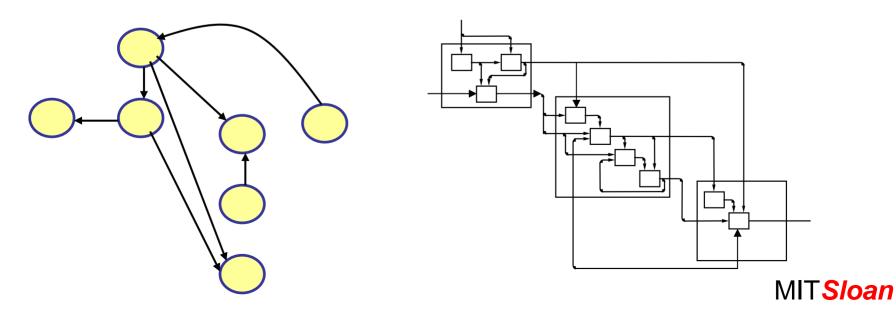
Tools For Innovation: The Design Structure Matrix


> Thomas A. Roemer and Steven Eppinger Summer 02, 15-761

Outline

- Overview
 - Traditional Project Management Tools and Product Development
- Design Structure Matrix (DSM) Basics
 - How to create
 - Classification
- The Iteration Problem:
 - Increasing Development Speed
 - Sequencing, Partitioning and Simulation
- The Integration Problem:
 - DSM Clustering
 - Organizational Structures & Product Architectures

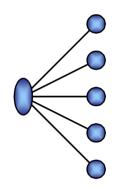
Graph-based: PERT, CPM, IDEF Time

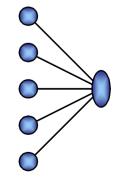
Characteristics

- Complex Depiction
- Focus on Work Flows
 - DSM focuses on Information Flows
- Ignore Iterations & Rework
 - Test results, Planned design reviews, Design mistakes, Coupled nature of the process
- Decomposition & Integration
 - Assume optimal Decomposition & Structure
 - Integration of Tasks not addressed

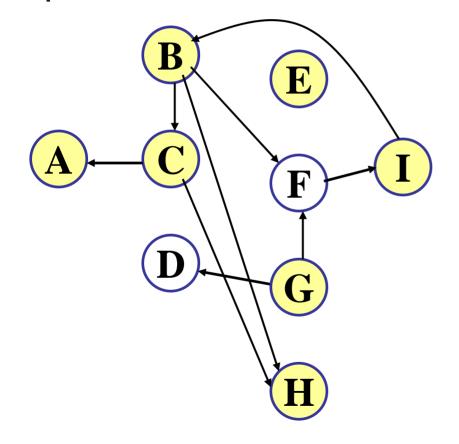
Design Iteration

Iteration: The repetition of tasks due to new information.


MI I **Sloan**


- Changes in input information (upstream)
- Update of shared assumptions (concurrent)
- Discovery of errors (downstream)
- Fundamental in Product development
 - Often times hidden
- Understanding Iterations requires
 - Visibility of information flows

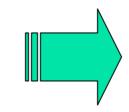
Decomposition and Integration


 Decomposition: Dividing a complex problem into smaller sub-problems.

Integration:
Combining sub-problems to achieve set goals.

A Graph and its DSM

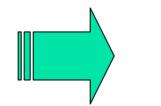
	Α	В	С	D	Ε	F	G	Η	Ι
Α	Α		Χ						
В		В							Χ
С		Χ	С						
D				D			Χ		
Ε					Ε				
F		Χ				F	Χ		
G							G		
Н		Χ	Χ					Η	
I						Χ			


Creating a DSM

- Design manuals
- Process sheets
- Structured expert interviews
 - Interview engineers and managers
 - Determine list of tasks or parameters
 - Ask about inputs, outputs, strengths of interaction, etc

