

MIT Open Access Articles

The zero-sum game of pathway optimization: Emerging paradigms for tuning gene expression

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

Citation: Solomon, Kevin V., and Kristala L. J. Prather. The Zero-sum Game of Pathway Optimization: Emerging Paradigms for Tuning Gene Expression. Biotechnology Journal 6, no. 9 (September 21, 2011): 1064-1070.

As Published: http://dx.doi.org/10.1002/biot.201100086

Publisher: John Wiley & Sons, Inc.

Persistent URL: http://hdl.handle.net/1721.1/79618

Version: Author's final manuscript: final author's manuscript post peer review, without publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

Biotechnology Journal

The zero-sum game of pathway optimization: emerging paradigms for tuning gene expression

Journal:	Biotechnology Journal
Manuscript ID:	biot.201100086.R1
Wiley - Manuscript type:	Review
Date Submitted by the Author:	n/a
Complete List of Authors:	Solomon, Kevin; Synthetic Biology Engineering Research Center (SynBERC); MIT, Dept. of Chemical Engineering Prather, Kristala; Synthetic Biology Engineering Research Center (SynBERC); MIT, Dept. of Chemical Engineering
Primary Keywords:	Metabolic Engineering
Secondary Keywords:	Synthetic Biology
Keywords:	flux optimization, tuning of gene expression

2 3 4 5	1	The zero-sum game of pathway optimization: emerging
6 7 8 9	2	paradigms for tuning gene expression
10 11 12	3	Kevin V. Solomon, Kristala L. J. Prather*
13 14 15	4	
16 17	5	Department of Chemical Engineering
18 19 20	6	Synthetic Biology Engineering Research Center (SynBERC),
20 21 22	7	Massachusetts Institute of Technology
23 24	8	Cambridge, MA, 02139, USA
25 26 27	9	* Corresponding author:
28 29	10	Department of Chemical Engineering
30 31 32	11	77 Massachusetts Avenue
33 34	12	Room 66-454
35 36 37	13	Cambridge, MA 02139
38 39	14	Phone: 617.253.1950
40 41	15	Fax: 617.258.5042
42 43 44	16	Email: kljp@mit.edu
45 46	17	
47 48 ⊿9	18	Keywords: flux optimization, metabolic engineering, synthetic biology, tuning of gene
50 51	19	expression
52 53	20	
54 55 56	21	Running title: Tuning expression for pathway optimization
57 58 59 60	22	

23 Abstract

With increasing price volatility and growing awareness of the lack of sustainability of traditional chemical synthesis, microbial chemical production has been tapped as a promising renewable alternative for the generation of diverse, stereospecific compounds. Nonetheless, many attempts to generate them are not yet economically viable. Due to the zero sum nature of microbial resources, traditional strategies of pathway optimization are attaining minimal returns. This result is in part a consequence of the gross changes in host physiology resulting from such efforts and underscores the need for more precise and subtle forms of gene modulation. In this review, we describe alternative strategies and emerging paradigms to address this problem and highlight potential solutions from the emerging field of synthetic biology.

Page 3 of 24

Biotechnology Journal

35 Introduction

Microbial production systems display a remarkable flexibility in the diversity and enantioselectivity of the compounds that they can generate. These compounds have historically been natural products such as ethanol, amino acids, acetone and antibiotics. However, with the introduction of ever more sophisticated tools, a range of natural and unnatural products have been made in engineered hosts including compounds such as hydroxyacids[1-3], isoprenoids[4, 5], polyketides[6, 7], and biopolymers[8, 9]. While several of these processes have been successfully commercialized [10-12], many remain economically infeasible and are the subject of intense optimization efforts. In optimizing microbial pathways, the objectives are to maximize product flux, yield and selectivity. Traditionally, this problem has been approached by an analysis of the metabolic pathway that leads to removing branch points that lower product yield and selectivity (gene inactivation) and increasing the flux of intermediates through the pathway (gene overexpression). The power of such methods has improved tremendously with the advent of computational tools such as Flux Balance Analysis (FBA) [13, 14] and bilevel optimization [15-17] to identify flux bottlenecks, yet, they are still fundamentally constrained by the interconnectedness and finite nature of microbial resources (Figure 1). Gene inactivations may necessitate media supplementation, impair cellular function and are sometimes infeasible for non-linear production pathways. Overexpression of pathway genes, on the other hand, comes at the expense of endogenous ones due to consumption of common precursors and titration of cellular machinery such as polymerases and ribosomes and may lead to growth inhibition, reduced expression and even cell death [18-20]. In certain hosts the heat shock response is stimulated by protein

2	
ა ⊿	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
1/	
14	
10	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
04 55	
55	
56	
57	
58	
59	
60	

1 2

> 58 overexpression [21, 22] further limiting the degree of overexpression possible. Moreover, 59 successfully overexpressing or knocking out genes does not guarantee improved 60 productivity. Decoupling the native regulation of flux within the pathway in these ways 61 may lead to the accumulation of intermediates that can inhibit pathway enzymes [3, 23] 62 or are bacteriostatic [1, 24, 25]. These challenges are not insurmountable, but they do 63 underscore the need for more tools in pathway optimization. This review will highlight 64 novel approaches to pathway optimization and describe emerging paradigms for flux 65 manipulation.

