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Abstract

The first two chapters of this thesis investigate a possibly fundamental aspect of technological
progress. If knowledge accumulates as technology progresses, then successive generations of
innovators may face an increasing educational burden, forcing them to spend longer periods in
education and/or become increasingly specialized. In either case, the productivity of innovators
may be reduced, with negative implications for growth.

The first chapter develops a formal model to examine the growth implications of this "knowl-
edge burden mechanism" and generate testable predictions for innovators. The model predicts
that educational attainment, specialization, and teamwork will rise over time. In cross-section,
the model predicts that specialization and teamwork will be greater in deeper areas of knowledge
while, surprisingly, educational attainment will not vary across fields. I test these predictions
using a micro-data set of individual inventors and find evidence consistent with each of these
predictions.

The second chapter further investigates the knowledge burden mechanism. Using data on
famous inventions, I find that the age at which inventors produced them increased by 5 years
over the 20th Century. The chapter employs a maximum likelihood model to test explanations
for this trend. A knowledge-based explanation receives considerable support: innovators appear
to arrive at the knowledge frontier 6.6 years later at the end of the 20th Century than they did
at the beginning. This trend is unlikely to be sustainable and further suggests that educational
externalities are a problematic byproduct of technological progress, particularly if innovators
do their best work when they are young.

The final chapter investigates whether national leaders impact growth in developing coun-
tries. Using deaths of leaders while in office as a source of exogenous variation, we ask whether
such randomly-timed leadership transitions are associated with shifts in country growth rates.
We find robust evidence that leaders have a causal effect on growth. The effect of leaders on
growth appears limited to non-democracies, where the death of an autocrat tends to be followed
by a substantial, prolonged increase in growth.
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Chapter 1

The Burden of Knowledge and the
‘Death of the Renaissance Man’: Is

Innovation Getting Harder?

1.1 Introduction

The importance of technological progress to growth is well accepted, yet the process of techno-
logical progress is not well understood. The recent growth literature, starting with the seminal
contribution of Romer (1990), has made significant strides by considering technological advances
as the output of rational agents operating in an explicit R&D sector. This approach seems re-
alistic and succeeds in producing an endogenous, policy-variant description of the evolution of
productivity. At the same time, this literature has highlighted the critical role of assumptions
regarding the “knowledge production function”, which defines how effort in R&D is mapped
into productivity enhancements. Is growth a steady process where a given amount of research
effort can produce constant productivity growth, or is innovation “getting harder” in the sense
that a given amount of research effort will have a declining impact on growth over time?

The answer to this question has important implications, not just for the nature of techno-

logical progress, but also for the long-run growth potential of the world economy. If innovation



is getting harder, a view associated with Jones (1995a, 1995b), Kortum (1997), and Segerstrom
(1998), then steady growth in productivity is seen to rely on an ever-increasing level of inno-
vative effort. Put in stark terms, if the world economy cannot indefinitely grow its research
effort, then productivity growth will eventually cease. Jones, Kortum, and Segerstrom cite a
range of evidence to support such a view, which I review briefly in Section 2.

In this chapter I investigate, both theoretically and empirically, a mechanism through which
technological progress may become harder with time. I start with the observation that tech-
nology in an economy is associated with a large body of knowledge. Innovators are not born
at the frontier of knowledge; instead, they must undertake education — if one is to stand on
the shoulders of giants, one must first climb up their backs. If technological progress leads to
an accumulation of knowledge, then the educational burden on successive generations of inno-
vators will increase. Innovators may compensate by choosing narrower expertise: a “death of
the Renaissance Man” effect. This narrowing of expertise reduces the capabilities of individual
innovators, which in turn has implications for the organization of innovative activity and growth
in the economy.

To help motivate this mechanism, consider the invention of the microprocessor. As described

by Malone, the invention started with the inspiration of a researcher named Ted Hoff:

[Hoff] had been working with a DEC computer doing circuit design and had been
impressed by how the computer could do such complex tasks...this, he thought, could

be his model for a new type of circuitry.

Hoff, at Intel, teamed up with Stan Mazor and Masatoshi Shima. Together they developed

Hoff’s idea:

Hoff’s greatest contribution was the logic chip and the design of the chip set’s

architecture; Shima’s was in the controller chip and chip set’s logic.

To implement their design, however, they were forced to turn to another specialist:
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Hoff and Mazor didn’t really know how to translate this architecture into a
working chip design. And with that, they didn’t know whether there were any
flaws in their architecture. The project began to lag.

In fact, probably only one person in the world did know how to do the next step.

That was Federico Faggin... (Malone, 1995)

The microprocessor was one person’s inspiration, but four people’s invention. It is the story
of researchers with circumscribed abilities, working in a team, and it helps motivate the model
of innovation and growth explored in this chapter.

This chapter proceeds as follows. In Section 2, I review the existing debate in the growth
literature over whether innovation is getting harder. Theories in the literature for why inno-
vation may or may not be getting harder tend to be suggestive and, where mechanisms are
formulated more explicitly, difficult to test. As a result, the empirical work has tended to rely
on reduced-form predictions that are tested with data aggregates. The reliance on data aggre-
gates has in turn allowed much room for debate. The knowledge burden model presented in this
chapter will make predictions that are consistent with the evidence cited in this literature and
will also incorporate leading ideas from this growth debate. In addition, the knowledge burden
mechanism suggests a number of specific, further tests that do not rely on data aggregates and
are not easily explained by existing theory.

The model is presented in Section 3. Innovators make costly education decisions in an
economy that may, over time: (i) produce more or less knowledge that would-be innovators need
to learn, (ii) produce rising or falling technological opportunities; and (iii) grow its population.
Education is valuable to innovators and its value is complementary to income possibilities in the
innovative sector. Along the steady-state growth path, these income possibilities expand — due
to increasing market size if nothing else — so that new cohorts will seek more education over time.
If the knowledge burden mechanism is sufficiently strong then successive cohorts of innovators,
despite their greater educational achievement, will compensate by choosing a narrower range of

expertise, with negative implications for their individual capabilities. The model thus suggests a
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growing burden of knowledge as an independent channel through which innovation may become
more difficult with time. It raises the bar on other mechanisms in the evolution of innovators’
productivity — asking more of optimistic stories if we wish to preserve the possibility of steady-
state growth without relying on exponentially increasing effort. Furthermore, and perhaps
more importantly, the model makes several specific predictions about the behavior of individual
innovators. In time series, the model predicts that educational attainment will be rising and
defines conditions under which specialization and hence teamwork will increase. In cross section,
the model predicts that specialization and the propensity to form teams will be greater in fields
where knowledge is deeper. At the same time, income arbitrage in the model ensures that
educational attainment will not vary across technological fields, regardless of variation in the
depth of knowledge or innovative opportunities.

Section 4 explores the predictions of the model empirically. Using a rich patent data set (Hall
et al. 2001) together with the results of a new data collection exercise to determine the ages of
55,000 inventors, I am able to develop detailed patent histories for individuals. I find that the
age at first innovation is trending upwards at 0.6 years per decade, specialization is increasing
at 6% per decade, and U.S. team size is increasing at 17% per decade. In cross-section, I
find support for the model’s perhaps less obvious prediction that educational attainment will
be similar across fields. At the same time, team size and the specialization measure vary
substantially across fields, and, as predicted, vary in a supportive manner when related to a
direct measure of the amount of prior art underlying each patent. The knowledge burden
mechanism thus serves as a single, parsimonious explanation for this collection of new facts, as
well as for the existing facts to be presented in Section 2, with negative implications for growth.

Section 5 concludes.

1.2 Existing Evidence and Debate

Jones (1995a, 1995b), Kortum (1997), and Segerstrom (1998) cite several trends to support the

view that steady-state growth is relying on growing research effort:

12



1. R&D expenditures and R&D employment are rising dramatically in the U.S., Japan,

Germany, and France, while TFP growth in these countries is flat (Jones 1995a).

2. The ratio of patent counts to R&D employment is falling over time in all countries (Even-
son 1984) and since 1870 in the U.S. (Machlup 1962). The ratio of patent counts to R&D
expenditures is also falling dramatically over time across U.S. manufacturing industries

(Kortum 1993).!

Figure 2.1 shows that TFP growth in the U.S. had been flat despite large increases in R&D
employment and R&D expenditures. Figure 2.2 shows the recent decline in U.S. patent grants
per U.S. R&D worker.?

These facts pose a serious challenge to growth models in which a fixed amount of research
effort produces steady growth (e.g. Romer 1990, Grossman & Helpman 1991, Aghion & Howitt
1992, 1998).3 The challenge for such models is how to simultaneously explain constant growth
rates given the apparent increase in research effort — the so-called “scale effects” problem.
Whether this challenge has been or will be met is an open question; what is clear is that
the reliance on data aggregates in these arguments has left much room for debate. First,
criticisms of the data can certainly be made: our productivity measures may be poor, as
may our aggregate measures of R&D effort, and patent counts may be a poor measure of
inventiveness (though see footnote 2). Second, the aggregated data leaves broad room for
interpretation; for example, Young (1998) and others have succeeded in explaining observation

#1 using “expanding product space” models that produce steady growth both with and without

!Kortum and Segerstrom also cite case studies of the pharmaceutical industry (Henderson & Cockburn 1996),
the textiles and chemical industries (Baily & Chakrabarti 1985) and the microprocessor industry (Malone 1995),
which describe a sense among researchers in these industries that innovation is becoming more difficult.

®To support the use of patent counts as a measure of inventive output, Kortum and Segerstrom further cite
Mansfield (1986), who in a survey of the R&D departments of a random sample of 100 firms found that they
reported no decreasing propensity to patent inventions over time.

¥Kremer (1993) provides further evidence to challenge these models. Using data on population over the last
one million years and a Malthusian model where population is limited by technology, Kremer estimates that the
research productivity of individuals has increased at only two-fifths the rate necessary to provide steady growth
without increasing effort.
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an increase in effort.?

Progress in this debate will be aided by defining specific, testable mechanisms through
which the productivity of innovators may rise or fall as the economy develops. Heretofore, the
theoretical arguments in the literature have tended to be suggestive. Some authors point to
“fshing out” hypotheses — where big ideas are progressively harder to come by. Other authors
point to the possibility of “positive intertemporal spillovers” in knowledge production — where
the introduction of faster computers, the Internet, and key ideas like calculus and Newtonian
physics may enhance future innovators’ productivity. Where such mechanisms have been given
rigorous microfoundations, the mechanisms appear difficult to test.?

This chapter proposes a growing burden of knowledge as a specific mechanism through
which innovation may become more difficult over time. By focusing on innovators as the unit
of analysis, the model produces several implications for the behavior of individual innovators,

allowing tests of the theory which do not rely on data aggregates.

1.3 The Model

The over-arching theme of this model is the emphasis on innovators. I analyze a simple structure
with two sectors: a production sector where competitive firms produce a homogenous output
good and an innovation sector where innovators produce productivity-enhancing ideas. Workers

in the production sector earn a competitive wage while innovators earn income by licensing their

4Such models succeed by (1) limiting the impact of research to specific product lines, and (2) assuming that
the number of product lines increases in exact proportion with the population. These product-space models
thus neutralize the growth effects of increasing population (and consequent increases in the scale of research
effort); therefore, these models can explain observation #1. At the same time, they are precariously balanced
(see Jones 1999) and provide no explanation for observation #2.

5Two rigorous theories for the evolution of the knowledge production function should be noted. Kortum
(1997) models innovations as draws from a random distribution and defines generally how this distribution
must evolve to absorb the scale effect of population. While useful, and consistent with the aggregate facts
presented above, his model does not explain why the distribution of ideas should evolve in any particular way.
Weitzman (1998) presents explicit microfoundations for the knowledge production function, arguing that ideas
are combinatoric in nature: the production of new ideas leads to combinatoric (i.e. greater than exponential)
growth in the number of further ideas to try. The limitation in growth becomes the rate at which innovators can
examine the possibilities. Weitzman’s ultimate result that human capacities are the limiting factor in growth is
similar to the themes of this paper.
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ideas to firms in the production sector. I abstract from physical capital in the model and focus
on the role of human capital in the innovation sector. Innovators must undertake a costly
human capital investment to bring themselves to the knowledge frontier where they become
able to innovate. Innovators face a tradeoff between the costs of seeking more education and
the benefits of achieving a broader degree of expertise. This tradeoff will be balanced differently
by different cohorts as the amount of knowledge in the economy evolves.

Section 3.1 describes the production sector and Section 3.2 defines individuals’ life-cycles
and preferences. Sections 3.3 and 3.4 focus on innovators. The first describes the knowledge
space, the innovator’s choice of specialty, and the cost of education. The second considers the
process of innovation, the value of innovations, and the evolution of innovators’ productivity.
Section 3.5 defines individuals’ equilibrium choices. Section 3.6 analyzes steady-state growth,
relating the predictions of this model back to the discussion in the introduction. Section 3.7
examines the time-series predictions of the model. Section 3.8 extends the model to investigate
its predictions across technological areas at a point in time. The predictions of Sections 3.7

and 3.8 are the foundation for the empirical analysis in Section 4.

1.3.1 The Production Sector

Competitive firms in the production sector produce a homogenous output good. A firm j hires

an amount of labor, [;(¢), to produce output,

y;(t) = X;(8)l;(2) (1.1)

which it sells at the numeraire price, p,(t) = 1. X;(t) < X(t) is the productivity level of firm
J, where X (%) is the leading edge of productivity in the economy, which can be achieved by any
firm with access to the entire set of productive ideas that have been produced by the innovative
sector.

The firm pays workers a wage, w(t), and makes royalty payments per worker of 7(¢) on any

patented technologies it employs. While patent protection lasts, the monopolist innovator will
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charge a firm a fee, per period, equivalent to all the extra output the firm can produce with
the innovation, and the firm will be just willing to pay this fee. Therefore Xj (t) = X(¢t) Y5,

and the total output in the economy is:

Y(t) = X(¢)Ly (t) (1.2)

The revenues of these competitive firms are dispensed entirely in wage and royalty payments,

X @®)1;(t) = w(t)l;(t)+7(t)l;(t). The competitive wage paid to a production worker is therefore:

w(t) = X(t) — r(t) (1.3)

1.3.2 Workers and Preferences

There is a continuum of workers of measure L(t) in the economy at time t. This population
grows at rate gr. Individuals face a constant hazard rate ¢ of death. The constant hazard
rate model has well-known properties: the probability of surviving to time ¢ given birth at time
7 is e ¢(=7) and a worker’s life expectancy at any point in time is 1 /.

Individuals are risk-neutral and share a common intertemporal utility function,’

U(r) = /00 c(t)e ¢t (1.4)

Each individual faces a dynamic budget constraint, da(t)/dt = ¢a(t) + f(t) — c(t), where a(t)
is her assets, f(t) is her flow of non-interest income, and ¢(t) is her consumption in period ¢.
Note that, for simplicity, I assume that the hazard rate of death serves as both the rate of time
preference and the interest rate in the economy. Individuals are therefore indifferent to the
timing of their consumption; they are also indifferent to the riskiness of their income stream.
The choice problem of interest in the model is that of career. I assume that individuals

are born without assets and supply a unit of labor inelastically at all points over their lifetime.

8 For simplicity of exposition, I will specify the incomes and expenditures in the model in terms of a unit-mass
of individuals.
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From the standard intertemporal budget constraint, the individual’s utility is equivalent to the
present value of her expected lifetime non-interest income. At birth, an individual decides
whether to become a wage worker or an innovator. Wage workers require no education and

their expected utility is simply the discounted flow of the wage payments they receive:

Uvese (1) = /oo 'Lu(t)e_¢(t_7)dt (1.5)

-

If an individual 4 chooses to be an innovator instead, then she must further choose a specific
field of expertise and pay an immediate fixed cost of education, E, to bring herself to the
frontier of knowledge in that area. Having paid this cost, the innovator earns an expected
flow of income, v, by licensing any innovations she produces to firms in the production sector.
In the model, both v and E are specific to the choice of expertise made by an individual (i).
Income and the educational cost will also depend on the time of birth (7), and income flows
will further depend on the current state of the economy (t). The expected lifetime utility of

an innovator is written generally as,

URED () = / i, e Mgt By(r) (16)

T
The structure of the innovator’s educational choice and the functional forms of v and E are the

subject of the next two subsections.

1.3.3 Knowledge and Education

A type of knowledge is defined by its position, s, on the unit circle. For example, one segment
of the circle might represent electronics, another biochemistry, another economics. At a point
in time, the amount of knowledge at each point on the circle is assumed to be the same.” I
define this quantity as D(t).

The prospective innovator chooses an area of expertise: a point, s;, on the circle and

"1 will partly relax this assumption when I consider a cross-sectional variation of the model in Section 3.8.
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a certain distance, b; € [0,1], to its right. For an innovator born at time T, the amount
of knowledge the innovator acquires is the chosen breadth of expertise, b;, multiplied by the

prevailing depth of knowledge, D(7). The educational cost of acquiring this information is:

Ey(r) = (b:D(7)) (1.7)

where € > 0, which says only that learning more requires a greater amount of education. I make
no a priori assumption about whether education costs are convex or concave in the amount of
information the innovator learns.

With the assumption that the depth of knowledge is evenly arrayed around a unit circle,
the total depth of knowledge at a point in time is D(t). In general, the depth of knowledge
will change as innovators produce new ideas. However, while these new ideas serve to increase

the productivity in the economy, X (¢), they may or may not increase D(t). 1 write,

D(t) = (X(1))° (1.8)

with no assumption regarding the sign of §. It may be natural to assume that the production
of new ideas in the R&D sector leads to an increase in D(t). However, we might also imagine
that new ideas either replace old ideas or simplify ideas so that D(t) may actually fall as
productivity rises. This latter interpretation is consistent with the concept of revolutionary

“paradigm shifts”, which Thomas Kuhn has suggested as the appropriate model of scientific

Figure 3.1: The circle of knowledge

progress (Kuhn 1962).



1.3.4 Innovation

Once educated, innovators begin to receive innovative ideas. Ideas arrive randomly, with
hazard rate A for a unit-mass of individuals. When an idea arrives, it comes with two further
properties. The first is the random breadth of expertise, k, required to implement the idea.
The second is the size of the idea, which adds to TFP by an amount 7.8

The required expertise, k, may be greater or less than the inspired innovator’s own expertise,
bi. For example, a statistician might conceive of a new statistical method and be able to
implement the idea solely on the basis of her own expertise. An engineer might have an idea
for a new space shuttle for NASA, but the implementation requires much broader expertise
than the engineer himself possesses. The breadth of the idea k € [0,1] is drawn from a smooth
distribution function F'. It is measured as a distance to the right from an individual’s location
8;, so that the implementation of the idea requires expertise over the segment of the circle
si,8; + k]. Therefore, with probability F(b;) the innovator is able implement the idea alone,
and with probability 1 — F(b;) the innovator needs at least one partner. That is, I allow for
the formation of teams.

I assume that the innovator with the idea acts as a monopolist vis-a-vis potential teammates
so that, by Bertrand reasoning, the inspired innovator receives all profits from the project. I
further assume that once an idea arrives it can be implemented instantaneously and without
any expenditure (in particular, team formation is costless). Therefore, (i) all projects are
profitable, (ii) the inspired, monopolist innovator will receive the entire royalty stream from
the project as personal income, and (iii) any necessary teammates will be just willing to help
without compensation.

The only possible obstacle to implementation is an absence of required expertise. Antici-
pating the equilibrium of this model, innovators’ collective expertise will cover the entire circle

of knowledge, so that all ideas are feasible and therefore all ideas will in fact be implemented.

# One can imagine more generally that the size of ideas is random, where 7 is the mean size; this interpretation
has no effect on the model.
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To avoid burdensome notation in the text, I will write the rest of the model assuming this result.
The Appendix considers the general case and establishes this result as part of any (subgame
perfect) equilibrium.

I make two further assumptions regarding team formation. First, the inspired innovator
will choose team members from her own cohort if possible. Second, the innovator assembles the
minimum number of people necessary to cover the breadth of expertise, k, required to implement
the idea. These last two assumptions are innocuous and are made to permit explicit analysis
of average team size, which is explored in Sections 3.7 and 3.8.

Gliven that an idea increases TFP by an amount v, it can be licensed for use by Ly workers,
and patent protection lasts for z years, the lump-sum value of the patent is:?

t+z
V=rv ) Ly (t)dt (1.9)
Along the balanced growth path, the fraction of production workers, Ly (t)/L(t), will be con-
stant. Ly (t) thus grows at gr and we can integrate (1.9) to find: V = yCLy, where
C = (9% — 1) /g1, and Ly is the mass of production workers at the time of the innovation.

The expected flow of income to an innovator is v = AV, the probability of having an idea
at a point in time times the income the idea generates. Using the definition of V, we can
write v = MyCLy. The expected flow of income can therefore equivalently be understood
as the expected rate at which the innovator adds to TFP, \vy, times the market size for the
innovation, CLy. When considering the time lag between an innovator’s innovations (Section
3.7) and associated empirical analysis (Section 4), it will be useful to consider A and -y separately.

However, for the main analysis of the model, which considers steady-state growth, I wish to

9This expression is written assuming the innovator has access to a competitive financial market which will
pay the innovator the lump-sum value of the patent (or an equivalent annuity) in exchange for the patent rights.
If no such market were available, the value of the patent to the innovator would need to reflect the possibility
that the innovator dies before the patent rights expire, in which case V' = LpftHz Ly (e ?t~9dt. If the latter
route is taken, we need to assert additionally that any remaining patent rights are assigned upon the innovator’s
death in a way that has no asymmetric effect on the incomes of the rest of the population. This variation will

have no impact on the main results of the model.
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emphasize that the combination of these parameters is the important primitive. I will therefore
also define § = Ay as a summary measure of innovator productivity.

The parameters A and « will in general differ across individuals (4), across cohorts (1), and
across time (t). Specifically, I assume that A and v, and hence 6 and v, will depend on three
things: (1) the vintage of knowledge the innovator learns; (2) the current degree of competition

in the innovator’s specialty; and (3) the innovator’s breadth of expertise. In particular, I write,

X(Tt) = X(r)L(t,5;) b (1.10)
Yi(rt) = X(ryab (1.11)

and therefore
0i(r,t) = X(T)XL(t, 5:) b (1.12)

where x = x) + x,, and 8 = 8, + By. X(7) is the productivity level in the economy at the
innovator’s birth, L(t, s;) is the mass of individuals at time ¢ who share the innovator’s specialty,
and b; is the innovator’s breadth of expertise.

These reduced-form specifications capture several key ideas. The parameter x = x + X,
represents the impact of the state of technology on an innovator’s productivity. It incorporates
the standard ideas in the literature which were discussed in Section 2: “fishing-out” hypotheses
whereby innovators’ productivity falls as the state of knowledge advances (x < 0), and “positive

intertemporal spillovers” whereby an improving state of knowledge makes innovators more
p g

21



productive (x > 0).10:11

The parameter o represents the impact of crowding on the frequency of an innovator’s ideas.
1 assume o > 0, following standard arguments where innovators partly duplicate each other’s
work. A greater density of workers in the same specialty increases competition, reducing the
rate at which a specific individual produces a novel idea.

