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Abstract

In this thesis, we will theoretically explore three nanophotonics phenomena which
enable strong light-matter interaction.

The first phenomenon is plasmonic resonance, where the surface plasmon mode at
metal and dielectric boundaries significantly enhances the optical response of nano-
particles. We propose an optimization-based theoretical approach to tailor the optical
response of silver/silica multilayer nanospheres over the visible spectrum. We show
that the structure that provides the largest cross-section per volume/mass, averaged
over a wide frequency range, is the silver coated silica sphere. We also show how
properly chosen mixture of several species of different nanospheres can have an even
larger minimal cross-section per volume/mass over the entire visible spectrum.

The second phenomenon is photonic chiral edge state, where the breaking of time-
reversal symmetry forces light to travel in only one direction. Based on the directional
coupling between one-way waveguide and conventional two-waveguide, we propose a
new type of optical circulators, which has the potential for simultaneous broadband
operation and small device footprint.

The third phenomenon is Stimulated Brillouin Scattering (SBS), where photon and
phonon are coupled through optical forces such as electrostriction force and radiation
pressure. We develop a general method of calculating SBS gain via the overlap integral
between optical and elastic modes. Applying this method to a rectangular waveg-
uide, we demonstrate that the distribution of optical force and elastic modal profile
jointly determine the magnitude and scaling of SBS gains. Applying this method
to a periodic waveguide, we demonstrate that SBS gain can be further enhanced in
the slow light regime. Based on this framework, we theoretically characterize a novel
class of hybrid photon-phonon waveguides. Our analysis reveals that photon-phonon
coupling via SBS can be directed and tailored over an exceptionally wide frequency

range, enabling a host of chip-scale filtering, delay, and signal processing schemes.

Thesis Supervisor: Marin Soljanid
Title: Professor of Physics and MacArthur Fellow
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Chapter 1

Overview

Technology advancement in the past decades has enabled the design and fabrication of

structures at length scales comparable to, or even smaller than the wavelength of light.

The interaction of light with these nanoscale features leads to the tight confinement

of light and significantly enhanced light-matter interactions. For instance, photonic

crystal cavities have been used to enhance a variety of nonlinear optical processes [1],

such as optical switching, second harmonic generation, and spontaneous emission;

Meanwhile, surface plasmon resonance has been applied to enhance Raman scatter-

ing signals, enabling the optical detection and spectroscopy of single molecules [2].

In general, nanophotonic structures can enhance light-matter interactions by orders

of magnitude, providing numerous opportunities in realizing high bandwidth, high

speed, ultra-compact, and low power optical components. In this thesis, we will ex-

plore three nanophotonics phenomena which enable strong light-matter interaction.

The first phenomenon that we explore (in Chapter 2) is plasmonic resonance.

The surface plasmon mode at metal/dielectric boundaries can confine light at sub-

wavelength scale, and significantly enhance the scattering and absorption of nanopar-

ticles with metal/dielectric shells [3]. While at resonance, the scattering and ab-

sorption cross-sections of such nanoparticles are on the order of wavelength squared,

which can be much larger than their physical cross-sections, making these nanopar-

ticles super-scatters and/or super-absorbers. Nanoparticles have wide applications

in biomedical imaging, photothermal therapy and optical obscurance. Because dif-
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ferent applications have different requirements, a systematic approach to tailor the

optical response of such nanoparticles is highly valuable. Here, we propose an op-

timization based theoretical approach to tailor the optical response of silver/silica

multilayer nanospheres over the visible spectrum. Our results show that the struc-

ture that provides the largest cross-sections per volume/mass, averaged over a wide

frequency range is always the silver-shell silica-core bilayer structure. We also show

that the minimal cross-sections per volume/mass over the entire visible spectrum

can be enhanced by using a properly chosen mixture of several species of different

nanoparticles.

The second phenomenon that we studied (in Chapter 3) is photonic chiral edge

state (PCES) [4]. PCES are a novel class of electromagnetic modes that propagate

in only one direction. Based on the directional coupling between PCES and ordinary

two-way waveguide, we propose a new type of optical circulators. Unlike cavity based

optical circulators whose operating bandwidths are limited by the quality factor of

the nonreciprocal cavity, the operating bandwidth of the new circulators is tied to

the bandwidth of the directional waveguide coupler, and has the potential of simulta-

neous broadband operation and small device footprint. By interfacing gyromagnetic

photonic crystals with magneto-optical bandgaps and ordinary photonic crystals with

overlapping bandgaps, we design concrete examples of three-port and four-port op-

tical circulators. The performance of such circulators are then analyzed using full

structure finite element simulations and scattering matrix method.

The third phenomenon that we investigated (in Chapter 4) is Stimulated Bril-

louin Scattering (SBS) [5,6]. SBS is a third order nonlinear process where two optical

modes are coupled through an elastic mode. Specifically, the interference of pump

and Stokes waves generates a time-varying optical force at the beat frequency. This

optical force, while at resonance with an elastic mode, can excite the mechanical vi-

bration of the structure, which in turn scatter light between pump and Stokes waves

through index modulations and shifting boundaries. SBS has wide applications in

efficient phonon generations, optical frequency conversion, slow light, and signal pro-

cessing scheme. Just as other nonlinear processes, SBS can be greatly enhanced for
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nanoscale waveguides. The strong confinement of light and sound in nanoscale waveg-

uides also brings up two new features. First, the interaction of light with waveguide

boundaries is significantly enhanced, creating a new form of SBS nonlinearity through

optical pressure. Second, the optical and elastic modes in nanoscale waveguides can-

not be approximated as plane-waves. The vector nature of both fields and the tensor

nature of dielectric/elastic constants have to be fully appreciated. Since the conven-

tional treatment of SBS gains for microscale waveguides doesn't capture these two

features, we develop a general framework of calculating SBS gains via the overlap

integral between optical and elastic eigen-modes. Applying this method to a silicon

rectangular waveguide, we demonstrate that the optical force distributions and elastic

modes jointly determine the magnitude and scaling of both forward and backward

SBS gains. In addition, we find that it is the coupling to the leaky channels in the

substrate that stifles the forward SBS gains in a standard SOI waveguide. Applying

this method to a silicon periodic waveguide, we show that SBS nonlinearity can be

further enhanced in the slow light regime.

From the theoretical analysis of SBS processes in simple waveguide structures,

we can see that SBS can create highly efficient photon-phonon coupling over a wide

frequency range. Taking this idea further, we collaborated with researchers in Sandia

to propose (in Chapter 5) a novel class of hybrid photon-phonon waveguides. In this

suspended membrane-waveguide structure, optical modes and elastic modes can be

tuned nearly independently. Our numerical calculation shows that the optical mode

can be efficiently coupled to a series of approximately equally spaced elastic modes

through a constructive combination of electrostriction force and radiation pressure. In

addition, we develop a set of coupled amplitude equations to quantitatively describe

the Fano-like nonlinear response of the real structures fabricated by our collaborators

in Sandia. By fitting the measured nonlinear response to the coupled amplitude

equations, we can extract the resonant frequencies and SBS gains of the real structure,

which shows excellent agreement with the numerical calculation. The realized SBS

gain is more than 1000 times larger than the recent demonstration in silica fibers.

Throughout the study, we combine semi-analytical approaches and full numeri-
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cal calculations to model various nanophotonic structures. The semi-analytical ap-

proaches we used include spatial coupled mode theory and scattering matrix method.

Spatial coupled mode theory captures the interaction between traveling optical waves,

which is suitable for the analysis of waveguide couplers (Chapter 3) and hybrid

photon-phonon waveguides (Chapter 5). Scattering matrix method decomposes a

complicated structure into simple elements connected with each other through ports,

which is suitable for the analysis of optical circulators (Chapter 3). For full numerical

calculations, we used finite element method. Finite element method can calculate the

frequency response of an extended structure. It can also calculate the eigen-modes

of a finite or period structure. Finite element method has two additional features.

First, variables can be defined over geometries of different dimensions. For instance,

optical body forces can be defined over volumes, while optical pressures can be de-

fined over boundaries. Second, multiple physical fields such as electromagnetic field

and mechanical displacement field can be defined over the same set of geometry and

meshes. It allows for the direct calculation of the coupling between different fields

without interpolating the solution at grid points. These two features turn out to be

very useful in optomechanical calculations (Chapter 4 and 5).
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Chapter 2

Optimization of Optical Response

of Multilayer Nanospheres

2.1 Introduction

Nanoparticles with strong optical response, characterized by scattering, absorption

and total cross-sections, have wide applications in biomedical imaging, photothermal

therapy, and optical obscurance [7-9]. Different applications require different optical

response properties. For instance, real-time biomedical imaging is based on large scat-

tering cross-sections, while photothermal therapy requires nanoparticles with large

absorption cross-sections and small scattering cross-sections. For obscurance appli-

cations [10,11], the ideal nanoparticle should typically have large total cross-sections

over the whole visible spectrum while keeping the volume or mass of nanoparticles as

small as possible. The diversity and complexity of these requirements necessitate an

engineering approach of nanoparticle design.

Previous studies on the optical response of nanoparticles are mainly based on

parametric approach [3,12,13], which works well for simple structures. However, when

the structure becomes complicated and the number of design parameters increases,

optimization becomes the preferable approach because it can efficiently explore the

whole parameter space. Furthermore, because the optimization objective function

can be an arbitrary transformation of the frequency-dependent cross-sections, this
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approach is very powerful in tailoring the optical response of nanoparticles over a

wide frequency range.

For example, some applications may require that the optical resonance has both

a strong peak value and a wide bandwidth. This can be achieved by maximizing

the average cross-section over the bandwidth of interest. For another example, some

applications may want the nanoparticle has strong absorption and minimal scattering.

This can be achieved by setting the objective function as the difference between

absorption and scattering cross-sections. For obscurance applications, we want the

total cross-section to be consistently large over the whole visible spectrum. This

is equivalent to maximizing the minimal cross-section over this spectrum. In this

chapter, we will use an optimization tool to tailor the optical response of multilayer

nanospheres over wide frequency range of interest.

Before we start, we need to select the material system. Nanoparticles composed

of metal and dielectric materials support surface plasmons on the metal/dielectric

interfaces and can strongly interact with light in the visible range [14-18]. At

resonance, the cross-sections of these nanoparticles are proportional to wavelength

square and independent of their physical size. Therefore, the cross-sections of these

nanoparticles can be much larger than their physical cross-sections, which makes

them super-scatterers and super-absorbers [19-22]. Furthermore, the plasmon reso-

nance frequency can be tuned by varying the physical structure of the nanoparticles.

In order to be able to tailor the optical response of nanoparticles over a wide fre-

quency range, we choose the metal/dielectric material system. For concreteness, we

will focus on the silver/silica material system.

In this chapter, we first formulate the Transfer Matrix Method to calculate the op-

tical response of multilayer nanospheres. After briefly reviewing the optical response

of bilayer silver/silica nanospheres, we proceed to optimize the average cross-section

of various silver/silica multilayer nanospheres. Our results show that the structure

with the maximal average cross-section is the bilayer silver/silica structure with sil-

ver as the shell. Finally, we investigate using a mixture of several species of bilayer

nanospheres to enhance the minimal cross-sections over the entire visible range.
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2.2 Transfer matrix calculation of optical response

em

Figure 2-1: Schematic of an n layer nanosphere embedded in infinite dielectric
medium. The outer radius and dielectric function of individual layers are (Ri, Ei), i
1, 2, ..., n. The dielectric function of the medium is Em. The solid lines represent an
incident plane wave which contains incoming and outgoing waves. The dashed line
represents the scattered wave which only contains outgoing wave.

We start by formulating the Transfer Matrix Method for multilayer nanosphere [23,

24]. Consider a multilayer nanosphere shown in Fig. 2-1. Because of the spherical

symmetry, the fields at a given incident frequency can be decomposed into two or-

thogonal polarizations: transverse electric (TE) and transverse magnetic (TM). For

TE polarization, the electric fields can be written as ETE = V x rgTE. For TM polar-

ization, the magnetic fields can be written as HTM = V x rTM. The scalar potential

#TE and #TM satisfy the scalar Helmholtz equation V 2 #+k22 = 0 where k2  W2c(r).

Due to the spherical symmetry, # can be decomposed into a discrete set of spherical

modes: #1m = Ri(r)P1m (cos 0) exp(im~p) with 1 = 0, 1, 2, ... and m = -1, ..., 1. Since

c(r) is a constant ei inside the ith shell, RI(r) is a linear combination of the first and

second kind spherical Bessel functions within the individual shells:

Ri(r I|i = Aij (ki r) + Biy(kir) (2.1)

The coefficients (Ai, Bi) of adjacent shells are linked by the transfer matrix of the
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interface:

A+l Mi+1,i Ai (2.2)
Bji Bi

The matrix element is determined by the boundary condition satisfied by R, (r), which

comes from the continuity of the tangent components of E and H across the boundary.

For TE polarization, rRi(r) and (rRi(r))' are continuous across the boundary. By

writing the continuity conditions in matrix form, we get:

=~ [ ji(ki+1 Rj) y1(ki+ 1 RI) 1
j(ki+1Ri)ki+1R+ j(ki+1 Ri) y\(ki+1 Ri)ki+1 R, + y1(ki+1Ri )

j(i k Ri +) yk R )

1 (k R)k 2 R + j1 (kR) ykRki Ri + y1(ki R(.)

For TM polarization, rRi(r) and (c-1 rRj(r))' are continuous across the boundary. By

writing the continuity conditions in matrix form, we get:

[i~ j(k+1 Rj) y1 (ki+ 1 R) 1
Ljj(ki+1Ri)ki + j1(ki+1Ri) y(ki+ 1Ri)ki+ 1R2 + yi (k2+ 1 R) J

i(ki R) Y1 (k R) (24)

(j+ I1(kjRij kjRi+ jj(krR)) 1(y'(k Rj)kjRj + y1(k R2))

The transfer matrix of the whole system can be calculated by cascading the transfer

matrices of individual interfaces.

