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Abstract

In this thesis, we will theoretically explore three nanophotonics phenomena which
enable strong light-matter interaction.

The first phenomenon is plasmonic resonance, where the surface plasmon mode at
metal and dielectric boundaries significantly enhances the optical response of nano-
particles. We propose an optimization-based theoretical approach to tailor the optical
response of silver/silica multilayer nanospheres over the visible spectrum. We show
that the structure that provides the largest cross-section per volume/mass, averaged
over a wide frequency range, is the silver coated silica sphere. We also show how
properly chosen mixture of several species of different nanospheres can have an even
larger minimal cross-section per volume/mass over the entire visible spectrum.

The second phenomenon is photonic chiral edge state, where the breaking of time-
reversal symmetry forces light to travel in only one direction. Based on the directional
coupling between one-way waveguide and conventional two-waveguide, we propose a
new type of optical circulators, which has the potential for simultaneous broadband
operation and small device footprint.

The third phenomenon is Stimulated Brillouin Scattering (SBS), where photon and
phonon are coupled through optical forces such as electrostriction force and radiation
pressure. We develop a general method of calculating SBS gain via the overlap integral
between optical and elastic modes. Applying this method to a rectangular waveg-
uide, we demonstrate that the distribution of optical force and elastic modal profile
jointly determine the magnitude and scaling of SBS gains. Applying this method
to a periodic waveguide, we demonstrate that SBS gain can be further enhanced in
the slow light regime. Based on this framework, we theoretically characterize a novel
class of hybrid photon-phonon waveguides. Our analysis reveals that photon-phonon
coupling via SBS can be directed and tailored over an exceptionally wide frequency
range, enabling a host of chip-scale filtering, delay, and signal processing schemes.

Thesis Supervisor: Marin Soljagié
Title: Professor of Physics and MacArthur Fellow
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Chapter 1

Overview

Technology advancement in the past decades has enabled the design and fabrication of
structures at length scales comparable to, or even smaller than the wavelength of light.
The interaction of light with these nanoscale features leads to the tight confinement
of light and significantly enhanced light-matter interactions. For instance, photonic
crystal cavities have been used to enhance a variety of nonlinear optical processes [1],
such as optical switching, second harmonic generation, and spontaneous emission;
Meanwhile, surface plasmon resonance has been applied to enhance Raman scatter-
ing signals, enabling the optical detection and spectroscopy of single molecules [2].
In general, nanophotonic structures can enhance light-matter interactions by orders
of magnitude, providing numerous opportunities in realizing high bandwidth, high
speed, ultra-compact, and low power optical components. In this thesis, we will ex-
plore three nanophotonics phenomena which enable strong light-matter interaction.
The first phenomenon that we explore (in Chapter 2) is plasmonic resonance.
The surface plasmon mode at metal/dielectric boundaries can confine light at sub-
wavelength scale, and significantly enhance the scattering and absorption of nanopar-
ticles with metal/dielectric shells [3]. While at resonance, the scattering and ab-
sorption cross-sections of such nanoparticles are on the order of wavelength squared,
which can be much larger than their physical cross-sections, making these nanopar-
ticles super-scatters and/or super-absorbers. Nanoparticles have wide applications

in biomedical imaging, photothermal therapy and optical obscurance. Because dif-
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ferent applications have different requirements, a systematic approach to tailor the
optical response of such nanoparticles is highly valuable. Here, we propose an op-
timization based theoretical approach to tailor the optical response of silver/silica
multilayer nanospheres over the visible spectrum. Our results show that the struc-
ture that provides the largest cross-sections per volume/mass, averaged over a wide
frequency range is always the silver-shell silica-core bilayer structure. We also show
that the minimal cross-sections per volume/mass over the entire visible spectrum
can be enhanced by using a properly chosen mixture of several species of different

nanoparticles.

The second phenomenon that we studied (in Chapter 3) is photonic chiral edge
state (PCES) [4]. PCES are a novel class of electromagnetic modes that propagate
in only one direction. Based on the directional coupling between PCES and ordinary
two-way waveguide, we propose a new type of optical circulators. Unlike cavity based
optical circulators whose operating bandwidths are limited by the quality factor of
the nonreciprocal cavity, the operating bandwidth of the new circulators is tied to
the bandwidth of the directional waveguide coupler, and has the potential of simulta-
neous broadband operation and small device footprint. By interfacing gyromagnetic
photonic crystals with magneto-optical bandgaps and ordinary photonic crystals with
overlapping bandgaps, we design concrete examples of three-port and four-port op-
tical circulators. The performance of such circulators are then analyzed using full

structure finite element simulations and scattering matrix method.

The third phenomenon that we investigated (in Chapter 4) is Stimulated Bril-
louin Scattering (SBS) [5,6]. SBS is a third order nonlinear process where two optical
modes are coupled through an elastic mode. Specifically, the interference of pump
and Stokes waves generates a time-varying optical force at the beat frequency. This
optical force, while at resonance with an elastic mode, can excite the mechanical vi-
bration of the structure, which in turn scatter light between pump and Stokes waves
through index modulations and shifting boundaries. SBS has wide applications in
efficient phonon generations, optical frequency conversion, slow light, and signal pro-

cessing scheme. Just as other nonlinear processes, SBS can be greatly enhanced for
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nanoscale waveguides. The strong confinement of light and sound in nanoscale waveg-
uides also brings up two new features. First, the interaction of light with waveguide
boundaries is significantly enhanced, creating a new form of SBS nonlinearity through
optical pressure. Second, the optical and elastic modes in nanoscale waveguides can-
not be approximated as plane-waves. The vector nature of both fields and the tensor
nature of dielectric/elastic constants have to be fully appreciated. Since the conven-
tional treatment of SBS gains for microscale waveguides doesn’t capture these two
features, we develop a general framework of calculating SBS gains via the overlap
integral between optical and elastic eigen-modes. Applying this method to a silicon
rectangular waveguide, we demonstrate that the optical force distributions and elastic
modes jointly determine the magnitude and scaling of both forward and backward
SBS gains. In addition, we find that it is the coupling to the leaky channels in the
substrate that stifles the forward SBS gains in a standard SOI waveguide. Applying
this method to a silicon periodic waveguide, we show that SBS nonlinearity can be

further enhanced in the slow light regime.

From the theoretical analysis of SBS processes in simple waveguide structures,
we can see that SBS can create highly efficient photon-phonon coupling over a wide
frequency range. Taking this idea further, we collaborated with researchers in Sandia
to propose (in Chapter 5) a novel class of hybrid photon-phonon waveguides. In this
suspended membrane-waveguide structure, optical modes and elastic modes can be
tuned nearly independently. Our numerical calculation shows that the optical mode
can be efficiently coupled to a series of approximately equally spaced elastic modes
through a constructive combination of electrostriction force and radiation pressure. In
addition, we develop a set of coupled amplitude equations to quantitatively describe
the Fano-like nonlinear response of the real structures fabricated by our collaborators
in Sandia. By fitting the measured nonlinear response to the coupled amplitude
equations, we can extract the resonant frequencies and SBS gains of the real structure,
which shows excellent agreement with the numerical calculation. The realized SBS

gain is more than 1000 times larger than the recent demonstration in silica fibers.

Throughout the study, we combine semi-analytical approaches and full numeri-
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cal calculations to model various nanophotonic structures. The semi-analytical ap-
proaches we used include spatial coupled mode theory and scattering matrix method.
Spatial coupled mode theory captures the interaction between traveling optical waves,
which is suitable for the analysis of waveguide couplers (Chapter 3) and hybrid
photon-phonon waveguides (Chapter 5). Scattering matrix method decomposes a
complicated structure into simple elements connected with each other through ports,
which is suitable for the analysis of optical circulators (Chapter 3). For full numerical
calculations, we used finite element method. Finite element method can calculate the
frequency response of an extended structure. It can also calculate the eigen-modes
of a finite or period structure. Finite element method has two additional features.
First, variables can be defined over geometries of different dimensions. For instance,
optical body forces can be defined over volumes, while optical pressures can be de-
fined over boundaries. Second, multiple physical fields such as electromagnetic field
and mechanical displacement field can be deﬁned over the same set of geometry and
meshes. It allows for the direct calculation of the coupling between different fields
without interpolating the solution at grid points. These two features turn out to be

very useful in optomechanical calculations (Chapter 4 and 5).

22



Chapter 2

Optimization of Optical Response
of Multilayer Nanospheres

2.1 Introduction

Nanoparticles with strong optical response, characterized by scattering, absorption
and total cross-sections, have wide applications in biomedical imaging, photothermal
therapy, and optical obscurance [7-9]. Different applications require different optical
response properties. For instance, real-time biomedical imaging is based on large scat-
tering cross-sections, while photothermal therapy requires nanoparticles with large
absorption cross-sections and small scattering cross-sections. For obscurance appli-
cations [10,11], the ideal nanoparticle should typically have large total cross-sections
over the whole visible spectrum while keeping the volume or mass of nanoparticles as
small as possible. The diversity and complexity of these requirements necessitate an
engineering approach of nanoparticle design.

Previous studies on the optical response of nanoparticles are mainly based on
parametric approach [3,12,13], which works well for simple structures. However, when
the structure becomes complicated and the number of design parameters increases,
optimization becomes the preferable approach because it can efficiently explore the
whole parameter space. Furthermore, because the optimization objective function

can be an arbitrary transformation of the frequency-dependent cross-sections, this

23



approach is very powerful in tailoring the optical response of nanoparticles over a

wide frequency range.

For example, some applications may require that the optical resonance has both
a strong peak value and a wide bandwidth. This can be achieved by maximizing
the average cross-section over the bandwidth of interest. For another example, some
applications may want the nanoparticle has strong absorption and minimal scattering.
This can be achieved by setting the objective function as the difference between
absorption and scattering cross-sections. For obscurance applications, we want the
total cross-section to be consistently large over the whole visible spectrum. This
is equivalent to maximizing the minimal cross-section over this spectrum. In this
chapter, we will use an optimization tool to tailor the optical response of multilayer

nanospheres over wide frequency range of interest.