The final parameter, 8 = ) + B,,, represents the impact of the breadth of expertise. A
specification with 8 > 0 suggests simply that greater human capital increases one’s productivity.
The specific reason I embrace, for the purposes of this model, is that individuals with broader
expertise access a larger set of available knowledge — facts, theories, methods — on which to
build innovations. This will increase their innovative abilities, along the lines of Weitzman
(1998), making them more productive.'?

With the definitions (1.10) and (1.11), I can now explicitly define an innovator’s expected

flow of income,

vi(7,t) = X (T)XL(t, ;) TP CLy (t) (1.13)

10Note that I am using the state variable X (7) to represent the effect of both technology and the state of
knowledge on an innovator’s capabilities. We could introduce a second state variable, A(T), to represent the
state of knowledge and add a separate channel through which the quality of existing ideas influences an innovator’s
abilities. Since the state of knowledge in standard growth models is assumed to be deterministically related to
the technology level in the economy, adding a separate channel to differentiate between “ideas” and “technology”
will add little insight. When I discuss cross-sectional predictions in Section 3.8, where it will be useful to think
of different knowledge levels across technological areas, I will introduce a richer specification.

1By writing (1.12) I assume that only the vintage of knowledge and productivity at birth matter. A more
general specification would allow innovators’ productivity to improve to some degree as technology or knowledge
in the economy improve over their lifetime, but such a specification adds no important intuition to the model,
so it is left out for simplicity.

12There are many other mechanisms through which broader expertise would enhance an innovator’s income.
First, a more broadly expert innovator may better evaluate the expected impact and feasibility of her ideas. She
will better select toward high value, successful lines of inquiry, and therefore achieve greater returns. Second,
if assembling teams is costly, innovators will be unwilling to form large teams. More broadly expert innovators
can rely less on large teams for the implementation of their ideas, making their ideas less costly to implement.
Third, if income is shared across team members, then broader expertise, which reduces the necessary team size,
will bring one a greater share of project income. These last two effects will lead more narrowly expert innovators
to abandon a greater portion of their broad ideas.
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1.3.5 Equilibrium Choices

The choice facing each individual is that of career, which is a one-shot decision made at birth.
Players have infinitesimal mass so that the actions of any specific individual do not influence
the income of others. At the same time, an individual’s income will depend on the collective
decisions of other players. To rule out possible pathological multiple equilibria, I assume that
only strictly positive masses of workers are observable to players, so that strategies cannot be
conditioned on the actions of specific individuals.

Define the set of individuals born at time 7 as [(7), of which a subset ly(7) choose the
production sector and a subset {g(7) choose the innovation sector instead. Those who choose
the innovation sector must additionally choose an area of expertise (s,b). In equilibrium, we

require two conditions for each subgame 7:

UiR&D (si, b)) > Uz.R&D (s,b) Vs,b Vie lr(T) (1.14)

URED (5, b;) = Uwase Vi € lp(r) Vj € ly(r) (1.15)

The first condition states that no innovator can deviate to any other choice (s, b) and be better
off. The second condition rules out income arbitrage possibilities between the R&D and
production sectors.!> With the definitions of the model in Sections 3.1 through 3.4, we can
now define the expected income from various choices and hence, with conditions (1.14) and

(1.15), the equilibrium outcome.

Production workers

Production workers receive a competitive wage w(t) = X (t) — r(t), where X (t) is the leading

edge of productivity in the economy and r(t) is the royalty payments the firm makes per worker

" Condition (1.15) is a reduced form of two separate conditions: (i) UREP (si,b;) > UP*° Vi € Ir(7); (ii)
U;*e® > Uf*P(s,b) Vs,b, V5 € ly(r). Noting that U¥?9¢ = U;*%¢ and Ui (si,b:) = U, (sq,b;) for any two
individuals in the same cohort, these two conditions reduce to (1.15).
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to access the latest technologies. To define the flow of royalty payments, note that the expected
creation of royalties in any interval dt is dX. Since patents are protected for z years, the flow
of royalty payments r(t) is then:
¢
dX
t—z

which is simply X (t) — X (¢ — z). The wage worker’s expected flow of income at any time ¢ is
then w(t) = X(t) —r(t) = X(t—z). In other words, the wage earned by a production worker is
that portion of productivity which is not patent-protected, which is just the productivity level
of the economy z years previously.

Along a balanced growth path the growth rate in productivity is a constant, g, in which
case X(t—z) = X(t)e 9%. Assuming that g < ¢, so that workers have finite expected income,
we integrate (1.5) to find:

X

[rwage (7.) — l)e‘gz (116)

Innovators

Using (1.6) and the equilibrium condition (1.14), the innovator’s problem is:

o0
max/ vi(r, t)e=?E"dt — Ei(7) (1.17)

83,04

Or, with the definitions of E;(7) and v;(7,t) in (1.7) and (1.13),

max [ X (T)XL(t, 85) b2 C Ly (8)e=®t"dt — (b;D(7))* (1.18)

sibi Jr
First consider the choice of s;. In the Appendix I prove that in any subgame perfect
equilibrium of this game, L(t,s) = Lgr(t) Vs. That is, innovators evenly array themselves
around the circle of knowledge. The intuition for this result is straightforward. Given that

o > 0, the integrand and hence expected income are strictly increasing as L(t, s;) falls. In

24



consequence, the innovator seeks to avoid crowding and chooses a location in the circle of
knowledge where the density of innovators is smallest. In equilibrium, no innovator will wish
to deviate from her choice of s;, in which case all innovators must array themselves evenly
around the unit circle. The slight complexity in the proof is to consider — and rule out — the
possibility that innovators array themselves so that there are “holes” in expertise around the
circle and not all projects are feasible to implement. It should be intuitive that such holes
cannot survive in equilibrium: for some innovator there will exist a small deviation into such a
hole that will lead to congestion benefits without reducing the feasibility of her ideas. See the
Appendix for the formal reasoning,.

The innovator chooses b; so that the marginal cost of education equals the marginal expected
benefit to her income as an innovator. Differentiating (1.18) with respect to b; produces the
first order condition:

%CX(T)XbZ‘B / - Lr(t)™ Ly (t)e ®t7gt = bi (b D(7))¢ (1.19)

3 T
One can readily verify, by looking at the second order condition, that this stationary point
defines a (unique) maximum if and only if 8 < &, which I will assume for the rest of the
analysis.'*  Along the balanced growth path, Lg(t) and Ly (t) will both grow at a constant
rate equal to the growth rate in population, gz. Using this property to evaluate the integral and
rearranging the first order condition, we can characterize the equilibrium choice of b; implicitly

as,

iy L o(r) B\
"= 50 (¢—(1—o>gLe) (1.20)

where I write b*(7) to acknowledge that innovators in the same cohort face the same maximiza-

YIf B8 > € then the first order condition defines a unique minimum, and if 8 = ¢ it defines an inflection point.
It is straightforward to show that in either case the innovator will choose the corner solution, bf = 1. Such a
corner solution can also emerge when 8 < ¢ if the unique maximum described by (1.19) occurs where b} > 1.
These cases, where the innovator learns all available knowledge, are less interesting and will be left aside in
further analysis.
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tion problem and therefore choose identical breadths of expertise.!® Similarly, I write v;(7,T)
as v(T) to represent the expected flow of income to an innovator at the time of their birth.
Given the optimal choice, b*(7), we can further define the equilibrium level of education and

the expected utility for an innovator in cohort T,

'\ _ uir) B
R&Dx [\ _ v(7) B
U (1) = G- (l= o)L (1 E) (1.22)

Having defined the equilibrium choices of b and s, the remaining pieces of the equilibrium
consider the labor allocation between the production and innovation sectors and the equilibrium
determination of the growth rate. These three unknowns (Lg(t), Ly (t), g) can be solved using
three equations. The first is the arbitrage equation in expected lifetime income, equilibrium
condition (1.15). The second is an accounting relationship for the allocation of labor, L(t) =
Lg(t) + Ly(t). The third is the steady-state description of the growth rate, which is defined

in the next section.

1.3.6 Steady-state Growth

Along the balanced growth path, the growth rate in per-capita income is equal to the growth
rate in productivity, g. If there are Lg(t) innovators active at a point in time and the average
innovator raises productivity in the economy at a rate 6(t), then productivity increases at rate

dX/dt = 8(t)Lgr(t). The growth rate in the economy is then,

_B()La®)

X0 (1.23)

151 leave the definition of b* implicit because this formulation will be convenient for analyzing its growth path.
We can write b* explicitly by noting that v (7) = X (7)X Lr (1) " b*?CLy (7). Inserting this expression into

e/(e—8) -o 1/(e-8)
(1.20) and rearranging shows that b* (1) = (ﬁ) (CX(TLX_L(’;(_?)“LY(Z) é) .
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This expression is mechanical and holds both inside and outside of steady-state. On the
balanced growth path, where g is constant, we can take logs and differentiate with respect to
time to see that g = 95 +9L- The growth rate is a function of the rate of population growth
and the evolution of average innovator productivity. Using the equilibrium relationships we
have previously derived, we will be able to express gy asa function of g and various exogenously
specified elasticities. The derivation is straightforward but uninformative and is presented in

the Appendix. The steady-state growth rate derived there is,

_ l1-0
1-x-B(; -6

g )gL (1.24)

which assumes that y + 3 (% —0) < 1. This result, with its parametric condition, defines the
growth rate as the outcome of several important forces. The parameter x, as discussed above,
represents standard ideas in the growth literature whereby the productivity of innovators may
increase as they gain access to new technologies and new ideas (x > 0) or decrease if innovators
are fishing out ideas (x < 0). The larger x, the greater the growth rate, as is seen in (1.24).
The parameter o represents the degree to which increased research effort serves to duplicate
existing effort. As o approaches 1, research effort becomes increasingly congestive and the
growth rate will tend toward zero.

The implications of an increasing burden of knowledge are contained in the term 3 (% —6).
We can understand this term clearly by first considering the growth in the breadth of expertise.

As shown in the Appendix in the derivation of (1.24),

Gor = G - 6) g (1.25)

This result implies that, on the balanced growth path, new cohorts of innovators become more
specialized with time if and only if % —06 <0, or equivalently iff e§ > 1. The first parameter, ¢,
is the elasticity of the cost of education with respect to the amount of knowledge an innovator

learns. The second parameter, 4, is the elasticity of the depth of knowledge in the economy
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with respect to the level of technology. This specialization condition is intuitive: it says that
people will specialize more with time if, in combination, education is sufficiently expensive and
the depth of knowledge in the economy is rising at a sufficient rate. If this condition is satisfied,
we will witness the “death of the Renaissance Man” along the growth path (g < 0). The
impact of specialization on growth will be large or small depending on the value of 3, the
elasticity of innovators’ productivity with respect to their breadth of expertise.

The growth rate given in (1.24) also shows that growth in per-capita income will depend
on growth in the population. This is the standard Jones (1995b) style result discussed at
the opening of this chapter, where increasing effort is needed to produce steady-state growth.
A growing population provides both the motive — increasing market size — and the means for
innovative effort to grow at an exponential rate. The alternative, Romer (1990) style result,
where growth can be sustained without an increase in effort, is obtained in the knife-edge case
where x+ 8 (% —6) = 1. This parametric condition implies that the productivity of innovators
increases in exact proportion with the productivity in the economy; hence, growth can be

6 However, by the

sustained with a fixed amount of effort (i.e. without population growth).!
same token, if population is increasing, then growth rates will now explode (consider (1.24)
with g; > 0 as x + ﬁ(% — ) — 1). This is the usual “scale effects” problem, familiar from
the growth literature and reviewed in Section 2. To produce positive but non-explosive growth
rates both with and without population growth, we need to make the additional knife-edge
assumption that ¢ = 1. This second knife-edge assumption absorbs the impact of increasing

population by assuming that increased R&D effort is completely duplicative and has no impact

on the growth rate.!”

18With g = 0, we see from (1.23) that steady-state growth requires g = 95 As can be seen from (1.42) in the
Appendix and (1.25), the productivity of innovators grows at a rate g; = (x + B(L —6))g when g1 = 0. Hence,
in the absence of population growth, steady-state growth requires the knife-edge condition that x+ﬁ(% -6)=1

17Tn consequence, the assumption that o = 1 also eliminates the role of research subsidies in raising the growth
rate. Models which use an expanding product space instead of congestion effects (e.g. Young 1998) to absorb
the impact of population on the growth rate maintain the role of R&D subsidies in growth. Such models do
not, however, avoid making two separate knife-edge assumptions. For a general discussion of the dual knife-edge
properties of models with an increasing product space see Jones (1999).
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The greater the burden of knowledge in this model, i.e. the more negative ﬁ(% —4), then
the larger y must be to achieve the knife edge condition in which x + 5( é —0) = 1. Therefore,
while not dispositive of other mechanisms, we see that the burden of knowledge channel explored
in this chapter asks more of other mechanisms if we wish to preserve the possibility of growth
without an increase in research effort. The parametric independence of the burden of knowledge
channel also leads us to specific empirical predictions that are independent of other stories.

These predictions are defined in the next two sections.

1.3.7 Time Series Predictions

In addition to its predictions for the evolution of specialization (equation (1.25)), the model
makes explicit predictions regarding the amount of education innovators seek and their propen-
sity to form teams.

Consider education first. Since education is valuable to innovators and this value is com-
plementary to growing income possibilities in the innovative sector — due to increasing market
size if nothing else — innovator cohorts will seek more education over time. In equilibrium the
optimal amount of education (equation (1.21)) is a fixed fraction of the innovator’s lifetime in-
come. As the economy grows, individual incomes grow at rate g- In consequence, the amount

of education innovators seek also grows at rate g.

gE- =g (1.26)

This is seen formally by taking logs in (1.21), differentiating with respect to time, and noting
that v grows at rate g. The reason educational attainment grows at exactly the same rate
as per-capita income comes from the Cobb-Douglas nature of the innovator’s choice problem.
The innovator pays an additive cost to acquire b, the breadth of expertise, which is an isoelastic
input to the innovator’s “production function”, v. As is well known from the Cobb-Douglas
case, the expenditure share on the input is a constant fraction of the income. Hence, as the

income grows, the expenditure on the input grows at an equivalent rate.
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Note that 8 > 0 is a necessary condition for growth in education expenditures in this model.
If education (specifically, the breadth of expertise) were not valuable to innovators, then they
would have no motive to seek education at all, let alone an increasing amount. Furthermore,
the tendency to increase educational attainment over time implies that the breadth of expertise
will increase in the absence of knowledge accumulation. This provides intuition for why €6 > 1,
rather than the weaker condition £§ > 0, is required for the breadth of expertise to decline on
the growth path.

Next consider the evolution of average team size. Recall that k, the breadth of expertise
required to implement an idea, has a smooth distribution function F(k). Recall also that teams
are formed within cohorts if possible and that teams are formed with the minimum possible
number of individuals (see Section 3.4). Since individuals allocate themselves evenly around
the circle in any cohort, any necessary teammates are always available within one’s own cohort.
This implies that teams are formed from individuals with identical choices of b, b*(7). Since
teams are formed from the minimum number of individuals, the implementation of any idea &
requires [(k/b) team members; that is, k/b rounded up to the nearest integer.

The calculation of average team size is straightforward. A cohort with breadth of expertise b
will produce a team of size 1 with probability F'(b), a team of size 2 with probability F(2b)—F(b),

and so on. The maximum team size in a cohort with breadth of expertise b is defined by

n = [(1/b). With a little algebra, it is easy to show that expected team size is, '8
n—1
feam(b) =n— Y F(jb) (1.27)
j=1

where j indexes a particular realization of team size. Differentiating (1.27) with respect to b

shows that,

18The expected team size is feam(b) = 1F(b) + 2(F(2b) — F(b)) + ... + n(1 — F((n - 1)b)
Canceling terms in this expression produces the expression in the text.
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dleam(h) = 2
— ——;Jf(yb) (1.28)

where f(k) = dF/dk is the probability density function corresponding to F. Given that a
density function is weakly positive at any point, we see that team size is weakly increasing as b
falls. This result should seem intuitive: more specialized workers rely more on teamwork for
the implementation of their ideas.!?

Finally, consider the time lag between two innovations in which the same innovator is
involved.  Given that individuals in a cohort of measure [ each produce innovations with

hazard rate A, the cohort will produce in expectation IAdt innovations in an interval df. The

number of innovators needed to implement these innovations will be (I\dt) Zeam(b), while the
supply of innovators is I. The probability that a single innovator will become involved in a
project is therefore (Adt)Zeam(b), so that the individual’s hazard rate is b = Meam(b). The
average lag we witness is not 1/h however, but must consider the possibility that the innovator
dies and so no additional innovation occurs. Given an innovation at time t, the expected lag

conditional on witnessing an additional innovation before death is:20

[ R a0 g |
lag = =L — = —
ft°° he=(h+e)(i-t) gt  Aeamn(b) + ¢

(1.29)

Given ), the expected lag decreases as specialization and hence team size increase. As people
become more specialized, they rely on each other more for the implementation of their ideas;

there are more innovative opportunities for each person — less dead time waiting for a project —

'One might wonder about a more general case where the distribution F' is parameterized by the breadth
of expertise, b. In particular, we might imagine that more narrowly educated individuals will have a narrower
range of inspiration (smaller average k). I explore this possibility formally in the Appendix and derive there a
generalized condition for team size to increase as specialization increases. The intuition, which is shown clearly
for a uniform distribution, is that team size will increase with specialization as long as the “reach” of innovators
does not decline as rapidly as their “grasp”. See the Appendix for details.

20Given that you have innovated at time t, the probability that you neither innovate again nor die by time #
is e P+ =1) and the hazard rate of innovating at any time ¢ is . The numerator of (1.29) is the probability-
weighted sum of possible time lags until the next successful innovation. The denominator is the probability of
having another successful innovation (i.e., innovating again before death).
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and the time lag between innovations drops. More generally, the evolution of the raw arrival rate
of innovative ideas, A, may reinforce or overturn the implications of increasing specialization.
Since the evolution of ) along the growth path is ambiguous in the model, the model makes
no simple prediction about the evolution in the lag. At the same time, should we find that
increasing team size is not related to decreasing lags, the model suggests that the raw arrival
rate of ideas must be declining; this interpretation will be helpful when we consider the empirical
results.

In sum, the model predicts that (1) education is increasing over time; (2) specialization is
increasing over time iff €6 > 1, and (3) team size is increasing over time iff €6 > 1. The model

makes no simple prediction regarding the time lag between an innovator’s innovations.

1.3.8 Cross-sectional Predictions

In this section I extend the model to consider variations across technological areas. The
extension considers J unit circles of knowledge in place of a single circle. I assume that the
elasticity parameters are the same across all areas of knowledge, while each circle has a specific
depth of knowledge D; and a separate parameter A;, which represents the relative productivity
of knowledge in that area — whether the area is hot or cold. The structure of the model is
as before, with two modifications. First, the difficulty of reaching the knowledge frontier will

differ across technological areas. The educational cost for each area j is:

Eij(r) = (b:D;(1))° (1.30)

Second, an innovator’s productivity will depend on the characteristics of the technological area.

I redefine € as

0,(t,7) = Aj(£) X (T)XL;(t, 555) "7 (1.31)
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This specification differs in two ways from that in equation (1.12). First, the congestion effects
are now specific to the particular technological area, which is indicated by adding the subscript
J to L(t,s;). Second, I add the new parameter, A;(t), to indicate sector specific research
opportunities. Innovator’s inspirations are drawn from a distribution Fj{sij, s + 1], so that
all ideas from an innovator operating in area j are implementable using expertise within that
circle of knowledge.

The innovator’s maximization problem is solved just as in Section 3.5, only we now consider
the choice problem within a particular area of knowledge j. Congestion externalities imply that
innovators evenly array themselves within any circle of knowledge, and the first order condition
for b}; becomes:

B

o0
* — —d(t—1 g *
B?CX(T)Xbiﬁ / A;(t)LRj ()" Ly (t)e™C )th=b—=‘kj(biij(T))E (1.32)
(%) T 7,

Allowing Aj;(t) to grow at a sector specific rate, ga;, we find the following three results:

oy 1 v;(7) B\'*
50 = 5,0 <¢ Sy = ey ) (1.33)

£y _ vi(r) B
= ¢—(1-0)gr —gaje (1.34)

Ui = 5— v; (7) ( _é) (1.35)

1 —0o)gr — 945 £
The central cross-sectional implications are seen directly. Income arbitrage across sectors
implies that the U;(7) = U*(7) V5. This in turn implies that E; (1) = E*(7) Vj. In other
words, regardless of the depth of knowledge in a given sector or the innovation opportunities
there, innovators will seek the same amount of education. The intuition for this result is
that innovators will allocate themselves across sectors such that differences in the degree of

congestion will offset the variation in technological opportunities or educational burden. Once
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income is equated across sectors, innovators acquire the same total education because their
optimal amount of education is a constant fraction of their expected income. The model thus
makes the perhaps surprising dual prediction that successive cohorts of innovators will choose
an increasing amount of education, while a given cohort will choose an identical amount of
education, regardless of difference in costs and opportunities across sectors.

Finally, while we expect no variation in the level of education across sectors, we do ex-
pect differences in specialization. Given income arbitrage, we can compare the specialization
decisions across two sectors, j and 7. Using (1.33) we see directly that,
bj(7)

i(7) _ Dy(7)
5@~ D) 1)

Specialization will be greater where the depth of knowledge is greater. In consequence, team

o

size will also be greater where the depth of knowledge is greater.
In sum, the model predicts in cross-section that: (1) there will be no difference in the
amount of education; (2) specialization will be greater where the depth of knowledge is greater;

(3) team size will be greater where the depth of knowledge is greater.

1.4 Econometric Evidence

Sections 3.7 and 3.8 motivate a number of investigations. The goal of the empirical work is
descriptive: to examine a range of first-order facts that, together, shed light on these predictions
and the model’s underlying parameters. Using an augmented patent data set, we will be able

to examine four outcomes in particular:

1. Team size
2. Age at first innovation
3. Specialization, and

4. The time lag between innovations
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The data is described in the following subsection. An investigation of basic time trends and
cross-sectional results follow. The section closes by considering these new results together with
the existing facts summarized in Section 2. Together they paint a multi-dimensional picture

that is consistent with a rapidly increasing burden of knowledge.

1.4.1 Data

1 make extensive use of a patent data set put together by Hall, Jaffe, and Trajtenberg (Hall
ot al. 2001). This data set contains every utility patent issued by the United States Patent
and Trademark Office (USPTO) between 1963 and 1999. The available information for each
patent includes: (i) the grant date and application year, and (ii) the technological category.
The technological category is provided at various levels of abstraction: a 414 main patent class
definition used by the USPTO as well as more organized 36-category and 6-category measures
created by Hall et al. (The 36-category and 6-category measures are described in Table 4.5.)
For patents granted after 1975, the data set includes additionally: (iii) every patent citation
made by each patent, and (iv) the names and addresses of the inventors listed with each patent.
There are 2.9 million patents in the entire data set, with 9.1 million patents in the 1975-1999

period. See Figure 4.1.