66

67 **Downregulation of related pathways**

68 Modulation of gene expression, such as downregulation of undesired branch 69 points, has been identified as a fruitful avenue for increased pathway productivity [16, 70 17]. In contrast to gene inactivation, downregulation offers the ability to redirect 71 metabolite flux into production pathways while maintaining sufficient flux for 72 endogenous processes. Moreover, in cases of drastic differences in catalytic efficiency of 73 competing enzymes, it may prove more efficient than overexpression of pathway 74 enzymes. Downregulation may be implemented in many different ways. One 75 promising method, amenable to implementation in a wide variety of hosts and pathways, 76 is the use of antisense RNA (asRNA) mediated inhibition of translation [26-30]. 77 One such example of asRNA use in pathway optimization is found in the 78 engineering of *Clostridium acetobutylicum*. Predating the rise of petrochemical sources, 79 C. acetobutylicum was an industrially relevant source of solvents such as acetone and 80 butantol [33] which it naturally ferments as part of its lifecycle [31, 32]. Recent volatility

Page 5 of 24

1

2
3
1
4
5
6
7
o
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
21
22
23
24
25
20
26
27
28
20
29
30
31
32
33
33
34
35
36
37
57
38
39
40
<u>4</u> 1
11 10
42
43
44
45
16
40
47
48
49
50
50
51
52
53
54
57
55
56
57
58
50
59
nn

81	in the price of chemical feedstocks and increasing concern regarding the sustainability of
82	traditional chemical synthetic routes have led to renewed interest in the species with a
83	focus on controlling the distribution of products [27, 29, 34, 35]. The Papoutsakis group
84	used an asRNA approach to downregulate the CoA transferase which catalyzes the
85	formation of acetone (ctfA1) to shift these strains to a primarily alcohologenic mode of
86	production (ethanol and butanol), obtaining the highest ethanol titers reported at the time
87	in C. acetobutylicum [29, 34]. Similar success has been reported for the engineering of
88	glutamate synthesis from Corynebacterium glutamicum. C. glutamicum is a natural
89	overproducer of amino acids and an industrial source of several of these including
90	glutamate [36] which is produced from the transamination of α -ketoglutarate, a citric acid
91	cycle intermediate. Utilizing an asRNA approach, Kim and coworkers [28] increased the
92	cell specific productivity of glutamate by inhibiting activity of 2-oxoglutarate
93	dehydrogenase thereby allowing sufficient flux of α -ketoglutarate through the citric acid
94	cycle for energy production while diverting additional precursors to increase glutamate
95	synthesis. Finally, asRNA technology has been utilized in the synthesis of cobalamin
96	(Vitamin B_{12}) in <i>Bacillus megaterium</i> to improve titers and yields by 20% [30].
97	The use of downregulation extends beyond the realm of small molecule synthesis
98	and has similar applications in recombinant protein production where acetate has been
99	established to have an inhibitory effect on specific protein expression and bacterial
100	growth [37-40]. Controlling acetate production by inactivation of phosphotransacetylase
101	(pta) or acetate kinase (ackA) genes in E. coli, which shunt excess acetyl-CoA to acetate,
102	has a deleterious effect on the cellular redox state [40], carbon flux [41], and ultimately
103	growth [41]. Diverse solutions such as process-based schemes [37] and metabolic

Page 6 of 24

2	
3	
4	
- -	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
~~	
23	
24	
25	
26	
20	
27	
28	
29	
30	
30	
31	
32	
33	
34	
25	
35	
36	
37	
38	
20	
39	
40	
41	
42	
13	
43	
44	
45	
46	
17	
47	
48	
49	
50	
51	
50	
52	
53	
54	
55	
56	
00	
57	
58	
59	
60	
00	

1

104	engineering of the host to shunt the excess acetyl-CoA to acetoin [39] have been
105	developed to address the issue. Nonetheless, these solutions are not scalable to all
106	methods of culture and inhibit ATP synthesis by acetate secretion. Thus, Kim and Cha
107	[42] chose an antisense based scheme to minimize detrimental physiological effects.
108	Through minor antisense inhibition of <i>ackA</i> and <i>pta</i> , Kim and Cha were able to reduce
109	acetate formation by more than 20% while simultaneously observing a 60% improvement
110	in the production of green fluorescent protein with negligible impact on cellular growth.
111	These examples of asRNA inhibition are not the only examples of pathway
112	downregulation. Alternative strategies such as those utilizing the effect of codon bias on
113	translational efficiency in C. glutamicum [43, 44], repressible promoters in S. cerevisiae
114	[45-47] and titrating inducible promoters in E. coli [48] have been used with great
115	success to increase product yields and/or titers. Moreover, the last decade has seen
116	intense efforts to regulate genes at the transcriptional and post translational levels
117	culminating in several novel methods such as regulated suppression of amber mutations
118	[49], inducible protein degradation [50], engineered allostery [51] and riboregulators [52,
119	53]. Despite the fact that many of these emerging technologies have yet to mature and
120	attain widespread adoption, particularly in an industrial context, the growing interest in
121	asRNA points to its relative ease of implementation. While unexplored in these studies,
122	another advantage of downregulation is the possibility of dynamic control of gene
123	expression.
124	

