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1 Diamond-Mortensen-Pissarides

1.1 Set Up

There is a continuum of measure 1 of homogeneous, risk-neural workers and a continuum

of larger measure of homogeneous risk-neutral firms. They have common discount factor β.

At the beginning of each period, firms choose whether to pay a cost k and post a vacancy.

There is free-entry which is going to pin down the measure of vacancies at each point in

time. Once, firms have opened vacancies, there is random matching between unemployed

workers at time t, ut, and the vacancies opened at that time, vt. A worker and firm matched

at time t can produce y at each time τ ≥ t, until separation. The wage wt that a worker

matched at time t is going to receive each time τ ≥ t until separation, is determined with

generalized Nash bargaining at the time of the match. Separation is exogenous: at each

time t > τ the employment relationship can end with probability s (notice that separation

happens at the beginning of the period together with matching, so a match created at

time t can be separated only from time t+ 1 on). If a worker is unemployed he gets some

utility b, which may be interpreted as leisure, home production, or, in some contexts, as

unemployment benefit.

1.2 Matching

Matching is random and is represented by a matching function m (ut, vt). We assume

that the matching function is continuous, non-negative, increasing in both arguments and

concave, with m (0, vt) = m (ut, 0) = 0 for all ut, vt. We also assume that it features



constant returns to scale. Define the market tightness θt ≡ vt/ut. Given CRS, we can

represent the probability a worker meets a firm and the probability a firm meets a worker

as functions of θt only. In fact the probability a worker meets a firm is equal to

m (ut, vt)

ut
= m (1, θt) ≡ µ (θt) ,

and the probability a firm meets a worker to

m (ut, vt)

vt
= m

(
1

θt
, 1

)
≡ µ (θt)

θt
.

To guarantee that the function µ (.) represents a probability we have to assume that µ (θ) ≤
min {θ, 1}. Also, for tractability we assume that µ (θ) is continuous and twice differentiable

with µ′ (θ) > 0 and µ′′ (θ) < 0 for all θ ∈ [0,∞).

1.3 Bellman Equations

Let us define Ut the value of an unemployed worker at the beginning of time t, Vt the

value of an employed worker at the beginning of time t, Wt the value of a firm with an

open vacancy at the beginning of time t, Jt the value of a firm with a filled vacancy at the

beginning of time t. Then,

Ut = µ (θt) (wt + βVt+1) + (1− µ (θt)) (b+ βUt+1)

Vt = s (b+ βUt+1) + (1− s) (wt + βVt+1)

Wt = −k +
µ (θt)

θt
(y − wt + βJt+1) +

(
1− µ (θt)

θt

)
βmax {Wt+1, 0}

Jt = sβmax {0,Wt+1}+ (1− s) (y − wt + βJt+1)

Free-entry implies that

Wt = 0 for all t.

Also, the law of motion for ut is

ut+1 = ut (1− µ (θt+1)) + (1− ut) s. (1)
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1.4 Steady State

In steady state, the Bellman equations become

U = µ (θ) (w + βV ) + (1− µ (θ)) (b+ βU) (2)

V = s (b+ βU) + (1− s) (w + βV ) (3)

k =
µ (θ)

θ
(y − w + βJ) (4)

J = (1− s) (y − w + βJ) (5)

We assume that the wage is determined by generalized Nash bargaining solution with

threat points equal to the outside option of the firm and the worker. If the firm does not

meet a worker, she just gets 0, while if a worker does not meet a firm, he gets b + βU ,

where U is taken as given in the negotiation. If instead the firm and the worker bargain a

wage ω, the worker gets ω + βṼ (ω) and the firm gets y − ω + βJ̃ (ω), where

Ṽ (ω) ≡ s (b+ βU) + (1− s)ω
1− (1− s) β ,

J̃ (ω) ≡ (1− s) (y − ω)

1− (1− s) β .

Hence, Nash Bargaining require

w = max
ω

[
ω + βṼ (ω)− b− βU

]η [
y − ω + βJ̃ (ω)

]1−η
. (6)

We are interested in situations where

ω + βṼ (ω) ≥ b+ βU,

and

y − ω + βJ̃ (ω) ≥ 0,

for some ω so that there is something to bargain over. A necessary and suffi cient condition

for that is

U ≤ 1

β

[
y

1− β − b
]
,

which requires

y ≥ (1− β) b

3



Definition 1 A steady state equilibrium is a vector (U, θ, w, u) such that vacancies are

chosen to maximize firms’expected profits and wages are determined by Nash bargaining.

Combining (4) and (5) we obtain

k =
µ (θ)

θ

[
y − w

1− (1− s) β

]
. (7)

As the wage increases, the expected profits for the firm decrease and less firms enter, driving

θ down and hence the expected profits up.

The Nash bargaining problem (6) gives the foc

η
[
y − ω + βJ̃ (ω)

]
= (1− η)

[
ω + βṼ (ω)− b− βU

]
.

At the optimum ω = w, Ṽ (ω) = V , and J̃ (ω) = J . Also it must be that

w − b+ β (V − U) = η [y − b+ β (V + J − U)]

y − ω + βJ = (1− η) [y − b+ β (V + J − U)]

and (combining them):

[w − b+ β (V − U)] =
η

1− η (y − w + βJ) . (8)

Combining the first equation with the expression for J and V we obtain

w = (1− β) (b+ βU) + η [y − (1− β) (b+ βU)] (9)

where (1− β) (b+ βU) represents the reservation wage.