Before we start, we need to select the material system. Nanoparticles composed
of metal and dielectric materials support surface plasmons on the metal/dielectric
interfaces and can strongly interact with light in the visible range [14-18]. At
resonance, the cross-sections of these nanoparticles are proportional to wavelength
square and independent of their physical size. Therefore, the cross-sections of these
nanoparticles can be much larger than their physical cross-sections, which makes
them super-scatterers and super-absorbers [19-22]. Furthermore, the plasmon reso-
nance frequency can be tuned by varying the physical structure of the nanoparticles.
In order to be able to tailor the optical response of nanoparticles over a wide fre-
quency range, we choose the metal/dielectric material system. For concreteness, we

will focus on the silver/silica material system.

In this chapter, we first formulate the Transfer Matrix Method to calculate the op-
tical response of multilayer nanospheres. After briefly reviewing the optical response
of bilayer silver/silica nanospheres, we proceed to optimize the average cross-section
of various silver/silica multilayer nanospheres. Our results show that the structure
with the maximal average cross-section is the bilayer silver/silica structure with sil-
ver as the shell. Finally, we investigate using a mixture of several species of bilayer

nanospheres to enhance the minimal cross-sections over the entire visible range.
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2.2 Transfer matrix calculation of optical response

Figure 2-1: Schematic of an n layer nanosphere embedded in infinite dielectric
medium. The outer radius and dielectric function of individual layers are (R;,¢;),i =
1,2,...,n. The dielectric function of the medium is €,,. The solid lines represent an
incident plane wave which contains incoming and outgoing waves. The dashed line
represents the scattered wave which only contains outgoing wave.

We start by formulating the Transfer Matrix Method for multilayer nanosphere [23,
24]. Consider a multilayer nanosphere shown in Fig. 2-1. Because of the spherical
symmetry, the fields at a given incident frequency can be decomposed into two or-
thogonal polarizations: transverse electric (TE) and transverse magnetic (TM). For
TE polarization, the electric fields can be written as Erg = V x r¢prg. For TM polar-
ization, the magnetic fields can be written as Hy )y = V x r¢prs. The scalar potential
érE and ¢y satisfy the scalar Helmholtz equation V?¢+ k%@ = 0 where k? = w?e(r).
Due to the spherical symmetry, ¢ can be decomposed into a discrete set of spherical
modes: ¢y, = Rt(?")ij[(COS 6) exp(imep) with [ = 0,1,2, ... and m = —I,....]. Since
€(r) is a constant ¢; inside the it" shell, R(r) is a linear combination of the first and

second kind spherical Bessel functions within the individual shells:
Ry(r)l; = Aiji(kir) + Bay(kir) (2.1)

The coefficients (A;, B;) of adjacent shells are linked by the transfer matrix of the
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interface:

A; A;
= Mt (2.2)
Bi B;

The matrix element is determined by the boundary condition satisfied by R;(r), which
comes from the continuity of the tangent components of E and H across the boundary.
For TE polarization, rR;(r) and (rR;(r))" are continuous across the boundary. By

writing the continuity conditions in matrix form, we get:

- -1

Ji(kiy1Ry) Yi(kiv1 Rs)
M., = X
_jll(ki+1Ri)ki+1Ri + jl(ki—HRi) ytl(ki+1Ri)/€i+1Ri + yl(kz'+lRi)
[ (kiR kR,
Jl( ) yl( ) (2'3)
Ji(kiR)kR; + ji(k;iRi)  yy(ksRi)ki R + yi(k; R:)

For TM polarization, 7 R;(r) and (e~ !rRy(r))’ are continuous across the boundary. By

writing the continuity conditions in matrix form, we get:

_ -1
Jilkin R;) yi(kin1 Rs)
M = X
i (ki Rk R + Gi(kisa ) yp(kepn Rk B + yi(kiva Ri)
Ji(kiR;) (ki R;) (2.4)
_ﬁé_—l(jll(kiRi)kiRi + ji(kiR;)) %(yf(kiRi)kiRi +yi(k:R;))

The transfer matrix of the whole system can be calculated by cascading the transfer
matrices of individual interfaces.
An+1 Al Al

= Mn+1,nMn,n—1---M3,2M2,1 = M (25)
Bn+1 B, B,

Since the second kind of Bessel function is singular at the origin, we can set A; =1
and B; = 0. So the coefficients of Bessel functions in the surrounding medium are
directly given by the transfer matrix element, A,,; = My; and B,41 = My;. Within

the surrounding medium, it is convenient to write the radical function as a linear
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combination of the spherical Hankel functions:
Ri(r)lny, = Crirhy (kniar) + Dy i (knyar) (2.6)

where coefficients C,, ;1 and D, are related to A,;; and B, through:

Apy1 —1Bnya

Cn+1 = 9
Apir +iB
Dy = #

Taking the convention that the fields vary in time as e=™* hl(k,17) and h?(kn417)
correspond to outgoing and incoming waves respectively. The reflection coefficient of

the whole system is given by

Cny1 My — 1My

- - 2.7
Dpii My +iMy 2.7)

T =

The reflection coefficient as a function of frequency determines the optical response
of the nanoparticle under all possible illumination conditions. Specifically, when the
nanoparticle is illuminated by a linearly polarized plane wave, the incident field can be
decomposed into both TE and TM channels (I, m) with{ = 1,2, ...and m = —1,1. For
each channel, the incident field contains both incoming and outgoing waves carrying
the same power [19-22] ,

A

Pim—t1 = E(% + 1)1 (2.8)

where [, is the incident intensity, and A is the wavelength in the surrounding medium.
The scattered field is a purely outgoing wave characterized by the scattering coefficient
S, which is related to the reflection coefficient through S; = (r; — 1)/2. The scattered

and absorbed power in this channel is given by:

/\2
Plm=t1 = ﬁ@l + 1)1 —rf? (2.9)
s X
Py = m(zl + 1) Io(1 = |r|?) (2.10)
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By summing over the contribution from all channels of TE and TM polarization, we

get the scattering and absorption cross-sections:
o0 AZ
sca — —(21 11— 2 2.11
. ;z&r( Y 1)

Oabs = ZZ-(% )1 = |roq]?) (2.12)

where o is TE or TM. The total cross-section is the sum of the scattering and ab-

sorption cross-sections. Ot = Oscq + Tabs-

2.3 Silver/silica bilayer nanospheres

In this section, we analyze the optical response of silver/silica bilayer nanospheres
as the building elements of multilayer structures. For silver, the complex dielectric
function as a function of frequency is generated by linearly interpolating the experi-
mental data [25]. For simplicity, the size dependence of Ag’s dielectric function is not
taken into account. For silica, the dielectric function is taken as a constant € = 2.1.
There are two configurations of silver/silica bilayer nanoparticle depending on the
core material.

First, we consider silica coated silver spheres. Colloidal suspensions of such
nanoparticles were obtained from Nanocomposix (Nanocomposix Inc., San Diego,
CA). Figure 2-2 shows the measured and calculated total cross-sections of the fabri-
cated nanoparticles. The calculation agrees quite well with the measurement. The
total cross-section peaks around 455nm. This peak comes from the [ = 1 surface
plasmon mode at the silver/silica boundary. The peak wavelength only varies slightly
when the inner and outer radius change. For instance, consider a silica coated silver
sphere suspended in air. Fixing the outer radius at 50nm, the peak wavelength varies
from 410nm to 415nm when the inner radius varies from 5nm to 45nm. Fixing the
aspect ratio R;/ R, at 0.8, the peak wavelength varies frdm 390nm to 480nm when

the outer radius varies from 25nm to 75nm.

28



0.04 T L] T T T T T ] 0

S — Theory —
=) 2]
Slang —— Measurement ~
— o™
o E
= 7))
= S
S 0.02} Is E
i @
3 oh
3 g
B

360 400 500 600 700 800 900 10(90
(nm)

Figure 2-2: The total cross-section of silica coated silver spheres suspended in ethanol.
The cross-section is normalized by volume (the left axis) and mass (the right axis).
The insert is a TEM image of the fabricated nanoparticles. The radius of the sil-
ver core has a distribution with mean 26.3nm and standard deviation 9.3nm. The
thickness of the silica shell is around 25.3nm. The red line is the measured total
cross-section. The black bar represents the standard deviations from eight transmis-
sion measurement on eight samples. The blue line is the Transfer Matrix calculation
of the total cross-section with the radius of the silver core sampled from the mea-
sured distribution and the thickness of the silica shell fixed at 25.3nm. The dielectric
function of ethanol is taken as ¢, = 1.85.

In contrast, the surface plasmon resonance of the reverse configuration has great
tunability over the visible range [14-18]. Consider a silver coated silica sphere sus-
pended in air. Fixing the outer radius at 50nm, the peak wavelength varies from
405nm to 720nm when the inner radius varies from 5nm to 45nm. Besides the peak
wavelength, the relative strength of scattering and absorption cross-sections in the
total cross-section also vary. For [R;, Ry] = [5nm, 50nm]|, the absorption cross-section
accounts for 25% of the total cross-section at resonance. For [R;, Ry] = [45nm, 50nm],
this percentage rises to 60%. The tunability of the resonance wavelength and the tun-
ability of the total cross-section composition makes silver coated silica sphere a good

candidate for achieving broadband optical response.
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2.4 Optimization of average cross-sections over wide

frequency range

- o

-~

Figure 2-3: A schematic of a four layer nanosphere. This structure includes
nanospheres with one through three layers as boundary points. The structure en-
closed in red square is the optimal structure found by the optimization engine.

The optical response of silver/silica bilayer nanosphere indicates that increasing the
number of metal/dielectric interfaces can provide additional tunability in the optical
response. Using this insight, we aim to design silver /silica multilayer nanosphere with
a large average cross-section over wide frequency range. The figure of merit (FOM) is
the scattering, absorption, and total cross-section averaged over the target frequency

range, normalized by volume or mass.

