
MIT Open Access Articles

Collabode: Collaborative Coding in the Browser

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Max Goldman, Greg Little, and Robert C. Miller. 2011. Collabode: collaborative coding
in the browser. In Proceedings of the 4th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE '11). ACM, New York, NY, USA, 65-68.

As Published: http://dx.doi.org/10.1145/1984642.1984658

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/79662

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/79662
http://creativecommons.org/licenses/by-nc-sa/3.0/

Collabode: Collaborative Coding in the Browser

Max Goldman
MIT CSAIL

32 Vassar St.
Cambridge, MA 02139

maxg@mit.edu

Greg Little
MIT CSAIL

32 Vassar St.
Cambridge, MA 02139

glittle@mit.edu

Robert C. Miller
MIT CSAIL

32 Vassar St.
Cambridge, MA 02139

rcm@mit.edu

ABSTRACT
Collaborating programmers should use a development envi-
ronment designed specifically for collaboration, not the same
one designed for solo programmers with a few collaborative
processes and tools tacked on. This paper describes Colla-
bode, a web-based Java integrated development environment
built to support close, synchronous collaboration between
programmers. We discuss three collaboration models in
which participants take on distinct roles: micro-outsourcing
to combine small contributions from many assistants; test-
driven pair programming for effective pairwise development;
and a mobile instructor connected to the work of many stu-
dents. In particular, we report very promising preliminary
results using Collabode to support micro-outsourcing.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments

Keywords
Collaboration, outsourcing

1. INTRODUCTION
Programmers constantly collaborate with one another, and

with the current state of the art, collaboration is almost al-
ways mediated in one of two ways: by the shared use of
a single computer and integrated development environment
(IDE), or by the shared use of a source code version control
system. Neither provides adequate support for close syn-
chronous collaboration between programmers who actively
contribute to the same module of code.

We have built an IDE, called Collabode, to study how a
programming environment built to support specific struc-
tures of close collaboration can improve both the quality of
the collaboration and the software produced. In Collabode,
changes by multiple programmers can be shared immedi-
ately, and each programmer can use a different interface

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHASE ’11, May 21, 2011, Honolulu, Hawaii
Copyright 2011 ACM XXX XXX XXX ...$10.00.

Figure 1: Collabode incorporates user interface fea-
tures familiar to any Eclipse user, including code
completion and highlighting errors.

that supports their role in the collaborative effort. This pa-
per describes the system and reports on our own preliminary
experience using it. We describe three novel collaboration
scenarios: micro-outsourcing, where a developer is assisted
by many others making small contributions; test-driven pair
programming, a combination of side-by-side programming
and test-driven development; and mobile instructors, where
lab instructors use mobile devices to connect to the IDEs of
their students. In each case, the web-based Collabode de-
velopment environment can power user interfaces designed
specifically for the collaborative structure and roles.

2. COLLABODE
We previously reported on the design and use of a Col-

labode prototype for Python programming [6]. Experience
with that prototype has informed the construction of a Java
development version designed to support realistic evaluation
and potential deployment.

Collabode is a web application. Programmers use a stan-
dard web browser to connect to a Collabode server that hosts
their project. The user interface is implemented in HTML
and JavaScript and runs entirely within the browser. New
programmers can join a project and immediately start work-
ing simply by visiting a URL; there is no need to check out
code or set up a local development environment.

On the server side, Collabode uses Eclipse to manage
projects and power standard IDE services: continuous com-

pilation, compiler errors and warnings, code formatting and
refactoring, and execution. Any existing Eclipse Java project
can be compiled and modified using the Collabode editor
(including Collabode itself), with an interface familiar to
anyone who has used Eclipse (Figure 1). Project code is
executed on the server and clients can view console output,
so Collabode is not currently suited for developing programs
with desktop graphical user interfaces.