- Enter marks in matrix
- Check with engineers and managers
- Questionnaires

Four Types of DSMs

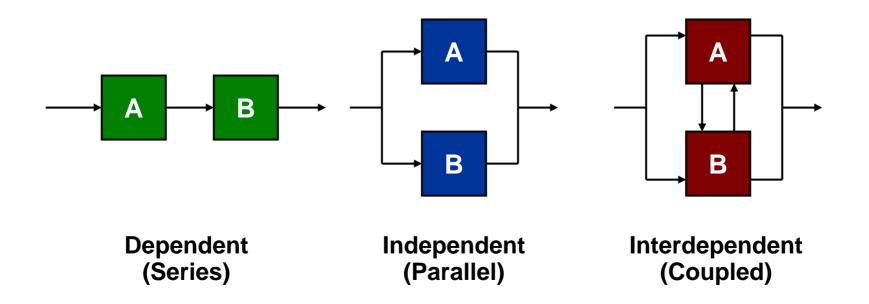

Activity based DSM Parameter based DSM

Iteration

Sequencing Partitioning Simulation

Team based DSM Product Architecture DSM

Integration Clustering


Iteration Focused Tools

Concepts, Examples, Solution Approaches

Sequencing Tasks in Projects

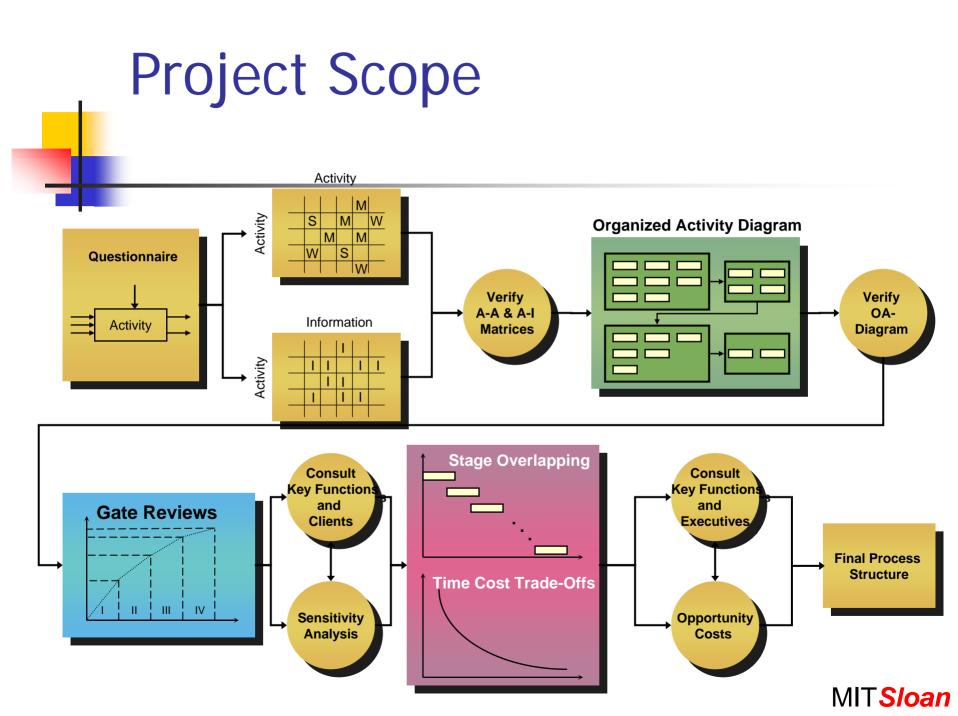
Possible Relationships between Tasks

Sequencing Algorithm

- Step 1: Schedule tasks with empty rows first
- Step 2: Delete the row and column for that task
- Step 3: Repeat (Go to step 1)
- Step 4: Schedule tasks with empty columns last
- Step 5: Delete the row and column for that task
- Step 6: Repeat (Go to step 4)
- Step 7: All the tasks that are left unscheduled are coupled. Group them into blocks around the diagonal

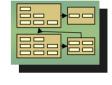
Task Sequencing Example

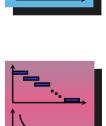
Figure 4 at: http://faculty.erau.edu/ericksol/proj ects/futurspcrft/kristof/SPfinal.html