Equation (2) can be rewritten as

(1− β)U = b+ µ (θ) (w − b+ β (V − U))

and combining this with (8) and (4) we obtain

(1− β)U = b+
η

1− ηθk, (10)

so that the reservation wage becomes

(1− β) (b+ βU) = b+
η

1− ηβθk.
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As the market tightness increases, the expected utility for a worker increases and hence the

reservation wage increases. Combining this with (9) we obtain

w = η (y + βθk) + (1− η) b. (11)

Finally we can find the equilibrium market tightness by equalizing demand and supply,

that is, combining (11) and (7):

k =
µ (θ)

θ

[
y − η (y + βθk)− (1− η) b

1− (1− s) β

]
. (12)

The RHS is a non-increasing function of θ and hence there exists a unique θ that satisfy

this equation! Then we can plug the equilibrium value for θ back into (10) and (11) to find

the equilibrium values for U and w. To complete the equilibrium characterization we need

to specify the steady state value of the unemployment rate. From the law of motion for

the unemployment rate (1) we obtain that in steady state

u =
s

s+ µ (θ)
.

Definition 2 An equilibrium is a sequence {Ut, wt, θt, ut}∞t=0 such that at each point in time
vacancies are chosen to maximize firms’expected profits, and wages in a match created at

that time are determined by Nash bargaining.

There is an equilibrium, where Ut, wt, and θt are constant at the steady state level and

the only interesting dynamics are the dynamics of ut (and vt). The only state variables

of the equilibrium are ut and vt, and we can transform them into ut and θt. Notice that,

if Ut is constant the Nash bargaining solution implies that wt is constant and then free

entry implies that θt is constant as well. The only dynamics are the dynamics of the

unemployment rate:

ut+1 = ut (1− µ (θt)) + (1− ut) s.

Proposition 1 The equilibrium with U , w, and θ constant over time and equal to their

steady state values is an equilibrium. If 1− η = θµ′ (θ) /µ (θ), it is the unique equilibrium.
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1.5 Social Planner

Consider a planner who decides how many vacancies to open and how much consumption

to allocate to employed and unemployed workers at each point in time. Define cut and c
e
t the

consumption of unemployed and employed workers respectively. Then, at the beginning of

time t, the value of an unemployed worker and of an employed worker respectively are

Ut = µ (θt) (cet + βVt+1) + (1− µ (θt)) (cut + βUt+1)

Vt = s (cut + βUt+1) + (1− s) (cet + βVt+1)

The intertemporal resource constraint can be written as

∞∑
t=0

βt {ut+1y + (1− ut+1) b− θtutk} ≥
∞∑
t=0

βt {ut+1cet + (1− ut+1) cut }

= u0U0 + (1− u0)V0

The Pareto frontier can be characterized by maximizing U0 subject to V0 = V̄ and the

resource constraint. Given that utility is transferable, the Pareto frontier is going to be

linear. In particular, given that the resource constraint will hold with equality, the social

planner will like to maximize the net present value of resources in the economy, that is, the

LHS of the resource constraint.

Hence, the Planner Problem can be written in recursive terms as

P (u) = max
θ,u′

(1− u′) y + u′b− kθu+ βP (u′)

subject to

u′ = u (1− µ (θ)) + (1− u) s

Substituting the constraint into the objective we get

P (u) = max
θ

[uµ (θ) + (1− u) (1− s)] y + [u (1− µ (θ)) + (1− u) s] b− kθu+ βP (u′)

The foc is

µ′ (θ) (y − b− βP ′ (u′)) = k

and the Envelope condition

P ′ (u) = [µ (θ)− (1− s)] y + [1− µ (θ)− s] b− kθ + βP ′ (u′) [1− µ (θ)− s]
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Guess:

P (u) = α0 + α1u.

From the Envelope condition we get:

α1 =
[1− µ (θ)− s] (b− y)− kθ

1− β (1− µ (θ)− s)

and from the first order condition θ∗ must satisfy

µ′ (θ∗) (y − b+ βkθ∗)

1− β (1− µ (θ∗)− s) = k.

Plugging this back into the planner problem you can check that the guess is verified:

P (u) = [uµ (θ) + (1− u) (1− s)] y + [u (1− µ (θ)) + (1− u) s] b− kθu

+βα0 + βα1 [u (1− µ (θ)) + (1− u) s]

Finally, we can rewrite the planner condition above as

k =
µ′ (θ) (y − b)

1− β (1− s) + β
[
1− θµ′(θ)

µ(θ)

]
µ (θ)

.

The equilibrium condition (12) can be rewritten as

k =
µ(θ)
θ

(1− η) (y − b)
1− β (1− s) + βηµ (θ)

.

This implies that the equilibrium is constrained effi cient if and only if

1− η =
θµ′ (θ)

µ (θ)
,

which is called “Mortensen-Hosios condition”.

Proposition 2 The equilibrium does not generically achieve a constrained effi cient alloca-

tion.

There is effi ciency only if a knife-edge condition is satisfied: the firm bargaining power

is equal to the elasticity of the job finding function µ (θ). If this elasticity is higher, more

firms entry benefits workers more at the margin and hence a higher firms’bargaining power

internalizes this and generates more entry. If the firm bargaining power is too low, there

would be too little entry, that is, market tightness would be too low, while if the firm

bargaining power is too high, there would be too high market tightness.

7



1.6 Dynamic problem

Let us go back to the dynamic problem. To make it more tractable, notice that we can

rewrite the original Bellman equations in terms of the net present value of wages and income

as follows:

Ut = µ (θt) (ŵt + βVt+1) + (1− µ (θt)) (b+ βUt+1) (13)

Vt = s (b+ βUt+1) + (1− s) βVt+1 (14)

k =
µ (θt)

θt
(ŷ − ŵt) (15)

where

ŵt =
∞∑
τ=t

[(1− s) β]τ−twτ ,

and

ŷ =
y

1− (1− s) β .

Given linear utility, what matters is the net present value of the wages in the employment

relationship and the net present value of the production. Hence, we can assume that the

bargaining for matches created at time t is over the net present value of wages ŵt.

From Nash Bargaining we have

ŵt = max
ω

[ω + βVt+1 − b− βUt+1]η [ŷ − ω]1−η

where Vt+1 and Jt+1 do not depend on ω!