1963 1975 2000
! T 1 >
0.8 million patents 2.1 million patents

Data includes (i), (i1) Data includes (i), (if), (ii1), (iv)

Figure 4.1: Summary of Available Data
Using the data available over the 1975-1999 time period, we can define two useful measures

directly:

e Team Size. The number of inventors listed with each patent.

e Time Lag. The delay between consecutive patent applications from the same inventor.

35



For the latter measure, we identify inventors by their last name, first name, and middle
initial and then build detailed patent histories for each individual.

We can also define two more approximate measures that will be useful for analysis:

e Tree Size. The size of the citations “tree” behind any patent. Any given patent will cite
a number of other patents, which will in turn cite further patents, and so on. For the
purposes of cross-sectional analysis, the number of nodes in a patent’s backwards-looking

patent tree serves as a proxy measure for the amount of underlying knowledge.

e Field Jump. The probability that an innovator switches technological areas between
consecutive patent applications. This can serve as a proxy measure for the specialization

of innovators. The more specialized you are, the less capable you are of switching fields.

A limitation of this last measure is that, since technological categories are assigned to
patents and not to innovators, inferring an innovator’s specific field of expertise is difficult when
innovators work in teams. For inventors who work in teams, the relation between specialization
and field jump is in fact ambiguous: as inventors become more specialized and work in larger
teams, they may jump as regularly as they did before. For the specialization analysis we will
therefore focus on solo inventors, for whom increased specialization is always associated with a
decreased capability of switching fields.

Finally, we would like to investigate the age at first innovation. Unfortunately, inventors’
dates of birth are not available in the data set, nor from the USPTO generally. However,
using name and zip code information it was possible to attain birth date information for a large
subset of inventors through a public website, www.AnyBirthday.com. AnyBirthday.com uses
public records and contains birth date information for 135 million Americans. The website
requires a name and zip code to produce a match. Using a java program to repeatedly query
the website, it was found that, of the 224,152 inventors for whom the patent data included a
zip code, AnyBirthday.com produced a unique match in 56,281 cases. The age data subset and

associated selection issues are discussed in detail in the Data Appendix. The analysis there
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shows that the age subset is not a random sample of the overall innovator population. This
caveat should be kept in mind when examining the age results, although it is mitigated by the
fact that the differences between the groups become small when explained by other observables,
controlling for these observables in the age regressions has little effect, and the results for team
size, specialization and time lag persist when looking in the age subset. See the discussion in

the Data Appendix.

1.4.2 Time series results

I consider the evolution over time of our four outcomes of interest. Figure 4.2 presents the
basic data while Tables 4.1 through 4.4 examine the time trends in more detail.

Consider team size first. The upper left panel of Figure 4.2 shows that team size is increasing
at a rapid rate, rising from an average of 1.70 in 1975 to 2.25 at the end of the period, for a
32% increase overall. Table 4.1 explores this trend further by performing regressions relating
team size to application year, and we see that the time trend is robust to a number of controls.
Controlling for compositional effects shows that any trends into certain technological categories
or towards patents from abroad have little effect. Repeating the regressions separately for
patents from domestic versus foreign sources shows that the domestic trend is steeper, though
team size is rising substantially regardless of source. Repeating the time trend regression
individually for each of the 36 different technological categories defined by Hall et al. shows
that the upward trend in team size is positive and highly significant in every single technological
category. Running the regressions separately by “a.séignee code” to control for the type of
institution that owns the patent rights shows that the upward trend also prevails in each of
the seven ownership categories identified in the data, indicating that the trend is robust across
corporate, government, and other research settings, both in the U.S. and abroad.?! In short,
we find an upward trend in team size that is both general and remarkably steep.

Next consider the age at first innovation. Note that we define an innovator’s “first” innova-

*ITable A.2 describes the ownership assignment categories.
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tion as the first time they appear in the data set. Since we cannot witness individuals’ patents
before 1975, this definition is dubious for (i) older individuals, and (ii) observations of “first”
innovations that occur close to 1975. To deal with these two problems, I will limit the analysis
to those people who appear for the first time in the data set between the ages of 25 and 35 and
after 1985. The upper right panel of Figure 4.2 plots the average age over time, where we see a
strong upward trend. The basic time trend in Table 4.2 shows an average increase in age at a
rate of 0.66 years per decade. Controlling for compositional biases due to shifts in technological
fields or team size has no effect on the estimates. The results are also similar when looking
at different age windows.?? Analysis of trends within technological categories shows that the
upward trend in age is quite general. Smaller sample sizes tend to reduce significance when
the data is finely cut, but an upward age trend is found in all 6 technology classes using Hall et
al’s 6-category measure, and in 29 of 36 categories when using their 36-category measure. The
upward age trend also persists across all patent ownership classifications.

Now we turn to specialization. The specialization measure considers the probability that
an innovator switches fields between consecutive innovations. Before looking at the raw data,
it is necessary to consider a truncation problem that may bias us toward finding increased
specialization over time. The limited window of our observations (1975-1999) means that the
maximum possible time lag between consecutive patents by an innovator is largest in 1975 and
smallest in 1999. This introduces a downward bias over time in the lag between innovations.
It is intuitive, and it turns out in the data, that people are more likely to jump fields the

23 Mechanically shorter lags as we move closer to 1999

longer they go between innovations.
can therefore produce an apparent increase in specialization. To combat this problem, I make
use of a conservative and transparent strategy. 1 restrict the analysis to a subset of the data

that contains only consecutive innovations which were made within the same window of time.

22The table reports results for the 23 to 33 age window as well. In results not reported, I find that the trend
is similar across subsets of these windows: ages 23-28, 25-30, 31-35, et cetera. Furthermore, there is no upward
trend when looking at age windows beginning at age 35.

23 An interpretation consistent with the spirit of the model is that people need time to reeducate themselves
when they jump fields, hence a field jump is associated with a larger time lag.
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In particular, we will look only at consecutive innovations when the second application comes
within 3 years of the first. Furthermore, we will look only at innovations which were granted
within 3 years of the application.?? This strategy eliminates the bias problem at the cost of
limiting our data analysis to the 1975-1993 period and making our results applicable only to
the sub-sample of “faster” innovators.?> The lower right panel of Figure 4.2 shows the trend
from 1975-1993.

Table 4.3 considers the trend in specialization with and without this corrective strategy.
The results there, together with the graphical presentation in Figure 4.2, indicate a smooth
decrease in the probability of switching fields. The decline is again quite steep.  Using
the central estimate for the trend of -.003, we can interpret a 6% increase in specialization
every ten years. Note that our main results, and Figure 4.2, use the 414-category measure
for technology to determine whether a field switch has occurred. This is our most accurate
measure of technological field (Hall et al.’s measures are aggregations of it), but the results are
not influenced by the choice of field measure. Note in particular that the percentage trend
is robust to the choice of the 6, 36, or 414 category measure for technology — the trend is
approximately 6% per decade for all three. Including controls for U.S. patents, the application
time lag, ownership status, and the technological class of the initial patent has little effect.
Furthermore, looking for trends within each of Hall et al.’s 36 categories, we find that the
probability of switching fields is declining in 34 of the 36; the decline is statistically significant
in 20. In sum, we see a robust and strongly decreasing tendency for solo innovators to switch

fields.

2 Looking only at patents where the second application came within 3 years limits our analysis to those cases
where the first application was made before 1997. However, a second issue is that patents are granted with a
delay - 2 years on average — and only patents that have been granted appear in the data. For a first patent
applied for in 1996, it is therefore much more likely that we will witness a second patent applied for in 1997
than one applied for in 1999 - introducing further downward bias in the data. To deal completely with the
truncation problem, we will therefore further limit ourselves to patents which were granted within 3 years of
their application, which means that we will only look at the period 1975-1993.

% These restrictions maintain a significant percentage of the original sample. For example, of the 111,832
people who applied successfully for patents in 1975, 81,955 of them received a second patent prior to 2000. Of
these 81,955 people for whom we can witness a time lag between applications, 79.8% made their next application
within three years. Of those, 88.5% were granted both patents within three years of application.
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Finally, I consider the time lag between an innovator’s innovations. The truncation bias in
the time lag described above, which had little effect with specialization, is of course crucial here,
so we employ the same corrective strategy and look only at the 1975-1993 period and the sub-
sample of “faster” innovators. The lower left panel of Figure 4.2 presents the data graphically
and Table 4.4 considers the trend with and without various controls. The regressions show a
mild upward trend, but this should be viewed skeptically given the clearly cyclical behavior we
see in the graph. Considering the coefficients on various controls, we see that bigger teams
innovate faster and that part of the mild upward trend is accounted for by a composition effect
~ innovators switching into fields where the delay is longer. What is most interesting about the
time lag data becomes apparent only when we look at trends within technological categories.
(See Figure 4.3.) Here we find a richer story: Most fields (19 of 36) show a significant decrease in
the average lag between innovations. A smaller number (11 of 36) show a significant increase. 26
Overall, I conclude that the average time lag between an innovator’s patent applications, unlike
the other outcomes of Interest, shows no decisive trend; rather, trends in time lags are cycling

and differ strongly across technological areas.

1.4.3 Cross-section results

For a first look at the data in cross-section, Table 4.5 presents a simple comparison of means
across the 6 and 36 technological categories of Hall et al (2001). The middle column in the
table presents the mean age at first innovation, and the data shows a remarkable consistency
across technological categories. In 30 of the 36 categories, an innovator’s first innovation tends
to come at age 29. The lowest mean age among the 36 categories is 28.8, and the highest
is 31.1, though this last relies on only 12 observations and is an outlier with regard to the

others. The table shows that regardless of whether the invention comes in “N uclear & X-rays”,

*The fact that the overall trend is upward indicates that this group of 11 is pulling relatively strongly. Upon
closer examination we find that the heavyweights among these eleven are Organic Compounds (#14), Drugs
(#31), and Biotechnology (#33) — all areas related to the pharmaceutical industry. This result is consistent
with Henderson & Cockburn’s (1996) finding that researchers in the pharmaceutical industry are having a greater
difficulty in producing innovations over time.
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“Furniture, House Fixtures”, “Organic Compounds”, or “Information Storage”, the mean age
at first innovation is nearly the same. According to the cross-sectional variation of the model,
this is what we would expect. Given income arbitrage, innovators expand their breadth of
expertise in shallow areas of knowledge and focus their breadth of knowledge in deep areas of
knowledge so that their educational investment does not differ across fields.2”

The next columns of the table consider the average team size. Here we see large differences
across technological areas. The largest average team size, 2.90 for the “Drugs” subcategory, is
over twice that of the smallest, 1.41 for the “Amusement Devices” subcategory.

Finally, the last columns of the table consider the probability that a solo innovator will
switch sub-categories between innovations. Here, as with team size and unlike the age at first
innovation, we see large differences across technological areas. This variation is again consistent
with the predictions of the model. At the same time, this basic, cross-sectional variation in the
probability of field jump is difficult to interpret: the probability of field jump will be tied to
how broadly a technological category happens to be defined, which may vary to a large degree
across categories.

I can go further by using a direct measure of the quantity of knowledge underlying a patent.
In particular, I can analyze in cross-section what an increase in the knowledge measure implies
for our outcomes of interest.

For a continuous measure of the quantity of knowledge I will use the logarithm of the

number of nodes (i.e., patents) in the citation “tree” behind any patent.?®8 As usual. there is a
) y p ?

*"These results can also be considered in a regression format. Pooling cross-sections and using application
year dummies to take care of trends, the results are extremely similar. One can also adjust the time at first
innovation by subtracting category-specific estimates of the time lag to get a closer estimate of an individual’s
education. One can also look at different age windows. The result that ages are nearly identical across fields is
highly robust.

*%The distribution of the raw node count within cross-section is highly skewed — the mean is far above the
median, so that upper tail outliers can dominate the analysis. I therefore use the natural log of the node count,
which serves to contain the upper tail. A (loose) theoretical justification is knowledge depreciation: distant
layers of the tree are less relevant to a patent than nearer layers, so there is a natural diminishing impact as
nodes grow more distant. The diminishing impact of the large, distant layers, which dominate the node counts,
is captured loosely by taking logs. Noting that the basic results are similar when we use the median-based
measure of knowledge depth (a dummy for whether the raw node count is above or below the median, which
is independent of any monotonic transform of the node count) we can be reasonably comfortable with the log
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truncation issue that needs to be considered: the data set does not contain citation information
for patents issued before 1975, so we tend to see the recent part of the tree. The measure of
underlying knowledge is then noisier the closer we are to 1975, and I will therefore focus on
cross-sections later in the time period. A second issue is that the average tree size and its
variance grow extremely rapidly in the time window, which makes it difficult to compare data
across cross-sections without a normalized measure. Two obvious normalizations are: (1) a
dummy for whether the tree size is greater than the within-period median; (2) the difference
from the within-period mean tree size, normalized by the within-period standard deviation.
Results are reported using the latter definition, as it is informationally richer, though either
method shows similar results.

Figure 4.4 presents, by application year, a set of kernel regressions relating the team size to
the normalized variation in tree size. We see a very consistent pattern: a “J” shape. After
a slight initial fall, team size rises at an increasing rate as the measure of knowledge depth
increases. For innovations with larger citation trees, the rise in team size is particularly strong.
At the right end of the figures, an increase of one standard deviation in the tree size is associated
with an average increase in team size of one person.??

Table 4.6 reexamines the relationship between team size and tree size in pooled cross-
sections, with and without various controls. I add a quadratic term for the variation in team
size to help capture the curvature seen in the figures.3® The table shows that the cross-sectional

relationship holds for domestic and foreign-source patents and when controlling for technologi-

measure.

29While the rising relationship is consistent with the predictions of the model, the slight initial fall is not.
Re-examining the relationship between average team size and average tree size by technological category shows
a surprising fact, which can be seen in Figure 4.5. There are a few technological fields that have high team
size but small citation trees. These outliers are: Organic Compounds (#14), Drugs (#31), and Biotechnology
(#33). Interestingly, these are exactly the same fields which were dragging strongly upwards on the trend in the
time lag between applications, examined above. A plausible explanation for the unusual behavior of these three
categories is the move from “random” to “rational” research and the consequent increasing need for specialists
in the pharmaceutical industry, which is described by Henderson & Cockburn (1996) and others. A tendency
toward random discovery in the past will provide little prior art for innovations and result in small citation trees.
The growing need for specialists will result in large teams.

30The increase in slope is intriguing, but difficult to interpret, since the tree size is a proxy measure for the
amount of knowledge underlying a patent. Interpretations are further complicated by the fact that the curvature
will change depending on the monotonic transform we use for the tree size (in this case, the logarithm).
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cal category, so that the variation appears both within fields and across them. Technological
controls are perhaps best left out, however, since the variations in mean tree size across techno-
logical category may be equally of interest. Finally, we might be concerned that bigger teams
simply have a greater propensity to cite, which results in larger trees. This concern proves
unwarranted. Controlling for the variation in the direct citations made by each patent, we
find that relationship actually strengthens. In fact, we see that bigger teams tend to cite less.
This result gives us greater faith in the causative arrow implied by the regressions.

Next we turn to the age at first innovation. Table 4.7 examines, in pooled cross-sections,
the relationship between age and knowledge for those individuals for whom we can be confident
that they are innovating for the first time (see discussion above). The general conclusion from
the table is that we must work hard to find a relationship, and at its largest it is very small.
It is not robust to the specific age window, is reduced when controlling for the technological
category, and disappears when controlling for the number of direct citations made. Taking
a coefficient of 0.1 as the maximum estimate from the table, we find that an increase of one
standard deviation in the knowledge measure leads to a 0.1 year increase in age. This coefficient
may be attenuated given that our proxy measure of knowledge is, at best, noisy, but I conclude
that there is at most only a weak relationship between the amount of knowledge underlying a
patent and the age at first innovation.

Finally, Table 4.8 considers the relationship between the probability of field jump and the
knowledge measure. The table shows a robust negative relationship: solo innovators are less
likely to jump fields when their initial patent has a larger node count. If we identify a larger
node count with a deeper area of knowledge, then this negative correlation is again consistent
with the predictions of the model. However, I place less emphasis on this result. The fact that
the node count captures the recent part of the tree means that the measure is likely correlated
not just with the total underlying knowledge but also with the recent ease of innovation. This
effect could also explain the negative correlation. Innovators will be less likely to leave a fruitful

area, which will be registered as a decreased probability of jumping fields.
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1.4.4 Interpretations

I have assembled a collection of new facts, motivated by the model. This section considers
these facts as a whole to see whether they are consistent with the model and what they say
about other models of growth more generally.

The model predicts that successive cohorts of innovators will seek more education, because
education is valuable to innovators and its value increases as the economy grows. The model
also predicts that, due to income arbitrage, innovators will seek the same amount of education
across widely different areas of knowledge, regardless of variations in the depth of knowledge
or innovative opportunities. These dual predictions find strong support in the data.

Second, the model indicates that if knowledge is accumulating at a sufficient rate and ed-
ucation is sufficiently costly (so that €§ > 1), then innovators will seek a greater degree of
specialization over time. Increasing specialization will result in greater teamwork as innovators
become more interdependent in the implementation of their ideas. In cross-section, specializa-
tion and team size are predicted to vary across fields and, in particular, to be greater where
the depth of knowledge is greater. These time-series and cross-sectional predictions all find
consistent empirical support. With an increasing burden of knowledge, the model indicates
pessimistic predictions for growth, as were discussed in Section 3.6.

How does a story of increasing knowledge burden do with the data aggregates presented
in Section 27 First of all, if the knowledge burden is rising, we might wonder why there are
more and more people engaging in R&D (see Figure 2.1). The rise in research effort is natural,
however, given the increase in market size — the value of patents is increasing on the extensive
margin. This market size effect is present in this model as in other idea-based growth models.
More interesting is the drop in patent production per active researcher. Figure 2.2 shows the
recent trend, but the fact of declining patent output per researcher may date back as far as
1900 and even before (Machlup 1962). Certainly, not all researchers are engaging in patentable

activities, and it is possible that much of the trend is explained by a relatively rapid growth of

44



research in basic science.’! Still, it is quite interesting to note that the recent drop in patents
per U.S. R&D worker, a drop of about 50% since 1975, is roughly consistent in magnitude with
the rise in U.S. team size over that period. With the time lag between innovations showing
little if any deterministic trend, we have a simple explanation for where these extra innovators
have recently been going — into bigger teams.

What of other stories? As emphasized in Section 3.6, the knowledge burden channel is not
dispositive of other mechanisms, which operate independently and may also be important to
growth. At the same time, it is worth considering briefly whether popular stories in the growth
literature can serve as alternate explanations for the facts collected in this chapter.

First, models that explain away scale effects through an expanding product space cannot
obviously explain many of these facts. Expanding team size and rising ages at first innovation
seem outside their predictive thrust. Moreover, as noted in Section 2, they do not on their
own explain the declining number of patents per researcher.

Models that avoid scale effects through the evolution of the quality of an innovator’s ideas
(i.e. “fishing out” type stories) can do well with the data aggregates, but they do not provide
obvious first-order explanations for the team size, age, or specialization data. At the same time,
there may be some indirect evidence that successful ideas are in fact harder to come by. To
see this, consider that, given a fixed arrival rate of ideas ), an increase in specialization in our
model predicts a decrease in the time lag between innovators’ innovations: innovators become
more interdependent so that they share in larger numbers of projects.3? In the data, innovators
in most technological classes do show a decrease in the lag over time, but a large minority of
technological categories show an upward trend in time lag, and the overall behavior is cyclical.
Why don’t we see a strong drop in the time lag? One explanation is that the underlying arrival

rate of ideas, A, may be declining. From equation (1.10), we see three possible explanations for

*1Such an explanation could be inferred from the observations of Mokyr (1990), for example, who sees an
increasing role for basic science as a foundation for technological advance.

32 Furthermore, although the model abstracts from implementation time, we could also imagine that a given
project would be implemented faster when more people are brought to bear. This effect would also tend to
reduce the time lag between an innovator’s inventions.
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such a decline. First, this result is consistent with the negative impact of narrowing expertise
on the frequency of an innovators ideas (8 > 0). In this sense, we need look no further than
the knowledge burden mechanism to explain this result. However, it is also consistent with
a “fishing out” problem (x, < 0). Finally, it is consistent with an increase in competition
(o > 0).

Competition effects may present a more complete alternative explanation for the range of
data. If we think of the innovation process as a series of increasingly competitive patent races,
we can explain the time lag results and go further as well. As market size grows, patents
become more valuable. Competition within patent lines will increase and we will consequently
see more “losers”. This can explain an increasing time lag and a drop in patent counts
per active innovator. Team sizes, insofar as teams reduce innovation time, may expand as
firms try to out-race each other. With an increase in team size, we might see an increase in
specialization to exploit within-team efficiency possibilities. The fact that we see increased
specialization among solo inventors is less easy to explain however. It is also difficult to
produce the age results through competition. The fact that the average age at first innovation
is increasing over time but showing no variation across fields poses a particular challenge. As
a general matter, increasing specialization despite increasing educational attainment is difficult
to reconcile without appealing to an increasing educational burden. Another problem with
a patent race story, if it is to stand on its own, is that it must make extreme assumptions to
reproduce the data aggregates in Section 2. Given historically flat TFP growth and historically
flat patent counts, we must imagine that all the extra research effort is useless: no matter how

many people enter R&D), the number of patent races is fixed and no race is resolved any faster.

1.5 Conclusion

If technological progress leads to an accumulation of knowledge, then the educational burden
on successive generations of innovators will increase. Innovators may compensate by narrowing

their expertise, which serves to reduce their individual capabilities, with negative implications
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for growth. This chapter explores this possibility in a model that generates a number of em-
pirical tests. The model predicts that the educational attainment of innovators will not vary
across technological fields but will rise over time. Data analysis shows that the age at first
innovation, which is a proxy measure for education, is in fact remarkably consistent across tech-
nological areas but is increasing over time at a rate of 0.6 years per decade. The model further
predicts that specialization and average team size will vary across fields and, if the knowledge
burden mechanism is sufficiently strong, specialization and team size will increase as technology
advances. Data analysis shows that specialization and team size do vary considerably across
technological areas and both show a sharp increase over time; specialization is increasing by 6%
per decade, U.S. team size by 17% per decade. Furthermore, in cross-section, specialization
and team size are positively correlated, as predicted, with a direct measure of the amount of
knowledge underlying each patent. The knowledge burden mechanism thus provides a consis-
tent explanation for the range of new evidence. It can also explain the facts standing at the
center of the “scale effects” debate in the growth literature: flat patent counts and flat TFP
growth despite rising R&D effort. The implication of these facts, understood through the lens
of a rising burden of knowledge, is that growth is relying on an ever increasing and possibly
unsustainable rise in innovative effort.

This chapter aims to provide a deeper understanding of key issues in innovation and growth
and particularly to introduce a specific and isolated channel — an increasing educational burden
— through which innovation can become harder with time. Further work should extend the em-
pirical explorations over longer periods of time and, if possible, produce more closely identified
tests for this mechanism and others. Detailed modeling of the microfoundations may suggest

further approaches.
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1.6 Appendix
Proof that L(t,s) = Lg(t) Vs

This proof proceeds in two steps. First I rule out any equilibrium in which there is zero
mass at a proper subset of points on the circle. Then I show, given the first result, that
innovators will array themselves evenly around the circle.