Space Shuttle Main Engine

Product Decomposition

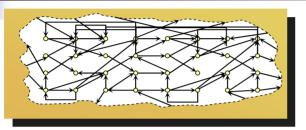
Engine Components

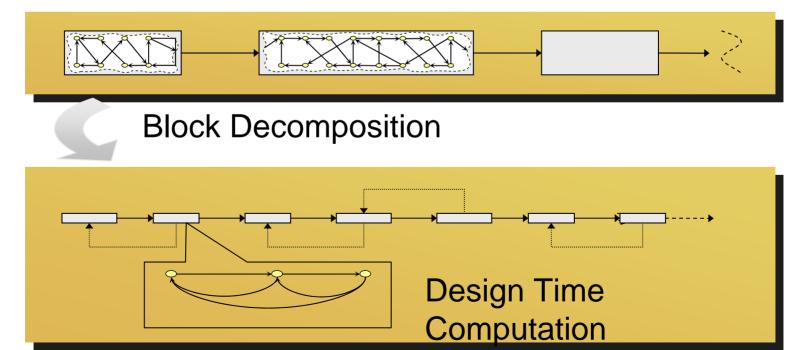

Corresponding Literature


Structuring Product Development Processes Ahmadi, Roemer & Wang, European J. of Operational Research 2001

Managing Development Risk in Product Design Processes Ahmadi & Wang, Oper. Res. 1999

Time-Cost Trade-Offs in Overlapped Product Development Processes Roemer, Ahmadi & Wang, Oper. Res. 2000


Accelerating Product Development Roemer & Ahmadi, In review at Oper. Res.



Finding Coupled Stages

Block Creation

Dependency Relations in Conceptual Design Block

For this graph, see *Time-Cost Trade-Offs in Overlapped Product Development Processes* by Roemer, Ahmadi & Wang, *Operations Research,* 2000.

Block Decomposition

$$\begin{split} \min \sum_{ij \in A} a_{ij} n_{ij} y_{ij} \\ \text{i.e.} \quad \sum_{m=1}^{M} x_{im} = 1, \quad \forall i \\ \sum_{m=1}^{N} x_{im} \leq C, \quad \forall m \\ x_{im} - \sum_{h=m+1}^{M} x_{jh} - y_{ij} \leq 0, \quad \forall i, j, m \\ x_{im}, y_{ij} \in \{0,1\}, \ \forall i, j, m \end{split}$$

S

i,j = index for activities, i,j = 1,2,...,N; m = index for stages, m = 1,2,...,M; A = the set of directed arcs in the design graph; $a_{ij} = the level of dependency of activity$ *i*on*j*

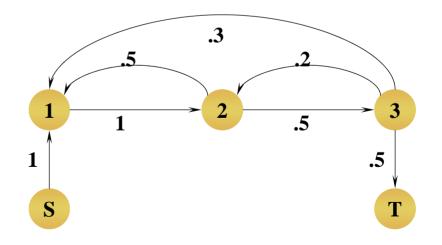
 $x_{im} = \begin{cases} 1 & \text{if activity } i \text{ is assigned to stage } m \\ 0 & \text{otherwise} \end{cases}$ $y_{ij} = \begin{cases} 0 & \text{if arc } ij \text{ is a feed back between stages} \\ 1 & \text{otherwise} \end{cases}$ $n_{ij} = \begin{cases} W & (\text{a large number}) \text{ if } a_{ij} = 1 \\ 1 & \text{otherwise} \end{cases}$

Resulting Structure for Conceptual Design Block

For this graph, see *Time-Cost Trade-Offs in Overlapped Product Development Processes* by Roemer, Ahmadi & Wang, *Operations Research,* 2000.

