1 Lucas-Phelps islands

e lucas 1972
e overlapping generations
e agents work at date t consume at date ¢ + 1

e preferences

E\Citr1 — - Niy



agents work, accumulate money, spend, die

Yi: = Ny
M; 41 = P Y ettt
Pjt+1Cit41 = M1

e c%i+1 —1 is a proportional subsidy from the government (money injection)

M1 = Meft+1

e at date t + 1 agent ¢ consumes the output of agent j



continuum of islands, ¢ € [0, 1]

unit mass of agents on each

old agents receive proportional transfer of money from govt’

they travel to one island where they spend all their money

prices P; ; determined in Walrasian equilibrium

young agents decide their labor supply based on P; ;



old agents in island ¢ are representative sample

but different mass exp {Ui,t} in island ¢

nominal demand demand in island 7 is

u; + normal with

1
eit | M, di = et My
0 1,

1 .
/ eWitdy = 1
0



e normal idiosyncratic demand shock: wu; + ~ N (O, a%)

e normal monetary shock: ¢, ~ N (0,0§>

e total nominal demand is
; 9
Dy = e"t oMy _q
in logs

dit =M1+ Ui + €t

Market clearing
PitNit = Diy



Information structure

e all agents observe {M;_1, M;_», ...}

e old agents observe &¢, Pj ¢

e young agents only observe P, 4

observing P; ; and M;_1—and knowing their own N; ;—young agents can infer
the sum

Uit T+ Et =DPit T Njt — Mp_1



Labor supply

agents solve

E[C N2, | Py My_1, M ]
max : — —N: : _ oy
Ni,taci,t—l—l 5,t+1 2 T (R t—1, t—2>

sit. Pjp11Cir1 = Py gNige™ !

substitute C; ;11 and obtain FOC:

Pit o4 -
E|o——e™ — Ny | Py, My_1,M;_p,...| =0

Pj,t+1

Interpetation

P; 4
Ni,t = E[ [ eft+1 | Pi,t7 Mt—17 Mt—27 ]



Equilibrium prices

Look for stationary equilibrium where

Pt
— =Gy, tr €t
M;_1 ( Y )
Decompose
P; 4
Nit = E[%eet“ | Py, My_1,...] =
7,t+1
P; M.
= B[] Py, My_1, ] E | —et+1 | Py, M1, ...
! P11




In stationary equilibrium second piece is a constant
est—f—l

G (uj,t+1> €t+1)

¢=E

In the first piece, only information on My in the first piece is in P; ; and M;_1.

So we have

P; ¢
N; =§&E M, | P g, M1



From equilibrium condition we obtain

Uit AT, — _ it
e"tMy = P;N; = P; 1£E M, | P gy Mg

in logs
m¢ —pit+uip = (..)— E [mt — Pit | Pits mt—l]

(constant terms in (...), depend on variances)

We obtain

Pit =D+ % (mt + ui,t) T %E [mt\pz‘,ta mt—l]

We will see that this can be rewritten as
Pit— M1 =p+ L €t + Ui t) + EE etlet +u; ¢
2 2

confirming our conjecture that P; ;/M; is only a function of €¢ and u; 4



Agents observe m;_1 and nominal demand in their island

M1+ €t + Ui ¢

Define
_ 1
Ey[my] = /0 E [mt|mt—175t + ui,t} di

Then, averaging, we have

1 1__
Pt =D+ Emt + EEt [mt]



Imperfect information

By [my] # my
in particular
E [mt|mt_1, e+ + Ui,t] =my_1+ B (et + uit)
where
CR—
o + ot
SO

Ei[mi = my_1+ Ber # my_1 + &4



We have
_ 1
Pt =p+mt—1+§(1+5)€t

and output is

Yyt — MMt — Pt

_ 1
= U+3 (1—0)es
o larger ag/a% implies smaller real effects of monetary policy

e Phillips curve depends on the monetary regime



e OLS inflation on output gap

1 1
T = 1415(% @)—5(5—1)&—1

e as 02/02 — oo we have B — 1 and vertical Phillips curve



Wrapping up:

e imperfect information affects transmission of monetary shocks

e in particular, explains sluggish response of prices to my: short-run non-
neutrality

e crucial formal step: agents can be wrong on average m; # E} [my]

e policy regime affects inference and thus effects of shocks



2 Higher order expectations

e price setting firms with quadratic costs

o P; 1 2
t N
S ot |ty = ()]
facing demand function
v — (Lt 7 My
1,0 — =
’ Py by

e have to set P; ; with imperfect knowledge of M;




e optimality condition
1 [P\ " M
(0 — 1) — 0t —t
P\ P P

e if everything log-normal (or in approximation)