Then the foc give us

η (ŷ − ŵt) = (1− η) [ŵt − b+ β (Vt+1 − Ut+1)] .

Define

Dt ≡ Ut − Vt.

At the optimum

ŵt − b− βDt+1 = η [ŷ − b− βDt+1] , (16)

ŷ − ŵt = (1− η) [ŷ − b− βDt+1] . (17)

Combining equations (13) and (14) we obtain

Dt = µ (θt) (ŵt − b− βDt+1) + (1− s) (b+ βDt+1) .
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From (16)

ŵt − b− βDt+1 = η (ŷ − b− βDt+1)

Hence we can rewrite

Dt = µ (θt) η (ŷ − b− βDt+1) + (1− s) (b+ βDt+1)

or

Dt = µ (θt) η (ŷ − b) + (1− s) b+ (1− s− µ (θt) η) βDt+1

Rewriting this one period forward

Dt+1 = µ (θt+1) η (ŷ − b) + (1− s) b+ (1− s− µ (θt) η) βDt+2

From (15) and (17) we obtain

βDt+1 = ŷ − b− k

1− η
θt

µ (θt)
,

βDt+2 = ŷ − b− k

1− η
θt+1

µ (θt+1)
.

Plugging the last three equations together we obtain

k

1− η

[
θt

µ (θt)
− β (1− s− µ (θt) η) θt+1

µ (θt+1)

]
= (1− β (1− s)) ŷ − b

To characterize an equilibrium is enough to find a sequence {θt}∞t=0 that solves this difference
equation. Notice that θt = θ for all t is a solution and gives the steady state value of θ.

This is consistent with Proposition 1. However, generically this may be not the only

solution. I am going to show you later on that this it must be the only solution when

1− η = θµ′ (θ) /µ (θ).

2 Competitive Search

2.1 Set Up

As in the previous model, there is a continuum of measure 1 of risk-neutral homogeneous

workers and a continuum of larger measure of risk-neutral homogeneous firms. The discount

factor is β. Here, at the beginning of the period the firm decide to pay k to open a vacancy
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and if she does so, she also posts a wage. Next, workers observe all the posted wages

and decide where to apply. There is a potential submarket for any given w ∈ R+. The

matching function is the same as before. For any given wage w, there is an associated

market tightness Θ (w) and µ (Θ (w)) denotes the probability a worker finds a job that

posts w and µ (Θ (w)) /Θ (w) denotes the probability a firm that posts w finds a worker

applying for it. After matching, the employment relationship is implemented. A match

created at time t has a probability s of being destroyed at each time τ > t.

2.2 Equilibrium

We define a SS Competitive Search Equilibrium as follows.

Definition 3 A SS CSE is an allocation
{
Ū ,W,Θ

}
with U ∈ R+, W ⊂ R+, and Θ :

R+ 7→ [0,∞] satisfying

1. firms’profit maximization and free-entry: for any w ∈ R+

µ (Θ(w))

Θ(w)
(y − w)− k ≤ 0

with equality if w ∈ W ;

2. workers’optimal application: for any w ∈ R+

µ (Θ(w))
(
w + βV̄

)
+ (1− µ (Θ(w)))

(
b+ βŪ

)
≤ Ū

with equality if Θ(w) <∞, where

Ū = max

{
sup
w∈W

µ (Θ(w))
(
w + βV̄

)
+ (1− µ (Θ(w)))

(
b+ βŪ

)
, b+ βŪ

}
,

and Ū = b+ βŪ if W = ∅, and

V̄ =
s
(
b+ βŪ

)
1− β (1− s) .

In equilibrium, firms profits are driven to zero by free-entry and workers apply to the

contracts that offer them the highest possible expected utility. This definition of equilibrium

embeds a notion of subgame perfection. The market tightness function impose restrictions
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on beliefs about the market tightness of potential deviations. Imagine a deviation, as a

measure ε of vacancies posting a wage w′. Then either Θ(w′) =∞ and nobody is applying

for that wage, or Θ(w′) <∞ and it must be that workers obtain the same expected utility

they would get in equilibrium. If they were getting something better, this would not be an

equilibrium!

2.3 Characterization

We can now characterize the equilibrium

Proposition 3 If
{
Ū ,W,Θ

}
is a CSE, then any w ∈ W and θ = Θ (w) solve

Ū = max
w,θ

µ (θ)
(
w + βV̄

)
+ (1− µ (θ))

(
b+ βŪ

)
(P1)

s.t.
µ (θ)

θ
(y − w) = k,

where

V̄ =
s
(
b+ βŪ

)
1− β (1− s) .

Conversely, if some pair {w, θ} solves P1, then there exists a CSE
{
Ū ,W,Θ

}
such that

w ∈ W and θ = Θ (w).

Proof. Step 1. Let
{
Ū ,W,Θ

}
be a CSE with w ∈ W and θ = Θ (w), then (w, θ)

solve P1. First, profit maximization implies that the constraint is immediately satisfied.

Second, suppose ∃ (w′, θ′) that satisfy the constraint but achieve higher utility, that is,

µ (θ′)
(
w′ + βV̄

)
+ (1− µ (θ′))

(
b+ βŪ

)
> Ū.

Notice that for this condition to be satisfied it must be that w′ ≥ b + β
(
Ū − V̄

)
, given

that workers’optimal application requires Ū ≥ b+ βŪ . Workers’optimal application also

implies

µ (Θ (w′))
(
w′ + βV̄

)
+ (1− µ (Θ (w′)))

(
b+ βŪ

)
≤ Ū .

Given that w′ ≥ b+ β
(
Ū − V̄

)
, the LHS of the two conditions above is increasing in µ (.)

which implies that

Θ (w′) < θ′.
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Hence, from the assumption that (w′, θ′) satisfies the constraint, we obtain

µ (Θ(w′))

Θ(w′)
(y − w′)− k > µ (θ′)

θ′
(y − w′)− k = 0,

which contradicts profit maximization. This implies that (w, θ) solve problem P1!