An+1 Mn+1,nM,n_1..M3,2M2,1 A1 = M A1 (2.5)
Bn+1 B1 B

Since the second kind of Bessel function is singular at the origin, we can set A1 = 1

and B1 = 0. So the coefficients of Bessel functions in the surrounding medium are

directly given by the transfer matrix element, An+1 = M1 1 and Bn+1 = M 2 1 . Within

the surrounding medium, it is convenient to write the radical function as a linear
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combination of the spherical Hankel functions:

Ri(r)|n+1 = Cn+ih'(kn4 1r) + Dn+ih'(kn+1r) (2.6)

where coefficients Cn+i and Dn+1 are related to An+1 and Bn+1 through:

Cn+I An+1 - iBn+1

2
An+1 + iBn+1

Dn+1= 2

Taking the convention that the fields vary in time as e ,-iwt, h'(kn+ir) and h2(kn+1 r)

correspond to outgoing and incoming waves respectively. The reflection coefficient of

the whole system is given by

Cn+ 1  M 1 1 - iM 2 1rI = = (2.7)
Dn+1 M1 1 + iM 2 1

The reflection coefficient as a function of frequency determines the optical response

of the nanoparticle under all possible illumination conditions. Specifically, when the

nanoparticle is illuminated by a linearly polarized plane wave, the incident field can be

decomposed into both TE and TM channels (1, m) with 1 = 1, 2, ... and m = -1, 1. For

each channel, the incident field contains both incoming and outgoing waves carrying

the same power [19-22]

Pi,m= 1 = (21 + 1)Io (2.8)
167r

where 1o is the incident intensity, and A is the wavelength in the surrounding medium.

The scattered field is a purely outgoing wave characterized by the scattering coefficient

S, which is related to the reflection coefficient through S, = (r, - 1)/2. The scattered

and absorbed power in this channel is given by:

P +(21 + 1)I11 - (2.9)
167r

Pabs A (21 + 1)Io(1 - |r,| 2 ) (2.10)1,m=±' 167r
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By summing over the contribution from all channels of TE and TM polarization, we

get the scattering and absorption cross-sections:

00  
2

O'sca = (21 + 1)1 - (2.11)
o 1=1

0abs -2(1+1( jru,1
2 ) (2.12)

87r

where o is TE or TM. The total cross-section is the sum of the scattering and ab-

sorption cross-sections. Utot = Osca + Oabs

2.3 Silver/silica bilayer nanospheres

In this section, we analyze the optical response of silver/silica bilayer nanospheres

as the building elements of multilayer structures. For silver, the complex dielectric

function as a function of frequency is generated by linearly interpolating the experi-

mental data [25]. For simplicity, the size dependence of Ag's dielectric function is not

taken into account. For silica, the dielectric function is taken as a constant c = 2.1.

There are two configurations of silver/silica bilayer nanoparticle depending on the

core material.

First, we consider silica coated silver spheres. Colloidal suspensions of such

nanoparticles were obtained from Nanocomposix (Nanocomposix Inc., San Diego,

CA). Figure 2-2 shows the measured and calculated total cross-sections of the fabri-

cated nanoparticles. The calculation agrees quite well with the measurement. The

total cross-section peaks around 455nm. This peak comes from the I = 1 surface

plasmon mode at the silver/silica boundary. The peak wavelength only varies slightly

when the inner and outer radius change. For instance, consider a silica coated silver

sphere suspended in air. Fixing the outer radius at 50nm, the peak wavelength varies

from 410nm to 415nm when the inner radius varies from 5nm to 45nm. Fixing the

aspect ratio R 1 /R 2 at 0.8, the peak wavelength varies from 390nm to 480nm when

the outer radius varies from 25nm to 75nm.
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Figure 2-2: The total cross-section of silica coated silver spheres suspended in ethanol.
The cross-section is normalized by volume (the left axis) and mass (the right axis).
The insert is a TEM image of the fabricated nanoparticles. The radius of the sil-
ver core has a distribution with mean 26.3nm and standard deviation 9.3nm. The
thickness of the silica shell is around 25.3nm. The red line is the measured total
cross-section. The black bar represents the standard deviations from eight transmis-
sion measurement on eight samples. The blue line is the Transfer Matrix calculation
of the total cross-section with the radius of the silver core sampled from the mea-
sured distribution and the thickness of the silica shell fixed at 25.3nm. The dielectric
function of ethanol is taken as em = 1.85.

In contrast, the surface plasmon resonance of the reverse configuration has great

tunability over the visible range [14-18]. Consider a silver coated silica sphere sus-

pended in air. Fixing the outer radius at 50nm, the peak wavelength varies from

405nm to 720nm when the inner radius varies from 5nm to 45nm. Besides the peak

wavelength, the relative strength of scattering and absorption cross-sections in the

total cross-section also vary. For [R1, R 2] = [5nm, 50nm], the absorption cross-section

accounts for 25% of the total cross-section at resonance. For [R1, R 2] = [45nm, 50nm],

this percentage rises to 60%. The tunability of the resonance wavelength and the tun-

ability of the total cross-section composition makes silver coated silica sphere a good

candidate for achieving broadband optical response.
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2.4 Optimization of average cross-sections over wide

frequency range

0
Silica

Figure 2-3: A schematic of a four layer nanosphere. This structure includes
nanospheres with one through three layers as boundary points. The structure en-
closed in red square is the optimal structure found by the optimization engine.

The optical response of silver/silica bilayer nanosphere indicates that increasing the

number of metal/dielectric interfaces can provide additional tunability in the optical

response. Using this insight, we aim to design silver/silica multilayer nanosphere with

a large average cross-section over wide frequency range. The figure of merit (FOM) is

the scattering, absorption, and total cross-section averaged over the target frequency

range, normalized by volume or mass.

FOM = I Wmax

Wmax - Wmin Jwmin

Onormalizeddw

For concreteness, we take 400-600nm and 600-800nm as the target frequency range

of interest. The structure under consideration is a multilayer nanosphere with alter-

nating silver and silica layers (four layers in total). The design parameters are the

thicknesses of individual layers. The upper bound of the allowed thickness is set to

be a large value (1tm). The lower bounds of the thicknesses are set to be zero. If the

thickness of some layers hit zero, the number of layers in the whole system decreases.
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Figure 2-4: Optimization of average cross-sections over wide frequency range. The
structure under consideration is a silver/silica multilayer nanosphere. The optimal
structure found by the optimization engine is always silver coated silica sphere. For

all subfigures, blue (red) lines show the optimized average cross-sections over the
blue (red) shaded frequency range. (a)(b)(c) correspond to scattering, absorption
and total cross-sections per volume respectively. (d)(e)(f) correspond to scattering,
absorption and total cross-sections per mass respectively. The radius of the silica

cores and the thickness of silver shells exhibiting the cross-sections shown above are
given in Table 2.1.
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Therefore, this general structure includes structures with fewer layers (one through

five layers) as boundary points (Fig. 2-3). If a simpler structure turns out to be the

optimal structure, the optimization engine will find this structure by converging to

the boundary of the feasible region.

We performed the optimization using numerical optimization package NLOPT

[26]. Since this problem is nonconvex, there are many local optima. To find the global

optima in the design parameter space, we used Multi-Level-Single-Linkage (MLSL)

algorithm. This algorithm performs a sequence of local optimization from random

points by a clustering heuristic that helps it to avoid repeated searches of the same

optima [27]. The local optimization algorithm used here is BOBYQA [28]. This al-

gorithm performs derivative-free bound-constrained optimization using an iteratively

constructed quadratic approximation of the objective function.

Figure 2-4 summarizes the optimization results. In all cases, the optimal structure

returned by the optimization engine is always a silver coated silica sphere. Although

multilayer structures can offer greater tunability of the optical response, bilayer struc-

tures already maximize the average cross-section over wide frequency range. From

Table 2.1, we can see that nanospheres with an outer radius around 70nm have the

largest normalized average scattering cross-section. The wavelength of the scattering

peak can be further tuned by varying the aspect ratio. For absorption cross-sections,

our optimization engine found many local optima with approximately equal FOM's.

These local optima have the same aspect ratio, and the thickness of the silver layer

varies from zero to several nanometers. This can be explained by the quasi-static

approximation. The absorption cross-section of a nanoparticle can be written as

Uabs(w) = wlm[a(w)], where a(w) is the polarizability [29-31]. When the nanoparti-

cle diameter is much smaller than the wavelength, the quasi-static approximation is

valid, under which the polarizability is proportional to the volume of the nanoparti-

cle with the proportionality coefficient dependent on frequency and aspect ratio [29].

Therefore, the normalized absorption cross-section averaged over a frequency range

is only determined by the aspect ratio and independent of the nanoparticle diameter

as long as the nanoparticle diameter is much smaller than the wavelength. In Table
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2.2, the thickness of the silver layer is set to be ;> 2nm. Nanospheres with thinner

silver layers have approximately the same normalized average absorption cross-section

but are difficult to fabricate. The structures that give the largest average scattering

and absorption cross-sections are quite different. Since the FOM of the absorption

cross-section is about twice as large as the FOM of the scattering cross-section, the

structure that gives the largest average total cross-section is essentially identical to

the structure providing the largest average absorption cross-section. The structures

given in Table 2.1 are super-scatters and super-absorbers. For instance, the structure

with [R, T] = [60.40nm, 8.68nm] has an average scattering cross-section of 8.65m 2 /g

over 600-800nm, while its physical cross-section is only 2.07m 2 /g. The structure with

[R, T] = [18.09nm, 2.00nm] provides an average total cross-section of 17.52m 2 /g over

600-800nm, which means that only 1g of such nanoparticles, when fully dispersed,

can obscure an area as large as 17.52m 2

2.5 Optimization of the minimal cross-sections over

wide frequency range

In this section, we aim to design nanoparticles with consistently large cross-sections

over a wide frequency range. This is equivalent to maximizing the minimal cross-

section over the target frequency range. From the previous section, we see that silver

coated silica spheres have strong surface plasmon resonances, and the peaks of their

resonances are highly tunable. Therefore, we expect that a mixture of several species

of silver coated silica spheres with different resonance frequencies can effectively cover

a wide frequency range.

This intuition can be formalized by optimization language. We take the target

wavelength range to be 400-800nm. The FOM is the minimal cross-section over this

range, normalized by either volume or mass.

FOM = min normalized (2.14)
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Figure 2-5: Optimization of minimal cross-sections over a wide frequency range. The

structure under consideration is a mixture of several species of silver coated silica

spheres. The target frequency range is shaded in yellow. For all subfigures, blue,
red, black lines corresponds to one, two, and three species of nanospheres. The black

dashed lines iri (c) and (f) correspond to ten species of nanospheres. (a)(b)(c) cor-

respond to scattering, absorption, and total cross-sections per volume respectively.

(d)(e)(f) correspond to scattering, absorption and total cross-sections per mass respec-
tively. The radius of the silica cores and the thickness of silver shells corresponding
to these cross-sections are given in Table 2.2.
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Figure 2-6: A detailed plot of Fig. 2-5(a)(d). The black line corresponds to the
optimal mixture of three species. Colored lines correspond to the contributions from
individual species.

The structure under consideration is a mixture of N species of silver coated silica

spheres where N = 1, 2,3,.... The design parameters are the size parameters of indi-

vidual species and relative weights (i.e. proportions) of each species in the mixture.

The weights represent the relative weights in volume (mass) when the normalization

is over volume (mass).
N

0~normalized WiUi,normalized (2.15)
i=1

When the size parameters of individual species are fixed, the problem of finding the

optimal weights turns out to be a Linear Programming (LP) program, which can

be efficiently solved by standard LP packages. Therefore, we employed a two-level

optimization structure. In the lower level, we used a standard LP solver to find out the

optimal weights given the current size parameters. The resulting FOM as a function

of size parameters is further optimized in the upper level with the same nonlinear

method we used in the previous section. This separation into linear and nonlinear

parts of the original optimization problem reduces the dimension of the parameter

space and helps MLSL algorithm to find the global optimal in less iterations.

Figure 2-5 summarizes the results. We can see that the optimization engine tries

to build a plateau over the target range to maximize the minimal cross-section. For
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scattering cross-sections, it is relatively easy to build such a plateau since the scat-

tering peaks have wide bandwidth. When there is only one species (the blue lines in

Fig. 2-5(a)(d)), the nanoparticle has a large size so that its 1 = 1 resonance can cover

the large wavelength region and its 1 = 2 resonance can cover the small wavelength

region. When the number of species increases, the new species try to cover the dips

in the previous scattering spectra with their resonant peaks (Fig. 2-6). On the other

hand, it is relatively difficult to build an absorption plateau because absorption peaks

have narrow bandwidth. The FOM of the scattering cross-section is about twice as

large as that of the absorption cross-section. The total cross-section can be enhanced

significantly (35% for volume normalization and 46% for mass normalization) when

N increases from 1 to 2. The enhancement when N increases from 2 to 3 is only

moderate. The benefit of adding more species gradually saturates.

