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PESSIMISTIC BILEVEL OPTIMIZATION∗

WOLFRAM WIESEMANN† , ANGELOS TSOUKALAS‡ , POLYXENI-MARGARITA

KLENIATI§ , AND BERÇ RUSTEM†

Abstract. We study a variant of the pessimistic bilevel optimization problem, which comprises
constraints that must be satisfied for any optimal solution of a subordinate (lower-level) optimization
problem. We present conditions that guarantee the existence of optimal solutions in such a problem,
and we characterize the computational complexity of various subclasses of the problem. We then focus
on problem instances that may lack convexity, but that satisfy a certain independence property. We
develop convergent approximations for these instances, and we derive an iterative solution scheme
that is reminiscent of the discretization techniques used in semi-infinite programming. We also
present a computational study that illustrates the numerical behavior of our algorithm on standard
benchmark instances.
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1. Introduction. We study the pessimistic bilevel problem, which we define as

(PB)
minimize

x
f(x)

subject to g(x, y) ≤ 0 ∀y ∈ Y(x) = argmin
z

{h(x, z) : z ∈ Y (x)}
x ∈ X,

where X ⊆ R
n, Y (x) ⊆ Y ⊆ R

m for all x ∈ X , f : X �→ R, and g, h : X×Y �→ R. We
call y the lower-level decision and refer to the embedded minimization problem as the
lower-level problem, respectively. We refer to x as the upper-level decision. We stipu-
late that the decision x ∈ X satisfies the bilevel constraint if the lower-level problem
associated with x is infeasible. Note that the bilevel problem generalizes to multiple
constraints g1, . . . , gp : X×Y �→ R if we set g(x, y) = max {gi(x, y) : i = 1, . . . , p}. It
also extends to certain classes of min-max problems with coupled constraints [82].

It is worthwhile to notice that the bilevel problem (PB) deviates slightly from
the standard formulation

(1.1) min
x∈X

sup
y∈M2(x)

f1(x, y), where M2(x) = argmin
y∈Y

f2(x, y);
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see, e.g., [24, 49]. In fact, the standard formulation (1.1) can be reformulated as an
instance of (PB):

minimize
x,τ

τ

subject to τ ≥ f1(x, y) ∀y ∈ Y(x) = argmin
z

{f2(x, z) : z ∈ Y }
x ∈ X.

On the other hand, the bilevel problem (PB) does not reduce to an instance of (1.1),
unless we allow for extended real-valued functions f1, f2 in (1.1).

Bilevel problems have a long history that dates back to the investigation of market
equilibria by von Stackelberg in the 1930s [35]. Bilevel problems have first been
formalized as optimization problems in the early 1970s [17]. In recent years, bilevel
optimization has been applied to various domains including revenue management [22],
traffic planning [56], security [74], supply chain management [73], production planning
[41], process design [20], market deregulation [13], optimal taxation [8], and parameter
estimation [16, 63].

The bilevel problem PB has a natural interpretation as a noncooperative game
between two players. Player A (the “leader”) chooses her decision x first, and af-
terwards player B (the “follower”) observes x and responds with a decision y. Both
the objective function and the feasible region of the follower may depend on the
leader’s decision. Likewise, the leader has to satisfy a constraint that depends on
the follower’s decision. Since the leader cannot anticipate the follower’s decision, the
constraint must be satisfied for any rational decision of the follower, that is, for any
decision y ∈ Y(x) that optimizes the follower’s objective function.

The above-stated pessimistic bilevel problem is perceived to be very difficult to
solve. As a result, most theoretical and algorithmic contributions to bilevel program-
ming relate to the optimistic formulation, in which the universal quantifier “∀” in the
bilevel constraint is replaced with an existential quantifier “∃.” In a game-theoretic
context, the optimistic problem can be justified in two ways. On one hand, there may
be limited cooperation between the players to the extent that the follower altruisti-
cally chooses an optimal solution that also benefits the leader. On the other hand,
the leader may be able to make small side payments that bias the follower’s objective
in her favor. Even though the optimistic and the pessimistic bilevel problem are very
similar, their optimal solutions can differ considerably.

Example 1.1. Consider the following instance of the pessimistic bilevel problem:

minimize
x

x

subject to x ≥ y ∀y ∈ argmin
z

{−z2 : z ∈ [−1, 1]
}

x ∈ R.

The lower-level problem is optimized by z ∈ {−1, 1}, independent of the upper-level
decision. The pessimistic bilevel problem therefore requires x to exceed 1, resulting
in an optimal objective value of 1. In contrast, the optimistic bilevel problem requires
x to exceed −1, which results in an optimal objective value of −1.

Many algorithms have been proposed for the bilevel problem. In the following, we
review some of the methods that determine globally optimal solutions. For surveys
of local optimization approaches and optimality conditions, see [4, 7, 21, 24, 76, 86]
and the articles in [33]. We review the literature on the complexity of the bilevel
problem in section 2.2. The relationship between bilevel problems and min-max
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problems, generalized semi-infinite programs, mathematical programs with equilib-
rium constraints, and multicriteria optimization is explored in [32, 51, 61, 72, 77]. For
more general multilevel optimization problems, see [19, 57].

The most benign class of bilevel problems concerns the optimistic variant and
stipulates that the functions f , g, and h are affine, while the feasible regions X and
Y (x) are described by polyhedra. Although these linear optimistic bilevel problems
are nonconvex, they are known to be optimized by an extreme point of the poly-
hedron Ω = {(x, y) ∈ R

n × R
m : x ∈ X, y ∈ Y (x), g(x, y) ≤ 0}. Several algorithms

have been proposed that enumerate the extreme points of Ω; see [12]. If the lower-
level problem of an optimistic bilevel problem is convex and some mild constraint qual-
ifications are satisfied, then the Karush–Kuhn–Tucker conditions are necessary and
sufficient for the global optimality of the lower-level problem. We can then replace the
bilevel problem with a single-level problem that contains the Karush–Kuhn–Tucker
conditions as constraints. The resulting problem is nonconvex and can be solved
with DC (difference of convex functions) optimization techniques or tailored branch-
and-bound algorithms; see [1, 3, 37, 38]. Alternatively, if the lower-level problem of
an optimistic bilevel problem is linear or convex quadratic, then one can use multi-
parametric programming techniques to solve the lower-level problem parametrically
for each upper-level decision x; see [29, 30, 70]. The resulting piecewise affine solution
map x �→ y∗(x) records the optimal lower-level decision y∗(x) for each upper-level
decision x. The optimal upper-level decision is then found by solving a single-level
problem for each affine subregion of the solution map, where the lower-level decision
y is replaced with the affine function y∗(x).

Bilevel problems become much more challenging if the lower-level problem fails
to be convex [61]. In particular, the Karush–Kuhn–Tucker conditions are no longer
sufficient for the global optimality of the lower-level problem. Hence, a single-level
formulation that replaces the lower-level problem with the Karush–Kuhn–Tucker con-
ditions no longer results in an equivalent reformulation, but merely in a conservative
approximation [58]. If an optimistic bilevel problem contains a nonconvex lower-
level problem that satisfies certain monotonicity requirements, then one can apply
algorithms from monotonic optimization [84] to globally solve the optimistic bilevel
problem; see [85]. For optimistic bilevel problems with a generic nonconvex lower-level
problem, a global optimization method is developed in [65]. The algorithm computes
parametric upper bounds on the optimal value function of the lower-level problem as
a function of the upper-level decisions. These parametric upper bounds can be used
in an optimal value reformulation to construct a relaxation of the bilevel problem that
can be solved as a single-level problem. Each of these single-level problems provides
a lower bound on the optimal objective value of the bilevel problem. By solving the
lower-level problem for a fixed value of the upper-level decisions and afterwards re-
solving the upper-level problem using an optimal value reformulation, one also obtains
an upper bound on the optimal objective value. The authors present a method to
iteratively tighten these bounds until the algorithm converges to the globally optimal
solution. They also elaborate several extensions of the algorithm, such as tightened
lower bounds using the Karush–Kuhn–Tucker conditions and a branching scheme for
the upper-level decisions. The method is extended to efficiently deal with continuous
and discrete variables in [59], and an extension to differential equations is proposed
in [64]. A global optimization method for generalized semi-infinite, coupled min-max
and optimistic bilevel problems without any convexity assumptions is developed in
[81]. The algorithm relies on an “oracle” optimization problem that decides whether
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a specified target objective value is achievable. If the target value can be attained,
then the oracle problem also determines a feasible solution that attains the target
value. The overall algorithm conducts a binary search over all target objective values
to determine the globally optimal solution. Finally, the paper [62] compiles a test
set of linear, convex, and nonconvex bilevel problems with optimal solutions to the
optimistic formulation.

Typically, the algorithms for the optimistic bilevel problem do not extend to
the pessimistic formulation. One may try to avoid this issue by solving the op-
timistic formulation and afterwards—should there be multiple optimal lower-level
solutions—perturb the upper-level decision so that a unique optimal lower-level solu-
tion is induced; see [24, section 7.1] and [75]. However, Example 1.1 shows that such
a perturbation may not exist.