Step 2. For any (w, θ) solving P1, we can construct a CSE
{
Ū ,W,Θ

}
with W = {w},

with

Ū = µ (θ)
(
w + βV̄

)
+ (1− µ (θ))

(
b+ βŪ

)
,

and Θ such that

µ (Θ(w))
(
w + βV̄

)
+ (1− µ (Θ(w)))

(
b+ βŪ

)
= Ū

for any w ≥ b + β
(
Ū − V̄

)
and Θ(w) = ∞ otherwise. Optimal workers’application is

satisfied by construction. Let us now check that firms maximize profits. Suppose ∃w′ such
that

µ (Θ(w′))

Θ(w′)
(y − w′)− k > 0.

Notice that, by the construction of Θ, it must be that w′ ≥ b + β
(
Ū − V̄

)
. Define θ′ so

that
µ (θ′)

θ′
(y − w′)− k = 0.

Then by construction θ′ ≥ Θ(w′), which together with w′ > b+ β
(
Ū − V̄

)
gives

µ (θ′)
(
w′ + βV̄

)
+ (1− µ (θ′))

(
b+ βŪ

)
> Ū.

This is a contradiction because (w′, θ′) satisfy the constraint but achieve a higher value

than Ū , so that (w, θ) could not be the solution to P1!

Proposition 4 There exists a unique SS CSE.

Proof. Existence can simply be proved by showing that there exists a solution to P1

together with the second part of the previous proposition. The objective function in P1

is continuous in θ and w and the constraint set is compact given that the RHS of the

constraint is also continuous in both arguments and non-empty (θ = 0 and w = y − k).
To prove uniqueness, define the map T

T (U) = maxµ (θ) y − θk +

(
1− µ (θ) (1− β)

1− β (1− s)

)
(b+ βU) .
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For given U , there exists a unique θ that solves this maximization problem (given that µ

is strictly concave). Moreover

|T ′ (U)| =
∣∣∣∣β [1− µ (θ)

(
1− β

1− β (1− s)

)]∣∣∣∣ ≤ β.

Hence, T is a contraction and there exists a unique Ū such that T
(
Ū
)

= Ū .

Next, let me define a CSE (natural extension of the definition of a SS CSE).

Definition 4 A CSE is a sequence of allocations
{
Ūt, V̄t,Wt,Θt

}∞
t=0

with Ut and Vt non-

negative and bounded, Wt ⊂ R+, and Θt : R+ 7→ [0,∞] satisfying

1. firms’profit maximization and free-entry at any t: for any wt ∈ R+

µ (Θt(wt))

Θt(wt)
(y − wt)− k ≤ 0

with equality if wt ∈ Wt;

2. workers’optimal application at any t: for any wt ∈ R+

µ (Θt(wt))
(
wt + βV̄t+1

)
+ (1− µ (Θt(wt)))

(
b+ βŪt+1

)
≤ Ūt

with equality if Θ(w) <∞, where

Ūt = max

{
sup
wt∈R+

µ (Θt(wt))
(
wt + βV̄t+1

)
+ (1− µ (Θt(wt)))

(
b+ βŪt+1

)
, b+ βŪt+1

}
,

and

V̄t = s
(
b+ βŪt+1

)
+ (1− s) βV̄t+1.

We next show that a CSE has no interesting dynamics, except for the unemployment

rate.

Proposition 5 A CSE where Ūt, V̄t, Wt, and Θt are constant at the SS values is the unique

CSE.

Sketch of the Proof. First, you can extend proposition 3 to show that a CSE can be

characterized using the following problem

Φ (Dt+1) = max
θt

µ (θt) y − θtk + (1− s− µ (θt)) (b+ βDt+1) ,
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where

Dt = Ūt − V̄t.

In particular, 1) given sequences
{
Ūt
}
and

{
V̄t
}
, and hence {Dt}, the equilibrium sequence

{θt} solves this maximization problem; and 2) given {θt}, the equilibrium sequence {Dt}
solves Dt = Φ (Dt+1) and

{
Ūt
}
and

{
V̄t
}
satisfy

Ūt = Φ (Dt+1) + V̄t,

V̄t = s
(
b+ βŪt+1

)
+ (1− s) βV̄t+1.

Second, notice that from the definition of equilibrium, Ūt (and hence V̄t) must be

bounded given that it is the continuation value for the unemployed workers and

0 ≤ Ūt ≤
∞∑
τ=t

βτ−ty =
y

1− β .

Hence, explosive paths cannot be an equilibrium. If Ūt and V̄t are constant at the steady

state values, you can show that this is an equilibrium comparing the problem above and

P1. Is this the unique equilibrium? If not, there exists an equilibrium with time-varying

Ūt and V̄t. This would imply that Dt is time-varying as well. Notice that the maximization

problem above has a unique maximum and Φ (Dt+1) is a contraction given that

|Φ′ (Dt+1)| = |(1− s− µ (θt)) β| ≤ β.

This implies that there exists a unique D̄ such that D̄ = Φ
(
D̄
)

Dt − D̄ = Φ (Dt+1)− Φ
(
D̄
)
,

and hence ∥∥Dt − D̄
∥∥ < β

∥∥Dt+1 − D̄
∥∥ < ... < βT

∥∥Dt+T − D̄
∥∥ .

If Dt is time-varying then
∥∥Dt − D̄

∥∥ > ε for some t. This implies∥∥Dt+T − D̄
∥∥ > β−T ε→∞.

and hence the sequence Dt is explosive. If Dt explodes, by construction, also Ūt and V̄t are

explosive, which is a contradiction.
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2.4 Constrained Effi ciency

Propositions 3 and 5 show that we can use problem P1 to characterize any CSE, that is,

the equilibrium θ must solve

Ū = max
θ
µ (θ)

(
y + βV̄

)
− θk + (1− µ (θ))

(
b+ βŪ

)
,

where

V̄ =
s
(
b+ βŪ

)
1− β (1− s) .