2.6 Concluding remarks

In this chapter, we used optimization tools to tailor the optical response of silver/silica

multilayer spheres. We showed that the structure that gives the largest average cross-

section over wide frequency range is the bilayer structure with a silver shell. We also

showed that using several species of nanoparticles can significantly enhance the min-

imal cross-section over the whole visible range although this enhancement saturates

when the number of species increase. Because the FOM can be an arbitrary function

of the frequency dependent cross-sections, the optimization approach described here

can be used to design nanoparticles with more complicated optical response.
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Table 2.1: Optimization of average cross-sections

Normalized by volume
cross-section range (nm) silica (nm) silver (nm) FOM (1/nm)

Osca 400-600 31.25 26.65 0.0486
600-800 60.32 9.65 0.0464

Uabs 400-600 6.07 2.00 0.0767
600-800 14.80 2.00 0.0817

Utot 400-600 6.09 2.00 0.0773
600-800 16.12 2.00 0.0846

Normalized by mass
cross-section range (nm) silica (nm) silver (nm) FOM (m 2 /g)

csca 400-600 38.53 17.88 5.64
600-800 60.40 8.68 8.65

Uabs 400-600 6.54 2.00 10.87
600-800 17.89 2.00 16.71

Utot 400-600 8.71 2.00 10.93
600-800 18.09 2.00 17.52
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Table 2.2: Optimization of minimal cross-sections

Normalized by volume
cross-section # of species silica (nm) silver (nm) weights (%) FOM (1/nm)

O-sca 1 68.09 55.44 100 0.0192
2 52.54 44.21 82.8 0.0229

73.41 7.63 17.2
3 52.85 47.27 74.4 0.0235

75.61 8.31 20.8
35.55 23.21 4.8

0 'abs 1 60.14 10.00 100 0.0032
2 37.03 4.00 57.5 0.0075

44.02 15.99 42.5
3 22.95 10.26 37.4 0.0114

26.08 4.39 34.3
21.96 2.00 28.3

Otot 1 80.15 41.87 100 0.0201
2 59.96 34.12 82.8 0.0270

61.96 6.29 17.2
3 50.21 32.98 75.2 0.0285

52.97 4.90 14.4
55.76 7.32 10.4

10 ... ... ... 0.0310

Normalized by mass
cross-section # of species silica (nm) silver (nm) weights (%) FOM (m2 /g)

Qsca 1 67.95 52.38 100 2.10
2 52.77 38.70 87.4 2.80

75.72 8.17 12.6
3 76.71 21.93 46.1 2.88

21.96 34.54 43.2
70.45 7.31 10.7

Cabs 1 42.80 6.55 100 0.58
2 20.56 2.15 51.3 1.31

37.16 13.61 48.7
3 27.43 14.22 36.9 1.59

49.06 11.02 34.9
36.66 3.66 28.2

o-tot 1 92.95 39.04 100 2.46
2 55.54 29.60 83.5 3.59

67.77 7.39 16.5
3 53.36 29.01 60.1 3.79

79.49 10.25 31.1
24.64 25.04 8.8

10 ... ... ... 4.62
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Chapter 3

Broadband Optical Circulator

based on One-Way Waveguide

3.1 Introduction

Nonreciprocal optical devices, such as circulators and isolators, are essential com-

ponents in large-scale integrated photonic circuits, due to their ability to suppress

crosstalk and fringes among constituent stages [32-36]. Circulators are widely used in

fiber-optic interferometries to suppress laser noise and can be integrated with channel

add/drop filters in switching applications [37]. In the past decade, the efforts to minia-

turize nonreciprocal devices have been focusing on enhanced magneto-optical response

in resonators and guided-wave structures [38,39]. Particularly, on-chip optical circu-

lators have been proposed using photonic crystal resonators with overall dimensions

at few-wavelength scale [40-47] and nonreciprocal waveguides at hundreds of wave-

lengths [48-51]. Resonator-based circulators rely on nonreciprocal coupling between

waveguides and two counter-rotating resonant modes, where the resonant frequencies

are split by magneto-optical effects [41, 52]. As a consequence, resonant circulators

are inherently narrow-band, with the operational bandwidth limited by the magneto-

optical constants [41], irrespective of three-port or four-port configurations [40-42].

However, this inherent limit cannot be solved with very strong magneto-optical mate-

rial alone, because reciprocal coupling directly occurs between the waveguides when
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they are closely placed to the resonator to lower quality factor.

To reconcile the needs for both large bandwidth and small device footprint, we

propose to use recently-discovered one-way waveguides [4,53-55] to create broadband

optical circulators with a device dimension on the order of tens of wavelengths. These

photonic one-way modes are highly nonreciprocal: they propagate only along a single

direction, while the backward modes are completely evanescent. In this chapter,

we use these fundamentally new states of light to create circulators that have the

bandwidth potential to span an entire photonic bandgap. The circulators are based

on directional couplers between a one-way edge waveguide and a conventional two-

way waveguide. As a result, the operational bandwidth is determined by that of a

waveguide coupler, without the inherent limit of a resonance. In this chapter, we

employ both analytical spatial coupled mode theory and finite-element simulation to

analyze the performance of directional couplers. Based on such directional couplers,

we present the design and finite element simulation of a three-port and a four-port

circulator. Scattering matrix analysis of these devices are also presented to elucidate

the directions for further improvement in bandwidth.

3.2 Basic idea

Generally speaking, an optical circulator is a nonreciprocal multi-port device in which,

under ideal conditions, light entering any given port is transmitted completely to the

subsequent port. Reflected waves not only are blocked from entering upstream stages,

but are also separated and can be analyzed using additional optics. Optical circulators

require a minimum of three ports, and more ports can be added by cascading multiple

three-port circulators [47, 56]. For this reason, we focus on the simplest three-port

and four-port configurations in this chapter.

Starting with a three-port circulator, we consider a one-way waveguide where light

propagates in a single spatial mode along the forward direction, but is evanescent

along the backward direction. A section of the one-way waveguide is placed in the

vicinity of a two-way waveguide, in parallel, to form a waveguide coupler as shown in
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(a)

2 in 2 out

(b)

3

4

Figure 3-1: Schematics of optical circulators based on one-way waveguides, with the
port number illustrated. (a) A three-port circulator constructed from a directional
coupler between a one-way waveguide (yellow) and a two-way waveguide (green). The
arrows indicate the allowed propagation directions in each individual waveguide, in
the absence of other waveguides. Coupling between adjacent waveguides alters the
power flow and creates a circulator. (b) A four-port circulator created by cascading
two three-port circulators.

Fig. 3-1(a). The optical power will be transferred between the forward modes of the

two waveguides periodically. Under a certain set of conditions which will be discussed

in detail in the next section, complete energy transfer can occur at certain interaction

lengths, and a three-port circulator is created. As illustrated in Fig. 3-1 (a), the left

and right ends of the two-way waveguide serve as Ports 1 and 3 respectively, while

the input and output of Port 2 locate at the two ends of the one-way waveguide.

Light entering Port 1 is completely transferred to the one-way waveguide through the

directional waveguide coupler and is therefore transmitted to Port 2. In a similar

fashion, light entering Port 2 is transmitted to Port 3. In contrast, the backward

propagating mode remains in the two-way waveguide and consequently incident light

to Port 3 travels to Port 1.
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Cascading two three-port circulators produces a four-port circulator [47]. In our

implementation, two three-port circulators described above are connected through

Port 2, resulting in a circulating one-way waveguide coupled to two two-way waveg-

uides, as shown in Fig. 3-1(b). The ports reside at the ends of the two-way waveg-

uides. Transmission from Port 1 to Port 2 and from Port 3 to Port 4 is mediated

twice through waveguide couplers between sections of the one-way and the two-way

waveguides. Transmission from Port 2 to Port 3 and from Port 4 to Port 1 takes place

without interacting with the one-way waveguide. Overall, the system functions as a

four-port circulator, with the ports distributed around the peripheral of the struc-

ture in an apparent counter-clock- wise direction opposite to the clock-wise circulation

direction of the one-way waveguide.

At the heart of such waveguide-coupler-based circulators is a one-way waveguide

where reflection is completely suppressed and full transmission occurs even at sharp

corners or near large defects and scatterer. One way waveguide is the electromagnetic

analogue of quantum hall effect, exhibiting the breaking of time-reversal symmetry

in the most extreme situation. Two classes of one-way waveguides have been pro-

posed: photonic chiral edge states [4,53,55] and surface magnetoplasmons [54,57,58].

Photonic chiral edge states flow at the truncated surfaces of a magneto-optical (gy-

romagnetic) photonic crystal in a particular frequency range where the bulk crystal

features non-trivial topological properties. In contrast, surface magnetoplasmons rely

on the splitting and the directional-dependence of the surface plasmon frequency in

the presence of a strong external magnetic bias [54]. Although both effects are purely

two-dimensional, photonic chiral edge states have been experimentally realized in

three-dimensional systems [55, 59]. In this chapter, we choose to focus on photonic

chiral edge states, because of the additional degree of freedom from a large number

of lattice choices, a large relative bandwidth, and low absorption loss in experimen-

tal systems [55]. Nevertheless the concept and the design principle can be readily

transferred to surface magnetoplasmon systems.

42



3.3 Waveguide coupler

* * 0

Figure 3-2: Schematics of the waveguide coupler. The lower cladding is a gyromag-
netic photonic crystal supporting a one-way waveguide (marked in yellow), while
the upper cladding is a dielectric photonic crystal supporting a two-way waveguide
(marked in green).

In this section, we propose a concrete implementation of a directional waveguide

coupler between a one-way waveguide and a two-way waveguide. Taking a typical

structure supporting photonic chiral edge state [4], where light travels only in one di-

rection at the interface between a lower cladding of a gyromagnetic photonic crystal

and an upper cladding of a nonmagnetic photonic crystal, we introduce an addi-

tional two-way waveguide by creating a line defect one lattice constant away from the

interface (Fig. 3-2).

The gyromagnetic photonic crystal consists of a square lattice of yttrium-iron-

garnet (YIG) rods in air, with the rod radius r 1 = 0.11a (a is the lattice constant).

YIG exhibits strong gyromagnetic response under external magnetic bias, as the

permeability tensor takes the form:

p||J ip, 0

pA -ipl ilpl 0 (3.1)

0 0 1
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Figure 3-3: Calculated band diagram of the waveguide coupler. The green and
the blue regions are the projected band diagrams of the gyromagnetic photonic
crystals and the dielectric photonic crystals respectively. An overlapping bandgap,
[0.527, 0.576](2-rc/a), supports a photonic chiral edge state (one-way) at the bound-
ary between the two claddings. The top row of the lower cladding has enlarged
rods to adjust the dispersion. The second lowest row of the upper cladding consists
of enlarged rods to create a line-defect, serving as a two-way waveguide. The two
waveguides couple strongly in the forward (left-to-right) direction. The eigenmodes
of the coupled system are shown as the red and purple curves.
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Figure 3-4: Dispersion relation in the k-space where the two forward modes are
strongly coupled. The blue curves are unperturbed dispersion relations of the one-
way and the two-way modes in the absence of coupling, where the mode profiles are
shown in insets I and II. The red and purple curves are the dispersion relations of the
compound modes in the presence of coupling (mode profiles shown in inset III and
IV). The insets illustrate the calculated E-field distribution at w = 0.551(27rc/a). For
the entire frequency range shown, there is only one backward propagating mode as
can be seen in Fig. 3-3.
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where Ii = 14, [I = 12.4, corresponding to conditions at 4.28GHz with an external

magnetic field of 1600 Gauss [4]. The dielectric constant is ci = 15. A bandgap sup-

porting one-way chiral edge modes is found between 0.526(27rc/a) and 0.576(27rc/a)

for the TM polarization (Fig. 3-3). The dielectric constant and radius of the upper

cladding 62 = 8 and r 2 = 0.285a are chosen to maximize the size of an TM bandgap

(between 0.513(27rc/a) and 0.588(2-rc/a) with the identical mid-gap frequency. At

the interface between the two crystals, a one-way chiral edge state emerges through

the entire frequency range where the two bandgaps overlap. We added the second

waveguide by increasing the rod radius in the second lowest row of the upper cladding.

We increase this radius to 0.449a and also increase the radius of the rods in the top

row of the lower cladding to 0.134a. As a result, the dispersion relations of the two

waveguides intersect at a mid-gap frequency of 0.551(27rc/a) (Fig. 3-4).

The operational bandwidth of the waveguide coupler directly determines the band-

width of the circulator. Therefore, it is important to review the analytical theory of a

waveguide coupler that guides the design of the dispersion relation of the constituent

waveguides. Such an analytical theory also points towards ways to improve transfer

efficiency by controlling the difference in the phase velocity between the underlying

waveguides. In the weakly-coupled regime, the amplitude of the waves in two parallel

waveguides can be described by the following spatial coupled mode equations [60]:

da= -jo1ai + r12a2dz (3.2)
da2 -j0 2a 2 + K21ai
dz

where ai is the field amplitude and #3 is the wave vector in waveguide i, in the absence

of the coupling. The coupling coefficients are related by energy conservation as K1 2 =

-. *4, since the spatial coupled-mode theory is not restricted to reciprocal systems

[30]. With the coupling coefficient expressed in the absolute value |K| = |K1 = |K2 |,

the two eigenmodes in the coupled system possess different propagation constants

k, = + (3.3)
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and their spatial field distributions are a linear combination of the individual waveg-

uide modes (Fig. 3-4). Light entering into either one of the constituent waveguide

simultaneously excites both eigenmodes. Because of their different propagation con-

stants, the spatial beating between the two transfers power between the two waveg-

uides in a back-and-forth manner [61]. Maximum power transfer is given by

T =(3.4)
(/31 262) 2 + K2

and reaches 100% when |1i - #2| < r,. The interaction distance to achieve this

maximal transfer is given by:

L = 2(3.5)

2 V( 1 32)2+,%2

The operation of an ideal circulator requires the waveguide coupler to satisfy the

following two conditions over a broad range of frequencies: complete power transfer

between the waveguides, and an identical interaction length. Consequently, for the

constituent one-way waveguide and two-way waveguide, the ideal conditions include

identical dispersion relation |#1 - #2| < r. and identical coupling constant over as

broad frequency range as possible. In our design, the structure has been optimized

such that both conditions are met over a relative bandwidth of ~ 2% (Fig. 3-4).

The performance of the waveguide coupler is verified using a finite-element solver

(Fig. 3-5(a)). A point source excites the two-way waveguide in the upper cladding,

11 lattice constants away from the convergence point where the one-way waveguide

starts to run parallel to the two-way waveguide. Towards the right side of this con-

vergence point, the waveguide coupler transfers power from the two-way waveguide to

the one-way waveguide (Fig. 3-5(b)), as indicated by the flux in each waveguide as a

function of the location. At the frequency of 0.551(2wc/a) where the uncoupled disper-

sion relations intersect, maximum power transfer reaches 100% efficiency, consistent

with the coupled mode theory. Over the frequency range between 0.545(27rc/a) and

0.554(2wc/a), the peak transfer efficiency is over above 95%, because |1, - #21 < r, is
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Figure 3-5: Power transport in the waveguide coupler. (a) Steady state E-field pat-
tern at w = 0.551(27rc/a), showing a complete transfer from the two-way waveguide
(incident from the left) to the one-way waveguide. (b) Light is transferred between
the two-way waveguide and the one-way waveguide, as indicated by the power flux.
(c) Power transfer over a range of frequencies.

satisfied. A small variation in the coupling coefficient , is observed in this range, re-

sulting in a variation in the interaction length. Even though for a circulator one must

use a fixed-length coupler for the entire operational bandwidth, we accomplished less

than 1dB transmission ripple over a 2% relative bandwidth at a center frequency of

0.548(27rc/a) with a 60a long waveguide coupler.