Although the algorithms for the optimistic bilevel problem do not directly extend
to the pessimistic formulation, several papers suggest to solve the pessimistic bilevel
problem indirectly through a sequence of optimistic bilevel problems [49, 53, 54, 66].
In these papers, the objective function of the lower-level problem is amended with a
penalty term which favors lower-level decisions that lead to higher costs in the upper-
level objective. Under certain assumptions, the optimal solutions to these optimistic
bilevel problems converge to the optimal solutions of the pessimistic formulation if
the coefficient of the penalty term is decreased to zero. However, none of the pa-
pers provide numerical results for this scheme, and it remains unclear how well the
penalization method would work as part of a global optimization procedure.

We summarize the contributions of this paper as follows.
1. We analyze the structural properties of the pessimistic bilevel problem, in-

cluding the existence of optimal solutions and the computational complexity.
In particular, we identify an “independence” property that facilitates the
development of solution procedures.

2. We propose a solvable ε-approximation to the independent pessimistic bilevel
problem, and we prove convergence to the original problem when ε approaches
zero. While similar approximations have been suggested in the past, we pro-
vide a new condition that guarantees the convergence of our approximation.

3. We develop a solution procedure for the ε-approximations that does not re-
quire any convexity assumptions and that accommodates for integer lower-
level and/or upper-level decisions. To the best of our knowledge, we propose
the first direct solution scheme for the nonconvex pessimistic bilevel problem.
We also provide a computational study that examines the numerical behavior
of our algorithm.

In the related book chapter [82], we provide an introduction to bilevel optimiza-
tion that illustrates some of the applications and computational challenges, and that
outlines how bilevel problems can be solved. In this paper, we provide a formal justi-
fication for the conjectures made in [82], we examine the computational complexity of
pessimistic bilevel problems, and we develop and analyze a solution scheme for these
problems.

The remainder of this paper is structured as follows. In the next section, we study
two structural properties of the pessimistic bilevel problem: the existence of optimal
solutions and the computational complexity of the problem. In section 3 we develop
a sequence of approximate problems that are solvable and whose optimal solutions
converge to the optimal solutions of the pessimistic bilevel problem. We propose an
iterative solution scheme for these approximations in section 4, and we demonstrate
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the performance of our algorithm in section 5. We conclude in section 6. Extended
numerical results can be found in the accompanying technical report [90].

2. Problem analysis. We start with some terminology. The optimistic bilevel
problem results from problem PB if we replace the universal quantifier ∀ with an
existential quantifier ∃. The optimistic bilevel problem can be equivalently formulated
as follows:

minimize
x,y

f(x)

subject to g(x, y) ≤ 0
y ∈ Y(x) = argmin

z
{h(x, z) : z ∈ Y (x)}

x ∈ X.

If the set Y (x) in an optimistic or pessimistic bilevel problem does not depend
on x, that is, if Y (x) = Y (x′) for all x, x′ ∈ X , then we call the problem independent.
In this case, we denote by Y the set of feasible lower-level decisions. Note that the
lower-level problem of an independent bilevel problem still depends on the upper-level
decision x through the lower-level objective function h. We denote the independent
pessimistic bilevel problem by IPB. If Y (x) 
= Y (x′) for some x, x′ ∈ X , then we
call the bilevel problem dependent. Throughout this paper, we make the following
regularity assumptions.

(A1) The sets X and Y (x), x ∈ X , are compact.
(A2) The functions f , g, and h are continuous over their domains.

We allow the sets X and Y (x), x ∈ X , as well as the functions f , g, and h, to
be nonconvex. This implies that some or all of the upper-level and/or lower-level
decisions may be restricted to integer values.

Some of our results hold under weaker conditions. However, the aim of this paper
is to develop a numerical solution scheme for the pessimistic bilevel problem. Our
algorithm requires the solution of global optimization subproblems, and assumptions
(A1) and (A2) are required by virtually all global optimization procedures. For ease
of exposition, we therefore do not present the most general statement of our results.

For our analysis in this section, we also define the linear dependent pessimistic
bilevel problem:

(2.1)

minimize
x

c�x

subject to Ax+By ≥ b ∀y ∈ Y(x) = argmin
z∈Rm

+

{
f�z : Cx +Dz ≥ g

}
x ∈ R

n
+,

where c ∈ R
n, A ∈ R

p×n, B ∈ R
p×m, b ∈ R

p, f ∈ R
m, C ∈ R

q×n, D ∈ R
q×m, and

g ∈ R
q. In problem (2.1), the lower-level objective could additionally contain a linear

term d�x that depends on the upper-level decision x. Such a term would not change
the set of lower-level minimizers, however, and we omit it for ease of exposition.
We obtain the linear dependent optimistic bilevel problem if we replace the universal
quantifier ∀ in the bilevel constraint with an existential quantifier ∃. We say that
the linear optimistic or pessimistic bilevel problem is independent if the lower-level
problem satisfies C = 0.
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Bilevel problems are closely related to (generalized) semi-infinite programs [40,
78]. Under some mild conditions, a generalized semi-infinite program can be formu-
lated as a dependent (optimistic or pessimistic) bilevel problem in which the lower-
level objective maximizes the violation of the generalized semi-infinite constraint [77].
Similarly, under some mild conditions, a semi-infinite program can be formulated as
an independent (optimistic or pessimistic) bilevel problem in which the lower-level
objective maximizes the violation of the semi-infinite constraint. On the other hand,
an optimistic (dependent or independent) bilevel problem can be formulated as a
generalized semi-infinite program in which the generalized semi-infinite constraint en-
sures global optimality of the lower-level decision [77, 81]. Moreover, if the lower-level
problem is convex and satisfies a constraint qualification, then the generalized semi-
infinite constraint can be replaced with the optimality conditions for the lower-level
problem, which results in a finite-dimensional single-level problem [1, 3, 37, 38]. The
situation changes significantly when we consider the pessimistic bilevel problem. If
the lower-level problem is convex and satisfies a constraint qualification, then the pes-
simistic bilevel problem can be formulated as a generalized semi-infinite program in
which the upper-level constraint has to hold for all lower-level decisions that satisfy
the optimality conditions for the lower-level problem. If the lower-level problem is
strictly convex, then the optimality conditions have a unique solution, and we can
reformulate the pessimistic bilevel problem as a finite-dimensional single-level prob-
lem [1, 3, 37, 38]. We are not aware of any reformulations that allow us to reduce
nonconvex pessimistic bilevel problems to (generalized) semi-infinite programs, apart
from the trivial case where the lower-level objective is constant.

In the remainder of this section, we first investigate under which conditions bilevel
problems have optimal solutions. Afterwards, we analyze the computational complex-
ity of bilevel problems.

2.1. Existence of optimal solutions. Unlike other optimization problems, a
bilevel problem may not possess an optimal solution even though it is feasible and
satisfies (A1) and (A2). This happens if the feasible region of the bilevel problem fails
to be closed. In this section, we show under which conditions the existence of optimal
solutions is guaranteed.

In the most benign setting, a bilevel problem has at most one optimal lower-level
decision associated with each upper-level decision. In this case, a linear dependent
bilevel problem is solvable if its feasible region is nonempty and bounded [24, The-
orem 3.2]. Equally, a nonlinear dependent bilevel problem is solvable if its feasible
region is nonempty and compact, and if the Mangasarian–Fromowitz constraint qual-
ification holds at all feasible solutions [24, Theorem 5.1].

In general, however, a bilevel problem can have (infinitely) many optimal lower-
level decision associated with some or all of the upper-level decisions. In this case, a
linear dependent optimistic bilevel problem is solvable if its feasible region is nonempty
and bounded [24, Theorem 3.3]. This result includes linear independent optimistic
bilevel problems as a special case. On the other hand, the linear independent pes-
simistic bilevel problem is not solvable in general; see, e.g., the example presented in
[24, section 3.3]. This implies that, in general, the linear dependent pessimistic bilevel
problem is not solvable either.

A nonlinear dependent optimistic bilevel problem is solvable if its feasible region
is nonempty and compact, and if the Mangasarian–Fromowitz constraint qualification
holds at all feasible solutions [24, Theorem 5.2]. On the other hand, a nonlinear de-
pendent pessimistic bilevel problem in the standard formulation (1.1) is solvable if its
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feasible region is nonempty and compact, and if the set of lower-level optimal solu-
tions is lower semicontinuous for all upper-level decisions; see, e.g., [24, Theorem 5.3]
or [50]. To ensure lower semicontinuity of the set of lower-level optimal solutions, it
is sufficient to assume that the feasible region of the bilevel problem is polyhedral,
the upper-level objective function is continuous and the lower-level objective function
is convex and weakly analytic [50]. Alternative sufficient conditions are presented
in [43, 71, 88] and the references therein. As pointed out in [44], however, these
assumptions are very strong, and they are not even satisfied for linear independent
pessimistic bilevel problems.

We now present a set of alternative existence conditions that focus on the property
of independence.