Notice that this problem is equivalent to the following one:

D = max
θ
µ (θ) y − θk + (1− µ (θ)− s) b+ β (1− µ (θ)− s)D, (18)

where

D ≡ Ū − V̄ .

Recall that the planner problem is

P (u) = max
θ,u′

uµ (θ) y + [u (1− µ (θ)) + (1− u) s] b− θuk + βP (u′)

Notice that the objective function is slightly different from the one in section because now

y is equal to the net present value of the production over the life of a match rather than

per-period production. As before we can show that P (u) = α0 + α1u, so that we can

rewrite the planner problem as

P (u) = α0 +
{

max
θ
µ (θ) y + [1− µ (θ)− s] b− θk + α1β [1− µ (θ)− s]

}
u.

To find the constrained effi cient allocation it is then suffi cient to solve the “mini-Bellman”:

α1 = max
θ
µ (θ) y + (1− µ (θ)− s) b− θk + β (1− µ (θ)− s)α1.

This is exactly the same problem as 18 proving constrained effi ciency!

Proposition 6 The CSE is constrained effi cient.
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3 Asymmetric Information

In the previous lectures we focused on how the effi ciency properties of search models can

be affected by differences in wage determination, that is, in the way the surplus from a

match is devided. However, often firms and workers have different information on the size

of the surplus they can create and this asymmetric information may distort the allocation

and, in particular, the level of unemployment in the economy.

3.1 Set Up

Time is discrete and the horizon infinite. There is a continuum of measure 1 of ex-ante

homogeneous and risk-netural workers and a continuum of larger measure of ex-ante ho-

mogeneous and risk-neutral firms. They have a common discount factor β. Workers can

search freely, while firms have to pay a cost k to open a vacancy. The environment is very

similar to the one above, except that now the present value of the surplus of a match is not

y but y − x, where x represents the present value of the match-specific disutility for the
worker, e.g. the cost of effort that the worker has to exert to make the match productive.

When a match is formed, the value of x is drawn from the cdf F (.) with full support on

X ≡ [x, x] and is observed privately by the worker. Assume that F (.) is differentiable,

with f (.) denoting the associated density function, and satisfies the monotone hazard rate

condition
d (F (x) /f (x))

dx
> 0.

At the beginning of each period t, firms can open a vacancy at cost k which entitles

them to post an employment contract. Invoking the revelation principle, without loss of

generality, we can restrict attention to the set Ωt of incentive-compatible and individually

rational direct revelation mechanisms at time t. A contract posted at time t is a map

Ct : X 7→ [0, 1] × R+ specifying the hiring probability et (x̃) ∈ [0, 1] and the discounted

present value of transfers ωt (x̃) ≥ 0 from the firm to the worker for each matched worker at

time t who reports type x̃. Let Ct be the set of posted contracts. Each worker observes Ct
and chooses to apply for a contract Ct ∈ Ct. As in the baseline competitive search model,
each contract is associated with a market tightness Θt (Ct), so that a worker who applies

to Ct has a probability µ (Θ (Ct)) of finding a firm and a firm posting Ct has probability

µ (Θt (Ct)) /Θt (Ct) to meeting a worker. The function µ (.) satisfy the same assumptions

16



we have made before. After matching takes place, the draw x is realized and observed by

the worker. Then, the worker can choose to make a report x̃ and implement the contract.

In this case, he is hired with probability e (x̃) and he gets a discounted present value of

transfers equal to ω (x̃). If the worker is hired the match is productive until separation.

Otherwise, he can choose to walk away and join the pool of the unemployed who get b and

search for a job next period.

3.2 Bellman Values

Let vt (x, x̃) denote the expected utility of a worker of type x matched at time t who reports

type x̃, that is

vt (x, x̃) ≡ ωt (x̃)− et (x̃) (x+ b+ β (Ut+1 − Vt+1)) + b+ βUt+1, (19)

where Vt+1 denotes the continuation utility of being employed (net of wages and disutility)

and Ut+1 is the continuation utility of being unemployed (both at the beginning of time

t+ 1).

An employment contract Ct is incentive-compatible iff

vt (x, x) ≥ vt (x, x̃) for all x, x̃ ∈ X, (IC)

and individually rational iff

vt (x, x) ≥ b+ βUt+1 for all x ∈ X. (IR)

Following standard results in the mechanism design literature, IC and IR are equivalent to

et (.) non-increasing together with the following two conditions:

vt (x, x) = vt (x, x) +

∫ x

x

et (z) dz for all x ∈ X (IC’)

and

vt (x, x) ≥ b+ βUt+1. (IR’)

Lemma 1 Conditions IC and IR are equivalent to IC’and IR’ together with et (·) non-
increasing.
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Proof. Step 1. First we prove necessity. From IC we have that for any pair x̃ > x

vt (x, x) ≥ vt (x, x̃) ,

vt (x̃, x̃) ≥ vt (x̃, x) ,

and hence

vt (x, x)− vt (x̃, x) ≥ vt (x, x)− vt (x̃, x̃) ≥ vt (x, x̃)− vt (x̃, x̃)

Using (19) we can rewrite this expression as

et (x) ≤ vt (x, x)− vt (x̃, x̃)

(x̃− x)
≤ et (x̃)

which implies that et (·) must be nonincreasing. Moreover, letting x̃→ x, we obtain

vt (x, x) = vt (x, x) +

∫ x

x

et (z) dz.

Finally, this also implies that a necessary condition for IR is

vt (x, x) ≥ b+ βUt+1.

Step 2. Second, we prove suffi ciency. Consider any x and x̃ and assume without loss

of generality that x < x̃. Using IC’and the fact that e is nonincreasing one can derive

vt (x, x)− vt (x̃, x̃) =

∫ x̃

x

et (z) dz ≥
∫ x̃

x

et (x̃) dz = et (x̃) (x̃− x) .