3.4 Three-port circulator

Based on such a waveguide coupler, we can construct a three-port circulator as illus-

trated in Fig. 3-1(a). At the center frequency of 0.548(27rc/a), complete transmission

can be seen from Port 1 to Port 2 (Fig. 3-6(a)) and from Port 3 to Port 1 (Fig.

3-6(b)). The transmission spectra between these ports over a range of frequencies

near the center frequency are shown in Fig. 3-7. Even though the transmission from

Port 1 to Port 2 decreases as the detuning from the center frequency increases, the
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Figure 3-6: Three-port circulator. (a) Steady-state electric-field distribution of a 3-

port circulator excited from Port 1 at w = 0.548(2irc/a). The waveguide coupler
transfers light from the two-way waveguide to the one-way waveguide, producing

complete transmission at Port 2. (b) Steady-state field distribution with excitation
from Port 3 at w = 0.548(27rc/a), where the transmission is routed to Port 1 instead.

The leakage to Port 2 amounts to 0.5% of the total incident flux. (c) The scattering
matrix decomposition of the three-port circulator. Arrows indicate distinct modes at

boundaries.
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Figure 3-7: The transmission spectra of the three-port circulator excited from Port

1. The finite element simulation (solid curves) agrees well with the scattering matrix

calculation (circles).

sum of the transmission to Port 2 and Port 3 remains close to 1. The minimum

reflection indicates the performance of the circulator is mainly limited by the band-

width of the waveguide coupler, rather than the discontinuities in the system. Further

structural optimization should yield more optimized dispersion relations for the con-

stituent waveguides, given the large number of degrees of freedom in photonic crystal

systems. The 1dB loss bandwidth for this circulator remains 2%.

We also performed scattering matrix analysis to isolate the impact of the waveg-

uide coupler to the overall performance of the three-port circulator and the derived

structures that will be discussed later in this chapter. The three-port circulator is

compartmentalized into three areas, two corner areas and a tri-mode area (a dual-

mode waveguide coupler in the forward direction and a single-mode waveguide in the

backward direction), as illustrated in Fig. 3-6(c). Each area has three inputs and

three outputs, corresponding to a 3 by 3 scattering matrix. In particular the tri-mode

area is described by a simple diagonal matrix with a phase delay eikiL on the diagonal
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elements, where ki is the propagation constant of the jth eigenmode and can be con-

veniently calculated with mode solvers using plane-wave expansion or finite-element

methods. The corner areas require three independent finite-element simulations to

extract the matrix element of scattering matrix for each frequency. Combining the

scattering matrices of all three areas, we obtain the total scattering matrix of the

entire system, where: |S 21 |2 and |S31 2 are the transmission coefficients from Port

1 to Port 2 and from Port 1 to Port 3 respectively (Fig. 3-7). A good agreement

with the finite-element calculation of the full structures suggests that the scattering

matrix analysis can be reliably used to examine performance of devices built from

these constituent areas, such as cascaded three-port circulators in the next section.

3.5 Four-port circulator

As outlined earlier, additional ports can be introduced by cascading multiple three-

port circulators. We present a specific example of synthesizing a four-port circulator

by cascading two three-port circulators illustrated in Fig. 3-1(b). This implemen-

tation shares a single magneto-optical photonic crystal, on which a circulating edge

mode is coupled to two parallel two-way waveguides subsequently and contains two

directional couplers. At the previously calculated optimal frequency of the waveguide

coupler at 0.548(27rc/a), the four-port circulator also perform ideally in finite-element

calculations: complete transmission occurs from Port 1 to Port 2 through the action

of both waveguide couplers (Fig. 3-8(a)), while light incident on Port 4 is routed

completely to Port 1 without interacting with the coupler (Fig. 3-8(b)). Similar

transport behaviors are found between other ports as well.

At frequencies detuned from the optimal, the transmission of the four-port cir-

culator is rather complex and we resort again to the scattering matrix formalism to

understand the contributing factors. In so doing, we could efficiently compute the

transmission spectra for devices with various lengths of the waveguide coupler and

the vertical sections of the one-way waveguides. The four-port circulator can be de-

composed into four corners and two horizontal tri-mode waveguides (coupler) and two
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Figure 3-9: The transmission spectra of the four-port circulator. Finite element

simulation (curves) shows good agreement with scattering matrix calculation (circles).

The input is at Port 1 in (a) and Port 4 in (b).
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Figure 3-10: The calculated transmission spectra for three circulators with various
lengths for the vertical sections of the one-way waveguide (curves) and the calculated
transmission spectrum when an absorber is inserted in the one-way waveguide between
Port 1 and Port 2 (circles).

vertical sections of a single-mode waveguide (one-way waveguide), as shown in Fig.

3-8(c). Since we already know the scattering matrix of the corner and the dispersion

relation of the waveguide coupler from previous analysis, the total scattering matrix of

the four-port circulator can be calculated analytically by simple matrix calculations.

Since the waveguide coupler provides a bandwidth of around 2%, one might ex-

pect a similar drop in power transmission between the ports when the frequency is

detuned from the optimal value. The calculated transmission spectrum (Fig. 3-9(a))

indeed exhibits a relative bandwidth of 1.3%, where the pass-band ripple is found to

be less than 1dB. However, large transmission still occurs at a discrete set of frequen-

cies far detuned from the optimal, even when the waveguide couplers do not provide

complete power transfer. At these frequencies, residual power exists and circulates in

the one-way waveguide, in contrast to the ideal case where residual power vanishes

after propagating through both waveguide couplers (Fig. 3-8(a)). With the circulat-

ing residual power, the entire stretch of the one-way waveguide functions as a ring
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resonator, where complete transmission occurs when the phase accumulated through

the entire one-way ring is an integer multiple of 21r. We verified this observation by

changing the length of the vertical section of the one-way waveguides LY and found

the transmission peaks shift in frequency (Fig. 3-10), commensurate with ring res-

onator interpretation. The notable exception is found at the optimal frequency of

0.548(27rc/a), where the peak frequency is unaffected by LY, consistent with a lack of

residual power and the absence of the ring resonance. Further agreement is found in

the simulation with a perfect absorber inserted in the left vertical section of the one-

way waveguide (Fig. 3-10). In that case, the circulating power is shut off completely,

resulting in the disappearance of the oscillation.

We note that such waveguide-coupler based circulators, in both three-port and

four-port forms, can eventually provide much greater bandwidth, when one opti-

mizes the dispersion relation of the underlying one-way and two-way waveguides.

Here both the geometry of the photonic crystals and the frequency-dependent gy-

romagnetic tensor elements affect the dispersion. The incomplete transmission at

detuned frequencies could originate from the reflection from the 90 degree bend or a

non-ideal waveguide coupling. However, since the aggregated transmission to Port 2

for the three-port circulator (Fig. 3-7(a)) and the aggregated transmission to Port

2 for the four-port circulator (Fig. 3-9(a)) are both close to unity, the performance

limitation is largely dominated by the waveguide coupler. There is also a trade-off be-

tween the bandwidth and the length of the waveguide coupler in this proof-of-concept

structure. However, given the large degree of freedom in dispersion engineering for

photonic crystals, by varying the dimension and the shape of the nearest unit cells

to the waveguides, one could in principle match the uncoupled dispersion relations

of the two waveguides over a much broader range of the frequency. In other words,

equalizing the propagation constant and the frequency of the two waveguides could

allow us to create ideal circulators over a frequency range close to the entire photonic

bandgap. Moreover, increasing the coupling coefficient K by physically merging the

two-way waveguide and the one-way waveguide could reduce the interaction length,

thereby reducing the overall device dimension significantly. With the emergence of
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novel infrared magneto-optical materials featuring the Voigt parameter comparable to

microwave ferrites [62,63] envision the experimental demonstration of such broadband

circulator at optical frequencies.

3.6 Concluding remarks

In this chapter, we proposed a novel optical circulator based on directional couplers

between a one-way waveguide and a two-way waveguide. We examined the bandwidth

limit of such a waveguide coupler and its impact on the derived three-port circulators

and four-port circulators. The bandwidth is not limited by the resonant linewidth

and a three-port circulator and a four-port circulator are implemented numerically to

feature a relative 1dB -bandwidth of 2% and 1.3% respectively. While our discussion

has been restricted to two-dimensional structures, the operational principle and design

procedures can be readily extended to three-dimensional structures at microwave,

THz and optical frequencies, using out-of-plane confinement employed in experimental

three-dimensional chiral edge state systems [55].

56



Chapter 4

A General Framework of

Calculating SBS Gain

4.1 Introduction

Stimulated Brillouin Scattering (SBS) is a third order nonlinear process in which two

optical modes are coupled through an elastic mode [5,6]. In a waveguide system,

the interference of pump and Stokes waves generates a time-varying optical force at

the beat frequency. The optical force, while at resonance with an elastic mode at the

phase-matching wavevector, excites the mechanical vibration of the waveguide, which

can in turn scatter light between the pump and Stokes waves. Since its discovery,

SBS has been extensively studied with a variety of applications in efficient phonon

generation [64,65], optical frequency conversion [66-68], slow light [69-72], and signal

processing techniques [73,74].

The optical force that mediates SBS includes electrostriction force and radiation

pressure [75, 76]. Elect rostriction is an intrinsic material nonlinearity, which arises

from the tendency of materials to become compressed in the region of high optical in-

tensity. In previous studies, electrostriction is treated as a bulk nonlinearity with only

electrostriction body force taken into account [5,6]. We find that the discontinuities

of optical intensities and photoelastic constants can generate electrostriction pressure

on material boundaries. Radiation pressure is another boundary nonlinearity, which
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arises from the interaction of light with the material boundaries with discontinuous

dielectric constant [77, 78]. For nanoscale structures, radiation pressure is radically

enhanced, enabling a variety of optomechanics applications [79-84]. Within nanoscale

waveguides, the distributions of electrostriction force and radiation pressure are quite

different. The interplay between these two effects creates new degree of freedoms of

tailoring SBS process.

In translationally invariant waveguides, SBS can be categorized into forward SBS

(FSBS) and backward SBS (BSBS). In FSBS, the pump and Stokes waves propagate

in the same direction, generating translationally invariant optical forces, which excite

standing elastic modes [67]. In BSBS, the pump and Stokes waves propagate in

the counter directions, generating translationally varying optical forces, which excite

traveling elastic modes.

In translationally periodic waveguides, SBS can still be categorized into FSBS and

BSBS based on the Bloch wavevectors of the pump and Stokes waves. One important

feature brought by the periodicity is that the optical group velocity vanishes at the

Brillouin zone boundary [1]. Within this slow light regime, photon-phonon interaction

becomes extremely strong, creating a giant enhancement of SBS nonlinearity.

SBS can also occur between distinct optical modes [85-89]. The interplay between

optical modes with distinct polarizations, symmetries, and distributions enrich the

tailorability of SBS nonlinearities. Intermode SBS has been used in optical signal

isolation and Brillouin cooling of mechanical devices.

The strength of SBS nonlinearity is characterized by the SBS gain. There have

been many theoretical studies on calculating SBS gain through some forms of overlap

integral between optical and elastic eigen-modes [5,6,67,85,88-92]. These treatments,

while accurate for microscale waveguides, suffer from two drawbacks for nanoscale

waveguides. First, most previous treatments are based on nonlinear polarization cur-

rent. The calculated SBS gain only captures electrostriction body forces, but doesn't

account for boundary nonlinearities such as electrostriction pressure and radiation

pressure. This issue becomes significant for nanoscale waveguides where the bound-

ary effect is radically enhanced. Second, some previous studies assume the optical
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mode is linearly polarized, while some studies describe the elastic modes by the den-

sity modulation rather than the displacement vector. For nanoscale waveguides, the

vector nature of optical and elastic modes has to be fully evaluated.

In this chapter, we propose a general method of calculating SBS gains via the

overlap integral between optical and elastic eigen-modes. Within this formalism, all

kinds of optical forces are taken into account, with bulk and boundary nonlinearities

formulated as bulk and boundary integrals over the waveguide cross-section. In addi-

tion, both the optical and elastic modes are treated as vector fields, allowing for the

most general forms of dielectric and elastic tensors.

Armed with this formalism, we study the SBS process of a silicon rectangular

waveguide. We will show that all the optical forces in FSBS are transverse, and the

constructive combination of electrostriction force and radiation pressure can generate

large FSBS gain for certain elastic modes. In contrast, the optical force in BSBS is

largely longitudinal, and the maximal BSBS gain among all the elastic modes ap-

proaches the conventional BSBS gain. We further apply this formalism to intermode

SBS. By coupling optical modes with distinct symmetries, optical forces with all pos-

sible symmetries can be generated, and the elastic modes with the same symmetry can

be excited. We also study the FSBS process when the silicon waveguide is put on top

of a silica substrate. Both the frequency response calculation and leaky eigen-mode

analysis reveal that the coupling to the radiative modes of the substrate introduces

a large radiative loss which significantly reduces the SBS gain of the structure.

Based on the understanding of SBS gains of a rectangular waveguide, in this chap-

ter, we proceed to study the SBS process of a translationally periodic waveguide. We

demonstrate that SBS gain can be further enhanced at the Brillouin zone boundary

where the decreased group velocity of light significantly magnifies photon-phonon in-

teraction. In addition, we find that the geometric symmetry plane perpendicular to

the propagation axis plays an important role in both FSBS and BSBS. This plane

separates standing elastic modes into even and odd modes. For FSBS, only even

modes have nonzero SBS gains. For BSBS, the SBS gain of even modes approaches

to infinity, while the SBS gain of odd modes approaches to a constant.
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4.2 An overlap integral formula of SBS gains

To start with, we develop a general framework of calculating the SBS gain. Consider

a translationally invariant waveguide in x direction. In a typical SBS process, the

pump wave Epei(kpx-Pt) and the Stokes wave Esei(ksx-st) generate optical forces at

the phase-matching wavevector q = k, - k, and the beat frequency Q = op - w,.