E; = kit |o

L [—Upz',t —(1—0o)pt +my — pt} =
= Eit |~ (14 20) pi¢ + 20p; + 2 (mt — i),




e we get

1
L, — E. 1 E..[m
Pit =11, it [Pt] o it [me]
optimal price weighted average of expected price of other price setters
1
§ = ]
+ o

pit = (1 — &) E; ¢ [pt] + EE; ¢ [my]

e higher o higher weight on other price setters prices: strategic complemen-
tarity



now specify the information structure

simple static case

private signal

Undetermined coefficients

me — Ut

Zit = Ut T Vit

Pt = oMy



substituting gives

aggregating gives

fixed point

solution

it

Pt =

((L=&)op+§) E; 1 [my]
(L—=&) ¢ +&) Bz

((L—=¢&) o+ &) Bmy

¢p=((1-8e+&)B

¢

_ B
1-(1-¢)8




e the response of prices to a monetary shock now depends on how informative
is the signal and on the degree of strategic complementarity

— less informative signal—smaller price response (bigger quantity re-
sponse)

— more strategic complementarity—smaller price response (bigger quan-

tity response)

e Alternative interpretation: use notation

BilXi] = [ B lxddi

Egj) [(X:] = /E,L(,{;_l) [X¢] di (higher order exp)

pt = (1 — &) Et [pt] + EE [my]



pr = S -6 ED [my]
§=0

= €8 (1—¢)Y flmy

e (obviously gives the same ¢)



2.1 Dynamics
e process for money

me = Mmy_1 + Ut

e price setters observe

Zit = Mg+ Vj ¢
e need to form expectations about m; and py
e Conjecture: state variables

me
bt

(1 0 mi_1 uy
—[qsm b pt_1]+[¢uut]



e Kalman filter

me
bt

m¢—1

E'.
0t Pt—1

1 0
= [ b o ] L1 ] + K (Zi,t - Ei,t—lmt>
m Pp

e Integrating across agents we get
[ Myt ] _ [ 1 0 ] [ My _1|t—1 ] LK [mt T
Dyt Prm ¢p Pt—1)t—1
e Now use the optimality condition

pt = (1 — &) pyyp + Emyyy



(as in usual method of undetermined coefficients) to get
M|t
pe = | & 1-=¢§ [ ] =
= &my_1p—1+ (1 —§) (Cbmmt—l\t—l + ¢ppt—1\t—1) +
+ [ & 1-¢ ] K [mt—l + ut — mt—l\t—l}

e here is were we use Woodford's trick: use

Pt—1 — €mt—1|t—1
Pt—1jt—1 = 1—¢

e now we have p¢ in terms of the state variables p;_1 and m;_1:

Pt = i1+ ¢ppr—1+byut = ppr1+( & 1—& ) K [my_1 + ui]
(1)



if the following condition is satisfied

E+(1—8) (dm—0pt/(1-8))— (& 1-¢)K=0 (2

this condition makes the term with m;_4); _; disappear.

e Condition (2) pins down ¢,, (which, fortunately, is not pinned down by
matching coefficients in (1)!)

e So we have
bm=du=0= (& 1-¢)K

and from (2), after some algebra,

qbp:]-_qb



e Now we have a map: ¢ —Kalman gains K — ¢’

...and we need to find a fixed point of it

e Implications for price and output dynamics
my = Mp_1 -+ Ut
pt = (1—¢@)pt—1+ ¢ (m_1+ u)
and

yr = my—pr=(1—¢)(my_1+u) — (1 —&)pt—1
= (1 —¢)(y—1 +ut)

e The parameter ¢ determines both the impact effect of the shock wu: on
prices and the persistence



o Computational experiments (see matlab codes): higher o2 and lower &
increase ¢

e (See the paper for a closed form expression for ¢ as a function of a%/a%
in equations 3.6 and 3.7 with ¢ = k)



2.2 Tools: Kalman filter

A simple intro to the Kalman filter. State space representation
Xt = AXy_1+ U,
Information set {Y%, Y;_1, ...} where
Yi = F Xy + V4.

We want to derive the steady state dynamics of

Assumption: U; and W} are mutually independent, each of them is an i.i.d.
Gaussian vector with mean zero and variance-covariance matrices 2y and Xy .
(can be extended to Uy and W4 correlated)



Updating rule

Xyt = Xypp—1 + K (Yt — Yt|t—1)
= AXp g1t K (Yt ~ Yt|t—1)
= (I -KF)AX; 44 1+ EKY;

(alternative common approach focuses on one-step-ahead forecast Xt+1\t here

we focus on X))

Define
P = Vary_1[X{]
then K satisfies
K = PF' (FPF' + zv)_l

(from orthogonality condition)



We need to find expressions for the matrix P. Bayesian updating for the
variances gives

~ —1
P=Var (X =P— PF (FPF' +Xy) " FP,
and the dynamics of X; imply that

Vari[Xi11] = APA +Xpy =

—1
— A [P — PF'(FPF' + xy) FP] A+yy
so imposing steady state for learning we have
—1
P=A [P — PF’ (FPF’ + ZW) FP] A+ 3y

(Riccati equation for P)

Example: State law of motion:

Tt = Ty_1 1 E¢



Observation equation:

Yt = Tt + Ny
Now
P+ 0727 1/P+ 1/0727
and P satisfies
P = i02 + o2
P + U% "l €

simple quadratic equation

1 1 2
P = Eag + 5\/40%0,27 + (ag)

Dynamics

ryp = (L —k)zy 11+ kyt
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