125 **Dynamic Expression Profiles**

Page 7 of 24

1

Biotechnology Journal

2	
3	
4	
5	
6	
7	
פ	
0	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
<u>~~</u> ??	
23	
24	
25	
26	
27	
28	
29	
20	
30	
31	
32	
33	
34	
35	
36	
27	
20	
38	
39	
40	
41	
42	
43	
44	
77 15	
40	
46	
47	
48	
49	
50	
51	
52	
52	
03	
54	
55	
56	
57	
58	
50	
60	
U U	

126 When maximizing product titers and yields for industrial scale fermentation, 127 carbon flux is shifted from the normal balance of metabolic intermediates and shunted 128 into the desired product. This shift is frequently at odds with the goals of the cell, i.e. 129 maintaining metabolic flux levels and maximizing biomass. Thus, genetic alterations 130 that alter metabolic flux will incur a redistribution of metabolites to compensate for the 131 change with some inhibition of growth. Gadkar et al. [54] studied this issue *in silico* as it 132 applied to glycerol and ethanol production. In their work, they pursued a bilevel 133 optimization strategy analogous to that of OptKnock [15] where product titers are 134 maximized subject to growth maximization and other physical constraints to determine 135 gene candidates for upregulation or deletion. However, unlike OptKnock, they also 136 optimized the timing of these genetic changes. For glycerol production, simulations of a 137 biphasic approach to gene expression resulted in a 30% improvement in titers over a 138 static strategy. Similarly, ethanol titers were improved by 40% over a static strategy and 139 90% over wildtype behavior. These cases and more were further studied by Anesiadis 140 and coworkers [55] with the simulated behavior of genetic elements from synthetic 141 biology, as opposed to instantaneous switching in expression, and came to a similar 142 conclusion: dynamic control of gene expression may be implemented to increase pathway 143 productivity.

One of the first experimental demonstrations of this paradigm was elegantly performed in 2000. In trying to produce lycopene in *E. coli*, Farmer and Liao [56] sought to overexpress 2 key rate limiting enzymes: phosphoenolpyruvate synthase (Pps), which controls the pool of a glycolytic intermediate needed for lycopene biosynthesis, and isopentenyl diphosphate isomerase (Idi), which pulls glycolytic intermediates into the

149	lycopene biosynthetic pathway. However, overexpressing them statically from a tac
150	promoter hindered growth, yields and titers. Thus, they engineered a gene
151	circuit/metabolite control system in which expression of pps and idi was directly tied to
152	the availability of acetyl phosphate, a proxy for glycolytic flux and cellular health.
153	Using this approach, they were able to overexpress these enzymes to higher levels than
154	that seen using a static approach while maintaining cellular viability and ultimately
155	improve titers by 50%, productivity three-fold and carbon yields by more than an order of
156	magnitude. Similar control systems have also been developed to drive protein expression
157	through the use of quorum sensing in E. coli [57, 58]. Such systems allow for
158	coordinated delayed induction across multiple cellular populations in addition to
159	transmitting the metabolic load state of the host [59] thereby mitigating potential
160	challenges associated with protein overexpression. Moreover, they are modular and
161	readily amenable to integration in complex circuits [57] where Boolean logic and sensor
162	functions can be implemented for tight pathway regulation in combination with other
163	strategies for cumulative effects. A hypothetical example of this is presented in Figure 2
164	where sensing and logic (AND) operations are used to drive expression of pathway genes
165	and product only when high cell densities and carbon flux are achieved.

167 <u>Emerging paradigms</u>

With an eye towards the creation of sophisticated gene circuits and networks for both pathway regulation and biosynthesis, the emerging discipline of synthetic biology has established a paradigm of developing reusable modules or "parts" and "devices" to control gene expression [60-62]. Towards this end, libraries of sensors, control

172	elements, promoters [63-65], and ribosome binding sites (RBS) [66] among others have
173	been developed. Many of these libraries are curated within the Registry of Standard
174	Biological Parts (http://partsregistry.org) and are freely available to the community.
175	Through these libraries of parts, network components may be individually selected, tuned
176	and regulated to achieve the necessary phenotype.
177	The rise of part libraries has also been accompanied by the development of
178	computer aided design (BioCAD) tools to facilitate the design of ever more complex
179	circuits [67-71]. However, they are dependent on the availability of datasheets [72] or
180	other experimental characterization to describe them which are typically context
181	dependent and not readily generalizable to all scenarios. Moreover, the current lack of
182	generic insulators for these parts results in feedback from downstream parts, or
183	retroactivity [73], which can further perturb performance from expectation. Nonetheless,
184	there has been some success with the engineering of systems from these libraries using
185	both theoretical and experimental approaches. For example, using an equilibrium
186	statistical thermodynamic model, Salis and coworkers [74] were able evaluate the effects
187	of the 5' UTR on translation culminating in the design of novel RBSs able to achieve
188	expression levels spanning 5 orders of magnitude. Their software tool, RBSCalculator
189	(https://salis.psu.edu/software/), also allows for relative expression tuning of a given
190	sequence. Empirical and combinatorial approaches to the tuning of gene expression from
191	library components have also proven successful in optimizing yields of lycopene and
192	mevalonate production pathways [63, 75]. Finally, a combination of both theoretical and
193	experimental characterization has been used to design and develop tuned systems with
194	little post hoc adjustment [76].