This optical force can excite mechanical vibrations which enables the parametric

conversion between pump and Stokes waves. This process can be describe by the

following relation [5]:
dPS
dP = gPPS - asPs (4.1)
dx

Here, Pp and P, are the guided power of the pump and Stokes waves, and g is the

SBS gain. Through particle flux conservation, SBS gain is given by the following

formula [76]:
os du

g() = W R f - (4.2)
2QPpPs ' dt

where f is the optical force generated by pump and Stokes waves, and u is the elastic

response of the waveguide induced by f. The overlap integral is defined over the

waveguide cross-section. The optical power of an invariant waveguide is given by

P = V,(E, cE)/2, where vg is the optical group velocity. Therefore,

= 2w, !a(f, u)
VpVgs =E Ep)(EsI6E:)(4.3)

To further simply (4.3), we have to consider the equation governing the elastic

response ue-ift under external forces fe"'. When elastic loss are ignored, we have

[93]:

-pQ2ui= -cijkl + fi (4.4)
Oxy x

where p is the mass density, and cijgk is the elastic tensor. cijkl has two important

properties. First, it is symmetric about the first two and last two indies: cijkl = cjikl,

cijlk = cijkl. Second, the interchange of the first two indies and the last two does not

affect the value of cijkI: cklij = cijkI [93]. Without f, the equation above is the elastic
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eigen-equation:

-Q 2 pui = - Ci I Ouk (4.5)

Using the symmetry properties of Cijkl, we can show that the operator in the right

hand side of the eigen-equation is Hermitian. Therefore, the eigen-mode ume-i"

satisfies orthogonality condition:

(Um, PUn) = 6mn(Um, PUm) (4.6)

When f is present, u can be decomposed in terms of eigen-modes u =rE bmum.

Using the orthogonality condition, we have:

brn (um, f) 1(47)
K~nPr) Q2 Q 2

Now we add elastic loss to this system. The commonly encountered elastic loss

mechanism are air damping, thermoelastic dissipation, and clamping losses [94]. The

first order effect of loss can be captured by changing Qm to Qm - iFm/2. Assuming

quality factor Qm = m/Frm is well above 1, we have,

bm = (Um, f) 1 rm/2 (4.8)
(Um, PUm) QmFm Qm - Q - iFm/2

Inserting (4.8) into (4.3), we can see that the total SBS gain is the sum of SBS

gains of individual elastic modes.

g(Q) = Z GM (rm/2)2 (4.9)
m- Qm) 2 + (Fm/2) 2

The SBS gain of a single elastic mode has a Lorentian shape and a peak value:

G =- 2wQm |(f, Um)|2 (4.10)"m Q 2 9P (Ep, cEp)(EsE Es)(um, pum)

where we have used the fact that Q < oip, w. and wo _ w = w.

61



For translationally periodic waveguides with axial periodicity a, (4.2) becomes:

___ du
g(Q) = WS P R f, -u (4.11)

2Q0P,a dt

Where the overlap integral is defined over the unit cell rather the waveguide cross-

section. The optical power of a periodic waveguide is given by P = v. (E, EE) /2a.

Following same steps as invariant waveguides, we can show that (4.9) still holds. The

maximal gain of individual modes becomes:

Gm =2wQa IfIUm)12  (4.12)
F2VgpVgs (Ep, EEp) (Es, cE s) (um, pum)

(4.10) and (4.12) provide a general method to calculate the SBS gain of a waveg-

uide with arbitrary cross-section. Specifically, given the optical frequency W, we can

use finite element method to solve for the wavevectors and modal profiles of pump

and Stokes waves. Then, we use finite element method to solve for the elastic modes

at the phase-matching wavevector q = k, - k,. The SBS of each elastic mode can be

calculated by taking the overlap integral between optical forces and elastic displace-

ment. For translationally invariant waveguides, body forces and pressures form 2D

and ID integration respectively. For translationally periodic waveguides, body forces

and pressures form 3D and 2D integration respectively.

(4.10) and (4.12) shows that the SBS gain is determined by the frequency ratio,

the elastic loss factor, the optical group velocities, and the overlap integral between

optical forces and elastic eigen-modes. In addition, (4.10) and (4.12) provide a way

to separate the effects of various optical forces. Specifically, the overlap integral is

the sum of all optical forces:

(f,um) (fn, Um) (4.13)

The amplitudes of individual overlap integrals determine contributions from different

optical forces, while their relative phases determine the interference effect.
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4.3 Calculation of optical forces

A key step of applying (4.10) and (4.12) is to calculate optical forces from pump and

Stokes waves. Throughout the study, we consider electrostriction force and radiation

pressure. In this section, we summarize the calculation of these optical forces for both

translationally invariant and periodic waveguides. Note that we are interested in the

time-varying optical forces. The computed optical force is the complex amplitude

which encodes the strength and phase distribution. This is different from static

optical force which is always real.

4.3.1 Electrostriction force

Electrostriction forces are derived from electrostriction tensor. The instantaneous

electrostriction tensor is given by:

1
oJij -2 c onP i j kI E kEl (4.14)

where n is the refractive index, and Pijkl is the photoelastic tensor [95].

For translationally invariant waveguides, the total electric field is given by

E = (Epe (kpx--pt) + Esei(kx-wst))/2 + c.c (4.15)

Inserting this expression to (4.14), and filtering out the components with frequency

we get the time-harmonic electrostriction tensor o-jei(q-t):

14
o-i -con1 pigkI( Ep E,I + EPI E,*k) (4.16 )

For simplicity, we assume that the crystal structure of the waveguide material is

symmetric about x = 0, y = 0, and z = 0. Therefore, Pijkl is zero if it contains odd
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number of a certain component. In compact notation, (4.16) can be written as:

O'xx P11 P12 P13 ExE*x

Oryy P12 P22 P23 EyE*

Ozz 1 4 P13 P23 P33 E E* (4.17)

ayz 2 P44 EyE* + Ep2E*y

Oxz P55 EpE* + Epz E*

axy P66 EpxE*y + EpyE*x

Electrostriction force is given by the divergence of electrostriction tensor. In a sys-

tem consisting of homogeneous materials, electrostriction forces can exist inside each

material (electrostrict ion body force) and on the interfaces (electrostriction pressure).

Electrostriction body force is fESei(qx-Pt).

fES - _iqcrx-&YoX -&zo.z

fFS - -iq,y-&YO',, - &9z0yz (4.18)

zfES _ iqoxz-&yuzy -&ocTaz

Electrostriction pressure on the interface between material 1 and 2 is given by FES i(qx-Ot)

(normal vector n points from 1 to 2):

F.ES = (Clij - a2ij)nj (4.19)

Under a particular phase, the optical mode of the waveguide Eei(kx-) have imagi-

nary E, and real Ey,z. From (4.17), we can see that oxx, o-Y, ozz, and ayz are real

while uxy and o-z are imaginary. From (4.18) and (4.19), we can see that for both

electrostriction body force and electrostriction pressure, the transverse component is

real while the longitudinal component is imaginary.

For translationally periodic waveguides, the total electric field is given by

E = (Epe-iw + Eseiwst)/2 + c.c (4.20)
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Inserting this expression to (4.14), and taking out the components with frequency Q,

we get the time-harmonic elect rostriction tensor ojje~i" :

14
Oji jfo-- onPi jk ( E~xkE*1 + EiE,*g) (4.21

Similar to invariant waveguides, electrostriction body force is given by fESeiint:

f ESZE = (4.22)

Electrostriction pressure is given by FESe-iQt:

F.ES (lij - u2ij)nj (4.23)

Electrostriction pressure can have tangent components on the interface.

4.3.2 Radiation pressure

Radiation pressure is derived from Maxwell Stress Tensor (MST). For a dielectric

system (p = 1) without free charges (p = 0, J = 0), radiation pressure is localized

where the gradient of c is nonzero [96,97]. For a system consisting of homogeneous

materials, radiation pressure only exists on the interfaces. The dielectric part of

instantaneous MST is:

Tj= Eoe(EiE, - IjE2) (4.24)
2

The instantaneous pressure on the interface between material 1 and 2 is:

F RP = (T2ij - Tij)nj (4.25)

By decomposing the electric field into its normal and tangent components E = Enn+

Ett, and using the boundary condition c1Ei= 62 E 2n = D, and Eit = E2 = Et, we

can show that:

F RP EoE,(62 - ci)n I CgD 2 (c-1 - E-1 )n (4.26)
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For translationally invariant waveguides, the time-harmonic radiation pressure is

F Reitex-Qt)-

F RP 20EtE,*t(E2 - Ejn + 1 E-'DpnD* (c21 - 6-1)n (4.27)

(4.27) shows that radiation pressure is transverse and real.

For translationally periodic waveguides, the time-harmonic radiation pressure is

FRpe-'Qt with FRP given by (4.27). Radiation pressure is always in the normal

direction.

4.3.3 Convergence to the conventional BSBS gain

Combining (4.10) and (4.12) with the calculation of optical forces, we are ready to

explore the SBS nonlinearity of nanoscale waveguides. Before that, it is instructive

to compare (4.10) with the conventional BSBS gain [6]. We can show that (4.10)

converges to the conventional BSBS gain under plane-wave approximations for both

optical and elastic modes. Specifically, consider the coupling between two counter

propagating optical plane-waves through an elastic plane-wave. The optical plane-

wave is linearly polarized in y direction. The elastic plane-wave is pure longitudinal

traveling at velocity VL. Under this setup, nonzero optical forces include the longi-

tudinal electrostriction body force, and the transverse components of electrostriction

pressure and radiation pressure. Only the longitudinal electrostriction body force

contributes nonzero overlap integral:

1.
f ES = _ 4P12E (4.28)

Inserting this expression into (4.10), and using the fact that Q = qVL and q = 2k, we

can show that:

G 2 ( 9Gu - W P12 1(4.29)
C3pVLI, A

Where A is the cross-sectional area of the waveguide. This is exactly the conven-

tional BSBS gain. For microscale waveguides, the plane-wave approximation is valid,
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and (4.10) converges to Go. For nanoscale waveguides, (4.10) can deviate from Go

significantly because of the vector nature of optical and elastic modes as well as the

enhanced boundary nonlinearities.

4.4 Translationally invariant waveguides

4.4.1 Silicon rectangular waveguides

In this section, we apply the general formalism to study the SBS process of a trans-

lationally invariant waveguide. Consider a silicon rectangular waveguide suspended

in air (Fig. 4-1 insert). The cross-section is a by 0.9a. For silicon, we use refrac-

tive index n = 3.5, Young's modulus E = 170 x 109 Pa, Poisson's ratio v = 0.28,

and density p = 2329kg/m 2 . In addition, we assume that the [100], [010], and [001]

symmetry direction of this crystalline silicon coincide with the x, y, and z axis respec-

tively. Under this orientation, the photo-elastic tensor Pijkl in contracted notation is

[P11, P12, P44] [-0.09, 0.017, -0.051] [98]. The structure has two symmetry plane

y = 0 and z = 0. Both optical modes and elastic modes have fixed parities about

these planes.

The fundamental optical modes are Eynl and Ezjn (Fig. 4-1(a)). Eyll is even

about z = 0 and odd about y = 0 with a large Ey component. Eznj has the opposite

parities and slightly higher frequencies. Throughout the study, we assume the pump

wavelength is 1.55pm. So a is the product of 1.55pLm and w in unit of 27rc/a, and

different operating point in the dispersion diagram corresponds to different a. For

FSBS and BSBS, we assume that pump and Stokes waves come from Eynl. Since

Q/w a VL/c is on the order of 10-4, pump and Stokes waves approximately corre-

sponds to the same mode Eei(kx-t). The optical force induced by intramode coupling

is always symmetric about both y = 0 and z = 0.

We only consider elastic modes with the same parities (Fig. 4-1(b)). Here, E-

modes are the actual eigen-modes, while P-modes (S-modes) are the constrained

eigen-modes with pure longitudinal (transverse) displacement. At q = 0, the geo-
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08S-modes-- 0.8
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k (r/a) q (7r/a)

(c) El (P) E2 (S) E3 (S) E4 (P) E5 (P)

Figure 4-1: The optical and elastic modes of a silicon rectangular waveguide. Op-

tical frequency is in unit of 27rc/a, while elastic frequency is in unit of 27rVL/a.

VL = V/E/p = 8.54 x 103 m/s is the longitudinal sound velocity of silicon. (a) Dis-

persion diagram of optical modes Eynl and E 1 1 . (b) Dispersion diagram of elastic

modes which are even about both y = 0 and z = 0. E-modes (black lines) are the

actual eigen-modes. P-modes (blue lines) are the constrained eigen-modes with only

longitudinal movements. S-modes (red lines) are the constrained eigen-modes with

only transverse movement. At q = 0, E-modes are either P-modes or S-modes. (c)

The modal profiles of El through E5 at q = 0. The deformation is proportional to the

displacement. The color represents uY for S-modes and u_ for P-modes. Blue, white,
and red correspond negative, zero, and positive values respectively. El corresponds

to a longitudinal shift.
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metric symmetry plane x = 0 is recovered. Elastic modes that are odd (even) about

this plane only have longitudinal (transverse) movement. Therefore, elastic modes

at q = 0 are pure P-modes or S-modes (Fig. 4-1(c)). Elastic modes at nonzero q

are hybrid. Similar to the optical mode, we can choose a proper phase so that ut. is

imaginary while uy,z are real.

4.4.2 Forward SBS

In FSBS, Ep= E,= E and q = 0. (4.17) can be simplified to:

OXX Pii P12 P13 |EX|2

oyy P12 P22 P23 2Ey|2

OZZ 1 4 P13 P23 P33 |E 2  (4.30)

O-yz 2 P44 2R(EyE*)

XZ P55 0

a-2 P66 0

Therefore, or= o-x, = 0. From (4.18) and (4.19), we can see that f S = FIs = 0.

So both electrostriction force and radiation pressure in FSBS are transverse. We

pick an operating point at w = 0.203(27rc/a), k = 0.75(7r/a) with a = 315nm, and

compute the force distribution (Fig. 4-2(a)). Electrostriction body force is largely

in y direction. This is because Ey is the dominant component in electric field and

|Pill is about five times larger than |P121. Electrostriction pressure points inwards.

Radiation pressure points outwards. Radiation pressure is about five times larger

than electrostriction pressure.

