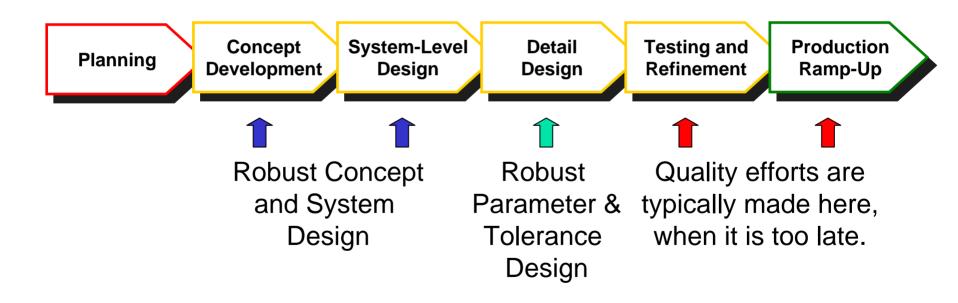
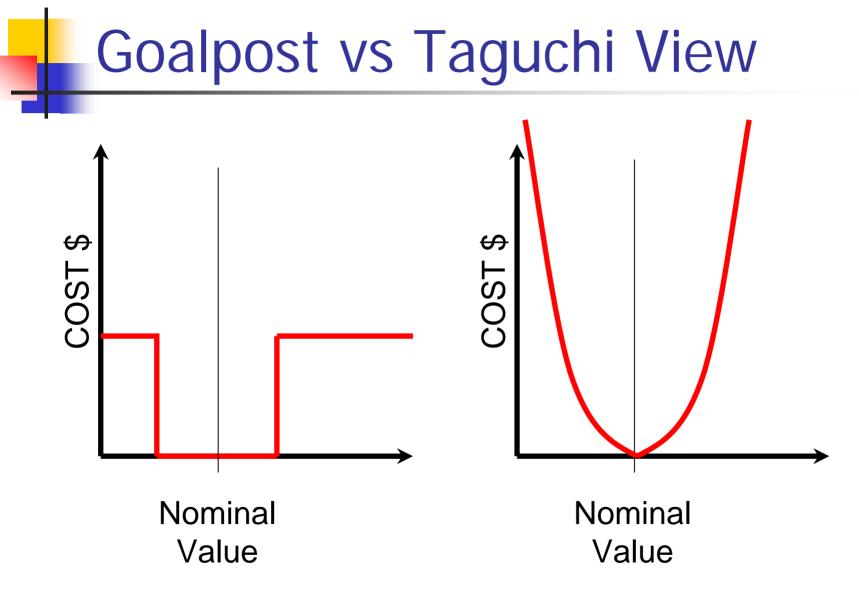
Robust Design: Experiments for Better Products

