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Abstract

This research develops a novel approach to long-term power system capacity expansion planning
for developing countries by incorporating endogenous demand dynamics resulting from social
processes of technology adoption. Conventional capacity expansion models assume exogenous
demand growth; however, literature suggests that this assumption is not appropriate for
developing countries. The planning approach presented in this research explicitly represents the
links between the social and technical components of the power system. As potential customers
without electricity select between various supply options to meet their power needs and as
existing customers alter their consumption in reaction to the price of electricity and the perceived
performance of the grid, the demand for grid power is directly impacted. This thesis
demonstrates that neglecting these feedbacks and resorting to simplified assumptions can result
in suboptimal investment strategies.

By comparing the investment strategies identified using this novel approach to that of more
conventional approaches, this research highlights cases in which the incorporation of endogenous
demand impacts capacity expansion planning. More specifically, this work proves that
incorporating endogenous electricity demand is important when there is a large fraction of the
population without access to power or when the improvement in reliability afforded by capacity
expansion is large. Employing traditional capacity expansion methods in such cases may lead to
the selection of inferior expansion strategies.

This research has both academic and applied contributions. Methodologically, this research
extends state-of-the-art power system models by combining two generally separate modeling
approaches, system dynamics and optimization. These methods are integrated to capture both
the technical details of power grid operation and endogenous electricity demand dynamics in
order to simulate the performance and evolution of the electric power grid. This research also
demonstrates a holistic approach to centralized power planning that enables a more realistic
representation of grid demand in developing countries and the identification of strategies that, in
some cases, perform better than the strategies identified using traditional approaches. Finally,
while this research was inspired by the case of Tanzania, the approach was developed with the
flexibility to be applied to other countries with similar power system structure and contextual
features.

Thesis Supervisor: Mort D. Webster
Title: Assistant Professor of Engineering Systems
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Chapter 1 - Introduction & Dissertation Overview

"Energy is a fundamental ingredient of modern society and its supply impacts directly in the

social and economic development of nations. Economic growth and energy consumption go

hand in hand. The development and quality of our life and our work are totally dependent on a

continuous, abundant and economic energy supply"

- Electric energy systems: analysis and operation, Chapter 1 (Grimez-Exp6sito et al 2008)

There are an estimated 1.5 billion people without electricity; one quarter of the world's

population. In Africa alone, there are more than 500 million without access to modem energy

services (UNDP 2009). The range of impacts that electricity can have on their livelihoods is

tremendous, and, while there is still debate surrounding the causal relationship between the

provision of electricity and economic growth, access to electricity is agreed to be a necessary but

not sufficient condition for economic development (Barnes 2007). As a result, national goals in

most developing countries include developing the power system to improve the quality of supply

and to provide universal electricity access.

In Sub-Saharan Africa, power system performance is characterized by frequent blackouts, a

heavy dependence on hydro power and expensive thermal generators, and unreliable service.

Typically, they are "...ridden with shortages and inefficient supply" (Pandey 2002). Industrial,

income-generating activities are interrupted, healthcare products and food requiring refrigeration

go bad, and according to the World Business Council for Sustainable Development (WBCSD),

education, study and evening work are constrained (WBCSD 2007). Economic losses

accumulate during periods of load-shedding, and economic growth is often curbed. In 2006, the

costs of power outages in Tanzania was 4% of GDP (World Bank 2012), and, in 2011, for

example, the economic growth rate in Tanzania fell by more than 1.5% from the previous year

due to power shortages resulting from drought (Doya 2011). Power sector efforts in developing

countries are therefore aimed at (a) meeting existing and future electricity demand and (b)

improving access to electricity. This thesis focuses on the former.

This research develops a novel approach to long-term power planning in developing countries.

In a holistic manner, this approach captures the links between the technical operation of the
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electric power grid and the social processes of technology diffusion and customer choice. The

relationships between the social and technical aspects of the system are developed by assuming

endogenous demand for grid electricity. Unlike conventional approaches to power planning, the

demand for grid power is formulated to depend on the number of people adopting electricity as

well as those selecting the national grid as their electricity supply. The selection of the national

grid is a function of the relative price, quality and performance of the grid as compared to

alternative supply options. In turn, the performance of the grid depends on demand, installed

capacity, and investments in new capacity. This dissertation compares the investment strategies

identified using this enhanced approach to that of more traditional models, and identifies cases in

which incorporating endogenous demand impacts capacity expansion planning.

1.1 Motivating Case: the Tanzanian Power Sector

While the approach presented in this thesis was developed to be generalized and applied to

various developing countries, the Tanzanian power sector is the motivating case for this research.

This section provides background on the structure and performance of the sector and highlights

the power planning challenges faced today.

1.1.1 Sector Structure & Installed Capacity

In Tanzania, the Ministry of Energy and Minerals oversees the development and utilization of

electricity resources and, with regulatory oversight from the Energy Water and Utilities

Regulatory Authority (EWURA), the Tanzania Electric Supply Company Limited ("Tanesco")

dominates the electricity sector. Established in 1964, Tanesco is a parastatal organization,

wholly owned by the government of Tanzania. It is a vertically integrated utility company

responsible for the generation, transmission, and distribution of electricity throughout the

country of Tanzania. Tanesco operates the national grid as well as isolated generators that

supply power to Kagera, Kigoma, Rukwa, Ruvuma, Mtwara and Lindi.

In 1992 the government lifted Tanesco's monopoly in generation to allow the involvement of the

private sector. As a result, independent power producers (IPPs) began operating and have, at

times, supplied up to 40% of Tanzania's electricity. Private players include Independent Power

Tanzania Limited (IPTL), Songas, and Artumas Group. In 1997, the Parastal Reform
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Commission of Tanzania spelled out plans to unbundle Tanesco into two generation companies,

a single transmission company, and two distribution companies (Gratwick et al 2006). As of late

2005, however, Tanesco was taken off the list of companies specified for privatization due to its

poor technical and financial performance. Currently, incremental restructuring has taken place

under the Ministry of Energy and Minerals; each core business of the utility is separated to

achieve efficiency gains, but they are maintained within a single institutional structure that

continues to be owned by the state. Accordingly, Tanesco remains responsible for more than

60% of the electricity generation within the country and holds a government-created monopoly

in transmission and distribution (Tanesco 2009, Mwasumbi 2007).

The supply mix in Tanzania consists of hydro and thermal based generation. Tanesco owns and

operates 561MW of installed hydro capacity along with 145MW of gas-fired generating

capacity. IPPs IPTL and Songas operate a 100MW diesel plant and 182MW OCGT plant,

respectively. 10MW is imported from Uganda and 3MW from Zambia. Tanesco also owns

80MW of diesel generating capacity that is connected to the grid but only 5MW is operational;

the additional capacity is being decommissioned. Emergency plants totaling 180MW of capacity

are also leased. Finally, the isolated regions of the country depend on 8MW of installed OCGT

capacity (operated by the IPP, Artumas Group) and 31MW of installed diesel plants.

By the end of 2009, the national grid (excluding isolated centers) was made up of 38 substations

interconnected by 2,732km of 220kV lines, 1538km of 132kV lines and 546km of 66kV lines.

1.1.2 Sector Performance

While only 14% of Tanzania's population has accessI to electricity, Tanzania's power system

has been increasingly unable to meet growing power demand. The technical and financial

performance of the sector is very poor. System losses, comprised of both technical and non-

technical losses, have been tremendous over the past decade. Technical losses are caused by

various factors, including energy consumed by equipment, poor load management, lack of

maintenance, and system overload. Non-technical losses, however, include poor billing, theft,

and non-payment by customers (Mwasumbi 2007).

Access drops to 2.5% in rural areas according to the Rural Energy Agency's Annual Report (REA 2010).
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Performance of TANESCO 2004-2009

Year 2004 2005 2006 2007 2008 2009
System
Losses 18% 25% 24% 24% 23% 26%

(%/year)

Table 1.1: Power System Losses reported by Tanesco (World Bank 2007, Tanesco 2009)

The table above is a combination of the data presented in the World Bank's "Project Appraisal

Document on a Proposed Credit to the United Republic of Tanzania for an Energy Development

and Access Expansion Project" and in Tanzania's latest Power System Master Plan (Tanesco

2009). Due to poor maintenance and little investment in grid infrastructure, transmission and

distribution (T&D) losses of 20% were recorded in 2008, and overall (technical and non-

technical) losses totaled 23%. Likewise, in 2009, technical losses in Tanzania slightly increased

from 20% to 22.5% (Tanesco 2009). When comparing the T&D performance to that of a

developed economy (T&D losses of 6.6% and 6.5% were recorded in the US in 1997 and 2007,

respectively), Tanzania's system suffers about three times more losses.

Similarly, the financial performance of the company has suffered. The company has reported

severe debt and loss over the past decade. Tanesco's financial reports showed losses totaling

67.2 billion shillings and 21.6 billion shillings2 in 2007 and 2008, respectively (Tanesco 2008).

Poor bill collection and reduced hydro production due to drought has been cited as the cause for

such financial performance. In 2006, the shortage of water in reservoirs led to severe load

shedding.

1.1.3 Sector Planning

Due to the poor performance of the power sector, efforts have been focused on expanding

capacity to meet growing demand. In Tanzania, central planning is the responsibility of the

Ministry of Energy and Minerals (MEM), and is typically performed by consultants working in a

close partnership with Tanesco. However, expanding capacity to meet growing demand in this

context is challenging. In addition to a lack of financial resources, predicting demand growth in

2 In the fall of 2010, 67.2 billion shillings was approximately $46,345,000 USD while 21.6 billion shillings was
approximately $14,785,700 USD.
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order to understand the capacity required to meet demand is a huge challenge as well. In 2007,

Tanesco predicted that the demand for electricity supplied by grid power would increase at 7%

per year (Mwasumbi & T 2007). One obtains this estimate growth value when performing

trendline analysis of historical consumption patterns since 1997. Unfortunately, historical

consumption patterns in a resource constrained country like Tanzania do not paint an accurate

picture of demand growth. Increasing demand, according to Meier and Chatterjee, may be caused

by increased economic activity (corresponding to Tanzania's growth in mining) or electricity

adoption (i.e. more residents requesting grid connections). Technology adoption is strongly

impacted by sector performance. If historical demand was realized in a system with low

reliability, future growth in demand may not follow the same historical trends; this is due to the

fact that additional generating capacity and improvements in service may encourage additional

residents to request grid connections.

1.2 Research Objectives

Power planning is a complex decision problem. In the context of interest, the power sector is

centralized and the majority of the population does not have access to the national grid. Various

factors impact the evolution of grid demand, including: level of poverty, population growth,

willingness to pay for grid connections, the quality of service of the grid, the reliability of the

grid, the price per unit of energy, the backlog of customers awaiting a connection, the distance

between consumers and the existing grid network, urbanization, and economic development

among others. Accounting for such factors is a huge task, making it very difficult to predict

electricity demand growth and ultimately making it difficult to make informed capacity

expansion decisions.

Investment decisions made within electric power systems have typically been informed by the

use of quantitative planning models, and researchers have used modeling to explore policy

questions for decades. The literature includes a rich collection of models that address a variety of

energy policy concerns for developed countries, including capacity expansion, improvement of

operational performance, and the impact of fuel and technology mix on system performance

(Turvey and Anderson 1977, Hobbs 1995, Momoh 2001). These models represent the technical

details and physical laws of electric power systems. However, such optimization planning
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models typically assume that electricity demand is an exogenous variable and, in the context of a

developing country, this assumption may not be appropriate. System dynamics models have, in

the past, incorporated social factors, such as the effect of word of mouth on technological

diffusion and the heavy reliance on kerosene, batteries and other more affordable off-grid

sources of energy, and represented electricity demand in developing countries as an endogenous

variable. These models, however, lack the detailed representation of the power network, which

is critical in planning and assessing capacity expansion needs (Steel 2008). Additionally, these

models are not typically formulated to optimize or select the best capacity expansion strategy.

Unfortunately, no existing approach has captured both endogenous demand and the detailed

operation of the electric power grid.

Therefore, this research aims to fill the gap in the existing literature on power system planning in

developing countries by addressing the following research question:

Are the strategies generated when assuming endogenous demand growth different than

those generated using a more traditional approach, which assumes exogenous demand?

In order to address this question and the planning challenges described in 1.1.3, this research

develops a unique approach to planning. Building upon previous research, a simulation model is

developed and focuses on the interaction between local stakeholders and the technical system.

More specifically, the model explicitly represents the link between power system performance,

in this case measured by the price of electricity and the fraction of served demand to total grid

demand, and the choice of consumers to use electricity from or connect to the national grid.

This contrasts existing literature and previous research as it explicitly models both endogenous

demand and detailed power system operation, including the production of generators in a hydro-

thermal coordination model of the electric power network. Finally, the improved simulation

model, incorporating endogenous demand, is used to inform capacity expansion planning. To

demonstrate this approach, a model inspired by the Tanzania power system is developed.

1.3 Research Approach & Methodology

Electric power systems are not simply physically complex with a large number of nodes and

connections (combinatorial complexity); they are also dynamically complex as well, with many
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agents within the system interacting over time (Sussman 2000). Thomas P. Hughes states, "The

evolving Power Systems were not, metaphorically speaking, driverless vehicles... [it is]

necessary to reach out beyond the technology, outside the history of technical things, to explain

the style of the various systems..." (Hughes 1983).

Early on, Hughes recognized that power systems are large-scale socio-technical systems; they

span regions and nations, and the consumers, regulatory authorities, power companies and other

stakeholders all make decisions that affect the operation of this huge technical system. Power

planners in developing countries face a unique challenge as their power systems have fewer

technical components than most industrialized countries, but have arguably more social factors

acting on and within the systems (Steel 2008). Although the electric power grid is a technical

system, its design and management is an engineering systems problem (Moses 2004).

Therefore, this research employs a holistic systems approach, drawing on both the system

dynamics methodology and mathematical programming to simulate power system operation and

evolution. System dynamics is an approach, based on theories of nonlinear dynamics and

feedback control, which is used to represent and understand the structure and dynamics of

complex systems (Sterman 2000). The relationships and feedbacks between the stakeholder

groups and the technical system are explicitly represented. In this case, customer adoption and

the feedback between customer choice and power system performance is modeled using this

approach; electricity demand is endogenous. To simulate annual power system performance, a

mixed-integer linear program is used to create a deterministic hydro-thermal coordination model

that determines the commitment and production of generators operating in the system as well as

and non-served power and energy. Figure 1-1 shows the key elements of the simulation model

developed in this research. Details are discussed in Chapter 3.

The planning approach uses the simulation model in order to make capacity expansion decisions

that minimize total investment and operational costs over time. For this implementation of

capacity expansion planning, all possible strategies are systematically enumerated to identify the

optimal investment strategy. Details on implementation are described in Chapter 5.

One of the major contributions of this dissertation is the identification of cases in which

investment strategies identified by the model developed in this thesis differ from that of more
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traditional approaches. In order to make such a comparison, a capacity expansion model

assuming exogenous demand was developed using the mixed-integer linear programming

approach. Details on this formulation are found in Chapter 5 as well.

1.4 Thesis Outline

Chapter 2 provides a detailed literature review on existing methods used to address long-term

power sector planning in developing countries. Chapter 3 provides a detailed description of the

integrated simulation model developed in this research, while Chapter 4 discusses model testing

and calibration, and highlights standard model behavior. Chapter 5 demonstrates how the

capacity expansion method developed in this thesis results in an investment strategy that is

different than that of conventional planning with exogenous demand, and Chapter 6 describes the

testing performed to identify cases in which the incorporation of endogenous demand impacts

capacity expansion. Chapter 7 presents conclusions with recommendations for future work.
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Chapter 2 - Literature Review

Power systems are large-scale socio-technical systems. The operation of the electric power

system requires the delicate balance of electricity supply and demand. Supply results from

management decisions made by power system operators to transmit and distribute electricity

throughout the grid network, and demand results from the complex decisions of numerous

residents and industries to connect to the grid and to consume electricity. In the context of

developing countries, the majority of the population typically lacks access to the grid, and the

new grid connections realized depend on various factors, including social processes of

technology diffusion.

Extensive research exists on the development of models to address power system concerns and

these models often represent the technical details and physical laws of power systems very well;

however, a missing piece in addressing power systems is conceptualizing them as complex

systems. Accordingly, literature fails to address capacity expansion planning from a holistic

systems point of view and commonly neglects to incorporate non-technical aspects of the system.

This chapter demonstrates the need to develop an improved approach for capacity expansion

planning and policy concerns for power systems in developing countries. It outlines existing

policy and planning models for developing countries, identifies the areas in which they can be

improved, and motivates the focus of the research described in subsequent chapters.

2.1 Power Planning in Developing Countries

Long-term power planning, also called resource, power generation expansion or capacity

expansion planning, attempts to determine the minimum cost capacity expansion plan to meet

growing demand over a long-term horizon, approximately 10 to 40 years. According to

Anderson (1972) and Hobbs (1995), these costs are typically the sum of the capital cost of newly

constructed capacity and the ongoing operational system costs of meeting demand during the

horizon of the model. Demand, system parameters (generating capacities of existing and new

units, for example) and costs (new capacity costs, operating costs, and fixed costs) are assumed
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to be exogenous, while typical decisions3 include: the timing of investments, the type (nuclear,

thermal, hydro, etc.) and size of newly constructed capacity, and the optimal mode of operation

(i.e. the power generated and the demand going unserved at every time period within the horizon

of the model). The typical constraints include (1) supply-demand balance requirements (2)

reserve margin constraints and (3) capacity and annual energy production limits for each

generator.

Capacity expansion models have been used for resource planning in the electricity sectors of

developing countries for decades, and papers were published describing such applications to

Nigeria and Northern Indian as early as 1977 (Meier and Mubayi 1983). The rest of this section

outlines how capacity expansion models have been used for developing countries throughout the

decades that followed.

2.1.1 Capacity Expansion: 1970s

Electricity planning models that utilized optimization methods, such as dynamic programming,

linear programming, and mixed-integer programming, were used by developing countries

worldwide during this period. In particular, many developing countries performed capacity

expansion using the Wien Automatic System Planning Package4 (WASP) model, which was

developed between 1972 and 1973 by the Tennessee Valley Authority and Oak Ridge National

Laboratory (Foell 1985). WASP was used for electric power system capacity expansion,

employing linear programming to determine optimal dispatch and dynamic programming to

determine the optimal investment strategy (Hamilton and Bui 2001).

WASP was one of many models that were developed for such applications. For example, the

Brookhaven Energy System Optimization model (BESOM), developed in 1974 by Brookhaven

National Laboratory, was a linear program capacity expansion model that was applied to both

Mexico and India (Bhattacharyya and Timilsina 2010). Unlike WASP, BESOM analyzes the

evolution of the whole energy system, including the electric power sector. Power plants are

taken as identical elements of the model and economic dispatch is ignored. BESOM is the

3 The location of new plants is sometimes a decision variable in generation planning. According to Hobbs, this
allows electricity planners to reduce the costs of required transmission expansion.
4 WASP was developed originally for the IAEA to assess the nuclear market in developing countries (Foell 1985).
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predecessor of the widely used MARKAL model described in Section 2.1.3 (Fishbone and

Abilock 1983).

In a paper entitled "An Investment Planning Model for the Electricity Sector in Nigeria",

Iwayemi formulates a mixed-integer linear program that identifies both the optimal plant

capacity expansion from a set of thermal and hydro generators as well as the transmission

network expansion required to meet growing demand over 30 years. Unlike WASP and BESOM,

Iwayemi's model explicitly represented the grid network. Iwayemi captured three major regions

in Nigeria, and he was able to incorporate transmission planning into the standard capacity

expansion model. He showed the importance of fuel prices on investment strategy, and

demonstrated (using dual variables) that the pricing scheme prevailing in Nigeria at the time was

insufficient to recover costs (Iwayemi 1978). Iwayemi provides an early example of the

usefulness of capacity expansion models in determining investment strategy as well as sector

policy in developing countries.

2.1.2 Capacity Expansion: 1980s

As national priorities changed, electricity planning models were more frequently embedded in

the broader-scoped, integrated planning of energy systems. The increase in international oil

prices caused many developing countries to use such energy system models with the aim of

carefully allocating energy resources, promoting economic development and improving the

livelihood of residents (Murphy 1988, Foell 1985, Munasinghe 1980)

In these models, macro-economic elements are linked to detailed end-use energy sector

activities, including that of petroleum, electricity, and transportation. The Reference Energy

System (RES) was developed during that time and often utilized in such energy models to

capture the activities in the energy supply chain in a network representation of the energy

system. These models were classified as either "top-down", with an aggregate focus on price and

markets, or "bottom-up", which emphasized the technical characteristics of the energy sector.

Finally, these models used econometric methods to forecast economic growth and demand, and

investment strategies were identified for each energy subsector, often using energy accounting

(Hoffman and Wood 1976), optimization (Meier and Mubayi 1983), or scenario analysis

(Munasinghe and Meier 1993).
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During this same period, early critics of energy system models and optimization-based models

arose. Some argued that the limitations of commonly used energy models for developing

countries were the lack of detail in the petroleum sector, the large data requirements to run the

models, as well as the inability to model the transition from non-commercial to commercial

energy use, resulting from urbanization and migration (Meier and Mubayi 1981). Similarly,

many held the belief that optimization was not appropriate for developing country applications

and that energy simulation models were more appropriate. According to Foell (1985), "a

developing country's choice of an energy supply system should be based upon a broad range of

attributes such as operating and investment costs, impact on balance payments, foreign exchange

requirements, self-sufficiency, national security and environmental impact." During that time,

optimization-based models identified plans by minimizing costs, and multiple criteria decision

making5 (MCDM) had yet to be widely applied to capacity expansion. Simulation models

allowed more flexibility for planning to be based on expert judgment, decision-makers'

preferences and also the incorporation of features that could not be represented in the standard

models (Munasinghe 1980).

The discussion surrounding the limitations of energy planning models for developing countries

has been an ongoing debate for decades. This is the topic of Section 2.3.

2.1.3 Capacity Expansion: 1990s

Moving into the 90s, national priorities shifted once again to focus on energy and the

environment. Regional and global models became popular, and emissions abatement and climate

change was the focus of energy planning models, which continued to incorporate capacity

expansion for the electricity sector. Although models like LEAP and MARKAL were developed

in the 1980s, they were used heavily in developing countries during this period as a result of the

ease with which they evaluated environmental impacts.

Analysts began to incorporate environmental issues into energy supply planning by performing

scenario analysis on a set of alternative power development strategies. For example, greenhouse

5 MCDM constitutes an advanced field of operations research that is devoted to the development and
implementation of decision support tools and methodologies to confront complex decision problems involving
multiple criteria, goals, or objectives of conflicting nature. (Helms 2006).
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abatement strategies were identified for both Sengal and Zimbabwe using this approach. The

former study utilized LEAP to select the least-cost mitigation options (Amous et al. 1994), while

the latter employed a spreadsheet accounting model to assess costs and emissions reductions for

various interventions (Maya and Fenhann 1994).

Energy models also began to incorporate environmental costs and constraints. For instance,

MARKAL enabled planners to specify costs and limit sector or system-wide emissions on an

annual basis or cumulatively over time (Seebregts 2001). Accordingly, alternative carbon

abatement strategies for Brazil were identified using a simplified MARKAL model (La Rovere

et al 1994). A similar study was performed for China using ETO, an optimization model

developed by INET that was used to determine the structure of energy supply (Wu et al 1994).

Finally, planners considered environmental implications in power system models by minimizing

costs (excluding environmental costs) and performing impact calculations after the fact. Models

were typically executed numerous times to observe how investment strategies changed with

various restrictions (Markandya 1990). For example, Shretha et al used the third version of the

WASP model to assess the environmental and generation capacity expansion implications of

carbon taxes and technology constraints within the power sector of Pakistan (Shrestha et al

1998).