The transverse nature of optical force combined with the fact that elastic modes

are either P-modes or S-modes at q = 0 indicates that only S-modes have nonzero

FSBS gains. We compute the corresponding FSBS gains using a quality factor Q =

1000 for all the elastic modes (Fig. 4-2(b)). As expected, only S-modes E2, E3, and

E5 have nonzero gains. E2 has the largest gain of 1.72 x 104 m-1 W-1 , which comes from

a constructive combination of electrostriction force (0.42 x 104 m-W-1) and radiation
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Figure 4-2: Detailed analysis of FSBS. For (a) and (b), the operating point is W
0.203(27rc/a), k = 0.75(7r/a), and q = 0 with a = 315nm. (a) The distribution
of optical forces. All optical forces are transverse. (b) FSBS gains calculated from
overlap integral using Q = 1000. Blue, red, and green bars represent FSBS gains
from electrostriction force, radiation pressure, and both. Only S-modes have non-
zero gains. (c) The scaling of FSBS gains as a varies from 0.25pm to 2.5pm. Solid
and dotted lines represent E2 and E5 respectively.
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pressure (0.44 x 104 m-1W'). E5 has a total gain of 0.51 x 104 m'W 1 , which mainly

comes from radiation pressure (0.36 x 104 m'Wl).

10

0 - -- E2,ESe 10
0 6 J -E2,RP

--- E2,A11

o --- E5,ES

-- E5,RP

10-5 - E5,All
0.25 0.5 1 2.5

a (pm)

Figure 4-3: The scaling of FSBS gains as a varies from 0.25pm to 2.5pm. Solid and
dotted lines represent E2 and E5 respectively.

Next, we vary a from 250nm to 2.5pm by lifting the operating point at the optical

dispersion diagram from 0.16(27rc/a) to 1.61(27rc/a) and compute the corresponding

FSBS gains for E2 and E5 (Fig. 4-3). For both E2 and E5, electrostriction FSBS gain

scales as 1/a 2 for large a. This can be understood by a detailed analysis of (4.10).

Under normalization condition (E, cE) = 1, the electrostriction tensor scales as 1/a 2 .

Since electrostriction force is essentially the divergence of electrostriction tensor, the

total electrostriction force that apply to the right half of the waveguide scales as 1/a 3 .

Under normalization condition (u, pu) = 1, u scales as 1/a. So the overlap integral

scales as 1/a 2 . Under a fixed Q, the electrostriction FSBS gain scales as 1/a 2 . The

radiation pressure FSBS gain scales as 1/a' for E2 and 1/a 6 for E5. This can also be

understood from a breakdown of (4.10). Given the input power, the sum of average

pressure on the top and side boundaries of the rectangular waveguide is proportional

to (ng - n,)/A, where n9 (nr) is the group (phase) index, and A is the waveguide

cross-section [78]. When the waveguide is scaled up with a fixed aspect ratio, ng - np
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shrinks in the order of 1/A. So the sum of average radiation pressure scales as 1/a 4,

and the radiation pressure FSBS gains should scales as 1/a 6 . For E2, the radiation

pressure on the side and top boundaries have opposite effects. So it is the difference

rather than the sum between side and top radiation pressures that determines the

overlap integral. This is why the radiation pressure induced FSBS gain of E2 decays

faster.

4.4.3 Backward SBS

In BSBS, E, = E, ES = E*, and q = 2k. (4.17) can be simplified to:

Oxx P11 P12 P13 EX

Uyy P12 P22 P23 Y2

=zz 1 co 4 P13 P23 P33 E(431)

Uyz 2 P4 4  2EyEz

0 xz P55 2ExEz

y iLP66 2ExEy

All components of oj are nonzero, generating electrostriction force with both longi-

tudinal and transverse components. We pick an operating point at w = 0.203(2irc/a),

k = 0.75(7r/a) with a = 315nm, and compute the force distribution (Fig. 4-4(a)).

Electrostriction body force has large longitudinal component over the waveguide cross-

section, which mainly comes from the -iqrxx term in f ES

The hybrid nature of optical forces combined with the fact that all elastic modes

are hybrid at nonzero q indicates that all elastic modes have nonzero gains. We

compute the corresponding BSBS gains using a quality factor Q = 1000 for all the

elastic modes (Fig. 4-4(b)). For El and E2, electrostriction force and radiation

pressure add up destructively, resulting small BSBS gains of 0.089 x 104M-1W 1 and

0.086 x 104M-1W- respectively.

Next, we vary a from 250nm to 2.5im and compute the corresponding BSBS

gains for El and the conventional BSBS gain Go (Fig. 4-5). The electrostriction
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Figure 4-4: Detailed analysis of BSBS. For (a) and (b), the operating point is

w = 0.203(27rc/a), k = 0.75(7r/a), and q = 1.5(7r/a) with a = 315nm. (a) The distri-
bution of optical forces. Electrostriction forces have both longitudinal and transverse

components. Radiation pressure has only transverse component. (b) BSBS gains

calculated from overlap integral using Q = 1000. Blue, red, and green bars represent

BSBS gains from electrostriction force, radiation pressure, and both. (c) The scaling

of BSBS gains as a varies from 0.25pm to 2.5pm. Blue, red, and green lines repre-

sents different BSBS gains of El. Solid black line represents the conventional BSBS

gain. Dotted black line represents the electrostriction BSBS gain of P1. Black dots

represents the maximal electrostriction BSBS gain of all E-modes.
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Figure 4-5: The scaling of BSBS gains as a varies from 0.25pm to 2.5pm. Blue, red,
and green lines represents different BSBS gains of El. Solid black line represents the
conventional BSBS gain. Dotted black line represents the electrostriction BSBS gain
of P1. Black dots represents the maximal electrostriction BSBS gain of all E-modes.

BSBS gain of El decays very fast. In contrast, Go scales as 1/a 2 as indicated by

(4.29). This difference comes from the fact that the conventional BSBS gain cor-

responds to the longitudinal plane wave, but El quickly deviates from longitudinal

plane wave as the dimensionless q increases (Fig. 4-1(b)). There are two ways to

recover the conventional BSBS gain from (4.10). First, we consider the constrained

longitudinal modes (P-modes) in Fig. 4-1(b). P1 is just the longitudinal plane wave.

The computed electrostriction BSBS for P1 converges to Go as a increases (Fig. 4-5).

Second, the dispersion curve of P1 pass through different E-modes as the dimension-

less q increases. The E-modes at the intersection points become P1-like with large

longitudinal movement over the waveguide cross-section. These modes should have a

large electrostriction BSBS gain close to that of P1. We compute the electrostriction

BSBS gains for El through E500 for different a (Fig. 4-5). The maximal gain among

all the modes converges to Go as expected.
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Figure 4-6: Detailed analysis of intermode coupling between E. 11 (pump) and Ez 11

(Stokes). The operating point is w = 0.203(27rc/a), k, = 0.750(7r/a), k, = 0.665(7r/a),
and q = 0.085(7r/a) with a = 315nm. (a) The distribution of optical forces. The

longitudinal forces (not shown here) are much smaller than the transverse forces. All

optical forces are anti-symmetric about y = 0 and z = 0, exciting elastic modes

with the same parities (0-modes). (b) Intermode SBS gains calculated from overlap

integral using Q = 1000. The modal profiles of 01 through 05 at q = 0.085(7r/a) are
inserted. The deformation is proportional to the displacement. The color represents

the amplitude of total displacement with blue and red corresponding to zero and the

maximal value.
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4.4.4 Intermode coupling

In the discussion of FSBS and BSBS, pump and Stokes waves come from the same

optical modes (intramode coupling). Now we apply our formalism to intermode cou-

pling of the same silicon rectangular waveguide. For intramode coupling, the optical

force is always symmetric about y = 0 and z = 0, exciting elastic modes with the

same parities (E-modes). For intermode coupling, however, optical forces with all

possible symmetries can be generated, and elastic modes with all possible symmetries

can be excited. For instance, we consider the coupling between Eynl (pump) and Ezu,

(Stokes). The operating point is w = 0.203(27rc/a), k, = 0.750(7r/a), k, = 0.665(7r/a),

and q = 0.085(7r/a) with a = 315nm. Because Ey1I and Ez11 have the opposite sym-

metries about both y = 0 and z = 0, the induced optical force is anti-symmetric

about both planes (Fig. 4-6(a)). Both electrostriction body force and radiation pres-

sure try to pull the waveguide in one diagonal and push the waveguide in the other

diagonal. Electrostriction pressure has the opposite effect, but is much weaker than

the radiation pressure.

Under such optical force, elastic modes which are odd about both y = 0 and

z = 0 (0-modes) can be excited. We calculated the SBS gains of 01 through 05

using a quality factor Q = 1000 for all the modes (Fig. 4-6(b)). 01 represents a

rotation around x axis. So the overlap integral is proportional to the torque. The

y component and z component of the optical forces generate torques with opposite

signs, which significantly reduces the overlap integral. 01 still has a sizable SBS

gain because of the small elastic frequency Q = 0.024(27rVL/a). 02 represents a

breathing motion along the diagonal. Its modal profile coincides quite well with the

optical force distribution, and the constructive combination between electrostriction

force and radiation pressure results in total gain of 1.54 x 104 m-W 1 . 03 only have

small SBS gains since it is largely longitudinal while the optical forces are largely

transverse. The SBS gains of 04, 05 and higher order modes are close to zero

because the complicated modal profiles cancel out the overlap integrals to a large

extent.
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4.4.5 Substrate effect

100

z

80 - -

60-

40-

20 --

0 0.2 0.4 0.6 0.8 1
Q (2-7rVL/a)

Figure 4-7: FSBS gains of a silicon waveguide on top of a silica substrate calculated

from frequency response. For silica, we use refractive index n = 1.45, Young's mod-

ulus E = 72.5 x 10' Pa, Poisson's ratio v = 0.17, and density p = 2200kg/m 2 . The

operating point is w = 0.201(27rc/a), k = 0.75(7r/a), and q = 0 with a = 311nm. The

inserts show the leaky elastic modes which give rise to the two resonant peaks. The

deformation is proportional to the displacement. The color represents displacement

component 'yu.

In the discussion above, the silicon waveguide is suspended in air, which provides

tight optical guidance and nearly perfect elastic guidance because of the huge elastic

impedance mismatch between silicon and air. When the waveguide is put on top of

a substrate with smaller refractive index, the optical guidance is still good, but the

elastic guidance needs to be carefully examined. For BSBS, q = 2k is not zero. If the

phonon travels faster in the substrate than the waveguide, traveling elastic mode that

is localized around the waveguide can be formed, enabling the on-chip realization of

BSBS process [68]. For FSBS, q is close to zero, and phonon travels transversely.

No matter whether phonon travels faster or slower in the substrate, the transverse

vibration of the waveguide will always excite the radiative modes of the substrate.

Therefore, elastic modes become leaky modes. The quality factor of such modes can

be written as Q1 = Q-1 + Q-1, where Qabs corresponds to the dissipative losses,
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and Qad corresponds to leakage into the substrate. Because of the large contact area

and strong coupling between the waveguide and substrate, Qad can be quite small,

putting a cap on Qtot and reducing the FSBS gain of the whole structure.

To further illustrate the substrate effect, we put the silicon rectangular waveguide

on a silica substrate and calculate the FSBS gains at operating point w = 0.201(27rc/a)

and k = 0.75(7r/a) with a = 311nm (Fig. 4-7). For leaky modes with strong coupling

to external channels, the orthogonality condition (4.6) is not exact, and normalization

factor (u, pu) can not be exactly determined. Therefore, we computed the FSBS gains

using frequency response formula (4.3) rather than the eigen-mode formula (4.10). To

model Qabs = 1000, we used a bulk loss factor of 0.001 for the silicon waveguide. To

model Qad into the substrate, we divide the substrate into two regions. The central

region is lossless. The surrounding region has a bulk loss factor which increases

quadratically from the inner radius to the outer radius. This region serves as a

perfect matching layer (PML) which absorb outgoing elastic waves with minimal

reflection [81]. The calculated FSBS gain spectrum has two peaks (Fig. 4-7). The

leaky modes that give rise to these two peaks are similar to E2 and E5 of the suspended

waveguide. However, these leaky modes have much smaller quality factor and much

smaller peak FSBS gains. For instance, the leaky mode at Q = 0.48(27rVL/a) has

QtOt = 5.6 and a maximal FSBS gain of 87m-'W-1 , both of which are about 200 times

smaller than the corresponding values of E2 under a hypothetical quality factor of

1000. The modal profiles of these leaky modes clearly demonstrate that the coupling

between waveguide core and substrate is quite strong, and the radiative modes in the

substrate are efficiently excited.
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4.5 Translationally periodic waveguides

4.5.1 Silicon periodic waveguide

Based on the understanding of translationally invariant waveguides, we proceed to

study the SBS process of a periodic waveguide. Throughout the study, we consider

a suspended silicon waveguide with periodic cylindrical holes (Fig. 4-8(a) insert).

The periodicity in x direction is a, the cross-section in yz plane is a by 0.4a, and

the radius of the cylindrical air hole is 0.25a. The waveguide has three geometric

symmetry planes x = 0, y = 0, and z = 0. We assume that the crystal structure

of the material is also symmetric about these three planes so that the anisotropy in

optical, elastic, and photo-elastic constants doesn't break these mirror symmetries.

This condition is clearly satisfied for silicon in the current orientation.

First, we analyze the optical modes of the waveguide. The optical modes are

categorized into yeven/yodd (zeven/zodd) according to the parity about y = 0 (z =

0). The fundamental mode is yodd and zeven with Ey as the dominant component of

electric field. As k increases from 0.5(ir/a) to ir/a, the frequency of the fundamental

mode increases from 0.228(27rc/a) to 0.280(27rc/a) (Fig. 4-8(a)). We fix the pump

wavelength at 1.55pm. So the corresponding a varies from 354nm to 434nm. The

optical mode E doesn't have fixed parity about x = 0 since k breaks this mirror

symmetry. Actually, the reflection of E about x = 0 corresponds the the eigen-mode

at -k, which is also the complex conjugate of E. Under a properly chosen phase, the

reflection of E is exactly E*. Therefore,

Ei(-x, y, z) = E*(x, y, z)si (4.32)

where s., = -1, and sY,2 = 1. The subscript in s does not induce summation when

encountered with repeated indices.