195	More recently, new part classes such as engineered enzyme complexes have been
196	developed. As discussed previously, manipulating flux gives rise to a myriad of
197	challenges such as the physiological consequences of flux imbalance and titration of
198	cellular machinery. These undesired effects can be attenuated with gene modulation and
199	gene circuits with some tradeoff in selectivity due to reduced pathway intermediates.
200	Inspired by natural solutions to minimize this tradeoff [77, 78], Deuber et al. [79]
201	engineered an enzyme scaffold scheme to recruit multiple pathway enzymes in a single
202	complex. By colocalizing enzymes in this way, diffusional limitations are effectively
203	nullified and toxic metabolites can be maintained at locally high, but globally low,
204	concentrations to maximize pathway flux with minimal disruption to endogenous
205	processes. Furthermore, this scaffolding is scalable and generalizable to many enzymes
206	and pathways in specified stoichiometries allowing for efficient spatial organization of
207	pathway genes [79-81]. Using this system, mevalonate titers were improved by 70-fold
208	when compared to scaffold free control. Moreover, with rate limiting enzymes being
209	expressed at nominally low levels, the scaffolded constructs were able to achieve these
210	yields without the growth inhibition seen in an unscaffolded design [79]. Alternative
211	strategies such as direct protein fusions have also proved successful in improving
212	pathway productivity [81].

Conclusions and Perspectives

Wiley-VCH

Microbial production systems have enormous potential to synthesize many

systems for economic feasibility remains a challenge, in part, due to the zero sum nature

valuable chemical compounds in a sustainable manner. However, optimizing these

Page 11 of 24

1

Biotechnology Journal

2	
3	
1	
5	
0	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ 21	
∠ I 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
20	
30	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54	
55	
00 57	
5/	
58	
59	
60	

218	of intracellular metabolites (Figure 1). Redirecting these metabolites into pathways of
219	interest necessitates a loss of flux elsewhere and titration of cellular machinery away
220	from endogenous processes resulting in negative physiological consequences. These
221	concerns may be attenuated to some degree by microbial consortia. Such mixed
222	populations of cells are able to achieve more complex tasks, are more robust to
223	environmental changes and are able to be organized by function [82]. More importantly,
224	this functional specialization allows for the distribution of the metabolic burden across
225	populations resulting in overall healthier cultures and potentially more efficient
226	pathways. This advantage is offset, however, by the recalcitrant nature of genetic
227	manipulations of all but a few species and the potential for competition between
228	populations making a single organism, single population solution the most tractable
229	solution for the immediate future.
230	Despite the limitations of finite cellular resources, the use of tools which precisely
001	

231 modulate expression levels has led to much improvement in pathway function by 232 mitigating the effects of the pathway on host physiology. Synthetic biology has further 233 contributed genetic parts and tools that allow for more precise application of regulation 234 through mechanisms such as basic computation [66, 83, 84], sensing [56, 85] and timed 235 expression [57, 58] with demonstrated improvements in productivity. Moreover, these 236 modifications may all be combined for cumulative pathway improvement (Figure 2). 237 With increased understanding of the consequences of metabolic perturbations and 238 evermore sophisticated regulation of expression, yields of microbial production systems 239 may soon be economically competitive with traditional synthesis culminating in the 240 realization of widespread microbial production.

241 Acknowledgments

- 242 This work was supported by the Synthetic Biology Engineering Research Center
- 243 (SynBERC) funded by the National Science Foundation (Grant Number EEC-0540879),
- and a NSF CAREER Award (Grant Number CBET-0954986). Supplemental assistance
- 245 was also provided by the Natural Sciences and Engineering Research Council (NSERC)
- of Canada through a fellowship to KVS. The authors would also like to thank Diana M.
- 247 Bower for assistance with final proofing of the manuscript.
- 249 The authors have declared no conflict of interest.

1 2		
- 3 4	250	References
5 6	251	
7 8 0	252	[1] Pitera, D. J., Paddon, C. J., Newman, J. D., Keasling, J. D., Balancing a heterologous mevalonate
9 10	253	pathway for improved isoprenoid production in Escherichia coli. Metab Eng 2007, 9, 193-207.
12	254	[2] Lee, SH., Park, S., Lee, S., Hong, S., Biosynthesis of enantiopure (S)-3-hydroxybutyric acid in
13	255	metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 2008, 79, 633-641.
15 16	256	[3] Tseng, HC., Harwell, C., Martin, C., Prather, K., Biosynthesis of chiral 3-hydroxyvalerate from single
17 18	257	propionate-unrelated carbon sources in metabolically engineered E. coli. Microbial Cell Factories 2010, 9,
19 20	258	96.
21 22	259	[4] Martin, V. J. J., Pitera, D. J., Withers, S. T., Newman, J. D., Keasling, J. D., Engineering a mevalonate
23 24	260	pathway in Escherichia coli for production of terpenoids. Nat Biotech 2003, 21, 796-802.
25 26	261	[5] Ajikumar, P. K., Xiao, WH., Tyo, K. E. J., Wang, Y., et al., Isoprenoid pathway optimization for taxol
27 28	262	precursor overproduction in Escherichia coli. Science 2010, 330, 70-74.
29 30	263	[6] McDaniel, R., Ebert-Khosla, S., Hopwood, D. A., Khosla, C., Engineered biosynthesis of novel
31 32	264	polyketides. Science 1993, 262, 1546-1550.
33 34	265	[7] Pfeifer, B. A., Admiraal, S. J., Gramajo, H., Cane, D. E., Khosla, C., Biosynthesis of complex
35 36	266	polyketides in a metabolically engineered strain of E. coli. Science 2001, 291, 1790-1792.
37 38	267	[8] Xia, XX., Qian, ZG., Ki, C. S., Park, Y. H., et al., Native-sized recombinant spider silk protein
39 40	268	produced in metabolically engineered Escherichia coli results in a strong fiber. PNAS 2010, 107, 14059-
41 42	269	14063.
43 44	270	[9] Wang, F., Lee, S. Y., Production of poly(3-hydroxybutyrate) by fed-batch culture of filamentation-
45 46	271	suppressed recombinant Escherichia coli. Appl Environ Microbiol 1997, 63, 4765-4769.
47 48	272	[10] Singh, O., Kumar, R., Biotechnological production of gluconic acid: future implications. Appl
49 50	273	Microbiol Biotechnol 2007, 75, 713-722.
50 51 52	274	[11] Kurian, J. V., A new polymer platform for the future — Sorona(R) from corn derived 1,3-propanediol.
52 53	275	J Polym Environ 2005, 13, 159-167.
54 55 56 57 58 59 60	276	[12] Van Noorden, R., Demand for malaria drug soars. <i>Nature</i> 2010, <i>466</i> , 672-673.