(1) Lg(7) is the mass of individuals at time 7 who are engaged in R&D. Define G, as the
set of points on the circle where there is a positive mass of innovators:

Gr={s€|0,1] | L(r,s) >0}

The set of points where there is zero mass is defined as the complement of G-, H; = G%. If G,
is empty, then L(7,s) = 0 Vs, which satisfies the proof trivially. Consider the more interesting
and relevant case where G, is non-empty. I first prove that H, must then be empty.

By contradiction, assume the set H, is non-empty, H; # 0. Then there exists at least one
point s’ on the boundary between G, and H, where for any € > 0 there exists a point s’ such
that either (i) s’ € Gy, " € Hy, 8’ > 8" > s —¢, or (i) &' € Hr, " € Gr, 8 <" <& +e
Consider the former case.33 For ease of exposition, I will abuse notation slightly and let L(t, s)
represent both the set and the mass of individuals at point s at time ¢. Then there must exist
some massless innovator 4 € L(7, s") with breadth of expertise b; who chose position s at some
time ¢ < 7. Without loss of generality, choose i such that b} < b; for some j € L(t,s'),
j # . Note further that b} > 0 in any equilibrium, by the arbitrage condition (1.15), since
URED(pr = 0) = 0 but U > 0; hence there must exist an arbitrarily small € such that
0<e<b;.

The boundary of this individual’s knowledge is s’ 4+ bf. If the innovator has an idea k > b},
then the innovator will need teammates for implementation. Define p;(t) such that Vk > p;(t)
the necessary teammates do not exist and Vk < p;(t) the necessary teammates do exist. The
probability that an idea k is feasible is then F'(p;(t)). The innovator’s expected income at the
time of their birth ¢ is a generalized version of (1.6) that allows for the possibility that an idea
is infeasible:

CX ()b / ” F(ps(t))L(t, s') " Ly (t)e~**"")dt — (b} D())* (1.37)

If this individual were to shift to a location s” € H, C Hy, then the access to potential
teammates remains unchanged. (The individual can always hire someone in L(t',s’) as a
teammate, and everyone else at that point has weakly greater expertise.) Therefore pi(t) =
pi(t) + ¢, and the probability that an idea k is feasible is weakly increasing since for any
distribution function F(p;(t) + €) > F(p;(t))-

Therefore, from (1.37) and the equilibrium condition (1.14), the choice s’ can only be an
equilibrium for person % if

33The proof for case (ii) follows on similar lines; I omit it for brevity.
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/ L(t,s') " Ly (t)e~*t*)dt > / L(t,s") "7 Ly (t)e~®¢—t)gt (1.38)
Jt t

Given the continuity of L with time, L(t, s") > L(t, s”) for all ¢ in some interval [t',t"]. Therefore,
the expected income to innovator 7 in the interval [t/,¢"] must be strictly less with the choice s’
then with the choice s”. Therefore, innovator ¢ must believe that

oo [e o]
/ L(t, ')~ Ly (t)e~ gt > / L(t, ") Ly (t)e~ ¢t (1.39)
t

u tll

Multiplying both sides of this expression by the constant e=¢(*'~t") we see that in the subgame
for those born at time t” no person would choose s”. Hence L (t”,s") is not increasing,
L(t",s") > L(t",s"), and there is no finite ¢ at which (1.39) holds. Hence (1.38) cannot hold.
Hence, by contradiction, no such point s” can exist and therefore H, = () Vr.

(2) Given that H, = 0 V7, innovators’ collective expertise covers all areas of knowledge, so
that all ideas are feasible to implement. The proof that innovators array themselves evenly
around the circle then follows as above. By contradiction, assume an innovator born at time ¢/
chooses s’ over some s” where L(t',s') > L(t/,s”). The innovator must believe (1.38), and by
extension (1.39). But there is no t” at which (1.39) holds. Hence no such point s” can exist.
Hence no innovator can choose any s’ such that L(t',s’) > L(¢, s) for any s. QED

Derivation of the steady-state growth rate

From equation (1.23), the steady-state growth rate in the economy is defined by,

9= 9y + 9L (1-40)

To define g5, note first that the average productivity of innovators is the sum of the pro-
ductivity of each cohort weighted by the fraction of that cohort in the population.34

6(t) = /_ t 8(7,t) (gL + ¢)elor ATy (1.41)

The growth rate of 6(r,t) with respect to 7 is just xg + Bgy~, which is seen by taking
logs of the definition of @ (equation (1.12)), using the equilibrium result b = b*(7), and
differentiating with respect to 7. We can therefore integrate (1.41) to find that 6(t) =
6(t) (gr + ¢) / (xg + Bgp- + g1 + ¢). The steady-state growth rate in 6(t) is therefore equiva-
lent to the steady-state growth rate in 6(t), so that g = 9, +90 =90+ gL

6(t) is the productivity of the latest cohort of innovators at the time of their birth. The
growth rate of §(t) with respect to time is just xg + 8gs» — ogr, which is seen by taking logs in
the definition of 6, letting 7 = ¢, and differentiating with respect to t. Therefore,

34 The size of a cohort at its birth is (gr. +¢)L(7), so the surviving size of that cohort at some time t > T is (gr+
¢)L(7)e"?*~), and the fraction of the population L (¢) who belong to that cohort is (g, + ¢)e 9L (=) e=¢(t=7)
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95 = X9 + Bger — gL (1.42)

Taking logs in the equilibrium result (1.20), letting 7 = ¢, and differentiating with respect
to t, the growth rate of b* is gp» = (1/€)gy — gp. Noting from (1.13) that v(¢) = 8(¢t)CLy(t),
the growth rate in v is the same as the growth rate in the economy: g, = g9 + g1 = g. From
(1.8), the growth rate in the depth of knowledge is gp = §g. Therefore,

1
=(=—§
9o (e )g

Inserting this into (1.42), the result into (1.40), and rearranging produces the expression for
steady-state growth in equation (1.24).

A generalized condition for team size to increase with specialization

I explore here the evolution of team size when the distribution of & changes with an individ-
ual’s breadth of expertise, b. Define the generalized distribution function by F'(k;b) and the
corresponding density function as f(k;b) = dF(k;b)/dk. The average team size for a cohort
with breadth of expertise b is derived just as in (1.27),

n—1
team(b) =n— Y | F(jb;b) (1.43)
j=1

Noting that F(jb;b) = gb f(k;b)dk, we can use Leibniz’s rule to differentiate (1.43) with
respect to b and thereby define a necessary and sufficient condition for team size to increase
with specialization:

X/ (9 df (kb e dteam (b
Z(/O %ldk+jf(]b;b))>0®w2—?()<0 (1.44)

j=1
The second term on the left hand side is recognized from equation (1.28) and acts to make team
size increase with specialization. The effect of the first term is ambiguous, however, so that the
effect of specialization on team size cannot be signed without considering distribution-specific
properties.

We can gain some intuition for this condition by considering the simple case where & is
drawn from a uniform distribution. Specifically, let k& ~ U|[0,b%], so that f(k;b) = b~*. Using
(1.44), it is then straightforward to show that a < 1 < dteam(b)/db < 0. Noting that the
mean of k is E (k) = $b, it is also straightforward to show that « is the elasticity of E(k) with
respect to b. Therefore, we see that team size will be increasing with specialization so long as
the elasticity of E(k) with respect to expertise is less than 1. In other words, team size will be
increasing as long as innovators’ average “reach”, given by E(k), does not decline faster than
their average “grasp”, given by b.
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1.7 Data Appendix

The reader is referred to Hall et al (2001) for a detailed discussion of their patent data set.
This appendix focuses on the age information collected to augment the Hall et al data.

Age data was collected using the website www.AnyBirthday.com, which requires a name
and zip code to produce a match. As is seen in Table A.1, 30% of U.S. inventors listed a
zip code on at least one of their patent applications, and of these inventors AnyBirthday.com
produced a birth date in 25% of the cases. While the number of observations produced by
AnyBirthday.com is large, it represents only 7.5% of U.S. inventors. This Appendix explores
the causes and implications of this selection. The first question is why zip code information is
available for only certain inventors. The second question is why AnyBirthday.com produces a
match only one-quarter of the time. The third question is whether this selection appears to
matter.

Table A.2 compares how patent rights are assigned across samples. The table shows clearly
that zip code information is virtually always supplied when the inventor has yet to assign the
rights; conversely, zip code information is never provided when the rights are already assigned.
Patent rights are usually assigned to private corporations (80% of the time) and remain unas-
signed in the majority of the other cases (17% of the time). An unassigned patent indicates
only that the inventor(s) have not yet assigned the patent at the time it is granted. Presumably,
innovators who provide zip codes are operating outside of binding contracts with corporations,
universities, or other agencies that would automatically acquire any patent rights. The zip-code
subset is therefore not a random sample, but is capturing a distinct subset of innovators who, at
least at one point, were operating independently. Despite this distinction, this subset may not
be substantially different from other innovators: the last column of Table A.2 indicates that,
when looking at the other patents produced by these innovators, they have a similar propensity
to assign them to corporations as the U.S. population average.

The nature of the selection introduced by AnyBirthday.com is more difficult to identify.
The website reports a database of 135 million individuals and reports to have built its database
using “public records”. Access to public records is a contentious legal issue.33 Public disclosure
of personal information is proscribed at the federal level by the Freedom of Information Act and
Privacy Act of 1974. At the state and local level however, rules vary. Birth date and address
information are both available through motor vehicle departments and their electronic databases
are likely to be the main source of AnyBirthday.com’s records.3® The availability of birth date
information is therefore very likely to be related to local institutional rules regarding motor
vehicle departments. Geography thus will influence the presence of innovators in the age sample,
and a further issue in selection may involve the geographic mobility of the innovator, among
other factors. The influence of this selection, together with the implications of assignment

%5 Repeated requests to AnyBirthday.com to define their sources more explicitly have yet to produce a response.

36 A federal law, the Driver’s Privacy Protection Act of 1994, was introduced to give individuals increased
privacy. The law requires motor vehicle departments to receive explicit prior consent from an individual before
disclosing their personal information. However, the law makes an exception for cases where motor vehicles
departments provide information to survey and marketing organizations. In that case, individual’s consent
is assumed unless the individual has opted-out on their own initiative. See Gellman (1995) for an in-depth
discussion of the laws and legal history surrounding public records.
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status, can be assessed by comparing observable means in the population across subsamples.

Table A.3 considers average team size, which is a source of further differences. Patents
with provided zip codes have smaller team sizes than the U.S. average; team sizes in the subset
of these patents for which the age of one innovator is known are slightly larger, but still smaller
than the U.S. average. Controlling for other patent observables, in particular the assignment
status, reduces the mean differences and brings the age sample quite closely in line with the
U.S. mean. (See the last two columns of the table.) Having examined a number of other
observables in the data, such as citations received and average tree size, I find that relatively
small differences tend to exist in the raw data, and that these can be either entirely or largely
explained by controlling for assignment status and team size. Most importantly, the age results
in the text are all robust to the inclusion of assignment status, team size, and any other available
controls.

Finally, looking at team size, specialization, and time lag trends in the age subsample, the
results are similar in sign and significance as those presented in Section 4. The rate of increase
in specialization is larger, and the rate of increase in team size is smaller. The time lag shows
no trend. Reexamining trends in the entire data set by assignment status, I find that the team
size trend is weaker among the unassigned category, which likely explains the weaker trend in
the age subset. Similarly, I find that the specialization trend is stronger among the unassigned
category, which likely explains the stronger trend in the age subset.

I conclude therefore that while the age subset is not a random sample of the U.S. innovator
population, the differences tend to be explainable with other observables and, on the basis of
including such observables in the analysis, the age results appear robust.
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Table 4.1: Trends in Inventors per Patent

Dependent Variable: Inventors per Patent

1) (@) ()] ) (©) (6) )

Application Year .0293 .0261 .0262 0251 .0244 .0306 .0180
(.0001) (.0001) (.0001) (.0001) (.0002) (.0002) (.0003)

Foreign Patent -- 444 416 141 .146 US Only Foreign
(.002) (.002) (.004) (.004) Only
Broad -- Yes -- -- -- -- --

Technological
Field Controls

Narrow - - Yes Yes Yes Yes Yes
Assignee Code - -- -- Yes Yes Yes Yes
Number of 2,016,377 2,016,377 2,016,377 2,016,377 1,506,956 1,123,310 893,067
Observations
Period 1975- 1975- 1975- 1975- 1975- 1975- 1975-

1999 1999 1999 1999 1996 1999 1999

Mean of Dependent
Variable 2.03 2.03 2.03 2.03 1.97 1.82 2.29
Per-decade Trend as % 14.4% 12.9% 12.9% 12.4% 12.4% 16.8% 7.9%
of Period Mean
R? .02 08 .10 12 13 12 .10

NOTES

(1) Regressions are OLS with standard errors in parentheses. Specifications (1) through (4) consider the entire
universe of patents applied for between 1975 and 1999. Specification (5) considers only patents that were granted
within three years after application (see discussion in text). Specifications (6) and (7) present separate trends for
domestic and foreign source patents.

(ii) Foreign Patent is a dummy variable to indicate whether the first inventor listed with the patent has an address
outside the U.S..

(1ii) “Broad” technological controls include dummies for each of the 6 categories in Hall et al.’s most aggregated
technological classification. “Narrow” technological controls include dummies for each category of their 36-category
classification.

(iv) Upward trends persist when run separately for each technological field. Using the broad classification (six
categories), the trends range from a low of .018 for “Other” to a high of .037 for “Chemical”. Using the narrower
classification scheme (thirty-six categories), the trends range from a low of .007 for “Apparel &Textile” to .051 for
“Organic Compounds”. The smallest t-statistic for any of these trends is 7.76.

(v) Assignee code controls are seven dummy variables that define who holds the rights to the patent. Most patent
rights are held by US or foreign corporations (80%); while a minority remain unassigned (17%) at the time the patent
is issued. Table A.2 describes the assignee codes in further detail. Running the time trends separately for the
individual assignee codes shows that the team size trends range from a low of .005 for the unassigned category to a
high of.039 for US non-government institutions. The lowest t-statistic for any of these trends is 5.38.




Table 4.2: Trends in Age at First Innovation

Dependent Variable: Age at application

O] O] 3) @ () (6) 0]
Application Year 0657 .0666 .0671 0671 0687 0530 .0584
(.0095) (.0095) (.0095) (.0099) (.0097) (.0107) (.0109)
— " Broad - Yes - -- - -- --
e
gE
QU
g 2 Narrow - - Yes Yes Yes - Yes
[
Assignee Code - -- -- Yes Yes -- Yes
Team Size -- - - -- -.0630 - -.0348
(.0273) (.0306)
Number of observations 6,541 6,541 6,541 6,541 6,541 5,102 5,102
Period 1985- 1985- 1985- 1985- 1985- 1985- 1985-
1999 1999 1999 1999 1999 1999 1999
Age Range 25-35 25-35 25-35 25-35 25-35 23-33 23-33
Mean of Dependent
Variable 31.0 31.0 31.0 31.0 31.0 293 29.3
Per-decade Trend as % 2.1% 2.1% 22% 2.2% 2.2% 1.8% 2.0%
of Period Mean
R? .007 010 .020 .020 .021 .005 018

NOTES
(i) Regressions are OLS, with standard errors in parentheses. All regressions look only at those innovators for whom

we have age data and who appear for the first time in the data set in or after 1985. Specifications (1) through (5)
consider those innovators who appear for the first time between ages 25 and 35. Specifications (6) and (7) consider
those innovators who appear for the first time between ages 23 and 33.

(i) “Broad” technological controls include dummies for each of the 6 categories in Hall et al.”s most aggregated
technological classification. “Narrow” technological controls include dummies for each classification in their 36-
category measure. The upward age trend persists when run separately in each of Hall et al’s broad technology classes.
These trends are significant in 5 of the 6 categories, with similar trend coefficients as when the data are pooled.
Upward trends are also found in 29 of 36 categories when using Hall et al.’s narrow technology classification. Here
12 categories show significant upward trends. Sample sizes drop considerably when the data is divided into these 36
categories. The one case of a significant downward trend (category #23, Computer Peripherals) has 42 observations.
(iii) Assignee code controls are seven dummy variables that define who holds the rights to the patent. Table A2
describes the assignee codes in further detail. The upward age trends persist when run separately for each assignee
code and are similar in magnitude to the trends in the table above.




Table 4.3: Trends in Probability of Field Jump

Dependent Variable: Probability of Switching Technological Field

(D ) (3) Q) (%) O] (M ®
414 414 36 36 6 6 414 414
Application Year -3.4e-3 -3.2e3 -2.5e-3 -2.8e-3 -1.9e-3 -2.3e-3 -5.1e-3 -3.0e-3
(.19¢-3) (-19¢-3) (.19¢-3) (.19e-3) (:17e-3) (:17e-3) (.12e-3) (.11e-3)
Foreign Patent -- .0076 -- -.0041 -- .0002 -- -.0005
(.0039) (.0038) (.0035) (.0029)
Time Between -- .0225 -- .0206 -- .0154 -- .0228
Applications (.0012) (.0012) (.0011) (.0004)
Technological -- Yes -- Yes -- Yes -- Yes
Field Controls
(first patent)
Assignee Code -- Yes -- Yes -- Yes -- Yes
(first patent)
Number of 215,855 215,855 215,855 215,855 215,855 215,855 359,405 359,405
observations
1975- 1975- 1975- 1975- 1975- 1975- 1975- 1975-
Period 1993 1993 1993 1993 1993 1993 1999 1999
Mean of
Dependent 535 535 423 423 294 294 .556 .556
Variable
Per-decade -6.4% -6.0% -5.9% -6.4% -6.5% -7.8% -9.4% -5.6%
Trend as % of
Period Mean
(Pseudo) R* .0011 .018 .0006 019 .0005 017 .004 .026
NOTES

(i) Results are for probit estimation, with coefficients reported at mean values and z-statistics in parentheses. The coefficient
for the Foreign dummy is reported over the 0-1 range.

(i1) The dependent variable is 0 if an inventor does not switch fields between two consecutive innovations. The dependent
variable is 1 if the inventor does switch fields. Column headings define the field classification used to determine the
dependent variable: “414” indicates the 414-category technological class definition of the USPTO; “36” and “6” refer to the
aggregated measures defined by Hall et al (2001).

(iii) Specifications (1) through (6) consider “fast” innovators -- only those consecutive patents with no more than 3 years
between applications and with no more than 3 years delay between application and grant. (See discussion in text.)
Specifications (7) and (8) consider all consecutive patents.

(iv) Technological field controls are dummies for the 36 categories defined by Hall et al (2001). The reported regressions
use the technological field of the initial patent. Using the field of the second patent has no effect on the results. Running the
regressions separately by technology category shows that the trends persist in 6 of 6 categories using Hall et al.’s broad
technology classification and 34 of 36 categories using Hall et al’s narrow classification with significant trends in 20.

(v) Assignee code controls are seven dummy variables that define who holds the rights to the patent. Table A.2 describes the
assignee codes in further detail. The declining probability of field jump persists when the trend is examined within each
assignment code, although the significance of the trend disappears in the rarer classifications.




Table 4.4: Trends in Time Lag

Dependent Variable: Time Lag Between Consecutive Patent Applications

)] @ 3 (©) ® (6)
Application Year 0.30e-3 1.2e-3 0.54e-3 2.2e-3 2.8e-3 2.0e-3
(.14e-3) (.14e-3) (.14e-3) (:35e-3) (:35e-3) (.35¢-3)
Foreign Patent - -.0736 -.0591 - -.0526 -.0522
(.0016) (.0016) (.0042) (.0042)
Team Size -- -.0156 -.0099 -- -- --
(second patent) (.0004) (-0004)
Same Team Size -- -.0474 -.0515 -- -- --
Dummy (.0016) (.0016)
Field Jump Dummy - 115 115 -- .081 .083
(.002) (.002) (.004) (.004)
Technological Field -- -- Yes -- -- Yes
Controls
Ssecondpatent)
Number of 1,430,144 1,430,144 1,430,144 215,855 215,855 215,855
observations
Period 1975-1993 1975-1993 1975-1993 1975-1993 1975-1993 1975-1993
Mean of Dependent 749 .749 749 793 793 793
Variable
(see note (iv))
Per-decade Trend as 0.4% 1.6% 0.7% 2.8% 3.5% 2.5%
% of Period Mean
(see note (iv))
R? .0000 .0077 0157 .0002 .0028 0136

NOTES

(i) Regressions are OLS, with standard errors in parentheses.

(ii) All specifications consider “fast” innovators -- only those consecutive patents with no more than 3 years
between applications and with no more than 3 years delay between application and grant. (See discussion in text.)
(iii) Specifications (1) to (3) consider all consecutive patents in this time period. Specifications (4) through (6)
consider time lags by solo inventors.

(iv) The dependent variable is an integer varying between 0 and 3. Period means are underestimated due to the
integer nature of the application year, because two applications in the same calendar year are calculated to have a
time lag of zero. This biases down the mean and biases up the percentage trend.

(v) Technological field controls are dummies for the 36 categories defined by Hall et al (2001). Figure 4.3 presents
the trend for each of these categories individually.