1 Wmax
FOA/I = '—"‘f gnorﬂmiizedd{") (213)

Wmar — Wmin

min

For concreteness, we take 400-600nm and 600-800nm as the target frequency range
of interest. The structure under consideration is a multilayer nanosphere with alter-
nating silver and silica layers (four layers in total). The design parameters are the
thicknesses of individual layers. The upper bound of the allowed thickness is set to
be a large value (1um). The lower bounds of the thicknesses are set to be zero. If the

thickness of some layers hit zero, the number of layers in the whole system decreases.
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Figure 2-4: Optimization of average cross-sections over wide frequency range. The
structure under consideration is a silver/silica multilayer nanosphere. The optimal
structure found by the optimization engine is always silver coated silica sphere. For
all subfigures, blue (red) lines show the optimized average cross-sections over the
blue (red) shaded frequency range. (a)(b)(c) correspond to scattering, absorption
and total cross-sections per volume respectively. (d)(e)(f) correspond to scattering,
absorption and total cross-sections per mass respectively. The radius of the silica
cores and the thickness of silver shells exhibiting the cross-sections shown above are
given in Table 2.1.
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Therefore, this general structure includes structures with fewer layers (one through
five layers) as boundary points (Fig. 2-3). If a simpler structure turns out to be the
optimal structure, the optimization engine will find this structure by converging to

the boundary of the feasible region.

We performed the optimization using numerical optimization package NLOPT
[26]. Since this problem is nonconvex, there are many local optima. To find the global
optima in the design parameter space, we used Multi-Level-Single-Linkage (MLSL)
algorithm. This algorithm performs a sequence of local optimization from random
points by a clustering heuristic that helps it to avoid repeated searches of the same
optima [27]. The local optimization algorithm used here is BOBYQA [28]. This al-
gorithm performs derivative-free bound-constrained optimization using an iteratively

constructed quadratic approximation of the objective function.

Figure 2-4 summarizes the optimization results. In all cases, the optimal structure
returned by the optimization engine is always a silver coated silica sphere. Although
multilayer structures can offer greater tunability of the optical response, bilayer struc-
tures already maximize the average cross-section over wide frequency range. From
Table 2.1, we can see that nanospheres with an outer radius around 70nm have the
largest normalized average scattering cross-section. The wavelength of the scattering
peak can be further tuned by varying the aspect ratio. For absorption cross-sections,
our optimization engine found many local optima with approximately equal FOM’s.
These local optima have the same aspect ratio, and the thickness of the silver layer
varies from zero to several nanometers. This can be explained by the quasi-static
approximation. The absorption cross-section of a nanoparticle can be written as
Oaps(w) = wIm|a(w)], where a(w) is the polarizability [29-31]. When the nanoparti-
cle diameter is much smaller than the wavelength, the quasi-static approximation is
valid, under which the polarizability is proportional to the volume of the nanoparti-
cle with the proportionality coefficient dependent on frequency and aspect ratio [29].
Therefore, the normalized absorption cross-section averaged over a frequency range
is only determined by the aspect ratio and independent of the nanoparticle diameter

as long as the nanoparticle diameter is much smaller than the wavelength. In Table
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2.2, the thickness of the silver layer is set to be > 2nm. Nanospheres with thinner
silver layers have approximately the same normalized average absorption cross-section
but are difficult to fabricate. The structures that give the largest average scattering
and absorption cross-sections are quite different. Since the FOM of the absorption
cross-section is about twice as large as the FOM of the scattering cross-section, the
structure that gives the largest average total cross-section is essentially identical to
the structure providing the largest average absorption cross-section. The structures
given in Table 2.1 are super-scatters and super-absorbers. For instance, the structure
with [R, T] = [60.40nm, 8.68nm| has an average scattering cross-section of 8.65m?/g
over 600-800nm, while its physical cross-section is only 2.07m?/g. The structure with
[R, T] = [18.09nm, 2.00nm]| provides an average total cross-section of 17.52m? /g over
600-800nm, which means that only 1g of such nanoparticles, when fully dispersed,

can obscure an area as large as 17.52m?.

2.5 Optimization of the minimal cross-sections over

wide frequency range

In this section, we aim to design nanoparticles with consistently large cross-sections
over a wide frequency range. This is equivalent to maximizing the minimal cross-
section over the target frequency range. From the previous section, we see that silver
coated silica spheres have strong surface plasmon resonances, and the peaks of their
resonances are highly tunable. Therefore, we expect that a mixture of several species
of silver coated silica spheres with different resonance frequencies can effectively cover
a wide frequency range.

This intuition can be formalized by optimization language. We take the target
wavelength range to be 400-800nm. The FOM is the minimal cross-section over this

range, normalized by either volume or mass.

FOM = min O normalized (214)
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Figure 2-5: Optimization of minimal cross-sections over a wide frequency range. The
structure under consideration is a mixture of several species of silver coated silica
spheres. The target frequency range is shaded in yellow. For all subfigures, blue,
red, black lines corresponds to one, two, and three species of nanospheres. The black
dashed lines in (¢) and (f) correspond to ten species of nanospheres. (a)(b)(c) cor-
respond to scattering, absorption, and total cross-sections per volume respectively.
(d)(e)(f) correspond to scattering, absorption and total cross-sections per mass respec-
tively. The radius of the silica cores and the thickness of silver shells corresponding
to these cross-sections are given in Table 2.2.
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Figure 2-6: A detailed plot of Fig. 2-5(a)(d). The black line corresponds to the
optimal mixture of three species. Colored lines correspond to the contributions from
individual species.

The structure under consideration is a mixture of N species of silver coated silica
spheres where N = 1,2, 3,.... The design parameters are the size parameters of indi-
vidual species and relative weights (i.e. proportions) of each species in the mixture.
The weights represent the relative weights in volume (mass) when the normalization

is over volume (mass).
N

Tnormalized — E W;T; normalized (215)

i=1
When the size parameters of individual species are fixed, the problem of finding the
optimal weights turns out to be a Linear Programming (LP) program, which can
be efficiently solved by standard LP packages. Therefore, we employed a two-level
optimization structure. In the lower level, we used a standard LP solver to find out the
optimal weights given the current size parameters. The resulting FOM as a function
of size parameters is further optimized in the upper level with the same nonlinear
method we used in the previous section. This separation into linear and nonlinear
parts of the original optimization problem reduces the dimension of the parameter
space and helps MLSL algorithm to find the global optimal in less iterations.

Figure 2-5 summarizes the results. We can see that the optimization engine tries

to build a plateau over the target range to maximize the minimal cross-section. For
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scattering cross-sections, it is relatively easy to build such a plateau since the scat-
tering peaks have wide bandwidth. When there is only one species (the blue lines in
Fig. 2-5(a)(d)), the nanoparticle has a large size so that its [ = 1 resonance can cover
the large wavelength region and its { = 2 resonance can cover the small wavelength
region. When the number of species increases, the new species try to cover the dips
in the previous scattering spectra with their resonant peaks (Fig. 2-6). On the other
hand, it is relatively difficult to build an absorption plateau because absorption peaks
have narrow bandwidth. The FOM of the scattering cross-section is about twice as
large as that of the absorption cross-section. The total cross-section can be enhanced
significantly (35% for volume normalization and 46% for mass normalization) when
N increases from 1 to 2. The enhancement when N increases from 2 to 3 is only

moderate. The benefit of adding more species gradually saturates.

2.6 Concluding remarks

In this chapter, we used optimization tools to tailor the optical response of silver /silica
multilayer spheres. We showed that the structure that gives the largest average cross-
section over wide frequency range is the bilayer structure with a silver shell. We also
showed that using several species of nanoparticles can significantly enhance the min-
imal cross-section over the whole visible range although this enhancement saturates
when the number of species increase. Because the FOM can be an arbitrary function
of the frequency dependent cross-sections, the optimization approach described here

can be used to design nanoparticles with more complicated optical response.
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Table 2.1: Optimization of average cross-sections

Normalized by volume

cross-section | range (nm) | silica (nm) | silver (nm) | FOM (1/nm)
Osca 400-600 31.25 26.65 0.0486
600-800 60.32 9.65 0.0464
Oabs 400-600 6.07 2.00 0.0767
600-800 14.80 2.00 0.0817
Ttot 400-600 6.09 2.00 0.0773
600-800 16.12 2.00 0.0846
Normalized by mass
cross-section | range (nm) | silica (nm) | silver (nm) | FOM (m?/g)
Osca 400-600 38.53 17.88 5.64
600-800 60.40 8.68 8.65
Oabs 400-600 6.54 2.00 10.87
600-800 17.89 2.00 16.71
Otot 400-600 8.71 2.00 10.93
600-800 18.09 2.00 17.52
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Table 2.2: Optimization of minimal cross-sections

Normalized by volume

cross-section | # of species | silica (nm) | silver (nm) | weights (%) | FOM (1/nm)
Osca 1 68.09 55.44 100 0.0192
2 52.54 44.21 82.8 0.0229
73.41 7.63 17.2
3 52.85 47.27 74.4 0.0235
75.61 8.31 20.8
35.55 23.21 4.8
Oabs 1 60.14 10.00 100 0.0032
2 37.03 4.00 57.5 0.0075
44.02 15.99 42.5
3 22.95 10.26 374 0.0114
26.08 4.39 34.3
21.96 2.00 28.3
Otot 1 80.15 41.87 100 0.0201
2 59.96 34.12 82.8 0.0270
61.96 6.29 17.2
3 50.21 32.98 75.2 0.0285
52.97 4.90 14.4
55.76 7.32 10.4
10 0.0310
Normalized by mass
cross-section | # of species | silica (nm) | silver (nm) | weights (%) | FOM (m?/g)
Osca 1 67.95 52.38 100 2.10
2 592.77 38.70 87.4 2.80
75.72 8.17 12.6
3 76.71 21.93 46.1 2.88
21.96 34.54 43.2
70.45 7.31 10.7
Oabs 1 42.80 6.55 100 0.58
2 20.56 2.15 51.3 1.31
37.16 13.61 48.7
3 27.43 14.22 36.9 1.59
49.06 11.02 34.9
36.66 3.66 28.2
Otot 1 92.95 39.04 100 246
2 55.54 29.60 83.5 3.59
67.77 7.39 16.5
3 53.36 29.01 60.1 3.79
79.49 10.25 31.1
24.64 25.04 8.8
10 4.62

3

8




Chapter 3

Broadband Optical Circulator

based on One-Way Waveguide

3.1 Introduction

Nonreciprocal optical devices, such as circulators and isolators, are essential com-
ponents in large-scale integrated photonic circuits, due to their ability to suppress
crosstalk and fringes among constituent stages [32-36]. Circulators are widely used in
fiber-optic interferometries to suppress laser noise and can be integrated with channel
add/drop filters in switching applications [37]. In the past decade, the efforts to minia-
turize nonreciprocal devices have been focusing on enhanced magneto-optical response
in resonators and guided-wave structures [38,39]. Particularly, on-chip optical circu-
lators have been proposed using photonic crystal resonators with overall dimensions
at few-wavelength scale [40-47] and nonreciprocal waveguides at hundreds of wave-
lengths [48-51]. Resonator-based circulators rely on nonreciprocal coupling between
waveguides and two counter-rotating resonant modes, where the resonant frequencies
are split by magneto-optical effects [41,52]. As a consequence, resonant circulators
are inherently narrow-band, with the operational bandwidth limited by the magneto-
optical constants [41], irrespective of three-port or four-port configurations [40-42).
However, this inherent limit cannot be solved with very strong magneto-optical mate-

rial alone, because reciprocal coupling directly occurs between the waveguides when
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they are closely placed to the resonator to lower quality factor.