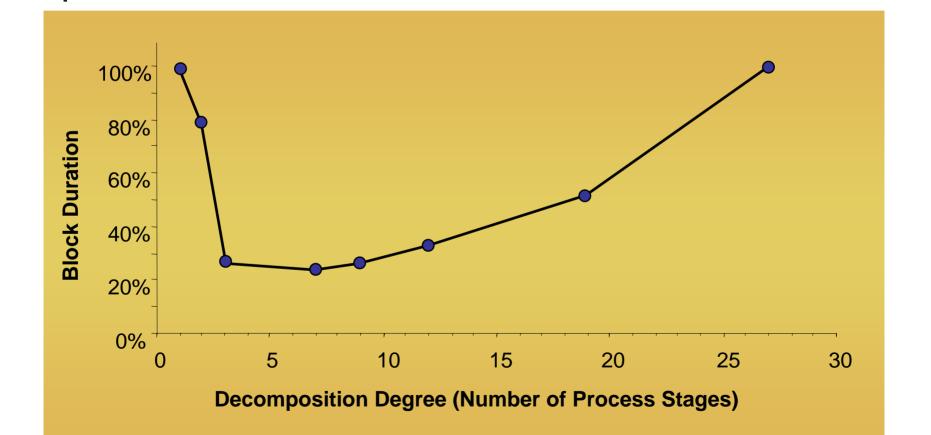
Lead Time Estimation

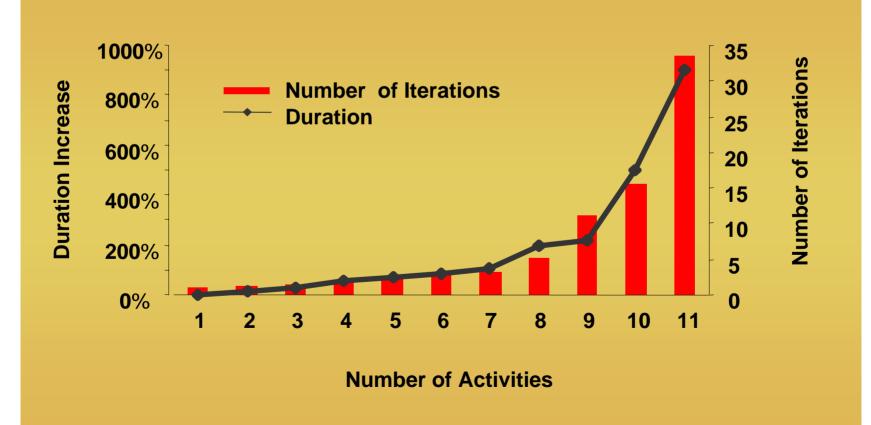
Exp. Iterations $\|\mu_{ji}\| = (I - P)^{-1}$


Activity Duration

$$T_{i} = t_{i} + e^{-1/\beta_{i}} \sum_{n=1}^{\mu_{1i}-1} \left[t_{i}^{0} + \left(t_{i} - t_{i}^{0} \right) e^{-\lambda_{i}n} \right]$$

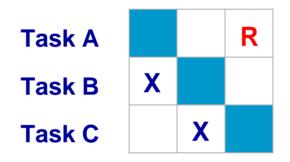
Stage Duration


$$T = \sum_{i=1}^{k} T_i$$



Decomposition and Duration

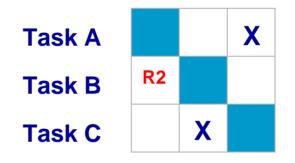
Stage Size and Duration



		Task A			X	
_		Task B	X			
-	DSM Simulation	Task C		X		

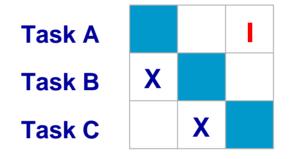
- Task A requires input from task C
- Perform A by assuming a value for C's output
- Deliver A's output to B
- Deliver B's output to C
- Feed C's output back to A
 - Check initial assumption (made by A)
- Update assumption and repeat task A.

Simulating Rework



R is the probability that Task A will be repeated once task C has finished its work.

R = 0.0: There is 0 chance that A will be repeated based on results of task C. R = 1.0: There is 100% probability that A will be repeated based on results of task C.


Simulating 2nd Order Rework

Second Order rework is the rework associated with forward information flows that is triggered by feedback marks.

First order rework: Output of task C causes task A to do some rework 2nd order rework: Consequently there is a chance tasks depending on A (e.g. task B) will also be repeated.