2.2 Capacity Expansion: the Conventional Approach

Capacity expansion represents one of the fundamental problems in power systems, and

mathematical programming has been used to solve such problems since the early 1950s (Masse

and Gibrat 1957). In their seminal 1977 book "Electricity Economics", Turvey and Anderson

present methods to solve the aforementioned decision problem, and describe the benefits and

challenges of using marginal analysis, load duration curve integration, dynamic programming

(DP) and linear programming (LP) to solve this problem type. They formulate the LP model as

described in Table 2.1 and include extensions to incorporate capacity replacement, transmission,

and water storage (extensions are not included in Table 2.1).
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T I T t J

Objective Function Minimize Cj, x Xj, + Fjyt x Ujyt x 0t
v=1j=1 t=1v=-Vj=1

Constraints

J t

Demand Balance Y Ujt ! Qt for t = 1,..., T

j=1,V=-V

Thermal Production 0 Ujpt aj, x Xj, forj = 1,...,J; V = -V, ... ,t; t = T

Hydro Production Ujvt x Ot 5 H vs f orj = hydro plant;v= -V, ... ,t
t Eseason S

J t

I I ajv x Xjv Qt (1 + m) f or t - 1..,T

Reserve Margin/ =1,=-V

Guarantee Conditions tr tt

Saj, X XV, X 6t + Ijv x Ujt x t )Qt x ot
t=t' v=-V \jthydro jthermal t=tr

Definitions
j type of plant
v vintage of plant (year of commissioning)
X, power capacity of plant j and vintage v

Uv power output of plant j and vintage v at time t
Cj, capital costs per unit of capacity of plant j, vintage v
Fjvt discounted operating costs for each unit of energy output for plant j,
vintage

v at time t
6t the width of the time interval considered at time t

Qt instantaneous power demand at time t
ajv the availability of plant j, vintage v

pj, the ratio of the energy output of hydro plant j, vintage v, in the critical
period of the dry year to its mean expected output in this period of an
average year

HyS hydroelectric energy to be delivered in season s by the hydro scheme of
vintage v

m the margin of spare available capacity required to meet demands over the
mean expectation

t',...t" represents the critical period (dry season)

Table 2.1: Generation Capacity Expansion Formulation, adapted from Turvey & Anderson (1977)

Interestingly, Anderson described these models (LP and NLP) as being less utilized in practice

due to the computing power available at that time. Practitioners instead used marginal analysis
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and load duration curve integration. As computing power has increased, however, the use of

such models has become standard practice in electric utility resource planning.

As the priorities and concerns of resource planning have changed over the years, so have the

models, but not by much. The formulation presented in Masse and Gibrat in 1957 and later by

Turvey and Anderson in 1977 represents the basis of most capacity expansion models that have

been developed over the last 60 years. For example, in the 1990s, the impact of demand-side

management (DSM) programs on capacity expansion became a focus of analysis. In 1995,

Hobbs presented a mixed-integer linear program (MIP) to incorporate these DSM programs. The

model included a binary decision variable indicating whether or not DSM programs are

implemented, but was based on Turvey and Anderson's 1977 formulation (Hobbs 1995).

In this same article, Hobbs encouraged future capacity expansion modelers to incorporate

features into generation planning that consider more realistic aspects of power systems (Hobbs

1995). Before and since Hobbs published his paper, research in the area of power system

capacity expansion was and has been aimed at developing models to address each of the listed

concerns (see table below).

Transmission Turvey & Anderson 1977, Weinberg et al 1993

Uncertainty Bloom 1983, Stoll et al 1989, Hirst and Schweitzer 1990, Sanghvi and Shavel

1986, Palmintier & Webster 2011**

Increasing Competition
- Price response Models Rutz et al 1985, Hobbs et al 1993
- Market Models Cazalet 1991, Hobbs 1986, Gately 1974

Multi-Objectives/ Hobbs & Meier 1994, Petrovic & Kralj, 1993, Yang & Chen 1989, Linares

Multi-Attribute 2002**, Pohekar & Ramachandran 2002**

**References not cited in Hobbs 1995

When capacity expansion incorporates additional features, such as those described by Hobbs, the

investment decision problem becomes very complex. Non-linear relationships arise in both the

objective function and constraints, some decision variables are discrete, the set of possible

solutions becomes very large, constraints may include sub-problems (like market equilibrium),
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uncertainty increases the number of possible futures, and decisions are taken sequentially

(Hemiez 2010).

Methods like LP, MIP, NLP, and DP continue to be used to solve capacity expansion problems;

however, additional optimization and heuristic methods have been developed to tackle the high

complexity and dimensionality of the problems. These methods include stochastic programming

and decomposition techniques, simulation techniques like interactive search, heuristic search or

genetic algorithms, system dynamics (SD), agent-based modeling, monte carlo simulation,

probabilistic simulation, decision theory, game theory, multi-criteria techniques and real options

(Hemiez 2010).

While the methods mentioned above are used for capacity expansion in a variety of settings, this

research develops a capacity expansion model for a centralized power system. The following

subsection clarifies the difference between centralized versus liberalized electricity markets

along with the implications on capacity expansion planning.

2.2.1 Centralized versus Decentralized Power System Planning

In what is called traditional planning, a government-controlled centralized coordinator is

responsible for operation decisions, control and monitoring of the electric power system. This

body is responsible for capacity expansion planning and typically the implementation of such

plans as well. The planning criterion in this context is the maximization of social utility in the

production and consumption of electric power. More specifically, the aim is to minimize both

investment and operating costs while meeting demand with a reasonable level of quality and

reliability. Traditional planning often occurs in power systems in which there exists a vertically

integrated utility that generates, transmits, and distributes power. This was the predominant

approach until recently when it became clear that, as a result of densely interconnected

transmission networks, generators at a single location on the network could compete with other

generators in supplying power to virtually any location on the grid (G6mez-Exp6sito et al 2008).

It was, therefore, possible to separate transmission and distribution from the generation and

supply businesses, which began to operate in a new competitive market.
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Liberalization, i.e. the introduction of competition between generators and suppliers, has been

accompanied by decentralized planning and operation. In this new context, each generator

decides when and how much power to produce, and investment decisions are not made centrally

by a body guaranteeing supply but by investors. Risk and anticipated returns on investment

drive generation expansion and replace the traditional cost minimization criterion (G6mez-

Exp6sito et al 2008).

Nevertheless, centralized planning models continue to be useful in various contexts. It has been

proven that the centralized capacity expansion solution and the decentralized profit maximization

decisions in a perfectly competitive market are the same (Botterud et al 2005). Therefore, even

in liberalized markets, centralized planning models can offer insight on the evolution of the

sector. More importantly for the research presented in this thesis, centralized power systems

continue to be prevalent in developing countries and island nations throughout the world, such as

Kenya, Cape Verde, Vietnam, and Jamaica to name a few.

2.3 Limitations to Modeling Power Systems in Developing Countries

2.3.1 Distribution and Demand

Research analyzing how well energy planning models were able to capture features of

developing countries appeared in the 1980s. In 1987, Meier and Chatterjee published "Electric

Utility Planning in Developing Countries: A Review of Issues and Analytical Methods" which

demonstrated the first major shift in thinking about electricity planning for developing countries.

They emphasized the poor financial state of electric utilities in developing countries and asserted

that the traditional planning models used at the time (namely WASP), had become inadequate;

they argued for improved electricity planning models.

In this critical paper, Meier and Chatterjee outlined three major deficiencies of traditional

planning models. The first was that the loss of load probability metric (LOLP) often used in

capacity expansion models did not capture the high frequency of outages experienced in

developing countries. Such outages were artifacts of the state of the distribution system, which

was typically not represented in these models. The second major concern had to do with demand

forecasting; either load forecasting techniques were too primitive or the sophisticated
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econometric forecasting techniques were misused. Demand was typically assumed to be

independent of price and the number of actual customers. They write of demand forecasting

practices:

Most important is the need to include as many explanatory variables as possible in such models: as
noted by Westley ... in his study of the Dominican Republic, '. . . many studies "explain" electricity

consumption using only a measure of income, a practice that normally inflates the income elasticity
and hence exaggerates the importance of this factor ... a proper perspective requires the inclusion of
other factors, such as the number of users, the price of electricity, the price of substitute fuels, and a
measure of outage severity'. The inclusion of a variable that captures the number of consumers is
therefore of central importance for projection purposes (Meier and Chatterjee 1987)

The third and "most serious" concern of traditional capacity expansion models was the notion

that demand was exogenous to the model. They assert that "...the critical component of demand

growth in most developing countries is the rate of growth in new connections..." (Meier and

Chatterjee 1987).

2.3.2 Salient Features of Developing Countries & the Use of Complementary Approaches

In 2002, Rahul Pandey of the Indian Institute outlined the gaps that exist in energy policy

modeling for developing countries, and demonstrated the second critical shift in thinking about

policy and planning models. It was a shift from utilizing mathematical models that capture

physical and economic laws to the creation of integrated tools that also incorporate the salient

features of the countries for which the models were being used.

Developing countries differ significantly from more developed and industrialized countries, and

Pandey, along with Urban (2007), Ruijven (2008) and Bhattacharyya and Timilsina (2010),

describe the deficiencies of models for developing countries as:

" incorporation of large-scale poverty;

e incorporation of traditional energy (fuel wood, dung, agricultural waste, crop residues,

and charcoal) and informal sector activities (non-monetary transactions like bartering);

e incorporation of the transition from traditional to modern sector (due to the migration

from rural to urban centers i.e. urbanization, the switch from biomass to other fuels, and

the change in perception of the benefits of various energy sources), which materializes in

the form of increased consumption pattern, rising energy intensity and increased demand

for employment;
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e characterizing the rural-urban divide, and disaggregating consumers by income groups

and spatial distribution for a clearer understanding of locational demand;

e integrated evaluation of decentralized supply options along with centralized options;

e incorporation of structural changes and competition in the emerging markets, and the

uncertain and changing patterns of business environment; and

e incorporation of technological change and technology diffusion, and capturing

uncertainties about long-term economic growth.

Since pre-existing models did not incorporate such contextual features, the results and policy

prescriptions were unreliable (Pandey 2002). Table 2.2 combines the views and research

presented by these authors into a list of features missing from energy planning models.

rural - urban divide

reliance on traditional energy (biomass, firewood)

informal sector activities (barter, in-kind payments)

technology diversity (ability to leapfrog)

transition to modem energy (increased consumption
pattern and rising energy intensity due to modernization,
urbanization, employment demand)

spatial difference and divergence in consumption/
disaggregated demand by income and location

low data availability for modeling

economic growth and corresponding energy implications

energy shortage/poor performance of utilities

low energy access and rates of electrification

institutional issues like corruption

decentralized supply options

prevalence of inequity and poverty

technological change

technology diffusion

sector reform/structural change and competition in
emerging liberalized markets

environmental implications of energy use
(sustainability)

long-term uncertainties

demand-side options

financial status of utilities

resource depletion

Table 2.2: Features of developing countries not commonly included in energy models

Pandey also highlighted various planning approaches and introduced system dynamics (SD), a

method having little previous application in developing countries for electric utility policy and

planning. He noted that bottom-up accounting and optimization methods had been applied in

developing countries to determine least-cost technology mix and to assess cost and emissions

implications. However, system dynamic models had been successful in capturing the impacts of

changes in market structure and subsequent changes in technology and fuel selection in more

industrialized countries (Bunn et al 1997). Such features were important in the developing
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country context as well. Therefore, Pandey concluded that models using these different

approaches in an integrated or complimentary manner should be developed for the context of

developing countries.

2.3.2.1 System Dynamics and Electric Power Systems

System dynamics is an approach, based on theories of nonlinear dynamics and feedback control,

which is used to represent and understand the structure and dynamics of complex systems

(Sterman 2000). System dynamics was developed in the 1950s by Jay Forrester (1961) and has

been used to present electric power systems since the early 1970s when Roger Naill developed

the FOSSIL2 model to simulate policies that would aid the United States in reducing its

dependence on foreign oil (Ford 1997, Naill 1992). Such models are typically implemented with

stock and flow software to aid in model construction and testing (Ford 2001), and Sterman

(2000) outlines a standard methodology for system dynamics modeling. This includes

identifying system elements and their interactions, causal loop diagramming, calibration and

sensitivity analysis.

While system dynamics models for power systems are most noted for their ability to represent

rapidly changing, deregulated utility markets with high uncertainty and risk (Dyner and Larsen

2001), these models are more generally used to assess macro-level policy analysis by simulating

multiple feedbacks, delays, and the behavior of utilities and power companies, consumers, and

government. They are equipped to address capacity expansion planning (Coyle 1996), the impact

of market structure, market power and competition, and uncertainties on capacity investment,

technology-mix and cost to consumers (Bunn et al 1993, Sinchez et al 2007), and regional utility

conservation planning (Ford et al 1987).

System dynamics, however, has been applied less frequently to represent power systems in

developing countries. Qudrat-Ullah and Davidsen (2001) built the first known system dynamics

model of a power system in a developing country to test and understand the power sector reform

policies introduced in Pakistan in the early 1990s. Policy was aimed at promoting private sector

investments, and the long-term simulation model was used to explore policy impacts on

electricity supply, Pakistan's dependence on imports, and the evolution of carbon emissions. The

model simulated years 1985 - 2030 and, indeed, assumed endogenous aggregate demand,
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making it a function of electricity price and intensity as well as economic growth, which was

exogenous to the model. While system dynamics models are effective at capturing endogenous

demand, they are also effective at capturing unique features of developing countries. The

Kenyan power system model developed by Steel (2008) included: the rural-urban divide (using

two stocks of residential consumers), the poor performance of electric utilities, decentralized

supply options (such as diesel generators, solar home systems, or small hydro), the prevalence of

inequity and poverty, hydro and geothermal resource depletion, technology diffusion and

customer choice. Unfortunately, these models do not capture the details of power system

operation and, since their development, very few system dynamic models representing power

systems in developing countries have been created.

System dynamics has been complemented by and combined with6 various methods to address

power sector concerns in industrialized regions. For example, Bunn et al used both system

dynamics and linear programming to analyze the effects of privatizing the electricity sector

(Bunn et al 1993). The models of this particular analysis remained separate; however, modelers

have recently been able to integrate the separate methods within a single model platform. In

2011, Rodilla et al developed a system dynamics-inspired model of the Colombian power system

that embedded game theory to simulate generation expansion in the context of a security of

supply mechanism based on long-term auctions (Rodilla et al 2011).

Similarly, Dimitrovski, Ford and Tomsovic successfully combined 7 system dynamics and

optimization methods to simulate power plant construction in the Western Electricity Coordinating

Council while capturing detailed transmission operation (Dimitrovski, Ford and Tomsovic 2007).

This particular model captures supplier behavior in a liberalized market and assumes that demand

grows at a fixed rate with slight modifications based on consumer sensitivity to retail prices. This

model does not capture the growth in demand resulting from new grid connections as this plays less,

if any, of a role in the growing demand of developed countries.

6 Outside of power system modeling, system dynamics has been combined with decision analysis (Osgood 2005,
Hovmand & Ford 2009) and real options analysis (Tan et al 2010).
7 A similar approach will be utilized in this research to develop a platform that incorporates both the dynamics of
customer demand and the detailed operation of the electric power grid in developing countries.

35



2.3.3 Implications for Developing Countries

The use of models that do not adequately capture features of developing countries leads to

incorrect investment plans and policy prescriptions. Solutions generated by optimization models

may in fact be sub-optimal as such models assume perfect markets and optimal consumer

behavior. Such is not the case in many developing countries as large segments of the economy

can be non-market-based, and a large fraction of the population (such as those without access to

electricity) does not reflect optimal consumer behavior (Urban 2007). Unrealistic scenarios may

also be developed in models that do not capture salient features of developing countries (Urban

2007). For example, using average consumption values for a population generates biased results

as benefits only reach a small portion of the population due to income distribution (B&T 2010).

On the other hand, explicitly accounting for electrification and the number of households

connected to the grid may improve demand projections (Ruijven 2008). Similarly, technology

transitions often require state intervention, which also requires monetary resources and often

involves a large delay in implementation. When models do not capture this delay, they generate

an optimistic view of possibilities (B&T 2010). Such models are unable to generate a realistic

picture of the future and, as a result, there is the misallocation of resources, inadequate

infrastructure development, and poorly adapted development (B&T 2010).

2.4 Recent Developments: Improved Models for Developing Countries

In the previous section, characteristic features of developing countries were presented and the

limitations of models for developing countries were enumerated. The aforementioned reviews set

the agenda for research on electricity planning models for developing countries, including the

research explored in this thesis. In this section, state-of-the-art electricity planning models

recently created for developing countries are described.

As early as 1996, P. Shukla of the Indian Institute of Management published articles outlining

the development of the Indian MARKAL and, in a working paper published in 2001, his team

described the integration of three bottom-up models (MARKAL, AIM/ENDUSE, and a demand

model) to better represent characteristics of developing countries while identifying energy

system mitigation opportunities and investment strategies for India (Garg et al 2001). More

specifically, the integrated platform developed by Shukla et al was able to incorporate (1)
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structural change in the economy, as demand projections were a function of GDP, which was

disaggregated into Gross Value Added contributions from estimates of the relative growth rates

of various sectors in the economy (2) urbanization and technology diffusion, where demand

projections also reflected the increasing demand for electricity over time due to urbanization and

improvements in living standards as well as the decreasing agricultural consumption resulting

from the adoption of improved practices and (3) natural resource depletion, as exogenous

projections of oil explorations and expectations were assumed. While the operation of the

electricity sector was not explicitly represented in this model, the same team enhanced the

modeling platform by incorporating a power sector model that uses linear programming to

minimize system costs (generation, coal cleaning and transport, transmission, and pollution

control costs) and determine the amount of new capacity from each type of power plant needed

to meet exogenously specified demand (Shukla et al 2003).

The work of Shukla and his team reflected the beliefs of their colleague, Pandey, who

encouraged the development of integrated modeling platforms to address energy and

environmental policy concerns. Unfortunately, neither version of the model represented

distribution nor assumed endogenous demand, features presented by Meier and Chatterjee as

major drawbacks to planning models.

In 2008, Beck et al used both agent-based modeling (ABM) and dynamic multi-objective

optimization (DMOO) to determine a preferred capacity investment strategy for a regional

electricity sector and identify policies that encourage development along the identified path. The

objective function is constructed to promote the formation of regional energy networks based on

biomass resources in South Africa. While this work captures decentralized supply options,

demonstrates a complementary approach to modeling for developing countries, and is

appropriate for representing liberalized markets as ABM captures the decision rules of each of

the many suppliers in the energy network, electricity demand remained an exogenous variable,

and distribution was not represented (Beck et al 2008).

In the same year, Steel developed a system dynamics model of the Kenyan power system (Steel

2008). In this model, she captured the effect of consumer decisions on grid reliability and the

effect of consumer decisions on resource depletion and electricity price. She took more of a
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"macro-approach" to modeling the power system, making simplified assumptions regarding

power system operation and new capacity acquisition, instead of explicitly representing the

operation of each generator or optimizing to determine the investments required to meet demand.

She did, however, capture endogenous electricity demand growth. Elements of the Bass

Diffusion model, often used to model the spread of infectious disease or technology diffusion

(Sterman 2000), are used to model electricity adoption. Once households adopt electricity,

consumers can choose to connect to the grid or use off-grid supply options. Consumer choice is

captured using a conditional logit function to represent the boundedly rational weighing of the

relative merits of electricity options (Steel 2008). The factors impacting consumer choice are

price, unit costs of electricity, perceived reliability, backlog of customers awaiting supply, and

perceived supply quality. Steel found that there exists the potential shift from a centralized

power system to a decentralized system in Kenya. She also found that, in this context, power

system planners should focus on decoupling electricity prices from oil prices as major changes in

electricity prices strongly impact grid demand. Moreover, Steel addressed the major concern of

Meier and Chatterjee by formulating residential demand in a single year as a function of the

number of existing grid customers plus the newly connected customers; demand was

endogenous.

Additional research in the area of power system planning for developing countries has recently

emerged. The work of Vijay Modi's research group at Columbia University is focused on

methods to estimate the cost of local-level distribution systems for least-cost networks (Zvoleff

et al 2009) and the development of spatial electricity planning models to guide grid expansion in

regions with little grid coverage (Parshall et al 2009). These models capture detailed spatial

population information to guide distribution system planning or grid extension but they do not

consider the generation or transmission needs to support the scale-up in distribution. Parshall et

al, however, successfully captures the impact of the rural-urban divide on electricity demand, and

addresses the concern raised by Pandey regarding the comparison of centralized versus

decentralized supply options within a single model. They compare grid electrification to diesel

mini-grids and stand-alone solar PV systems for households.

Finally, Howells et al have developed an open source energy system modeling platform (using a

subset of AMPL) to provide an analytical toolbox that is accessible to energy planners in
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developing countries. The latest formulation uses the RES and assumes exogenous demand to

determine the energy investment strategy that minimizes operational, investment and emissions

costs. They assert that their contribution lies in the fact that the modeling framework requires no

upfront investment costs, the learning curve is less steep than that of other models, such as LEAP

or MARKAL, and the model can be easily modified for application to various settings (Howells

et al 2011).
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Author Demand Solves Solves Power SystemAuthr Dmand Soles Slve * esnyat EletriitySalient Developing Country Features
[Country] as Capacity Economic Representation Electricity Nodes Approach Represented

Year fn(cust) Expansion Dispatch Gen Tran Distr Only?

Iwayemi
[Nigeria] X X X X X 3 MILP

1978
LP for capacity

Shukla et al, expansion and structural change in the economy,
Garg et al X X X X economic dispatch; natural resource depletion, urbanization

[India] (Shukla) (Shukla) logistic regression and technology diffusion
2001, 2003 for demand

projections

Steel natural resource depletion, corruption,
[Kenya] X X X 1 SD technology diffusion, customer choice,

2008 off-grid supply options for individuals

Beck et al renewables (biomass); off-grid supply
[South Africa] X X 12 DMOO + ABM options for communities

2008
combinatorial

Parshall et al' optimization/ spatial distribution of homes (rural
[Kenya] X X >6000 relaxed minimum versus urban divide); off-grid supply

2009 spanning tree options for individuals and communities
algorithm

renewables, carbon abatement costs,
Chen et al C02 allowance trading mechanism,

[China] X X X - LP technological change, fuel supply
constraints, natural resource depletion

Howells et al (more
[RES] X X X possible possible) LP
2011

Jordan X X X X X X customer choice, off-grid supply options
2013

Table 2.3: Select Energy Models Created for Developing Countries

(i) Capacity expansion is not presented in the traditional sense; model identifies the least-cost distribution network for various regions within a country
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2.5 The Gap in Literature & Current Research Questions

The researchers presented in section 2.4 have made huge strides in incorporating the developing

country features outlined by Pandey, Urban, and Ruijven; however, they poorly, if at all, address

concerns regarding demand that were raised by Meier and Chatterjee. Many of the main drivers

in the electric power sector and other energy sectors, such as demand, technological change and

resource parameters, remain exogenous to simulation and optimization models (Urban 2007).

The models typically include price or GDP impacts on demand, but only Steel formulated

demand endogenously as a function of the number of customers and new grid connections.

Unfortunately, Steel's model does not capture the details of power system operation and cannot

be used for capacity expansion.

After reviewing existing literature and state-of-the-art power system models, it is clear that there

is no model that captures detailed power system operation along with an endogenous

representation of demand resulting from technology diffusion and adoption in developing

countries (see Table 2.3); this thesis will develop such a model. It is critical that annual power

system operations (generator production and unmet electricity demand throughout the grid) are

characterized in order to obtain a representative measure of grid reliability, a major factor

impacting electricity consumption and the choice to connect to the grid (Steel 2008). In turn,

understanding the evolution of electricity demand is critical in order to ensure that power supply

meets demand. This is a feedback loop that if omitted, could potentially result in

counterproductive investment strategies.