To reconcile the needs for both large bandwidth and small device footprint, we
propose to use recently-discovered one-way waveguides [4,53-55] to create broadband
optical circulators with a device dimension on the order of tens of wavelengths. These
photonic one-way modes are highly nonreciprocal: they propagate only along a single
direction, while the backward modes are completely evanescent. In this chapter,
we use these fundamentally new states of light to create circulators that have the
bandwidth potential to span an entire photonic bandgap. The circulators are based
on directional couplers between a one-way edge waveguide and a conventional two-
way waveguide. As a result, the operational bandwidth is determined by that of a
waveguide coupler, without the inherent limit of a resonance. In this chapter, we
employ both analytical spatial coupled mode theory and finite-element simulation to
analyze the performance of directional couplers. Based on such directional couplers,
we present the design and finite element simulation of a three-port and a four-port
circulator. Scattering matrix analysis of these devices are also presented to elucidate

the directions for further improvement in bandwidth.

3.2 Basic idea

Generally speaking, an optical circulator is a nonreciprocal multi-port device in which,
under ideal conditions, light entering any given port is transmitted completely to the
subsequent port. Reflected waves not only are blocked from entering upstream stages,
but are also separated and can be analyzed using additional optics. Optical circulators
require a minimum of three ports, and more ports can be added by cascading multiple
three-port circulators [47,56]. For this reason, we focus on the simplest three-port
and four-port configurations in this chapter.

Starting with a three-port circulator, we consider a one-way waveguide where light
propagates in a single spatial mode along the forward direction, but is evanescent
along the backward direction. A section of the one-way waveguide is placed in the

vicinity of a two-way waveguide, in parallel, to form a waveguide coupler as shown in
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Figure 3-1: Schematics of optical circulators based on one-way waveguides, with the
port number illustrated. (a) A three-port circulator constructed from a directional
coupler between a one-way waveguide (yellow) and a two-way waveguide (green). The
arrows indicate the allowed propagation directions in each individual waveguide, in
the absence of other waveguides. Coupling between adjacent waveguides alters the
power flow and creates a circulator. (b) A four-port circulator created by cascading
two three-port circulators.

Fig. 3-1(a). The optical power will be transferred between the forward modes of the
two waveguides periodically. Under a certain set of conditions which will be discussed
in detail in the next section, complete energy transfer can occur at certain interaction
lengths, and a three-port circulator is created. As illustrated in Fig. 3-1(a), the left
and right ends of the two-way waveguide serve as Ports 1 and 3 respectively, while
the input and output of Port 2 locate at the two ends of the one-way waveguide.
Light entering Port 1 is completely transferred to the one-way waveguide through the
directional waveguide coupler and is therefore transmitted to Port 2. In a similar
fashion, light entering Port 2 is transmitted to Port 3. In contrast, the backward
propagating mode remains in the two-way waveguide and consequently incident light

to Port 3 travels to Port 1.
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Cascading two three-port circulators produces a four-port circulator [47]. In our
implementation, two three-port circulators described above are connected through
Port 2, resulting in a circulating one-way waveguide coupled to two two-way waveg-
uides, as shown in Fig. 3-1(b). The ports reside at the ends of the two-way waveg-
uides. Transmission from Port 1 to Port 2 and from Port 3 to Port 4 is mediated
twice through waveguide couplers between sections of the one-way and the two-way
waveguides. Transmission from Port 2 to Port 3 and from Port 4 to Port 1 takes place
without interacting with the one-way waveguide. Overall, the system functions as a
four-port circulator, with the ports distributed around the peripheral of the struc-
ture in an apparent counter-clock-wise direction opposite to the clock-wise circulation

direction of the one-way waveguide.

At the heart of such waveguide-coupler-based circulators is a one-way waveguide
where reflection is completely suppressed and full transmission occurs even at sharp
corners or near large defects and scatterer. One way waveguide is the electromagnetic
analogue of quantum hall effect, exhibiting the breaking of time-reversal symmetry
in the most extreme situation. Two classes of one-way waveguides have been pro-
posed: photonic chiral edge states [4,53,55] and surface magnetoplasmons [54,57,58].
Photonic chiral edge states flow at the truncated surfaces of a magneto-optical (gy-
romagnetic) photonic crystal in a particular frequency range where the bulk crystal
features non-trivial topological properties. In contrast, surface magnetbplasmons rely
on the splitting and the directional-dependence of the surface plasmon frequency in
the presence of a strong external magnetic bias [54]. Although both effects are purely
two-dimensional, photonic chiral edge states have been experimentally realized in
three-dimensional systems [55,59]. In this chapter, we choose to focus on photonic
chiral edge states, because of the additional degree of freedom from a large number
of lattice choices, a large relative bandwidth, and low absorption loss in experimen-
tal systems [55]. Nevertheless the concept and the design principle can be readily

transferred to surface magnetoplasmon systems.
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3.3 Waveguide coupler

Figure 3-2: Schematics of the waveguide coupler. The lower cladding is a gyromag-
netic photonic crystal supporting a one-way waveguide (marked in yellow), while
the upper cladding is a dielectric photonic crystal supporting a two-way waveguide
(marked in green).

In this section, we propose a concrete implementation of a directional waveguide
coupler between a one-way waveguide and a two-way waveguide. Taking a typical
structure supporting photonic chiral edge state [4], where light travels only in one di-
rection at the interface between a lower cladding of a gyromagnetic photonic crystal
and an upper cladding of a nonmagnetic photonic crystal, we introduce an addi-
tional two-way waveguide by creating a line defect one lattice constant away from the
interface (Fig. 3-2).

The gyromagnetic photonic crystal consists of a square lattice of yttrium-iron-
garnet (YIG) rods in air, with the rod radius r, = 0.11a (a is the lattice constant).
YIG exhibits strong gyromagnetic response under external magnetic bias, as the

permeability tensor takes the form:

piooipr 0
p=|—ipr py O (3.1)
0 0 1
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Figure 3-3: Calculated band diagram of the waveguide coupler. The green and
the blue regions are the projected band diagrams of the gyromagnetic photonic
crystals and the dielectric photonic crystals respectively. An overlapping bandgap,
[0.527,0.576](2mwc/a), supports a photonic chiral edge state (one-way) at the bound-
ary between the two claddings. The top row of the lower cladding has enlarged
rods to adjust the dispersion. The second lowest row of the upper cladding consists
of enlarged rods to create a line-defect, serving as a two-way waveguide. The two
waveguides couple strongly in the forward (left-to-right) direction. The eigenmodes
of the coupled system are shown as the red and purple curves.
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Figure 3-4: Dispersion relation in the k-space where the two forward modes are
strongly coupled. The blue curves are unperturbed dispersion relations of the one-
way and the two-way modes in the absence of coupling, where the mode profiles are
shown in insets I and II. The red and purple curves are the dispersion relations of the
compound modes in the presence of coupling (mode profiles shown in inset III and
IV). The insets illustrate the calculated E-field distribution at w = 0.551(2m¢/a). For
the entire frequency range shown, there is only one backward propagating mode as
can be seen in Fig. 3-3.
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where p = 14, pu; = 12.4, corresponding to conditions at 4.28GHz with an external
magnetic field of 1600 Gauss [4]. The dielectric constant is €; = 15. A bandgap sup-
porting one-way chiral edge modes is found between 0.526(27c/a) and 0.576(27c/a)
for the TM polarization (Fig. 3-3). The dielectric constant and radius of the upper
cladding e; = 8 and r, = 0.285a are chosen to maximize the size of an TM bandgap
(between 0.513(2mc/a) and 0.588(27c/a) with the identical mid-gap frequency. At
the interface between the two crystals, a one-way chiral edge state emerges through
the entire frequency range where the two bandgaps overlap. We added the second
waveguide by increasing the rod radius in the second lowest row of the upper cladding.
We increase this radius to 0.449a and also increase the radius of the rods in the top
row of the lower cladding to 0.134a. As a result, the dispersion relations of the two

waveguides intersect at a mid-gap frequency of 0.551(2wc/a) (Fig. 3-4).

The operational bandwidth of the waveguide coupler directly determines the band-
width of the circulator. Therefore, it is important to review the analytical theory of a
waveguide coupler that guides the design of the dispersion relation of the constituent
waveguides. Such an analytical theory also points towards ways to improve transfer
efficiency by controlling the difference in the phase velocity between the underlying
waveguides. In the weakly-coupled regime, the amplitude of the waves in two parallel

waveguides can be described by the following spatial coupled mode equations [60]:

da :

= —jgbar + K120z

d; _ (3.2)
2 = —jbaaz + ka1ax

where q; is the field amplitude and g; is the wave vector in waveguide 7, in the absence
of the coupling. The coupling coeflicients are related by energy conservation as k12 =
—K3,, since the spatial coupled-mode theory is not restricted to reciprocal systems
[30]. With the coupling coefficient expressed in the absolute value |k| = |k1| = |k2],

the two eigenmodes in the coupled system possess different propagation constants

2
kpg = B+ B2 + \/(,Bl — ﬁz) L R2 (3.3)

2 2
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and their spatial field distributions are a linear combination of the individual waveg-
uide modes (Fig. 3-4). Light entering into either one of the constituent waveguide
simultaneously excites both eigenmodes. Because of their different propagation con-
stants, the spatial beating between the two transfers power between the two waveg-

uides in a back-and-forth manner [61]. Maximum power transfer is given by

h?2

and reaches 100% when |8; — 2] < k. The interaction distance to achieve this

maximal transfer is given by:

L= T (3.5)
2 (M)Q + K2

—b2
2

The operation of an ideal circulator requires the waveguide coupler to satisfy the
following two conditions over a broad range of frequencies: complete power transfer
between the waveguides, and an identical interaction length. Consequently, for the
constituent one-way waveguide and two-way waveguide, the ideal conditions include
identical dispersion relation |8; — f2] < & and identical coupling constant over as
broad frequency range as possible. In our design, the structure has been optimized

such that both conditions are met over a relative bandwidth of ~ 2% (Fig. 3-4).

