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Weber’s law, first characterized in the 19th century, states that errors estimating the magnitude of

perceptual stimuli scale linearly with stimulus intensity. This linear relationship is found in most sensory

modalities, generalizes to temporal interval estimation, and even applies to some abstract variables. Despite

its generality and long experimental history, the neural basis of Weber’s law remains unknown. This work

presents a simple theory explaining the conditions under which Weber’s law can result from neural

variability and predicts that the tuning curves of neural populations which adhere to Weber’s law will

have a log-power form with parameters that depend on spike-count statistics. The prevalence of Weber’s law

suggests that it might be optimal in some sense. We examine this possibility, using variational calculus, and

show that Weber’s law is optimal only when observed real-world variables exhibit power-law statistics with

a specific exponent. Our theory explains how physiology gives rise to the behaviorally characterizedWeber’s

law and may represent a general governing principle relating perception to neural activity.

DOI: 10.1103/PhysRevLett.110.168102 PACS numbers: 87.19.L�, 87.10.�e, 87.19.lt

Relating behavior and perception to underlying neuronal
processes is a major goal of systems neuroscience [1].
The ability to estimate the magnitudes of external stimuli
(the intensity of a light, for example) is a fundamental
component of perception and inherently prone to error.
Interestingly, for many variables, magnitude estimate errors
scale linearly with stimulus magnitude [Fig. 1(a)]. This
relationship, called Weber’s law [2], has proven robust and
ubiquitous across sensory modalities, holds in the temporal
domain (where it is called scalar timing [3,4]), and even
applies to abstract quantities associated with decision
making [5] and numerosity [6]. Despite the long history of
this observation, its prevalence, and its perceived impor-
tance, the physiological basis of Weber’s law is unknown.

Various attempts have been made to formulate theoreti-
cal frameworks that can explain Weber’s law. For example,
soon after Weber’s law was observed experimentally [2],
Fechner postulated the existence of a hypothetical
‘‘subjective sense of intensity’’ that varies logarithmically
with the physical intensity of a stimulus [7]. In this work,
rather than searching for a hypothetical variable, we
address the issue by asking what properties realistic physi-
ological variables (i.e., neuronal spike trains) must have to
account for the experimental data.

Our analysis starts with the assumption that an external
sensory stimulus � is represented in the nervous system by
a stochastic spiking neural process with firing rate rð�Þ that
varies monotonically with the magnitude of � [Fig. 1(b)].
We further assume that a windowed spike count of this
process R is used by the brain on a trial-by-trial basis to
make a magnitude estimate �est. Estimate errors, in this
formulation, result from stochastic fluctuations of R.
The phrase ‘‘neural process’’ is used as a generic term

that could describe anything ranging from a single neuron
to a large ensemble of neurons (although there is good
reason to assume it refers to a neural population; see the
discussion below).
The magnitude of errors estimating parameter � from

the spike count can be linearly approximated [Fig. 1(b)] as

��ð�Þ � �Rð�Þ
jR0ð�Þj ¼

�Rð�Þ
j�r0ð�Þj ; (1)
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FIG. 1 (color). Weber’s law and neuronal statistics.
(a) Weber’s law [Eq. (2)] states that stimulus intensity estimate
errors (��, solid line indicating the fit of the schematic data
points) increase linearly with physical stimulus intensity (de-
scribed by the parameter �) with a slope defined as the Weber
fraction �. (b) A linear approximation [green line, Eq. (2)]
relates the standard deviation of the spike-count distribution to
the standard deviation of the error in estimating the magnitude
variable �. (c) Example tuning curves with Poisson spike statis-
tics for different values of the integration constant �0. Solutions
that decrease with � can also be obtained; see Supplemental
Fig. S1 [15].
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where �� is the standard deviation of stimulus estimates,
�Rð�Þ is the standard deviation of the spike count at
parameter �, R0ð�Þ is the derivative of the spike-count
curve with respect to parameter �, and � is the estimate
window width (i.e., the per-trial duration around an exter-
nal stimulus event over which spike counts are accumu-
lated). According to Weber’s law, errors estimating � scale
linearly with �. Using standard deviation as the error
measure, this is written as

��ð�Þ ¼ ��; (2)

where � is called the Weber fraction (which is determined
experimentally by measuring behavioral performance).

We can now relate errors within the physiologic process
assumed to underlie perception with experimentally
measured perceptual performance by combining Eqs. (1)
and (2):

�
dr

d�
¼ dRð�Þ

d�
¼ ��Rð�Þ

��
; (3)

where the plus sign is valid when the slope of rð�Þ is
positive and the minus sign is valid when it is negative.