277	[13] Varma, A., Palsson, B. O., Metabolic flux balancing: Basic concepts, scientific and practical use. Nat
278	Biotech 1994, 12, 994-998.
279	[14] Varma, A., Palsson, B. O., Stoichiometric flux balance models quantitatively predict growth and
280	metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 1994, 60,
281	3724-3731.
282	[15] Burgard, A. P., Pharkya, P., Maranas, C. D., Optknock: A bilevel programming framework for
283	identifying gene knockout strategies for microbial strain optimization. Biotech. Bioeng. 2003, 84, 647-657.
284	[16] Pharkya, P., Maranas, C. D., An optimization framework for identifying reaction activation/inhibition
285	or elimination candidates for overproduction in microbial systems. Metab Eng 2006, 8, 1-13.
286	[17] Ranganathan, S., Suthers, P. F., Maranas, C. D., OptForce: An optimization procedure for identifying
287	all genetic manipulations leading to targeted overproductions. PLoS Comput Biol 2010, 6, e1000744.
288	[18] Glick, B. R., Metabolic load and heterologous gene expression. Biotechnol Adv 1995, 13, 247-261.
289	[19] Jones, K. L., Kim, SW., Keasling, J. D., Low-copy plasmids can perform as well as or better than
290	high-copy plasmids for metabolic engineering of bacteria. Metab Eng 2000, 2, 328-338.
291	[20] Dong, H., Nilsson, L., Kurland, C. G., Gratuitous overexpression of genes in Escherichia coli leads to
292	growth inhibition and ribosome destruction. J Bacteriol 1995, 177, 1497-1504.
293	[21] Harcum, S. W., Bentley, W. E., Response dynamics of 26-, 34-, 39-, 54-, and 80-kDa proteases in
294	induced cultures of recombinant Escherichia coli. Biotech. Bioeng. 1993, 42, 675-685.
295	[22] Goff, S. A., Goldberg, A. L., Production of abnormal proteins in E. coli stimulates transcription of lon
296	and other heat shock genes. Cell 1985, 41, 587-595.
297	[23] Berry, A., Dodge, T. C., Pepsin, M., Weyler, W., Application of metabolic engineering to improve
298	both the production and use of biotech indigo. J Ind Microbiol Biotechnol 2002, 28, 127-133.
299	[24] Zhu, M. M., Skraly, F. A., Cameron, D. C., Accumulation of methylglyoxal in anaerobically grown
300	Escherichia coli and its detoxification by expression of the Pseudomonas putida glyoxalase I gene. Metab
301	Eng 2001, 3, 218-225.
302	[25] Barbirato, F., Grivet, J. P., Soucaille, P., Bories, A., 3-Hydroxypropionaldehyde, an inhibitory
303	metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl Environ Microbiol
304	1996, 62, 1448-1451.