In 1987, Meier and Chatterjee assert that endogenous demand (as a function of the number of

new grid customers, the price of electricity, the price of substitutes, and relative measure of

power outage) must be considered when planning for developing countries; and in 2008 Ruijven

asserted that it is not particularly clear how incorporating these features will impact the output

and results of energy models. Therefore, the aims of this research are to (1) incorporate

endogenous demand into power system models for developing countries and (2) determine how

incorporating such features impacts capacity expansion planning. More specifically, this

research aims to bridge the gap in existing literature on capacity expansion planning for

developing countries and address the following research questions:
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* Does it Matter? Are the strategies generated when assuming endogenous demand

growth different than those generated using a more traditional approach, which assumes

exogenous demand? If so, how and why?

* When Does it Matter? When does the incorporation of endogenous demand impact

capacity expansion planning i.e. when or in what cases are the strategies generated when

assuming endogenous demand growth different than those generated using a more

traditional approach?

As the aforementioned research questions necessitate the development of a power system model,

my secondary research questions are:

e Within a single power system model for a developing country, how do you integrate the

technical details of grid operation and endogenous demand dynamics resulting from

social processes of electricity adoption and customer choice (such that new grid

connections, and subsequently grid demand, are functions of word of mouth and power

grid performance)?

e Given a power system model that incorporates endogenous demand, how can you

perform capacity expansion?

A holistic systems approach drawing on various methods is employed to address the

aforementioned research questions. An integrated simulation model that captures both the

technical details and endogenous demand dynamics of power systems is developed.

Subsequently, a heuristic optimization decision framework that uses the enhanced simulation

model to inform capacity expansion planning is implemented. The details of model development

and formulation are presented in Chapter 3.

42



Chapter 3 - Simulation Power System Operation

The objectives of this research are to determine how and when incorporating endogenous

demand into power system models for developing countries results in capacity expansion

strategies that are different than those generated by conventional approaches. As a critical first

step in meeting these research objectives, a power system simulation model was developed.

The model, depicted in Figure 3-1, simulates the evolution of a Tanzania-like electric power

system from 2008 to 2028. It captures endogenous demand and the salient features of

developing countries along with the detailed, technical operation of the grid network. It takes as

input policies and investment decisions, and simulates a single year by calling each of four

critical modules once. Policies include those concerning price; electricity prices can be fixed8 or

changing, and price changes may come after regulation delays. Investment decisions include the

size and timing of generation units that will come online. The simulation model acts as a

"calculator" and generates various indicators that are of interest to stakeholders in the electric

power sector, including the number of grid and off-grid customers, grid operational costs, the

price of electricity, grid demand and consumption, power company cash flow, and the fraction of

served energy to total grid demand.

Mathematical programming is employed to determine annual power system operations while

system dynamics is primarily used to capture endogenous demand, explicitly representing the

number of new grid customers over time and the feedbacks between grid demand and perceived

power system performance (signaled to consumers through electricity price and the fraction of

served energy to total demand).

Policies & -> Indicators
Investments

Feedbacks

Figure 3-1: Simplified Simulation Model Diagram

8 Electricity price may be fixed for residential or industrial consumers to simulate a subsidy.
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This chapter describes the details of the simulation model. It begins with a discussion of each of

the four critical modules depicted in Figure 3-1. Next, the process by which the model simulates

multiple years of power system operation is explained. A discussion of the software platforms

used for model implementation follows, and the chapter concludes with a summary of the

simulation model.

3.1 Electricity Adoption & Customer Choice

Power systems in developing countries are frequently characterized by high costs and low

reliability. Unlike that of industrialized countries, the majority of residents in this context lack

access to modem energy sources, have relatively low disposable income and must consider the

adoption of both grid and off-grid supply options. As presented by Meier and Chatterjee (1987),

technology adoption and the changing number of grid customers is a driving element of grid

demand in developing countries and should not be excluded from power system models.

Therefore, this module captures (a) the process by which households adopt electricity as a

modem source of energy and (b) the choice between grid and off-grid sources of electricity as

experienced by both residential and industrial consumers.

Based on the Kenyan power system model developed by Steel (2008), this module consists of the

residential and industrial consumer models. It takes as input industrial grid and off-grid

consumption for the previous year, the number of residential grid, pv and diesel customers, the

number of residential customers awaiting a grid connection, reliability of the power grid, the

capacity of the power company to make new grid connections, and the price of grid power. The

module determines the number of new residential customers adopting electricity, the number of

new residential customers connected to the national power grid, and the number of residential

customers purchasing PV systems or diesel systems. It also determines industrial grid and off-

grid consumption.

3.1.1 Residential Consumer Choice Model

This model consists of 4 subsystems (also called "blocks") depicted in Figure 3-2. In the

"Adoption" block, interest in electricity is spread through word of mouth. This block takes as

input (i) total households with electricity (ii) households without electricity and (iii) the total

44



household population. Using this information, the word of mouth element of the Bass Diffusion

model (Sterman 2000) is employed in equation [1] to determine the number of new households

adopting electricity each year y as a result of word of mouth.

NewAdoptersy = c f Py - -- [1]
=C~f YHH3 ,

where c is the contact rate of households, f is the adoption fraction (i.e. the probability that an

interaction will result in electricity adoption), A is the stock of households that have already

adopted electricity, P is the stock of potential adopters of electricity, and HH represents the total

number of households in the region.

Customer Stocks

Household
Poulation -

Adopters Number of Grid,

Household Growth PV, & Diesel
Customers

Reliability -

ndicated Share of
Electricity Price - Supply Options

Backlog Ratio

Figure 3-2: Diagram of the residential consumer choice model

The total number of households in the region at any time is determined in the "Population

Growth" block, which keeps track of the growth in the number of households due to birth and

death processes. The number of households accumulates according to

HH _growthy = pop-growthrate x HHy -- [2]

populationo Y
H H,= + HHgrowth, dy -- [3]

average.sizelH 0
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Once households adopt electricity, they must select a power source to supply their needs.

Accordingly, the "Residential Attractiveness & Market Share" block determines the indicated

market share of each of the electricity options. This subsystem takes as input: (i) the fraction of

energy served to total grid demand (for simplicity, referred to as grid "reliability9 ") (ii) grid

backlog ratio (the ratio of desired grid connections to the capacity of the power company to

connect new customers), and (iii) the per unit energy price paid by customers for each supply

option. It uses a multinomial logit choice function (Ben-Akiva and Lerman 1985) to determine

the fraction of customers that will choose to purchase a grid connection, a PV solar home system,

or a diesel generator.

In this choice model, the market share is determined by weighing the attractiveness of options

against one another, where attractiveness is determined by the relative utility of each option.

Utility, attractiveness and indicated share are determined as:

V aluet -
= R alue1  x Sensitivity. -- [4]
UiRef _Valuei;

Vi = ]I; e vil- -[5]

Indicated sharei = vi- - [6]

where j is the attribute impacting choice (capital cost, unit price10 , reliability, perceived backlog,

quality of connection), i is the supply option, U1 is the utility of option i with respect to factor j,

and V1 is the attractiveness of option i with respect to factor j. Utility is determined by

multiplying the value of the attribute 1 (normalized by dividing it by a reference value) by the

9 Reliability is typically defined as the ability to meet end-user demand in the face of unexpected failures or
reductions in available electricity (NERC 2012); it is often calculated as I minus the probability of system failure.
However, the term is used in this thesis to represent the fraction of served to total grid demand each year. The
reliability of off-grid options is assumed to be 0.95.
10 The capital costs and unit electricity prices associated with diesel generators and PV systems are exogenously
fixed according to data presented in Steel (2008). According to Tanesco, the minimum cost of a grid connection is
$500 USD and the price increases with the distance to the national grid. Here, the capital cost of connecting to the
national grid is assumed to be fixed at $800 USD per connection.
" The levels of some attributes are smoothed so that there is no sudden change in the values of the attributes.
Valuesmooth = ao + f (valuet - Valuesmooth)/time to adjust , where ao is the initial value of the attribute
(Sterman 2000).
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sensitivity of adopters to this attribute. The market share of each option, indicated by a fraction

from 0 to 1, is used to determine the allocation of residential consumers.

Grid Connections Res HH
Grid

Grid Connections
From Diesel

RsHHN I Res HH Grid Connections

Diesel Sales

HH % Above RsH
Growth Poverty OfRes H

OOff~ridOffGrid Renew
Renew Sales

Figure 3-3: Basic Structure of Residential Allocation Model (adapted from Steel 2008)12

The "Residential Allocation & Backlog" block keeps track of the stock of grid, diesel, PV, and

off-grid customers. This subsystem takes as input the number of electricity adopters and the

indicated market share for each supply option, and residential consumers are allocated to stocks

as depicted in Figure 3-3. The stock of households without electricity accumulates as the

number of households grows. The growth in this stock, however, is restricted by the percent of

the population that lives below the poverty line. For Tanzania, this has been approximately 35%

from 2000-2010 (WDI 2011). The fraction of the population living in poverty is assumed to be

constant, and households that live in such poverty are assumed to remain non-connected ie they

never enter the stock of customers labeled "Res HH No Elec" (Steel 2008).

The supply of PV systems and diesel generators is assumed to be adequate to meet the demand

for these sources' 3 , and the number of grid connections made each year is based on the capacity

of the electric utility to perform new connections. The capacity of the electric utility to connect

2 Renew" indicates PV solar home systems.
13 As observed during fieldwork in Tanzania, the supply of off-grid electricity supply options is typically limited in
developing countries. For simplicity, the model neglects this reality; however, this formulation can be simply
modified and improved in future work.
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new customers is exogenously specified; the value is initialized at 60,000 per year (the

connection goal for all of Tanzania in 2008 (Tanesco 2009)) and gradually increases over time.

There can be no more connections than this limit and obviously no less than zero. The customers

who desire a grid connection but are not connected are assumed to resort to kerosene and dry cell

batteries, i.e. sources other than PV and diesel, to meet their electricity needs until they are

connected. The stock of grid customers is initialized at 2008 levels and the initial stocks of PV

and diesel customers are estimated.

The total number of desired grid connections in a single year is comprised of new adopters of

electricity as well as previous adopters of electricity that selected off-grid sources. When

adopters of electricity select off-grid supply options, they are initially content with their choices.

Over time, however, a fraction of off-grid customers are assumed to desire grid connections as

their demand and use of appliances grows. The fraction of customers wanting to shift from PV

systems and diesel generators to the grid is assumed to be fixed over time. There is no shift from

grid to off-grid supply options as residential consumers in this context perceive the grid to be the

superior option14 (Steel 2008).

3.1.2 Industrial Consumer Choice Model

Industrial customers are treated as a separate population from residential households. Steel

(2008) observed that the industrial customers in Kenya were extremely sensitive to grid

reliability, there was the potential for them to switch multiple times between electricity sources,

and that these customers are likely to split their consumption between several sources. Similarly,

Tanesco (2009) reports that, during the most severe periods of load shedding, customers

substitute other sources for grid power to maintain a consistent level of electricity supply and

minimum energy costs. Thus, in this model of a Tanzania-like power system, industrial

consumers are modeled as units of energy instead of firms. Growth in industrial electricity

demand is assumed to increase at the rate forecasted by the PSMP; in Tanzania, industrial

demand growth is proportional to mining activity and is formulated as function of changing GDP

(Tanesco 2009).

14 As indicated in numerous reports during the period of sever load shed in Tanzania in 2011, residential grid
customers were also found to switch to off-grid supply options. This was observed after the development of the
model and is therefore not included.
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Figure 3-4: Diagram of the industrial consumer choice model

The "Industrial Attractiveness & Market Share" block assumes no social dynamics and no

questions of ability to pay. This subsystem takes as input 5 : (i) grid reliability and (ii) per unit

energy price for each supply option. It uses a multinomial logit choice function as described in

equations [4] to [6] to determine the fraction of industrial demand that will be met by the grid, a

diesel generator, or a renewable power system (PV or hydro). However those attributes of

supply impacting the industrial decision are capital cost, the unit price of electricity and

reliability.

The "Industrial Allocation" block keeps track of those energy units met by grid, off-grid diesel,

off-grid PV, or off-grid hydro sources, and demand is allocated as in Figure 3-5. The stocks

represent industrial electricity demanded from grid and off-grid sources, and the flows indicate

the shift in energy units demanded from one source to the other (Steel 2008). This captures the

potential of industrial consumers to switch between options to meet demand in a reliable and

cost-effective manner.

15 As in the residential choice model, the capital costs and unit electricity prices of off-grid diesel, hydro and solar
are assumed to be exogenously fixed based on data presented by Steel (2008).
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Figure 3-5: Basic Structure of Industrial Allocation Model (adapted from Steel 2008)

The growth in energy demanded from each source results from the incremental change in energy

demanded due to economic growth, indicated by changing GDP. This is formulated as:

Demand Growth, = AGDP X yind x Demand,

where I is the electricity supply option, yind is percent increase in industrial demand per the

percent increase in GDP, and the percent change in GDP (AGDP) is exogenously fixed.

Additionally, each year industrial consumers consider switching electricity sources and a fraction

of the energy demanded from one source will shift to another source. The shifting demand is

allocated based on the indicated market shares identified by the logit choice model. For

example, in any year y the units previously demanded from the grid that will now be demanded

from off-grid hydro is defined as:

Grid to Hydroy = %Shiftgrid X Demandgrid,y-1 x IndicatedSharehydro,y
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3.2 Grid Demand

The core function of the "Grid Demand" module is to determine annual grid demand for both

industrial and residential consumers. It takes input from the "Electricity Adoption & Customer

Choice" module, and passes output to the "Annual Power System Operations" module. More

specifically, this module determines the power demanded during each demand block of a single

year, where each demand block is characterized by period, day type, load level, and duration.

This module is divided into two subsystems: "Residential Demand" and "Industrial Demand"

(see Figure 3-6).

Residential Demand >
in Previous Year

Annual Grid
Connections

Industrial
Annual Industrial ) Demand -

Grid Demand Model

Figure 3-6: Diagram of the Grid Demand Module

Residential
Demand Profile

Industrial
Demand Profile

A single period represents approximately 2.5 months out of the year and is indexed from 1 to 5.

A day is defined as either a weekday or weekend, and the load level is defined as peak, shoulder,

or base load. The duration (in hours) of each demand block is presented in Table 3.1. The set of

demand blocks and associated power demand (in kW) that completely characterize a single year

is considered a "demand profile".

Period WeekDays WeekEnds
Peak Shoulder Base Peak Shoulder Base

1 256 704 576 156 234 234
2 168 462 378 114 171 171
3 176 484 396 102 153 153
4 176 484 396 102 153 153
5 264 726 594 156 234 234

Table 3.1: Duration (in hours) of each demand block in a year
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3.2.1 Residential Demand

This subsystem takes as input the number of new grid customers in a given year and residential

demand from the previous year. It then determines the aggregate demand profile (i.e. the power

demanded in each demand block) of the year.

Individual household grid demand patterns for residents in Tanzania were not available. Instead,

historical data and numerous studies specific to the East African context were utilized to predict

the electricity demand profile of newly connected grid customers. A newly connected grid

customer is assumed to demand 50kWh/month, which is consistent with data and previous

research findings (Decon 2008). For weekdays, the daily load pattern of a single customer is

assumed to follow that of newly connected Peruvian16 households as found in data shared by

Julio Eisman Valdes. Additionally, according to 2004 data provided by Tanesco along with

qualitative information provided in the PSMP (Tanesco 2009), weekend residential consumption

is mainly constant except for an evening peak. The electricity demand profile in Table 3.2

captures that of a newly connected residential consumer in Tanzania during 2004 - 2010. These

values are assumed in this model.

Period WeekDays WeEnds
Penod Peak Shoulder Base Peak Shoulder Base

1 0.241 0.065 0.032 0.045 0.031 0.031
2 0.240 0.065 0.032 0.044 0.031 0.031
3 0.234 0.063 0.031 0.045 0.032 0.032
4 0.243 0.065 0.032 0.044 0.031 0.031
5 0.247 0.067 0.033 0.045 0.032 0.032

Table 3.2: Residential demand (in kW)

type, and load level within the first year

of a newly connect grid customer during each period, day

16 Please see APPENDIX for the aggregate daily electricity demand of 3335 customers in Peru

52



Aggregate residential demand in a single year is comprised of two components: demand from

existing grid customers and newly connected grid customers. Based on econometric studies

found in the PSMP (Tanesco 2009) and the electricity demand profile of new grid customers

shown above, the aggregate demand for grid power in a single year is estimated as follows:

DTy,p,s,n = DNy,,,s,n + DEY,,,s,n V y, p, s, n - - [7]

DNy,,,s,n = NCy x DPNY,P,s,n V y, p, s, n - - [8]

DEy,,,s,n = DTy-lp,s,n X {1 + (yres -AGDPy)} V y, p, s, n - - [9]

Where

y year (ranging from 1 to 20)
p period (ranging from 1 to 5)
s day-type (weekday or weekend)
n load level (peak, shoulder, base)
DTy,,,s,n total grid power demanded in year y for each p, s, and n
DNy,p,s,n aggregate electricity demand of newly connected customers in year y
DEy,,,s,n aggregate electricity demand of existing grid customers in year y
NCy the number of new grid customers connected in year y
DPNy,P,s,n electricity demand of a newly connected grid customer
Yres percent increase in electricity consumption of existing grid customers per

the percent increase in GDP
AGDPy percent change in GDP in year y
DTo aggregate grid demand observed in 2008 i.e. y = 0

3.2.2 Industrial Demand

Unlike the "Residential Demand" block, the "Industrial Demand" block takes as input the annual

grid energy demanded (in kWh) by industrial consumers and determines the aggregate demand

profile of the year. Historical hourly consumption data' 7 for Industrial consumers in Tanzania is

used to estimate the shape of the demand curve' in a single year. This is demonstrated in Table

3.3.

17 Hourly grid production as well as consumption data for both industrial and residential consumers was provided by
Tanesco in July 2010.
18 It should be noted that, due to load shedding schemes implemented in Tanzania, industrial consumption occurs at
the following times: all day except for 8pm - 12am on weekdays, and all day on weekends.
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PWerDi od_ ___ __ _
Period Peak Shoulder Base Peak Shoulder Base

1 0 1 1.096 1.329 1.103 1.064
2 0 0.982 1.076 1.305 1.083 1.045
3 0 0.980 1.074 1.302 1.080 1.043
4 0 0.995 1.091 1.322 1.098 1.059
5 0 1.038 1.138 1.379 1.145 1.105

Table 3.3: Assumed ratio of industrial demand to demand during a weekday shoulder load in

period 1, during each period, day type, and load level in a single year

Using the annual grid demand (in kWh) generated in the "Industrial Allocation" block, the

demand profile of industrial consumers is defined as:

Demandgridy

,,s,n rati,,s,n * duration,,,
x ratio,,sn

y
p
S

n

IDy,,,,n
Demandgrid,y

ratio,,,n

duration,,,n

year (ranging from 1 to 20)
period (ranging from 1 to 5)
day-type (weekday or weekend)
load level (peak, shoulder, base)
total grid power demanded in year y for each p, s, and n
annual industrial grid demand (in kWh) in year y
ratio of power demanded for this p,s, and n to the power demanded
during the weekday shoulder load of period 1; see Table 3.3
duration in hours of each p,s, and n; see Table 3.1

3.3 Annual Power Grid Operation

Residential
Demand Profile

Industrial
Demand Profile

Production & Capacity Costs

Consumption

Reliability

Figure 3-7: Diagram of Annual Power Grid Operation Module

The "Annual Power Grid Operation" module is a medium term power system model. Mixed-

integer programming is employed to formulate this deterministic model with hydro-thermal
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coordination and block-wise unit commitment. The model minimizes total variable costs while

satisfying demand balance and production constraints. It takes as input the newly installed

generation capacity and the grid demand profile of both residential and industrial consumers to

determine the production of each generator during every period, day type, and load level of the
19year' . This model also determines total annual operational costs, annual electricity production

and consumption, and total non-served energy.

3.3.1 Model Objective

The objective of the problem is to minimize costs, defined as:

Min (vProdC + vNSEC + vCommitC} - - [11]

vProdC represents the variable costs of production, vNSEC indicates the penalties incurred from

non-served energy and power, and vCommitC represents the cost of operating thermal units.

They are defined as:

vProdC = pDurationy,- pVarCostg -vProductp,s,n,g - -[12]
p,s,n,g

vNSEC = pPNSCost -vPNSp,s + pDurationy,,,n -pENSCost vENSp,s,n - -[13]
p,s p,s,n

vCommitC = pDurationy,sn -pNoLoadCostt -vCommitp,s,t - -[14]
p,s,n,t

where

y year (ranging from 1 to 20)
p period (ranging from 1 to 5)
s day-type (weekday or weekend)
n load level (peak, shoulder, base)
9 generating unit
t thermal generating unit
h hydro generating unit

The operational model presented in this section does not consider the transmission network; similarly, the analysis
presented in Chapters 4 to 6 neglect transmission constraints. However, additional work was performed to
formulate a second version of the Annual Power Grid Operation module that includes transmission. See
APPENDIX for details on the formulation.
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pDuration,,,
pVarCost,
pNoLoadCostt
pPNSCost
pENSCost

duration
variable costs
no load costs
cost of power non-served
cost of energy non-served

[hours]
[M$ per MWh]
[M$ per h]
[M$ per MW]
[M$ per MWh]

Model input parameters are:

pDResp,s,
pDIndy,s,n
pInstalledg

residential demand
industrial demand
number of generating units installed

and decision variables of this model are defined below:

vProductp,s,,g production of the unit
vCommityst commitment of thermal unit
vENS, ,, power non served
vPNS,, total power non served

[MW]
[positive integer]
[MW]
[MW]

The objective must be minimized subject to numerous constraints. The constraints are

described in the following subsections.

3.3.2 Demand Balance Constraint

The sum of electricity generated and non-served energy must equal the demand for all p, s, and

n.

Vp, s, nvProductsn],g + vENS,,, = pDIndys,+ pDResp,x

3.3.3 Reserve Margin Constraint

The reserve margin of installed capacity is the generating capacity available in excess of what is

required to meet peak demand levels. In most systems, regulators require reserve margins to be

approximately 10% to 20% in order to ensure that, during times of generator breakdowns or

sudden increases in demand, the power grid is still operational.
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vPNSp,, + pMaxProdt -pInstalledh + pMaxProdt -vCommitP,S,t
h t

; [pDIndy,s,n1 + pDResp,sd1] x (1 + pOpReserve))

Vp, s, n1

where pMaxProdg is the maximum production (in MW) of each generating unit and n1 is the

peak demand level. According to EWURA, the reserve margin is negligible in the Tanzanian

power system. Accordingly, pOpReserve is equal to zero.