Theorem 2.1 (existence of optimal solutions). Assume that the assumptions
(A1) and (A2) are satisfied and that the bilevel problem is feasible. Then the following
properties hold:

1. The independent optimistic bilevel problem has an optimal solution.
2. The independent pessimistic bilevel problem has an optimal solution if the

objective function h of the lower-level problem is (additively) separable. Oth-
erwise, it does not have an optimal solution in general [24].

3. The dependent optimistic and pessimistic bilevel problems do not have optimal
solutions in general, even if the objective function h of the lower-level problem
is separable.

Proof. We prove the three properties separately.
1. We note that the lower-level problem must be feasible for some upper-level

decision x since it is assumed that the bilevel problem is feasible. Since the bilevel
problem is independent, however, this implies that the lower-level problem must in-
deed be feasible for all upper-level decisions x ∈ X . The lower-level problem attains
its optimal objective value for all x ∈ X due to the extreme value theorem since h is
continuous and Y is compact. For a fixed x ∈ X , we can therefore denote the optimal
objective value of the lower-level problem by h∗(x) = min {h(x, y) : y ∈ Y }. Using
the well-known optimal value reformulation [26, 65, 68], the independent optimistic
bilevel problem can then be expressed as follows:

(2.2)

minimize
x,y

f(x)

subject to g(x, y) ≤ 0
h(x, y) ≤ h∗(x)
x ∈ X, y ∈ Y.

The function h∗ is continuous since it constitutes the minimum of continuous func-
tions. Hence, the feasible region of problem (2.2) is compact, and due to the continuity
of f we can employ the extreme value theorem to conclude that the independent op-
timistic bilevel problem has an optimal solution.

2. Assume that h is separable, that is, h(x, y) = h1(x) + h2(y) for continuous
functions h1 : X �→ R and h2 : Y �→ R. The lower-level problem is feasible for all
upper-level decisions x ∈ X if and only if it is feasible for some upper-level decision x.
If the lower-level problem is infeasible, then the existence of an optimal solution to
the bilevel problem follows from the extreme value theorem since X is compact and
f is continuous. Assume now that the lower-level problem is feasible. In this case,
the lower-level problem attains its optimal objective value for all x ∈ X due to the
extreme value theorem since h2 is continuous and Y is compact. For a fixed x ∈ X ,
we can therefore denote the optimal objective value of the lower-level problem by
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h∗(x) = h1(x) + h∗
2, where h∗

2 = min {h2(y) : y ∈ Y }. Using again an optimal value
reformulation, the set of optimal solutions to the lower-level problem can then be
described as

{y ∈ Y : h1(x) + h2(y) ≤ h∗(x)} = {y ∈ Y : h2(y) ≤ h∗
2} .

The set on the right-hand side of this identity does not depend on x, and it is compact
since h2 is continuous and Y is compact. If we denote this set by Y, then we can
reformulate the bilevel constraint as

max {g(x, y) : y ∈ Y} ≤ 0.

The expression on the left-hand side of this inequality is a continuous function of x
since it constitutes the maximum of continuous functions. Hence, the feasible region
of the independent pessimistic bilevel problem is compact, and due to the continuity
of f we can employ the extreme value theorem to conclude that the independent
pessimistic bilevel problem has an optimal solution if h is separable.

Section 3.3 in [24] presents an instance of the independent pessimistic bilevel
problem with a nonseparable function h that has no optimal solution. This concludes
the second part of the proof.

3. Consider the following dependent pessimistic bilevel problem:

maximize
x

x

subject to x ≤ y ∀y ∈ argmin
z

{z : xz ≤ 0, z ∈ [−1, 1]}
x ∈ [−1, 1] .

For x < 0, the unique optimizer of the lower-level problem is y = 0, which implies
that the upper-level constraint is satisfied. For x ≥ 0, on the other hand, the unique
optimizer of the lower-level problem is y = −1, which implies that the upper-level
constraint is violated. As a result, the feasible region is [−1, 0), and the problem has
no optimal solution. Moreover, since the lower-level problem always has a unique op-
timizer, the pessimistic and the optimistic formulation of this problem are equivalent,
that is, the optimistic formulation has no optimal solution either.

Theorem 2.1 confirms the conventional wisdom that pessimistic bilevel problems
are less well-behaved than optimistic bilevel problems. It also shows that independent
bilevel problems are more well-behaved than their dependent counterparts. In the
next section we will complement these results with an analysis of the computational
complexity of various formulations of the bilevel problem.

2.2. Computational complexity. Clearly, we expect the bilevel problem to
be difficult to solve if the objective function f or the feasible regions X or Y (x)
are nonconvex. Unlike other optimization problems, however, the bilevel problem
remains computationally challenging even in seemingly benign cases. In particular,
the linear dependent bilevel problem is well known to be NP-hard. Amongst others,
this has been proven in [6, 9, 14]. These results are strengthened in [27, 39, 42,
55], where it is shown that the linear dependent bilevel problem is indeed strongly
NP-hard. In fact, verifying local optimality of a given candidate solution for the
linear dependent bilevel problem is NP-hard [55, 87], and it has been shown in [18]
that linear dependent bilevel problems can possess exponentially many local optima.
Nevertheless, linear bilevel problems can be solved in polynomial time if the numberm
of lower-level decision variables is considered constant. This result, which is repeated
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below in Theorem 2.2, is discussed in [27, 28, 45, 46, 47]. The complexity of multilevel
problems, which contain several layers of nested lower-level problems, is studied in
[14, 27, 42]. More detailed reviews of the complexity of bilevel problems can be found
in [19, 27, 69].

The following theorem compiles several known as well as some new results about
the complexity of the linear bilevel problem. Our objective is to highlight the differ-
ences between the independent and the dependent formulation of the problem.

Theorem 2.2 (linear bilevel problem). Assume that (A1) holds, and consider
the linear bilevel problem (2.1).

1. The independent optimistic and independent pessimistic formulation of prob-
lem (2.1) can be solved in polynomial time.

2. The dependent optimistic and dependent pessimistic formulation of (2.1) can
be solved in polynomial time if m, the number of lower-level decision variables,
is constant [27]. Otherwise, both formulations are strongly NP-hard [42].

Remark 2.3. The polynomial-time solvability of the independent formulation of
problem (2.1) may seem trivial since the set of optimal lower-level solutions does
not depend on the upper-level decision. However, it is easy to construct problem
instances that possess infinitely many optimal lower-level solutions that are described
by a polyhedron with exponentially many vertices. This is the case, for example, if
f = 0, which implies that all solutions of the inequality system Dz ≥ g are optimizers
in the lower-level problem. It is therefore not a priori clear whether the independent
formulation of problem (2.1) can be solved efficiently.

Proof of Theorem 2.2. Consider the bilevel constraint of the linear independent
optimistic bilevel problem:

∃y ∈ argmin
z∈Rm

+

{
f�z : Dz ≥ g

}
: Ax+By ≥ b.

Define f� = minz∈Rm
+

{
f�z : Dz ≥ g

}
as the optimal value of the lower-level problem.

Then y ∈ R
m
+ is an optimal solution to the lower-level problem if and only if Dy ≥ g

and f�y ≤ f�. We therefore conclude that the constraints of the linear independent
optimistic bilevel problem are satisfied if and only if

∃y ∈ R
m
+ : Dy ≥ g, f�y ≤ f�, Ax+By ≥ b.

We can then reformulate the linear independent optimistic bilevel problem as follows:

minimize
x,y

c�x

subject to Ax +By ≥ b

Dy ≥ g, f�y ≤ f�

x ∈ R
n
+, y ∈ R

m
+ .

This is a linear program whose size is polynomial in the length of the input data,
that is, the vectors b, c, f , and g, as well as the matrices A, B, and D. We can use
the ellipsoid method or interior point techniques to solve this problem in polynomial
time [67].

Consider now the constraints of the linear independent pessimistic bilevel
problem:

Ax+By ≥ b ∀y ∈ argmin
z∈Rm

+

{
f�z : Dz ≥ g

}
.
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From the first part of this proof we know that y ∈ R
m
+ is an optimal solution to the

lower-level problem if and only if Dy ≥ g and f�y ≤ f�. Hence, the bilevel constraint
of the linear independent pessimistic bilevel problem is equivalent to

Ax+By ≥ b ∀y ∈ {
z ∈ R

m
+ : Dz ≥ g, f�z ≤ f�

}
.

Let A�
i and B�

i denote the ith row of matrix A and B, respectively. We can then
reformulate the constraints of the linear independent pessimistic bilevel problem as

A�
i x+ min

y∈Rm
+

{
B�

i y : Dy ≥ g, f�y ≤ f�
} ≥ bi ∀i = 1, . . . , p.

Due to linear programming duality, the embedded minimization problem equals

max
γ,δ

{
g�γ − f�δ : D�γ ≤ Bi + fδ, γ ∈ R

q
+, δ ∈ R+

}
.