We use EtherPad (etherpad.org) to support collabora-
tion between multiple simultaneous editors. An arbitrary
number of programmers can open the same file simultane-
ously, and their concurrent changes are shared in near real-
time to enable smooth collaboration whether they are work-
ing together remotely or at the same desk. Collabode links
EtherPad’s synchronization to the Eclipse project file hier-
archy, and details of synchronizing multiple programmers’
work is described in subsequent sections.

Since Java programmers expect a variety of tool support,
features such as syntax highlighting, code formatting, code
completion, and library import organization are powered by
Eclipse on the server and rendered with appropriate HTML-
and JavaScript-based interfaces in the client.

3. MICRO-OUTSOURCING
Micro-outsourcing is the first of three novel models of

collaborative programming we propose. In this model, a
previously-solitary programmer draws on the distributed ex-
pertise of a crowd of other programmers who make small
contributions to the project. Micro-outsourcing allows the
original programmer (OP) to remain “in the flow” at one
level of abstraction or in one critical part of the code, while
a crowd of assistants fill in details and “glue” code elsewhere
in the module or project. In contrast to traditional out-
sourcing, which typically operates at the granularity of a
whole module or whole project, micro-outsourcing requires
a highly collaborative development environment and specific
user interface support to make the collaboration effective.

To explore how micro-outsourcing might be structured
and to understand the barriers programmers will face, we
are running sessions within our research group where stu-
dents, professors, and visitors volunteer as OPs or crowd
contributors. In this section, we discuss observations from
five such sessions, each approximately 1 to 1.5 hours with
five to eight participants.

These informal experiments suffer from several threats to
validity. The OP feels a certain pressure to outsource as soon
and as often as possible, knowing this is the point of the ex-
ercise. The crowd is not an anonymous pool of people, but
rather a small group of colleagues waiting for the next chance
to contribute. And both the eagerness and the skill level of
these assistants likely overestimates the effort and experi-
ence offered by real-world workers, who might be recruited
on an outsourcing marketplace like oDesk (odesk.com) or
vWorker (vworker.com, formerly Rent a Coder). Neverthe-
less, clear trends still emerge.

3.1 Laziness, Impatience, and Hubris
Programming Perl (in addition to being something to avoid)

offers three facetious “great virtues of a programmer: lazi-
ness, impatience, and hubris” [17]. Micro-outsourcing has
been successful in our experience in part because program-
mers know how to use these virtues effectively.

Lazy programmers on the one hand write only as much

as they need at the moment, but on the other hand write
reusable code up front rather than re-write tedious routines
again later. Lazy OPs are also happy to micro-outsource
pieces of their code to others, and are able to navigate the
tradeoff of spending energy to define and outsource tasks
knowing their overall energy expenditure has decreased. In
several of our sessions, both OPs and workers have remarked
at the amount they could accomplish in little more than an
hour, with very little per-task pressure.

Impatient programmers (according to [17]) write fast, ef-
fective programs that waste neither CPU nor the user’s time.
But in the context of collaboration with many others, im-
patience becomes the grease that keeps the wheels turning.
Workers are impatient to complete their tasks and make a
contribution, and the OP is impatient to see the results and
build on them. Fast failure, when either workers or the OP
abandon or rescind a task, is a feature we anticipate will
make micro-outsourcing effective for rapid iterative devel-
opment, and too-patient programmers might fail to fail.

Finally, hubris – the (excessive) pride that drives pro-
grammers to write great code – plays an important role.
With micro-outsourcing, workers have continuous opportu-
nities to prove their mastery of one idea, their skill with one
construct, or their unmatched ability to answer one ques-
tion. Just as programmers are proud to contribute excellent
content to community wikis or sites such as Stack Overflow
(stackoverflow.com), so we have observed in our exper-
iments how contributors strive to do good work. And the
OP can still play Zeus and strike down the work of unhelpful
workers if necessary.

3.2 Breadth and Depth
Micro-outsourcing permits a wide variety of worker con-

tributions: implementing a function or part of a class from
a specification, writing test cases, searching for code exam-
ples, documentation, or libraries on the web, integrating a
found code snippet into existing code, etc. All of these we
have observed.