Table 4.5: Mean differences across Technological Categories

Technological Classification Age at First Inventors per Probability of
(Hall et al. 2001) Innovation Patent Field Jump

6 36 Code Obs Mean Obs Mean Obs Mean
Agriculture, Food, Textiles 11 12 31.1 16,100 2.41 2,500 048
~  Coating 12 53 29.2 29,800 2.23 4,300 0.64
=~ QGas 13 17 303 9,200 1.96 1,700  0.59
_S Organic Compounds 14 51 29.5 59,600 2.56 7,000 034
£ Resins 15 44 293 67,200 2.51 7,500 0.36
Miscellaneous—Chemical 19 331 29.3 | 197,100 223 | 29,500 0.43
Entire category 508 294 | 379,200 233 | 52,100 0.43
< § Communications 21 264 293 92,700 1.99 15,000 0.41
@ '§ Computer Hardware & Software 22 162 298 80,400 2.26 10,200 0.44
§ ‘s & Computer Peripherals 23 37 29.3 22,100 2.37 2,800 0.51
£ £ Information Storage 24 43 28.9 | 41,300 221 6,700 0.39
3 § Entire category 506 29.4 | 236,700 2.16 | 34,500 042
~ Drugs 31 74 29.9 1 65,200 2.90 6,300 0.25
3 9 Surgery & Medical Instruments 32 268 29.8 59,900 1.86 | 12,400 0.29
gn 8§ Biotechnology 33 46 30.5 22,700 2.75 1,800 0.38
5 © Misc—Drugs & Medical 39 68 29.1 13,600 1.66 3,500 035
= Entire category 456 29.8 | 161,500 239 | 23,800 0.29
Electrical Devices 41 111 29.3 61,000 1.77 | 12,700 0.48
. Electrical Lighting 42 90 29.6 | 31,300 1.96 5,700 043
& T Measuring & Testing 43 116 29.2 57,700 194 | 10,000 0.51
Tg g Nuclear & X-rays 44 52 29.7 30,200 2.08 4,700 0.50
g £ Power Systems 45 128 29.4 68,900 1.94 | 13,000 0.51
L § Semiconductor Devices 46 49 29.3 44700 2.25 7,100 0.34
@ Misc—Electrical 49 104 29.1 49,100 1.97 8,900 0.51
Entire category 650 29.3 | 343,300 1.97 | 61,700 048
Materials Processing & Handling 51 241 29.4 | 100,000 1.79 | 21,700 0.48
@& Metal Working 52 87 28.8 58,100 211 | 10,400 0.54
= Motors, Engines & Parts 53 83 294 | 173,300 1.85 | 16,200 0.41
§ Optics 54 57 29.0 | 48,000 2.15| 8,100 037
5 Transportation 55 273 29.0 56,800 1.66 | 12,000 0.45
%‘ Misc—Mechanical 59 449 29.1 96,800 1.64 | 22,400 0.49
Entire category 1,190 29.1 | 433300 1.83 | 90,500 0.46
Agriculture, Husbandry, Food 61 250 29.1 41,200 1.75 7,600 041
Amusement Devices 62 269 294 | 20,900 1.41 4,300 0.37
Apparel & Textile 63 211 29.1 32,400 1.57 7,600  0.37
G  Earth Working & Wells 64 100 29.6 27,800 1.69 6,600 0.36
%, Furniture, House Fixtures 65 346 29.1 41,000 1.42 9,400 0.50
_G;S Heating 66 58 30.0 | 26,300 1.75 6,100 0.48
5 Pipes & Joints 67 45 29.2 17,100 1.58 4,500 0.61
Receptacles 68 298 294 40,700 1.51 10,100 047
Misc—Others 69 846 29.2 | 167,800 1.73 | 35,200 0.48
Entire category 2,423 29.3 | 415,600 1.64 | 91,000 0.46

NOTES

(1) Age at first innovation includes observations of those innovators who appear after 1985 in the data set and
between the ages of 23 and 33. Results are similar, with higher mean and even less variance, for 25-35 year olds.
(ii) Probability of field jump is probability of switching categories for solo innovators using 36-category measure.




Table 4.6: Inventors per Patent vs. Tree Size

Dependent Variable: Inventors per Patent

@ @ 3) “4) O] (O] (0]
Normalized Variation in .0849 .0961 .0995 120 133 107 152
Tree Size (.0010) (.0010) (.0011) (.001) (.001) (.001) (.001)
Normalized Variation in .0609 .0545 .0545 .0341 .0257 .0356 .0404
Tree Size, Squared (.0007) (.0007) (.0007) (.0007) (.0009) (.0011) (.0009)
Foreign Patent -- 446 442 420 US Only Foreign 37

(.002) (.002) (.002) Only (.003)

Normalized Variation in -- -- -.0094 -- -- - -
Direct Citations Made (.0011)
Technological Field -- -- - Yes Yes Yes Yes
Controls
Application Year Yes Yes Yes Yes Yes Yes Yes
Dummies

Number of observations 1,969,908 1,969,908 1,969,908 1,969,908 1,103,402 866,506 1,330,210

Period 1975- 1975- 1975- 1975- 1975- 1975- 1985-
1999 1999 1999 1999 1999 1999 1999

Mean of Dependent 2,02 2.02 2.02 2.02 1.82 227 2.13

Variable

R? .026 .050 .050 .100 .090 .083 079

NOTES

(i) Regressions are OLS with standard errors in parentheses. Specifications (1) through (4) consider the entire universe
of patents applied for between 1975 and 1999. Specification (5) and (6) consider separately patents from domestic vs.
foreign sources. Specification (7) considers cross-sections from the later part of the time period.

(ii) Normalized Variation in Tree Size is the deviation from the year mean tree size, divided by the year standard
deviation in tree size. “Tree size” is the log of the number of nodes in the citations tree behind any patent.

(iii) Normalized Variation in Direct Citations Made captures variation in the number of citations to prior art listed on a
patent application. It is the deviation from the year mean number of citations, divided by the year standard deviation in
the number of citations.

(iv) Technological field controls include dummies for each of Hall et al.’s 36-category measure.

(v) The number of observations here is slightly smaller than for the time trend analysis in Table 4.1 because a few
patents do not cite other US patents, hence no citation tree can be built; these patents are dropped from the analysis.




Table 4.7: Age vs. Tree Size

Dependent Variable: Age at application for first patent

0] @) (€)] 4) (©) (6) 0] @)

Normalized Variation  -.007 -.005 114 .084 .059 .097 113 .030

in Tree Size (.032) (.036) (.035) (.040) (.043) (.030) (.046) (.026)

Team Size -- -.054 -- -.036 -.038 -.024 .008 -.029
(.027) (.030) (.030) (.025) (.035) (.019)

Normalized Variation -- -- -- -- .064 - -- --

in Direct Citations (.044)

Made

Technological Field -- Yes -- Yes Yes Yes Yes Yes

Controls

Application Year Yes Yes Yes Yes Yes Yes Yes Yes

Dummies

Number of 6,486 6,486 5,058 5,058 5,058 8,434 3,630 3,588

observations

Period 1985- 1985- 1985- 1985- 1985- 1975- 1985- 1985-

1999 1999 1999 1999 1999 1999 1999 1999
Age Range 25-35 25-35 23-33 23-33 23-33 23-33 21-31 28-33

Mean of Dependent 31.0 31.0 29.34 293 29.2 29.2 27.7 30.7
Variable

R? .009 .022 .009 .021 012 .020 .025 .020

NOTES

(i) Regressions are OLS, with standard errors in parentheses. All regressions look only at those innovators for
whom we have age data. Specifications (1) and (2) consider first innovations in the 25-35 age window.
Specifications (3) through (6) consider innovators in the 23-33 age window. Specification (7) considers
slightly younger innovators, and Specification (8) considers the latter half of the 23-33 age window.
Specifications (6) considers cross-sections pooled over the entire time period; the other specifications focus on
the post-1985 period, for which we can be confident that we are witnessing an innovator’s first patent.

(ii) Normalized Variation in Tree Size is the deviation from the year mean tree size, divided by the year
standard deviation in tree size. “Tree size” is the log of the number of nodes in the citations tree behind any
patent.

(iif) Normalized Variation in Direct Citations Made captures variation in the number of citations to prior art
listed on a patent application. It is the deviation from the year mean number of citations, divided by the year
standard deviation in the number of citations.

(iv) The number of observations here is slightly smaller than for the time trend analysis in Table 4.2 because a
few patents do not cite other US patents, hence no citation tree can be built; these patents are dropped from the
analysis.

(v) Technological field controls include dummies for each of Hall et al.’s 36-category measure.




Table 4.8: Field Jump vs. Tree Size

Dependent Variable: Probability of Switching Technological Field

)] @ 3) “) ® (6
Normalized Variation -.0072 -.0074 -.0059 -.0095 -.0144 -.0184
in Tree Size (.0008) (.0008) (.0008) (.0009) (.0012) (.0017)
Foreign Patent -- -.0125 -.0108 -.0129 -.0135 .0032

(.0018) (.0018) (.0018) (.0023) (.0032)

Time Between - -- 0226 .0232 0215 0143
Applications (.0004) (.0004) (.0012) (.0017)
Technological Field -- -- -- Yes Yes Yes
Controls (first patent)
Application Year Yes Yes Yes Yes Yes Yes
Dummies

Number of observations 353,762 353,762 353,762 353,762 212,274 110,511

Period 1975- 1975- 1975- 1975- 1975- 1985-
1999 1999 1999 1999 1993 1993

Mean of Dependent 551 551 551 551 .536 .520

Variable

(Pseudo) R? .0039 .0039 0117 .0251 0171 .0159

NOTES

(i) Results are for probit estimation, with coefficients reported at mean values and z-statistics in
parentheses. The coefficient for the Foreign dummy is reported over the 0-1 range. Only solo inventors
are considered. Specifications (1) through (4) consider the entire set of solo inventors. Specification (5)
considers only those solo inventors who meet the criteria in Specifications (1) through (6) in Table 4.3
(to help control for any truncation bias in the specialization measure — see the discussion of Table 4.3 in
the text). Specification (6) considers the same data as Specification (5), but only looks at cross-sections
in the later part of the time period.

(ii) The dependent variable is 0 if an inventor does not switch fields between two consecutive
innovations. The field is defined using the 414-category technological class definition of the USPTO.
(iii) Normalized Variation in Tree Size is the deviation from the year mean tree size, divided by the year
standard deviation in tree size. “Tree size” is the log of the number of nodes in the citations tree behind
any patent.

(iv) Technological field controls include dummies for each of Hall et al.’s 36-category measure.




Table A.1: Number of Observations at Each Stage of Selection

Number of Percentage of  Percentage of Percentage of

Observations Row (3) Row (4) Row Above
(1) Patents Granted 2,139,313
(2) Inventors Worldwide 4,301,229
(3) Unique Inventors 1,411,842
Worldwide
(4) Unique Inventors with US 752,163 53.3% 53.3%
Address
(5) Unique Inventors, US 224,152 15.9% 29.8% 29.8%
Address, Zip Code
(6) Unique Inventors, US 56,281 4.0% 7.5% 25.1%

Address, Zip Code, Unique
Match from AnyBirthday.com

NOTES
(i) Observation counts consider the 1975-1999 period.
(ii) A “unique inventor” is defined by having same first name, last name, and middle initial.

Table A.2: The Assignment of Patent Rights

Birth Data
Assignment Status All us US Patents US Patents Direct Other
Patents Patents No zip code Zip code Match Patents
Unassigned 17.2% 22.4% 0.4% 98.3% 97.9% 26.6%
US non-govt organization 43.9% 72.9% 94.1% 0.0% 0.0% 65.7%
Non-US non-govt organization 36.2% 1.1% 1.4% 0.0% 0.0% 3.4%
Other assignment 2.7% 3.5% 4.1% 1.7% 2.1% 4.4%

NOTES

(i) The first column considers all patent observations in the 1975-1999 period (2.1 million observations).

(1) US patents are those for which first inventor listed with the patent has a US address.

(iii) The Birth Data columns consider those US patents with zip code information for which AnyBirthday.com
produced a birth date. The first Birth Data column considers the specific patents on which AnyBirthday.com was
able to match. The last column considers all other patents by that innovator, identifying the innovator by last name,
first name, and middle initial.

(iv) Unassigned patents are those for which the patent rights were still held by the original inventor(s) at the time
the patent was granted; these patents may or may not have been assigned after the grant date.

(v) Non-government organizations are mainly corporations but also include universities.

(vi) Other assignment includes assignments to: (a) US individuals; (b) Non-US individuals; (c) the US government;
and (d) non-US governments.




Table A.3: Inventors per Patent, Mean Differences between Samples

Dependent Variable: Inventors per patent

M @ 3) 4 (©)]
US Address -315 -.339 -.300 -.124 -.103
dummy (.0020) (.0020) (.0020) (.0049) (.0048)
US Address and Zip Code -.786 -.670 -.769 -.155 -.176
dummy (.0033) (.0033) (.0032) (.0069) (.0066)
US Address, Zip Code, 237 246 212 243 228
and AnyBirthday.com (.0068) (.0067) (.0067) (.0067) (.0066)
Direct Match dummy
Constant 2.28 2.57 1.96 1.45 1.56
(.0014) (.0023) (.0052) (.0042) (.0067)
Technological Category No Yes No No Yes
dummies
Grant Year dummies No No Yes No Yes
Assignee Code dummies No No No Yes Yes
R’ .0555 .0825 0756 0757 1162
NOTES

(i) Regressions consider means in the entire dataset (2.1 million patent observations), covering the 1975-
1999 time period. Standard errors are in parentheses.

(if) Dummy variables are nested: The second row captures a subset of the first. The third row captures a
subset of the second.

(ii1) Innovators for whom AnyBirthday.com produces a birth date are often involved with multiple
innovations over the 1975-1999 period. The patents used for comparison in this table are those patents for
which AnyBirthday.com produced the direct match.

(iv) Regressions with technological category controls are reported using the 6-category measure of Hall et
al (2001). Results using the 36-category measure are similar.
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Figure 4.3: Trends in Time Lag by Technological Category
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Chapter 2

The Burden of Knowledge:

Evidence from Great Inventions

Age is, of course, a fever chill
that every physicist must fear.
He’s better dead than living still

when once he’s past his thirtieth year.

— Paul Dirac, 1933 Nobel Laureate in Physics

2.1 Introduction

It is widely perceived that great innovations are the provenance of the young. The sentiments
of Dirac expressed above have been shared by Einstein and many other eminent scientists and
mathematicians (Simonton, 1988; Guterman, 2000). Empirical investigations of this view, usu-
ally undertaken within the fields of psychology and sociology, have made explicit measurements
of the life-cycle output of innovators. This research tends to refute the idea that innovators
necessarily produce their best work by the age of thirty. It does however support the idea that
innovative activity is considerably greater at younger ages; in particular, innovative activity
rises steeply in the 20’s and 30’s, peaks in the late 30’s or early 40’s, and then trails off through

later years (Lehman, 1953; Simonton, 1984).
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Perhaps the most intriguing empirical finding in Chapter 1 of this thesis is that the age at
first innovation is rising over time. If this upward age trend is, as suggested in Chapter 1, an
outcome of a rising burden of knowledge, then we can immediately see a troublesome interaction
between rising learning requirements and the sentiment expressed by Dirac. Clearly, given a
fixed retirement age, the longer an individual spends in education, the less time they will have
left over for innovation (or any other productive activity). If we consider the early years of the
life-cycle to be the most productive, as Dirac would do and the empirical literature suggests,
then increasing educational requirements become that much more costly.

The model in Chapter 1 allowed for increasing educational attainment, but the time dimen-
sion of education was ignored. For tractability the model considered education as a lump-sum
investment made immediately at birth. In consequence, any impact of a rising burden of
knowledge on the productivity of innovators came entirely through the narrowing of innova-
tors’ expertise. A more general model can introduce the time dimension of education, with two
effects. First, this introduces income opportunity costs into the educational decisions of inno-
vators, which will alter their educational choices. Second, this allows the model to explicitly
investigate the implications of lengthening education for the lifetime productivity of innovators,
with further implications for growth. In amodel not presented in this thesis (but available from
the author), the time dimension of education is explicitly introduced. An interesting result
from this exercise is that, should innovators internalize the entire benefit of their own education,
they will not increase their educational attainment in response to a rising burden of knowledge.
The intuition for this result follows from the time dimension of education: as the economy
grows, wages rise at the same rate. Along a balanced growth path, the innovator faces a rising
marginal cost (in foregone wages) to increasing their education that exactly offsets the marginal
benefits of increasing their education. The equilibrium educational attainment of education is
therefore fixed across innovator cohorts, and a rising knowledge burden is met entirely through
increased specialization. In contrast, in the more realistic case where innovators share income

from their innovations, the extended model shows that innovators will respond to an increased

71



knowledge burden by increasing the length of their education. While this result, with its more
realistic rent-sharing behavior, reestablishes the prediction found in Chapter 1, these modeling
extensions are summarized here to suggest that the effects of an increasing knowledge burden
on the age at first innovation is not entirely certain theoretically.!

The empirical evidence on the age at first innovation is also subject to some caveats. First,
the age analysis in Chapter 1 is limited to a 15-year period at the end of the 20th Century.
Interpreting trends of any historical importance from such a short time span is dubious. Sec-
ond, unlike the other data in Chapter 1, the age data covers only a small subset of the universe
of recent U.S. patent-holders. While concerns over selection bias in the age data were investi-
gated rigorously, some concerns over selection may remain. A third issue, both empirical and
theoretical in nature, is whether we should focus on age trends in the innovative population at
large (what was studied in Chapter 1) or whether we should focus on a subset of very important
inventors. In one view, the majority of innovations are unimportant and we should only be
concerned with the best of the best. Put a slightly different way, any age trend among the
general population of innovators may not extend to Einstein, Dirac, Bill Gates, or others of
particular interest.?

This chapter presents new evidence indicating that innovators are reaching the knowledge
frontier at later ages over time. To address some of the concerns listed above, the empirical
work focuses on “great inventors” over a much longer time horizon: the entire 20th Century.
The data considered includes both Nobel Prize winners in physics and inventors responsible for

the 20th Century’s great inventions, taken from technological almanacs.

1As a general matter, apart from any specific model formulation, it is clear that innovators can react to
knowledge requirements on multiple dimensions, including both their degree of specialization and their time spent
in education. While it may be most natural to think that inventors respond to an increasing knowledge burden
partly through increasing specialization and partly through increasing educational attainment, the multiple
dimensions of innovators’ choice will allow some models to produce ambiguous theoretical predictions on any
particular dimension of choice.

2Concerns about quality heterogeneity can be partly mitigated within the empirical framework of Chapter 1.
Using a result from Trajtenberg, who found that the number of citations received by a patent correlates with its
social value (Trajtenberg 1990), we can use the number of citations received as controls in the age regressions in
Chapter 1. Such controls for quality have no effect on the age trend estimates presented there.
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In Section 2, evidence is presented to show that the age of innovators at the time of their
great inventions is increasing. Several possible reasons for this trend are discussed, including
demographic shifts in the age distribution of the underlying population. Based on this discus-
sion, Section 3 develops a formal stochastic model of the expected age at which inventors make
their great inventions. This model accounts for (1) shifts in the age distribution of the popula-
tion, (2) innovation potential over an inventor’s lifecycle, and (3) the possibility that reaching
the knowledge frontier has become more difficult over time. Parametric structure is imposed
only on element (3), the thesis of special interest. The model assumes in particular that the
age at which innovators arrive at the knowledge frontier is normally distributed and allows for
a polynomial time trend in the mean of this distribution. The model is then estimated using
semi-parametric maximum likelihood methods, with the results presented in Section 4. The
results show a statistically significant upward trend in the estimated age at which innovators
reach the knowledge frontier. The point estimate for the linear trend is 6.6 years per century,
which is very similar to the age trend found in Chapter 1. On average, great inventors achieved
the knowledge frontier at age 21.6 at the beginning of the 20th Century, but only at age 28.2

at the end. Section 5 discusses the implications of this result. Section 6 concludes.

2.2 Age Trends among Innovators

This section presents benchmark age trends among four groups of notable 20th-century “inno-
vators”: Nobel Prize winners in physics, great inventors, Pulitzer Prize winners in poetry, and
Pulitzer Prize winners in drama. The former two groups are, of course, particularly relevant
to economic growth, while the latter two groups are included for comparison. The age trends
are determined by regressing, on the innovation year, the age of the innovator at that time.
The innovation year was determined using biographical sources. Depending on the group and
individual, “innovation” may mean date of crucial research, journal article, patent, or copy-
right. The Data Appendix describes the data sources. Table 1 presents the age trends and

other summary information.
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Table 2.1: Age Trends among Various Groups of Inventors

Nobel Prize Great Great Pulitzer Prize  Pulitzer Prize
Winners in Inventors Inventors Winners in Winners in
Physics (American)” Poetry Drama
Age trend® 5.97%* 4.94%* 7.26%* 24 5%** 4.07
(2.61) (2.31) (3.48) (5.74) (5.14)
Number of 132 286 140 66 69
observations
Time span 1881-1986 1900-91 1901-88 1917-99 1917-97
Average age 36.2 39.0 38.4 46.9 41.5
R? 0.0386 0.0158 0.0307 0.222 0.0093

*This column presents the American subset of the Great Inventors data presented in the prior
column.

® Age trends are measured in years per century. Standard errors are given in parentheses.

#% Ypdicates significance at a 95% confidence level.

*** Indicates significance at a 99% confidence level.

The first result of note in Table 1 is that all these groups are showing upward age trends.
With the exception of Pulitzer Prize winners in drama, these upward age trends are signifi-
cant. Note as well that the trend among Nobel Prize winners in physics and great inventors
is remarkably similar — about five or six years over a century. The agreement between these
two independent groups suggests not only a greater robustness of the age trend, but also the
possibility of a difference-in-difference style analysis. If we view the scientific/technological
innovators as a “treatment” group that may be experiencing the effects of knowledge accumu-
lation, then we might profitably attempt a comparison with “control” groups that are claimed
on a priori grounds to be immune from knowledge accumulation. Innovators in the creative arts,
whose creations might be thought to be less dependent on earlier work, could form such control
groups. As can be seen in Table 1 however, Pulitzer Prize winning poets show an enormous
upward age trend over the history of that prize — some 25 years over a century. While this

result could be interpreted within the difference-in-difference framework, the most reasonable
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conclusion may be simply that the a priori assumption was incorrect. Certainly, the treatment
and control groups likely have many differences outside of the influence of knowledge accumu-
lation. The comparison is included in this chapter to help motivate a deeper search for the
underlying forces that drive the age trends.

One possible ingredient in any age trend among innovators is shifts in the underlying age
distribution of the innovators themselves. If the population of innovators is getting older on
average, then, ceteris paribus, the average age of innovators will be rising. A second ingredient
is possible shifts in the “innovation potential” of individual innovators as a function of their
age. Innovators’ effort levels at a given age may be rising or declining over time as a function of
many possible economic, cultural, medical or other factors. For example, medical advances may
improve innovators’ ability to continue their work at later ages; on the other hand, rising wealth
or other factors may lead to less effort at later ages — we know for instance that retirement
ages in the United States and other leading economies are declining (Costa, 1998). The issue
of knowledge accumulation enters through this concept of innovation potential. If knowledge
accumulation is creating an increasing training burden on innovators, we would expect to see
reduced innovation potential at younger ages.

The following section will place these ingredients into a formal model which will then be
estimated in Section 4. But first, to close our initial discussion of innovators’ age trends, we
should consider two further issues. The upward age trend among Pulitzer Prize winning poets
is so large that it might seem difficult to explain on the basis of our discussion heretofore. One
additional source of the trend could be selection bias: while the Pulitzer Prize, like the Nobel
Prize, is given for specific accomplishments, selection committees may have begun considering
lifetime achievement more as the award has matured and become more prestigious. A trend
towards lifetime achievement could create an upward trend in age. Whether such a bias exists or
is important is difficult to assess. The possibility of its existence, however, provides one reason
to focus on the great inventors data set in our eventual empirical estimations. That data set,

which is drawn from technological almanacs, appears more immune to possible selection issues.
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The editorial boards’ purposes were to select technological advances as opposed to individuals;
it is harder to imagine a compelling story for how the selection of innovations would create bias
in the innovators’ ages.

A further issue relates to the theories of knowledge accumulation we are trying to iden-
tify. In the long-run, the crucial question is whether knowledge continues to accumulate or
whether there are, periodically, revolutions in scientific thought that relieve innovators from
the knowledge burden of past research. Whether knowledge is fundamentally cumulatory or
revolutionary in nature is ultimately what we would like to test. In the short run, however,
the Kuhnian model of revolutionary knowledge is still potentially consistent with an upward
age trend — we could simply be witnessing a period of within-paradigm innovation as opposed
to a period of paradigm shifts. Such a view might explain the upward age trend among physi-
cists. However, such a view is harder to maintain across a multidisciplinary data set. The
great inventors data set thus has a second advantage over the others: it is constituted by noted
innovations across many fields. A final reason to focus on the great inventors is that this group

is most relevant to economic growth.