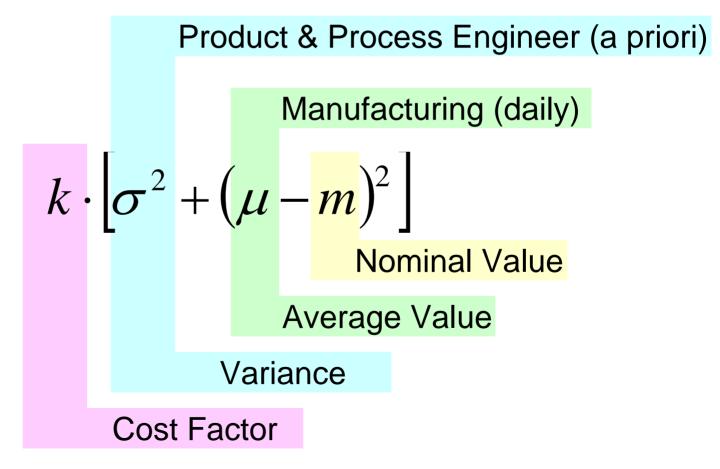
Taguchi Techniques

Robust Design and Quality in the Product Development Process

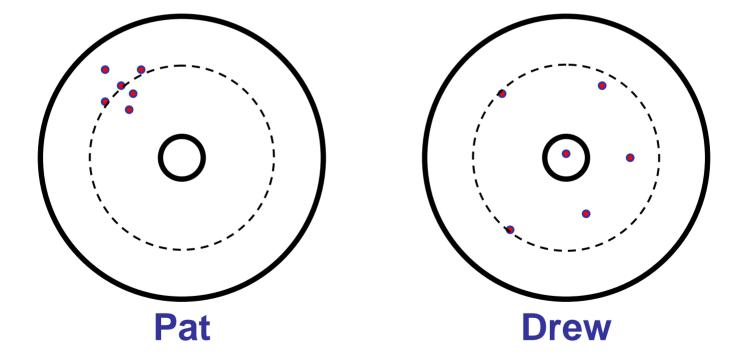




General Loss Function

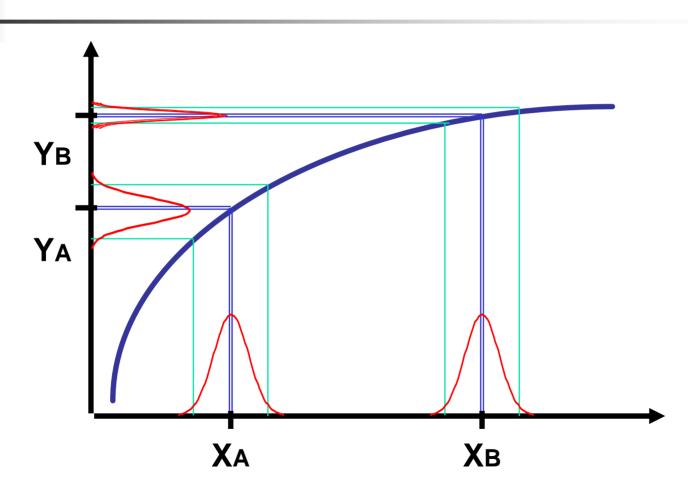


Who is the better target shooter?



Adapted from: Clausing, Don, and Genichi Taquchi. "Robust Quality." Boston, MA: *Harvard Business Review*, 1990. Reprint No. 90114.

Exploiting Non-Linearities



Source: Ross, Phillip J. "Taguchi Techniques for Quality Engineering (2nd Edition)." New York, NY: McGraw Hill, 1996.

Goals for Designed Experiments

- Understanding relationships between design parameters and product performance
- Understanding effects of noise factors
- Reducing product or process variations

Robust Designs

A Robust Product or Process performs correctly, even in the presence of noise factors.

Outer Noise

Environmental changes, Operating conditions, People

- Inner Noise
 - Function & Time related (Wear, Deterioration)
- Product Noise
 - Part-to-Part Variations

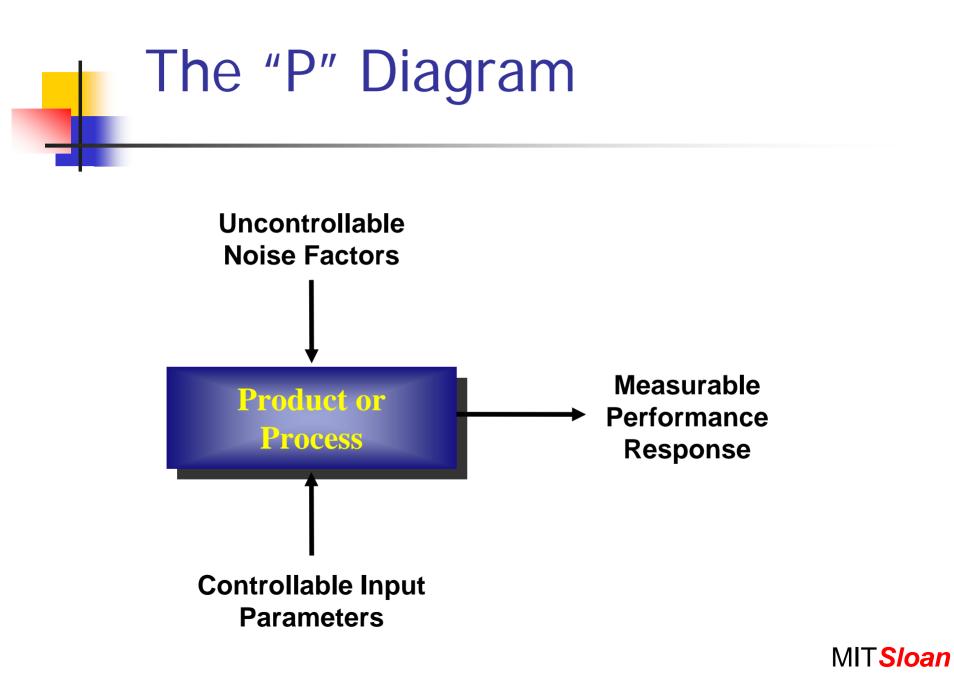
Parameter Design

Procedure

Step 1: P-Diagram

Step 1: Select appropriate controls, response, and noise factors to explore experimentally.

- <u>controllable input</u> parameters
- measurable performance response
- uncontrollable noise factors



Example: Brownie Mix

- Controllable Input Parameters
 - Recipe Ingredients (quantity of eggs, flour, chocolate)

- Recipe Directions (mixing, baking, cooling)
- Equipment (bowls, pans, oven)
- Uncontrollable Noise Factors
 - Quality of Ingredients (size of eggs, type of oil)
 - Following Directions (stirring time, measuring)
 - Equipment Variations (pan shape, oven temp)
- Measurable Performance Response
 - Taste Testing by Customers
 - Sweetness, Moisture, Density

Step 2: Objective Function

Step 2: Define an objective function (of the response) to optimize.

- maximize desired performance
- minimize variations
- quadratic loss
- signal-to-noise ratio

Types of Objective Functions

Larger-the-Better e.g. performance $f(y) = y^2$ Smaller-the-Better e.g. variance $f(y) = 1/y^2$

Nominal-the-Best e.g. target $f(y) = 1/(y-t)^2$ Signal-to-Noise e.g. trade-off $f(y) = 10log[\mu^2/\sigma^2]$

Step 3: Plan the Experiment

Elicit desired effects:

- Use <u>full or fractional factorial</u> designs to identify interactions.
- Use an <u>orthogonal array</u> to identify main effects with minimum of trials.
- Use inner and outer arrays to see the effects of noise factors.