1 2		
3	305	[26] Fong, S. S., Burgard, A. P., Herring, C. D., Knight, E. M., et al., In silico design and adaptive
5	306	evolution of Escherichia coli for production of lactic acid. Biotech. Bioeng. 2005, 91, 643-648.
7 8	307	[27] Tummala, S. B., Welker, N. E., Papoutsakis, E. T., Design of antisense RNA constructs for
9 10	308	downregulation of the acetone formation pathway of Clostridium acetobutylicum. J Bacteriol 2003, 185,
10 11 12	309	1923-1934.
13	310	[28] Kim, J., Hirasawa, T., Sato, Y., Nagahisa, K., et al., Effect of odhA overexpression and odhA
14 15 16	311	antisense RNA expression on Tween-40-triggered glutamate production by Corynebacterium glutamicum.
17	312	Appl Microbiol Biotechnol 2009, 81, 1097-1106.
19	313	[29] Sillers, R., Al-Hinai, M. A., Papoutsakis, E. T., Aldehyde-alcohol dehydrogenase and/or thiolase
20	314	overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in
22	315	Clostridium acetobutylicum fermentations. Biotech. Bioeng. 2009, 102, 38-49.
24 25	316	[30] Biedendieck, R., Malten, M., Barg, H., Bunk, B., et al., Metabolic engineering of cobalamin (vitamin
26 27	317	B12) production in Bacillus megaterium. Microbial Biotechnology 2009, 3, 24-37.
28 29	318	[31] Grupe, H., Gottschalk, G., Physiological events in Clostridium acetobutylicum during the shift from
30 31	319	acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Appl
32 33	320	Environ Microbiol 1992, 58, 3896-3902.
34 35	321	[32] Terracciano, J. S., Kashket, E. R., Intracellular conditions required for initiation of solvent production
36 37	322	by Clostridium acetobutylicum. Appl Environ Microbiol 1986, 52, 86-91.
38 39	323	[33] Gibbs, D. F., The rise and fall (and rise?) of acetone/butanol fermentations. <i>Trends Biotechnol</i> 1983, 1,
40 41	324	12-15.
42 43	325	[34] Tummala, S. B., Junne, S. G., Papoutsakis, E. T., Antisense RNA downregulation of coenzyme A
44 45	326	transferase combined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly
46 47	327	alcohologenic Clostridium acetobutylicum fermentations. J Bacteriol 2003, 185, 3644-3653.
48 49	328	[35] Desai, R. P., Papoutsakis, E. T., Antisense RNA strategies for metabolic engineering of Clostridium
50 51	329	acetobutylicum. Appl. Environ. Microbiol. 1999, 65, 936-945.
52 53	330	[36] Eggeling, L., Biology of L-lysine overproduction by Corynebacterium glutamicum. Amino Acids 1994,
54 55	331	6, 261-272.
56 57		
58 59		

332 [37] Jensen, E. B., Carlsen, S., Production of recombinant human growth hormone in Escherichia coli:

- Expression of different precursors and physiological effects of glucose, acetate, and salts. *Biotech. Bioeng.*1990, *36*, 1-11.
- 335 [38] Bauer, K. A., Ben-Bassat, A., Dawson, M., de la Puente, V. T., Neway, J. O., Improved expression of
- human interleukin-2 in high-cell-density fermentor cultures of Escherichia coli K-12 by a
- phosphotransacetylase mutant. *Appl Environ Microbiol* 1990, *56*, 1296-1302.
- 338 [39] Aristidou, A. A., San, K.-Y., Bennett, G. N., Metabolic engineering of Escherichia coli to enhance
- recombinant protein production through acetate reduction. *Biotechnol. Prog.* 1995, *11*, 475-478.
- 340 [40] Hahm, D. H., Pan, J., Rhee, J. S., Characterization and evaluation of a pta (phosphotransacetylase)
- negative mutant of Escherichia coli HB101 as production host of foreign lipase. *Appl Microbiol Biotechnol*1994, 42, 100-107.
- [41] Chang, D.-E., Shin, S., Rhee, J.-S., Pan, J.-G., Acetate metabolism in a pta Mutant of Escherichia coli
- W3110: Importance of maintaining acetyl coenzyme A flux for growth and survival. *J Bacteriol* 1999, *181*,
- 345 6656-6663.
- 346 [42] Kim, J. Y. H., Cha, H. J., Down-regulation of acetate pathway through antisense strategy in
- Escherichia coli: Improved foreign protein production. *Biotech. Bioeng.* 2003, *83*, 841-853.
- 348 [43] Becker, J., Klopprogge, C., Schroder, H., Wittmann, C., TCA cycle engineering for improved lysine
- 349 production in Corynebacterium glutamicum. *Appl Environ Microbiol* 2009, 75, 7866-7869.
- 350 [44] Becker, J., Buschke, N., Bücker, R., Wittmann, C., Systems level engineering of Corynebacterium
- 351 glutamicum Reprogramming translational efficiency for superior production. *Eng. Life. Sci.* 2010, *10*,
 - 352 430-438.
 - 353 [45] Asadollahi, M. A., Maury, J., Møller, K., Nielsen, K. F., et al., Production of plant sesquiterpenes in
 - 354 Saccharomyces cerevisiae: Effect of ERG9 repression on sesquiterpene biosynthesis. *Biotech. Bioeng.*
 - 355 2008, 99, 666-677.
 - 356 [46] Ro, D.-K., Paradise, E. M., Ouellet, M., Fisher, K. J., et al., Production of the antimalarial drug
 - 357 precursor artemisinic acid in engineered yeast. *Nature* 2006, *440*, 940-943.