3.3.4 Production & Commitment Constraints

The power generated must not exceed the rated capacity of the unit or, for thermal units, fall

below the minimum production capacity specified. Electricity production in the peak load blocks

must be greater than that of the shoulder load blocks, and the production in the shoulder load

blocks must be greater than that of the base load blocks. Data for each thermal unit was used to

determine the maximum annual energy production of the units, and historical hydro production

data was used to determine the average maximum and minimum energy production of each

hydro unit in a single period. Additionally, the variable production costs of hydro power are

assumed to be zero.

vProductp,,n,t pMaxProdt x vCommitp,5 ,, Vp, s, n, t

vProductp,sn,t > pMinProdt x vCommitp,,, Vp, s, n, t

vProductp,,n,h pMaxProdh Vp, s, n, h

vProductp,s,n+1,g < vProduct,s,n,g Vp, s, n, g

pMaxProdg = pRatedMaxPg x [1 - pEFORg] x pInstalledg Vg

> vProductp,s,n,t 8760 X pMaxPlantFacg x pMaxProde Vt
p,s,n
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vProductp,,n,h -pDurationy,,,1 5 pAPProdhmaxhp Vh, p
s,n

Y vvProductp,s,h, -pDurationy,,, > pAPProdhminh,p Vh, p
s,n

where pRatedMaxPg is the rated capacity of the generating unit, pEFORg is the equivalent forced

outage rate of each unit, pMaxPlantFacg is the fraction indicating the maximum generation that

is feasible in a single year for each thermal unit, pMinProdg is the minimum production of a

committed thermal unit, and pAPProdhmaxh,, and pAPProdhminh,p are the maximum and

minimum production of each hydro unit in a single period, respectively. Finally, once built and

installed, thermal units can be committed as follows:

vCommit p,,,t ; pInstallede Vp, s, t

3.3.5 Additional Model Outputs

The "Annual Power Grid Operation" module determines the following values, which it passes to

the "Electricity Price and Power Company Cash Flow" module:

ACC = I(pAnCapg + pFixedOM) - pInstalledg

9

NSE = pDurationy,sx - vENSp,,n -- [16]
p,s,n,nd

TD = pDurationy,s, - [pDIndy,s,n + pDResp,,,] - -[17]
p,s,n

Cons = TD - NSE -- [18]

NSE
FSTD = 1 - Cons -- [19]

58



where ACC is the annualized capacity costs of installed generating units, NSE is annual non-

served grid demand, TD is the total energy demanded over the year, and FSTD is the fraction of

served to total grid demand. The module also passes along vNSEC and vProdC, the annual costs

of non-served energy and the annual variables costs of electricity production, respectively.

3.3.6 Generation Representation

The supply mix in Tanzania consists of hydro and thermal based generation. As described in

Section 1.1.1, Tanesco owns and operates units but power is also generated by IPPS. At the time

of building the model and writing the thesis, the involvement of IPPs was ambiguous. Due to

numerous legal disputes between IPPs and Tanesco, some IPP generating units were left idle.

Therefore, only Songas units are captured in the model. Additionally, the relationship between

Songas and Tanesco is not explicitly represented. As agreed in the power purchase agreements,

Songas is paid (by Tanesco) a fixed tariff for injecting power into the national grid. As described

in Section 3.3.1, this fixed tariff appears as Tanesco's variable operating cost of the IPP units.

3.4 Grid Electricity Price and Power Company Cash Flow

This module takes as input (i) variable grid operational costs (ii) residential and industrial

consumption and (iii) the annualized costs of generation capacity in order to keep track of the

cash flow of the utility and to determine the price of electricity. See Figure 3-8.

Production &
Capacity Costs Electricity P

%_ Priice Electricity Price
Consumption

Power Company Cash Flow

- Power Company Debt

Figure 3-8: Diagram of Electricity Price & Power Company Cash Flow Module

Electricity prices are calculated to recover the utility's costs of supplying power. Additionally,

the utility must pay taxes on each unit of energy supplied. Government tax is set at 20% and an
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additional charge of 3% of unit sales must be paid to REA for rural electrification. The taxes are

passed directly to the consumer and the price of grid electricity is determined as:

el pricegrid =
vProdC + vCommitC + ACC

Cons x (1+ taxREA + taEgov)

Additional pricing options are built into the model. Prices can be fixed over the horizon of the

model or change according to [20]. In Tanzania, however, EWURA regulates the price of grid

power. Thus prices change after some regulation delay. Accordingly, an exogenous variable

reg-delay is introduced to capture this effect. For example, the regulator may revise grid

electricity prices once every three years. In this case, the price incurred by customers will

change as depicted in Figure 3-9.

0.095

0.09

M 0.085

C- 0.08

0.075
0 1 2 3 4 5 6 7 8 9 10

Year

-.- true price -n- delayed price

Figure 3-9: Changing prices of electricity (the "true price" shown in blue) and the price charged to

consumers (the "delayed price" shown in red) in the case of a 3-year regulation delay

The price incurred by grid customers can be adjusted to charge a higher rate to residential

customers; this is the case in most East African countries today. This is captured by introducing
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a residential tariff factor, which is a value greater than 1, that indicates the increase in tariff paid

by residential consumers and the decrease in tariff paid by industrial consumers.

el priceres = el pricegrid x tariff factor

el priceind = el pricegrid + tariff factor

Power company cash flow is the difference between the utility's sales revenue and costs of

electricity supply and new generating capacity. Revenue is calculated as the residential and

industrial unit sales multiplied by the prices charged, and the revenue collected by the utility is a

function of meters read and bills collected. As described in Section 1.1, Tanesco has historically

lost tremendous revenue 20 due to the poor ability of the company to read meters and collect

money.

revenuesales = ((consind - el priceind) + (consres- el priceres)) x %meters read x %bills collected

The costs of supply are comprised of variable electricity production costs, annualized capacity

costs and taxes. Additionally, funds are often misallocated due to corruption within the utility.

As described in Steel (2008), a "corruption tax" is used to capture this reality.

utility costssupp, = vProdC + ACC + TaxC

TaxC = revenuesales x f taxcorruption + taxREA + taxgov
1 + taxREA + taxgovJ

where vProdC and ACC are as defined in [12] and [15], respectively.

Low or negative cash flow results in the utility having to obtain external funding. As in Steel

(2008), this funding is assumed to come from international lending or development aid, which

increases debt. Therefore, each year the utility's cash flow is reduced even more by debt

repayment. On the other hand, each year the government bails out the utility, covering a portion

of its costs. This is due to the close relationship between the utility, Tanesco, and the

2 The losses in revenue are assumed to be absorbed by Tanesco and do not impact the price of electricity experience
by grid customers.
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government, the Ministry of Energy and Minerals. Power company cash flow2 ' and debt are

defined as:

Cash Flow = revenuesales - utility costssupply - interestebt - debt repayment - -[21]

Debt = - f cashf low + bailout + debt repayment - -[22]

Power company cash flow and debt are not assumed, in this model, to impact the budget

available for capacity expansion. The capacity expansion approach that uses the simulation

model to inform planning is presented in detail in Chapter 5.

3.5 Simulating N Years

Sections 3.1 to 3.4 describe the four critical modules of the simulation model. Executing the

modules in the following order simulates a single year of power system operation:

Electricity Adoption & Customer Choice

Grid Electricity Demand

Annual Power Grid Operation

Power Company Cash Flow & Electricity Prices

In order to simulate N years, the model user enters (a) the pricing policy (fixed or changing

price, with or without regulation delay) and (b) the size of and year that new generating units

become operational. Next, the simulation model executes the four critical modules N times, each

time running the modules in the order described above. Finally, time-series data is generated at

the output (see Figures 1.1 and 3.1). This process is facilitated by the software platform on

which the model is built. The software is described in the following section, and Section 4.2

21 This formulation neglects the costs of power company payroll.
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demonstrates how to simulate twenty years of power system operation for a particular set of

decisions.

3.6 Implementation

In order to link the system dynamics subsystems (that capture electricity adoption, changing

electricity demand and power company cash flow) to the annual power grid operations module

(built using General Algebraic Modeling System- (GAMS)), two options were explored: the

Vensim@ simulation environment and Matlab's Simulink@.

The Vensim environment "emphasizes information feedback and icon-based modeling with a

clear portrayal of the 'stocks' and 'flows' ", and it allows one to call external functions during

the simulation via a Dynamic Link Library (Dimitrovski, Ford and Tomsovic 2007). Simulink

uses icon-based modeling as well; however emphasis is on "explicit mathematical representation

of the relations among the system variables". Simulink has been used widely throughout

academia to represent coupled sets of first-order differential equations because of its "ease of

use, versatility and large library of functions". Simulink allows one to call external functions

using either the Embedded MATLAB functions or Embedded S-blocks (these blocks include

MATLAB code that generates embeddable C code).

Because the simulation model must be used to inform capacity expansion planning, the Simulink

software was employed. This provided access to MATLAB's large optimization and heuristic

optimization library of tools as well as the flexibility to develop unique algorithms not available

in MATLAB's toolboxes. In order to call the annual power grid operations module from

Simulink, an Embedded MATLAB function block was used to make system calls to the GAMS

model.

3.7 Summary of Simulation Model

The model described in this chapter simulates the evolution of a Tanzania-like power system. It

takes as input the size of and years in which new generating capacity comes online; it can also

22 The General Algebraic Modeling System (GAMS) is a high-level modeling system for mathematical
programming and optimization. It consists of a language compiler and a stable of integrated high-performance
solvers. (www.gams.com)
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take various pricing policies as input. By sequentially executing the four critical modules, the

model generates time series data, including the changing customer stocks and grid demand, grid

supply costs, non-served grid demand, and power company cash flow.

More importantly, grid demand is endogenous to the model. It is comprised of both residential

and industrial demand, where residential demand grows as new household connect to the

national grid and industrial demand grows with the economy. The choice to select the national

grid as a supply source is a function of the price of grid power, the reliability of the grid, ie the

fraction of served to total demand, grid connection costs, and, for residential consumers, the

quality of supply and the backlog of customers awaiting a connection.

Unlike the model presented by Steel (2008), this model neglects urbanization, resource

depletion, and the volatility of the exchange rate. This model, however, captures the detailed

operation of the electric grid by calling a medium-term operational model that includes hydro-

thermal coordination and unit commitment. Chapter 4 demonstrates simulation model behavior.
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Chapter 4 Parameter Definition, Simulation Model Testing and

Sensitivity Analysis

The United Republic of Tanzania is the motivating case of this research. This chapter begins

with a description of the parameter definition procedure used to fit simulation output to

Tanzania's historical data. Basic model behavior is then illustrated by testing various capacity

expansion strategies and pricing policies as input. While the parameters were fixed to match

Tanzania data, some model parameters remain uncertain. Therefore, the results of a sensitivity

analysis are described to demonstrate the impact of changes in these parameter values on model

behavior. The chapter closes with a discussion of the limitations of the simulation model and

future extensions.

4.1 Parameter Definition

Electricity adoption and consumer choice are key features of the simulation model described in

Chapter 3. Many of the model parameters used to simulate these social processes are uncertain.

For example, electricity adoption depends on the rate at which households with electricity access

interact with those without electricity, and the probability that such an interaction will cause a

home to start using electricity. Similarly, the fraction of electricity adopters that choose to

purchase solar home systems depends on their sensitivity to capital costs, per unit electricity

price, the fraction of served demand to total demand, the perceived quality of the supply and the

backlog of customers waiting for service. For the case of Tanzania, information on these

parameter values was not available during the time of research so they were estimated.

Ideally, a formal statistical calibration would be performed to fit parameters listed in Table 4-1 to

at least twenty years of historical data. An example of the approach can be found in Sterman

(1984). Data was collected from MEM, Tanzania'a Rural Energy Agency (REA), Tanesco,

EWURA and the World Bank during multiple visits to Tanzania. However, information was

missing and there was only enough data to completely represent a period of four years: 2006 to

2009. Therefore, model parameters were initially set to values assumed in the power system

model of Kenya (Steel 2008), a country bordering Tanzania with a similar population. Next, the
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Parameter Estimation tool of MATLAB's Simulink software was used to fit the number of

households connected to the national grid and aggregate grid demand to the four years of

Tanzania data. During estimation, the number of grid customers and total grid demand were

weighted by the standard deviation of respective data.

Contact Frequency X

Adoption Fraction X

Demand Profile Scale Factor24

Sensitivity to Capital Costs

Sensitivity to Reliability

Sensitivity to Electricity Price

Sensitivity to Quality X

Sensitivity to Backlog Ratio X

Table 4.1: Model parameters estimated for the case of Tanzania. Entries not checked were fixed to

values assumed in Steel (2008)

In order to estimate these model parameters, the following time-series data was used:

- Residential grid customers

- Electricity price of supply options

- Grid generation & transmission capacity

- Annual grid demand

- Capital costs of supply options

Collecting key data was a challenge. For example, it was difficult to assess the production

capacity of the grid over time as Tanzania has experienced reduced hydro availability due to

drought and thermal units were forced to sit idle due to legal disputes with the IPPs. Since the

available capacity of the grid was not known, the Annual Power Grid Operation module was

disconnected from the simulation model, and historical data on load shedding and grid electricity

price was exogenously fixed as model input during the estimation procedure.

2 The Parameter Estimation was performed using the nonlinear least squares method and the trust-region reflective
algorithm. The following settings were assumed: parameter tolerance is 0.001, maximum function evaluations is
400, maximum iterations is 100, and function tolerance is 0.001
24 The demand profiles of both residential and industrial consumers were estimated based on data gathered in
Tanzania (see Section 3.2). Scale factors are multiplied by these demand profiles to improve the estimates and
match historical data.
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Figure 4-1: Comparison of model generated and historical residential grid customers
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Figure 4-2: Comparison of model generated and historical grid demand

The focus of this research is to develop a novel approach to planning and to demonstrate this

approach by applying it to a simplified representation of the Tanzanian power system. The

results, depicted in Figures 4-1 and 4-2, show that the simulation model reproduces the

qualitative trends of the Tanzanian power system. The R2 values for the number of grid

connected households and total grid demand are 0.99 and 0.97, respectively. See APPENDIX

for a table of final estimated simulation parameter values, hereto referred to as "Base Case

Parameter Values".
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4.2 Simulation Model Testing: System Behavior under Reference

Assumptions

The aim of this section is to illustrate simulation model behavior. As briefly described in

Chapter 3, the simulation model takes as input a single capacity expansion strategy along with a

single pricing policy, and simulates twenty years of power system operation. This section

explores the impact of capacity expansion strategies and pricing policies on grid reliability, grid

electricity prices, consumer behavior and grid demand. For all simulations presented in this

section, parameter values are set to the levels determined during parameter estimation, and all

other input data and stocks are set to the 2008 values provided in the PSMP (Tanesco 2009).

4.2.1 The Impact of Various Expansion Strategies on Grid Demand

For the purpose of model testing, I assume that new hydro and thermal capacity are added to the

grid in years 1 and 11 of the twenty year simulation. The size of new capacity is assumed to be:

Plant Name Plant Type Unit (W)

HI Hydro 150

H2 Hydro 300

TI Thermal 60

T2 Thermal 200

Grid electricity prices are assumed to vary over time

utility is able to meet all requests for grid connections.

without regulatory delay, and the electric

The simulation model takes as input a single capacity expansion strategy. The strategy indicates

when and how many additional generating units will become operational. I consider three

expansion strategies to illustrate the behavior of the simulation model.

2 Prices are calculated to cover capacity and production costs as described in Section 3.4. Under this pricing policy,
power company debt does not accumulate.

68



Expansion Year 1 Year 11

Strategy HI H2 TI T2 HI H2 TI T2 Summary

None/No 0 0 0 0 0 0 0 0 No new capacity is added to the grid.

450MW of hydro and 60MW of thermal

Gradual 3 0 1 0 0 1 10 0 capacity is added in year 1. 300MW of hydro
and 600MW of thermal capacity is added in

year 11.

600MW of hydro and 900MW of thermal
Delayed 0 0 0 0 2 1 15 0

capacity is added in year 11.

Table 4.2: Capacity expansion strategies used to demonstrate simulation model behavior. Columns

2-9 of the table indicate the number of additional generating units that become operational in the

specified year

Expanding generating capacity directly impacts grid reliability (Figure 4-3). Grid reliability is

considered to be the fraction of served grid demand to total grid demand. Under all three

capacity expansion strategies, total grid demand increases over time. If no new capacity is added

to the system, the fraction of served to total grid demand will decline. This dynamic is depicted

in the "No" expansion case. On the other hand, when new generating units are added to the

system, the additional capacity can supply more power to meet demand, and reliability will

remain at or approach one before gradually declining. This trend is demonstrated in Figure 4-3

under the "Gradual" and "Delayed" expansion strategies.
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Figure 4-3: Grid reliability under three expansion strategies. Since demand is increasing, reliability

declines when no new capacity it added to the grid. Reliability remains at or increases closer to one

as new capacity is added under the "Gradual" and "Delayed" expansion strategies.

Expanding generating capacity also directly impacts electricity prices through more complicated

power grid dynamics. Electricity price is driven by annualized capacity costs and the variable

cost of power production. As demonstrated in equation [15], annualized capacity costs include

the fixed O&M costs of all units as well as the fixed investment costs amortized over the lifetime

of the plants. The addition of new generating capacity increases annualized capacity costs but

the total variable cost of power production depends on the sum of previously installed and newly

installed generating capacity as well as the amount of energy production required to meet

demand.

More specifically, the ratio of grid-wide hydro to thermal power production can have a

significant effect on total variable costs. Hydro is dispatched before thermal power because it is

produced at zero variable costs; thermal power is produced at non-zero costs to account for the

cost of fuel. Once new hydro is introduced to the grid, the substitution of new hydro production

for previous thermal production reduces total variable costs. When the reduction in the total

variable cost of power production is larger than the annualized investment costs, electricity

prices decrease. This dynamic occurs in year one under the "Gradual" expansion strategy,
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depicted in Figure 4-4. On the other hand, when the reduction in the total variable cost of power

production is less than the annualized capital costs, electricity prices increase. This is

demonstrated under the "Gradual" expansion strategy during years ten to eleven (Figure 4-4).

Figure 4-4: Grid electricity price under "Gradual" expansion. The ratio of hydro to thermal power

production increases with the introduction of new generating capacity in years 1 and 11. Electricity

price decreases in year 1 as the reduction in variable costs exceeds the increase in annualized

capacity costs. Electricity price increases in year 11 as the reduction in variable costs is less than

the additional costs of new capacity.

The amount of production required to meet growing demand also has an effect on total variable

costs. If no additional generating capacity is added to the system and demand exceeds hydro

production, then thermal production will increase with growing demand. This increase in

thermal production causes the total variable costs of production to rise. Subsequently electricity

prices increase. This dynamic can be observed in the first five years under "No" capacity

expansion (Figure 4-5). Similarly, if demand declines then the ratio of hydro to thermal power

production increases. Total variable production costs decrease and so do electricity prices. This

is depicted in years five through ten under "No" expansion (Figure 4-5).
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Grid Electricity Price under
No Expansion
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Figure 4-5: Grid electricity price under "No" expansion. As thermal production increases and

decreases to meet changing grid demand, grid price also changes.

The grid price observed under the "Delayed" expansion strategy can also be explained by the

dynamics described above. When additional generating capacity is added to the system in year

eleven, there is a sharp increase in price resulting from the increased capacity costs. At the same

time, electricity production rises to meet demand. Figure 4-6 depicts this jump in electricity

price as well as an increase in electricity consumption. As demand continues to grow beyond

year eleven, consumption rises and, with the addition of new hydro production capacity, the ratio

of hydro to thermal production also increases. This decreases the average costs of production

and electricity prices begin to decline. This decrease in price is observed until demand grows so

large that the ratio of hydro to thermal production starts to decrease.
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Figure 4-6: Grid electricity price under "Delayed" expansion. The sharp increase in price results

from the addition of new generating capacity. The decrease in price follows as the ratio of hydro to

thermal production increases.
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Changing reliability and electricity price in turn have an impact on consumer choice, i.e. the

fraction of residential electricity adopters requesting a grid connection and the fraction of

industrial demand served by the grid. As described in Chapter 3, the fraction of residential

adopters requesting a grid connection and the fraction of industrial demand served by the grid is

determined using the multinomial logit choice model. This model calculates the fraction of

consumers choosing grid power as the ratio of grid attractiveness to the sum of the attractiveness

of all supply options, and high electricity prices and low reliability reduce the attractiveness of an

electricity supply option.

Fraction of Industrial Demand Served by the
Grid under Delayed Expansion
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Figure 4-7: The fraction of industrial demand served by the grid under "Delayed" expansion

follows grid reliability and the inverse of grid price with delay.

The fraction if industrial demand served by grid power follows grid reliability and the inverse of

grid electricity price. For example, Figure 4-7 depicts grid reliability and electricity price along

with the fraction of industrial demand served by grid power under the "Delayed" expansion

strategy. Initially, prices increases and reliability declines as no new generating capacity is

added to the system. The fraction of industrial demand served by the grid also declines after

some delay. When new capacity is added to the system in year eleven, grid reliability increases
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but there is also a sharp increase in electricity price. By year twelve, grid prices begin to decline

and reliability is higher than its value before the addition of new generating capacity.

Accordingly, the fraction of industrial demand served by grid power begins to increase.

This interaction between grid price, grid reliability and consumer choice is demonstrated for both

industrial and residential consumers under all expansion strategies. Figure 4-8 depicts the

fraction of industrial demand served by the grid and Figure 4-9 depicts the fraction of residential

electricity adopters requesting a grid connection. As described above for industrial consumers, a

decrease in reliability or an increase in grid price causes a decrease in the fraction of adopters

that choose grid power; when reliability increases or grid price decreases, the fraction of adopters

requesting a grid connection increases.

Fraction of Industrial Demand
Served by the Grid
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Figure 4-8: The fraction of industrial demand served by the grid under the three expansion

strategies. Consumer choice is impacted by grid reliability and grid price.
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Figure 4-9: The fraction of residential electricity adopters selecting grid power under the three

expansion strategies. Consumer choice is impacted by grid reliability and grid price.

Customer choice directly impacts total grid demand. When the fraction of industrial demand

served by grid power is small, industrial consumers are powering up their diesel generators or

off-grid supply options to satisfy demand. Therefore, industrial grid demand (Figure 4-10)

directly follows the fraction of industrial grid demand served by grid power (depicted in Figure

4-8). Over the duration of the mode, I assume that GDP grows. As described in Chapter 3, an

increase in GDP causes an increase in aggregate industrial demand. Therefore, when the fraction

of industrial demand served by the grid is constant (as in the "Gradual" expansion case),

industrial grid demand rises.
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Figure 4-10: Industrial grid demand under the three expansion strategies. Industrial grid demand

is directly impacted by the fraction of industrial demand served by grid power (depicted in Figure

4-8). The increase in demand results from growing GDP.

The fraction of electricity adopters requesting a grid connection directly impacts the number of

residential grid customers and, subsequently, residential grid demand. When the fraction of

electricity adopters selecting grid power is low, new electricity adopters are discouraged from

requesting a grid connection and, as a result, select off-grid diesel generators or solar home

systems to meet their electricity needs. Unlike industrial consumers, however, pre-existing

residential grid customers remain connected to the grid and do not switch electricity supply

sources. For example, when no new generating capacity is added to the grid, reliability declines

and the fraction of electricity adopters requesting a grid connection falls to zero by year ten. As

a result, the number of residential grid customers does not increase but remains constant from

year ten through twenty. On the other hand, under "Gradual" capacity expansion, the fraction of

electricity adopters choosing grid power remains close to one; therefore, the number of

residential customers connected to the grid grows over the twenty-year horizon and surpasses the

customer stock levels observed under no expansion. See Figure 4-11.
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Figure 4-11: Comparison of residential grid customers under the three expansion strategies. When

no new capacity is added to the grid, residential electricity adopters are discouraged from

connecting to the grid. As a result, the stock of grid customers remains constant. The number of

grid customers observed under "Gradual" and "Delayed" expansion is higher than what is

observed under "No" capacity expansion.

Figure 4-12 depicts residential grid demand under the three expansion strategies. Although the

stock of grid customers saturates when no new capacity is added to the system, an increase in

residential demand is observed. This increase in demand results from growing GDP. Although

no new residential consumers are connecting to the grid, previously existing grid customers

continue to demand electricity from the grid and, as described above, an increase in GDP causes

an increase in household electricity demand. Additionally, the model is formulated such that

only new electricity adopters are faced with a choice of supply options. If, like industrial

consumers, all residential customers were allowed to switch supply options, the variation

observed between residential grid demand under the three expansion strategies would be larger.
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Figure 4-12: Comparison of residential grid demand under the three expansion strategies.