The performance of the waveguide coupler is verified using a finite-element solver
(Fig. 3-5(a)). A point source excites the two-way waveguide in the upper cladding,
11 lattice constants away from the convergence point where the one-way waveguide
starts to run parallel to the two-way waveguide. Towards the right side of this con-
vergence point, the waveguide coupler transfers power from the two-way waveguide to
the one-way waveguide (Fig. 3-5(b)), as indicated by the flux in each waveguide as a
function of the location. At the frequency of 0.551(27¢/a) where the uncoupled disper-
sion relations intersect, maximum power transfer reaches 100% efficiency, consistent
with the coupled mode theory. Over the frequency range between 0.545(27¢/a) and
0.554(2mc/a), the peak transfer efficiency is over above 95%, because |8; — B2| < & is
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Figure 3-5: Power transport in the waveguide coupler. (a) Steady state E-field pat-
tern at w = 0.551(2mc/a), showing a complete transfer from the two-way waveguide
(incident from the left) to the one-way waveguide. (b) Light is transferred between
the two-way waveguide and the one-way waveguide, as indicated by the power flux.
(¢) Power transfer over a range of frequencies.

satisfied. A small variation in the coupling coefficient & is observed in this range, re-
sulting in a variation in the interaction length. Even though for a circulator one must
use a fixed-length coupler for the entire operational bandwidth, we accomplished less
than 1dB transmission ripple over a 2% relative bandwidth at a center frequency of

0.548(2mc/a) with a 60a long waveguide coupler.

3.4 Three-port circulator

Based on such a waveguide coupler, we can construct a three-port circulator as illus-
trated in Fig. 3-1(a). At the center frequency of 0.548(27¢/a), complete transmission
can be seen from Port 1 to Port 2 (Fig. 3-6(a)) and from Port 3 to Port 1 (Fig.
3-6(b)). The transmission spectra between these ports over a range of frequencies
near the center frequency are shown in Fig. 3-7. Even though the transmission from

Port 1 to Port 2 decreases as the detuning from the center frequency increases, the
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Figure 3-6: Three-port circulator. (a) Steady-state electric-field distribution of a 3-
port circulator excited from Port 1 at w = 0.548(2mc¢/a). The waveguide coupler
transfers light from the two-way waveguide to the one-way waveguide, producing
complete transmission at Port 2. (b) Steady-state field distribution with excitation
from Port 3 at w = 0.548(27¢/a), where the transmission is routed to Port 1 instead.
The leakage to Port 2 amounts to 0.5% of the total incident flux. (c) The scattering
matrix decomposition of the three-port circulator. Arrows indicate distinct modes at

boundaries.
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Figure 3-7: The transmission spectra of the three-port circulator excited from Port
1. The finite element simulation (solid curves) agrees well with the scattering matrix
calculation (circles).

sum of the transmission to Port 2 and Port 3 remains close to 1. The minimum
reflection indicates the performance of the circulator is mainly limited by the band-
width of the waveguide coupler, rather than the discontinuities in the system. Further
structural optimization should yield more optimized dispersion relations for the con-
stituent waveguides, given the large number of degrees of freedom in photonic crystal

systems. The 1dB loss bandwidth for this circulator remains 2%.

We also performed scattering matrix analysis to isolate the impact of the waveg-
uide coupler to the overall performance of the three-port circulator and the derived
structures that will be discussed later in this chapter. The three-port circulator is
compartmentalized into three areas, two corner areas and a tri-mode area (a dual-
mode waveguide coupler in the forward direction and a single-mode waveguide in the
backward direction), as illustrated in Fig. 3-6(c). Each area has three inputs and
three outputs, corresponding to a 3 by 3 scattering matrix. In particular the tri-mode
ikiL

area is described by a simple diagonal matrix with a phase delay " on the diagonal

20



elements, where k; is the propagation constant of the i*h eigenmode and can be con-
veniently calculated with mode solvers using plane-wave expansion or finite-element
methods. The corner areas require three independent finite-element simulations to
extract the matrix element of scattering matrix for each frequency. Combining the
scattering matrices of all three areas, we obtain the total scattering matrix of the
entire system, where: |Sy|? and |S3|? are the transmission coefficients from Port
1 to Port 2 and from Port 1 to Port 3 respectively (Fig. 3-7). A good agreement
with the finite-element calculation of the full structures suggests that the scattering
matrix analysis can be reliably used to examine performance of devices built from

these constituent areas, such as cascaded three-port circulators in the next section.

3.5 Four-port circulator

As outlined earlier, additional ports can be introduced by cascading multiple three-
port circulators. We present a specific example of synthesizing a four-port circulator
by cascading two three-port circulators illustrated in Fig. 3-1(b). This implemen-
tation shares a single magneto-optical photonic crystal, on which a circulating edge
mode is coupled to two parallel two-way waveguides subsequently and contains two
directional couplers. At the previously calculated optimal frequency of the waveguide
coupler at 0.548(27c/a), the four-port circulator also perform ideally in finite-element
calculations: complete transmission occurs from Port 1 to Port 2 through the action
of both waveguide couplers (Fig. 3-8(a)), while light incident on Port 4 is routed
completely to Port 1 without interacting with the coupler (Fig. 3-8(b)). Similar
transport behaviors are found between other ports as well.

At frequencies detuned from the optimal, the transmission of the four-port cir-
culator is rather complex and we resort again to the scattering matrix formalism to
understand the contributing factors. In so doing, we could efficiently compute the
transmission spectra for devices with various lengths of the waveguide coupler and
the vertical sections of the one-way waveguides. The four-port circulator can be de-

composed into four corners and two horizontal tri-mode waveguides (coupler) and two

ol



5TT0 SOOOUO0000000
0000 00000000
0000 oo 0000
0000 00000000
1 90,00 0000000060,
0000 000 ooo00
e PR
seen S "
e :
00 ce %
00 eoce s 00300 e e s e e
00 000000000000000 o
2 (0 $0.08.000008.00600 O
00 000000000000000000000000000000000Q0 Q 000000000
CO 00000000000C0000 0000000000000 Q 000000000
000000000000 00000000Q00Q000 00000C0000000 o 000000000
D00000000000000000000D00000 0000000000000 [s] 00000000CH

000C000000C0O00000000000
Q0000000000000 00000CQ0

2 0O 0000, 3
6060000666000 60600 6000000000000000
0000000000000 000000000000 00000000C00C0000000
0000000000000

000000000000000000C

Figure 3-8: Four-port circulator. (a) Steady-state electrical-field distribution of a
four-port circulator excited from Port 1 at w = 0.548(27¢/a), with full transmission
to Port 2. (b) Steady-state field distribution with excitation from Port 4 at w =
0.548(2mc/a). Full transmission is seen at Port 1. (c) Scattering matrix decomposition
of the four-port circulator.
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Figure 3-9: The transmission spectra of the four-port circulator. Finite element
simulation (curves) shows good agreement with scattering matrix calculation (circles).
The input is at Port 1 in (a) and Port 4 in (b).
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Figure 3-10: The calculated transmission spectra for three circulators with various
lengths for the vertical sections of the one-way waveguide (curves) and the calculated
transmission spectrum when an absorber is inserted in the one-way waveguide between
Port 1 and Port 2 (circles).

vertical sections of a single-mode waveguide (one-way waveguide), as shown in Fig.
3-8(c). Since we already know the scattering matrix of the corner and the dispersion
relation of the waveguide coupler from previous analysis, the total scattering matrix of
the four-port circulator can be calculated analytically by simple matrix calculations.

Since the waveguide coupler provides a bandwidth of around 2%, one might ex-
pect a similar drop in power transmission between the ports when the frequency is
detuned from the optimal value. The calculated transmission spectrum (Fig. 3-9(a))
indeed exhibits a relative bandwidth of 1.3%, where the pass-band ripple is found to
be less than 1dB. However, large transmission still occurs at a discrete set of frequen-
cies far detuned from the optimal, even when the waveguide couplers do not provide
complete power transfer. At these frequencies, residual power exists and circulates in
the one-way waveguide, in contrast to the ideal case where residual power vanishes
after propagating through both waveguide couplers (Fig. 3-8(a)). With the circulat-

ing residual power, the entire stretch of the one-way waveguide functions as a ring
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resonator, where complete transmission occurs when the phase accumulated through
the entire one-way ring is an integer multiple of 2w. We verified this observation by
changing the length of the vertical section of the one-way waveguides L, and found
the transmission peaks shift in frequency (Fig. 3-10), commensurate with ring res-
onator interpretation. The notable exception is found at the optimal frequency of
0.548(2mc/a), where the peak frequency is unaffected by L,, consistent with a lack of
residual power and the absence of the ring resonance. Further agreement is found in
the simulation with a perfect absorber inserted in the left vertical section of the one-
way waveguide (Fig. 3-10). In that case, the circulating power is shut off completely,

resulting in the disappearance of the oscillation.