We thus conclude that the ith constraint of the linear independent pessimistic bilevel
problem is satisfied if and only if there is γ ∈ R

q
+ and δ ∈ R+ such that

A�
i x+ g�γ − f�δ ≥ bi, D�γ ≤ Bi + fδ.

This allows us to reformulate the linear independent pessimistic bilevel problem as

minimize
x,Γ,δ

c�x

subject to Ax+ Γg − f�δ ≥ b

ΓD ≤ B + δf�

x ∈ R
n
+, Γ ∈ R

p×q
+ , δ ∈ R

p
+.

Here, all inequalities are understood elementwise. Again, this is a linear program
whose size is polynomial in the length of the input data, that is, the vectors b, c, f ,
and g, as well as the matrices A, B, and D. We thus conclude that the linear
independent pessimistic bilevel problem can be solved in polynomial time.

The polynomial-time solvability of the linear dependent optimistic and pessimistic
bilevel problem for constant m follows from [27], and the strong NP-hardness for
nonconstant m is shown in [42].

The proof of the first part of Theorem 2.2 deserves further attention as it employs
duality theory to solve variants of the linear bilevel problem. Duality theory has
been used previously to construct exact penalty functions for linear and quadratic
bilevel problems; see, e.g., [2, 52, 89, 91]. In these methods, the duality gap of the
lower-level problem is included in the upper-level objective function to determine an
optimal upper-level solution that simultaneously optimizes the lower-level objective.
In contrast, we use duality theory to equivalently reformulate the independent bilevel
problem as a polynomial-time solvable single-level optimization problem. To this end,
the property of independence turns out to be crucial.

Clearly, Theorem 2.2 also implies the strong NP-hardness of the nonlinear de-
pendent bilevel problem if the number m of lower-level variables is nonconstant. It
turns out, however, that even the most well-behaved independent formulation of the
nonlinear bilevel problem is already strongly NP-hard.

Theorem 2.4 (nonlinear bilevel problem). Assume that (A1) holds, and consider
the independent bilevel problem where f and g are affine, X and Y are polyhedral,
and the objective function h of the lower-level problem is quadratic and strictly convex.
The optimistic and the pessimistic formulation of this problem are strongly NP-hard.
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Proof. If h is strictly convex, then the lower-level problem has a unique optimal
solution for each upper-level decision x ∈ X , and the optimistic and pessimistic
formulation of the bilevel problem are equivalent. We can therefore restrict ourselves
to the pessimistic formulation in the following.

Our proof is based on a polynomial-time reduction to the strongly NP-hard
KERNEL problem [36]:

KERNEL Problem
Instance An undirected graph G = (V,E) with nodes V = {1, . . . , n} and

edges E ⊆ {{j, k} : j, k ∈ V }.
Question Does G contain a kernel, that is, is there a subset of nodes K ⊆ V

such that no nodes in K are adjacent and all nodes in V \K are
adjacent to nodes in K?

We assume thatG does not contain any isolated nodes, that is, {k ∈ V : {j, k} ∈ E} 
=
∅ for all j ∈ V . Indeed, if G only has isolated nodes, that is, if E = ∅, then K = V
is a trivial kernel. Otherwise, if some of the nodes in G are isolated, then the answer
to KERNEL does not change if we remove those nodes.

Consider the following instance of the independent pessimistic bilevel problem:

(2.3)

minimize
x,τ

τ

subject to
xj + xk ≤ 1 ∀ {j, k} ∈ E

τ ≥
∑
j∈V

y2j ∀(y1, y2) ∈ argmin
(z1,z2){

‖x− z1‖22 + 1
2n ‖e− z2‖22 : (z1, z2) ∈ Y

}
x ∈ R

n
+, τ ∈ R+,

where e denotes the n-dimensional vector of ones and

Y =
{
(z1, z2) ∈ R

n
+ × R

n
+ : z2j ≤ 1− z1j ∀j ∈ V, z2j ≤ 1− z1k ∀ {j, k} ∈ E

}
.

This problem satisfies the assumptions of the theorem. We claim that the problem
attains an optimal objective value of zero if and only if the graph G has a kernel.
Moreover, we show that if G has a kernel, then there is an optimal solution x with
xj = 1 if j ∈ V is part of the kernel and xj = 0 otherwise. Intuitively, the first
upper-level constraint ensures that no two adjacent nodes can be part of the kernel,
whereas the bilevel constraint requires τ to exceed the number of nodes outside the
kernel that are not adjacent to some kernel node. Indeed, we will see that any optimal
solution (y1, y2) to the lower-level problem satisfies y1 = x and y2j = 1 if j ∈ V is a
node outside the kernel that is not adjacent to any kernel node. This follows from the
definition of Y : the first constraint requires y2j to be zero if j is a kernel node, and
the second constraint ensures that y2j is zero if j is adjacent to any kernel node. Note
that problem (2.3) is feasible for any graph G since (x, τ) = (0, n) always constitutes
a feasible solution, the associated optimal lower-level solution being (y1, y2) = (0, e).
Also, the optimal objective value of problem (2.3) is nonnegative by construction.

Our proof consists of three steps. First, we show that for a given upper-level
decision x, every optimal lower-level decision (y1, y2) satisfies y1 = x. Afterwards,
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we prove that every optimal (y1, y2) satisfies

(2.4) y2j = min
{
1− y1j , min

{j,k}∈E
{1− y1k}

}
∀j ∈ V.

Finally, we combine (2.4) with an argument presented in [39] to show that the graph
G has a kernel if and only if the optimal objective value of the bilevel problem (2.3)
is zero.

In view of the first step, assume that (y1, y2) is an optimal lower-level decision
that satisfies y1l = xl + δ for some l ∈ V and δ 
= 0. Consider the lower-level
decision (y′1, y

′
2) defined through y′1l = xl, y′1j = y1j for j ∈ V \ {l}, as well as

y′2j = max {0, y2j − |δ|} for j ∈ V . This decision satisfies y′2 ≥ 0 by construction, as
well as y′1 ≥ 0 since x ≥ 0 and y1 ≥ 0. One readily verifies that (y′1, y

′
2) also satisfies

the other constraints of Y . Hence, (y′1, y
′
2) ∈ Y , that is, (y′1, y

′
2) is feasible in the

lower-level problem. Moreover, we obtain that

h(x; y1, y2)− h(x; y′1, y
′
2) ≥ δ2 − n

2n
δ2 =

1

2
δ2 > 0,

where

h(x; y1, y2) = ‖x− y1‖22 +
1

2n
‖e− y2‖22 for x ∈ X, (y1, y2) ∈ Y

denotes the objective function of the lower-level problem. We conclude that (y1, y2)
is not optimal, and hence every optimal lower-level solution indeed satisfies y1 = x.

As for the second step, assume that (y1, y2) is an optimal lower-level decision that
does not satisfy (2.4). Since (y1, y2) ∈ Y , this implies that there is l ∈ V and δ > 0
such that

y2l ≤ min
{
1− y1l, min

{l,k}∈E
{1− y1k}

}
− δ.

Consider the lower-level decision (y1, y
′
2) defined through y′2l = y2l + δ and y′2j = y2j

for j ∈ V \ {l}. By construction, we have that (y1, y
′
2) ∈ Y . Moreover, since any

(z1, z2) ∈ Y satisfies z2 ≤ e due to the first constraint of Y , the lower-level objective
h is strictly decreasing in its last component vector over Y . Hence, we obtain that
h(x; y1, y

′
2) < h(x; y1, y2), which contradicts the optimality of (y1, y2). We therefore

conclude that every optimal lower-level decision (y1, y2) satisfies (2.4).
In view of the third step, assume that the graph G has a kernel K ⊆ V . In this

case, x with xj = 1 if j ∈ K and xj = 0 for j ∈ V \K satisfies the first upper-level
constraint. Moreover, this choice of x ensures that (y1, y2) = (x, 0) is feasible in the
lower-level problem. Indeed, from the previous two steps we conclude that (y1, y2)
is optimal in the lower-level problem. Thus, the optimal value of τ associated with
our choice of x is zero, which implies that problem (2.3) attains an objective value
of zero. Assume now that an optimal solution (x, τ) to problem (2.3) attains an
objective value of zero. From the bilevel constraint we know that the optimal lower-
level solution satisfies y2 = 0. Employing (2.4), we see that this entails the existence
of a set K = {j ∈ V : z1j = 1} such that every node in V \K is adjacent to at least
one node of K. From the first part of this proof we furthermore know that x = z1.
Thus, the first upper-level constraint ensures that no nodes in K are adjacent to each
other. In this case, however, K must constitute a kernel of G.

Theorems 2.2 and 2.4 complement the existing complexity results for bilevel prob-
lems by distinguishing between independent and dependent problems, as well as linear
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and nonlinear problems. In particular, Theorem 2.2 shows that the linear independent
bilevel problem can be solved in polynomial time, whereas its dependent counterparts
is strongly NP-hard. However, Theorem 2.4 shows that the tractability of the linear
independent bilevel problem does not carry over to nonlinear variants.