Spike-count variability can be described using a power-
law model [8,9] with the form

�Rð�Þ ¼ �ð�rð�ÞÞ�: (4)

Substituting Eq. (4) into (3) results in

drð�Þ
d�

¼ �
�
����1

�

�
rð�Þ�
�

: (5)

The solution of Eq. (5) has a log-power form

rð�Þ ¼ K½� lnð�=�0Þ�n; (6)

where K ¼ 1
� ½�ð1� �Þ=��n and n ¼ 1

1�� . This relation-

ship holds whether r rises (���0,þ case) or falls (� < �0,
� case) monotonically. The parameter �0, an integration
constant, actually determines the detection threshold. The
solution to Eq. (5) defines the shape of neural tuning curves
(e.g., input-output relationships) that will, under the mini-
mal assumptions and approximations outlined above,
result in a linear increase in perceptual errors with stimulus
magnitude. Another way of looking at this is that the form
of this equation restricts the class of tuning curves for
neural processes that display Weber’s law to the log-power
form of Eq. (6). Note that all the parameters are determined
either by the spike statistics (i.e., the physiology) or the
behavioral performance (i.e., the Weber fraction �).

The general log-power form takes on a specific shape,
depending primarily on the form of the spike-count statis-
tics. In the constant noise case (� ¼ 0), this equation
reduces to Fechner’s law [7]. Hence, Fechner’s law can
be seen as making an implicit constant noise assumption.
In the special and unrealistic case where � ¼ 1, a power-
law solution is obtained [10].

Experimentally, a nearly linear relationship between
mean spike count and variance is commonly observed
[8,9,11]. In this nearly Poisson case (� ¼ 1=2), one obtains
a log-power law with an exponent of n ¼ 2. Examples
of tuning curves for the Poisson statistics are shown in
Fig. 1(c) for the monotonically increasing case.
Given a tuning curve [rð�Þ] and spike probability distri-

bution (Ps), one can calculate the exact standard deviation
of the estimate errors as a function of the estimated
variable’s magnitude. To test the validity of our linear
approximation, we derived the mean and the standard
deviation of the noisy estimates, assuming Poisson spike
statistics with appropriate log-power tuning curves. The
mean number of spike for a time interval � is �rð�Þ, and the
probability of having k spikes in a single trial is Ps½kj� �
rð�Þ�. Given that there are ki spikes in trial i, the inverse of
the tuning curve can be used to estimate �estðiÞ ¼
r�1ðki=�Þ. The mean estimated parameter �est is therefore

h�esti ¼
X
k

Ps½kj�rð�Þ�r�1ðk=�Þ (7)

and the variance of the estimate is

�2
� ¼

X
k

Ps½kj�rð�Þ�½r�1ðk=�Þ � h�esti�2: (8)

If the spike statistics are well approximated by a Poisson
process (� ¼ 1=2, � ¼ 1), then Ps is the Poisson distribu-
tion. These calculations show that log-power tuning curves
produce excellent approximations to both the mean
[Fig. 2(a)] and the linear scaling of the standard deviation
[Fig. 2(b)]. The linear approximation provides a nearly
perfect agreement with the exact solution for low � values.
A small discrepancy exists for larger values of�, which are
less realistic and correspond to higher noise levels, but only
for values of � near the lowest limit. Similar calculations
can also be carried out for non-Poisson distributions by
changing the functional form of Ps.
It is difficult to make explicit sensory magnitude

estimates. For this reason, psychophysical experiments
typically employ the ‘‘just noticeable difference’’ (JND)
methodology to measure perception. In this paradigm,
subjects are asked to judge the intensity of test stimuli
(�t) relative to a reference stimulus (�r). Test stimuli are
selected in a range around a fixed reference stimulus and
varied to find the values at which the subject perceives that
the test stimulus is larger than the reference in 75% (�1)
and 25% (�2) of the trials. The JND metric is defined
as ð�1 � �2Þ=2 [7,12].
This definition of JND can be used to compute an equiva-

lent metric for our model. To do so, we use the tuning curve
r and the probability distribution function Ps to generate
spike counts nr and nt for reference and test stimuli, respec-
tively. Assuming, for simplicity, a deterministic nr ¼
�rð�rÞ, the probability that the a test stimulus will elicit
more spikes than the reference stimulus is
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Pgð�rjnrÞ ¼
X
n>nr

Psðnj�rð�tÞÞ: (9)

As described above, �1 is the value of �t at which nt > nr
75% of the time. Formally,