Experiment Design: Full Factorial

- Consider *k* factors, *n* levels each.
- Test all combinations of the factors.
- The number of experiments is n^k .
- Generally this is too many experiments, but we are able to reveal all of the interactions.

Experiment Design: Full Factorial

Expt #	Param A	Param B
1	A1	B1
2	A1 B2	
3	A1	B3
4	A2	B1
5	A2	B2
6	A2	B3
7	A3	B1
8	A3	B2
9	A3	B3

2 factors, 3 levels each:

$$n^k = 3^2 = 9$$
 trials

4 factors, 3 levels each: $n^k = 3^4 = 81$ trials

Experiment Design: One Factor at a Time

- Consider *k* factors, *n* levels each.
- Test all levels of each factor while freezing the others at nominal level.
- The number of experiments is 1+k(n-1).
- BUT this is an <u>unbalanced</u> experiment design.

Experiment Design: One Factor at a Time

Expt #	Param A	Param B	Param C	Param D
1	A2	B2	C2	D2
2	A1	B2	C2	D2
3	A3	B2	C2	D2
4	A2	B1	C2	D2
5	A2	B3	C2	D2
6	A2	B2	C1	D2
7	A2	B2	C3	D2
8	A2	B2	C2	D1
9	A2	B2	C2	D3

4 factors, 3 levels each:

1+k(n-1) = 1+4(3-1) = 9 trials

Experiment Design: Orthogonal Array

- Consider k factors, n levels each.
- Test all levels of each factor in a balanced way.
- The number of experiments is n(k-1).
- This is the smallest balanced experiment design.
- BUT main effects and interactions are confounded.

Experiment Design: Orthogonal Array

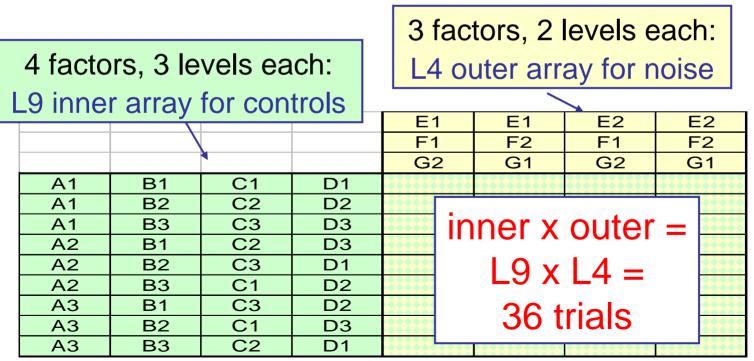
Expt #	Param A	Param B	Param C	Param D	
1	A1	B1	C1	D1	
2	A1	B2	C2	D2	
3	A1	B3	C3	D3	
4	A2	B1	C2	D3	
5	A2	B2	C3	D1	
6	A2	B3	C1	D2	
7	A3	B1	C3	D2	
8	A3	B2	C1	D3	
9	A3	B3	C2	D1	

4 factors, 3 levels each:

n(k-1) = 3(4-1) = 9 trials

Using Inner and Outer Arrays

Induce the same noise factor levels for each combination of controls in a balanced manner



Step 4: Run the Experiment

Step 4: Conduct the experiment.

Vary the input and noise parameters

- Record the output response
- Compute the objective function

Paper Airplane Experiment

Expt	#Weigh	t Wingle	t Nose	Wing	Trials	Mean	Std De	v S/N
1	A1	B1	C1	D1				
2	A1	B2	C2	D2				
3	A1	B3	C3	D3				
4	A2	B1	C2	D3				
5	A2	B2	C3	D1				
6	A2	B3	C1	D2				
7	A3	B1	C3	D2				
8	A3	B2	C1	D3				
9	A3	B3	C2	D1				

Step 5: Conduct Analysis

Step 5: Perform analysis of means.

- Compute the mean value of the objective function for each parameter setting.
- Identify which parameters reduce the effects of noise and which ones can be used to scale the response. (2-Step Optimization)

Parameter Design Procedure Step 6: Select Setpoints

Parameters can effect

- Average and Variation (tune S/N)
- Variation only (tune noise)
- Average only (tune performance)

MI I **Sloan**

Neither (reduce costs)

Parameter Design Procedure Step 6: Advanced Use

- Conduct confirming experiments.
- Set scaling parameters to tune response.
- Iterate to find optimal point.
- Use higher fractions to find interaction effects.
- Test additional control and noise factors.

Confounding Interactions

- Generally the main effects dominate the response. BUT sometimes <u>interactions</u> are important. This is generally the case when the confirming trial fails.
- To explore interactions, use a fractional factorial experiment design.

Confounding Interactions



Key Concepts of Robust Design

- Variation causes quality loss
- Parameter Design to reduce Variation
- Matrix experiments (orthogonal arrays)
- Two-step optimization
- Inducing noise (outer array or repetition)

- Data analysis and prediction
- Interactions and confirmation