3. Convergent ε-approximations. From now on, we will focus on the indepen-
dent pessimistic bilevel problem IPB. We know from Theorem 2.1 that the feasible
region of this problem may not be closed, which implies that the problem may not
be solvable. In order to derive a solvable optimization problem, we now consider an
ε-approximation of IPB:

(IPB(ε))
minimize

x
f(x)

subject to g(x, y) ≤ 0 ∀y ∈ Yε(x) = {z ∈ Y : h(x, z) < h(x, z′) + ε ∀z′ ∈ Y }
x ∈ X.

Here, ε > 0 is a parameter. If Y is empty, then the bilevel constraint is vacuously
satisfied for all x ∈ X , and we can find an optimal solution to both the independent
pessimistic bilevel problem IPB and any ε-approximation IPB(ε) by minimizing f(x)
over X . In the following, we assume that Y is nonempty.

From a game-theoretic perspective, the approximation IPB(ε) can be interpreted
as a conservative version of a Stackelberg leader-follower game in which the leader
accounts for all ε-optimal decisions of the follower. Apart from tractability consider-
ations, problem IPB(ε) is of interest in its own right for at least two reasons. First,
the leader in a Stackelberg game may have incomplete information, that is, she may
not know the values of all parameters in the follower’s optimization problem. In this
case, the leader may want to include some safety margin to hedge against deviations
from the anticipated follower’s decision. Second, the follower in a Stackelberg game
may be constrained by bounded rationality, which implies that she may not be able
to solve the lower-level optimization problem to global optimality. In that case, the
leader may want to implement a decision that performs best in view of all ε-optimal
decisions of the follower.

We now show that the ε-approximation IPB(ε) has a closed feasible region for
any ε > 0.

Proposition 3.1 (closedness of ε-approximation). Assume that Y is nonempty
and that (A1) and (A2) are satisfied. Then the feasible region of IPB(ε) is closed for
any ε > 0.

Proof. The Tietze extension theorem allows us to assume that the functions f , g,
and h are continuous on the extended domains f : Rn �→ R and g, h : Rn × R

m �→ R.
To avoid notational clutter, we use the same symbols f , g, and h for the extended
functions in this proof. We denote by h∗ : R

n �→ R the function that maps an
upper-level decision to the value of an optimal lower-level decision, that is,

h∗(x) = min
y∈Y

h(x, y) for x ∈ R
n.

The compactness of Y and the continuity of h guarantee that h∗(x) is well-defined for
all x ∈ R

n. The set Yε(x) of ε-optimal lower-level decisions in problem IPB(ε) can
now be reformulated as

Yε(x) = {z ∈ Y : h(x, z) < h∗(x) + ε} .

D
ow

nl
oa

de
d 

07
/1

7/
13

 to
 1

8.
51

.1
.2

28
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

366 WIESEMANN, TSOUKALAS, KLENIATI, AND RUSTEM

Since the set X is closed, the feasible region of the ε-approximation IPB(ε) is
closed if the set

Xε = {x ∈ R
n : g(x, y) ≤ 0 ∀y ∈ Yε(x)}

is closed. This set is closed if and only if its complement set

X ε = {x ∈ R
n : g(x, y) > 0 for some y ∈ Yε(x)}

is open. To show that X ε is indeed open, we take an element x̂ of this set and show
that x ∈ X ε for all elements x in the δ-ball Bδ(x̂) around x̂, where δ > 0 is a constant
that we will specify shortly.

Since x̂ ∈ X ε, there is ŷ ∈ Yε(x̂) such that g(x̂, ŷ) ≥ λg for some constant λg > 0,
as well as h(x̂, ŷ) ≤ h∗(x̂)+ε−λh for some constant λh > 0. We show that g(x, ŷ) > 0
and h(x, ŷ) < h∗(x) + ε for all x ∈ Bδ(x̂).

The continuity of g implies that there is indeed a constant δg > 0 such that
g(x, ŷ) > 0 for all x ∈ Bδg(x̂). Similarly, the composite function (x, y) �→ h(x, y) −
h∗(x) is continuous because h∗ inherits continuity from h. Hence, there is a constant
δh > 0 such that h(x, ŷ) < h∗(x) + ε for all x ∈ Bδh(x̂), that is, ŷ ∈ Yε(x) for all
x ∈ Bδh(x̂). We thus conclude that for δ ≤ min {δg, δh}, we have x ∈ X ε for all
x ∈ Bδ(x̂).

It is straightforward to generalize the ε-approximation IPB(ε) to dependent pes-
simistic bilevel problems. However, the feasible region of the resulting approximate
problems would not be closed in general. The property of independence therefore
turns out to be central to the development of our approximation scheme.

We now investigate whether the ε-approximation IPB(ε) converges in some suit-
able sense to the independent pessimistic bilevel problem IPB. To this end, we define
Y0(x) = Y(x) for x ∈ X , and we show that that mapping ε �→ Yε(x) is upper semicon-
tinuous at zero, that is, the set of ε-optimal lower-level decisions in IPB(ε) converges
to the set Y(x) of optimal lower-level decisions in IPB as ε goes to zero.

Lemma 3.2. Assume that Y is nonempty and that (A1) and (A2) are satisfied.
Then, for all x ∈ X the set-valued mapping ε �→ Yε(x) is Hausdorff upper semicon-
tinuous at zero:

∀κ > 0 ∃ε > 0 such that ∀ε ∈ (0, ε], y ∈ Yε(x) ∃y′ ∈ Y(x) : ‖y − y′‖ ≤ κ.

Proof. Fix some x ∈ X , and assume to the contrary that for some κ > 0 we have

∀ε > 0 ∃ε ∈ (0, ε], y ∈ Yε(x) : ‖y − y′‖ > κ ∀y′ ∈ Y(x).
For the sequence εk = 1/k, we can then construct sequences εk ∈ (0, εk] and yk ∈
Yεk(x) such that

‖yk − y′‖ > κ ∀y′ ∈ Y(x).
Since Yεk(x) ⊆ Y for all k and Y is bounded, we can apply the Bolzano–Weierstrass
theorem to conclude that yk has a convergent subsequence. Without loss of general-
ity, we assume that yk itself converges to y∗. By construction, the limit y∗ satisfies

‖y∗ − y′‖ ≥ κ ∀y′ ∈ Y(x).
However, from the closedness of Y and the continuity of h we conclude that

y∗ ∈ Y and h(x, y∗) ≤ h(x, y) ∀y ∈ Y,
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that is, y∗ ∈ Y(x). This contradicts the fact that there is κ > 0 such that ‖y∗ − y′‖ ≥
κ for all y′ ∈ Y(x). We thus conclude that our assumption was wrong, that is, the
assertion of the lemma is indeed valid.

We now show that the upper semicontinuity of the mapping ε �→ Yε(x) carries
over to the bilevel constraint function. This is a not a new observation; a similar
result can be found in [5, Theorem 4.2.2]. To keep the paper self-contained, however,
we provide an independent proof in the following.

Lemma 3.3. Assume that Y is nonempty and that (A1) and (A2) are satisfied.
Then, for all x ∈ X the mapping ε �→ sup{g(x, y) : y ∈ Yε(x)} is upper semicontinu-
ous at zero:

∀κ > 0 ∃ε > 0 such that sup
y∈Yε(x)

g(x, y) ≤ sup
y∈Y(x)

g(x, y) + κ ∀ε ∈ (0, ε].

Proof. Fix some x ∈ X and κ > 0. Since X and Y are compact, we can apply
the Heine–Cantor theorem to conclude that g is uniformly continuous over its support
X × Y . Hence, there is δg > 0 such that

∀y, y′ ∈ Y : ‖y − y′‖ ≤ δg =⇒ |g(x, y)− g(x, y′)| ≤ κ.

For this δg, we can now apply Lemma 3.2 to ensure that

∃ε > 0 such that ∀ε ∈ (0, ε], y ∈ Yε(x) ∃y′ ∈ Y(x) : ‖y − y′‖ ≤ δg.

Taken together, the last two statements imply that there is ε > 0 such that for all
ε ∈ (0, ε], we have

∀y ∈ Yε(x) ∃y′ ∈ Y(x) such that |g(x, y)− g(x, y′)| ≤ κ.

The assertion now follows from the continuity of g.
We now show that under certain conditions, the upper semicontinuity of the

mapping ε �→ sup{g(x, y) : y ∈ Yε(x)} implies that the optimal value of the ε-
approximation IPB(ε) “converges” (in some well-defined sense) to the optimal value
of the independent pessimistic bilevel problem IPB. We intentionally use quotation
marks in this statement because IPB may not have an optimal value; see Theo-
rem 2.1. We therefore consider a variant of IPB in which we replace the feasible
region of IPB with its closure. By construction, this problem—which we refer to
as cl(IPB)—has an optimal solution whenever its feasible region is nonempty. The
following observation summarizes some basic relationships between IPB and cl(IPB).