2.3 Econometric Model

The arrival of new ideas to innovatofs is likely best modeled as a stochastic process. Therefore,
the age at which great innovators produce their great inventions can be viewed as a random draw
from a distribution. The empirical goal is then to identify that distribution and, in particular,
to identify how knowledge accumulation can influence that distribution. Two ingredients to the
distribution are clear: (a) the age distribution of the population from which the innovators are
drawn; (b) the innovation potential of innovators as a function of their age. Different models
of knowledge accumulation can be embedded in this stochastic model through their influence
on element (b), particularly by influencing the innovation potential of innovators at younger
ages. This section presents a simple stochastic model to define the probability that witnessed

innovations are produced by innovators at particular ages. The empirical analysis will use this
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model to generate a maximum likelihood estimate of any trend in the mean arrival age at the
knowledge frontier.
Formally, consider a population N. Given that we have witnessed an innovation, the

probability that the innovation was produced by an individual i is defined by:

. Z;
Pr(i) = m
where z; represents the innovation potential of person 3. Innovation potential can be interpreted
as the instantaneous probability that person i produces an innovation. However, innovation
potential need not be given such a stochastic basis; it need only be understood as measuring
the relative innovative strength of an individual.?

It will be useful to consider the model in terms of cohorts of equally-aged individuals. First,
define the set of cohorts as A, where a C A represents the cohort with age q. Furthermore,
let the set of individuals in this cohort be N, C N, and let the number of individuals in such a

set be defined as |N,|. Then the average innovation potential of individuals in the cohort with

age a is,

Z z; (2.1)

{1€Nu
By immediate extension, the probability that a witnessed innovation is produced by an indi-

vidual in the cohort with age a is,

_ 2ieNa i _ | N3,
Z{ieN} Iy E{aeA} INaI Zq

Dividing top and bottom by the size of the entire population, |N|, and defining the age distribu-

tion of the population as p, = [Ns| /| N|, we can again rewrite this expression into a particularly

*One may think of innovators as being drawn, with replacement from a box of names. A particular person’s
innovation potential then represents the frequency with which his or her name appears in the box, where we
imagine that innovators with higher ability or effort level appear more often.
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useful form,

T
Pr(a) = S L
Z{aeA} PaTa
To this point we have ignored the possibility in our notation that both the age distribution
of the population, p,, and the average innovation potential of individuals of age a, Zq, may

be changing over time. Investigating this possibility is of course the ultimate purpose of our

estimation exercise and we acknowledge it explicitly be writing,

Pa(t)Za(t)
> {ac} Pa(t)Za(t)

Any variation in the expected age of innovators over time is then determined explicitly:

Pr(alt) =

(2.2)

Elalt] = Z aPr(alt)

{a€A}
More generally, equation (2.2) provides the central vehicle for the maximum likelihood estima-
tion presented in Section 4.

Several important if obvious points are worth making explicitly. First and foremost, it is
now clear that any (non-random) trend in the age of innovators must be driven either by trends
in the population age distribution, p,(t), or by trends in the average innovation potential of
various age groups, To(t). Second, any presumption that the innovators’ upward age trends
are driven by increasing life expectancy may be misleading. Increases in life expectancy are
unlikely to be an important force, simply because the innovation potential of those in their
later years is likely to be low — if only because people retire. Furthermore, demographic events
like the post-war baby boom in the U.S. can create periods where the working population is
getting younger even though life expectancy is rising. Third, the stochastic process represented
in equation (2.2) can produce innovators with a large variance in age. This fact explains why

we see low values for R? in the trends presented in Table 1. Finally, it is worth noting that the
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stochastic model derived above makes very few assumptions. While there will be plenty of
room to question how p,(t) and Z,(t) are estimated, the model to this point is quite general.
The next step in the model derivation, and where we will begin to make more stringent
assumptions, regards the definition of z;, and, by extension, Z,. In particular, we need to
embed in equation (2.2) a sub-model that allows for trends in the age at which innovators reach
the knowledge frontier. A simple approach is to assume that innovators start their lives with
a period of education during which they have zero innovation potential. Let the (stochastic)
length of education required for an individual i be e;.° Additionally, we will define g(a;; 2;) as
the individual’s innovation potential if fully educated, where z; is some (stochastic) measure of
talent, effort, health, and any other factor that influences innovation ability. The innovation

potential of individual ¢ as a function of their age is then,

z; = I(a; > e;)g9(as; z;)

where I(a; > e;) is an indicator function equal to 1 if a; > e; and 0 otherwise.
With this specific description of individual innovation potential, we can employ a law of

large numbers to write the cohort average innovation potential as,

Za(t) 2 BlI(a; > ei)g(ai; z)]

Making the additional assumption that that e; and z; are independent® this expectation sim-

plifies to,

4Two assumptions the derivation does implicitly make are that (i) cohort innovation potential is independent
of the nature of the innovation and (ii) there are no spillovers between innovators

5Two reasons we might expect a distribution in the age at which innovators arrive at the knowledge frontier
are (i) different fields contain different types or amounts of knowledge, and (ii) individuals vary in the speed at
which they educate themselves within a specific field.

®In general, it might be more reasonable to assume that the distributions of e; and z; are not independent:
high ability (high 2;) individuals are likely to be more efficient in their education (low e;). While this possibility
is not considered formally in this paper, the data set used here considers great inventors, for whom we might
take the view that z; is essentially constant.
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Ta(t) 2 Pr(a; > e:)Elg(ai; zi)] (2.3)

We will estimate the expectation of g(a;; z;) non-parametrically using data on the life-cycle
output of great innovators (see Section 4.2). To estimate Pr(a; > e;), the probability that an
innovator of age a; in a particular cohort has reached the knowledge frontier, we will impose

some parametric structure. We will assume first that e; is distributed normally within cohorts,

e; ~ Nu(t), o(t) (2.4)

The key question of interest is whether p(t), the mean age of arrival at the knowledge frontier,
is trending over time. Shifts in this mean over time can be generally modeled by a polynomial

expansion,

w(t) = 0o + 01t + Ot + ... (2.5)

Shifts in the standard deviation of the normal c.d.f. can be modeled similarly. The estimations
presented in Section 4 assume that the standard deviation is fixed over time and limits equation
(2.5) to linear and quadratic forms. Taken together, equations (2.2), (2.3), and the distributional
assumptions in (2.4) and (2.5) produce a stochastic model that integrates demographic effects
with a model of knowledge accumulation. We can now attempt to determine what is driving

the upward age trend among inventors.

2.4 Estimation and Results

This section proceeds in several parts. It first discusses the data and procedures used to estimate
pa(t) and Z,(t). It then turns to estimates of the sources of the inventors’ age trend, presenting

this chapter’s central results, and concludes by considering the robustness of the estimations.
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Figure 2-1: Age Distribution of U.S. Population for Various Census Years
2.4.1 Choosing populations and estimating age density

The inventors in the great inventions data set come from many different countries and are
therefore drawn from populations with differing age distributions. Data on these age distribu-
tions are difficult to find for many countries, particularly over the timeframe of the entire 20th
century. For this reason, the estimation will focus on the American subset of great inventors,
who show a similar trend in age as the larger group and who provide a significant number of

observations on their own. See column (3) in Table 1.

Figure 1 shows the population age density, p,(t), of the United States for three selected

census years. The densities are calculated from large micro-samples of the U.S. census.” With

"The micro-samples are available electronically through the University of Minnesota. The census data are
available on a decennial basis. Data for the years in between, which will be needed to estimate the model, are

81



these micro-samples, it is possible to determine both the age distribution of the national popu-
lation as well as age densities for various subgroups, such as “workers” or subgroups defined by
specific occupational types. Note that the model developed in Section 3 can be interpreted to
use either type of data. If we define the population (N) and hence pq (t) to include the entire
U.S. population, then we are implicitly including in each cohort of “innovators” a large number
of people with zero or nearly zero innovation potential. If the percentage of the U.S. population
at a given age who are active innovators is trending over time (for example, because students
in successive cohorts are becoming more or less interested in innovative careers) then the age
distribution of the national population does not accurately represent the age distribution of
the sub-population of innovators. We could avoid this potential pitfall to some degree if we
were able to define the population to include only those individuals who are “true” innovators.
However, while the census data do allow one to break out specific occupational categories, they
cannot help here for two reasons. First, the U.S. Census’s definitions of occupational categories
are neither sufficiently specific nor consistent over the 20th century to identify the subgroup
of innovators with any confidence. Second, occupations are not defined until one begins them;
therefore, using occupational based age distributions from the U.S. Census would cause evidence
on the effects of knowledge accumulation to evaporate into p; (a).® For the estimation exercise
in this chapter, the entire U.S. population will be used to estimate pe(a). This assumption
will receive further consideration later, and we will see that defining the age distribution of

innovators this way is likely conservative.

2.4.2 Estimating innovation potential

The next task is to produce a non-parametric estimate for E[g(a;, z;)]. To do this, data were

collected on 31 long-lived individuals, all of whom were born in the mid to late 19th century.

generated by linear interpolation. The census data are further discussed in the Data Appendix.

8This raises the possibility of using the Census data directly to estimate trends in the age of arrival at the
knowledge frontier; however, given the bluntness and inconsistency of the Census occupational categories with
regard to innovative careers, such an exercise is unlikely to produce convincing interpretations; it also loses the
focus on great inventors.
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Eleven of the individuals are inventors who hold significant numbers of patents. Their innovation
potential, g(a;,2;), was defined by patent frequency as a function of age. The remaining
individuals are eminent American scientists across a variety of disciplines. Their innovation
potential was defined by publication frequency. The average innovation potential is presented
in the figure along with a smoothed kernel estimate that uses a bandwidth of six years.?

Figure 2 provides an estimate of average lifetime innovation potential, T,. Two salient
features in the figure are: (1) a significant period of zero innovative output during childhood
followed by a steep climb in innovation to the age of forty; and (2) a more gradual tapering
in creative output beyond the average innovator’s mid-fifties. It is essential to note that the
averages presented in Figure 2 are conditional on being alive, so that the tapering later in life
is not due to a dwindling sample size but rather to a decrease in effort and/or ability. Note
also that the kernel estimate for Z,is very similar in shape to that found in the psychology
literature.1?

The estimate of Z, in Figure 2 combines both its subsidiary elements, Pr(a; > e;) and
Elg(as; zi)] (see equation (2.3)). The initial part of the curve in Figure 2 clearly indicates that
innovators at young ages, a; < e;, are not actively producing innovations. This feature of
the graph obscures what their raw innovative potential, 9(ai; z;), might be were they already
educated and actively producing innovations. For estimation purposes, it is necessary to assume
some shape of E[g(a;; z;)] at these young ages where it is impossible to witness it directly. A
reasonable way to proceed is to assume that E[g(a;; ;)] at ages below the peak of the kernel
estimate is equivalent to that at the peak. This says that innovators’ raw capacity to innovate

at young ages would be equivalent to their highest witnessed performance were the young

9See the Data Appendix for further details.
1%Simonton provides a cognitive model of life-cycle creative productivity which takes the form:

—bt —ct
z,—=a(e —ec)

where t measures career time as opposed to age. With parameter values he suggests, the structural features of
this model are similar to what we see in Figure 2. Namely, innovative potential rises steeply in one’s 20’s, peaks
in the late 30’s or early 40’s, and then trails off more slowly in later years. These features have been shown to
fit a variety of empirical data extremely well (Simonton, 1991).
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Figure 2-2: Estimate of Life-cycle Innovation Potential

innovator not constrained by educational requirements.

The maximum likelihood estimations presented below further assume that movements in
innovation potential over time only occur on the rising part of the innovation potential curve.
That is, the estimations assume that E[g(ai, z;)] does not change over time, so that any shift
in T4 (t) occurs because the distribution of e;, the educational requirement, is changing. While

this is a significant simplification, we will argue later that it is probably a conservative one.

2.4.3 Central results

Panel 1 of Table 2 examines whether population shifts alone might explain the age trend among

American inventors. In all three specifications, innovation potential is assumed to be fixed over
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time. The expected age of the innovator is calculated using equation (10) and presented for
several different years, together with the expected age trend over the course of the 20th century.

The first specification presumes that innovation potential is constant over the lifecycle. With
this assumption, equation (10) simply calculates the average age of the U.S. population. We see
that the average age of an American has risen monotonically by nearly 10 years — a trend larger
than the age trends we have found among innovators. Increasing life expectancy is the obvious
principal force. The second specification presumes that innovation potential is constant between
the ages of twenty and sixty-five, and zero otherwise. Equation (10) therefore calculates the
average age of the American workforce (somewhat crudely defined). The final specification
uses the kernel estimate of innovation potential presented in Figure 2. With this specification,
equation (10) calculates this chapter’s best guess at the expected age of an innovator. Two
important features emerge. First, the expected age trend is only four years now, smaller then
the age trends we witnessed among inventors. Second, the expected age trend is no longer
monotonic but rather flattens out between 1950 and 1990, which is due to the effect of the
post-war baby boom. In sum, shifts in population age density do not appear to fully explain
the upward age trends among innovators.

Panel 2 of Table 2 presents the semi-parametric maximum likelihood estimates of the knowl-
edge accumulation model. The likelihood function is estimated assuming that each inventor is
an independent draw from the distribution in equation (9). Innovation potential and population
density are estimated as discussed above.

The first specification presents the central estimates of this chapter. Constraining the knowl-
edge accumulation model presented in Section 3 to have a time-invariant standard deviation
and a linear trend in the mean, we find that the average age at which innovators arrived at
the knowledge frontier was 21.6 years of age in 1900 and has risen by some 6.6 years over the
course of the 20th century. The linear upward age trend is significant at a 95 percent confidence
level. Maximum likelihood standard errors are calculated using the covariance matrix of the

first derivatives vector.
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Table 2.2: ML Estimates of Knowledge Accumulation.

Panel 1: Expected ages and trends for different specifications of x(a)

Specifications®

) 2 3

Ewoo[a] 25.5 36.7 423
E1ss0lal 27.5 38.7 435
E1970[a] 31.8 40.4 46.2
E1990[a] 35.1 39.7 452
Age trend® 9.60 3.83 4.18
(1.40) (0.94) (0.78)

*Specifications: (1) x(a) = constant
(2) x(a) = constant if 20 ? a ? 65, 0 otherwise
(3) x(a) = kernel estimate presented in Figure 2.
b Age trends are measured in years per century. Standard errors are given in
parentheses.

Panel 2: Maximum likelihood estimates of knowledge accumulation model

Specifications®

M )

0o 21.6 21.7
(1.64) (4.08)

0, 6.65 6.44
(.13) (20.1)

6, - 0.00
(0.20)

c 3.21 3.21
(1.16) (1.18)

¢ Specifications: (1) Linear trend model
(2) Quadratic trend model
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The second specification allows for a somewhat richer estimate of the trend in the mean
by including an additional parameter to measure any quadratic element. We see that the
standard errors on the trend parameters grow so large that we lose significance, implying that
the data may be too few to support the richer parametric specification. However, the quadratic
estimation does produce point estimates that are nearly identical to those in the linear case.

These maximum likelihood estimates are consistent with the possibility that the knowledge
requirements faced by innovators are growing ever more burdensome. Taking the point estimate,
inventors today require 6.6 years longer to reach the knowledge frontier than they did at the
beginning of the 20th century. Remarkably, this estimate is nearly identical to the age trend
estimate produced in Chapter 1 of this thesis, where the trend in age at first innovation was
estimated directly for a large sample of innovators for the shorter period between 1975 and
2000. Such a trend implies, ceteris paribus, a monotonically decreasing return to society’s
investment in R&D. It also implies, ceteris paribus, a monotonically decreasing private return
to the potential innovator. Section 5 will briefly highlight the main implications of such a trend
and connect them back to growth theory. First, we will consider three possible objections to

the identification strategy this chapter has employed.

2.4.4 Robustness

The amalgamation of so many important factors in the innovation potential function will leave
this model open to the criticism that the effect of knowledge accumulation within it is not
well identified. Effectively, we have set up a contest between population trends, represented
in po(t), and knowledge accumulation, represented through Z4(t), to determine which explains
the upward age trends among inventors. As previously noted, we might be concerned that
the U.S. population data used to estimate p,(t) do not adequately reflect the subgroup of
potential innovators. Or we might be concerned that by employing a model that leaves Ta(t)
effectively fixed in time for ages greater than forty, the model has prevented various effects

that are prevalent in the latter half of the lifecycle from playing potentially important roles in
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explaining the age trends. Finally, we may be concerned that the upward trend found in the age
that marks the beginning of a research career, even if the trend does exist, may have nothing to
do with knowledge accumulation. This subsection will examine each of these concerns in turn.

With regard to population, existing evidence shows that the number of researchers in the
United States has been growing since 1950 at a rate approximately four times that of employ-
ment as a whole (Jones, 2001). Assuming that the new innovators are mostly being produced as
first careers and not by career switches or immigration, the faster growth in R&D employment
will produce a body of innovators who are younger on average than the rest of the working
population. However, if the higher growth rate of R&D employment has been consistent over
a long period of time, then the distribution of the population of innovators will be stable. In
other words, a constant growth rate in the number of innovators cannot alone produce a trend
in the expected age of innovators. Concavity in the employment of researchers — that is, a
slowdown in the growth of young R&D workers — is required to produce an upward age trend,
but there is no evidence of a (non-cyclical) slowdown going back to 1950.11  Data available
from Machlup indicates that the R&D employment growth rate was constant between 1900 and
1954 (Machlup, 1962).

The second issue to consider is the assumption that Z,(t) is time invariant at later ages.
In particular, one might be concerned that improvements in health have increased innovation
potential disproportionately with age, allowing people to work longer and more effectively in
their later years. However, retirement trends are pushing extremely strongly in the other
direction. For example, while in 1900 some 91% of men aged 55-64 were working in the United
States, only 84% were employed at those ages in 1960, and a mere 67% in 1990 (Costa, 1998).
If retirement trends among innovators are at all similar to these trends for the population as a
whole, it becomes difficult to imagine that cohort innovation potential at later ages has been

rising over time. Keeping fixed Z,(t) at later ages appears to be a conservative assumption;

117.S. R&D employment did experience an increased growth rate from the mid-fifties through the end of
the 1960’s, which was driven by increased defense expenditures and the space program (Jones, 2001). R&D
employment then fell relative to the total labor force in the early 1970’s.
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it leads to an underestimate of the upward trend in the age at which innovators reach the
knowledge frontier.

The final question concerns whether the upward trend in the implied age at first innovation
says anything about knowledge accumulation at all. For example, cultural trends may be
causing potential innovators to take more roundabout routes toward their eventual careers. Or
perhaps educational institutions have become much less efficient with time. While it would
seem difficult to support an argument that teaching quality has dropped substantially enough
to explain the trend in age, an increased dependence on signaling in labor markets might be a
more plausible alternative hypothesis. These types of arguments are difficult to assess within
the context of this chapter. And it is important to note that evidence on the education of
inventors would not help decide the issue. Increasing education is consistent with both an
increasing need for knowledge accumulation, increasing incentives to signal quality through
educational tenure, and decreasing educational efficiency. The identification strategy in this
chapter implicitly assumes that innovators accumulate knowledge as a necessity and at a rate
that is invariant with time. If the reader considers great inventors to be a group of highly
talented and motivated individuals, then perhaps alternative stories based on signaling and/or

declining educational efficiency seem less compelling.

2.5 Implications

The empirical trends uncovered in this chapter may have significant long-run implications.
Rising educational demands imply, ceteris paribus, more time spent educating and less time
spent innovating. This section will examine the potential impact of these effects and possible
ways to avoid them.

One of the major insights of growth theory in the last decade rests on the idea that techno-
logical progress comes specifically from the employment of human resources. In both idea-based
growth models and learning-by-doing models, growth rates will consequently increase with the

number of people employed in the innovative sectors: the greater the number of heads, the
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greater the number of ideas. Recent empirical exercises have found support for the positive
role of population in the rate of technological progress (e.g. Kremer 1993, Jones 1995).

The central implication of the research presented here and in the last chapter is that the
research output of an economy will depend not just on the number of people employed in
R&D but also on the individual innovative capacities of these individuals. A rising burden
of knowledge will tend to reduce these innovative capacities. In Chapter 1, the abilities of
individuals were seen to become increasingly limited due to narrowing expertise. In this
chapter, the productivity of innovators is reduced because they spend a greater portion of
their good years undertaking education as opposed to research. Either way, the implications
for growth are similar — a given number of researcher-lives becomes less and less productive,
and steady-state growth cannot be maintained. As discussed in Chapter 1, two basic ways to
maintain steady-state growth despite an increasing knowledge burden are: (1) to continually put
more and more people into R&D; and (2) to presume that the size or frequency of an individual’s
ideas is rising at or above the growth rate. The first solution will work indefinitely as long
as populations can continue to grow. However, the available evidence suggests a negative
relationship between fertility and income levels, so that populations may be unlikely to grow
in the long run. The second solution is an exogenous feature of technological progress, outside
policy control, and recent evidence (e.g. Jones 1995, Kortum 1997, Chapter 1 of this thesis)
indicates that productivity contributions per innovator are falling. This paints a somewhat
pessimistic picture.

The life-cycle considerations introduced in this chapter raise further, specific issues and ar-
eas for possible policy intervention. First, educational efficiency is clearly a key parameter.
Efforts to improve the rate of learning — by enhancing the rate of information transmission to
students and/or better packaging of existing information — will mitigate the effects of increas-
ing educational requirements. This motive for educational efficiency adds further texture to
existing debates over educational expenditures and institutional design, from teacher salaries to

classroom size to the concept of a liberal arts education. Efficiency arguments may be further
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emphasized given the sentiments Dirac discussed in the introduction.

A second issue is lifespan and more generally health at later ages. Presumably, longer lives
can lead to longer working lives and thereby compensate for longer periods of education at the
beginning of the life cycle. Taking a long-run view, human lifespan is clearly increasing and
is presumably at least mildly policy-sensitive, adjustable through subsidized research. Even
so, increases in lifespan alone may be insufficient given morbidity concerns, so that cures for
diseases that cause declining mental function in old age would be important and perhaps nec-
essary complements to longer lifespans. Finally, as cited earlier, retirement ages are declining
despite longer lifespans and better health care, implying that incentive problems among older
workers may be at least as critical as lifespan and health concerns in shaping the timespan of

employment.

2.6 Conclusions

This chapter considers further empirical evidence for a rising burden of knowledge. The chapter
begins by establishing that great inventors are getting older at the time of their great inventions.
The estimates suggests that great inventions are produced at ages 5 or 6 years later at the end
of the 20th Century than they were at the beginning. Noting that this trend may occur
simply because the population is aging, the chapter derives a formal econometric model that
incorporates the shifting age structure of the population together with the thesis of interest —
that increasing learning requirements are delaying the innovative portion of researcher’s careers.
Semi-parametric maximum likelihood estimation is then employed to ascertain the source of
the upward age trend. The model estimates that, while the U.S. population has been getting
older, the average age at which great inventors have been reaching the knowledge frontier has
also been increasing. The model estimates a linear increase of 6.6 years in the age at which
innovators achieve the knowledge frontier. This estimate is nearly identical to the trend found
in Chapter 1 for the age at first innovation. The research in the current chapter suggests that

such age trends describe not just the recent past but the 20th Century as a whole. Furthermore,
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the new results suggest that a rising educational burden is not just a constraint for the average
patent holder; it also falls on the shoulders of the greatest minds.