It follows that

vt (x, x) ≥ vt (x̃, x̃) + et (x̃) (x̃− x)

= ωt (x̃)− et (x̃) [x+ b+ β (Ut+1 − Vt+1)] = vt (x, x̃)

Similarly we can obtain

vt (x̃, x̃) ≥ vt (x̃, x) .

This proves that IC must be satisfied. Finally if IR’is satisfied and e is nonincreasing, it

must be that IR is satisfied, competing the proof.
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3.3 Equilibrium

The definition of equilibrium in recursive terms is the natural generalization of the definition

in the baseline model.

Definition 5 A CSE is a sequence
{
Ūt, V̄t,Ct,Θt

}∞
t=0
, with Ūt and V̄t bounded and non-

negative, Ct ⊂ Ωt, and Θt : Ωt 7→ [0,∞], such that

1. firms’profit maximization and free entry at all t: for any Ct = {et (·) , ωt (·)} ∈ Ωt

µ (Θt(Ct))

Θt(Ct)

∫ x

x

(et (x) y − ωt (x)) dF (x)− k ≤ 0,

with equality if Ct ∈ Ct;

2. workers’optimal application at all t: for any Ct = {et (·) , ωt (·)} ∈ Ωt

µ (Θt(Ct))

∫ [
ωt (x)− et (x)

(
x+ b+ β

(
Ūt+1 − V̄t+1

))]
dF (x) +

(
b+ βŪt+1

)
≤ Ūt

with equality if Θ(w) <∞, where

Ūt = sup
C′t∈Ct

µ (Θt(C
′
t))

∫ [
ωt (x)− et (x)

(
x+ b+ β

(
Ūt+1 − V̄t+1

))]
dF (x)+

(
b+ βŪt+1

)
or Ūt = b+ βŪt+1 if Ct is empty, and

V̄t = s
(
b+ βŪt+1

)
+ (1− s) βV̄t+1.

In equilibrium, firms’profits are driven to 0 by free entry and workers obtain expected

utility equal to Ūt at each time t. If a measure ε of firms deviate at time t and post a

contract C ′t, they expect the associated market tightness (and hence their probability of

finding a worker) to be such that workers would get the equilibrium expected utility Ūt. In

equilibrium, it must be that any such deviation is unprofitable.

As in the baseline model, we can use a simple constrained maximization problem to

characterize the equilibrium.

Proposition 7 If
{
Ūt, V̄t,Ct,Θt

}∞
t=0

is a CSE, then any pair (Ct, θ) with Ct ∈ Ct and
θ = Θ (Ct) solves

Ūt = max
et(·),ωt(·),θt

µ (θt)

∫ x

x

[
ωt (x)− et (x)

(
x+ b+ β

(
Ūt+1 − V̄t+1

))]
dF (x) +

(
b+ βŪt+1

)
(P2)
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subject to IC’, IR’, et (x) ∈ [0, 1] and non-increasing for all x ∈ X, and

µ (θt)

θt

∫ x

x

(et (x) y − ωt (x)) dF (x)− k = 0. (20)

Conversely, if a sequence {Ct, θt}∞t=0 solves problem P2 at any t and V̄t = s
(
b+ βŪt+1

)
+

(1− s) βV̄t+1, then there exists an equilibrium {Ut, Vt,Ct,Θt}∞t=0 such that Ct ∈ Ct and
Θt (Ct) = θt for any t.

The proof of this proposition is very similar to the one for Proposition 3 and therefore

omitted. I suggest you to go over it as homework.

The next proposition shows that the equilibrium characterization can be further simpli-

fied, by noticing that without loss of generality we can restrict attention to wage contracts,

that is, a flat wage that a worker can accept or reject. Notice that a wage contract is

equivalent to a direct revelation mechanism characterized by a hiring cut-off rule, a flat

transfer paid to employed workers and zero transfer paid to the workers who are not hired.

Proposition 8 Take any Ct and θt that solve problem P3 for given Ūt+1 and V̄t+1. The

contract Ct = {et (·) , ωt (·)} takes the form of a wage contract, that is,

et (x) =

{
1 if x ≤ x̂t
0 if x > x̂t

and ωt (x) =

{
wt if x ≤ x̂t
0 if x > x̂t

where wt = x̂t + b+ β
(
Ūt+1 − V̄t+1

)
and the pair (x̂t, θt) solves

Φ
(
Ūt+1 − V̄t+1

)
= max

x̂t,θt
µ (θt)

∫ x̂t

x

[
y − x− b− β

(
Ūt+1 − V̄t+1

)]
dF (x)− θtk (P3)

subject to
µ (θt)

θt
F (x̂)

[
y − x̂t − b− β

(
Ūt+1 − V̄t+1

)]
= k.

Proof. Consider problem P2. First, integrating both sides of constraint IC’we obtain∫ x

x

vt (x, x) dF (x) = vt (x, x) +

∫ x

x

et (x)F (x) dx (21)

given that using integration by parts∫ x

x

(∫ x

x

et (z) dz

)
f (x) dx =

∣∣∣∣(∫ x

x

et (z) dz

)
F (x)

∣∣∣∣x
x

+

∫ x

x

et (x)F (x) dx

=

∫ x

x

et (x)F (x) dx.
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Then combining (21) and condition IR’, together with (19), we obtain∫ x

x

[
ω (x)− e (x)

(
x+ b+ β

(
Ūt+1 − V̄t+1

)
+
F (x)

f (x)

)]
dF (x) ≥ 0.