Page 17 of 24

1 2		
3	358	[47] Asadollahi, M. A., Maury, J., Schalk, M., Clark, A., Nielsen, J., Enhancement of farnesyl diphosphate
5	359	pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in
7 8	360	Saccharomyces cerevisiae. Biotech. Bioeng. 2010, 106, 86-96.
9 10	361	[48] Kim, SW., Keasling, J. D., Metabolic engineering of the nonmevalonate isopentenyl diphosphate
11	362	synthesis pathway in Escherichia coli enhances lycopene production. Biotech. Bioeng. 2001, 72, 408-415.
13 14	363	[49] Herring, C. D., Glasner, J. D., Blattner, F. R., Gene replacement without selection: regulated
15	364	suppression of amber mutations in Escherichia coli. Gene 2003, 311, 153-163.
10 17 19	365	[50] McGinness, K. E., Baker, T. A., Sauer, R. T., Engineering controllable protein degradation. Mol. Cell
19	366	2006, 22, 701-707.
20 21	367	[51] Radley, T. L., Markowska, A. I., Bettinger, B. T., Ha, JH., Loh, S. N., Allosteric switching by
23	368	mutually eclusive folding of protein domains. J Mol Bio 2003, 332, 529-536.
24 25	369	[52] Win, M. N., Smolke, C. D., A modular and extensible RNA-based gene-regulatory platform for
26 27	370	engineering cellular function. PNAS 2007, 104, 14283-14288.
28	371	[53] Isaacs, F. J., Dwyer, D. J., Ding, C. M., Pervouchine, D. D., et al., Engineered riboregulators enable
30 31	372	post-transcriptional control of gene expression. Nat. Biotechnol. 2004, 22, 841-847.
32 33	373	[54] Gadkar, K. G., Doyle Iii, F. J., Edwards, J. S., Mahadevan, R., Estimating optimal profiles of genetic
34 35	374	alterations using constraint-based models. Biotech. Bioeng. 2005, 89, 243-251.
36 37	375	[55] Anesiadis, N., Cluett, W. R., Mahadevan, R., Dynamic metabolic engineering for increasing
38 39	376	bioprocess productivity. Metab Eng 2008, 10, 255-266.
40 41	377	[56] Farmer, W. R., Liao, J. C., Improving lycopene production in Escherichia coli by engineering
42 43	378	metabolic control. Nat Biotech 2000, 18, 533-537.
44 45	379	[57] Kobayashi, H., KÄlrn, M., Araki, M., Chung, K., et al., Programmable cells: Interfacing natural and
46 47	380	engineered gene networks. PNAS 2004, 101, 8414-8419.
48 49	381	[58] Tsao, CY., Hooshangi, S., Wu, HC., Valdes, J. J., Bentley, W. E., Autonomous induction of
50 51	382	recombinant proteins by minimally rewiring native quorum sensing regulon of E. coli. Metab Eng 2010, 12,
52 53	383	291-297.
54 55		
56 57		
58 59		
60		

384 [59] DeLisa, M. P., Valdes, J. J., Bentley, W. E., Quorum signaling via AI-2 communicates the "Metabolic

- Burden" associated with heterologous protein production in Escherichia coli. *Biotech. Bioeng.* 2001, 75,
 439-450.
- 387 [60] Leonard, E., Nielsen, D., Solomon, K., Prather, K. J., Engineering microbes with synthetic biology
- 388 frameworks. *Trends Biotechnol* 2008, 26, 674-681.
- 389 [61] Andrianantoandro, E., Basu, S., Karig, D. K., Weiss, R., Synthetic biology: new engineering rules for
- an emerging discipline. *Mol Syst Biol* 2006, 2.
- 391 [62] Endy, D., Foundations for engineering biology. *Nature* 2005, *438*, 449-453.
- 392 [63] Alper, H., Fischer, C., Nevoigt, E., Stephanopoulos, G., Tuning genetic control through promoter
- 393 engineering. *PNAS* 2005, *102*, 12678-12683.
- 394 [64] Hammer, K., Mijakovic, I., Jensen, P. R., Synthetic promoter libraries tuning of gene expression.
- 395 Trends Biotechnol 2006, 24, 53-55.
- 396 [65] Cox, R. S., Surette, M. G., Elowitz, M. B., Programming gene expression with combinatorial
- 397 promoters. *Mol Syst Biol* 2007, *3*.
- 398 [66] Anderson, J. C., Voigt, C. A., Arkin, A. P., Environmental signal integration by a modular AND gate.
- 399 Mol Syst Biol 2007, 3.
- 400 [67] Chandran, D., Bergmann, F. T., Sauro, H. M., TinkerCell: modular CAD tool for synthetic biology. J
- *Biol Eng* 2009, *3*, 19.
- 402 [68] Hill, A. D., Tomshine, J. R., Weeding, E. M. B., Sotiropoulos, V., Kaznessis, Y. N., SynBioSS: the
- 403 synthetic biology modeling suite. *Bioinformatics* 2008, 24, 2551-2553.
 - 404 [69] Myers, C. J., Barker, N., Jones, K., Kuwahara, H., et al., iBioSim: a tool for the analysis and design of
 - 405 genetic circuits. *Bioinformatics (Oxford, England)* 2009, 25, 2848-2849.
 - 406 [70] Cai, Y., Wilson, M. L., Peccoud, J., GenoCAD for iGEM: a grammatical approach to the design of
 - 407 standard-compliant constructs. *Nucl. Acids Res.* 2010, *38*, 2637-2644.
 - 408 [71] Goler, J. A., BioJADE: a design and simulation tool for synthetic biological systems. 2004,
 - *doi:1721.1/30475*.
 - 410 [72] Canton, B., Labno, A., Endy, D., Refinement and standardization of synthetic biological parts and
 - 411 devices. *Nat Biotech* 2008, *26*, 787-793.