Simulating Rework Impact

I = 0.0 : If task A is reworked due to task C results, then 0% of task A's initial duration will be repeated

I = **1.0** : If task A is reworked due to task C results, then 100% of task A's initial duration will be repeated

Simulation Results

- DSM contains rework probabilities and impacts
- Cost and time add up
- Many runs produce a distribution of total time and cost
- Different task sequences can be tried

Gantt Chart with Iteration

- Typical Gantt chart shows monotone progress
- Actual project behavior includes tasks stopping, restarting, repeating and impacting other tasks

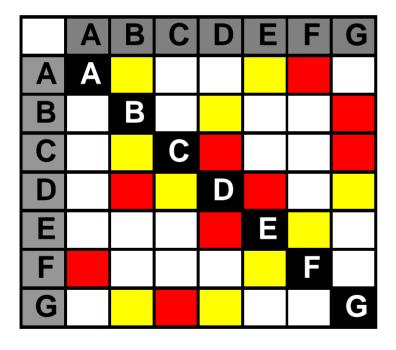
Related Reading: "Modeling and Analyzing Complex System Development Cost, Schedule, and Performance" Tyson R. Browning PhD Thesis, MIT A&A Dept., Dec 99

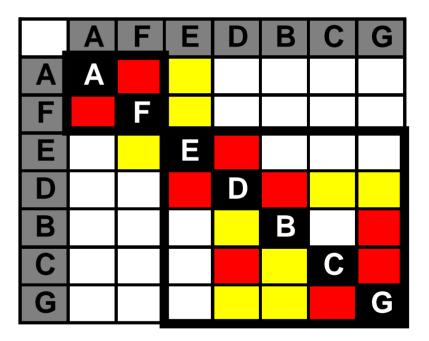
Lessons Learned: Iteration

- Development is inherently iterative.
- Understanding of coupling is essential.
- Iterations improve quality but consumes time
- Iteration can be accelerated through:
 - Information technology (faster iterations)
 - Coordination techniques (faster iterations)
 - Decreased coupling (fewer iterations)
- Two Types of Iteration:
 - Planned Iterations (getting it right the first time)
 - Unplanned iterations (fixing it when it's not right)

Integration Focused Tools

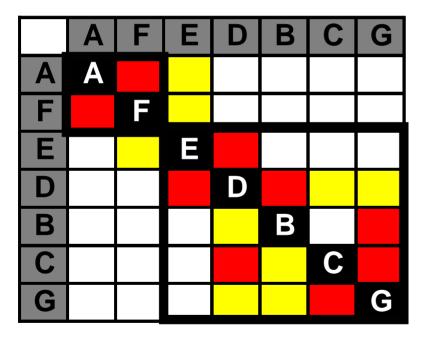
Concepts, Examples, Solution Approaches

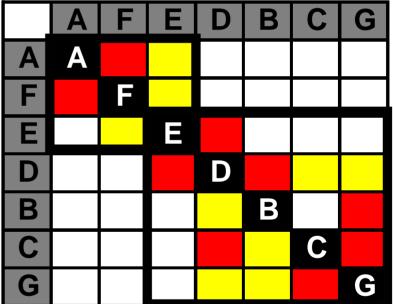



Team Selection

- Team assignment is often opportunistic
 - "We just grab whoever is available."
- Not easy to tell who should be on a team
- Tradition groups people by function
- Info flow suggests different groupings
- Info gathered by asking people to record their interaction frequency with others

Clustering a DSM


No Dependency



Alternative Arrangement Overlapped Teams

No Dependency

GM's Powertrain Division

- 22 Development Teams into four System Teams
 - Short block: block, crankshaft, pistons, conn. rods, flywheel, lubrication
 - Valve train: cylinder head, camshaft and valve mechanism, water pump and cooling
 - Induction: intake manifold, accessory drive, air cleaner, throttle body, fuel system
 - Emissions & electrical: Exhaust, EGR, EVAP, electrical system, electronics, ignition

Lessons Learned: Integration

- Large development efforts require multiple activities to be performed in parallel.
- The many subsystems must be integrated to achieve an overall system solution.
- Mapping the information dependence reveals an underlying structure for system engineering.
- Organizations and architectures can be designed based upon this structure.

Conclusions

- The DSM supports a major need in product development:
 - documenting information that is exchanged
- It provides visually powerful means for designing, upgrading, and communicating product development activities
- It has been used in industry successfully

DSM Web Page

- http://web.mit.edu/dsm/
- It contains
 - A tutorial
 - Links to other DSM sites
 - Over 100 references of DSM literature

MIT**Sloan**

Analysis tools

Suggested Reading

"Innovation at the Speed Of Information"

By Steven D. Eppinger

HBR January 2001