Asking workers to implement code, the original program-
mer sometimes leaves the specification implied (“implement
iterator() please”), while other times might write detail in a
Javadoc comment and point the worker there.

In one interesting case, the OP decided to implement a
bag data structure. He began by asking a worker to outline
the interface:

Please write the method signatures for some op-
erations I’m likely to need (use java.util.Set as a
model): add, isEmpty, size, getCount(T element)

From two more workers, he requested: “Please choose a
representation for this. I’m thinking a HashMap,” resulting
in two independent opinions on implementation strategy.

Workers also assisted with refactoring:

Please change the bodies of the remaining meth-
ods (removeAll onward) so that they throw Un-
supportedOperationException”

And with testing:

Please write an @Test exercising Bag.add() and
Bag.getCount(), using Bag<String>”

In general, we have observed a wide variety of code au-
thoring and modification tasks, and tasks spanning from

http://etherpad.org
http://odesk.com
http://vworker.com
http://stackoverflow.com

API-related (“Find me the javadoc for [library] TagSoup”) to
domain knowledge (“Teach me what straight flush means”).

3.3 Integrating Work
The original programmer usually begins by setting up a

skeleton project ready to accept contributions. This takes
the form of a class or classes with empty definitions or meth-
ods without bodies, which the programmer then requests
workers to complete. The experience from there is domi-
nated by the strategy used to synchronize code and integrate
everyone’s contributions.

On one end of the spectrum, workers contribute in real-
time to the OP’s original project. Everyone immediately
sees everyone else’s work. This mode is most appropriate
for situations where programmers must coordinate carefully,
but it comes at a cost: making independent progress is more
difficult because others have often broken the build. In par-
ticular, the OP has difficulty reaching a steady-state of cycli-
cal development where they modify the code, test that it
works, fix the bugs; and then add the next modification.
Instead, the program remains ‘broken’ for a longer time.

At the other end of the spectrum is a clone-and-merge
strategy, where workers are given clones of the project in
which to make quiet, undisturbed progress. Upon comple-
tion of their task, the OP uses a live diff interface to inves-
tigate the changes and merge them back into the project.
Naturally, this renders frequent outsourcing of small pieces
of code – a major goal of micro-outsourcing – more difficult.

Between these two extremes, we are continuing to pro-
totype new synchronization strategies. The key idea is to
use signals for broken code – compilation errors, failing test
cases – to determine whether a given contributor’s changes
are ready for sharing or not, and if so, to share them auto-
matically.

3.4 Worker Interface
Hired crowd workers are likely to put in less effort than

the graduate students in our pilot experiments, so the ques-
tion is how to build a contributor interface that encourages
investment in the project. Collabode attempts to make con-
tributing as easy as possible, with no setup required, so that
workers can choose projects and individual tasks that inter-
est them – if one enjoys writing regular expressions, rather
than relish the one bit of regular expressions to be concocted
in a large project, one can simply write only regular expres-
sions for many projects.

An open question, however, is what sort of contextual in-
formation workers need: how much of the project do they
need to see, read, or understand in order to work comfort-
ably and correctly? Anecdotally, we find that the question
is often turned on its head: workers are comfortable seeking
out what they need, and are quick to recognize ambiguities
or missing information in their tasks. If a worker makes a
reasonable assumption and forges ahead, how can that as-
sumption be communicated to the OP and to other workers?
And if a worker needs clarification or assistance, what ought
that interface to look like?

Since the competence and intentions of anonymous crowd
workers cannot always be trusted, we have already imple-
mented fine-grained read and write permissions on projects,
packages, classes, and methods. Workers can be directed to
a Collabode URL that will clone a project and grant them
limited permissions to work in the cloned version, notifying

Figure 2: A project with one passing and one failing
test case.

the OP when they have completed their task.

4. TEST-DRIVEN PAIR PROGRAMMING
We previously proposed test-driven pair programming as

a model for close collaboration between programmers, com-
bining pair programming and test-driven development, and
reported on the results of a pilot study with the Python
prototype of Collabode [6].