Figure 4-13: Comparison of aggregate grid demand under the three expansion strategies. The

expansion strategy largely impacts the evolution of grid demand.

Figure 4-13 depicts aggregate grid demand under each of the expansion strategies. This figure

demonstrates that the size of new generating capacity and the time in which the capacity
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becomes operational impacts the evolution of grid demand. More specifically, the addition of

new generating capacity impacts grid reliability and electricity price, which in turn affects the

evolution of grid demand through customer choice. As the aim of power planners is to meet

growing demand at minimum cost, understanding and considering the endogenous evolution of

grid demand is critical. Chapter 5 will demonstrate capacity expansion planning assuming

endogenous demand.

4.2.1.1 The Effect of Backlog on Customer Choice & Grid Demand

In this section, I demonstrate how grid backlog impacts the behavior of residential electricity

adopters. A backlog of unmet grid connections arises when the number of desired grid

connections exceeds the capacity of the utility company to make the connections. This backlog

lowers consumer expectations of the availability of the grid and also lowers the attractiveness of

a grid connection (Steel 2008).

In order to demonstrate the effect of backlog on customer choice, I impose an external limit on

the number of grid connections that can be made by the utility each year. In year one, 80,000

grid connections can be made. The connection limit increases each year such that, by year

twenty, 460,000 connections can be made. I assume that grid electricity prices vary without

regulatory delay. Finally, I consider the "Delayed" expansion strategy as model input. Under

this expansion strategy, 600MW of hydro and 900MW of thermal capacity is added in year 11

(Table 4-2).

Figure 4-14 depicts the fraction of residential electricity adopters requesting a grid connection

along with grid reliability, grid electricity price and the perceived backlog ratio (i.e. the backlog

ratio smoothed and delayed). Table 4-3 describes the dynamics depicted in this figure. I divide

the time horizon of the model into seven intervals to describe how grid reliability, grid price and

the perceived grid backlog ratio vary. Further, I describe the net impact on residential customer

choice.
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Figure 4-14: Simulation model behavior under the "Delayed" expansion strategy. The fraction of residential adopters requesting a grid connection is

impacted by the perceived backlog ratio, grid reliability, and grid electricity price.
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Table 4.3: Qualitative description of

connection, is largely impacted by the

the trends observed in Figure 4-14. Residential choice, i.e. the fraction of electricity adopters requesting a grid

backlog ratio as well as grid reliability and electricity price.

Along with reliability and grid prices, the perceived backlog ratio largely impacts customer choice. The backlog ratio, defined as the fraction of

desired grid connections to actual connections made, is perceived with a small delay and weighed along with reliability, electricity price, quality and

capital costs by the consumer in the residential decision model (described Section 3.1).

In years one to three, decreasing reliability, increasing electricity price and a sharply increasing backlog ratio lowers the attractiveness of the grid; as

a result, the fraction of electricity adopters requesting a grid connection declines. During years three through six, declining reliability and increasing

electricity price reduces grid attractiveness even further; however, the perceived backlog ratio sharply declines, improving the attractiveness of the

grid. As a result, the fraction of residential adopters requesting a grid connection increases. In the period that follows (years six through eight), the

perceived backlog ratio continues to decline, making the grid attractive. However, grid reliability falls below 0.9 and grid price rises above 90/kWh.

The net impact on customer choice is that the fraction of residential adopters requesting a grid connection remains relatively constant over the three
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year period. These same trends in reliability, electricity price, and perceived backlog ratio

persist and, from year eight through year ten, the fraction of adopters requesting grid power

declines.

In year eleven, new generating capacity comes online. As a result, electricity prices decline and

grid reliability sharply increases. At this point, the perceived backlog ratio has declined such that

the number of desired grid connections is only twice as large (as opposed to ten times as large) as

the capacity of utility to connect new customers. Therefore, the grid becomes more attractive

and the fraction of electricity adopters requesting a grid connection rises dramatically between

years eleven and twelve. From years twelve to fourteen, grid price remains relatively constant

and so does reliability. As electricity adopters increasingly request grid connections, however,

the perceived backlog ratio gradually rises. This small increase in the backlog ratio is not large

enough to deter customers from requesting a grid connection. Therefore, the fraction of adopters

requesting grid power increases.

Years fourteen to seventeen depict relatively constant grid reliability and a gradual increase in

electricity price. During this same period, the perceived backlog ratio declines and, as a result,

the fraction of electricity adopters requesting the grid gradually increases. Finally, in years

seventeen through twenty, perceived backlog ratio continues to decline but the decrease in grid

reliability and increase in electricity price makes the grid unattractive. Therefore, the fraction of

electricity adopters that request a grid connection declines.

Overall, an increase in electricity prices, a decrease in grid reliability, or an increase in perceived

backlog ratio lowers the attractiveness of the grid as an electricity supply option. Each factor

(reliability, price, and backlog ratio) provides utility to a consumer, and attractiveness is the sum

of the utility afforded by all factors.

Unlike residential consumers, industrial consumer choice is not impacted by the backlog ratio.

As residential grid connections are limited, however, the growth in residential grid demand is

also limited. The grid is less congested so reliability is higher than what is observed when there

is no limit on grid connections (Figure 4-15). As a result, the fraction of industrial demand

served by the grid is also higher than what was observed when there is no limit on residential

grid connections (Figure 4-16).
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Figure 4-15: Comparison of grid reliability with and without an external limit on the number of

grid connections made per year. When there is no limit on grid connections, more electricity

adopters connect to the grid, causing an increase in grid demand. As a result, reliability is lower.

"Delayed" expansion is applied.

Figure 4-16: Comparison of the fraction of industrial demand served by the grid with and without

an external limit on the number of grid connections made per year. When there is a limit on

residential grid connections, grid reliability is higher. This causes the grid to be more attractive to

industrial customers. "Delayed" expansion is applied.
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Figure 4-17 depicts aggregate grid demand with and without a grid connection limit. The two

cases show similar levels of demand when, in the case of no connection limit, reliability

deteriorates such that residential electricity adopters and industrial consumers increasingly

choose off-grid supply options. Overall, however, when there is a constraint on grid

connections, demand is less than what is observed when there is no limit on residential

connections.

Figure 4-17: Comparison of aggregate grid demand with and without an external limit on the

number of grid connections made per year. When there is no limit on residential grid connections,

grid demand grows larger than what is observed when there is a limit. "Delayed" expansion is

applied.

4.2.2 The Impact of Various Pricing Policies on Customer Choice

While the simulation model was developed for the capacity expansion process assuming

endogenous demand (later described in Chapter 5), the simulation model is also to accept as

input a single pricing policy. As described in Section 3.4, prices can: (i) vary to cover

production and annualized capacity costs (ii) vary according to (i) but with a pre-specified

regulatory delay or (iii) be fixed over the horizon of the model. In order to illustrate how such

policies impact customer choice, the following four cases were simulated:
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e Varying: prices vary without delay

* Delayed: prices vary with a 5-year regulatory delay

" Fixed Low: prices are fixed at 40/kWh

e Fixed High: prices are fixed at 12$/kWh

In each case, there is no external limit on grid connections, and the following generating capacity

expansion strategy is applied: in year 1, 1500MW of thermal generating capacity and 600MW of

hydro capacity will become operational, and 1100MW of thermal capacity and 150MW of hydro

capacity is added in year 11. This expansion strategy maintains a level of reliability that is

relatively close to one over the duration of the simulation so that the impact of price on customer

choice is more apparent.

The fraction of residential adopters selecting grid power, depicted in Figure 4-18, is highest

when prices are fixed to a low value, and the fraction is lowest in when prices are fixed to a

relatively high level. Under both the "Varying" and "Delayed" pricing policies, there is a

marginal decrease in the fraction of residential adopters requesting a grid connection as a result

of the increase in electricity price occurring at the start of the horizon, and the fraction decreases

more significantly when electricity price increases in year eleven under the "Varying" policy and

in year 16 under the "Delayed" policy. As expected, the dynamics observed under the

"Delayed" policy mimic those observed when prices vary but with a five-year delay.

Figure 4-18 also depicts the fraction of industrial demand served by the grid, and it demonstrates

that residential adopters are more sensitive to variation in price than industrial consumers. The

fraction of industrial demand served by grid power demonstrates little variation between pricing

policies because industrial consumers are more sensitive to reliability than to electricity prices.

Therefore, the fraction of industrial demand served by grid power approaches one in all cases as

reliability is nearly constant at one.
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Figure 4-18: Comparison of simulation output under four pricing policies. The impact of grid electricity price is clearly evident in the fraction of

residential electricity adopters selecting grid power; however industrial consumers are less sensitive to price changes.
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4.3 Sensitivity Analysis: System Response to Variation in Choice Parameters

As described in Section 4.1, the values of the "choice parameters" of the multinomial logit

function are estimates. These parameters dictate how consumer choice varies with reliability,

electricity price, capital cost, and, in the case of residential consumers, backlog and quality of

supply. I perform a one-factor-at-a-time (OFAT) analysis, varying each parameter such that it

assumes three levels corresponding to low, medium and high sensitivity (see Table 4-4). Here, I

present the highlights of the analysis to demonstrate how variation in these parameters impacts

customer choice (i.e. the fraction of residential electricity adopters that select grid power and the

fraction of industrial demand served by the grid).

In all cases analyzed, prices vary without regulatory delay, and new generating capacity comes

online as follows: in year one, 1500MW of thermal capacity and 600MW of hydro capacity

becomes operational, while 1100MW of thermal capacity and 150MW of hydro capacity comes

online in year eleven. Reliability remains relatively close to one over time, and grid electricity

price rises from approximately 10 to 12 0/kWh when new generating capacity becomes

operational in year eleven.

Parameter Varied Low Medium High
Industrial Sensitivity to Reliability 15 30 45
Industrial Sensitivity to Electricity Price -2.5 -5 -10
Industrial Sensitivity to Capital Cost -2.5 -5 -7.5
Residential Sensitivity to Reliability 15 30 45
Residential Sensitivity to Unit Price -15 -30 -45
Residential Sensitivity to Capital Cost -1 -5 -9
Residential Sensitivity to Quality 10 20 30
Residential Sensitivity to Backlog -0.5 -1 -5

Table 4.4: Cases explored in OFAT analysis 26 . Bold entries are Base Case Parameter Values

26 During the analysis of a single parameter, all other choice parameters assume Base Case Parameter Values.

88



4.3.1 Grid Reliability, Electricity Price & Backlog Ratio

As consumers become more sensitive to reliability, electricity price, or backlog ratio, consumer

reaction to changes in these variables becomes more evident. For example, consider the cases in

which I vary the sensitivity of consumer choice to electricity price. When consumers are

relatively insensitive to grid electricity price, the fraction of electricity adopters choosing grid

power and the fraction of industrial demand served by the grid remains fairly constant and close

to one. As consumers become more sensitive to price, however, the fraction choosing grid

power is lower and variation due to changing electricity prices becomes visible (See Figures 4-19

and 4-20).

Figure 4-19: Fraction of industrial demand served by the grid resulting from variation in industrial

sensitivity to unit price.
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Figure 4-20: Fraction of residential electricity adopters selecting grid power resulting from

variation in residential sensitivity to unit price.

4.3.2 Capital Costs

Over the horizon of the model, I assume that it is cheaper for industrial consumers to acquire a

power connection from the grid than acquiring connections to off-grid supply options. As a

result, when industrial consumers are most sensitive to capital costs, the grid appears most

attractive. When industrial consumers are less sensitive to capital costs, the fraction of industrial

demand served by the grid is lower and reaction to changes in grid electricity price is evident.
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Figure 4-21: Fraction of industrial

sensitivity to capital costs.

demand served by the grid resulting from variation in industrial

On the other hand, when residential consumers become increasingly more sensitive to capital

costs, the new electricity adopters will increasingly select off-grid supply options as I assume

that it is more expensive for these customers to connect to the national grid. If residential

consumers are less sensitive to capital costs, the fraction of electricity adopters selecting grid

power remains closer to one.
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Figure 4-22: Fraction of residential electricity adopters selecting grid power resulting from

variation in residential sensitivity to capital costs.
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4.3.3 Quality

As found in the ethnographic work of Steel (2008), the quality of electricity supply impacts

residential choice. Steel found that residents perceived the quality of grid power to be superior

to that of off-grid supply options, even if the grid was unreliable. The idea of "quality" reflects

the preference for grid-based power as the "modem" electricity source (Steel 2008).

Accordingly, the grid is assumed to have the highest quality over the horizon of the model.

Figure 4-23 depicts the fraction of residential adopters requesting a grid connection. When

residents are moderately sensitive to quality, the fraction of adopters selecting grid power is

close to one, slightly declining in year 11 when the price of grid power increases. When

electricity adopters are less sensitive to quality, the share of residential electricity adopters

selecting the grid is significantly lower, dropping dramatically when the price of grid power

increases. When adopters are more sensitive to quality, however, the fraction selecting the grid

remains constant at one.

Fraction of Residential Adopters
Selecting the Grid

1.0 - - - - - - - - --

0.9 - *-- e

E 0.8

0 0.7

I 0.6

0.5 -.

0.4
0 5 10 15 20

Year
- Low - - - Medium - High

Figure 4-23: Fraction of residential electricity adopters selecting grid power resulting from

variation in residential sensitivity to quality.
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Figure 4-24: Residential grid customers under variation in residential sensitivity to quality.

Relaxing the assumption that the grid provides the best quality would result in a power system

with significantly fewer residential consumers connected to the national grid (see Figure 4-24).

4.4 Simulation Model Limitations & Future Expansions

Varying the capacity expansion strategies and pricing policies as well as performing a sensitivity

analysis on uncertain model parameters illustrate the major power system feedbacks present in

the simulation model. Residential demand is a function of the number of grid customers, and the

change in the number of grid customers is a function of electricity price, capital costs, the

backlog of customers awaiting connection, the quality of supply, and the reliability of supply.

Similarly for industrial consumers, the fraction of industrial demand that is supplied by the

national grid is a function of electricity prices, capital costs and reliability. As a result, the

addition of new generating capacity largely impacts grid demand over time. Ultimately, grid

demand is endogenous to the model, evolving over time based on the relationship between

customer choice and power grid performance.

While the simulation model is effective at capturing detailed grid operation and endogenous

demand, a number of simplifications have been made. As in Steel (2008), the quality of all
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electricity supply options is assumed to remain constant over the time horizon of the model (i.e.

residential consumers will always perceive the grid to be the supply option with the best quality);

a grid connection is assumed to be cheaper than off-grid supply connections for industrial

consumers; and, for residential consumers, a grid connection is assumed to more expensive than

off-grid supply options. Finally, economic development and GDP growth are exogenous to the

model, and the percent increase in electricity demand resulting from a percent increase in GDP is

also assumed constant.

Additional simplifications were made to keep the model manageable. These simplifications,

however, may limit the accuracy of power system representation. For example, the simulation

model neglects the location of demand, urbanization and hydro resource depletion. These are

important features as the depletion of hydro resources will drive up the costs of hydro power, the

changing location of demand throughout the network (resulting from urbanization) will impact

required generating capacity. The model also assumes that residential customers do not switch

from grid to off-grid once connected but, in the recent power crisis in Tanzania, this was found

to be a false assumption. Finally, an abundance of off-grid supply options is assumed; however,

the supply of affordable solar home systems, for example, may be limited27 in this context.

Adding such features to the simulation model would better capture the realities of the local

context.

Finally, several assumptions and modeling choices should be further explored in the future.

First, uncertainty in numerous parameters is not captured. These include the volatility of foreign

exchange rates and fuel prices (impacting both on-grid and off-grid production costs), the

variability in hydro production each year, and the variability in demand between individual

households. Second, there is no link between power company cash flow and their ability to

connect new grid customers. In power systems in which electricity prices are not set to cover

capacity and production costs, debt accumulates and impacts the ability of the utility to connect

new customers. Adding this feedback would limit the increase in demand resulting from

residential customers connecting to the grid.

27 During field research in Tanzania in 2010, one energy service provider comments on solar suppliers, asserting that
"There aren't that many companies involved in installation or distribution... [and] it's hard to find reliable
technicians."
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A third assumption to be analyzed in the future is that residential and industrial consumers act as

homogenous groups. Residential consumers are indeed represented separately and distinctly

from industrial consumers; however, within each group there is a single decision-maker.

Literature suggests that demand be further disaggregated based on location and income. A

resident's location to the grid indicates the price of a grid connection in Tanzania and many other

developing countries, and, as demonstrated in Parshall et al (2009), recent research efforts have

been aimed at incorporating GPS data into analyses for power planning. Utilizing this

information in an agent-based expansion of the simulation model is a logical next step in future

research. Finally, as described in Sections 4.1 and 4.3, many model parameters are estimates. Of

great importance are the consumer choice parameters. An extensive survey to assess consumer

utility and sensitivity to various factors would be a huge contribution to capacity expansion

planning, electrification planning and more broadly energy use in developing countries.

The aim of this research is to determine if, how and why incorporating endogenous demand into

capacity expansion planning identifies a strategy that differs from the strategy suggested by a

more conventional approach. While the limitations presented above indeed constrain the scope

and detail of the model, the purpose of the simulation model is to capture endogenous demand

and be a descriptive model of a power system similar to that of Tanzania. The simulation model

indeed incorporates the feedbacks between the technical grid and consumers, and endogenously

determines the evolution of grid demand. In the next chapter, this simulation model will be used

to inform capacity expansion planning.
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Chapter 5 Comparing Capacity Expansion Approaches: Endogenous

versus Exogenous Demand

Power systems in developing countries are frequently characterized by high costs and low

reliability. The majority of residents in this context lack access to modern energy sources, and

technology adoption is a critical component of electricity demand growth over time. The

growing demand of customers already connected to the grid must be met along with the demand

generated by new connections. However, the number of new grid connections realized is

determined by the performance of the system, which impacts consumers through price and

reliability. Traditional generation expansion models do not represent demand endogenously.

They do not capture the relationship between the growing number of grid customers and

electricity demand and may provide misleading results when used to inform planning. In this

chapter, I address the first research question posed at the start of the thesis:

Does it Matter? Does incorporating endogenous demand into planning result in a

different optimal capacity expansion strategy?

To answer this research question, I compare two alternative capacity expansion planning

approaches: the first approach assumes endogenous demand and the second approach assumes

exogenous demand. I begin by explicitly defining the capacity expansion decision problem, and

move on to describe the first planning approach. More specifically, I describe how the

simulation model (described in Chapters 3 and 4) is used to inform expansion planning. Next, I

describe the traditional formulation, assuming exogenous demand, and then compare the

strategic plans resulting from the two approaches.

We compare the strategies in two ways. First, as the goal of the central planner in this context is

to meet growing demand at minimum costs, we compare the total costs of supply and total

generating capacity added to the system under each expansion plan. Next, we compare how the

strategies impact demand for grid connections and the level of grid demand not served. In order

to do so, I impose the two expansion strategies on the simulation model described in Chapter 3,

and describe the evolution of grid reliability, electricity price, non-served grid demand, and

96



discounted operational and capacity costs. Analysis of the system response will clarify the

differences in expansion strategies that arise between the two methods.

I present an overview of the major differences arising in the power system under the two

expansion strategies and conclude with a discussion on the fundamental differences between

generation planning assuming endogenous demand and planning that assumes exogenous

demand.

5.1 The Decision Problem: Generation Expansion

In this thesis, the role of the centralized planner is to answer the question:

When and how much new generating capacity should come on line over the next

twenty years to meet the growing demand for grid power?

The power system consists of both hydro and thermal based generation. The 2009 Power System

Mater Plan presents an extensive list of candidate hydro and thermal generators to be built to

meet growing demand. However, a subset of the PSMP's list of options will be considered in

this thesis. Table 5-1 presents the existing and candidate generation options assumed here.

More specifically, in this simplified example the planner must decide how many coal and gas

units will come online in years one (2009) and eleven (2019) of the planning horizon. Assuming

a growth in grid demand of 7%28 per annum, the objective of the planner is to select an

expansion strategy that minimizes the total discounted 2 9 costs of supply, including variable

production costs, the annualized costs of generating capacity and penalties for non-served grid

demand. For this two-stage deterministic planning problem, up to four units of each plant

type can become operational over the twenty-year horizon. This equates to 225 possible

expansion strategies.

In all cases presented in this chapter, it is assumed that the three hydro units have been

previously approved for installation; Ruhudji and Ikondo will come online in year one, while

28 Historical data used during parameter estimation along with Mwasumbi and Tzoneva (2007) indicate 7% growth
in grid demand each year.
29 A 10% discount rate is assumed in the analyses of this chapter.
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Kihansi_2 will become operational in year eleven. Additionally, there are no limits to the ability

of the electric utility to connect new grid customers.

Plant Size/Unit
Plant Name Units

Type [MW]

Songas Gas 1 185

Diesel Oil 1 5

Ubungzo Gas 1 70

Kihansi Hydro 1 75

Kidatu Hydro 1 180

Hale Hydro 1 5

Nvumba na Munau Hydro 1 3.5

Mtera Hydro 1 66

Pangani Falls Hydro 1 20

Coal Coal n 200

CCGT CCGT n 300

Kihansi 2 Hydro 1 150

Ruhudii Hydro 1 300

kondo Hydro 1 300

Table 5.1: Existing and candidate (italicized) generators in the power system. Information adapted

from (Tanesco 2009). Please see APPENDIX for characteristics of each plant.

5.2 Capacity Expansion with Endogenous Demand

As demonstrated in Chapter 4, the simulation model described in Chapter 3 takes as input a

capacity expansion strategy and calculates the total discounted costs of supply over the twenty

year time horizon. The expansion strategy indicates when and how many units of each plant

type will become operational. In order to use this simulation model to inform planning, I use an

exhaustive search optimization method, systematically enumerating all possible candidate
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strategies. This method then identifies the expansion strategy that minimizes the total costs of

supply as the optimal solution.

For the decision problem described in Section 5.1, a single expansion strategy identifies the

number of coal and gas units that will come online in years one and eleven of the planning

horizon. Given a single expansion strategy, the simulation model30 generates the following time-

series data:

vProdCy Production costs
vCommitCy Commitment costs
vNSECy Penalties for non-served energy
vACC, Annualized capacity costs

where y ranges from year 1 to 20 and each of the above variables is defined as described in

Chapter 3 for a single year.

The objective of this model is to minimize the total costs of supply, TCS. As described in

Section 5.1, total cost of supply includes annualized capacity costs, variable electricity

production costs, and the penalties incurred for non-served grid demand (also called "non-served

energy").

Min {TCS} - -[23]

where
20

TCS = pDiscounty x {vProdC, +vNSEC, + vCommitC, + vACCyI - -[24]
y=1

and

1
pDiscounty = (1 + dr)Y - -[25]

The components of TCS, the total cost of supply, are defined for each year by equations [12] to

[15] in Chapter 3, but are repeated here for ease of understanding:

vProdCy = pDurationy,sn -pVarCost, -vProducty,sn,g - -[26]
p,s,n,gq

30 The parameter values assumed for the simulation model are set to those determined in Section 4.1

99



vNSEC, = pPNSCost -vPNSy,p,s + pDurations,,, - pENSCost -vENSy,p,s,n -- [27]
p,s p,s,n

vCommitC, = pDurationp,,, -pNoLoadCostt - vCommity,,,s, -- [28]
p,s,nht

ACC, = (pAnCapg + pFixedOM) -pInstalled - -[29]

g

See APPENDIX for pseudo code of planning algorithm.