Observation 3.4. Assume that (A1) and (A2) are satisfied. Then the two prob-
lems IPB and cl(IPB) satisfy the following properties:

1. cl(IPB) has a feasible solution if and only if IPB is feasible.
2. If IPB has an optimal solution x∗, then x∗ is also optimal in cl(IPB).
3. If cl(IPB) has an optimal solution x∗, then there exists a sequence of feasible

solutions {xk}k∈N
for IPB that converges to x∗.

By a slight abuse of notation, we denote by cl(IPB) both the closed independent
pessimistic bilevel problem and its optimal value (with the convention that cl(IPB) =
+∞ if the problem is infeasible). Likewise, we use IPB(ε) to refer to either the
ε-approximation of IPB or the optimal value of this approximation. In both cases,
the meaning will be clear from the context.

If the independent pessimistic bilevel problem IPB is infeasible, then both the
closed problem cl(IPB) and all approximate problems {IPB(ε)}ε>0 are infeasible as
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well. We now show that the approximate problems IPB(ε) converge to cl(IPB) if
the independent pessimistic bilevel problem IPB is feasible.

Theorem 3.5 (convergence of ε-approximation). Assume that Y is nonempty,
that (A1) and (A2) are satisfied, that IPB is feasible, and that cl(IPB) has an optimal
solution x∗ that is not a local minimizer of the function x �→ sup{g(x, y) : y ∈ Y(x)}
over X with value zero. Then we have

lim
ε↘0

IPB(ε) = cl(IPB).

Remark 3.6. The assumption that x∗ is not a local minimizer of the function
x �→ sup{g(x, y) : y ∈ Y(x)} over X with value zero is reminiscent of a stability
condition developed for global optimization problems; see [83]. It is equivalent to the
requirement that x∗ is the limit of a sequence of Slater points.

Proof of Theorem 3.5. By construction, the feasible region of IPB(ε) is a subset
of the feasible region of IPB and, a fortiori, cl(IPB). Hence, IPB(ε) ≥ cl(IPB) for
all ε > 0, and we have only to show that

∀κ > 0 ∃ε > 0 such that IPB(ε) ≤ cl(IPB) + κ ∀ε ∈ (0, ε].

We distinguish between three different cases, depending on the value of the bilevel
constraint in cl(IPB) at x∗. Assume first that sup{g(x∗, y) : y ∈ Y(x)} < 0, and fix
some κ > 0. In this case, there is λ > 0 such that sup{g(x∗, y) : y ∈ Y(x)} ≤ −λ,
and we can invoke Lemma 3.3 to conclude that there is ε > 0 such that

sup
y∈Yε(x∗)

g(x∗, y) ≤ 0 ∀ε ∈ (0, ε],

that is, x∗ is also feasible in IPB(ε) for all ε ∈ (0, ε]. Since the problems {IPB(ε)}ε>0

share the same objective function f with cl(IPB), we conclude that IPB(ε) =
cl(IPB) for all ε ∈ (0, ε] if sup{g(x∗, y) : y ∈ Y(x)} < 0.

Assume now that sup{g(x∗, y) : y ∈ Y(x)} = 0, and fix some κ > 0. Since the
objective function f in cl(IPB) and {IPB(ε)}ε>0 is continuous, there is δ > 0 such
that f(x) ≤ f(x∗) + κ for all x in the δ-ball Bδ(x

∗) around x∗. Moreover, since x∗

is not a local minimizer of the function x �→ sup{g(x, y) : y ∈ Y(x)} over X , there
is x̂ ∈ Bδ(x

∗)∩X such that sup{g(x̂, y) : y ∈ Y(x)} ≤ −λ for some λ > 0. We can
again invoke Lemma 3.3, this time to conclude that there is ε > 0 such that

sup
y∈Yε(x̂)

g(x̂, y) ≤ 0 ∀ε ∈ (0, ε],

that is, x̂ is feasible in IPB(ε) for all ε ∈ (0, ε]. We therefore know that IPB(ε) ∈
[cl(IPB), cl(IPB) + κ] for all ε ∈ (0, ε] if sup{g(x∗, y) : y ∈ Y(x)}=0. Since κ > 0
was chosen arbitrarily, the assertion follows.

Finally, the case sup{g(x∗, y) : y ∈ Y(x)} > 0 cannot arise because x∗ is assumed
to be feasible.

Theorem 3.5 also provides a condition under which the ε-approximations IPB(ε)
are feasible.

Corollary 3.7. Under the assumptions of Theorem 3.5, there is ε > 0 such
that IPB(ε) is feasible for all ε ∈ (0, ε].

The assumptions in Theorem 3.5 are both necessary and sufficient. In fact, one
can easily construct counterexamples where IPB(ε) does not converge to cl(IPB) if
any of the assumptions is violated.
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Example 3.8. Consider the following instance of the independent pessimistic
bilevel problem:

minimize
x

x

subject to max
{
y − x− 2, 4− x2

} ≤ 0 ∀y ∈ argmin
y

{y : y ∈ [0, 1]}
x ∈ R.

The function x �→ sup {g(x, y) : y ∈ Y(x)} is nonpositive for x ≥ 2, positive for
x ∈ (−∞, 2) \ {−2} and zero for x = −2. Hence, the formulation IPB has its
unique optimal solution at x = −2, which is a local minimizer of the function x �→
sup {g(x, y) : y ∈ Y(x)} with value zero. In contrast, x �→ sup {g(x, y) : y ∈ Yε(x)}
is nonpositive for x ≥ 2 and positive for x ∈ (−∞, 2) for any ε > 0. Hence, the
approximate problems IPB(ε) have their unique optimal solutions at x = 2, and they
do not converge to the independent pessimistic bilevel problem IPB as ε goes to zero.

To sum up, the feasible region of the independent pessimistic bilevel problem
IPB may not be closed, which implies that IPB does not have an optimal solution
in general. We considered a variant cl(IPB) of IPB in which we replaced the feasible
region of IPB with its closure. Problem cl(IPB) is feasible whenever IPB is, but
cl(IPB) is guaranteed to have an optimal solution whenever it is feasible. We have also
presented an ε-approximation IPB(ε) of IPB. Similar to cl(IPB), the approximate
problems IPB(ε) have optimal solutions whenever they are feasible, and we have
shown that the optimal values of IPB(ε) converge to the optimal value of cl(IPB)
under some technical condition.

The idea of replacing bilevel problems with ε-approximations is not new; see, e.g.,
[23, 25, 31]. A Stackelberg game with polyhedral feasible regions for both players,
quadratic leader objective function and linear follower objective function is studied
in [53], and the authors present an ε-approximation to the problem. Approximations
to generic nonconvex bilevel problems are developed by Molodtsov [66], as well as
Loridan and Morgan; see, e.g., [48]. Our main contribution in this section is to
provide a new condition that guarantees the convergence of our ε-approximation.

4. Iterative solution procedure. In this section, we fix a value ε > 0 for the
approximate problem IPB(ε) and develop an iterative solution procedure for IPB(ε)
that is reminiscent of the discretization schemes used in the solution of semi-infinite
programs. To this end, we first reformulate IPB(ε) as an infinite-dimensional single-
level problem.

Proposition 4.1. The approximate problem IPB(ε) is equivalent to the infinite-
dimensional problem

(4.1)

minimize
x,z,λ

f(x)

subject to λ(y) · [h(x, z)− h(x, y) + ε] + (1− λ(y)) · [g(x, y)] ≤ 0 ∀y ∈ Y
x ∈ X, z ∈ Y, λ : Y �→ [0, 1] ,

where the function λ : Y �→ [0, 1] is a decision variable.
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Proof. By definition, the bilevel constraint in IPB(ε) is equivalent to the follow-
ing semi-infinite constraint:1

[y ∈ Yε(x) ⇒ g(x, y) ≤ 0] ∀y ∈ Y

⇐⇒ [y /∈ Yε(x)] ∨ [g(x, y) ≤ 0] ∀y ∈ Y.(4.2)

From the definition of the set Yε(x), we conclude that y /∈ Yε(x) if and only if

∃z ∈ Y : h(x, y) ≥ h(x, z) + ε.

Satisfaction of the semi-infinite constraint (4.2) is therefore equivalent to the existence
of z ∈ Y such that

[h(x, y) ≥ h(x, z) + ε] ∨ [g(x, y) ≤ 0] ∀y ∈ Y.

For a fixed lower-level decision y ∈ Y , this constraint can be reformulated as

∃λ ∈ [0, 1] : λ [h(x, z)− h(x, y) + ε] + (1− λ) [g(x, y)] ≤ 0.

The assertion now follows if we introduce a different variable λ(y) for each y ∈
Y .

We propose to solve the infinite-dimensional optimization problem (4.1) with an
iterative solution scheme that is inspired by the discretization techniques used in
semi-infinite programming [15, 40]. Our solution scheme is described in Algorithm 1.