We note that such waveguide-coupler based circulators, in both three-port and
four-port forms, can eventually provide much greater bandwidth, when one opti-
mizes the dispersion relation of the underlying one-way and two-way waveguides.
Here both the geometry of the photonic crystals and the frequency-dependent gy-
romagnetic tensor elements affect the dispersion. The incomplete transmission at
detuned frequencies could originate from the reflection from the 90 degree bend or a
non-ideal waveguide coupling. However, since the aggregated transmission to Port 2
for the three-port circulator (Fig. 3-7(a)) and the aggregated transmission to Port
2 for the four-port circulator (Fig. 3-9(a)) are both close to unity, the performance
limitation is largely dominated by the waveguide coupler. There is also a trade-off be-
tween the bandwidth and the length of the waveguide coupler in this proof-of-concept
structure. However, given the large degree of freedom in dispersion engineering for
photonic crystals, by varying the dimension and the shape of the nearest unit cells
to the waveguides, one could in principle match the uncoupled dispersion relations
of the two waveguides over a much broader range of the frequency. In other words,
equalizing the propagation constant and the frequency of the two waveguides could
allow us to create ideal circulators over a frequency range close to the entire photonic
bandgap. Moreover, increasing the coupling coefficient x by physically merging the
two-way waveguide and the one-way waveguide could reduce the interaction length,

thereby reducing the overall device dimension significantly. With the emergence of
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novel infrared magneto-optical materials featuring the Voigt parameter comparable to
microwave ferrites [62,63] envision the experimental demonstration of such broadband

circulator at optical frequencies.

3.6 Concluding remarks

In this chapter, we proposed a novel optical circulator based on directional couplers
between a one-way waveguide and a two-way waveguide. We examined the bandwidth
limit of such a waveguide coupler and its impact on the derived three-port circulators
and four-port circulators. The bandwidth is not limited by the resonant linewidth
and a three-port circulator and a four-port circulator are implemented numerically to
feature a relative 1dB -bandwidth of 2% and 1.3% respectively. While our discussion
has been restricted to two-dimensional structures, the operational principle and design
procedures can be readily extended to three-dimensional structures at microwave,
THz and optical frequencies, using out-of-plane confinement employed in experimental

three-dimensional chiral edge state systems [55].
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Chapter 4

A General Framework of

Calculating SBS Gain

4.1 Introduction

Stimulated Brillouin Scattering (SBS) is a third order nonlinear process in which two
optical modes are coupled through an elastic mode [5,6]. In a waveguide system,
the interference of pump and Stokes waves generates a time-varying optical force at
the beat frequency. The optical force, while at resonance with an elastic mode at the
phase-matching wavevector, excites the mechanical vibration of the waveguide, which
can in turn scatter light between the pump and Stokes waves. Since its discovery,
SBS has been extensively studied with a variety of applications in efficient phonon
generation [64,65], optical frequency conversion [66-68], slow light [69-72], and signal
processing techniques [73,74].

The optical force that mediates SBS includes electrostriction force and radiation
pressure [75,76]. Electrostriction is an intrinsic material nonlinearity, which arises
from the tendency of materials to become compressed in the region of high optical in-
tensity. In previous studies, electrostriction is treated as a bulk nonlinearity with only
electrostriction body force taken into account [5,6]. We find that the discontinuities
of optical intensities and photoelastic constants can generate electrostriction pressure

on material boundaries. Radiation pressure is another boundary nonlinearity, which
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arises from the interaction of light with the material boundaries with discontinuous
dielectric constant [77,78]. For nanoscale structures, radiation pressure is radically
enhanced, enabling a variety of optomechanics applications [79-84]. Within nanoscale
waveguides, the distributions of electrostriction force and radiation pressure are quite
different. The interplay between these two effects creates new degree of freedoms of
tailoring SBS process.

In translationally invariant waveguides, SBS can be categorized into forward SBS
(FSBS) and backward SBS (BSBS). In FSBS, the pump and Stokes waves propagate
in the same direction, generating translationally invariant optical forces, which excite
standing elastic modes [67]. In BSBS, the pump and Stokes waves propagate in
the counter directions, generating translationally varying optical forces, which excite

traveling elastic modes.

In translationally periodic waveguides, SBS can still be categorized into FSBS and
BSBS based on the Bloch wavevectors of the pump and Stokes waves. One important
feature brought by the periodicity is that the optical group velocity vanishes at the
Brillouin zone boundary [1]. Within this slow light regime, photon-phonon interaction
becomes extremely strong, creating a giant enhancement of SBS nonlinearity.

SBS can also occur between distinct optical modes [85-89]. The interplay between
optical modes with distinct polarizations, symmetries, and distributions enrich the
tailorability of SBS nonlinearities. Intermode SBS has been used in optical signal
isolation and Brillouin cooling of mechanical devices.

The strength of SBS nonlinearity is characterized by the SBS gain. There have
been many theoretical studies on calculating SBS gain through some forms of overlap
integral between optical and elastic eigen-modes [5,6,67,85,88-92]. These treatments,
while accurate for microscale waveguides, suffer from two drawbacks for nanoscale
waveguides. First, most previous treatments are based on nonlinear polarization cur-
rent. The calculated SBS gain only captures electrostriction body forces, but doesn’t
account for boundary nonlinearities such as electrostriction pressure and radiation
pressure. This issue becomes significant for nanoscale waveguides where the bound-

ary effect is radically enhanced. Second, some previous studies assume the optical
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mode is linearly polarized, while some studies describe the elastic modes by the den-
sity modulation rather than the displacement vector. For nanoscale waveguides, the

vector nature of optical and elastic modes has to be fully evaluated.

In this chapter, we propose a general method of calculating SBS gains via the
overlap integral between optical and elastic eigen-modes. Within this formalism, all
kinds of optical forces are taken into account, with bulk and boundary nonlinearities
formulated as bulk and boundary integrals over the waveguide cross-section. In addi-
tion, both the optical and elastic modes are treated as vector fields, allowing for the

most general forms of dielectric and elastic tensors.

Armed with this formalism, we study the SBS process of a silicon rectangular
waveguide. We will show that all the optical forces in FSBS are transverse, and the
constructive combination of electrostriction force and radiation pressure can generate
large FSBS gain for certain elastic modes. In contrast, the optical force in BSBS is
largely longitudinal, and the maximal BSBS gain among all the elastic modes ap-
proaches the conventional BSBS gain. We further apply this formalism to intermode
SBS. By coupling optical modes with distinct symmetries, optical forces with all pos-
sible symmetries can be generated, and the elastic modes with the same symmetry can
be excited. We also study the FSBS process when the silicon waveguide is put on top
of a silica substrate. Both the frequency response calculation and leaky eigen-mode
analysis reveal that the coupling to the radiative modes of the substrate introduces

a large radiative loss which significantly reduces the SBS gain of the structure.

Based on the understanding of SBS gains of a rectangular waveguide, in this chap-
ter, we proceed to study the SBS process of a translationally periodic waveguide. We
demonstrate that SBS gain can be further enhanced at the Brillouin zone boundary
where the decreased group velocity of light significantly magnifies photon-phonon in-
teraction. In addition, we find that the geometric symmetry plane perpendicular to
the propagation axis plays an important role in both FSBS and BSBS. This plane
separates standing elastic modes into even and odd modes. For FSBS, only even
modes have nonzero SBS gains. For BSBS, the SBS gain of even modes approaches

to infinity, while the SBS gain of odd modes approaches to a constant.
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4.2 An overlap integral formula of SBS gains

To start with, we develop a general framework of calculating the SBS gain. Consider
a translationally invariant waveguide in x direction. In a typical SBS process, the
pump wave E,ei*»2=“»t) and the Stokes wave E,e!(ks?=“s) generate optical forces at
the phase-matching wavevector ¢ = k, — ks and the beat frequency Q2 = w, — w;.
This optical force can excite mechanical vibrations which enables the parametric
conversion between pump and Stokes waves. This process can be describe by the

following relation [5]:

dP,
dz

:gPpPs _asps (41)

Here, P, and P, are the guided power of the pump and Stokes waves, and g is the
SBS gain. Through particle flux conservation, SBS gain is given by the following
formula [76]:

Ws du
9() = 55 P, PS?R <f , E> (4.2)

where f is the optical force generated by pump and Stokes waves, and u is the elastic
response of the waveguide induced by f. The overlap integral is defined over the
waveguide cross-section. The optical power of an invariant waveguide is given by

P = v,(E, eE) /2, where v, is the optical group velocity. Therefore,

2w S(f, u)

9 = VgpVgs (Ep, €Ep) (Es, €E) (4.3)

To further simply (4.3), we have to consider the equation governing the elastic

response ue“* under external forces fe **. When elastic loss are ignored, we have
[93]:
(9 8ul
—0Q%u; = —Ciip— + f; 4.4
pieu bz, ki Ozr [ (4.4)

where p is the mass density, and c;ji, is the elastic tensor. c;;; has two important
properties. First, it is symmetric about the first two and last two indies: c¢;jx = ¢jiki,
Cijik = Cijr- Second, the interchange of the first two indies and the last two does not

affect the value of c;jk: criij = cijia [93]. Without f, the equation above is the elastic
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eigen-equation:

0 ou,
_szui —_ %ciﬂda—z; (45)
J

Using the symmetry properties of ¢;jr;, we can show that the operator in the right
—iQnt

hand side of the eigen-equation is Hermitian. Therefore, the eigen-mode u,e

satisfies orthogonality condition:

<uma pun> = mn(uma pum> (46)

When f is present, u can be decomposed in terms of eigen-modes u = Y b, un.

Using the orthogonality condition, we have:

(uyy,, f) 1
m P 4‘7
’ (uma pum) Q?n -2 ( )

Now we add elastic loss to this system. The commonly encountered elastic loss
mechanism are air damping, thermoelastic dissipation, and clamping losses [94]. The
first order effect of loss can be captured by changing Q,, to Q,, — i[';,/2. Assuming

quality factor Qpm, = Qp, /', is well above 1, we have,

(U, ) 1 /2

b = o ) BT G = 0 — T 2

(4.8)

Inserting (4.8) into (4.3), we can see that the total SBS gain is the sum of SBS

gains of individual elastic modes.