5.3 Capacity Expansion with Exogenous Demand

In order to compare capacity expansion assuming exogenous demand to the planning procedure

(described in Section 5.2) that assumes endogenous demand, I develop a traditional deterministic

capacity expansion model. The medium-term operations model described in Chapter 3 is the

basis of this capacity expansion formulation. The model minimizes total discounted costs of

supply (equations [23] to [29]) while satisfying demand balance and production constraints each

year of the model horizon. It takes as input the grid demand profile of both residential and

industrial consumers at the start of the planning horizon, and it also takes as input the forecasted

increment in demand each year31. The model then determines when and how much new

generating capacity should become operational as well as unit commitment and the production of

each generator during every period, day type, and load level of each year.

While block-wise unit commitment is typically not incorporated in long-term capacity expansion

models, it was imperative to capture this feature in this capacity expansion model. Unit

commitment is included in the medium-term operations model (described in Section 3.3) and in

generation expansion with endogenous demand. Literature suggests that including commitment

(i.e., minimum operating constraints for thermal units) in planning can lead to an optimal

expansion strategy that differs from the strategy identified when unit commitment is not included

(Rosekrans et al 1999). Therefore, this exogenous capacity expansion model is formulated to

31 The traditional planning approach mimics the process by which strategic planning is performed; however, a long-
term power system planner would, in reality, revise demand predictions and revise the expansion plan after five or
ten years have passed and true demand growth is observed. This "learning" is not incorporated into the traditional
approach. Therefore, the approach assumes a single demand projection for a complete twenty years.
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include unit commitment (just as the approach assuming endogenous demand) to ensure a

common basis for comparison. See APPENDIX for the detailed formulation of the capacity

expansion model that assumes exogenous demand.

5.4 Comparing Expansion Strategies

5.4.1 Total Costs of Supply & Generation Capacity Added to the Grid

The total cost of supply (TCS), the objective value to be minimized in both planning approaches,

is a metric defined as the sum of annualized capacity costs, variable production costs, and

penalties imposed for non-served grid demand. With a total cost of 1064.003 million USD, the

strategy identified when using the conventional planning approach (the "exogenous strategy")

suggests adding a total of 800MW of generating capacity to the grid, in addition to the hydro

capacity (750MW) scheduled to come on line. On the other hand, the strategy identified using

the planning approach developed in this thesis (the "endogenous strategy") suggests adding

2000MW to the grid in addition to the hydro capacity (750MW) scheduled to come on line. This

results in a total cost of 3928.772 million USD.

Generating Capacity Added to System Under
Two Expansion Strategies
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Figure 5-1: Total generating capacity added to the grid under the two expansion strategies.

More specifically, the exogenous strategy adds no new thermal capacity in year one and

schedules 200MW of coal and 600MW of CCGT capacity to become operational in year eleven,
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while the endogenous strategy schedules 1200MW of CCGT to come on line in year one and

800MW of coal to come online in year eleven. Under both strategies, Ruhudji and Ikondo

hydro plants (totaling 600MW) become operational in year one and Kihansi_2 (150MW)

becomes operational in year eleven. There is a significant difference in the total generating

capacity added to the system under the two strategies (see Figure 5-1). Understanding why this

difference arises requires a detailed review of the evolution of the power system under both

strategies.

5.4.2 Power System Development under the "Endogenous" & "Exogenous" Expansion

Strategies

The model described in Chapter 3 simulates twenty years of electric power system operation

given a single capacity expansion strategy. Because the model captures customer choice and

detailed power grid operations, it is assumed that this model provides a more realistic description

of power system operation. Therefore, the two expansion strategies are imposed on the

simulation model in order to compare how the two proposed expansion strategies impact power

system development (i.e. the evolution of grid reliability, grid price, non-served grid demand and

the total costs. of supply).

Figure 5-2: Output assessed to compare the two planning approaches
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32"Endo" refers to results from the planning process that assumes endogenous demand . When

the strategy identified by the traditional capacity expansion model is imposed on (i.e., used as

input to) the simulation model, we obtain the output labeled "exo realized". In this case, new

capacity comes online as prescribed by the exogenous strategy but demand endogenously

evolves. The figure also depicts "exo anticipated" and refers to the output of the traditional

capacity expansion model, which assumes that demand behaves exactly as anticipated for the

twenty year horizon.

Figure 5-3 compares simulation results. For this particular case, electricity prices are highest

under the endogenous strategy because more generating capacity becomes operational and higher

capital costs are incurred. Under the exogenous strategy, grid reliability is much lower than

expected based on the output of the traditional capacity expansion model (which assumes

exogenous demand). Similarly, non-served grid demand is much larger than anticipated. Such

levels of non-served energy accrue penalties that result in a much larger cost of supply. Under

the exogenous strategy, the actual total costs of supply (over the twenty year horizon) sum to

9275 million USD (versus the anticipated value of 1064 million USD).

Why is there such a significant difference in the output of the conventional model versus what is

observed when the exogenous strategy is imposed on the simulation model? The conventional

model assumes that demand growth will be 7% per annum, but in fact demand is realized

to be an average of 8.15% per annum when the exogenous strategy is imposed on the

simulation model. Figure 5-4 depicts the demand realized along with the anticipated grid

demand.

32 As the planning algorithm developed in this thesis uses the simulation model to identify the optimal expansion
plan, the values realized when imposing the endogenous strategy on the model simulation are equal to what is
expected based on the output of this new planning algorithm.
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Figure 5-3: Comparison of output under strategies identified by two planning approaches. (i) Grid Reliability (ii) Per unit price of grid power (iii) Non-
served grid demand and (iv) Total discounted costs of supply. Under the exogenous strategy, realized values are different than anticipated. The exogenous
strategy also results in significantly more non-served grid demand. As a result the total discounted costs of supply are much higher than that of the endogenous
strategy.
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Figure 5-4: Actual versus assumed demand. The actual demand realized is different than what was

assumed using the conventional expansion model.

Why the unexpected increase in demand under the exogenous strategy? As depicted in Figure 5-

3 (i), a relatively high level of grid reliability (> 92%) in the first four years encourages

residential electricity adopters to request a grid connection. The grid provides the best quality of

power, and electricity price does not increase during this period. In fact, the introduction of new

hydro units in year one results in a decrease in grid electricity prices (see Figure 5-3 (ii)).

Additionally, residential demand is no longer limited by the ability of the electric utility to

connect33 new grid customers. Over the planning horizon, I assume that there is no limit on the

number of grid connections made each year and, therefore, there is no backlog of customers

awaiting a connection. As a result, many new customers connect to the grid at the start of the

horizon.

The fraction of residential adopters selecting grid power is depicted in Figure 5-5. As demand

begins to outgrow installed generating capacity, grid reliability declines. By year 5, reliability

declines below 90% and, through year ten, residential electricity adopters increasingly select off-

grid supply options. With the addition of new generating capacity in year eleven, electricity

prices increase and a sharp decrease in the fraction of residential adopters selecting grid power is

3 In the years leading up to the start of the panning horizon, I assume that the number of grid connections were
limited. For example, in 2007 and 2008, Tanesco was only able to make 40,000 and 60,000 grid connections,
respectively. This data was incorporated during the definition of simulation model parameters (Section 4.1).
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observed. By year twelve, however, electricity price gradually decreases and reliability has

improved significantly. As a result, there is an increase in the fraction of adopters requesting a

grid connection. Beyond year twelve, there is a gradual decrease in this fraction as reliability

deteriorates further. Overall, however, at least 80% of new residential electricity adopters

connect to the grid each year of the planning horizon. Similarly, at least 96% of industrial grid

demand is served by the grid (Figure 5-6). Although demand eventually outgrows the

installed generating capacity, the exogenous strategy adds just enough capacity so that the

grid remains relatively attractive. As a result, many electricity adopters select grid power (7.2

million homes are connected) and demand exceeds the level of demand that was assumed in the

conventional planning model and expected based on historical data.

Unlike the exogenous strategy, the endogenous strategy introduces additional generating

capacity early in the planning horizon to meet growing demand. Although the additional

generating capacity added to the grid leads to larger capacity costs (and higher electricity prices

to consumers), this strategy avoids large penalties resulting from non-served energy. Therefore,

when the two strategies are imposed on the simulation model, the endogenous strategy

outperforms the exogenous strategy in minimizing the total costs of supply (see Figure 5-3 (iv)).

Figure 5-5: Fraction of residential adopters selecting grid power under the "exogenous" expansion

strategy. The decreases result from deteriorating grid reliability and an increase in grid price in

year eleven. The increase in year twelve results from the introduction of new generating capacity
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and the corresponding perceived increase in grid reliability. Overall, the grid remains attractive to

customers.
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Figure 5-6: Fraction of industrial grid demand served by the grid under the "exogenous" expansion

strategy. The decreases result from deteriorating grid reliability. When this occurs, industrial

consumers fire up their diesel generators or other off-grid supply options for reliable electricity

supply. The increase in year twelve results from the introduction of new generating capacity and

the corresponding increase in grid reliability. Overall, the grid remains attractive to industrial

consumers.

5.4.3 Summary: Exogenous Strategy versus Endogenous Strategy

Table 5-2 compares the exogenous strategy against the endogenous strategy. The output of the

conventional planning model would suggest that the exogenous strategy outperforms the

endogenous strategy in terms of costs and reliability. However, when the strategies are imposed

on the more realistic power system simulation model, we find that the power system, under the

endogenous strategy, meets a larger fraction of grid demand relative to what is realized under the

exogenous strategy.
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New Total Annual Variable Total
Capacity Installed Capital Demand Production Average Costs of
Installed Capacity Costs Growth Costs Grid Supply

(MW) (MW) (M$) (%/year) (M$) Reliability (M$)
Exogenous (Anticipated) 1550 2159.5 805 7 237 1.0 1064

Exogenous (Realized) 1550 2159.5 805 8.15 604 0.90 9275
Endogenous (Realized) 2750 3359.5 1623 8.22 1267 0.98 3929

Table 5.2: Summary of power system operation under the two expansion strategies. All costs are

discounted using a discount rate of 10%. The Total Costs of Supply, the objective value to be

minimized during planning, includes capacity and production costs as well as penalties resulting

from non-served grid demand.

The differences in the expansion strategies arise, in this case, due to the fact that the conventional

model assumes a level of demand growth that is much less than what is truly realized. As a

result, the conventional approach adds less generating capacity to the power system.

5.5 Discussion

This chapter set out to address the following research question posed at the beginning of the

thesis:

Does it Matter? Are the strategies generated when assuming endogenous demand growth

different than those generated using a more traditional approach, which assumes exogenous

demand? If so, how and why?

Accordingly, this chapter compared the strategy identified using the new planning approach that

assumes endogenous demand to the capacity expansion strategy identified by the conventional

approach. I find that the strategies differ dramatically, with the new approach recommending

significantly more generating capacity to come on line (and earlier in the planning horizon) to

meet growing demand.

The planning approach assuming endogenous demand is more holistic, representing consumer

choice and the evolution of grid customers as well as the detailed operation of the power grid.

Unlike the conventional method, this approach does not assume a single trajectory for demand

based on historical data; it instead assumes how consumers react to the performance of the power

system, signaled to them via electricity prices and grid reliability. Additionally, this approach
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captures changes in non-technical aspects of the system. For example, the external limit placed

on the number of grid connections made per year has a tremendous impact on the number of

residential electricity adopters that are connected to the grid. As this limit is relaxed, more

customers are encouraged and able to connect. Therefore, when the historical growth in demand

is not a good indicator of how demand will evolve in the future, as demonstrated in the case

presented in this chapter, the planning approach assuming endogenous demand is able to identify

an expansion strategy that truly meets the specified objective.

The comparison presented in Section 5.4 demonstrates that, for this particular case, grid demand

may evolve drastically different than expected, resulting in the selection of sub-optimal

expansion strategies when employing the conventional planning approach. In Chapter 6, I will

explore additional cases, repeating the exercise presented in Sections 5.3 and 5.4 to determine

whether or not the capacity expansion strategy identified by the approach assuming endogenous

demand again differs from that of the conventional approach.
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Chapter 6 A Review of Cases in which Incorporating Endogenous

Demand is Necessary for Planning

Chapter 5 demonstrated that, for a stylized case inspired by Tanzania, incorporating the

endogenous demand dynamics commonly present in developing countries is critical to

identifying optimal generation expansion strategies. In this chapter, I address the second

research question posed at the start of this thesis:

When Does it Matter? When or in what cases are the strategies generated when

assuming endogenous demand growth different than those generated using a more

traditional approach?

For the case presented in Chapter 5, the approach assuming exogenous demand underestimates

demand growth. As a result, the exogenous strategy adds less generating capacity and adds it

later in the planning horizon. This is because the traditional planning approach assumes a

trajectory of grid demand a priori. The endogenous model, on the other hand, assumes that

customers and potential customers respond to changes in the performance of the power system.

In this chapter, I perform sensitivity testing on two critical factors, the installed base of grid

customers at the start of the planning horizon and the improvement in reliability afforded through

capacity expansion, to determine when the endogenous demand approach generates an expansion

strategy similar to that of the exogenous demand approach. I conclude the chapter with a broader

discussion on the factors that unlock or suppress grid demand in the context of developing

countries, and the cases in which assuming endogenous demand during capacity expansion

planning is necessary.

6.1 Comparing Capacity Expansion Approaches: the Convergence of

Strategies?

In the case described in Chapter 5, the fraction of residential consumers connected to the grid at

the start of the planning horizon was 16% . Grid demand increased dramatically as new

3 Countrywide residential grid access was 10%; however, only 65% of the population is assumed to afford
electricity.
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generating capacity became operational and as the annual limit on residential grid connections

was relaxed.

In this section, I repeat the exercise presented in Chapter 5 in which I compare the expansion

strategy generated by the endogenous demand approach to that of the exogenous demand

approach. In this hypothetical case, however, the planning horizon is ten years and new

generating capacity becomes operational only in year one; more importantly, I assume that the

fraction of residential consumers connected to the grid at the start of the planning horizon is

55%.

6.1.1 Case Setup

For this case, I consider a hypothetical East African country that is similar to Tanzania in size

and population . I assume an external limit on the number of residential grid connections made

per year, starting at 60,000 in year one and gradually increasing over time. I simulate the

operation of the power system, where reliability is relatively constant at one (with the addition of

new generating capacity) and grid electricity price varies according to [20]. When the fraction of

households with a grid connection reaches 55%, I stop the simulation, recording all customer and

demand stocks as well as grid reliability, electricity price and the backlog ratio. The level of grid

demand is 6.7 TWh and the average growth in demand for both residential and industrial

consumers is 1%/annum and 5%/annum, respectively. I use this information as the starting

condition of the capacity expansion exercise.

As described in Chapter 5, the central planner must decide how much generating capacity should

be added to the system to meet growing demand, and it is assumed that there are no limits to the

ability of the electric utility to connect new grid customers over the planning horizon. In this

case, only gas units (400MW each) are considered and new generating capacity can come online

in year one of the ten year horizon. Both the traditional and the new approach developed in this

thesis are employed to identify optimal expansion plans.

3 Choice parameters assume Base Case Parameter Values presented in the APPENDIX.
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6.1.2 Exogenous versus Endogenous Expansion Strategies

The total cost of supply (TCS), the objective value to be minimized in both planning approaches,

is a metric defined as the sum of the annualized capacity costs, variable production costs, and

penalties imposed for non-served grid demand. With an objective value of 3244 million USD,

the strategy identified when using the conventional planning approach (the "exogenous

strategy") suggests adding a total of 2400MW of new generation to the grid. On the other hand,

the strategy identified using the endogenous demand approach (the "endogenous strategy")

suggests adding 1600MW of new generation to the grid for an objective value of 2730 million

USD. The difference between the two strategies in the total generating capacity added to the

system is 800MW (see Figure 6-1) and the total costs of supply differ by 514 million USD (16%

of maximum costs).

Generating Capacity (in MW) added
to the System

3000

2500

2000

1500

1000

500

0
Exogenous Strategy Endogenous Strategy

Figure 6-1: Total generating capacity added to the grid under the (a) "exogenous" and (b)

"endogenous" strategies. Initial electrification rate is 55%.

Table 6-1 compares the exogenous strategy against the endogenous strategy. In this case, the

endogenous strategy appears to outperform the exogenous strategy in terms of costs while

meeting the same fraction of grid demand. The conventional model assumes that aggregate

demand grows at 9.5% per year; however, when the exogenous strategy is imposed on the

simulation model, growth in grid demand is realized to be only 7.2%. Unlike the case described

in Chapter 5, demand grows less than expected and the exogenous strategy adds excess
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generating capacity to the system. The endogenous strategy incurs fewer costs as it adds less

generating capacity. If the central planner is more concerned with meeting growing demand, the

conventional approach would suffice in this case. If the central planner is more concerned with

keeping costs low, the approach assuming endogenous demand would be required to identify to

optimal expansion strategy.

New Total Annual Variable Total
Capacity Installed Capital Demand Production Average Costs of
Installed Capacity (M$) Growth Costs Reliabilit Supply

(MW) (MW) (%/year) (M$) (M$)

Exogenous (Anticipated) 2400 4209.5 1635 9.54 1433 0.998 3244

Exogenous (Realized) 2400 4209.5 1635 7.23 1294 0.999 3004

Endogenous (Realized) 1600 3409.5 1318 7.23 1287 0.998 2730

Table 6.1: Summary of power system operation under the two expansion strategies. All costs are

discounted using a discount rate of 10%. The Total Costs of Supply, the objective value to be

minimized during planning, includes capacity and production costs as well as penalties resulting

from non-served grid demand.

In the case inspired by Tanzania (presented in Chapter 5), the difference in generating capacity

added to the system was 1200MW and the capacity installed under the exogenous strategy did

not meet growing demand. In this case, however, the difference in generating capacity added to

the system is 800MW and the exogenous strategy adds excess generating capacity to the system.

Additionally, the optimal costs identified by the two approaches differed by 73% for the case

presented in Chapter 5 but differ by only 16% in this scenario. In the former case, the

households with electricity access at the start of the planning horizon is 16% while, in this case,

55% of homes are connected to the grid. With a larger installed base of grid customers, do the

two expansion strategies converge? In the next section, I will explore a range of initial

electrification rates to assess how the difference in capacity expansion strategies varies with the

initial fraction of the population connected to the grid.

6.2 Sensitivity on Initial Electrification Rate

In order to further explore the impact of the installed customer base on the difference in

expansion strategies, I repeat the procedure described in Section 6.1 for three additional cases: in
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the first case, the fraction of households with electricity (at the start of the planning horizon) is

33%; in the second case this value is 76% and, in the third case it is 96%. As a reminder, I

identify the cases by simulating the operation of the power system, where reliability is relatively

constant at one (with the addition of new generating capacity) and grid electricity price varies

according to [20]. When the fraction of households connected to the grid is 33%, 76% and 96%,

I record all customer and demand stocks as well as grid reliability, electricity price and the

backlog ratio, using this information as the starting point of the planning exercise. Figure 6-2

depicts the households connected to the grid over time during initial simulation; the initial

installed customer base of each case is indicated by a maroon square. Additionally, Table 6.2

provides the initial planning conditions for each case.
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Figure 6-2: Households connected to the grid over time observed during the initial simulation (used

to identify cases of sensitivity analysis).
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Initial Residential Industrial Residential Industrial Residential Off-grid
Electrification Grid Grid Demand Demand Grid Industrial

Rate Demand Demand Growth Growth Customers Demand
(%) (TWh) (TWh) (%/year) (%/year) (million (TWh)

households) (Th

16 1.39 2.06 7 7 0.72 0.079

33 2.35 2.66 9.51 5.47 1.72 0.013
55 3.49 2.99 12.22 5.19 3.08 0.007

75 4.83 3.35 13.29 4.99 4.57 0.005

96 9.64 5.25 7.17 4.6 7.82 0.011

Table 6.2: Initial levels used as input to capacity expansion planning exercise, Section 6.2

I then employ both the traditional ("exogenous") and new ("endogenous") planning approaches.

I quantify the difference in capacity expansion strategies generated by the exogenous and

endogenous approaches using the following metric:

b - a
AS = Max(a, b) - -[30]

where a is the total capacity installed under the exogenous strategy and b is the total capacity

installed under the endogenous strategy. I also quantify the difference between expected and

realized grid demand AD for each of the five cases by (1) using the mean grid demand growth

values presented in Table 6.2 and projecting forward ten years to determine expected demand

over the planning horizon and (2) using the demand realized under the endogenous strategy to

calculate the mean squared percent error between the anticipated grid demand DA and realized

grid demand DR as:

10 210 DA,y - DR 2 
[y1AD = -' 

- -[31
y=1 Ry

Figure 6-3 summarizes the results and demonstrates how the difference in capacity expansion

strategies, AS, varies with the fraction of residential households connected to the grid at the start

of the planning horizon. AS is positive when the endogenous strategy adds more generating

capacity, and negative when the exogenous strategy builds more generating capacity. The results

demonstrate that the approach assuming exogenous demand can under or overestimate grid
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demand growth over the course of the development of a country. For the cases analyzed here, the

exogenous strategy builds less generating capacity than the endogenous strategy until the

electrification rate at the start of the planning horizon reaches and exceeds 55%. Additionally,

the magnitude of AS decreases as the fraction of households connected to the grid at the start of

the planning horizon increases. Similarly, as demonstrated in Figure 6-4, the difference between

anticipated and realized grid demand under the endogenous strategy, AD, decreases as the

fraction of the population connected to the grid at the start of the planning horizon increases.

Difference in Expanion Strategies as a Function of the
Fraction of the Population Connected to the Grid
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Figure 6-3: The difference in the two expansion strategies as a function of the percent of the

population connected to the grid at the start of the ten-year planning horizon.

Although there is a noticeable difference between the strategies for all cases presented in this

sensitivity, the difference in anticipated and realized demand indeed converges to zero as the

percent of the population connected to the grid increases. As shown in Figure 6-5, the ratio of

demand resulting from new grid connections made during the planning horizon to total grid

demand, DNC:DT, decreases as the electrification rate at the start of the planning horizon

increases. Therefore, as the electrification rate increases, the less demand is a function of new

electricity adopters and the more it is a function of previously existing demand and its response

to price, reliability and GDP growth. This is largely intuitive; however, this reality is often

neglected when planning for developing countries with low electrification rates. In such cases,

not only does the planner have to consider the sensitivity of existing grid demand to price and

reliability; they must also consider the change in demand resulting from the large fraction of the
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population that does not initially have electricity but who may adopt the new technology and

connect to the grid.

Figure 6-4: The difference between anticipated and realized demand [31] as a function of the

fraction of the population connected to the grid at the start of the planning horizon.

Figure 6-5: DNC:DT as a function of the fraction of the population connected to the grid at the start

of the planning horizon.
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6.3 Sensitivity on Historical Grid Reliability

As demonstrated in the testing of the simulation model (described in Chapter 4), the fraction of

served to total grid demand, grid electricity price, or grid backlog ratio can unlock or suppress

industrial demand, and can encourage or discourage residential electricity adopters from

requesting a grid connection. Therefore, if demand is observed during a period of low reliability,

then power planners may incorrectly forecast demand, under-estimating the demand realized

once new generating capacity becomes operational. In this section, I demonstrate that, as the

improvement in reliability achieved through capacity expansion increases (i.e. as historical

reliability decreases), the difference between expected and realized grid demand increases.

6.3.1 Case Setup

In this analysis, I again consider a hypothetical East African country that is similar to Tanzania

in size and population. I assume an external limit on the number of residential grid connections

made per year, starting at 60,000 in year one and gradually increasing over time. 16% of

residential household are initially connected to the grid. I simulate the evolution of grid demand,

fixing reliability to five levels: 0.75, 0.8, 0.85, 0.9 and 0.95. I stop the simulation when 46% of

the population has access to the grid. Average demand growth (observed in the final ten years of

the simulation period) and the final level of grid demand are listed in Table 6.3 for each case.