At its core, the algorithm solves a sequence of finite-dimensional approxima-
tions (4.1k) of problem (4.1) that involve subsets of the constraints parametrized
by y ∈ Y , as well as subsets of the decision variables λ(y), y ∈ Y . Each of these ap-
proximations constitutes a relaxation of problem (4.1) in the sense that any feasible
solution to (4.1) can be reduced to a feasible solution in (4.1k), whereas it may not be
possible to extend a feasible solution to (4.1k) to a feasible solution in (4.1). Step 3 of
Algorithm 1 aims to identify a constraint in problem (4.1) that cannot be satisfied by
any extension of the optimal solution to the relaxation (4.1k). If no such constraint
exists, then the optimal solution to (4.1k) can be extended to an optimal solution
in (4.1), and the algorithm terminates. Otherwise, we refine the finite-dimensional
approximation (4.1k) and enter the next iteration. We now prove the correctness of
the algorithm.

Theorem 4.2. Assume that (A1) and (A2) are satisfied. If Algorithm 1 termi-
nates in step 4 of the kth iteration, then xk can be extended to an optimal solution of
problem (4.1). If Algorithm 1 does not terminate, then the sequence {xk}k∈N contains
accumulation points, and any accumulation point of {xk}k∈N can be extended to an
optimal solution of (4.1).

Proof. Assume that Algorithm 1 terminates in step 4 of the kth iteration. In that
case, we have

τk ≤ 0 ⇐⇒ max
y∈Y

min

{
min
z∈Y

h(xk, z)− h(xk, y) + ε, g(xk, y)

}
≤ 0

⇐⇒ max
y∈Y

min
λ∈[0,1]

λ ·
[
min
z∈Y

h(xk, z)− h(xk, y) + ε

]
+ (1− λ) · [g(xk, y)] ≤ 0.

1The semi-infinite disjunctive constraint (4.2) bears some similarity to the exposition in [65]. In
that paper, however, disjunctive constraints are used to enforce dependent second-stage constraints,
whereas we employ them to enforce the bilevel constraint for all approximate second-stage solutions
y ∈ Yε(x).
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Algorithm 1.

1. Initialization. Set Y0 = ∅ (considered lower-level decisions) and k = 0
(iteration counter).

2. Master problem. Solve the following finite-dimensional approxima-
tion of problem (4.1):

(4.1k)

minimize
x,z,λ

f(x)

subject to λ(yk) · [h(x, z)− h(x, yk) + ε]
+(1− λ(yk)) · [g(x, yk)] ≤ 0 ∀yk ∈ Yk

x ∈ X, z ∈ Y, λ : Yk �→ [0, 1] .

Let (xk, zk, λk) denote an optimal solution to this problem.
3. Subproblem. Calculate the value hk = min {h(xk, z) : z ∈ Y } of the

lower-level problem associated with xk, and solve the problem

maximize
τ,y

τ

subject to τ ≤ hk − h(xk, y) + ε
τ ≤ g(xk, y)
τ ∈ R, y ∈ Y.

Let (τk, yk) denote an optimal solution to this problem.
4. Termination criterion. If τk ≤ 0, terminate: xk solves the approxi-

mate problem IPB(ε). Otherwise, set Yk+1 = Yk ∪ {yk}, k → k + 1
and go back to step 2.

By construction, the last inequality is equivalent to

∃λ : Y �→ [0, 1] : λ(y)·
[
min
z∈Y

h(xk, z)− h(xk, y) + ε

]
+(1−λ(y))·[g(xk, y)] ≤ 0 ∀y ∈ Y,

that is, xk can be extended to a feasible solution (xk, z, λ) to problem (4.1) if we
choose z ∈ argmin{h(xk, y) : y ∈ Y }. Since problem (4.1k) constitutes a relaxation
of problem (4.1) and both problems share the same objective function, this implies
that the solution (xk, z, λ) is indeed optimal in problem (4.1).

Assume now that Algorithm 1 does not terminate. Since the sets X and Y
are bounded, we can apply the Bolzano–Weierstrass theorem to conclude that the
sequence {(xk, yk)}k∈N generated by Algorithm 1 contains accumulation points. By
selecting any accumulation point and possibly going over to subsequences, we can
assume that the sequence {(xk, yk)}k∈N itself converges to (x∗, y∗). The closedness of
X and Y guarantees that x∗ ∈ X and y∗ ∈ Y . We apply a similar reasoning as in
Theorem 2.1 in [15] to show that x∗ can be extended to a feasible solution (x∗, z, λ)
to problem (4.1). Choosing again z ∈ argmin {h(x∗, y) : y ∈ Y }, we need to show
that there is a function λ : Y �→ [0, 1] such that

λ(y) ·
[
min
z∈Y

h(x∗, z)− h(x∗, y) + ε

]
+ (1− λ(y)) · [g(x∗, y)] ≤ 0 ∀y ∈ Y.

D
ow

nl
oa

de
d 

07
/1

7/
13

 to
 1

8.
51

.1
.2

28
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

372 WIESEMANN, TSOUKALAS, KLENIATI, AND RUSTEM

Assume to the contrary that there is ŷ ∈ Y such that

λ ·
[
min
z∈Y

h(x∗, z)− h(x∗, ŷ) + ε

]
+ (1 − λ) · [g(x∗, ŷ)] ≥ δ

for all λ ∈ [0, 1] and some δ > 0. The continuity of g and h implies that for k
sufficiently large, we have

λ ·
[
min
z∈Y

h(xk, z)− h(xk, ŷ) + ε

]
+ (1− λ) · [g(xk, ŷ)] ≥ δ′

for all λ ∈ [0, 1] and some δ′ > 0. From the subproblem in step 3 of Algorithm 1, we
can see that

min

{
min
z∈Y

h(xk, z)− h(xk, yk) + ε, g(xk, yk)

}

≥ min

{
min
z∈Y

h(xk, z)− h(xk, ŷ) + ε, g(xk, ŷ)

}
,

that is,

λ ·
[
min
z∈Y

h(xk, z)− h(xk, yk) + ε

]
+ (1− λ) · [g(xk, yk)] ≥ δ′

for all λ ∈ [0, 1]. Taking the limit as k goes to infinity, the continuity of g and h
implies that

λ ·
[
min
z∈Y

h(x∗, z)− h(x∗, y∗) + ε

]
+ (1− λ) · [g(x∗, y∗)] ≥ δ′

for all λ ∈ [0, 1]. However, by construction of (4.1k), there is λ ∈ [0, 1] such that

λ ·
[
min
z∈Y

h(xk+1, z)− h(xk+1, yk) + ε

]
+ (1− λ) · [g(xk+1, yk)] ≤ 0

in iteration k + 1 of the algorithm. Taking the limit as k goes to infinity, we have

λ ·
[
min
z∈Y

h(x∗, z)− h(x∗, y∗) + ε

]
+ (1− λ) · [g(x∗, y∗)] ≤ 0

for some λ ∈ [0, 1] since the sequence {xk+1}k∈N also converges to x∗. This yields a
contradiction, and we conclude that there is a function λ : Y �→ [0, 1] such that

λ(y) ·
[
min
z∈Y

h(x∗, z)− h(x∗, y) + ε

]
+ (1− λ(y)) · [g(x∗, y)] ≤ 0 ∀y ∈ Y,

that is, x∗ can indeed be extended to a feasible solution (x∗, z, λ) to problem (4.1).
We can now apply the same reasoning as in the case of finite termination to conclude
that (x∗, z, λ) actually solves (4.1).

Remark 4.3. Algorithm 1 is an example of an outer approximation scheme since
it constructs a sequence of infeasible solutions to problem IPB(ε) that converges
to an optimal solution of IPB(ε). In practice, Algorithm 1 is stopped as soon as
the termination criterion in step 4 is met approximately (i.e., up to some tolerance).
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Theorem 4.2 provides a formal justification for this approach in the sense that after
sufficiently many iterations of the algorithm, the resulting solution can be expected
to be close to an optimal solution of IPB(ε). Stronger guarantees can be obtained if
problem IPB(ε) is solved with an inner approximation scheme. Under the assump-
tions of Theorem 3.5, IPB(ε) inherits Slater points from IPB if ε is sufficiently small;
see also Remark 3.6. We can then employ the reasoning in the proof of Proposition 4.1
to equivalently reformulate problem IPB(ε) as the following semi-infinite program:

minimize
x,z

f(x)

subject to min {h(x, z)− h(x, y) + ε, g(x, y)} ≤ 0 ∀y ∈ Y
x ∈ X, z ∈ Y, λ : Y �→ [0, 1] .

One could try to solve this semi-infinite program with inner approximation schemes
such as the adaptive convexification algorithm presented in [34], solution approaches
using interval analysis [10, 11], or methods relying on clever restrictions of the con-
straint right-hand sides [60, 80]. Note, however, that additional complications may
arise due to the nonsmoothness of the constraint function. For simplicity, we
restrict ourselves in the following to the outer approximation scheme presented in
Algorithm 1.

We close with an extension of Algorithm 1 that we will use in our numerical study.
Remark 4.4 (tightened master problem). If we evaluate the semi-infinite con-

straint in problem (4.1) at y = z, then we obtain

λ(z) · ε+ (1− λ(z)) · [g(x, z)] ≤ 0.