(Cm/2)?
Q) = G 4.9
9D = 2 O, + T 2P 49
The SBS gain of a single elastic mode has a Lorentian shape and a peak value:
2
G = 2 [f, un)| (4.10)

gy (B, €By) (B, €B,) (U, puin)
where we have used the fact that Q < wp, ws and w, = w; = w.
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For translationally periodic waveguides with axial periodicity a, (4.2) becomes:

w du
Q)= —— — 4.11
9D = 30P e <f’ dt> (4.11)
Where the overlap integral is defined over the unit cell rather the waveguide cross-
section. The optical power of a periodic waveguide is given by P = v, (E, €E)/2a.
Following same steps as invariant waveguides, we can show that (4.9) still holds. The

maximal gain of individual modes becomes:

_ 2wQna (£, u,,)|?
B anvgpvgs (Ep, 6Ep> (Es, €Es) (U, puy,)

G, (4.12)

(4.10) and (4.12) provide a general method to calculate the SBS gain of a waveg-
uide with arbitrary cross-section. Specifically, given the optical frequency w, we can
use finite element method to solve for the wavevectors and modal profiles of pump
and Stokes waves. Then, we use finite element method to solve for the elastic modes
at the phase-matching wavevector ¢ = k, — k;. The SBS of each elastic mode can be
calculated by taking the overlap integral between optical forces and elastic displace-
ment. For translationally invariant waveguides, body forces and pressures form 2D
and 1D integration respectively. For translationally periodic waveguides, body forces

and pressures form 3D and 2D integration respectively.

(4.10) and (4.12) shows that the SBS gain is determined by the frequency ratio,
the elastic loss factor, the optical group velocities, and the overlap integral between
optical forces and elastic eigen-modes. In addition, (4.10) and (4.12) provide a way
to separate the effects of various optical forces. Specifically, the overlap integral is

the sum of all optical forces:
(Fum) = (fn ) (4.13)

The amplitudes of individual overlap integrals determine contributions from different

optical forces, while their relative phases determine the interference effect.
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4.3 Calculation of optical forces

A key step of applying (4.10) and (4.12) is to calculate optical forces from pump and
Stokes waves. Throughout the study, we consider electrostriction force and radiation
pressure. In this section, we summarize the calculation of these optical forces for both
translationally invariant and periodic waveguides. Note that we are interested in the
time-varying optical forces. The computed optical force is the complex amplitude
which encodes the strength and phase distribution. This is different from static

optical force which is always real.

4.3.1 Electrostriction force

Electrostriction forces are derived from electrostriction tensor. The instantaneous

electrostriction tensor is given by:
1
Oij = —56071 pz’jklEkEl (414)

where n is the refractive index, and p;;x is the photoelastic tensor [95].

For translationally invariant waveguides, the total electric field is given by
E = (Eyeikra—wrt) L Eeithsz—wit)) /9 L ¢ e (4.15)

Inserting this expression to (4.14), and filtering out the components with frequency

2, we get the time-harmonic electrostriction tensor aijei(q“m):

1
oij = —Zfon‘lpz'jkt(EpkE;z + EyE3) (4.16)

For simplicity, we assume that the crystal structure of the waveguide material is

symmetric about x = 0, y = 0, and z = 0. Therefore, p;;i; is zero if it contains odd
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number of a certain component. In compact notation, (4.16) can be written as:

Ozz P11 P12 P13 Epz E;x
Oyy P12 P22 P23 Epy E;y
Oz 1 3¢ E ZE;Z
_ —§eon4 P13 D23 Ps3 P (4.17)
Oyz P4y EpyE;z + EPZE:y
Orz Dss EPIE;Z + Esz::E
_Ua:y_ | pﬁﬁJ _EPIE;y + EP?JE::E_

Electrostriction force is given by the divergence of electrostriction tensor. In a sys-
tem consisting of homogeneous materials, electrostriction forces can exist inside each

material (electrostriction body force) and on the interfaces (electrostriction pressure).

Electrostriction body force is fZ5¢(e=—5%)

szS = _iqo'zz - ayc"zy - aza'alez
ffs = —iqo,y — Oy0yy — 0,0y, (4.18)
fZES = —iqog, — 040,y — 0,0,

Electrostriction pressure on the interface between material 1 and 2 is given by FFS¢i(az—%)
(normal vector n points from 1 to 2):

F-ES = (Ulij - agij)nj (419)

K3

Under a particular phase, the optical mode of the waveguide Ee'**—“*) have imagi-
nary E, and real E,,. From (4.17), we can see that o,,, 0y, 0.., and o, are real
while 0,, and o,, are imaginary. From (4.18) and (4.19), we can see that for both
electrostriction body force and electrostriction pressure, the transverse component is

real while the longitudinal component is imaginary.

For translationally periodic waveguides, the total electric field is given by

E = (E,e " + Ese ™) /2 + c.c (4.20)
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Inserting this expression to (4.14), and taking out the components with frequency (2,

we get the time-harmonic electrostriction tensor g;;e~":

oij = -—le-eon‘lpijkl(EpkE':l + E,Ey) (4.21)
Similar to invariant waveguides, electrostriction body force is given by f&5e—#¥:
fES = —0;0;; (4.22)
Electrostriction pressure is given by FEZ%e—%%:
FF% = (0155 — 02ij)n; (4.23)

Electrostriction pressure can have tangent components on the interface.

4.3.2 Radiation pressure

Radiation pressure is derived from Maxwell Stress Tensor (MST). For a dielectric
system (u = 1) without free charges (p = 0,J = 0), radiation pressure is localized
where the gradient of € is nonzero [96,97]. For a system consisting of homogeneous
materials, radiation pressure only exists on the interfaces. The dielectric part of

instantaneous MST is:

1
T;; = eoe( E;E; — =6, E?) (4.24
J J 9 J

The instantaneous pressure on the interface between material 1 and 2 is:
FP = (Ty; — Tuij)ny (4.25)

By decomposing the electric field into its normal and tangent components E = E,n+
Eit, and using the boundary condition ¢ Ey, = €2Fs, = D,, and E\; = Ey, = E;, we

can show that:

1 1
FEP = —560Et2(62 —€)n+ iengfL(eQ_l —€eHn (4.26)
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For translationally invariant waveguides, the time-harmonic radiation pressure is

FRPei(qa:—Qt) .
1 1
FRP = —§eoEptE;"t(62 —e)n+ §engan;n(e;1 —¢Y)n (4.27)

(4.27) shows that radiation pressure is transverse and real.
For translationally periodic waveguides, the time-harmonic radiation pressure is
FRPe~#% with FEP given by (4.27). Radiation pressure is always in the normal

direction.

4.3.3 Convergence to the conventional BSBS gain

Combining (4.10) and (4.12) with the calculation of optical forces, we are ready to
explore the SBS nonlinearity of nanoscale waveguides. Before that, it is instructive
to compare (4.10) with the conventional BSBS gain [6]. We can show that (4.10)
converges to the conventional BSBS gain under plane-wave approximations for both
optical and elastic modes. Specifically, consider the coupling between two counter
propagating optical plane-waves through an elastic plane-wave. The optical plane-
wave is linearly polarized in y direction. The elastic plane-wave is pure longitudinal
traveling at velocity V. Under this setup, nonzero optical forces include the longi-
tudinal electrostriction body force, and the transverse components of electrostriction
pressure and radiation pressure. Only the longitudinal electrostriction body force
contributes nonzero overlap integral:

1 .
szS = _anxz = §iq60n4p12EZ (428)

Inserting this expression into (4.10), and using the fact that Q = ¢V and q = 2k, we

can show that:
win'p, 1

= — 4.29
oVl A ( )

Where A is the cross-sectional area of the waveguide. This is exactly the conven-

tional BSBS gain. For microscale waveguides, the plane-wave approximation is valid,
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and (4.10) converges to Gy. For nanoscale waveguides, (4.10) can deviate from Gy
significantly because of the vector nature of optical and elastic modes as well as the

enhanced boundary nonlinearities.

4.4 Translationally invariant waveguides

4.4.1 Silicon rectangular waveguides

In this section, we apply the general formalism to study the SBS process of a trans-
lationally invariant waveguide. Consider a silicon rectangular waveguide suspended
in air (Fig. 4-1 insert). The cross-section is a by 0.9a. For silicon, we use refrac-
tive index n = 3.5, Young’s modulus E = 170 x 10° Pa, Poisson’s ratio v = 0.28,
and density p = 2329kg/m?. In addition, we assume that the [100], [010], and [001]
symmetry direction of this crystalline silicon coincide with the x, y, and z axis respec-
tively. Under this orientation, the photo-elastic tensor p;;; in contracted notation is
[p11, P12, Paa] = [—0.09,0.017, —0.051] [98]. The structure has two symmetry plane
y = 0 and z = 0. Both optical modes and elastic modes have fixed parities about
these planes.

The fundamental optical modes are E,; and E,;; (Fig. 4-1(a)). Ey is even
about z = 0 and odd about y = 0 with a large E, component. E,;; has the opposite
parities and slightly higher frequencies. Throughout the study, we assume the pump
wavelength is 1.55um. So a is the product of 1.55um and w in unit of 27c/a, and
different operating point in the dispersion diagram corresponds to different a. For
FSBS and BSBS, we assume that pump and Stokes waves come from FEyq;. Since
Q/w =~ Vi /c is on the order of 10™*, pump and Stokes waves approximately corre-
sponds to the same mode Ee'**=“%) The optical force induced by intramode coupling
is always symmetric about both y =0 and 2 = 0.

We only consider elastic modes with the same parities (Fig. 4-1(b)). Here, E-
modes are the actual eigen-modes, while P-modes (S-modes) are the constrained

eigen-modes with pure longitudinal (transverse) displacement. At ¢ = 0, the geo-
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Figure 4-1: The optical and elastic modes of a silicon rectangular waveguide. Op-
tical frequency is in unit of 2we/a, while elastic frequency is in unit of 27V /a.
Vi = E/p = 854 x 10°m/s is the longitudinal sound velocity of silicon. (a) Dis-
persion diagram of optical modes E,i; and E.;. (b) Dispersion diagram of elastic
modes which are even about both y = 0 and z = 0. E-modes (black lines) are the
actual eigen-modes. P-modes (blue lines) are the constrained eigen-modes with only
longitudinal movements. S-modes (red lines) are the constrained eigen-modes with
only transverse movement. At ¢ = 0, E-modes are either P-modes or S-modes. (c)
The modal profiles of E1 through E5 at ¢ = 0. The deformation is proportional to the
displacement. The color represents u, for S-modes and u, for P-modes. Blue, white,
and red correspond negative, zero, and positive values respectively. E1 corresponds
to a longitudinal shift.
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metric symmetry plane z = 0 is recovered. Elastic modes that are odd (even) about
this plane only have longitudinal (transverse) movement. Therefore, elastic modes
at ¢ = 0 are pure P-modes or S-modes (Fig. 4-1(c)). Elastic modes at nonzero g
are hybrid. Similar to the optical mode, we can choose a proper phase so that u, is

imaginary while u, . are real.