Residential
Historical Residential Industrial Residential Industrial Grid Off-grid

Reliability Grid Grid Demand Demand Customers Industrial
"ReIB" Demand Demand Growth Growth (million Demand

(dmnl) (TWh) (TWh) (%/year) (%/year) households) (TWh)

0.75 4.04 1.45 8.95 0.34 3.00 2.39

0.8 4.05 2.80 8.98 3.33 3.02 1.04

0.85 4.05 3.55 8.98 4.36 3.02 0.29

0.9 4.05 3.77 8.98 4.63 3.02 0.07

0.95 4.05 3.82 8.98 4.69 3.02 0.02

Table 6.3: Initial levels used as input to capacity expansion planning exercise, Section 6.3
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Next, I determine how much generating capacity should be added to the system to meet growing

demand over the next ten years by employing the endogenous planning approach. Coal and gas

units are considered in the planning process and can come online in year one of the planning

horizon; the candidate hydro units presented in Table 5.1 come online in year one as well.

6.3.2 Anticipated versus Realized Grid Demand

I quantify the difference between expected and realized grid demand AD for each of the five

cases by (1) using the mean grid demand growth values presented in Table 6.3 and projecting

forward ten years to determine expected demand over the planning horizon and (2) using the

demand realized under the endogenous strategy to calculate the mean squared percent error

between the anticipated grid demand DA and realized grid demand DR according to [31]. I also

quantify the improvement in reliability achieved by capacity expansion as:

A R = RelA - ReIB - -[32]

where RelA is the average reliability over the ten year planning horizon 36 and RelB is the

historical reliability (listed in Table 6.3).

Figure 6-6: The difference between anticipated and realized

improvement in reliability afforded by capacity expansion [32].

demand [31] as a function of the

36 In all cases, the fraction of served to total grid demand over the planning horizon is approximately 1.0.
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Figure 6-6 depicts the results of the analysis. AD is shown to increase as the improvement in

reliability achieved by capacity expansion increases. An improvement in reliability makes the

grid attractive to potential electricity adopters and to those industrial consumers who had

previously switched to off-grid supply during the period of low reliability. Therefore, when new

capacity comes online to improve reliability, demand in fact grows larger than expected.

The fraction of industrial demand served by the grid over the planning horizon is depicted in

Figure 6-7 for each case. In year one, new capacity comes online, increasing grid reliability to

approximately one. As expected, the case in which historical reliability ("RelB") was 0.75 shows

a significant increase in the fraction of industrial demand served by grid over time, indicating

that industrial consumers are responding to the improvement in reliability by powering down

their off-grid supply sources.

Figure 6-7: Fraction of industrial demand served by the grid over the planning horizon for each

case (indicated by "RelB" column of Table 6.3)

6.4 Discussion

As demonstrated in Chapter 4 and throughout the existing literature, numerous factors impact the

evolution of grid demand within the context of developing countries. If these factors are not

considered when planning the expansion of generating capacity, the use of conventional planning
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models that assume exogenous demand can result in the implementation of sub-optimal

expansion strategies.

The analyses presented in this chapter focus on the difference between the strategy identified

using the endogenous demand approach developed in this thesis and the exogenous demand

approach, and explore how this difference varies with the fraction of the population connected to

the grid at the start of the planning horizon and the improvement in grid reliability resulting from

capacity expansion.

The results presented in this chapter do not exhaustively identify all cases in which incorporating

endogenous demand dynamics into capacity expansion exercises is required. Additionally, the

cases analyzes are hypothetical. Nevertheless, the results suggest that the difference in

expansion strategies increases as the fraction of the population connected to the grid decreases

and as the improvement in reliability resulting from capacity expansion increases. Intuitively,

these findings are logical. As the stock of potential residential grid customers decreases, demand

will increasingly become a function of population and GDP growth. When all residential homes

are connected to the grid, the impact of electricity adoption is minimal as only the new homes

resulting from population growth will be adopting electricity and selecting supply options.

Similarly, historical grid reliability should be considered when performing capacity expansion.

If the growth in demand is observed in a system in which the fraction of served to total grid

demand was 0.6, the growth in grid demand may very well be larger than what is suggested by

history when a significant amount of generating capacity is added to the system. The new

generating capacity improves grid reliability and makes the grid very attractive to residential

electricity adopters and industrial consumers who had most-likely switched to off-grid power

supply during the period of low reliability.

The simulation model testing presented in Chapter 4 also suggests that the pricing policy and the

ability of the utility to connect new grid customers will impact the difference observed between

planning approaches. For instance, in many developing countries, grid electricity tariffs are

subsidized so that it is more affordable for impoverished consumers to connect to the grid. If this

subsidy is lifted and consumers are forced to pay the true price of electricity, there may be a

decrease in industrial grid demand and residential electricity adopters will be discouraged from
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requesting a grid connection. The stock of grid customers may stop growing. Similarly, the

ability of the power company to connect new grid customers will impact the growth in

residential grid demand over time. The number of residential grid customers directly impacts the

load experienced on the grid, and the perception of a backlog of grid customers awaiting a grid

connection also discourages new electricity adopters from requesting a grid connection. If grid

demand is observed during a period in which the backlog ratio is high, then planners may under-

estimate the growth in demand when the utility increases the number of grid connections it can

complete each year.

In short, when the past is not likely to be a good predictor of the future, incorporating

endogenous demand dynamics into the generation planning process will be critical. This is

particularly true of developing countries where changes in infrastructure (in terms of price and

performance) can unlock a large potential demand for grid power stored in off-grid industrial

consumers and the large fraction of potential residential electricity adopters.
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Chapter 7 Conclusions and Future Research

7.1 Summary of Key Findings

In developing countries around the world, billions of people lack access to electricity. Extensive

efforts are aimed increasing access to power but also at expanding infrastructure and generating

capacity to meet growing power demand. The research presented in the previous six chapters

contributes to the existing literature on generation expansion planning in the context of

developing countries. Specifically, I have developed a novel approach to generation capacity

expansion that endogenously represents the evolution of grid demand as a function of customer

choice, which is influenced by reliability and electricity price as well as connection costs, the

quality of supply and the backlog of customers awaiting connection.

In Chapter 5, I demonstrated that the strategy generated from an endogenous demand approach

indeed differs from the strategy generated from a traditional exogenous demand approach. For

this particular case, the endogenous strategy adds more generating capacity and adds it earlier

than the exogenous strategy because the traditional approach underestimates growth in grid

demand. In Chapter 6, I demonstrated that the difference in expansion strategies decreases as the

fraction of the population connected to the grid at the start of the planning horizon increases.

The difference in expansion strategies was also found to decrease as the improvement in

reliability (afforded by the addition of new generating capacity) decreased. This confirms that

assuming endogenous demand during planning is important in countries with low grid access and

poor grid reliability; this work also suggests that it would be reasonable to assume exogenous

demand when planning in more developed countries, with higher rates of electrification and

higher levels of reliability in the current system as long as there are no huge changes in GDP

growth and the price of power. Of course, this research presents a proof of concept and each case

should be examined thoroughly to understand the contextual factors that impact the growth in

power demand.

The strategies generated when assuming endogenous demand growth differ from those generated

when using a more traditional expansion planning approach due to the fact that the traditional

approach assumes grid demand a priori while the new planning approach assumes how

123



consumers select electricity supply options and react to changes in the power system. While the

price elasticity of demand has indeed been incorporated into capacity expansion models in the

past (Rutz et al 1985), the approached developed in this thesis also captures the impacts of

changing reliability and supply switching on grid demand, and explicitly represents the adoption

of electricity and selection of supply options by the large stock of residential households without

power. In the context of developing countries, such consumer behavior and customer choice

have larger implications on aggregate grid demand than the marginal demand changes resulting

from price elasticity.

7.2 Research Contributions

This research has both academic and applied contributions. Building off of the work of Steel

(2008) and the extensive literature on generation capacity expansion presented in Chapter 2, I

built an integrated platform that simulates the detailed operation of the electric power grid as

well as endogenous demand dynamics (resulting from social process of electricity adoption and

customer choice) commonly found in developing countries. Then, using the simulation model to

inform planning, I demonstrated a novel approach to generation capacity expansion.

This work extends existing capacity expansion literature by employing a holistic approach to

planning that incorporates not only the impact of electricity prices on grid demand (which is

commonly found in generation expansion models) but also incorporates: electricity adoption

among residential consumers, the impact of grid reliability and connection costs on industrial

grid demand, and the impact of reliability, customer backlog, connection costs, and supply

quality on the change in residential grid demand. As suggested by Meier and Chatterjee (1987),

residential grid demand is formulated to depend on the number of households connected to the

grid. Additionally, this work contributes to existing engineering systems literature on decision-

making within large-scale socio-technical systems.

While the planning approach developed in this thesis was demonstrated on a system inspired by

the case of Tanzania, it was developed with the flexibility to be applied to other developing

countries. A country with a centralized power system and similar electricity adoption and

customer choice dynamics can be represented using the modeling platform developed in this

thesis. For example, the annual power system module can be replaced with the operational
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power system model of another country, and the supply options can be modified to mimic the

supply mix of the country of interest.

Additionally, this research developed a modular power system modeling framework that

integrates the social and technical aspects of the system, and can be used to represent power

systems around the world. For example, while 100% of the population in Spain has access to the

national grid, consumers are now faced with a different set of decisions. Should they use gas or

electric heating? Should they purchase gasoline or electric vehicles? In this context, customer

choice will also have a large impact on grid demand. One can imagine replacing the existing

"Electricity Adoption & Customer Choice" module of the simulation model with another model

capturing the decisions specific to this context.

Finally, this work demonstrates that incorporating such endogenous demand dynamics into the

planning process generates expansion strategies that differ from those identified using more

traditional planning approaches; and, more importantly, it demonstrates a case in which the

traditional model essentially failed at meeting growing grid demand at minimum costs. The key

findings of this research suggest that consumer behavior should be studied in greater detail and

incorporated into the expansion planning process to avoid the implementation of sub-optimal

strategies.

There are two main policy implications of this research. The first and most obvious implication

is that this work informs the process by which policy should be shaped in developing countries.

This research shows that the use of historical data and trends to inform policy decisions creates

false expectations of how systems such as the electric power system will develop in the future.

Even if more complex extrapolation methods are employed to create forecasts, the approach

assumes that the future is conditioned by the same factors that operated in the past (IEHIAS

2012); this may not be true and, if it is true, the state or level of the factors moving forward may

certainly change from past values. This idea was demonstrated in Chapter 6, as the exogenous

strategy at times over and underestimated growth in grid demand, and it was also demonstrated

in what has been termed the "NERC fan" (Figure 7-1). It is a figure depicting the North

American Electricity Reliability Council's ten-year forecasts of total US electricity demand. The

forecasts, simulated by Nelson and Peck (1985) using exponential extrapolation, were grossly
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overoptimistic for over a decade, from 1975 to 1990 (Sterman 2000). Nelson and Peck found

that formulating demand as a function of income and electricity price produced less optimistic

forecasts. Thus, in order to avoid making misinformed decisions, policy-makers must

incorporate into planning those factors that impact demand. It is, therefore, imperative for

decision-makers to invest in studies that characterize technology adoption and customer choice;

otherwise, resources will be misallocated, resulting in inadequate infrastructure development.
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Figure 7-1: Actual (1960-1982) and Projected (1874-1990) Total Sales of Electricity and Growth

Rates. Source: Nelson and Peck 1985

This work also demonstrates that policy-makers in developing countries have tremendous

opportunity to shape the development of electric power systems. Steel (2008) writes: "Africa

has a nascent electric power system. Instead of thinking of it as a backward or simplistic version

of an industrialized grid, we need to think of it as a complex system where the architecture is not

already determined.... Instead of determining what should have been done, or what needs to be

done now that problems have arisen, we are able to look at the possibility of what can be done."

The results of the analysis presented in Chapter 5 suggest that power planners in places like

Tanzania should build significantly more generating capacity and they should build it sooner to

meet growing demand. Most developing countries are budget-constrained and adding large

amounts of new generating capacity may not be feasible. However, this research also highlights

the opportunity for decentralized and distributed power generation. As demonstrated in Chapter
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4, numerous factors, including reliability, electricity price, connection costs, and the backlog of

customers awaiting a connection, impact consumer choice. Instead of thinking that the power

system must evolve centrally, a government concerned about increasing access to electricity as

well as having an efficiently operating power system may implement a strategy that provides

support to and partners with suppliers of decentralized power options so that they can innovate

and distribute their products, thereby improving the social welfare of those without access to the

grid. As was the case with the mobile phone industry, developing countries can do things

differently; they can diverge from the path taken by more industrialized countries and begin to

generate solutions and systems that best fit the needs of their countries.

7.3 Future Work

This research has developed a generation expansion approach that incorporates endogenous

demand. Four areas of further research have been identified. The first extends the analyses

presented in this thesis to identify when incorporating endogenous demand is critical for capacity

expansion planning. Chapter 6 explored hypothetical scenarios of countries with varying levels

of grid access and grid reliability. However, insight may be gained from repeating the exercises

on real cases.

A second area for future research would improve the simulation model that lies at the heart of the

planning approach. The simulation model limitations, presented at the end of Chapter 4, indicate

the additional features that could be added to the model in the future to better reflect reality.

These features include: uncertainty (in foreign exchange rates, GDP growth, fuel prices, hydro

production each year, the demand of individual consumers and demand growth), hydro resource

depletion, shifting demographics of urbanization, residential supply-switching, and off-grid

supply constraints. Each of these factors will have an impact on grid demand or power supply

and should therefore be incorporated into the planning approaches developed in this thesis.

Similarly, an agent-based extension of the simulation model presented in Chapter 3 would allow

further disaggregation of electricity demand by location and customer type. It would also enable

a more detailed formulation of urbanization.

The third area of future work improves upon the existing planning approach. I implemented this

expansion planning approach using a brute force optimization method (described in Chapter 5)
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that takes a minimum of three hours to execute a deterministic, two-stage decision problem with

seven hundred possible expansion strategies. If additional features, such as uncertainty and the

transmission network, are indeed incorporated into the simulation model, the execution time of

the planning algorithm will increase dramatically (see APPENDIX G). A model that requires

such extensive computation time is not practical and most likely would not be regularly used in

developing countries. Therefore, future work to improve the speed of the optimization algorithm

is a logical next step in research. Heuristic algorithms, such as approximate dynamic

programming or evolutionary genetic algorithms are promising options to explore.

The final area for future work involves social science research that also enhances the simulation

model. As demonstrated in Chapter 5, considering how consumer decisions impact grid demand

is a critical component of generation expansion planning in developing countries. A series of

ethnographic studies that categorize developing countries based on the factors that impact

residential and industrial choice of electricity supply options will be useful to make the model

more generalizable.
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Appendix A - Daily Electricity Demand of Residential Consumers in

Peru

Mr. Julio Eisman Valdes, Managing Director at Fundaci6n ACCIONA Microenergia, provided

information on the daily electricity demand of 3335 newly electrified residential customers in

Peru. Figure A-I depicts the information. A similar load profile is assumed for newly connected

residential consumers in Chapters 5 and 6.
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Figure A-1: Daily electricity demand of newly electrified residential customers in Peru.
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Appendix B - Regions of Tanzania

The following map depicts the major regions of Tanzania (excluding Geita, Katavi, Njombe, and

Simiyu created in March 2010").

S~nyang KilI Ima njaro

'Pemba North
--Pemba South

Zanzibar North
Zanzibar Urban/West

- 2Zanzibar Centra/Sout

Dar es Salaam

Figure B-1: Map of Tanzania3

Tanzania is divided into 26 regions. The following table indicates whether or not a region is

connected to the national grid.

3 Information source: http://allafrica.com/stories/201203090225.html Tanzania Daily News March 2, 2012.
38 Image source: http://upload.wikimedia.org/wikipedia/commons/thumb/l/18/Tanzania regions.svg/712px-
Tanzania regions.svg.png by Greor Aisch January 16, 2012
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Region Connected to the Grid?

Arusha Yes

Dar es Salaam Yes

Dodoma Yes

Iringa Yes

Kagera No

Kigoma No

Kilimanjaro (K'jaro) Yes

Lindi No

Manyara Yes

Mara Yes

Mbeya Yes

Morogoro Yes

Mtwara No

Mwanza Yes

Pwani Yes

Rukwa No

Ruvuma No

Singida Yes

Shinyanga Yes

Tabora Yes

Tanga Yes

Pemba (North, South) No

Zanzibar (North, Urban/West, Central/South) Yes

Table B.1 List of Tanzania Regions connected to the national grid.
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Appendix C - Base Case Parameter Values & Model Input

Section 4.1 described the process by which parameter values were defined to generate simulation

model output that matches historical Tanzania data. The final results of the procedure are

depicted in Table C. 1.

Parameter Estimated
Value

Contact Frequency 20

Adoption Fraction 0.1

Demand Profile Scale Factor for Residential Consumers 1.0683

Demand Profile Scale Factor for Industrial Consumers 1.2

Sensitivity to Capital Costs of Connection (Residential Consumers) -5

Sensitivity to Reliability (Residential Consumers) 30

Sensitivity to Electricity Price (Residential Consumers) -30

Sensitivity to Quality (Residential Consumers) 20

Sensitivity to Backlog (Residential Consumers) -1

Sensitivity to Capital Costs of Connection (Industrial Consumers) -5

Sensitivity to Reliability (Industrial Consumers) 30

Sensitivity to Electricity Price (Industrial Consumers) -2.5081

Table C.1: Base case parameter values.
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Chapter 5 presents generation capacity expansion for a system inspired by the case of Tanzania.

The information provided below presents the input assumptions for this case.

Variable Description Value Units
above-poverty Fraction of the Population Above Poverty 0.65 dmnl

grid-unit price Initial price of electricity 0.0918 USD/kWh
is a value greater than 1, that indicates the increase
(above true price) in tariff paid by residential I

Tariff factor consumers dmnl
the average cost for a residential consumer to connect 800

grid-connex fee to the grid 800_ USD/HH
taxes paid by the utility for each unit of energy 0 02

taxo0  supplied; this tax is passed directly to the customers ' dmnl
an estimate of the percentage of cash flow that is lost 0taxcorruption to corruption. dmnl

additional tz paid to the Rural Energy Agency for all 0.03
taxREA unit sales dmnl

%meters read the fraction of total meters read by the utility I dmnl

%bills col the fraction of bills collected by the utility I dmnl
the fractional increase in residential demand per a unit 0.614

Yres increase in GDP dmnl

Agdp the average assumed increase in GDP per year 0.064 dmnl

ini ind demand-grid countrywide industrial demand for 2008 1.71E+09 kWh
initial industrial demand served by off-grid diesel

imind demand diesel units 59610976 kWh
initial industrial demand served by off-grid hydro

ini ind demand hydro units 19870325 kWh
initial industrial demand served by off-grid pv

m inddemand-pv systems 0 kWh

%shift Fraction of Industrial Demand that will switch supply 0.4
sources each year Dmnl
the fractional increase in industrial demand per a unit

Yind increase in GDP 0.7043 Dmnl

ini-perc-rel-grid initial reliability level perceived by customers 0.98 Dmnl
this is the average pv capacity of a unit in a residential

pv-cap-res home 0.25 kW/HH
this reference cost normalizes the residential capital
cost and makes the units dimensionless for calculating

reference-capex the attractiveness and indicated market share 800 USD/HH
this reference cost normalizes the residential
electricity price and makes the units dimensionless for
calculating the attractiveness and indicated market

reference-up share 0.5 USD/kWh
This is the delay in perception of a price change in

res-perc-delay-capex capital costs 1 Year
This is the delay in perception of a change in

res-perc-delay-price electricity prices 1 Year

res-perc-delay-backlog This is the delay in perception of a change in backlog 1 Year
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res perc delay rel
This is the delay in perception of a change in

reliability 1 Year

capexPV The assumed cost for a solar home system 200 USD/HH
This variable estimates the perceived quality of the

per-qual-grid connection to grid; a highly subjective estimate I Dmnl
This variable estimates the perceived quality of the
connection to a diesel generator in the home; highly

per-qual-diesel subjective estimate 0.5 Dmnl
This variable estimates the perceived quality of the
connection to a pv system in the home; highly

per-qual-pv subjective estimate 0.5 Dmnl

estimated cost per unit of electricity for small pv
unit-price-pv system 0.05 USD/kWh

unit-price-diesel Assumed price of electricity 0.2 USD/kWh
Fraction of requested/desired pv system to total

backlog-ratio-pv installed units 1.1 Dmnl

Fraction of requested/desired diesel generators to
backlog-ratio diesel total installed units 1.1 Dmnl

pop 08 population of grid-connected regions in 2008 30853 x1000 people
the average number of people that live in a singel

average-hh-size household 4.5 people/HH

pop-growth average growth in population per year 0.0304 Dmnl

percentage of intended connections successfully made

con-success by power company I Dmnl

desgriddies Fraction of diesel customers that will consider 0.2
requesting a grid connection Dmnl

desgrid-pv Fraction of PV customers that will consider
requesting a grid connection 0.2 Dmnl
maximum number of residential households the power

max-connections company can make in a single year 11000000 HH

inigrid Initial grid customers 723873 HH

inipv Initial pv customers 185124 HH

inidiesel Initial diesel customers 185124 HH

ini_noelec Initial households without electricity 4086296 HH

ind-pv-surcharge Surcharge for pv systems 5 USD/W

ind_pv_comp Cost for pv components 15 USD/kW

avg cap-ind The average capacity of industrial systems 1000 kW/system
this reference cost normalizes the industrial capital
costs and makes the units dimensionless for
calculating the attractiveness and indicated market

indjefcapex share 1000000 USD/system
this reference cost normalizes the industrial electricity
price and makes the units dimensionless for
calculating the attractiveness and indicated market

indjeLup share 0.1115 USD/kWh

ind diesel om Estimate O&M costs for industrial diesel units 0.035 USD/kWh

diesel density density of diesel oil 0.832 kg/L
Fuel consumption of industrial consumers using off-

ind fuel cons grid diesel units 0.27 kg/kWh
Estimated cost to the connect to the grid for industrial

ind-grid-capex consumers 50000 USD/connection
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indperc delay rel
This is the delay in perception of a change in

reliability Year
This is the delay in perception of a change in

ind-perc-delay-price electricity price 1 Year
Estimated cost of off-grid diesel systems for

ind capex-diesel industrial consumers 620 USD/kW
Estimated cost of off-grid hydro systems for

ind capex-hydro industrial consumers 1800 USD/kW
Estimated price of electricity supplied by off-grid pv

ind unit-price-pv systems 0.07 USD/kWh
Estimated price of electricity supplied by off-grid

ind unit-price-hydro hydro systems 0.05 USD/kWh
This is the perceived reliability of off-grid diesel

per_rel diesel systems (residential consumers) 0.95 Dmnl
This is the perceived reliability of off-grid pv systems

per-rel-pv (residential consumers) 0.95 Dmnl
This is the perceived reliability of off-grid pv systems

ind-per-rel-pv (industrial consumers) 0.95 Dmnl
This is the perceived reliability of off-grid hydro

ind-per rel-hydro systems(industrial consumers) 0.95 Dmnl
This is the perceived reliability of off-grid diesel

ind-per reldiesel systems (industrial consumers) 0.95 Dmnl

maturity this is the time the power co has to repay loans 20 Years
this is the percentage of debt bailout by the

debt bailout government 0.1 Dmnl

debt interest this is the interest on debt paid by the power co 0.15 Dmnl

cash-interest this is the interest earned on cash 0.03 Dmnl

max borrowing limit indicates the maximum level of debt possible 20000 million USD

Table C.2: Input Assumptions for Simplified Case of Tanzania (Chapter 5)
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Variable
YeSimulation..Year Year pvprice oil-price

[USD/W] [USD/barrel]

0 2008 2.53 64.1
1 2009 2.38 60.9
2 2010 2.25 57.5
3 2011 2.12 54.3
4 2012 2 51.7
5 2013 1.89 50
6 2014 1.78 49.6
7 2015 1.68 49.9
8 2016 1.58 49.7
9 2017 1.49 50.8
10 2018 1.41 51.3
11 2019 1.33 52
12 2020 1.25 52
13 2021 1.25 52.7
14 2022 1.25 53.4
15 2023 1.25 54.9
16 2024 1.25 55.6
17 2025 1.25 56.4
18 2026 1.25 57.1
19 2027 1.25 57.6
20 2028 1.25 58.1

Table C.3: The assumed cost of PV and price of oil over the planning horizon

[kW] WeekDays ______WekEnds ____

Period Peak Shoulder Base Peak Shoulder Base
1 0.724449 0.195228 0.0957 0.1341368 0.094325 0.094325
2 0.71881269 0.1937091 0.094955441 0.1325067 0.093179 0.093179
3 0.70172246 0.18910354 0.092697815 0.1355548 0.095323 0.095323
4 0.72776752 0.19612229 0.096138378 0.1333385 0.093764 0.093764
5 0.74195188 0.19994476 0.098012137 0.1363851 0.095907 0.095907

Table C.4: Residential demand profile per household connected at start of model horizon

(estimated).