Pair programming is the practice of having two program-
mers work together on the same code in a single development
environment, with the goals of improved communication and
team knowledge sharing; increased productivity; and better
software quality [1]. Side-by-side programming is a more
flexible variant in which programmers sit together at sepa-
rate machines [4]. And in test-driven development, develop-
ers follow two rules: “write new code only if an automated
test has failed,” and “eliminate duplication” [2], with short,
rapid development cycles as a result.

In our test-driven pair programming model, the process
of test-driven development is parallelized, with one member
of the pair working primarily on tests, while the other works
primarily on implementation. To begin work on a particular
feature or module, the tester might write a black-box test,
which the implementer will then satisfy. The tester can then
investigate the implementation and write glass-box tests to
weed out errors. These further tests will be addressed by the
implementor, and the testing and implementing continues.

Addressing the main user interface needs identified from
pilot study, Collabode implements continuous testing [11],
where test cases are executed continuously and their status
is reported to the programmers. Test cases are displayed so
that both tester and implementer can easily see where they
stand in the collaboration (Figure 2). Using code coverage
analysis to link tests and implementation is ongoing work.

5. TO THE CLASSROOM AND BEYOND
Instructors and students work together to achieve edu-

cational goals but their roles are highly asymmetric: the
expert instructor structures the learning process, and the
novice student experiences it. This asymmetry should be
mirrored by a programming system designed for computer
science education. Screen sharing tools, such as iTALC
(italc.sf.net), provide some benefits, but the possibilities

http://italc.sf.net

afforded by a collaborative IDE are much greater.
We envision a Collabode-based system for students su-

pervised by co-located mobile instructors in which students
use the familiar IDE user interface, but teachers utilize a
different view. In order to leave them free to walk around
the classroom and work one-on-one with students, instruc-
tors use a mobile device interface that summarizes student
progress, and offers remote control of students’ development
environments.

This use case highlights the flexibility of a web-based IDE.
Since the Collabode server has centralized up-to-the-second
knowledge of every student’s code, it can provide power-
ful tools to analyze or summarize student progress without
interrupting their work or requiring student action. And be-
cause the Collabode client is web-based, we can easily craft
new user interfaces for different collaboration modes, differ-
ent situations, and different devices.

6. RELATED WORK
There exist a variety of commercial and open source sys-

tems for web-based collaborative programming. EtherPad
enables real-time text editing collaboration and is used by
Studio SketchPad (sketchpad.cc) for collaborative graphics
programming. Mozilla Skywriter (mozillalabs.com/skywriter,
formerly Bespin), CodeMirror (codemirror.net), and Ymacs
(ymacs.org) are web-based text editing components designed
to be embedded in an IDE or other application. Kodingen
(kodingen.com) is one such IDE for web programming, as
are jsFiddle (jsfiddle.net) and CodeRun Studio (coderun.
com). All three offer collaboration mediated by copying or
version control – multiple programmers cannot edit the same
files simultaneously. The Palm Ares environment (ares.
palm.com) demonstrates an online graphical application de-
velopment environment. Current research projects include
Adinda [16], a web-based editor backed by Eclipse.

Flesce was one early implementation of a shared IDE to
support authoring, testing, and debugging code [5]. The
Jazz project [3] brought collaboration tools to Eclipse to sup-
port both awareness (e.g. via annotated avatar and project
item icons) and joint work (e.g. with instant messaging and
screen sharing). Different features of Jazz provide developer
support throughout the software development process [15].

The CollabVS tool for ad-hoc collaboration shares similar
goals [8], and the Sangam system was developed to support
distributed pair programming [9]. Many other systems have
focused on awareness features to keep loosely-collaborating
software developers aware of others’ work, e.g.: Palant́ır [13],
Syde [7], Saros [12], CASI [14], and YooHoo [10].