4.4.2 Forward SBS

In FSBS, E, = E; =E and ¢ = 0. (4.17) can be simplified to:

Ozz P P12 DPis | E:[?

Oyy P2 P22 P23 2 2

Oaz | _ _%€0n4 P13 P23 P33 |E.|? * (4.30)
Oyz D44 2R(E,E)

Oz Dss 0

| Oy | | Pes | | 0 i

Therefore, 0y, = 0. = 0. From (4.18) and (4.19), we can see that fZ5 = FFS = 0.
So both electrostriction force and radiation pressure in FSBS are transverse. We
pick an operating point at w = 0.203(2wc/a), k = 0.75(w/a) with ¢ = 315nm, and
compute the force distribution (Fig. 4-2(a)). Electrostriction body force is largely
in y direction. This is because E, is the dominant component in electric field and
|p11| is about five times larger than |pj»|. Electrostriction pressure points inwards.
Radiation pressure points outwards. Radiation pressure is about five times larger
than electrostriction pressure.

The transverse nature of optical force combined with the fact that elastic modes
are either P-modes or S-modes at ¢ = 0 indicates that only S-modes have nonzero
FSBS gains. We compute the corresponding FSBS gains using a quality factor Q) =
1000 for all the elastic modes (Fig. 4-2(b)). As expected, only S-modes E2, E3, and
E5 have nonzero gains. E2 has the largest gain of 1.72 x 10*m™* W, which comes from

a constructive combination of electrostriction force (0.42 x 10*m'W-') and radiation
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Figure 4-2: Detailed analysis of FSBS. For (a) and (b), the operating point is w =
0.203(2wc/a), k = 0.75(r/a), and ¢ = 0 with @ = 315nm. (a) The distribution
of optical forces. All optical forces are transverse. (b) FSBS gains calculated from
overlap integral using @ = 1000. Blue, red, and green bars represent FSBS gains
from electrostriction force, radiation pressure, and both. Only S-modes have non-
zero gains. (c¢) The scaling of FSBS gains as a varies from 0.25pm to 2.5um. Solid
and dotted lines represent E2 and E5 respectively.
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pressure (0.44 x 10*'m'W-!). E5 has a total gain of 0.51 x 10*m™'W"!, which mainly

comes from radiation pressure (0.36 x 10*m™'W-1).
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Figure 4-3: The scaling of FSBS gains as a varies from 0.25um to 2.5pum. Solid and
dotted lines represent E2 and E5 respectively.

Next, we vary a from 250nm to 2.5um by lifting the operating point at the optical
dispersion diagram from 0.16(2wc/a) to 1.61(2m¢c/a) and compute the corresponding
FSBS gains for E2 and E5 (Fig. 4-3). For both E2 and E5, electrostriction FSBS gain
scales as 1/a? for large a. This can be understood by a detailed analysis of (4.10).
Under normalization condition (E, eE) = 1, the electrostriction tensor scales as 1/a”.
Since electrostriction force is essentially the divergence of electrostriction tensor, the
total electrostriction force that apply to the right half of the waveguide scales as 1/a>.
Under normalization condition (u,pu) = 1, u scales as 1/a. So the overlap integral
scales as 1/a%. Under a fixed @, the electrostriction FSBS gain scales as 1/a®. The
radiation pressure FSBS gain scales as 1/a® for E2 and 1/a® for E5. This can also be
understood from a breakdown of (4.10). Given the input power, the sum of average
pressure on the top and side boundaries of the rectangular waveguide is proportional
to (ny — np)/A, where n, (n,) is the group (phase) index, and A is the waveguide

cross-section [78]. When the waveguide is scaled up with a fixed aspect ratio, n, —n,
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shrinks in the order of 1/A. So the sum of average radiation pressure scales as 1/a*,
and the radiation pressure FSBS gains should scales as 1/a®. For E2, the radiation
pressure on the side and top boundaries have opposite effects. So it is the difference
rather than the sum between side and top radiation pressures that determines the
overlap integral. This is why the radiation pressure induced FSBS gain of E2 decays

faster.

4.4.3 Backward SBS

In BSBS, E, =E, E;, = E* and ¢ = 2k. (4.17) can be simplified to:

rU zz D1 P12 Pis E;%
Tyy P12 P22 P23 E?
Oz | _ _%€0n4 P13 P23 P33 E? (4.31)
Oyz Pas 2EyEz
Oz Pss 2E,E,
| Oy | i Des | _2Eav Ey_

All components of o;; are nonzero, generating electrostriction force with both longi-
tudinal and transverse components. We pick an operating point at w = 0.203(27c/a),
k = 0.75(x/a) with ¢ = 315nm, and compute the force distribution (Fig. 4-4(a)).
Electrostriction body force has large longitudinal component over the waveguide cross-
section, which mainly comes from the —igo,, term in fZ5.

The hybrid nature of optical forces combined with the fact that all elastic modes
are hybrid at nonzero ¢ indicates that all elastic modes have nonzero gains. We
compute the corresponding BSBS gains using a quality factor Q = 1000 for all the
elastic modes (Fig. 4-4(b)). For E1 and E2, electrostriction force and radiation
pressure add up destructively, resulting small BSBS gains of 0.089 x 10*m'W-! and
0.086 x 10*m™'W-! respectively.

Next, we vary a from 250nm to 2.5um and compute the corresponding BSBS

gains for E1 and the conventional BSBS gain G, (Fig. 4-5). The electrostriction
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Figure 4-4: Detailed analysis of BSBS. For (a) and (b), the operating point is
w = 0.203(2mc/a), k = 0.75(m/a), and ¢ = 1.5(7/a) with @ = 315nm. (a) The distri-
bution of optical forces. Electrostriction forces have both longitudinal and transverse
components. Radiation pressure has only transverse component. (b) BSBS gains
calculated from overlap integral using ) = 1000. Blue, red, and green bars represent
BSBS gains from electrostriction force, radiation pressure, and both. (¢) The scaling
of BSBS gains as a varies from 0.25pum to 2.5um. Blue, red, and green lines repre-
sents different BSBS gains of E1. Solid black line represents the conventional BSBS
gain. Dotted black line represents the electrostriction BSBS gain of P1. Black dots
represents the maximal electrostriction BSBS gain of all E-modes.
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Figure 4-5: The scaling of BSBS gains as a varies from 0.25um to 2.5um. Blue, red,
and green lines represents different BSBS gains of E1. Solid black line represents the
conventional BSBS gain. Dotted black line represents the electrostriction BSBS gain
of P1. Black dots represents the maximal electrostriction BSBS gain of all E-modes.

BSBS gain of E1 decays very fast. In contrast, Gy scales as 1/a” as indicated by
(4.29). This difference comes from the fact that the conventional BSBS gain cor-
responds to the longitudinal plane wave, but E1 quickly deviates from longitudinal
plane wave as the dimensionless g increases (Fig. 4-1(b)). There are two ways to
recover the conventional BSBS gain from (4.10). First, we consider the constrained
longitudinal modes (P-modes) in Fig. 4-1(b). P1 is just the longitudinal plane wave.
The computed electrostriction BSBS for P1 converges to Gy as a increases (Fig. 4-5).
Second, the dispersion curve of P1 pass through different E-modes as the dimension-
less ¢ increases. The E-modes at the intersection points become Pl-like with large
longitudinal movement over the waveguide cross-section. These modes should have a
large electrostriction BSBS gain close to that of P1. We compute the electrostriction
BSBS gains for E1 through E500 for different a (Fig. 4-5). The maximal gain among

all the modes converges to G as expected.
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Figure 4-6: Detailed analysis of intermode coupling between E,;; (pump) and E,;
(Stokes). The operating point is w = 0.203(27c/a), k, = 0.750(7/a), ks = 0.665(7 /a),
and ¢ = 0.085(m/a) with @ = 315nm. (a) The distribution of optical forces. The
longitudinal forces (not shown here) are much smaller than the transverse forces. All
optical forces are anti-symmetric about y = 0 and z = 0, exciting elastic modes
with the same parities (O-modes). (b) Intermode SBS gains calculated from overlap
integral using @ = 1000. The modal profiles of O1 through O5 at ¢ = 0.085(7/a) are
inserted. The deformation is proportional to the displacement. The color represents
the amplitude of total displacement with blue and red corresponding to zero and the
maximal value.
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4.4.4 Intermode coupling

In the discussion of FSBS and BSBS, pump and Stokes waves come from the same
optical modes (intramode coupling). Now we apply our formalism to intermode cou-
pling of the same silicon rectangular waveguide. For intramode coupling, the optical
force is always symmetric about y = 0 and z = 0, exciting elastic modes with the
same parities (E-modes). For intermode coupling, however, optical forces with all
possible symmetries can be generated, and elastic modes with all possible symmetries
can be excited. For instance, we consider the coupling between Fy;; (pump) and E,q;
(Stokes). The operating point is w = 0.203(2wc/a), k, = 0.750(7/a), ks = 0.665(7/a),
and g = 0.085(w/a) with a = 315nm. Because Eylil and F,1; have the opposite sym-
metries about both y = 0 and z = 0, the induced optical force is anti-symmetric
about both planes (Fig. 4-6(a)). Both electrostriction body force and radiation pres-
sure try to pull the waveguide in one diagonal and push the waveguide in the other
diagonal. Electrostriction pressure has the opposite effect, but is much weaker than

the radiation pressure.

Under such optical force, elastic modes which are odd about both y = 0 and
z = 0 (O-modes) can be excited. We calculated the SBS gains of O1 through O5
using a quality factor ¢ = 1000 for all the modes (Fig. 4-6(b)). O1 represents a
rotation around z axis. So the overlap integral is proportional to the torque. The
y component and z component of the optical forces generate torques with opposite
signs, which significantly reduces the overlap integral. Ol still 