Since ε is strictly positive, any feasible solution to (4.1) must satisfy λ(z) < 1, that
is, g(x, z) ≤ 0. In contrast, an optimal solution (xk, zk, λk) to the finite-dimensional
approximation (4.1k) may not satisfy g(xk, zk) ≤ 0 if zk /∈ Yk. We therefore obtain
a tighter approximation if we include the constraint g(x, z) ≤ 0 in problem (4.1k).
Similar constraints are used in Karush–Kuhn–Tucker methods for generalized semi-
infinite programs; see [79].

This seemingly insignificant extension of Algorithm 1 can lead to substantial
performance improvements. To illustrate this, consider the following instance of the
independent pessimistic bilevel problem IPB:

minimize
x

x

subject to x ≥ y ∀y ∈ argmin
z

{|z − 2x| : z ∈ [0, 10]}
x ≥ 1.

If we solve the approximate problem IPB(ε) for ε = 0.1, then Algorithm 1 termi-
nates in iteration k = 81 with the optimal solution x81 = 10. Up to the penul-
timate iteration, the algorithm generates the sequence xk = 1 + 0.05k, zk = 2xk,
Yk = {2xl : l = 0, . . . , k − 1}, and λk(yk) = 1 for all yk ∈ Yk. In each of these iter-
ations, xk is increased just enough so that the choice zk = 2xk satisfies h(xk, zk) −
h(xk, yk) + ε ≤ 0 for all lower-level decisions yk ∈ Yk in the master problem (4.1k).
Intuitively, this choice of zk ensures that none of the elements yk ∈ Yk is identified
as an ε-optimal lower-level decision for xk. However, the resulting pairs (xk, zk) are
not feasible in IPB(ε) since they violate the constraint g(xk, zk) ≤ 0. As a result,
up to the penultimate iteration xk violates the bilevel constraint g(xk, yk) ≤ 0 for all
considered lower-level decisions yk ∈ Yk, and the algorithm performs an exhaustive
exploration of the set Y of feasible lower-level decisions.
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If we include the constraint g(x, z) ≤ 0 in problem (4.1k), then Algorithm 1
terminates in iteration k = 4 with the same optimal solution x4 = 10. In that
case, the algorithm generates the sequence xk = min

{
2k, 10

}
, zk ∈ [0, xk], Yk =

{2xl : l = 0, . . . , k − 1}, and λk(yk) = 0 for all yk ∈ Yk. The algorithm now ensures
that the resulting pairs (xk, zk) satisfy g(xk, zk) ≤ 0 in IPB(ε), that is, the choice
zk = 2xk is no longer feasible in (4.1k). The upper-level decision xk now satisfies
g(xk, yk) ≤ 0 for all yk ∈ Yk in the master problem (4.1k). Hence, the additional
constraint g(x, z) ≤ 0 avoids an exhaustive exploration of the set Y in this case.

5. Computational study. We applied an implementation of Algorithm 1 to
the bilevel programming benchmark instances published by Mitsos and Barton [62].
The test set comprises 36 problem instances. Out of these, six instances do not con-
tain upper-level decisions, and the respective lower-level problems have unique global
minima. While our algorithm can be applied to these problems, we do not report the
results since all of these instances are solved in the first iteration. In another 12 in-
stances, the feasible region of the lower-level problem depends on the upper-level deci-
sion, which implies that our solution scheme cannot be used to solve these instances.
In the following, we apply Algorithm 1 to the remaining 18 benchmark instances.
The intermediate master problems and subproblems were solved to global optimality
on an 8-core Intel Xeon machine with 2.33GHz clock speed and 8GB memory using
GAMS 23.9 and BARON 11.1.2,3 We used the standard settings of BARON, with the
exception that we changed the optimality tolerance to 10−5.

The numerical results are summarized in Table 5.1. From left to right, the columns
of the table describe the name of the problem instance, the number of upper-level
and lower-level decision variables, the optimal solution to the optimistic and the
pessimistic bilevel problem, the parameter ε that specifies the approximation quality of
problem IPB(ε), as well as the number of iterations and the runtime in CPU seconds
required by Algorithm 1. For each problem instance, we report the analytical solutions
in the first one or two rows (italicized), while the numerical results determined by our
solution scheme are given in the last one or two rows (in roman font).

The table shows that the optimal solutions to the optimistic and the pessimistic
bilevel formulation coincide in seven instances: mb 1 1 02, mb 1 1 03, mb 1 1 05,
mb 1 1 08, mb 1 1 10, mb 1 1 14, and gf 4. In the remaining 11 instances, the opti-
mistic and the pessimistic formulation lead to different solutions. We discuss these
instances in further detail in the accompanying technical report [90].

To further study the scalability of Algorithm 1, we consider a stylized production
planning problem in which two companies A and B manufacture a set of products
indexed by i = 1, . . . , n. Company A is the market leader, and as such it has to
choose its production quantities x ∈ X = [0, 10]

n
first. Company B is a market

follower, which means that it can observe the production quantities x before choosing
its production levels y ∈ Y = [0, 10]n. The product prices are given by a function
p : X × Y �→ R+, which is defined through

pi(x, y) = 10− xi + yi
4

−
∑
j �=i

xj + yj
8(n− 1)

, i = 1, . . . , n.

This expression reflects the assumption that the market clearing price for product i
is decreasing in the cumulative supply xi + yi of product i as well as the cumulative

2GAMS homepage: http://www.gams.com.
3BARON homepage: http://archimedes.cheme.cmu.edu/baron/baron.html.
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Table 5.1

Numerical results for Algorithm 1. From left to right, the columns describe the problem instance,
the number of upper-level and lower-level decisions, the optimal solution to the optimistic and the
pessimistic bilevel problem, the parameter ε of the approximation IPB(ε), as well as the number
of iterations and the runtime in CPU seconds required by Algorithm 1. For each problem instance,
the first one or two rows report the analytical solutions (italicized), while the last one or two rows
document the numerical results for different values of ε (in roman font). Variables of value “∞”
indicate infeasible problems, and α represents an arbitrarily small positive number.
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Table 5.2

Numerical results for the scalability experiment. The tables show the numbers of iterations (left)
and the runtimes in CPU seconds (right) for different numbers of products manufactured by the
companies. All results constitute median values over 25 randomly generated problem instances. For
the lower right problem (“both companies produce five products”), more than 50% of the generated
instances exceeded the per-iteration time limit of 1,000 CPU seconds.

# follower
1 2 3 4 5

#
le
a
d
er

1 2 2 2 3 3
2 3 5 6 5 6
3 7 11 14 14 18
4 6 15 17 19 21
5 7 20 17 22 −

# follower
1 2 3 4 5

#
le
a
d
er

1 0.13 0.17 0.18 0.23 0.27
2 0.68 0.75 0.71 0.91 0.98
3 1.02 7.66 56.53 178.80 220.91
4 1.19 58.17 709.90 1,423.72 1,602.41
5 1.06 192.08 1,501.79 2,325.03 −

supply
∑

j �=i(xj + yj) of the other products, that is, the goods are weak substitutes.
Assuming that the production cost vectors for companies A and B are given by
cA ∈ R

n
+ and cB ∈ R

n
+, respectively, the problem can then be formulated as follows:

maximize
x,τ

τ

subject to τ ≤ [p(x, y)− cA]
�
x ∀y ∈ Y(x)

x ∈ [0, 10]n ,

where Y(x) = argmax
z

{
[p(x, z)− cB]

�
z : z ∈ [0, 10]

n
}
.

In this problem, both companies choose production quantities for the products that
maximize the overall profit. In the following, we want study the impact of the number
of upper-level and lower-level decisions on the tractability of the bilevel problem. To
this end, we consider a variant of the production planning problem where we vary the
number of products manufactured by each company independently. The results over
25 problem instances with uniformly distributed costs cA,i, cB,i ∼ U [3, 5] are shown in
Table 5.2. While small instances of the problem can be solved with reasonable effort,
the table reveals that the runtime of Algorithm 1 grows very quickly, in particular if
the number of upper-level variables is increased.

6. Conclusions. We studied the pessimistic bilevel problem without convexity
assumptions. We derived conditions that guarantee the existence of optimal solutions,
and we investigated the computational complexity of various problem formulations.
We then examined a sequence of approximate problems that are solvable and that
converge (under some technical condition) to the pessimistic bilevel problem, and we
developed an iterative solution scheme for these approximations. We identified an
independence property that is essential for both the formulation and the solution of
the approximate problems. To the best of our knowledge, we presented the first direct
solution method for the pessimistic bilevel problem.

It would be interesting to see how our approach can be extended to instances
of the pessimistic bilevel problem that do not possess the independence property.
A promising starting point for such a study would be to investigate how our solution
scheme can be combined with the algorithm presented in [65] for the dependent op-
timistic bilevel problem. Another avenue for future research is the development of
local optimization procedures that avoid a discretization of the bilevel constraint and
thus scale more gracefully with problem size. In particular, it would be instructive
to investigate how inner approximation schemes such as [10, 11, 34, 60, 80] can be
applied to our approximations of the pessimistic bilevel problem.
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