The demand profile of newly connected residential grid customers can be found in Section 3.2.

Similarly, the duration (in hours) of each load block is presented in Section 3.2 as well.
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Appendix D - Generation Plant Characteristics

The following table lists the production and cost assumptions for each generation plant/unit

considered in the capacity expansion exercise presented in Chapter 5.

EFOR MaxProd MinProd VarCost NoLoadCost MaxPlantFactor AnCap
Plant [$ per

[p.u.] [MW] [MW] MWh] [$ per h] [dmnl] [k$]

Songas 0.05 185.3 60 48.6 502.1 0.8 13029

Diesel 0.05 5.3 0 145.1 1876.5 0.75 366

UbungoGas 0.05 70.00 0 27.3 502.1 0.8 5406

Kihansi 0 75 75 0 0 1 8100

Kidatu 0 180 180 0 0 1 9180

Hale 0 5 5 0 0 1 945

Nyumba 0 3.5 3.5 0 0 1 360

Mtera 0 66 66 0 0 1 3600

Pangani 0 20 20 0 0 1 3060

Coal 0.08 200 100 22 223.8 0.8 35200

CCGT 0.04 300 100 47.1 400 0.8 19350

Kihansi 2 0 150 100 0 0 1 4961

Ruhudji 0 300 250 0 0 1 12785

Ikondo 0 300 250 0 0 1 15810

CCGT_2 0.04 400 133 47.1 500 0.8 25800

Table D.1: Characteristics of existing and candidate (italicized) generators

For the analyses presented in Sections 6.1 and 6.2 only.
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Appendix E - Pseudo Code for Capacity Expansion Planning Algorithm

that Assumes Endogenous Demand

Input: expansion matrix D, where each column i indicates a single generation expansion strategy

(Di); n is the number of strategies considered

Initialize: optimal expansion strategy BD = 0 (a column vector of zeros) and optimal cost V =

99999 million USD.

Loop over i from 1 to n.

For each i, execute the simulation model and calculate the total cost of supply for the

planning horizon as
20

C(DL) = pDiscounty x {vProdC, + vNSEC, + vCommitCy + vACCyI
y=1

where

1
pDiscounty = (1+dr)Y

and the components of C(Di), the total cost of supply, are defined as:

vProdC, = pDurationy,s,n -pVarCost, - vProduct,s,n,g
ps,n,g

vNSEC, = pPNSCost -vPNSy,p,s + pDurationy,,n -pENSCost vENSyp,s,n
P'S p,s,n

vCommitC, = pDurationp,,,n -pNoLoadCostt -vCommity,p,s,t
p,s,n,t

ACC, = (pAnCapg + pFixedOM) -pInstalledyg

Check if this expansion strategy minimizes costs.

If C(Di) < V, set BD = Di and set V = C(Di).

Otherwise do nothing.

End loop.

Output: Optimal expansion strategy BD and optimal value V.
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Appendix F - Model of Capacity Expansion Assuming Exogenous

Demand

The objective function is defined as:

Min {TCS}

where

20

TCS = pDiscounty x {vProdC, + vNSEC, + vCommitC, + vACCyJ
y=1

and

1
pDiscounty = (1 + dr)Y

vProdC, = pDuration,,,n- pVarCostg -vProducty,s,n,g
p,s,n,g

vNSEC, = pPNSCost -vPNSy,,,s + pDuration,sm, - pENSCost -vENSy,,,,n
P's p,s,n

vCommitC, = pDurationy,sm -pNoLoadCostt -vCommity,,,,
p,s,n,t

ACC, = (pAnCapg + pFixedOM) -pInstalledy,g

Model input parameters are:

pDResp,s,n
pDIndy,s,n
pDemIncrIndy
pDemIncrRes,

residential demand in 2008
industrial demand in 2008
yearly demand increment
yearly demand increment

and decision variables of this model are defined below:

vBuilty,g

vInstalledy,g
VCommity,p,s,t

vProducty,,s,n,g

vENSy,,,s,n
vPNSy,,,s

additional units operating in year y
number of total units operating in year y
commitment of thermal unit
production of the plant
power non served
total power non served

[positive integer]
[positive integer]
[positive integer]
[MW]
[MW]
[MW]
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The objective must be minimized subject to numerous constraints. The constraints for each

year are described in Sections 3.3.2 to 3.3.6. They are formulated below for clarity.

Demand Balance Constraint

The sum of electricity generated and non-served energy must equal the demand for all y, p, s and

n.

vProducty,p,s,n + vENSY,,s, = pDemandy,,,sm V y, p, s, n

where

pDemand y,p,s,n = [pDIndp,s,n x pCumIncrIndy] + [pDResp,,, x pCumIncrResy]

and

y

pCum~ncr~nd(y) = 1711 + pDem~ncrlnd(y)
Z=1

V y

pCumIncrRes(y) = I11 + pDemIncrRes(y)

Reserve Margin Constraint

The reserve margin is the generating capacity available in excess of what is required to meet

peak demand levels. The constraint is formulated as:

vPNSy,,, + E pMaxProdh - vInstalledy,h + Et pMaxProdt -vCommity,p,s ,t >

[pDemandy,n,,sm] x (1 + pOpReserve)) V y, p, s, n1 - -[37]

and pMaxProdg is the maximum production (in MW) of each generating unit and ni is the peak

demand level. Here, the reserve margin is assumed to be negligible.
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Production & Commitment Constraints

The power generated must not exceed the rated capacity of the unit or, for thermal units, fall

below the minimum production capacity specified. Electricity production in the peak load blocks

must be greater than that of the shoulder load blocks, and the production in the shoulder load

blocks must be greater than that of the base load blocks. Finally, once built and installed,

thermal units can be committed as follows:

vCommity,p,,, vInstalledy,t V y, p,s,t

vProducty,p,s,n,t pMaxProdt x vCommity,,t V y, p,s,n,t

vProducty,p,s,n,t pMinProdt x vCommity,,t V y, p,s,n,t

vProductP,s,n,h pMaxProdh V y, p, s, n, h

vProducty,p,s,n+1,g vProducty,p,s,n,g V y, p, s, n, g

pMaxProdg = pRatedMaxP x [1 - pEFORq] vg

p,s,n vProductyP,s~n,t 8760 x pMaxPlantFac, x pMaxProdt x vInstalledy,t V y,t

Z vProductY,P,s,n,h pDuration,s pAPProdhmaxh,p Vy, h, p
s,n

Y vProducty,p,sn,h pDurationy,s pAPProdhminh,p Vy, h, p
s,n

where pRatedMaxPg is the rated capacity of the generating unit, pEFORg is the equivalent forced

outage rate of each unit, pMaxPlantFac, is the fraction indicating the maximum generation that

is feasible in a single year for each thermal unit, pMinProdg is the minimum production of a

committed thermal unit, and pAPProdhmaxh,p and pAPProdhminh,p are the maximum and

minimum production of each hydro unit in a single period, respectively.

Capacity Expansion Constraints

Additional capacity expansion constraints are considered in this capacity expansion formulation

to represent the decision problem described in Section 5.1.
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vBuilty,tn pMaxUnits - -[38]

Y vBuiltyhn 5 1 - -[39]

vInstalledy,g = vBuiltyg - -[40]

Where t, indicates candidate thermal plants, and h, indicates candidate hydro units. Based on the

description of the decision problem presented in Section 5.1, a number of variables were fixed.

For all pre-existing thermal and hydro units vBuiltj,g is set equal to 1. To simulate the operation

of the new hydro units coming line, vBuiltJ,Rsuusdi, VBuilt,1kondo and vBuiltJIKihansi_2 are set to 1 as

well. Finally, it should be noted that vBuiltY,, is set equal to 0 for all years except years I and 11

to implement the two-stage decision problem.
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Appendix G - Annual Power Grid Operation with Transmission

Constraints

The Annual Power Grid Operation Module presented in Section 3.3 does not represent the

transmission network. The network and its constraints, however, may have a large impact on

when, how much and where new generating capacity should be added to the system. Therefore,

the model was extended to include the transmission network; it is formulated below.

Transmission Network Representation

This model captures high and medium voltage transmission lines. Due to the discrepancy in data

provided by Tanesco employees and in the 2009 Power System Master Plan (Tanesco 2009), the

network depicted in Figure G-1 is assumed in this model. It consists of 16 nodes and 22

transmission lines.

Figure G-1: Single line diagram of simplified transmission network
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All existing transmission lines (shown in Figure G- 1) can be reinforced by adding additional

circuits (of 220kV), referred to below as "candidate lines".

Location of Demand throughout the Network

The country of Tanzania is divided into 23 formal regions, of which only 16 are connected to the

national grid . Based on data provided in Tanzania's PSMP (Tanesco 2009) and neglecting

urbanization, the demand experienced at each node in the network is comprised of the grid

demanded in various regions as shown in Table G. 1.

Node Name Node # Demand (as % of demand in Share of Annual
specified region) Demand

Arusha 1 0.8 (Arusha) + 1(Kjaro) 0.110
Babati 2 0.2(Arusha) + 0.2(Dodoma) 0.022

Dodoma 3 0.8(Dodoma) 0.026
Iringa 4 0.2(Iringa) 0.005
Kidatu 5 0.2 (Morogoro) 0.008
Kihansi 6 0 0.000

Makambako 7 0.3 (Iringa) 0.008
Mbeya 8 1 (Mbeya) 0.042

Morogoro 9 0.8(Morogoro) 0.033
Mtera 10 0 0.000

Mufindi 11 0.5 (Iringa) 0.013
Mwanza 12 l(Mara) + l(Mwanza) 0.066

Shinyanga 13 1(Tabora) + 1(Shinyanga) 0.039
Singida 14 1(Singida) 0.010
Tanga 15 1(Tanga) 0.037

Ubungo 16 1(Dar) + 1(Zanzibar) 0.581

Table G.1: Assumed share of annual demand in each node of the grid network

For example, the demand realized at Node 1 is the sum of 80% of total demand in Arusha and

100% of demand in Kilimanjaro. Using 2008 data on the annual demand of each of the grid-

connected regions, the fraction of demand at each node in the network is assumed to be fixed as

shown in column 4 of Table G. 1.

* For simplicity, regions that were not connected to the national grid as of 2009 are excluded from the model. See
APPENDIX B for map of Tanzania and list of grid connected regions.
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Model Formulation

The "Annual Power Grid Operation" module is a medium term power system model. Mixed-

integer programming is employed to formulate this deterministic DC optimal power flow4 1

model with crude hydro-thermal coordination and block-wise unit commitment. The model

minimizes total variable costs while satisfying demand balance constraints and meeting

production and flow constraints. It takes as input the newly installed generation and

transmission capacity and the grid demand profile of both residential and industrial consumers to

determine the power flow in each line of the transmission network as well as the production of

each generator during every period, day type, and load level of the year. This model also

determines total annual operational costs, network losses, annual electricity production and

consumption, and total non-served energy.

Model Objective

The objective of the problem is to minimize costs, defined as:

Min {vProdC + vNSEC + vCommitC + vLossC) - - [41]

vProdC represents the variable costs of production, vNSEC indicates the penalty resulting from

non-served energy and power, vCommitC represents the cost of operating thermal units and

vLossC is the penalty incurred from transmission losses. They are defined as:

vProdC = pDuration,sx,- pVarCost- vProduct,s,n,g - -[42]
p,s,n,g

vNSEC = pPNSCost -vPNSP,s + pDurationy,s, -pENSCost -vENSP,s,,,nd - -[43]

p,s p,s,n,nd

vCommitC = pDurationy,,,n -pNoLoadCostt -vCommity,s,t - -[44]
p,s,n,t

vLossC = pLossCost x pDurationy,sx - vLoss,s,n ,1flfckd) - -[45]
p,s,n,11(ni,nf,ckt)

41 The simplifying assumptions of DC optimal power flow models are: (1) all node voltages have similar magnitudes
(2) the inductive components of transmission lines is bigger than the resistive component (3) the difference in the
phase angle of node voltages is small (Garcia-Gonzilez 2010).
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where

y
p
S
n

g
t
h
nd/ni/nf
ckt
llnd,ndA,ckt
lend,nd,ckt
Icnd,nd,ckt

and

pDurationy,s,n
pVarCostg
pNoLoadCostt
pPNSCost
pENSCost
pLossCost
pAnCapg
pFCni,nf,ckt

year (ranging from 1 to 20)
period (ranging from 1 to 5)
day-type (weekday or weekend)
load level (peak, shoulder, base)
generating unit
thermal generating unit
hydro generating unit
node in grid network
circuit
transmission line
transmission line existing prior to simulation
candidate transmission line

duration [hours]
variable costs [M$ per MWh]
no load costs [M$ per h]
cost of power non-served [M$ per MW]
cost of energy non-served [M$ per MWh]
cost of transmission losses [M$ per MWh]
annualized capacity costs of generator [M$]
fixed cost per year for new line [M$]

Model input parameters are:

pDemSharend
pDResP,,,
pDIndy,,
pInstalledg
pInstCapni,nf,ckt

fraction of demand at node
residential demand [MW]
industrial demand [MW]
number of generating units installed of type g
binary variable indicating whether candidate line is installed

and decision variables of this model are defined below:

vProductp,s,n,g
vCommit's't

VENSp,,,,nd

vPNSp,s

vFlowp,s,n,nd,nd,ckt

vLossp,s,n,nd,nd,ckt

vThetap,,,,nd

vAuxBin, s ,n,nd

production of the unit [MW]
commitment of thermal unit [positive integer]
power non served at node [MW]
total power non served [MW]
flow in line [MW]
losses in the transmission line [MW]
voltage angle [rad]
auxiliary binary variable indicating whether or not the voltage
angle difference between two nodes is positive or negative
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The objective must be minimized subject to numerous network and production constraints. The

constraints are described in the following subsections.

Demand Balance Constraint

The sum of electricity generated and non-served energy less network losses and flow out of the

node must equal the demand plus flow into the node for all p, s, n and nd.

vProductp~s,, + vENSp,sfld - vLossp,s ,ni,nckt _ vLossp,s,nnd,nf,ckt

g,na Jini,nd~ckt ilnd,nf,ckt

= pDemandp,,s,n,nd + vFlowp,s,n,nd,nfckt - vF owP,s,n,ni,ndckt

_nd~nf,ckt _1ni,nd~ckt

and

pDemandp,s,n,nd = pDemSharend [pDIndy,s,n + pDResp,s,n]

Vp, s,n,nd

Reserve Margin Constraint

The reserve margin is the generating capacity available in excess of what is required to meet

peak demand levels. In most systems, regulators require reserve margins to be approximately

10% to 20% in order to ensure that, during times of generator breakdowns or sudden increases in

demand, the power grid is still operational.

vPNSps + pMaxProdh -pInstalledh + pMaxProdt -vCommitt
h t

[pDIndp,s,n + pDResp,s,n+ Lic vLossp,sn,nfckt x (1 + pOpReserve)) Vp, s, n1

where pMaxProd, is the maximum production (in MW) of each generating unit and n1 is the

peak demand level. According to EWURA, the reserve margin is negligible in the Tanzanian

power system. Accordingly, pOpReserve is equal to zero.
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Network Flow Constraints

The flow on a transmission line cannot exceed the capacity of the line and is proportional to the

phase difference of node voltages.

For existing lines:

vFIOWPs,n,ni,nf,ckt = [vTheta,sn,ni - vThetaPs,n,nf pSbase
PXni,nf

vFlowp,s,n,ninf,ckt -pMaxFOWni,nf,ckt

vFIowp,s,nni,nrckt pMaxFowni,nf,ckt

Vp, s, n, leni,nf,ckt

and for candidate lines:

vFlowp,s,n,ni,nf,ckt >
pMaxFlowni,nfckt

vFIowp,s,n,ni,nf,ckt <
pMaxFlowni,nf,ckt 

[vThetap,s,n,ni -

PXni,nf,ckt

[vThetap,s,n,ni -

PXni,nf,ckt

vThetap,sn,n] -pSbase

pMaxFlowni,nf,ckt

vThetap,s,n,nf ] -pSbase

pMaxFlowni,nf,ckt

- 1 + pInstCapninf,ckt

+ 1 - pInstCapni,nf,ckt

vFlowp,s,n,ni,nf,ckt -pMaxFowni,nf,ckt - pInstCapninf,ckt

vFlowp,s,n,ni,n f,ckt 5 pMaxFlowni,nf,ckt -pInstCapni,nf,ckt

V p, S, n, lCni,nf,ckt

where pSbase is the base power (in MW) of the system, pXni,nf,ckt and pRni,nf,ckt are the

inductance and resistance of each transmission line, respectively, and pMaxFowni,nf,ckt is the

maximum flow on each transmission line.

Transmission Losses

Transmission losses in a single line are proportional to the square of the line drop voltage (the

difference in voltages of the two nodes connecting the transmission line). In a DCOPF model

using per unit quantities (i.e. normalizing by the base power), this simplifies to:

vLossp,snni,nf,ckt = a x {1 - cos(vThetay,s,n,ni - vThetap,s,n,nf)} Vp, s, n, 11ni,nf,ckt
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where

a = pSbase x- ~in
p Rbi,nsepR + PXni,nf,ckt

The loss equation above is nonlinear; therefore, it has been approximated as:

vLossp,s,n,ni,nf,ckt a x (mseg(vThetap,sx,ni - vThetap,s,n,nfl) + nesegI

Vp, S, n, 1eni,nf,ckt, seg

vLossps,nni,nf,ckt a x fmseg(vThetap,sx,ni - vThetap,s,n,nf ) + neseg} - 104(1 - pInstCapni,nf,ckt)

Vp, s, n, Icn,nf,ckt, seg

where the set of lines (seg = 1 to 30) make up the linear approximation of the cosine function

(see Figure G-2), and mseg and neseg are the slope and intercept, respectively, of line seg.

The losses formulation above often results in excess network losses. As the system attempts to

decrease costs, hydro production is increased to reduce the more expensive thermal production.

Since the formulation above only sets a lower bound on losses, excess losses arise. In order to

correct this, a small penalty on transmission losses is assumed (as shown in the objective

function in equation [41]) and an upper bound is placed on line losses. Figure G-2 depicts the

upper bound in red and the equations follow.

vThetap,s,n,ni - vThetap,s,n,n7 4  -vAuxBing,sn,ni,nf x 2

vThetap,,,f - vThetap,s,~,,n -{i - vAuxBin,s,ni,nf} x 2
Vp, s, n, lIni,nf,ckt

vLosses a x { fl[vThetap,s,n,ni - vThetag,s ,,ngf] + [6 x vAuxBiny,s,n,ni,nf]}

Losses a x { #[vThetap,,,,nf - vTheta, s ,n,,ni] + [6 x (1 - vAuxBiny,s,n,ni,ng))]

Vp, s, n, leni,nf,ckt

vLosses pInstCapni,nf,ckt x a x { f# [vThetaP,s,nni - vTheta,sfn,nf ] + [6 x vAuxBinp,s,n,ni,nf ]1
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vLosses ! pInstCapninfckt x a x { fl[vThetaPsnnf - vTheta,,,~i| + [6 x (1 - vAuxBinp,,,n,ni,n)|I

VpS, , lCnitnf,ckt

where vAuxBin,,,n,ni,nf is an auxiliary binary variable indicating whether or not the voltage angle

difference between two nodes is positive or negative, and fl is 0.929
1.5 rdas

Due to the gap between the solid black line and dashed red line depicted in Figure G-2, there is

still the possibility that losses are over-estimated.

1-1 1

-2 1 %%

vTheta(ni) - vTheta(nf) [radians]

Figure G-2: Non-linear losses (shown by the black solid line) are approximated as the maximum of

the 30 colored solid lines. The upper bound on losses is shown by the dashed red line.
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Production & Commitment Constraints

The power generated must not exceed the rated capacity of the unit or, for thermal units, fall

below the minimum production capacity specified. Electricity production in the peak load blocks

must be greater than that of the shoulder load blocks, and the production in the shoulder load

blocks must be greater than that of the base load blocks. Data for each thermal unit was used to

determine the maximum annual energy production of the units, and historical hydro production

data was used to determine the average maximum and minimum energy production of each

hydro unit in a single period. Additionally, the variable production costs of hydro power are

assumed to be zero.

vProductp,,,, : pMaxProdt x vCommit,s,t Vp, s, n, t

vProductp,s,,, pMinProdt x vCommity,st Vp, s, n, t

vProductp,s,nh pMaxProdh Vp, s, n, h

vProductp,s,n+1,g < vProductp,s,n,g Vp, s, n, g

pMaxProdg = pRatedMaxP, x [1 - pEFORg] x pInstalledg Vg

vProductP,n,t 8760 x pMaxPlantFac x pMaxProdt Vt

Y vProduct,s,,h -pDurationp,sx pAPProdhmaxh,p Vh, p
s,n

vProductp,s,n,h -pDurationy,s,n > pAPProdhmin,p Vh, p

where pRatedMaxPg is the rated capacity of the generating unit, pEFOR, is the equivalent forced

outage rate of each unit, pMaxPlantFacg is the fraction indicating the maximum generation that

is feasible in a single year for each thermal unit, pMinProdg is the minimum production of a

committed thermal unit, and pAPProdhmaxh,p and pAPProdhminh, are the maximum and

minimum production of each hydro unit in a single period, respectively. Finally, once built and

installed, thermal units can be committed as follows:

vCommitp,s ,t pInstalledt VP' S, t
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Additional Model Outputs

The "Annual Power Grid Operation" module determines the following values, which it passes to

the "Power Company Cash Flow and Electricity Prices" module:

ACC = pAnCapg -pInstalledg + pFCni,nf,ckt -pInstCapni,nf,ckt - -[46]
g lCni,nfckt

NSE = pDurationy,s,- vENSp,s,n,nd - -[47]
p,s,n,nd

TD = pDurationy,,,n -pDemand,s,n,nd - -[48]
p,s,n,nd

Cons = TD - NSE - -[49]

TLoss = pDurationy,,, -vLossp,s,nni,nf,ckt - -[50]
p,s,nfllni,nf,ckt

NSE
FSTD =1 - Cons - -[51]

where ACC is the annualized capacity costs of installed generating units, NSE is annual non-

served grid demand, TD is the total energy demanded over the year, TLoss is annual network

losses, and FSTD is the fraction of served to total grid demand. The module also passes along

vNSEC and vProdC, the annual costs of non-served energy and the annual variables costs of

electricity production, respectively.

Impact on Execution Time

The execution time of the endogenous planning algorithm increases dramatically when the

simulation model includes the transmission network. It takes approximately twelve hours to

explore three hundred expansion plans; without transmission, it only takes three hours to explore

seven-hundred and eighty possible plans.
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