Using condition (20) we can substitute for ωt (x) and problem P2 can be rewritten as

max
et(x)∈[0,1],θt

µ (θt)

∫ x

x

et (x)
(
y − x− b− β

(
Ūt+1 − V̄t+1

))
dF (x)− θtk + b+ βŪt+1 (P2’)

subject to

µ (θt)

∫ x

x

et (x)

[
y − x− b− β

(
Ūt+1 − V̄t+1

)
− F (x)

f (x)

]
dF (x) ≥ θtk (22)

and et (x) non-increasing. For given Ūt+1 and V̄t+1, any non-increasing function et (·)
and value θt that solve problem P2 also solve problem P2’. Moreover, for any function

et (·) and value θt that solve problem P2’, conditions IC’and (19) can be used to recover

the function ωt (·) so that et (·), ωt (·), and θt solve P2.
Consider now the relaxed version of problem P2’where we do not impose the monotonic-

ity condition on et (·). Pointwise maximization together with the monotone hazard rate
assumption imply that there exists a threshold x̂t such that et (x) = 1 if x ≤ x̂t and 0

otherwise, where

x̂t = y − b− β
(
Ūt+1 − V̄t+1

)
− λ

1 + λ

F (x̂t)

f (x̂t)
, (23)

with λ being the Lagrangian multiplier attached (22). This implies that et (·) is nonin-
creasing and that a solution to the relaxed version of problem P2’is also a solution to P2.

Also, notice that once we impose the cut-off function, problem P2’reduces to P3. Finally,

we have to recover ωt (·). Using expression (19) we obtain

vt (x, x) =

{
ωt (x)− x+ βVt+1 if x ≤ x̂t
ωt (x) + b+ βUt+1 if x > x̂t

.

Using IC’we obtain

ωt (x) =

{
ωt (x) + x̂+ b+ β (Ut+1 − Vt+1) if x ≤ x̂t

ωt (x) if x > x̂t
.

We now need to pin down ωt (x). If IR’is binding, it must be that ωt (x) = 0. Moreover,

IR’is binding iff (22) is binding. Imagine (22) is not binding and λ = 0. Then substituting

for x̂t using (23) in the constraint of P3 we obtain

µ (θt)

θt

∫ x̂t

x

[
x̂t − x−

F (x)

f (x)

]
dF (x) ≥ k.
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From integration by parts
∫ x̂t
x

(x̂t − x) dF (x) =
∫ x̂t
x
F (x) dx yielding a contradiction given

that k > 0. This implies ωt (x) = 0 for all t, completing the proof.

This proposition simplify the equilibrium characterization. The two key frictions are

asymmetric information and workers’limited commitment. The first implies that firms can-

not price discriminate, and the second that the workers cannot commit to make payments

to the firm if they are not hired. This is why in equilibrium firms post wage contracts,

offering a flat wage such that the marginal worker x̂t is indifferent between working and

being unemployed, that is, wt = x̂t + b + β
(
Ūt+1 − V̄t+1

)
. Hence, at time t, all the infra-

marginal workers with x < x̂t get some positive surplus x̂t − x. This implies that ex ante
a worker expects to appropriate an average surplus equal to µ (θt)

∫ x̂t
x
F (x) dx, which we

name expected informational rents. The constraint of P3 can be rewritten as

µ (θt)

∫ x̂t

x

[
y − x− b− β

(
Ūt+1 − V̄t+1

)]
dF (x) ≥ θtk + µ (θt)

∫ x̂t

x

F (x)

f (x)
dF (x)

and tells us that the expected net surplus of a match needs to cover not only the vacancy

creation cost but also the workers’expected informational rents. The workers’informational

rents distort the equilibrium allocation in comparison to the first best, as emerges from

equation (23). If we wanted to implement the first-best, the firms would not have enough

surplus to cover the vacancy cost! You can easily show that.

Proposition 9 There exists a CSE characterized by constant Ūt, V̄t, wt, x̂t, and θt are

constant and independent of u0. If

Φ′ (D) + β (1− s) ≥ −β for all D ≥ 0,

then the equilibrium is unique.

The proof of this proposition is very similar to the proof sketched for Proposition 5.

You can also look at the paper for a discussion on the possibility of cycles.

3.4 Constrained Effi ciency

Let me consider a social planner who faces the same frictions of the market economy, that is,

he does not observe the type of the workers and cannot force workers to work. Moreover, a

worker can always decide to join the anonymous pool of unemployed, hide from the planner
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and enjoy b, and search for a job next period. If a worker enters the unemployment pool,

his history is indistinguishable from that of any other unemployed. Given these constraints

together with the resource constraints, the planner decides how many vacancies to open

and how to allocate consumption.

An allocation is defined as a sequence of
{
et (·) , ct (·) , CU

t , θt
}
, where et (x̃) is the hiring

decision for a worker matched at time t who reports x̃, and ct (x̃) is the discounted present

value of the consumption of the same worker, while CU
t is the consumption for unemployed

workers at time t, and θt the market tightness at time t.

Now the expected utility of a matched worker at time t of type x who reports x̃ is

vt (x, x̃) ≡ ct (x̃)− et (x̃) (x− βVt+1) + (1− et (x̃))
(
CU
t + βUt+1

)
,

where

Vt = s
(
CU
t + βUt+1

)
+ (1− s) βVt+1, (24)

and

Ut = µ (θt)

∫ x

x

vt (x, x) dF (x) + (1− µ (θt))
(
CU
t + βUt+1

)
. (25)

Similarly to the equilibrium analysis, one can derive that an allocation is incentive-

compatible iff et (·) is nonincreasing and

vt (x, x) = vt (x, x) +

∫ x

x

et (z) dz.

Moreover, workers’limited commitment requires

vt (x, x) ≥ CU
t + βUt+1. (26)

Also, it must be that

CU
t ≥ b, (27)

otherwise unemployed workers would hide.