�1ðnrÞ ¼ arg�tfPgð�tjnrÞ ¼ 0:75g (10)

and similarly

�2ðnrÞ ¼ arg�tfPgð�tjnrÞ ¼ 0:25g: (11)

Using these definitions, we find that the JND scales linearly
with the magnitude of � but with a slope different than the
slope of the standard deviation [Fig. 3(a), þ symbols]. The
reason for the discrepancy is that, while the JND spans 50%
of the probability distribution (from 25% to 75%), the
standard deviation of a Gaussian distribution spans 68% of
the distribution (from 16% to 84%). If we change the criteria
in the equations above to match this observation, we obtain
results that match predictions of the linear theory almost
exactly [Fig. 3(a), � symbols]. This striking agreement
occurs because the number of spikes generated by the
Poisson process in this example is well approximated by a
Gaussian. Higher � values will produce lower spike rates
and a commensurately larger discrepancy between the stan-
dard deviation and the JND slopes.

To better replicate the experimental procedure, we can
calculate the JND using a value of nr stochastically drawn

from the same distribution that generates nt. In this case,
�1ðnrÞ and �2ðnrÞ are replaced by ��1 ¼ P

nr
PsðnrÞ�1ðnrÞ

and ��2 ¼ P
nr
PsðnrÞ�2ðnrÞ. Figure 3(b) shows the results

produced with these definitions using the the 16%–84%
interval. Surprisingly, these results are identical to those
obtained when we assumed a deterministic number of
reference spikes. This agreement occurs because �1 and
�2 depend nearly linearly on the fluctuations in the number
of reference spikes; arising from a symmetric distribution,
fluctuations in one direction are balanced by fluctuations in
the other direction. These results indicate that log-power
tuning curves produce linear scaling of the error measure
as postulated by Weber’s law for various error estimation
methods, including those used experimentally.
It is sometimes found that scaling is not perfectly linear

[13,14] but can be described with a power-law form

��ð�Þ ¼ ��1��; (12)

where� is a correction term to the perfect linear scaling of
Weber’s law. This results in a differential equation of the
form

drð�Þ
d�

¼ �
�
����1

�

�
rð�Þ�
�1��

: (13)
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FIG. 2 (color). Weber’s law with Poisson statistics. (a) The
mean stimulus estimation as a function of the true target pa-
rameter. For small � values [� ¼ 0:05 (green circles), 0.1 (red
crosses), 0.25 (blueþ symbols)], the estimate is nearly perfect.
(b) The standard deviation of the parameter estimate scales
linearly with the mean as a function of � (shown for a mono-
tonically rising r function with �0 ¼ 1, � ¼ 0:5, � ¼ 1, and
� ¼ 0:5).
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FIG. 3 (color online). Linear scaling of the JND. (a) The JND,
assuming a fixed number of spikes in the reference stimulus.
When the JND is calculated in the range from 25% to 75%
(þ symbols), it is still linear but with a smaller slope that the
standard deviation. When the range is corrected to 16% to 84%
(� symbols), a slope identical to the standard deviation of the
error is found. (b) When fluctuations in the number of reference
spikes are taken into account, we find that the theory produces an
identical slope to that found for the linear theory and the mean
reference spike number. (Here, we used the 16%–84% interval.)
The results shown are with � ¼ 0:1.
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This ordinary differential equation has a power-law
solution of the form

rð�Þ ¼ K1

�
��

�
� ��0

�

�
n
; (14)

where K1 ¼ ½��ð1� �Þ=��n=� and �0 is as above both
the integration constant and the detection threshold. As in
the log-power case, there are two valid solutions: a mono-
tonically increasing solution above �0 and a monotonically
decreasing solution below �0. In the limit � ! 0, Eq. (14)
converges to Eq. (6). The solutions nearly overlap when �
is small but diverge as � increases to higher values
[Fig. 4(b)]. Note that a power-law solution has been sug-
gested as a good description of a subjective sense of
intensity [10]. This result demonstrates how our approach
can be used to analytically obtain tuning curves for error
scaling that is not perfectly linear; in fact, the linear case
could be considered a special case of the more general
solution. Similar procedures can be used for any functional
form of error scaling or a spike-count variability model;
although there is no guarantee of an analytical solution,
numerical methods can always be used.