The growth implications of a rising burden of knowledge may be significant.  Greater
educational requirements reduce the lifetime capacity of individual innovators. If knowledge
accumulates deterministically as technology advances, then pessimistic growth implications may
be unavoidable. Policies for improving human capital — whether improving education for the
young or health for the old — could mitigate a rising knowledge burden.

The research in this chapter (and the last) is also relevant to debates over the nature of
scientific progress. Thomas Kuhn, the historian of science who coined the word “paradigm”
in its modern usage, began arguing in the 1960s that scientific progress is marked in the long
run by fundamental revolutions — “paradigm shifts” — as opposed to a smooth, continuous
accumulation of scientific truth (Kuhn, 1962). Scientists, disinclined to believe that current
views are fundamentally wrong, tend to prefer the smooth accumulation view, which might
seem to be a more optimistic description of human progress. Here an interesting irony appears:
when we look at the issue through the lens of economic growth, the revolutionary view appears
far more optimistic.

Further historical research along the lines seen in this chapter can attempt to better in-
corporate or attenuate the robustness concerns outlined in Section 4.4. Additional data on
the employment of innovators would help address concerns that measures of population age
density used in this chapter’s estimations do not adequately represent the age distribution of
the population relevant to the innovative process. Other data might enrich our understanding
of the forces that influence innovation potential later in the lifecycle. Finally, data on great
inventions and their inventors could be expanded both cross-sectionally and still further back

in time.
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2.7 Data Appendix

This appendix describes the data sources used in this chapter, providing both reference material
and some underlying details of the methodology used in data collection.

2.7.1 Data on innovators

There is a wealth of biographical information available on the Nobel Prize winners in physics,
and several sources were used to obtain dates of birth, the reason for the prize, and the year in
which the prize-winning research was performed. The last piece of information, which can be
the most difficult to ascertain, was taken either to be the appearance of the key journal article
or the final year of evident work on the key research. Cross-referencing the sources listed below,
[ was able to rate a subjective confidence level of the year in which the prize-winner made their
specific contribution to the field. Regressions on subsets defined by confidence level produce
virtually the same trend as for the group as a whole; the data and trend reported in Table 1
are for the entire group. The primary source was,

Schlessinger, B. and Schlessinger, J. The Who’s Who of Nobel Prize Winners, 1901-1995.
Oryx Press, Phoenix AZ 1996.

which was cross-referenced with,

Daintith, J. and Gjertsen, D. The Grolier Library of Science Biographies. Vols. 1-10. Grolier
Educational, Danbury CT 1996.

Debus, A.G. ed. World Who’s Who in Science: A Biographical Dictionary of Notable Scien-
tists from Antiquity to the Present. Marquis Who’s Who Inc., Chicago 1968.

McMurray, E.J., Kosek, J.K., and Valade, R.M. Notable Twentieth- Century Scientists. Vols.
1-4. Gale Research, Detroit 1995.

Williams, T.I. ed. Biographical Dictionary of Scientists. John Wiley and Sons, New York
1974.

Data on great inventors were collected from two technological almanacs that provide, by
year, a list of notable technological advances. These almanacs typically provide the date and
location of birth of the innovator responsible. The almanacs used were,

Bunch, B. and Hellemans, A. The Timetables of Technology. Simon and Schuster, New York
1993.

Ochoa, G. and Corey, M. The Timeline Book of Science. Ballantine Books, New York 1995.
In the event that the almanacs did not provide dates or location of birth, the four general

biographical resources listed above were consulted, in addition to two further biographical
resources:
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Bachman, T.M. ed. Who’s Who of Science and Engineering: Millennial Edition. Marquis
Who’s Who, Wilmette, IL 1999.

Inventors’ Hall of Fame. Website: http://www.invent.org/. Akron, OH.

Data on the Pulitzer Prize winners in drama and poetry were collected from a single source
that provided all the required information,

Brennan, E. A. and Clarage, E. C. Who’s who of Pulitzer Prize winners. Oryx Press, Phoenix
A7 1999.

For the poets, the year of innovation was defined as the year of copyright for the award-
winning collection of poetry. For the dramatists, the year of innovation was defined as either
the year of copyright or the year of the first performance, whichever came first.

2.7.2 Data on age distribution

One and five percent micro-samples of the U.S. census are available electronically through
IPUMS, the Integrated Public Use Microdata Series, which is maintained by the University of
Minnesota. The smallest sample used was for the 1900 census, whose micro-sample provided
data on approximately 100,000 individuals. The largest sample used was for the 1990 census,
whose micro-sample provided data on approximately 2.5 million individuals. Existing census
research available on the website (www.ipums.umn.edu/usa/chapter3/chapterd.html) indicates
that these micro-samples provide accurate estimates of the population at large with regard to
age.

2.7.3 Data on innovation potential

Patent data for 9 of the 11 patentees used in estimating lifecycle innovation potential were
drawn from the following source,

Kraeuter, D.W. Radio and Television Pioneers: A Patent Bibliography. Scarecrow Press,
Metuchen NJ 1992.

Patent data for the remaining 2 patentees, as well as data on the publication frequencies
for 20 eminent American scientists, were drawn from multiple volumes of the following series,

National Academy of Sciences, Biographical memoirs, Washington, D.C.

The year in which a patent was granted was used to determine the age of the patentee at
the time of innovation. The year of publication was used for the scientists. For the scientists,
publications of any kind were included and equally weighted, whether they be journal articles,
books, or lighter articles or editorials.

All 31 persons used in the (Epanichnikov) kernel estimation of innovation potential lived
into old age. The two youngest at their death were 67. Seventy percent lived beyond the age
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of 79, most well into their 80’s Given the differing ages of death, a simple average of innovation
potential across these individuals would produce a misleading result. The averaging method
employed in producing Figure 2 scales up the innovation potential of those who died at younger
ages by presuming they would have produced a fraction of additional innovations beyond their
death equivalent to the fraction produced by those individuals who outlived them.

Kernel estimations of the patentees alone or of the scientists alone produce estimates that
are less smooth but very similar to each other in their larger features.
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Chapter 3

Do Leaders Matter? National
Leadership and Growth in the
Developing World!

“The historians, from an old habit of acknowledging divine intervention in human
affairs, look for the cause of events in the expression of the will of someone endowed
with power, but that supposition is not confirmed either by reason or by experience.”

— Leo Tolstoy

“There is no number two, three, or four... There is only a number one: that’s me
and I do not share my decisions.”

— Felix Houphouet-Boigny, President of Cote D’Ivoire (1960-1993)

3.1 Introduction

In the large literature on cross-country economic performance, economists have given little
attention to the role of national leadership. While the idea of leadership as a causative force
is as old if not older than many other ideas, it is deterministic country characteristics and

relatively persistent policy variables that have been the focus of most econometric work.?

I This research has been performed jointly with Ben Olken.
2See, for example, Sachs & Warner (1997) on geography, Easterly & Levine (1997) on ethnic fragmentation,
La Porta et al (1999) on legal origin, and Acemoglu et al (2001) on political institutions.
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A smaller strand of the literature has recently suggested a more volatile view of growth.
The correlation in growth rates across decades ranges between only 0.1 and 0.3 within countries
(Easterly et al, 1993). This weak correlation suggests that countries are, at different times, in
substantially different growth regimes, and recent econometric work has helped to further sub-
stantiate this view (Pritchett, 2001; Jerzmanowski, 2002). Particularly for developing countries,
growth is neither consistently good nor consistently bad. Rather, developing countries tend to
undergo substantially different growth episodes that can last for years or decades.

To take an important example, consider post-war growth in China. Figure 1 plots the log of
real PPP gross domestic product over time. It is quite clear from the graph that China moved
from a low-growth regime to a high-growth regime in or around 1978. Growth between 1950
and 1978 averaged 1.6% per year, while growth since 1978 has averaged 6.3%. To understand
the development experience of China, one wants to know what caused this dramatic shift. The
answer is not likely to be found — for China or the many other countries that exhibit such shifts
— in the slow-moving explanatory variables typically used in the cross-country growth literature.
Shocks and/or high frequency events can presumably provide more obvious explanations. The
purpose of this chapter is to examine the role of one possible force that changes sharply and at
high frequency: the national leader.

Even casual observers of Chinese history might immediately notice a coincidence between
the low-growth period in China and the rule of Mao Tse-Tung. Mao came to power in 1949 and
remained the national leader until his death on September 9, 1976. The forced collectivization
of agriculture and later, in the mid-1960’s, the Cultural Revolution were among many national
policies that likely served to retard growth during Mao’s tenure. Arguably, Mao himself —
the individual — could be seen as a powerful causative force. This type of interpretation is
often described as the Great Man view of history, where events are best understood through

the lives and actions of extraordinary individuals.® The antithesis, perhaps most prominently

#For example, the British historian John Keegan has written that the political history of the 20th Century
can be found in the biographies of six men: Lenin, Stalin, Hitler, Mao, Roosevelt, and Churchill (Keegan, 2003).
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associated with Leo Tolstoy, suggests that leaders are almost entirely subjugated to the various
forces operating around them (Tolstoy, 1869). A more modern view in political science can
point to the median voter theorem to suggest that national policy is not chosen by individual
leaders. A modern view of leadership in the psychology literature considers the very idea of
powerful leaders as a social myth, embraced to satisfy individuals’ psychological needs (Gemmill
& Oakley, 1999).

This chapter investigates whether national leaders can have a causative impact on national
economic performance. Growth, the main object of explanation in this chapter, was chosen
partly because of its general import and partly because it sets the bar for leaders very high.
One might believe that leaders can influence various policies and outcomes long before one
is willing to believe that leaders could impact something as significant as national economic
growth.

To examine whether leaders can affect growth, one can investigate whether changes in
national leaders are systematically associated with changes in growth. The difficulty, however,
is that leadership transitions are often non-random, and in fact, may be driven by underlying
economic conditions. For example, there is evidence in the United States that incumbents are
much more likely to be reelected during economic booms than during recessions. (See, for
example, Fair 1978 and Wolfers 2001.) Examining the impact of leaders on growth therefore
requires identifying leader transitions that are unrelated to economic conditions or any other
unobserved factor that may influence subsequent economic performance.

To solve this problem, we can again look to Mao as our guide. For a number of leaders,
the leader’s rule ended at death due to either natural causes or an accident. In these cases, the
timing of the transfer from one leader to the next was essentially random, determined by the
death of the leader rather than underlying economic conditions. These deaths therefore provide
a natural experiment that can be used to examine whether leaders have a causative impact on
growth.

This chapter uses a unique data set on leaders collected by the authors to examine the impact
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of leadership on growth. Data was collected to identify every national leader for 92 different
developing countries in the post World War II period, from 1945 to 2000. For each leader, we
also identified the circumstances under which the leader came to and went from power. For 53
of the leaders in the data, the leaders’ rule ended by death due to natural causes or an accident.
Using these 53 “random” leader transitions, we find substantial, robust evidence that leaders
matter. Growth patterns change in a sustained fashion across these randomly-timed leadership
transitions.

Given this result, an immediate question is whether there are common features of countries
or political regimes that predict stronger leader effects. In particular, one might expect that
leaders matter more in regimes with fewer restrictions on executive authority and with less
developed institutions. We find evidence that the death of leaders in autocratic regimes leads
to growth changes, while the death of leaders in more democratic regimes does not. We find
further evidence that high settler mortality, which has been used as an instrument for lower
levels of political institutional quality, also predicts where leaders are more likely to matter. We
find no evidence, however, that a country’s region, legal origin, or degree of ethnic fragmentation
predict the degree to which leaders affect growth.

Finally, given that autocracies are the locus of strong leader effects, this chapter asks whether
powerful leaders are good or bad for growth. We find that the deaths of autocrats lead to
sustained improvements in growth, with point estimates suggesting a 2 to 3 percentage point
improvement in growth rates over three, five, and seven year periods following the death.

The remainder of this chapter is organized as follows. Section 2 describes the leadership
data set, and examines the 53 “random” leadership transitions in detail. Section 3 examines
the impact of these leadership changes on growth, and presents the chapter’s primary result:
changes in leadership lead to changes in growth. Section 4 examines whether measures of
institutional quality predict the degree to which leaders matter for growth. Section 5 considers
the directional impact of leaders on growth and shows that the death of autocrats leads to

substantial improvements in growth rates. Section 6 will consider a number of robustness
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checks on the results. Section 7 concludes.

3.2 Data

3.2.1 The leadership data set

This chapter uses a unique data set on national leadership collected by the authors. The focus
is on the developing world, and the data set includes every nation in the Penn World Tables in
Sub-Saharan Africa, South America, Central America, Asia, and the Middle East, for a total
of 92 countries. For each country in the sample, we began with a list of all heads of state and
heads of government in the 1945-1992 period, compiled from Lentz (1994). To extend this list
of leaders through the end of the year 2000, we used data from the CIA World Factbook (2003)
and the Zarate Political Collections (Zarate, 2003). The identity of each leader, their title,
dates of tenure, and date of birth were assembled into a preliminary data set.

The next step was to determine, at each point in the sample period for each country, which
individual was the “national leader”: the head of state, usually under the title of President,
the head of government, usually under the title of Prime Minister, or perhaps some third
figure. We defined the national leader to be the individual in the country who holds the most
executive power, and determined the identity of this individual through extensive historical and
biographical research.’

In most cases, identifying the national leader was straightforward, as most countries fell into
one of four institutional structures with a clear national leader. In one set of countries, only
one leadership position exists. This situation is particularly common in Latin America, where
countries typically have presidents but no prime ministers. In the second set of countries, the
same individual is both head of state and head of government. This situation is most common in

dictatorial regimes and appears relatively often in Africa. In the third set of countries, the head

1For those countries that became independent after 1945, leadership data was only collected in the post-
independence period.
5The major biographical sources used are listed at the end of paper.

102



of state is separate from the head of government, but one of the two is clearly subordinate to
the other. Typically, the subordinate position is regularly appointed and dismissed by the other
leader, and there are often interregnum periods in the subordinate role. This is particularly
common in monarchies but holds in many other cases throughout the world. In the fourth set
of countries, most often former British colonies, the head of state is a figurehead and power lies
with the prime minister. Collectively, these four institutional settings, in which the national
leader is clearly defined, account for 90% of the leaders in the sample.

Identifying the national leader in the remaining 10% of cases required further historical and
biographical research. True institutional parity between the two roles is rare, so identifying
which individual held the most executive power remained straightforward in most cases.® The
resulting data set includes 685 different national leaders, representing 771 distinct leadership

periods.

3.2.2 “Random?” leader deaths

The leaders of particular interest for this chapter are those who died in office, either by natural
causes or by accident. To define this group, further biographical research was undertaken to
determine how each leader came and went from power. Table 1 presents summary statistics
describing the departure of leaders. Of the 74 leaders who died in office, 21 were assassinated,
43 died due to natural causes, and 10 died in accidents.” We define the 53 leaders who died
either of natural causes or in an accident as the “random” deaths that we focus on. Of these,
heart disease is the most common cause of death, while cancer and air accidents were also
relatively common. The most unusual death was probably that of Don Stephen Senanayake of
Sri Lanka, who was thrown from a horse and died the following day from brain injury. Table 2
describes each of these 53 cases in further detail.

As will be discussed in more detail below, what is important for the identification strategy

®Military juntas, for example, often begin with a notionally rotating chairman, but such institutional arrange-
ments do not last. An example of a more persistent, ambiguous situation is Thailand, where power over significant
periods is held in a compromise arrangement between the military, the prime minister, and the king.

"Note that this excludes a further 18 leaders who were killed during a coup.
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is that the timing of these 53 leader deaths be unrelated to underlying economic conditions. In
particular, it is important that assassinations, which may be motivated by underlying changes
in the country, be purged from the set of random leader deaths. For example, an important
case is that of Presidents Habyarimana of Rwanda and Ntaryamira of Burundi, who were killed
in the same plane crash in 1994. The ensuing Rwandan genocide produced a large shock to
Rwanda’s growth. Assassination theories are given some credence in this case and including
Rwanda will — if we take the assassination view — bias the results toward finding a growth effect.®
To reduce any such contamination of the data, each death episode was examined extensively
using archived articles in major newspapers available through Lexis-Nexis. Conspiracy theories
are for the most part uncommon, but Section 5, which considers various robustness checks on
the results, will consider in detail the implications of conspiracy theories for the results. To be
conservative, all analysis in this chapter will leave out the Presidents Habyarimana of Rwanda

and Ntaryamira of Burundi.

3.3 Do Leaders Matter?

There are three reasons one might find an empirical relationship between particular leaders
and particular growth episodes. First, leaders might impact their nations to the point that
they can influence national growth. Identifying this possibility is the main purpose of this
chapter. Second, in antithesis to the first, the causation might be reversed: changes in growth
patterns may lead to leadership changes, perhaps because the electorate or powerful political
groups demand change in response to economic events. Finally, an association between growth
episodes and particular leaders may represent some third factor; for example, an increase in
ethnic tension may produce shocks to both the political leadership and the economy.

Random leader deaths provide an opportunity to identify the causal impact of leaders on

economic growth. Such deaths produce exogenously-timed shocks to the national leader, allow-

8The plane may have been shot down by artillery or a surface-to-air missile, though definitive evidence has
never been produced publicly.
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ing one to ask whether national leaders — as individuals — can impact the growth experience of
their countries. This is not to say that a leader’s power is independent of various institutional
or other features that may condition the leader’s impact. But randomly-timed leader deaths
allow us to focus precisely on the role of the national leader and ask whether nations undergo
substantial economic change when the leadership is changed. On average, randomly timed
leadership changes will not be associated with other events that influence growth.

This section uses these randomly-timed leader transitions to show that leaders do, in fact,
matter for growth. Section 3.1 provides a graphical overview of those countries with randomly-
timed leader deaths. This analysis is informal but worthwhile; in many cases there are sharp,
prolonged changes in national growth experiences when leaders die. Section 3.2 will present a
formal econometric specification and consider the results of several growth regressions, compar-

ing growth rates before and after leader deaths.

3.3.1 Graphical Evidence

Of the 53 identified episodes of random leader deaths, 8 occur in the period prior to the
beginning of the Penn World Tables and therefore cannot be included in the growth analysis.
As discussed above, we further exclude the deaths of Habyarimana of Rwanda and Ntaryamira
of Burundi due to the likelihood that these deaths were assassinations. This leaves 43 random
leader deaths, spread over 36 countries, for which there is comparable growth data. Figure 2
presents the log of real PPP gross domestic product over time for each of these countries. A
solid vertical line represents the exact date at which a leader died. A dashed line represents
the exact date at which that leader came to power. Cases where the entrance and/or exit
from power occurs prior to the beginning of the Penn World Table observation period are not
presented.

Looking at the graphs, it is clear that in a number of cases there is a sharp, prolonged change
in the growth regime coincident with or just following the death of the national leader. This is

particularly clear for Houphouet-Boigny in Cote d’Ivoire, Toure in Guinea, Khomeini in Iran,
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Machel in Mozambique, and, as already discussed, Mao Tse-Tung in China. Short-run changes
in the growth pattern might also be seen in many other countries, including Angola, Egypt,
India, and Nigeria, while subtler long-run changes might plausibly be seen surrounding leader
deaths in several further cases, including Botswana, Gabon, Kenya, Pakistan, and Panama.

It is instructive to consider some of the more dramatic cases in further detail. The death of
Machel led to an especially sharp turnaround in the economic performance of Mozambique (see
Figure 2). Machel, the leader of the Frelimo guerrilla movement, became president in Mozam-
bique in 1975 as Portuguese colonial rule collapsed. He established a one-party communist state,
nationalized all land in the country, and declared free education and health care for all citi-
zens. Coincident with Machel’s aggressive policies, most Portuguese settlers fled Mozambique,
and a new, debilitating guerilla insurgency was born. As is seen in Figure 2, Mozambique en-
tered a sustained period of economic decline that continued throughout Machel’s tenure. Upon
Machel’s death in 1986, his foreign minister, Joaquin Chissano, became the national leader.
Chissano moved the country firmly toward free-market policies, sought peace with the insur-
gents, and established a multi-party democracy by 1990. Growth during Machel’s tenure was
persistently negative, averaging —7.7% per year; since Machel’s death, growth in Mozambique
has averaged 2.4% per year.

The case of Houphouet-Boigny of Cote d’Ivoire is more ambiguous. The sharp downturn
in economic performance that began in the early 1980’s is coincident with a collapse in the
commodity prices for cocoa and coffee, Cote d’Ivoire’s main exports. Houphouet-Boigny’s
death in 1993 shortly preceded a devaluation of the CFA, the regional currency shared by Cote
d’Ivoire, which may have spurred growth by restoring the country’s competitiveness in these
products. However, one can also look to a number of policies associated with Houphouet-Boigny
that appear poorly chosen: for example, his government borrowed and spent large sums in the
1980’s to construct a new capital in Houphouet-Boigny’s hometown of Yamoussoukro along

with the world’s largest catholic basilica, which would serve as his burial site.” In 1980, the

9This $300 million church was constructed from 1986-89, coincident with the arrest of striking government
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Ivory-Coast had one of the highest per-capita incomes in Sub-Saharan Africa; in 1993, at the
time of Houphouet-Boigny’s death, it had experienced 14 consecutive years of economic decline,
with growth rates averaging —3.0% per year.

The case of Ayatolloh Ruhollah Khomeini of Iran is more widely known. The Islamic Revo-
lution in 1979 was followed by large-scale executions of opponents, international isolation over
hostage-taking at the US Embassy, and a refusal to negotiate peace with Iraq despite massive
losses of life and poor military prospects on both sides of the Iran-Iraq war. In particular,
Khomeini cast the Iran-Iraq war in strict religious terms, which is said to have prevented any
peace negotiations, although Iraq, having invaded unsuccessfully, withdrew from Iranian terri-
tory in 1982 and began seeking peace from that time. Iranian military tactics in the ensuing
trench warfare included sending waves of unarmed conscripts, often young boys, against the
superior firepower of entrenched Iraqi lines (Britannica, 2003). In the face of renewed Iraqi at-
tacks, Iran finally accepted a UN brokered ceasefire in 1988, the year before Khomeini’s death.
Since his death, Iranian politics have become (relatively) more moderate; as can be seen in
Figure 2, growth has turned substantially positive.

While these illustrations can provide some plausible interpretations in which leaders matter,
such historical analysis does not produce definitive conclusions or statistical assessment of lead-
ers’ impacts. Moreover, there are many other countries that appear to experience no change
in growth across leader deaths. Examples include Algeria, Israel, Taiwan, and Thailand (see
Figure 2). In Taiwan, for example, the death of Chiang Kai-Shek in 1975, and the passage of
power to his son, Chiang Ching-Kuo, appears to have been entirely seamless.!® In the next
section we pursue the question of whether leaders matter on average for economic growth using

more rigorous econometric methods.

teachers and other governments workers who refused to accept pay cuts. Meanwhile, Cote d’Ivoire had to suspend
and then restructure its debt payments in 1987.