Next, we analyze the elastic modes of the waveguide. Again, the elastic modes

are categorized into yeven/yodd (zeven/zodd) according to the parity about y = 0

(z = 0). Since optical modes are either even or odd about these two planes, and
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Figure 4-8: The optical and elastic modes of a periodic silicon waveguide. (a) The
dispersion diagram of the fundamental optical mode which is yodd and zeven. The
area shaded in gray represents light cone of air. (b) The dispersion diagram of elastic
modes which are yeven and zeven. Xeven and xodd modes at q = 0 are colored
in red and blue respectively. (c) Elastic modal profiles at q = 0. The deformation
is proportional to the displacement u. The colored surface represents displacement
component uy. Red, white and blue correspond to positive, zero, and negative values
respectively. Mode El is a parallel shift along x direction.
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optical forces is quadratic in electric field, optical force is always symmetric these

two planes. So we only consider elastic modes that are both yeven and zeven (Fig.

4-8(b)). At q = 0, the symmetry about x = 0 is recovered. The eigen-mode u can

be taken to be real field, and be categorized into xeven and xodd (Fig. 4-8(c)). At

nonzero q, the eigen-mode u is a complex field without fixed parity about x = 0.

However, similar to the optical modes, we can choose a proper phase of u so that:

u(-x, y, z) = u*(x, y, z)si (4.33)

4.5.2 Forward SBS

In FSBS, pump and Stokes waves have approximately the same wavevector k and

excite standing elastic modes at q = 0. To study the distributions of different optical

forces, we select an operating point at k = 0.75(7r/a), w = 0.265(27rc/a) and q = 0

with a = 420nm. The amplitude of optical forces in FSBS is real (Fig. 4-9(a)). The

dominant component of electrostriction body force is f's, which comes from the fact

that the dominant component of electric field is Ey and the fact that pu is about

five times larger than P12. In addition, electrostriction pressure points inwards and

radiation pressure point outwards. Radiation pressure is about five times larger than

electrostriction pressure.

One important feature about the optical force distribution is that all optical forces

are symmetric about x = 0 although the electric field doesn't have this symmetry.

This can be formerly proven by examining the symmetry of electrostriction tensor

and MST. The electrostriction tensor in FSBS is given by:

1
o1ij = -- 1on4Pijk!R(EkEl*) (4.34)

Because the crystal structure of the waveguide material is symmetric about x = 0,

the photoelastic tensor is zero when there is odd number of x in the subscript: PijkI =
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Figure 4-9: Detailed analysis of FSBS at w = 0.265(27rc/a), k = 0.75(7r/a), and q = 0
with a = 420nm. (a) Distributions of optical forces. For electrostriction body force,
the two subplots show the body force on cross-sections z = 0 and y = t0.4a. For
electrostriction pressure and radiation pressure, the two subplots show the pressure
on the lateral surfaces and the top surface. Electrostriction pressure is multiplied by 5
so that it can be plotted on the same scale as radiation pressure. All the optical forces
are symmetric about to x = 0. (b) The FSBS gains of individual elastic modes using
Q = 1000. Blue, red, and green bars represent the FSBS gains from electrostriction
force, radiation pressure, and both effects respectively.
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Figure 4-10: Calculated FSBS gains for (a) E2 and (b) E4 as k varies from 0.5(7r/a)
to 7r/a, and a varies from 354nm to 434nm. For both E2 and E4, the FSBS gain

approaches to infinity as 1/Ak 2 at the Brillouin zone boundary.
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PijklSiSjSkSI. Combining this property with (4.32) and s2 = 1, we have

14
oij(-XyZ) = - on pijklR(E(-x, y, z)El*(-x, y, z))

14
= 2en1 pi1 R(E*(x, y, z) E(x, y, z))sis sksisksI

- o-j(x , z)sisj (4.35)

The MST in FSBS is given by:

1
Ti =COE (E?,E3 + E*Ej - JjjE - E*) (4.36)

Using (4.32) and 6j = 6ijsisy, we have

Ti(- x, y, z) = coc(2R(E(-x, y, z)Ej*(-x, y, z)) - o 3IjE(-x, y, z)|2)
2
1
= coE(2R(E(x,y, z)Ej(x, y, z)) - 6gIE(x, y, z)| 2)SSj2

=Ti (X, y, Z)si (4.37)

Combining (4.35) and (4.37) with the fact that optical force is given by the divergence

of the corresponding tensor, we conclude that both the electrostriction force and

radiation pressure are symmetric about x = 0 in FSBS.

The symmetry of optical forces combined with the fact that elastic modes have

fixed parity about x = 0 at q = 0 indicates that only xeven modes have nonzero

FSBS gains. We calculate the FSBS gain using a quality factor Q = 1000 for all the

elastic modes (Fig. 4-9(b)). Only xeven modes E2 and E4 have nonzero FSBS gains,

which confirms the symmetry analysis. Mode E2 is essentially a transverse mode with

large displacement in y direction and small displacement in z direction. This modal

profile agrees well with electrostriction body force fyS and the radiation pressure on

the outer lateral surfaces, generating large FSBS gains from electrostriction (0.71 x

104 m-W-1) and radiation pressure (0.44 x 104 m-lW-1). Furthermore, these two effect

add up constructively, resulting a total FSBS gain as large as 2.27 x 104 m 1 W- 1 . Model

E4 has a small FSBS gain of 0.17 x 104 M-1W-1 because (1) the nodal planes of uY
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reduce the overlap integral of electrostriction body force and (2) radiation pressures

on the outer and inner lateral surfaces have opposite effects which result in a very

small FSBS gain from radiation pressure.

Next, we study how the FSBS gain varies as the operating point moves from

Brillouin zone interior to boundary (Fig. 4-10). For Mode E2, electrostriction force

and radiation pressure always add up constructively, creating a large FSBS gain.

For Mode E4, the SBS gain from radiation pressure vanishes around k = 0.57(7r/a)

because of the cancellation of radiation pressures on different surfaces. For both E2

and E4, when the operating point approaches Brillouin zone boundary, the overlap

integrals approaches to a constant while the optical group velocity approaches to zero

as Ak (Ak = jk - 7r/al). As a result, the SBS gains approach to infinity as 1/Ak 2.

For instance, the total SBS gain for E2 is 9.7 x 104 m-1 W 1 at k = 0.90(7r/a) and

8.7 x 106 m-'W-' at k = 0.99(7r/a). Therefore, SBS nonlinearity can be significantly

enhanced in the slow light regime.

4.5.3 Backward SBS

In BSBS, pump and Stokes waves travel in the opposite directions, exciting elastic

modes at q 2k. To study the distribution of optical forces, we select an operating

point at k 0.75(7r/a), w = 0.265(27rc/a) and q = 1.5(7r/a) with a = 420nm. The

amplitude of optical forces in BSBS is complex and dependent on the phase of the

electric field. Under condition (4.32), the real part of optical forces is symmetric

about x = 0 while the imaginary part is anti-symmetric about x = 0 (Fig. 4-11(a)).

This can be formerly proven by examining the electrostriction tensor and MST in

BSBS. The electrostriction tensor in BSBS is:

1
o-j= - con pijki EkEl (4.38)

MST in BSBS is:
1

Ti= EC(2EiEj - o .jE - E) (4.39)
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Figure 4-11: Detailed analysis of BSBS at k = 0.75(7r/a), w = 0.265(27rc/a) and
q = 1.5(7r/a) with a = 420nm. (a) Distributions of the real and imaginary parts of

optical forces. For electrostriction body force, the two subplots show the body force
on cross-sections z = 0 and y ±0.4a. For electrostriction pressure and radiation
pressure, the two subplots show the pressure on the lateral surfaces and the top
surface. Electrostriction pressure is multiplied by 5 so that it can be plotted in the
same scale as radiation pressure. The real part of all the optical forces is symmetric

about x 0, while the imaginary part of all the optical forces is anti-symmetric

about x = 0. (b) The BSBS gains of individual elastic modes calculated from overlap

integrals. Blue, red, and green bars represent the BSBS gains from electrostriction

force, radiation pressure, and both effects respectively.
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to ir/a and a varies from 354nm to 434nm. For E2, the BSBS gain approaches to
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zone boundary.
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Following similar derivations as FSBS, we can show that both tensors have the fol-

lowing properties:

aig(-x,y,z) =o*(x,y,z)sisj (4.40)

Ti(-x, y, z) = Ti*(x, y, z)sjs (4.41)

Taking the real and imaginary parts of the expressions above, we can see that the

real part of optical forces is symmetric about x = 0 and the imaginary part is anti-

symmetric about x = 0. On the other hand, (4.33) shows that the real part of elastic

displacement is even about x = 0, and the imaginary part is odd about x = 0.

Therefore, the overlap integrals between optical forces and elastic displacements are

real, which indicates that the contributions from different optical forces add up either

constructively or destructively:

Gal ( /GES ± GRP)2  (4.42)

We calculate the BSBS gain using the a quality factor Q = 1000 for all the elastic

modes (Fig. 4-11(b)). Mode E2 has the largest BSBS gain (1.42 x 104 m-1 W 1 ), which

comes from a constructive combination of electrostriction force (0.29 x 104 m-1W')

and radiation pressure (0.42 x 104 m-lW-1). Mode E3 have the second largest BSBS

gain (0.35 x 104 m-1W4), which mainly comes from electrostriction body force.

Next, we scan the operating point from k = 0.5(7r/a) to k =ir/a and calculate the

corresponding BSBS for Mode E2 and E3 (Fig. 4-12). For Mode E2, electrostriction

force and radiation pressure always add up constructively although their relative

strength varies for different k. In the slow light regime, the BSBS gain approaches

to infinity as 1/Ak 2 as the optical group velocity vanishes as Ak. On contrast, the

BSBS gain of Mode E3 approaches to a constant at the Brillouin zone boundary. This

comes from two properties associated with k = lr/a. At k = ir/a, BSBS is equivalent

to FSBS, and optical forces are symmetric about x = 0. When k is slightly way

from this point, the BSBS optical force can still be decomposed into symmetric and

88



anti-symmetric components with the anti-symmetric component in the order of Ak.

In addition, at k = ir/a, q = 2k = 27r/a, which is equivalent to q = 0. So the phase-

matching elastic modes recover their parities about x = 0, and Mode E3 is odd about

x = 0. When k is slightly away from this point, Mode E3 can be decomposed into odd

and even components with the even component in the order of Ak. Therefore, the

overlap integral between backward optical forces and the modal profile of Mode E3

vanishes as Ak. Because both the overlap integral and optical group velocity vanishes

as Ak, the SBS gain approaches to a constant in the slow light region.

4.6 Concluding remarks

In this chapter, we propose a general framework of calculating the SBS gain via the

overlap integral between optical forces and elastic eigen-modes. Our method is based

on the frequency response representation of SBS gains [76]. By decomposing the fre-

quency response into elastic eigen-modes, we show that the SBS gain is the sum of

many Lorentian components which center at elastic eigen-frequencies. The SBS gain

spectrum is completely determined by the quality factor and maximal gain of individ-

ual elastic modes. Therefore, our method is conceptually clearer and computationally

more efficient than the frequency response method.

Through the study of a silicon waveguide, we demonstrate that our method can

be applied to both FSBS and BSBS, both intramode and intermode coupling, both

nanoscale and microscale waveguides. Both analytial expressions and numerical ex-

amples show that SBS nonlinearity is tightly connected to the symmetry, polarization,

and spatial distributions of optical and elastic modes.

In addition, we analyze the SBS process of a suspended periodic waveguide. The

suspended geometry provides nearly perfect lateral confinement for elastic modes [76].

The periodic structure slows down the group velocity of optical modes. The combi-

nation of these two effects creates a giant enhancement of SBS nonlinearity over

conventional nonlinear fibers [91]. We also show the importance of mode symme-

try in both FSBS and BSBS processes. Our analysis doesn't rely on the specific
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waveguide geometry or the crystal structure of silicon. The conclusion about the

relation between mode symmetry and SBS gain is valid as long as the waveguide has

a symmetry plane perpendicular to the propagation axis and the crystal structure

of the underlying material doesn't break this symmetry. Our results can be readily

applied to simpler structures such as translationally invariant waveguides and more

complicated structures such as photonic/phononic dual crystal waveguides.

Because electrostriction force and radiation pressure have distinct distributions

and material dependence, SBS nonlinearity can be further tailored and optimized

through material selection and structural design. For example, the direction of elec-

trostriction force depends on the sign of photoelastic tensors. For silicon, p11 < 0

and P12 > 0. When the electric field has a large y component, the FSBS electrostric-

tion force points outward in y direction and inward in z direction. Under such force

distribution, the "breathing" mode E2 has the largest FSBS gain in most circum-

stances. For GaAs and germanium, p11 < 0 and P12 < 0. The FSBS electrostriction

force points outwards in both y and z direction. Such electrostriction force add con-

structively with radiation pressure, generating large FSBS gain for the "expanding"

mode E5. For another example, the SBS gain of a periodic waveguide discussed above

can be further tailored by varying the size of the air rod and the height of the slab.

In short, the overlap integral representation of SBS gains developed in this chapter

provides the guidelines of tailoring and optimizing SBS nonlinearity.
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Chapter 5

A Novel Class of Hybrid

Photon-Phonon Waveguides

5.1 Introduction

In the previos chapter, we developed a general framework of calculating SBS gains.

Through the studies of various SBS processes, we can see that SBS can create highly

efficient photon-phonon coupling over a wide frequency range, which can be applied

to a variety of hybrid signal processing schemes. For instances, SBS processes have

yielded wide bandwidth pulse compression [99], pulse and waveform synthesis [100],

coherent frequency comb generation [101], variable bandwidth optical amplifiers [102],

reconfigurable filters [103], and coherent beam combining schemes [104].

The simple waveguide structures studied in the previous chapter, while clearly

demonstrate the essential features of SBS processes, entangle the design of optical

and elastic modes. In this chapter, we collaborated with researchers in Sandia to

propose a novel class of hybrid photon-phonon waveguides which allow for the inde-

pendent control of optical and elastic modes. By applying the framework developed

in the previous chapter, we theoretically characterize various features of the hybrid

waveguide, including optical force distributions, elastic modal profiles, and FSBS

gains. In addition, we develop a set of coupled amplitude equations which can be

used to extract resonant frequency, quality factor, and FSBS gains from nonlinear
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response of the real structures fabricated by our collaborators in Sandia. Both the

theoretical analysis and experimental results demonstrate that the hybrid waveguide

can create highly efficient and tunable photon-phonon coupling over a very wide fre-

quency range.