It is unlikely that any cognitive or perceptual brain
functions result from neural representations based on the
activity of single neurons; it is much more likely that such
processes are implemented by neural populations organ-
ized into functional coding assemblies. Further, there is no
reason to assume that all of the neurons within a coding

population would or should have identical tuning curves.
However, it is trivial to show that a diverse population of
statistically independent neurons that are chosen such that
the sum of their tuning curve closely approximates the
log-power curve will also exhibit Weber’s law (see
Supplemental Fig. S2 [15]).
While our theory does not require that the tuning curve of

single neurons have a log-power form, recording from single
neurons is much easier methodologically than recording
simultaneously from neural ensembles and this is a good
place to start looking for experimental correlates of our
predictions. Ideally, we would like to fit recorded spike rates
for neurons whose activity is tied to perceptual behavior
for a stimulus that adheres to Weber’s law. Unfortunately,
such a data set is hard to find in the literature. Published
tuning curves as a function of stimulus contrast [8,16] can
sometimes be well approximated by a log-power function
with exponents close to those predicted above for realistic
spike statistics (Supplemental Fig. S3 [15]). For other cells,
the fits produce exponents that are inconsistent with
observed spike statistics (Supplemental Fig. S3 [15]) or
not well fit by log-power functions [17]. Contrast percep-
tion, however, is not a particularly good candidate to test
our model, as it does not clearly display linear scaling.
As we have noted, Weber’s law is observed in many

modalities and conditions. It is tempting to hypothesize
that this universality reflects some sort of optimal strategy
for minimizing average perceptual errors based on noisy
spike-count statistics. For example, Weber’s law might be
considered optimal if it minimizes the mean error of the
estimated parameter. Mean error (E), defined simply as the
weighted average of the standard deviation of the error at
each value of �, takes the mathematical form

E ¼
Z 1

�
��ð�ÞPð�Þd� �

Z 1

�

�
Rð�Þ�
jR0ð�Þj

�
Pð�Þd�; (15)

where Pð�Þ is the distribution of different expected mag-
nitudes of the variable � and � is the minimal possible
value of �. The � symbol is due to the linear error
approximation described above.
We use variational calculus to find the function rð�Þ

which minimized the error while assuming a fixed distri-
bution Pð�Þ. The Euler-Lagrange equation [18] allows us
to obtain the following differential equation for the func-
tions r and P that minimize this error:

2�ðr0Þ2 � 2rr00 þ rr0
P0

P
¼ 0; (16)

where the prime symbols denote the derivative with respect
to �.
We can now use this equation to determine the form of

Pð�Þ for which Weber’s law is optimal. We do this by
plugging the functional form of the tuning curve rð�Þ that
yields linear scaling [Eq. (6)] directly into Eq. (16) to
obtain
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FIG. 4 (color). Nonlinear scaling of errors. (a) In some cases,
errors do not scale linearly with the magnitude. Examples are
shown for various values of the nonlinearity characterization
parameter �. (b) Different values of � result in different tuning
curve shapes.
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�
2

�
þ P0

P

�
rr0 ¼ 0; (17)

which has the solution

Pð�Þ ¼ N

�2
; (18)

where N is the normalization constant, such thatR1
� Pð�Þd� ¼ 1. It is interesting to note that this function

is independent of �. This result implies that Weber’s law is
strictly optimal only if the statistics of the variable � have
a power-law form with an exponent of �2.

A similar procedure can be followed for other error
functions. For example, if the relative error is chosen as
the optimality criterion, then Weber’s law is optimal only
when distribution has the form Pð�Þ / 1

� . While not all

error functions will be minimized by a power-law distri-
bution, for any reasonable error function definitions, opti-
mality will depend on the statistics of the perceived world.
Consequently, ‘‘optimal’’ tuning curves will also depend
on the statistics of the world. For Weber’s law, which is
quite general and applies to different types of perceptual
variables, to be optimal under the same error definition
in all perceptual modalities, the real-world statistics of
all these variables would have to be identical, which would
be truly remarkable.

This method could be used for a known Pð�Þ to find the
optimal tuning curve. In most cases, this curve would not
have a log-power form. For example, a uniform distribu-
tion of � would lead to a power-law tuning curve. While
we do not know the real-world distributions of the varia-
bles that exhibit Weber-law-type scaling, it is possible that
these distributions are such that the optimal solutions
would be close to Weber. In some well studied cases,
Weber’s law is only approximately correct [13,14], and it
is possible that deviations from Weber’s law could be
explained by an optimality argument.

Linking perception to the underlying physiological
mechanism is a central goal of neuroscience. Here, we
show how to use the experimentally observed scaling of
perceptual errors to derive neural tuning curves that can
account for them. Our solutions likely describe population
tuning curves rather than single cell curves. We have also

addressed the question of whether Weber’s law is optimal
and show that it is strictly optimal only if the distribution of
the of the encoded real-world variable has a specific power-
law form.
The authors would like to thank Marshall Hussain

Shuler and Leon Cooper for reading and commenting on
the manuscript. This publication was partially supported
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