Finally, the planner can transfer resources intertemporally at the interest rate β−1 − 1

and the intertemporal resource constraint takes the form

P0 ≡
∑

βt{ut[µ (θt)

∫ x

x

[
et (x)

(
y − b+ CU

t

)
− ct (x)

]
dF (x) + b− CU

t − θtk] (28)

+ (1− ut) s
(
b− CU

t

)
≥ 0,
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where

ut+1 = ut

[
1− µ (θt)

∫ x

x

et (x) dF (x)

]
+ (1− ut) s. (29)

Definition 6 An allocation
{
et (·) , ct (·) , CU

t , θt
}
is feasible if there exists a bounded se-

quence {Ut, Vt} such that the following are satisfied for all t: (i) incentive-compatibility
constraints summarized by (??) and et (·) non-increasing; (ii) participation constraints (26)
and (27); (iii) resource constraint (28); and (iv) the law of motion for unemployment (29).

Definition 7 For given u0, an allocation is constrained effi cient if it maximizes U0 subject

to V0 ≥ V̄ and feasibility.

For any given u0, the dual problem of the planner requires to minimize P0 subject to

U0 ≥ Ū , V0 ≥ V̄ , and feasibility. The recursive version of this problem is

P (Ut, Vt, ut) = max
et(·),ct(·),CUt ,θt
Ut+1,Vt+1,ut+1

ut

[
µ (θt)

∫ x

x

[
et (x)

(
y − b+ CU

t

)
− ct (x)

]
dF (x) + b− CU

t − θtk
]

+ (1− ut) s
(
b− CU

t

)
+ βP (Ut+1, Vt+1, ut+1)

subject to (??) and et (·) non-increasing, (26) and (27), (29), and the promise keeping
constraints (24) and (25).

Proposition 10 The constrained effi cient allocation
{
e∗t (·) , c∗t (·) , CU∗

t , θ∗t
}
is character-

izes by

e∗t (x) =

{
1 if x ≤ x̂∗t
0 if x > x̂∗t

and c∗t (x) =

{
c∗t if x ≤ x̂∗t
0 if x > x̂∗t

,

where c∗t = x̂∗t + CU∗
t + β

(
U∗t+1 − V ∗t+1

)
and x̂∗t , θ

∗
t , and C

U∗
t solve

P (Ut, Vt, ut) = max
x̂t,θt,CUt

Ut+1,Vt+1,ut+1

ut[µ (θt)

∫ x̂

x

(
y − x− b− β (Ut+1 − Vt+1)−

F (x)

f (x)

)
dF (x)

+b− CU
t − θtk] + (1− ut) s

(
b− CU

t

)
+ βP (Ut+1, Vt+1, ut+1)

subject to

[(1− ut) νt] Vt ≤ s
(
CU
t + βUt+1

)
+ (1− s) βVt+1,

[utηt] Ut ≤ µ (θt)

∫ x̂

x

F (x)

f (x)
dF (x) + CU

t + βUt+1,

[πt] ut+1 = ut

[
1− µ (θt)

∫ x̂

x

dF (x)

]
+ (1− ut) s,

[χt] CU
t ≥ b.
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This proposition allows to simplify the planner problem and to make it more directly

comparable with the problem that characterizes the CSE. The proof of this proposition

follows a similar logic than the proof of Proposition 8 and hence I leave it to you as

homework. Notice that the main difference is that the planner problem depends on the

state variable ut and hence may have different dynamics from the equilibrium. In fact, we

can show that the CSE is generically constrained ineffi cient.

Proposition 11 If u0 6= uSS, then the competitive search equilibrium is constrained inef-

ficient.

Proof. Proceeding by contradiction, suppose the CSE is constrained effi cient for a given

initial value u0 6= uSS. One can show that the foc of the two problems yield a contradiction!

Using the foc of problem P3, for given Ū and V̄ , an equilibrium can be characterized

by a x̂, θ and λ such that

y − x̂t − b− β
(
Ūt+1 − V̄t+1

)
− λt

1 + λ

F (x)

f (x)
= 0

µ′ (θt)

∫ x̂t

x

[
y − x− b− β

(
Ūt+1 − V̄t+1

)
− λt

1 + λt

F (x)

f (x)

]
dF (x) = k

µ (θt)

∫ x̂t

x

[
y − xt − b− β

(
Ūt+1 − V̄t+1

)
− F (x)

f (x)

]
dF (x) = θtk.

The foc of the planner problem are

y − x̂t − b+ CU
t − (1− ηt)

F (x̂t)

f (x̂t)
− πt = 0

µ′ (θt)

∫ x̂

x

(
y − x− b+ β (Ut+1 − Vt+1)− (1− ηt)

F (x)

f (x)
− πt

)
dF (x) = θtk

χt = ut (1− ηt) + (1− ut) (1− νt) s

PU − utµ (θt)F (x̂t) + (1− ut) sνt + utηt = 0

PV + utµ (θt)F (x̂) + (1− ut) (1− s) νt = 0

Pu = πt
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Suppose the CSE is constrained effi cient. Then all these equations must be satisfied.

First combining the first two foc with the equilibrium conditions we get(
1− ηt −

λt
1 + λ

)
F (x̂t)

f (x̂t)
+ πt = 0∫ x̂

x

(
1− ηt −

λt
1 + λ

)
F (x)

f (x)
dF (x) + πt

∫ x̂

x

dF (x) = 0

Given that

F (x̂t)

f (x̂t)

(∫ x̂
x
F (x)
f(x)

dF (x)∫ x̂
x
dF (x)

)−1
> 1

then it must be that ηt = 1− λ/ (1 + λ) and πt = 0.

From the Envelope conditions

PU = −utηt
PV = − (1− ut) νt

Then

ut+1
(
1− ηt+1

)
− (1− ut) s (1− νt)− ut (1− ηt) = 0

− (1− ut+1) νt+1 + utµ (θt)F (x̂) + (1− ut) (1− s) νt = 0

Combining the two we get

νt (1− ut) = (1− ut)−
λ

s
(ut+1 − ut)

and this leads to

(ut+1 − ut) [µ (θ)F (x̂) + s] = 1

which gives a contradiction if ut 6= uSS.
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