7. CONCLUSION AND FUTURE WORK
Why build a web-based IDE? Is this not merely a return

to the days of terminals and mainframes, with VT100 re-
placed by shiny new HTML5 – now with animation! We
believe otherwise. The collaborative opportunities offered
by a browser-based IDE are too exciting to pass up: instant
participation by anyone with a web browser, useful visual-
izations and graphical user interfaces that enhance collabo-
ration, and a development server that trades local projects
for analysis and tool support even when the user’s access
point is a phone.

Collabode is our attempt at a browser-based IDE for Java
programming, combining Eclipse development tooling with

real-time simultaneous collaboration. We are continuing to
develop both the core system and the various collaborative
interfaces described in this paper, and look forward to re-
porting the results of full-system experiments on the collab-
orative coding models here proposed.

8. REFERENCES
[1] K. Beck. Extreme Programming Explained: Embrace

Change. Addison-Wesley, 1999.

[2] K. Beck. Test-Driven Development: By Example.
Addison-Wesley, 2003.

[3] L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson.
Jazzing up Eclipse with collaborative tools. In
OOPSLA workshop on eclipse technology eXchange,
2003.

[4] A. Cockburn. Crystal Clear: A Human-Powered
Methodology for Small Teams. Addison-Wesley, 2004.

[5] P. Dewan and J. Riedl. Toward Computer-Supported
Concurrent Software Engineering. IEEE Computer,
26:17–27, 1993.

[6] M. Goldman and R. C. Miller. Test-Driven Roles for
Pair Programmming. In CHASE, pages 515–516, 2010.

[7] L. Hattori and M. Lanza. Syde: a tool for collaborative
software development. In ICSE, pages 235–238, 2010.

[8] R. Hegde and P. Dewan. Connecting Programming
Environments to Support Ad-Hoc Collaboration. In
ASE, pages 178–187. IEEE, Sept. 2008.

[9] C.-W. Ho, S. Raha, E. Gehringer, and L. Williams.
Sangam: a distributed pair programming plug-in for
Eclipse. In OOPSLA workshop on Eclipse Technology
eXchange, page 73, 2004.

[10] R. Holmes and R. J. Walker. Customized awareness:
recommending relevant external change events. In
ICSE, pages 465–474, 2010.

[11] D. Saff and M. D. Ernst. Reducing wasted
development time via continuous testing. In
International Symposium on Software Reliability
Engineering, pages 281–292. IEEE, 2003.

[12] S. Salinger, C. Oezbek, K. Beecher, and J. Schenk.
Saros: an Eclipse plug-in for distributed party
programming. In CHASE, pages 48–55, 2010.

[13] A. Sarma, Z. Noroozi, and A. van Der Hoek. Palant́ır:
raising awareness among configuration management
workspaces. In ICSE, pages 444–454. IEEE, 2003.

[14] F. Servant, J. A. Jones, and A. V. D. Hoek. CASI:
preventing indirect conflicts through a live
visualization. In CHASE, pages 39–46, 2010.

[15] C. Treude and M.-A. Storey. Awareness 2.0: staying
aware of projects, developers and tasks using
dashboards and feeds. In ICSE, pages 365–374, 2010.

[16] A. van Deursen, A. Mesbah, B. Cornelissen,
A. Zaidman, M. Pinzger, and A. Guzzi. Adinda: a
knowledgeable, browser-based IDE. In ICSE, pages
203–206, 2010.

[17] L. Wall, T. Christiansen, and J. Orwant. Programming
Perl. O’Reilly Media, 3rd edition, 2000.

http://sketchpad.cc
http://mozillalabs.com/skywriter
http://codemirror.net
http://ymacs.org
http://kodingen.com
http://jsfiddle.net
http://coderun.com
http://coderun.com
http://ares.palm.com
http://ares.palm.com

	Introduction
	Collabode
	Micro-outsourcing
	Laziness, Impatience, and Hubris
	Breadth and Depth
	Integrating Work
	Worker Interface

	Test-Driven Pair Programming
	To the Classroom and Beyond
	Related Work
	Conclusion and Future Work
	References