5.2 Hybrid photon-phonon waveguides

(a) (b)
Si waveguide

SSi3N4

Photon

Figure 5-1: Structure of the hybrid photon-phonon waveguide. (a) Schematics of the
waveguide. A silicon waveguide is embedded in a suspended silicon nitride membrane.
In FSBS, photon travels in the longitudinal direction, generating transverse optical
forces, and exciting transverse phonons. (b) Structure of the fabricated waveguide.
There are two air slots in the silicon nitride membrane. The segment between two
slots forms the target structure in (a). The lower figure shows the SEM cross-section
of the silicon waveguide core within the silicon nitride membrane.

For the waveguides studied in the previous chapter, both the optical and elastic

modes are determined by the waveguide geometry. A change in the waveguide cross-

section or unit cell structures will impact optical and elastic modes simultaneously. To

separate the control over optical and elastic modes, we collaborated with researchers

in Sandia to propose a membrane-waveguide structure as shown in Fig. 5-1(a). In this

structure, a silicon waveguide is embedded in a suspended silicon nitride membrane.

In forward SBS, photon travels longitudinally within the core due to the total internal
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reflection between silicon and silicon nitride boundaries. Phonon travels transversely

along the membrane due to the phase matching condition in forward process. The

lateral boundaries of the membrane provides nearly perfect reflections to transverse

phonons, forming a Fabry-Perot resonator, and generating a series of discrete elastic

modes. The spacing between neighboring elastic modes is inversely proportional to

the membrane width.

Compared to the waveguide structure in the previous chapter, the current struc-

ture has two advantages. First, in the current structure, the optical mode is largely

determined by the core, while the elastic mode is largely determined by the mem-

brane. This separation significantly increases the tunability of the whole structure.

Second, elastic modes are extended over the entire membrane, making it possible to

integrate other photonic/phononic components into the membrane. In this hybrid

photon-phonon systems, phonons are no longer the by-product of stimulated bril-

louin scattering. Instead, phonons traveling in the membrane become the carrier of

information, creating new forms of coherent signal processing schemes.

Figure 5-1(b) shows the experimental structure fabricated by our collaborators in

Sandia. The structure includes an embedded silicon waveguide and a silicon nitride

membrane sitting on top of silica substrate. There are two air slots in the silicon

nitride membrane, the segment between which forms the suspended structure. By

varying the edge to edge distance d between two air slots, we can change the width of

the suspended membrane conveniently. As shown in the SEM image, the waveguide

core is 313nm by 194nm. The thickness of the membrane is 124nm. Four different

waveguides with d = [0.8, 1.8, 2.8, 3.8]pm were fabricated. We will use these values

in the following analysis.

5.3 Theoretical analysis

In this section, we use the framework developed in the previous chapter to analyze

the forward SBS process of d = 3.8pm waveguide.

The optical modes are tightly confined in the silicon core due to the large index
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Figure 5-2: Optical force distributions of d 3.8pm waveguide.

contrast between silicon (n = 3.5) and silicon nitride (n = 2.0). The fundamental op-

tical mode is Eyul with a dominant Ey component. Assuming the incident wavelength

is 1.55pm, the optical mode has a phase index np = 1.78 and a group index n = 4.30.

We calculate the optical force distribution in FSBS (Fig. 5-2). As demonstrated in

the previous chapter, all optical forces in FSBS are transverse. Electrostriction body

force is mainly in y direction. Radiation pressure is much larger than electrostriction

pressure. There are large radiation pressures on the internal boundary due to the

jump of refractive index.

The elastic modes extend over the entire membrane. In FSBS, q = 0. Elastic

modes are either pure longitudinal with displacement in x direciton, or pure trans-

verse with displacement in yz plane. Since optical forces are transverse. only the

transverse elastic modes can be excited. For an infinite membrane, transverse elastic

modes are called Lamb waves [93]. The fundamental Lamb wave has zero cut-off and

an approximately linear dispersion relation Qe~ Vky. For a membrane with finite
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m= 5

Figure 5-3: Elastic modal profiles of d = 3.8pm waveguide. The color represents
displacement in y direction with blue, white and red corresponding to negative, zero,
and positive values. The deformation is proportional to displacement.

width d, Lamb waves are reflected at the lateral boundaries, creating discrete elastic

resonances. The resonant condition is:

k ~. (2m - 1) (5.1)

The 2m - 1 term comes from the fact that the optical force is symmetric about

y = 0. Applying the approximately linear dispersion relation, we can see that resonant

frequencies are approximately equally spaced.

(5.2)
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Figure 5-3 plots the profiles of the first five elastic modes. Mode 1 has large u. and

small uz. As m increases, the relative size of u2 increases.
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Figure 5-4: Calculated FSBS gains of d = 3.8pm waveguide using
quality factor Q = 1000. The blue, red, and green bars correspond
from electrostriction, radiation pressure, and both.

a hypothetical
to FSBS gains

Combining optical force distribution and elastic modal profiles, we proceed to

calculate the FSBS gains using a hypothetical quality factor Q = 1000 (Fig. 5-4). For

all elastic modes, electrostriction force and radiation pressure add up constructively.

The FSBS gain from radiation diminishes faster than that from electrostriction for two

reasons. First, electrostriction force is distributed over the waveguide cross-section,

while radiation pressure focuses on the waveguide boundary. Therefore, radiation

pressure has lower spatial frequency and diminishes faster as m increases. Second,

radiation pressure on the top and bottom (F!P) is destructive to radiation pressure

on the internal boundaries (F RI). As m increases, the displacement in z direction

becomes more significant, amplifying the cancellation between FP and F RP. The

total FSBS gains decreases slowly as m increases, producing efficient photon-phonon
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coupling over a wide frequency range.

5.4 Data analysis
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Figure 5-5: Output signals for the m = 3 resonance of d =

and lines correspond to measurement and least square fit to
3.8pam waveguide. Dots
(5.6) respectively.

Experimental studies of SBS nonlinearity were performed by our collaborators

in Sandia, yielding direct measurement of FSBS gains of the device. Through four-

wave-mixing (FWM) experiments, modulated pump (1556 nm) and continuous-wave

probe (1536 nm) signals are injected into the device. The modulated pump drives the

excitation of Brillouin-active phonons over a wide range of frequencies as the pump

modulation frequency is swept. The powers of stokes and Anti-stokes sidebands of

the probe beam are measured to determine the nonlinear response of the system.

The output signal as a function of modulation frequency has a Fano-like lineshape

(Fig. 5-5). This comes from the coherent combination of SBS and background non-

linearity. We develop a set of spatial coupled amplitude equations to understand this
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process quantitatively. Let A1 and A 2 be the amplitude of double pumps, A 4 be the

amplitude of the probe, A 3 and A 5 be the amplitudes of Stokes and anti-Stokes side-

bands. The coupled amplitude equation with both SBS and background third order

susceptbility is:

dAj 7 *I A 2 A ilAI 2 2A 2 12I+A 2 AI
dx

dA 2 = tyBIA 1 
2 A2 + iyK1(A 2 1

2 ± 21A 1 +2 A4I2)Ajdx

dA4  ZYK( A41
2 + 2AiK1 2 + A 2 12 )A 4  (5.3)dx

dA 3  iK 22 2A(.
dx-y <YK2)12A*4

dx2
d A3

dx = i(YB + 2YK 2)A*A 2A 4dx

In the equation above, -yB is SBS susceptbility. By applying power conservation and

KK relation, we can show that -YB is connected to SBS gain through the following

relation [91]:

7B( = - .F/2 (5.4)
2 00 - Q - Z-1/2

7K1 represents the background third order susceptbility involving two optical fre-

quencies. The real part of yK1 represents Kerr effect, while the imaginary part of

7K1 represents two photon absorption (TPA). 7YK2 represents the background third

order susceptbility in four wave mixing (FWM). Thre real part of 7K2 represents Kerr

effect, while the imaginary part of YK2 represents any loss or gain processes in FWM.

Within the narrow frequency window around each resonance, background susceptili-

ties are essentially frequency independent. Assuming powers of the pump and probe

beams don't decrease much along the propagation, we have:

P3(Q) = P5(Q) = YB(Q) + 27K2 
2 P1P2P4 L2  (5.5)

(5.5) shows that the output signal is the coherent combination of SBS and background

nonlinearities. (5.5) also indicates that the background susceptiblity should be sym-

metric for Stokes and anti-Stokes sidebands. The experimental data shows that the
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background susceptiblities of Stokes and anti-Stokes lines are slightly different. To

capture this asymmetry, (5.5) is modified to:

P 3 (Q) = IYB(Q) + 2YK 2 ,S I2 P1P 2 P 4 L 2  
(5.6)

P5(Q) = IyB(Q) ± 2 YK2,A 2 p 1P2 P4 L 2

By fitting Stokes and anti-Stokes responses jointly to (5.6), we can extract the

resonant frequency, the quality factor, and the relative FSBS gain of each resonance.

In addition, we find that the fitted 7YK2,S and 'YK2,A converge to the same value 'YK2

as m increases. We assume that this YK2 corresponds to the Kerr effect of silicon.

Employing the full vectorial method for computing Kerr susceptibility [105], YK2 was

computed to be 188 m'W-1. We can use this value to calibrate the response curve

and determine the absolute value of FSBS gains.

5.5 Measurement vs calculation

In this section, we compare the measured nonlinearity of the hybrid waveguide with

finite element calculations.

The first feature to compare is the resonant frequency (Fig. 5-6). Waveguides with

four different d were fabricated. The resonant signatures in the nonlinear response

agree well with the calculated elastic eigen-frequencies. Fig. 5-6 shows that the

resonant frequencies of the hybrid waveguide can be easily tuned over 1-18GHz by

varying the distance between two slots.

The second feature to compare is the resonant strength (Fig. 5-7). Using the

fitting method described in the previous section, we extract the quality factor and

FSBS gains of the d = 3.8pm waveguide. The measured quality factors are in the

range of 1000 to 2000. These quality factors are combined with Fig. 5-4 to get the

calculated FSBS gains. The measured FSBS gains agree well with the calculation.

The maximal measured FSBS gain of 2322m-1W 1 is more than 1000 times larger

than recent demonstration of FSBS gain in fibres [91]. The relatively flat gain spectra

demonstrates efficient photon-phonon coupling over a wide frequency range.
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Figure 5-6: Elastic resonant frequencies for different d. The four horizontal
curves are the measured nonlinear Brillouin spectra for waveguides with d =
[0.8, 1.8, 2.8, 3.8]pm. The dashed lines are from finite element calculation as d
varies continuously.
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Figure 5-7: Measured and calculated FSBS gains of d = 3.8pm waveguide. The top
figure shows measured quality factors of different elastic modes. In the lower figure,
the green dots correspond to the measured FSBS gains. The blue dots correspond to
the calculated FSBS gains using the measured quality factor.
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5.6 Concluding remarks

In this chapter, we proposed a novel class of hybrid photon-phonon waveguides. Nu-

merical simulations reveal that such a structure has strong FSBS nonlinearities over a

series of equally spaced transverse phonon modes spanning between 1 - 18GHz. The

large FSBS gains are produced by the constructive combination of electrostrictive

force and radiatoin pressure. Analysis of the measurement results on the real struc-

tures shows that these transverse phonon modes have consistently large mechanical

quality factors (~ 1000), creating a relatively flat gain spectrum over a wide frequency

range. The integration of such hybrid photon-phonon waveguides with on-chip silicon

photonics, MEMS, and CMOS could provide a host of new coherent signal processing

schemes.
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Chapter 6

Conclusion

In this thesis, we theoretically studied three nanophotonic phenomena which enable

strong light-matter interaction.

We first propose an optimization based theoretical approach to tailor the optical

response of multilayer silver/silica nanospheres over a wide frequency range. Our re-

sult shows that within silver/silica material systems, a simple bilayer structure with a

silver shell is always optimal in providing the largest normalized cross-sections. Future

directions include exploring other material systems and nonspherical geometries. For

instance, J-aggregates with strong absorption peaks in visible spectrum can be coated

to nanoparticles. The excitons in J-aggreates can couple to surface plasmon resnance

to generate new peaks and transparency windows in visible spectrum. The calculation

of optical cross-sections of nonspherical geometries will need new computational tools

such as finite element method and boundary element method. Our approach can also

be used to design nanoparticles for specific applications by constructing appropriate

objective functions.

We next design a new class of optical circulators based on the directional coupling

between one-way waveguide and two-way waveguide. In our implementation, the 1dB

loss bandwidth for three-port and four-port circulators is found to be 2% and 1.3%

respectively. The main factor that limits the bandwidth is the frequency dependent

coupling coefficient in the asymmetric coupler. The bandwidth of such circulators

can be further enhanced by making the coupling coefficient essentially frequency
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independent through band structure engineering.

Next, we move to the field of traveling wave optomechanics via Stimulated Bril-

louin Scattering, and develop a general framework of calculating SBS gains via the

overlap integral between optical and elastic eigen-modes. By applying this method to

a silicon rectangular waveguide, we demonstrate how the method can be applied to

forward SBS, backward SBS, and inter-mode coupling. By applying this method to

a silicon periodic waveguide, we show that SBS gains can be furthered enhanced on

Brillouin zone boundaries. One direction of future research is to study the dependence

of SBS gains on waveguide materials. Another direction of future research is tailoring

SBS gains through structural engineering. Our results on traveling wave optomechan-

ics via SBS also have implications for the widely studied cavity optomechanics. In

previous studies of cavity optomechanics, only radiation pressure is considered with

the coupling coefficient expressed as a surface integral of radiation pressures. Our

results indicate that electrostriction force should also be taken into account, and the

coupling coefficient should be expressed as the integral of all optical forces.

Finally, we propose a novel class of hybrid photon-phonon waveguides. Numeri-

cal calculation and data analysis of realistic structures both reveal that such struc-

ture provides highly efficient and highly tailorable photon-phonon coupling over a

wide frequency range. One direction of future research is to integrate other pho-

tonic/phononic elements into the membrane. For instance, we could put another

parallel optical waveguide in the membrane so that the phonon activated by one opti-

cal waveguide can be picked up by the other optical waveguide. The coherent phonon

emission extending in the entire membrane now becomes a new form of coherent

information transduction. The hybridization of such Brillouin active structure with

silicon photonics, CMOS, and MEMS could provide a host of new coherent signal

processing schemes.
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