1 2		
3	412	[73] Del Vecchio, D., Ninfa, A. J., Sontag, E. D., Modular cell biology: retroactivity and insulation. Mol
5	413	Syst Biol 2008, 4.
7 8	414	[74] Salis, H. M., Mirsky, E. A., Voigt, C. A., Automated design of synthetic ribosome binding sites to
9 10	415	control protein expression. Nat Biotech 2009, 27, 946-950.
11	416	[75] Pfleger, B. F., Pitera, D. J., Smolke, C. D., Keasling, J. D., Combinatorial engineering of intergenic
12	417	regions in operons tunes expression of multiple genes. Nat Biotech 2006, 24, 1027-1032.
14	418	[76] Ellis, T., Wang, X., Collins, J. J., Diversity-based, model-guided construction of synthetic gene
16 17	419	networks with predicted functions. Nat Biotech 2009, 27, 465-471.
18 19	420	[77] Miles, E. W., Rhee, S., Davies, D. R., The molecular basis of substrate channeling. J Biol Chem 1999,
20 21	421	274, 12193-12196.
22 23	422	[78] Spivey, H. O., Ovádi, J., Substrate Channeling. Methods 1999, 19, 306-321.
24 25	423	[79] Dueber, J. E., Wu, G. C., Malmirchegini, G. R., Moon, T. S., et al., Synthetic protein scaffolds provide
26 27	424	modular control over metabolic flux. Nat Biotech 2009, 27, 753-759.
28 29	425	[80] Moon, T. S., Dueber, J. E., Shiue, E., Prather, K. L. J., Use of modular, synthetic scaffolds for
30 31	426	improved production of glucaric acid in engineered E. coli. Metab Eng 2010, 12, 298-305.
32 33	427	[81] Agapakis, C. M., Ducat, D. C., Boyle, P. M., Wintermute, E. H., et al., Insulation of a synthetic
34 35	428	hydrogen metabolism circuit in bacteria. J Biol Eng 2010, 4, 3.
36 37	429	[82] Brenner, K., You, L., Arnold, F. H., Engineering microbial consortia: a new frontier in synthetic
38 39	430	biology. Trends Biotechnol 2008, 26, 483-489.
40 41	431	[83] Callura, J. M., Dwyer, D. J., Isaacs, F. J., Cantor, C. R., Collins, J. J., Tracking, tuning, and
42 43	432	terminating microbial physiology using synthetic riboregulators. PNAS 2010, 107, 15898-15903.
44 45	433	[84] An, W., Chin, J. W., Synthesis of orthogonal transcription-translation networks. PNAS 2009, 106,
46 47	434	8477-8482.
48 49	435	[85] Widmaier, D. M., Tullman-Ercek, D., Mirsky, E. A., Hill, R., et al., Engineering the Salmonella type
50 51	436	III secretion system to export spider silk monomers. Mol Syst Biol 2009, 5, 309.
52 53	437	[86] Feng, J., Atkinson, M. R., McCleary, W., Stock, J. B., et al., Role of phosphorylated metabolic
54 55	438	intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli. J Bacteriol 1992, 174,
55 56	439	6061-6070.
58 59		

Figure Captions

Figure 1

The zero sum challenges with traditional pathway optimization strategies. In the original pathway (A), only one media supplement (yellow circle) is needed to generate product (blue circle) and essential metabolites (aqua circle). However, gene inactivation (B) necessitates additional supplementation to generate the essential metabolite while overexpression (C) increases the pool of desired intermediate at the expense of expression and flux through the other enzymatic steps potentially limiting growth. The sum of these effects on the host's health controls the degree of success on overall pathway production. Metabolite flux is proportional to the line thickness while metabolite pool size is represented by the circle area. Dashed lines indicate an absence of metabolite flux/pools when compared to wildtype.

Figure 2

A hypothetical example of a complex regulatory circuit utilizing multiple modules or parts. The LuxR/LuxI quorum sensing system (*luxI* not shown), mediated by N-acyl homoserine lactone (AHL), is used to drive the expression of *glnAp2*, an acetyl phosphate (ACP) sensor [86]. Sufficient carbon flux through central metabolism will lead to accumulation of ACP. The presence of GlnAp2 and ACP serve as inputs to an AND gate (binding of ACP to GlnAp2) whose output is expression of pathway genes and, ultimately, synthesis of product (triangles). Product is only produced when biomass *and* carbon flux is high, i.e. from a healthy culture.

Fig 1 . The zero sum challenges with traditional pathway optimization strategies. In the original pathway (A), only one media supplement (yellow circle) is needed to generate product (blue circle) and essential metabolites (aqua circle). However, gene inactivation (B) necessitates additional supplementation to generate the essential metabolite while overexpression (C) increases the pool of desired intermediate at the expense of expression and flux through the other enzymatic steps potentially limiting growth. The sum of these effects on the host's health controls the degree of success on overall pathway production. Metabolite flux is proportional to the line thickness while metabolite pool size is represented by the circle area. Dashed lines indicate an absence of metabolite flux/pools when compared to wildtype.

76x42mm (300 x 300 DPI)

Figure 2. A hypothetical example of a complex regulatory circuit utilizing multiple modules or parts. The LuxR/LuxI quorum sensing system (luxI not shown), mediated by N-acyl homoserine lactone (AHL), is used to drive the expression of glnAp2, an acetyl phosphate (ACP) sensor [86]. Sufficient carbon flux through central metabolism will lead to accumulation of ACP. The presence of GlnAp2 and ACP serve as inputs to an AND gate (binding of ACP to GlnAp2) whose output is expression of pathway genes and, ultimately, synthesis of product (triangles). Product is only produced when biomass and carbon flux is high, i.e. from a healthy culture.

138x73mm (300 x 300 DPI)