offering:
The case of Hubspot, ESD Working Papers, MIT

[Duan et al 2011] Tenant behavior analysis in software as a Service environment, Ning
Duan; Xin Zhang; Wei Sun; Li Li; Ke Hu; IEEE International Conference on Service
Operations, Logistics, and Informatics (SOLI), 2011

[Grant 2008] Saas dictates different product management priorities, Tom Grant, Forrester
Research

|P age 71

Appendix

Survey Questionnaire

SCRUM Survey Page 1

* 1. 1 believe that there is more transparency in the organization since the introduction of SCRUM

Strongly Disagree Disagree Neitier Agree or Disagree

* 2. In a sprint, how much effort (in % terms) do you spend in correcting errors or mistakes from previous sprints ?

*3. Code quality has improved since the Introduction of SCRUM

Strongly Disagree Disrgree Neilter Agree of Disagree

*4. My productivity has improved since the introduction of SCRUM

Strongly Disagree Disagree Neither Agree or Disagree

*5. Management's response to my feedback in sprint retrospectives is satisfactory

Strongly Disagree Disagree Neiher Agree of Disagree

Enter Comments in the text bx belo

* 6. Since the introduction of SCRUM, I work less overtime hours

Strongly Disagree Disagree

* 7. Since the Introduction of SCRUM, my morale has Increased

Strongly Disagree Disagree

* 8.1 think that the SPRINT duration is adequate for my work

Strongly Disagree Disagree

* 9. SCURM Methodology is applicable to all kinds of software projects

Strongly Disagree Disagree

Neither Agree or Disagree

Neither Agree or Disagree

Neithe Agree or Disagree

Neitee Agree or Disagree

Ne x.,

Agree Strongly Agree

Agree

Agree

Agree

Sirongiy Agree

Strongly Agree

Strongly Agree

Agree

Agree

Agree

Agree

Strongly Agree

Strongly Agree

Strongly Agree

Strorgly Agree

I Page 72

.. -- --- -----

SCRUM Survey

SCRUM Survey Page 2

SCRUM Survey

* 10. SCRUM user stories contain enough detail for me to make good decisions

Strogly Disiagee iDis'qi Neninr Agree oi Dinsaee Agree StruAny Agree

* 11. The tools we use for SCRUM help in its implementation

Strong Dinaome Disagrc< Nehr Agree o Disagee Agre Sntongy Agree

* 12.1 have received adequate training on SCRUM

Strongly oisaree Disgre Nethe Agree f tDsagree Agree Strvogl Airee

* 13. Daily sprint meetings reduce uncertainty in my work

Stronly DOisagree Dis Neither Ag"e or Disagree Agree Stnglyj Agree

* 14. In recent SCRUM sprints, my task duration estimates are accurate I<10% variance)

Strongiy Disagree DIsagre Neithe Agtree or Disagree Agree Strongy Ainen

* 15.1 think SCRUM methodology will be effective with teams over 20 people

Stiongi Disagrea Dsagree NeWi Agree oa Disagre Aqgee Sirongy Agree

* 16. SCRUM methodology is effective even when teams are not co-located

Strongly Disagree Disaqree NeOhr Agme N Disagree Agee Stronny Agree

Ary Additional Comments are wo me

*17. My experience level with SCRUM
.easi thati, Morths 6 Mombs to I Year I Year to 2 Yeats 2 Year to3 Yen More than 3 Years

18. General Comments on SCRUM Overall

I P a g e 73

Data Set Preparation

Multiple Contacts to be allowed on one activity, be it a task or event! Pleasel
promote aI IL

dUnder Consideration tatus
demote -

Our sales reps have meetings where they could literally speak to thirty contacts or have tasks

points. Iwhere they could involve 30 contacts We too want to track that activity We want our reps to

Votes get credit for all thirty of those talks but we all know our sales people, they don't want to take
20 to thirty minutes to log the same activity 30 different times Having the ability to clone

activities, tasks and events, and change the contact would be a huge improvement The best
solution would be the ability to add contacts in the same fashion you can add contact roles to

Idea y This would mean that when running a report for the rep for their activity on the
accounis activity would show 30 times once for each contact The history would also show

on the contact record I cannot tell you how much easier this would make our reps lives!

** UPDATE 7126/2011 ***
We are in development on this Idea. We do not have a firm ETA yet but are hoping
for a pilot in the Spring '12 release (Q1 CY2012). Of course this is subject to change.

Thank you,
Kayvaan Ghassemieh I Senior Product Manager I Salesforce.com

Comments User Tags
26comffments osted b nianc Lplications, Calendar & Activity Management, Large Enterprise

Uides LrEerprise Mor~n ear ai

A PERL Script based web-crawler was used to crawl through the web page and extract all

the publically available ideas.

I Page 74

..