1%Note that a theory of strong leadership does not imply that a change in leadership must always coincide
with a change in growth. In particular, one would expect no change in growth between the tenure of two leaders
of similar quality and ideological bent.
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3.3.2 Econometric Evidence

" The key question in the following analysis is whether growth rates change in a statistically signif-
icant manner across randomly-timed leader deaths. Since we at the outset have no presumption
that any particular leader is better or worse than any other, the test of whether leaders mat-
ter must consider whether growth episodes differ significantly before and after leader deaths,
without presuming any particular direction for the change. Using our data, we will therefore

estimate the following regression:

Yot = Qcz * PRE; + Bez ¥ POST, + ve + vt + €ct (31)

where y,; is the annual growth rate of real purchasing-power-parity per capita GDP taken from
the Penn World Tables, ¢ indexes countries, ¢ indexes time in years, and z indexes random
leader deaths. Country and time fixed effects are included through v, and v; respectively. The
PRE, and POST, dummies capture deviations from country and time average growth rates
before and after a specific leader’s death. PRE, is a dummy equal to 1 in the T' years prior to
leader z’s death in that leader’s country. POST, is a dummy equal to 1 in the T' years after
leader z’s death in that leader’s country. In the main analysis, we will choose the period of
observation, T, to be five years, though in Section 6 we will show that the results are robust
to choosing different periods. Note that PRE, and POST, are defined so that the actual year
of the death is not included in either dummy. This is probably the most conservative strategy
when looking for longer-term leader effects, as it helps to exclude any immediate turbulence
caused by the fact of leader transition itself.11

Figure 3 presents the results from estimating equation (1) with T equal to 5 years. The
y-axis plots the estimated change in growth after the leader’s death, 3., — a;, for each random

leader death in the sample, and the x-axis plots the year of the random leader death. Figure 3

1 The results in this paper are robust to a number of other methods of handling transition years. For example,
assigning the transition year to either the PRE. or POST, dummy, or assigning a fraction of the dummy to
either the PRE, or POST, dummy, produces similar or slightly stronger results than those presented here.
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reveals that random leader deaths are associated with both increases and decreases in growth
in approximately equal proportion—in 55% of cases, the estimated change in growth after the
leader death, 8., — ac,, is negative.

Under the null hypothesis that a particular leader z does not matter for growth, we expect
that a., = B, i.e., that there is no systematic change in growth associated with the change
in leader. That is, conditional on other regressors, we expect growth rates before and after the
leader death to be similar. To answer the question of whether leaders matter for growth in

general, we are interested in an F-test on the all leaders collectively. The null hypothesis is:

Hy:oc, =f,, forall cand z

If the error structure for e is #id, this F-test procedure will produce the correct inference.

However, we may be concerned both that the error e, is neither identically distributed across
countries nor independently distributed over time within the same country. In such cases, the
F-test may not produce correct inference. To deal with these concerns, we will employ two
strategies. First, we will attempt to determine the correct error structure and model the data
generating process accordingly. Second, we will perform falsification exercises by running the
F-tests on “control” regressions where the break points used to define PRE, and POST, are
moved several years backwards in time.

To investigate potential heteroskedasticity and serial correlation in growth, the first panel
of Table 3 presents two tests for heteroskedasticity in growth across countries, a likelihood
ratio test and a Breusch-Pagan Lagrange multiplier test. Both tests present strong evidence for
heteroskedasticity in growth. This is not surprising: countries that concentrate their exports
in a few industries, to take one example, are likely to have greater variance in their growth
process. For the estimation strategy in this section, failing to correct for heteroskedasticity

will have important implications for the F-test. To see this, consider that the estimators
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of interest, each a,, and Be,, are estimated primarily using within-country data.!2 If errors
are heteroskedastic across countries, then assuming iid errors will overestimate the underlying
variance in growth rates for some countries and underestimate it for others. In particular, if
the correct variance for the data generating process in country c is af and the overall variance
for all countries is o2, then the standard error on the coefficients Qc; and B, in that country
will inflated by o /o. Since the individual restrictions in the F-test compare 0z and B, within
the same country, high (low) variance countries will show improperly high (low) significance for
any difference of pre-post periods. This issue suggests that feasible generalized least squares
with country-specific heteroskedasticity should be strongly favored over OLS estimation with a
single ¢2.13

The second panel of Table 3 presents Breusch-Godfrey (Lagrange multiplier) tests for first-
order autocorrelation on a country-by-country basis. Here we find evidence for autocorrelation
in only 20% of the countries using a 95% confidence level. While this evidence for autocorrelation
1S not particularly strong, it may still be important to control for it: autocorrelation will tend to
increase the probability that given time periods have higher or lower growth than average. This
will overpower the F-test.14 Again, we can employ feasible generalized least squares to estimate
country-specific AR(1) processes. Note that the failure to find evidence of autocorrelation in
most countries, together with the variation in the estimated autocorrelation barameter, suggest
that country-specific autocorrelation 1s a better specification than assuming a single world-wide
AR(1) process. As shown in Table 3, a likelihood ratio test strongly rejects a single world-wide

AR(1) model in favor of country-specific autocorrelation.

2The only regressors in equation (1) common across country panels are time fixed effects,

'3 Another possibility would be to use White heteroskedasticity-consistent standard errors. However, as there
are only 5 observations for each fixed effect, there are not enough observations for each variable to satisfy the
consistency requirements of the White method, By estimating a single o2 across all observations for a single
country, we have a much larger number of observations with which to estimate o2, and so the inference will be
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Table 4 presents the main results—i.e., the p-values from joint F-tests on the null hypothesis
that a., = B, for all random leader deaths z. We present the results assuming four different
specifications of the error structure. Column (1) presents OLS results. Column (2) presents
FGLS results assuming country-specific heteroskedasticity. Column (3) repeats the specification
in the second column but also allows for a worldwide AR(1) process, while column (4), the
most general model, allows for country-specific AR(1) processes. Given the likely presence of
country-specific heteroskedasticity and serial correlation, we focus on the results from the fourth
specification.

For each specification of the error structure, we present three different timings of the PRE,
and POST, dummies as “treatments” and two different timings as “controls”. The actual
timing is represented by the row labeled ¢. On the theory that the effect of a leader’s death
may be felt with a lag, the timings ¢ + 1 and ¢ + 2 are included, indicating that the PRE, and
POST, dummies have been shifted 1 and 2 years later in time. The control experiments, using
timings ¢t — 5 and ¢ — 6, repeat the hypothesis tests where the PRE, and POST, dummies
have been shifted 5 and 6 years backwards in time. Given that the timing of the leader’s
death is random, there should be no systematic events at t — 5 or ¢ — 6 that produce shifts in
growth regimes. These control experiments are included as evidence for whether the F-tests
are overpowered.1®

The results presented in Table 4 show that leaders have significant effects on growth. Using
the contemporaneous leader timing (t), three of the four error specifications strongly reject the
null hypothesis that leaders do not matter. Results are also strong for lagged leader effects,
showing that we can again strongly reject the null when shifting the timing forward one or two
years. Results are somewhat weaker when we assume a common AR(1) process across countries,

but this specification received little support in our earlier tests (see Table 3). Importantly, the

®Note that we exclude Shastri of India, because his death came only 18 months after Nehru’s death. Including
both Shastri and Nehru will contaminate the other’s PRE and POST dummies in the regression. Given that
Shastri’s rule was far shorter than Nehru's, we have chosen to include Nehru in the main results, though all
results are robust to including Shastri instead.
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control experiments run at t — 5 and t — 6 do not show significant breaks in growth.

3.4 In What Context Do Leaders Matter?

The results in Section 3 show that, on average, leaders do matter for national growth in the
developing world. However, the degree to which leaders matter will clearly be a function of
their context. Different institutional systems and different social constraints can amplify or
retard a leader’s influence. If leaders do appear to matter on average, in what context do they
matter the most?

A simple way to answer this question is to extend the above regression framework to consider
hypothesis tests on subsets of the leader deaths. This approach preserves the non-directional
nature of the exercise and allows us to consider the basic interaction of various national char-
acteristics with the ability of leaders to influence national growth.

Where and when do leaders matter the most? Using the Polity IV data set (Marshall
and Jaggers, 2000), we can compare the deaths of leaders by various institutional measures.
In particular, the first panel of Table 5 compares those leaders whose nations receive Polity
IV’s lowest democracy score in the year prior to their death (“Autocrats”) with those leaders
whose nations receive better than the lowest demobracy score (“Democrats”). The second panel
in Table 5 employs an important sub-component of the democracy variable in Polity IV that
defines the degree of institutional constraints placed on the national leader. The analysis divides
leaders by whether the political system receives less than the median rating for institutional
constraints in the year prior to death (“Unconstrained”) with those polities ranked above the
median (“Constrained”). The results indicate that autocratic and/or unconstrained leaders on
average have a significant causative influence on national growth; meanwhile, those leaders in
democratic or constrained regimes have little impact.

What is particularly interesting to know, given this result, is whether autocracy is a de-
terministic feature of nations, or whether all nations experience leaders who can change the

national growth path. A simple tabulation of Polity IV’s executive constraint measure shows
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that 65% of the 92 developing countries in this sample experience executive power both above
and below the median value used to split the data in Table 5. Furthermore, 78% of the countries
experience at least some period(s) of unconstrained executive power. These results suggest that
powerful leaders can appear across a wide variety of settings.

Table 6 further explores whether influential leaders are produced (or not) according to
deterministic national characteristics. One might expect that several explanatory variables
used successfully in the recent growth literature might define those nations in which leaders do
or do not have an impact. First, the well-known negative growth effect of being located in Sub-
Saharan Africa suggests that we consider whether the leader results are a regional phenomenon.
The first panel of Table 6 indicates that we do see strong leader effects in Sub-Saharan Africa;
however, we also see strong effects in Latin America, which suggests that leaders’ impact is not
constrained to certain regions of the world.1®

A similar set of results emerge when we consider ethnic fragmentation. Ethnic fragmenta-
tion is a strong negative predictor of growth (Easterly and Levine, 1997; Alesina et al, 2002)
and helps predict institutional quality, including measures for the quality of government (La
Porta et al, 1999) and corruption (Mauro, 1995). With regard to national leadership, one
may imagine that ethnically fragmented nations provide particular opportunities for leaders to
impact national outcomes. In this view, Tito and Milosevic could be seen as the difference
between Balkan war and peace. Similar arguments could be made about the role of leadership
in Nazi Germany, the recent case of Rwanda, and other cases of genocide.!” The second panel

in Table 6 indicates that leaders do matter in nations where ethnic fractionalization is high, but

'%1t is interesting to note that the OLS results suggest a much stronger impact in Sub-Saharan Africa than the
FGLS results; conversely, Latin America shows no effect using OLS, but strong effects using FGLS. The reason
for these differences is likely due to the underlying variance of the growth process in these regions. As discussed in
Section 3.2, the homoskedasticity assumption in OLS will bias us towards finding stronger leader effects in highly
volatile countries and weaker effects in less volatile countries. FGLS allows us to ask, more specifically, whether
leaders matter in comparison to the growth experience of their nation alone. In an extremely strong leadership
hypothesis, one could argue that leaders are all that matter to the variance in growth in a country, in which
case OLS would be preferred. If we acknowledge that national volatility has other causes, then a heteroskedastic
error structure appears preferable.

1"Research has shown that ethnic fractionalization predicts internal warfare, although not when income is
controlled for (Fearon and Laitin 2001).
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they also matter where ethnic fractionalization is low.!® Comparing the OLS and FGLS results,
we see that there appears to be greater volatility in more fractionalized nations, resulting in
extremely strong OLS results in those countries. Using FGLS to control for national volatility
in growth, leaders are seen to have an impact irrespective of ethnic fractionalization.

British versus French colonization might be expected to predict where leaders matter, given
the comparatively negative impact of French legal origin on property rights and democracy,
among other institutional variables (La Porta et al, 1998; La Porta et al, 1999). One might
expect, more specifically, that the British parliamentary system, which often results in coalition
government, would lead to more constrained leaders than the French presidential system. Panel
3 of Table 6 investigates the differences between British and French colonial origin. The results
are generally much weaker, suggesting that neither British nor French colonies have shown
strong causative leader effects. Furthermore, while the comparison between these two cases is
not definitive given the small sample sizes, the British versus French distinction does not appear
to have any decisive influence here.

The final panel of Table 6 investigates the impact of settler mortality. Recent work has
shown that the relative mortality of early colonial settlers is a strong predictor of current
institutional quality (Acemoglu et al, 2001). Low settler mortality is argued in that research to
have led colonial powers to settle extensively and import well-functioning European institutions
with important limits on government power; high settler mortality led colonial powers to set
up extractive regimes with strong central authority to transfer resources from the colony to
the colonizer. In particular, high settler mortality is shown to predict weaker democracy and
less constrained executives — the variables which succeed strongly in Table 5 in defining where
leaders do and do not tend to matter. Not surprisingly, Table 6 shows that high settler mortality

is a strong predictor of whether leaders matter, while low settler mortality shows no particular

18] eaders are grouped using a measure of ethnolinguistic fractionalization employed by Easterly & Levine
(1997) that measures the probability two randomly selected individuals in a given country do not belong to the
same ethnolinguistic group. In Table 6, “High Ethnic Fragmentation” indicates that a nation has greater than
the median ethnic fractionalization measure; “Low Ethnic Fragmentation” indicates that a nation has less than
the median fractionalization measure.
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effects. These results suggest that regimes where leaders matter are predictable to some degree

based on historical inheritances.

3.5 Are Autocrats Good or Bad for Growth?

The analysis in Section 4 showed that autocrats appear to matter for growth, whereas democrats
do not. However, the analysis was purely non-directional—the F-tests used in Section 4 do not
distinguish between whether the death of an autocrat led to an increase or a decrease in growth.
This section examines the directional impact of leadership transitions.

To investigate this question, we employ a two-step procedure. In the first step, we estimate
equation (1), from which we obtain an estimate of the change in growth after each leader
transition. Using the notation of equation (1), the estimate of the change in growth after the
death of leader z in country c is 8., — ac,. In the second step, we estimate the following

equation:

ﬁcz — Q¢ =71+ Xcz'Yz + },C’YB + €cz (32)

where X, represent leader-specific characteristics and Y, represent country-specific character-
istics. We estimate equation (3.2) using weighted least squares, where the weights are equal to
the inverse of the estimated variance of 3., — a.;.

The results from estimating equation (2), where the dependent variable Bez — ez is obtained
by estimating equation (1) using 5-year pre and post periods, are presented in Table 7. The
results show that the death of an autocrat is associated with an annual increase in growth
rates of between 2.0 and 3.0 percentage points, relative to that which occurs following the
death of a democrat. The results are even stronger when we use the more focused measure of
executive constraints rather than the more general measure of autocracy. These results persist
when including a host of other control variables, such as the leader’s age and tenure in office

in the year prior to his death, the country’s degree of ethnic fragmentation, its colonial origin,

115



and continent. Furthermore, none of these other explanatory variables appear to predict the
direction of the change in growth following the death of a leader.

To further explore the impact of the death of autocrats, Tables 8a and 8b present a number
of alternative specifications, in which we vary the timing and the length of the pre-and-post
period used in estimating ., — ¢, and the controls used in estimating equation (2). Table
8a reports the results using the autocracy variable, and Table 8b reports the results using
the unconstrained leader variable. Each cell reports the estimated coefficient on being an
autocrat /unconstrained leader from a separate regression of the form reported in Table 7.

The results show strong evidence that autocracy matters, particularly when autocracy is
measured using the lack of executive constraints variable. The results show that the differential
impact between the death of an unconstrained and a constrained leader is still present even
when we compare 7-year pre-and-post windows of observation. This suggests that eliminating
a dictator produces prolonged changes in a country’s growth pattern, rather than a temporary
increase in growth due to the transition.

These results, which consider the leader as the causative force, also suggest a positive
relationship between democratization and growth. The empirical literature on the effect of
democracy on growth has produced ambiguous results (See Przeworski & Limongi (1993) for a
survey), and exogenous sources of variation in political regimes have proved hard to find. More
recent work has suggested that moves toward democracy are associated with higher growth
rates (Minier, 1998) and that the presence of some democracy is better than complete autocracy

(Barro, 1999). The results in this chapter are consistent with these recent findings.

3.6 Robustness of Results

The results presented above incorporate two kinds of robustness checks. First, they consider

several different specifications for the error structure. Second, they consider control experiments
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as falsification exercises.!® This section will consider two further types of robustness checks on
the results: (i) the implications of different choices for the length of observation before and
after leader deaths; (ii) the implications of conspiracy theories for the results.

In the main analysis presented above, average growth was compared for 5 year periods
before and after each leader death. The choice of 5 years is essentially ad hoc and can only
approximate the effect of leaders who may have been in power for substantially more or less
than 5 years. As a general matter, we might think that choosing any fixed number of years for
the comparison should bias the results against finding a growth effect, since we are capturing
the actual tenure of the leaders poorly. In particular, a 5-year period may do too much justice
to short term leaders and too little justice to long-term leaders, such as Mao, whose influence
would have been felt over a much longer period.

One simple robustness check on the results is to consider observation periods of different
lengths.?® Table 9 reconsiders the growth regressions and hypothesis tests using a 3-year ob-
servation window and a 7-year observation window. The results appear essentially the same as
those presented in Table 4. The results using a 7-year period are particularly strong, suggesting
that the growth changes are quite persistent over time.

A separate issue is whether we should include short-term leaders at all. There are five leaders
in the random leader sample who serve for less than one full year, and nine who serve for less
than three years.?! To take the most extreme example, Bouceif of Mauritania served for just over
a month before he was killed in an air crash while trying to land during a sandstorm. It would
seem unreasonable to imagine that this leader had an opportunity to influence Mauritania’s

growth given his short tenure. Introducing such short-term leaders may therefore bias the

“For clarity, the tables in Section 4 do not present results for control timings at t—5 or ¢t —6. Those falsification
exercises, which are available from the authors, consistently show appropriate degrees of noise.

*0Using the actual tenure of leaders before and/or after the death is not an attractive option since it will
introduce non-random events into the observation window (namely, the beginning of the initial leader’s rule and
the end of the latter leader’s rule) which will prevent any causative interpretation of the results.

*!There are 8 leaders all told in the random sample who served for less than 1 full year (see Table 2). How-
ever, three of these are already dropped in the regression; two are dropped because they die before the Penn
World Tables begin to record data for their country; Ntaryamira of Burundi is dropped intentionally, as already
discussed, due to the possibility his death was an assassination.
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results against finding an effect. On the other hand, these leaders’ short tenure implies that
a non-random leader transition occurred relatively recently in the pre-period, which may in
turn have been associated with some kind of change in the growth pattern. This could bias
the results toward finding an effect. The second and third panels of Table 9 considers the
sample of random leader deaths conditional on the leader having been in power for at least
two, four, six, and twelve years respectively. We see that the results remain strong when short
term leaders are dropped. Interestingly, the results seem to weaken when we look at the deaths
of the longest tenure leaders — those in power for at least 12 years — though this may simply
suggest that longer the leader was in power, the more inertia the regime has, resulting in more
delayed growth effects. That interpretation is consistent with the shift we see in significance
from ¢ towards t + 2 as tenure increases in the table.

A more subjective issue is whether some random deaths might in fact be assassinations,
and a definitive analysis of this issue is difficult, because conspiracy theories by their nature
can be both hard to identify and difficult to refute. To address the possibility that some of
the leader deaths were not random, the authors consulted biographical resources and examined
large numbers of news articles in the year after each leader died, including obituaries and any
follow-on articles about the death or ensuing effects in the leader’s country. The results of this
exercise show that no alternative theory for the death was presented in 45 of the 53 cases. At
the same time, it is difficult to assess whether a “heart attack” was always as it seems, and
a determined conspiracy theorist could assert than any number of heart attacks, air crashes,
surgical deaths, or even cancers were part of a secret plot.

The authors have performed a series of robustness checks based on (i) confidence ratings
for whether the death was truly random, and (ii) the type of death. In general, cutting the
data to eliminate troublesome instances or types of death tends to make the F-test on the
growth effects of all leaders less significant, and when all potentially troublesome instances or
types of death are dropped, the F-test on growth effects often becomes insignificant. When

the leaders are divided into Autocrats and Democrats, however, the Autocrats always show
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significance no matter how we attempt to cut the data. The fourth panel of Table 9 shows
essentially the “worst case” results, where we eliminate any case where sources have mentioned
any alternative story for the death, no matter how implausible.?? Here we see that, while the

results are weakened, the death of autocrats still leads to significant changes in growth.23

3.7 Conclusion

Recent work in the cross-country growth literature has suggested that growth in the typical
developing country changes dramatically from one decade to the next. This observation suggests
that growth is, to an important degree, a function of relatively short-run forces.

This chapter considers one possible force — the national leader - in explaining these growth
experiences. Randomly-timed leader deaths are used as a natural experiment to identify the
causative impact of leaders. We find that developing countries experience persistent changes in
growth rates across these leadership transitions, suggesting that leaders have a large causative
influence on the economic outcomes of their nations.

This chapter further shows that the effects of leaders are very strong in autocratic settings
but weak or nonexistent in the presence of democratic institutions. Moreover, the deaths
of autocrats lead on average to substantial, sustained improvements in growth rates. These
results add texture to a growing literature on institutions in shaping economic outcomes. In
particular, this research suggests that political institutions, separate from property rights or
other institutional features, have large implications for growth. One interpretation of these

results is that international intervention to remove autocrats may have a first-order economic

*2This means, for example, excluding the plane crash that killed Samora Machel of Mozambique. His plane
flew into a hillside at night while approaching the airport in Maputo. A conspiracy theory at the time suggested
that the plane was lured off course using a false homing beacon across the border in South Africa. This hypothesis
was later ruled out on several grounds, including the fact that other air traffic did not make this mistake. A more
plausible conspiracy theory surrounds the death of Sani Abacha of Nigeria. As the New York Times reported,
“Some United States intelligence analysts say there is evidence that Gen. Sani Abacha. .. was poisoned while
in the company of three prostitutes... Nigeria’s military rulers reported after General Abacha’s death that he
had died at his villa after a sudden heart attack. The contrary view reached by some United States Government
analysts, while far from unanimous, is that he may have been killed by enemies in his notoriously corrupt and
authoritarian military circle.”

> Results using 7-year growth windows are considerably stronger than those presented.

119



basis. Of course, a leadership change caused by external forces may be very different from a
natural leader death, and the policies used to effect such a change may have their own adverse
consequences for growth.?4

The authors’ primary interest in this study is to improve our understanding of the forces
behind economic outcomes. However, this research also informs a separate and very old lit-
erature in history and political science that considers the role of national leaders in shaping
events. Deterministic views suggest that leaders have little or no influence, while the Great
Man view of history, at the other extreme, sees history as the biographies of a small number of
individuals. Tolstoy believed this debate methodologically impossible to settle, and prominent
political scientists have more recently lamented a lack of scientific rigor in leadership studies
(Paige, 1977; Blondel 1987). The leadership analysis in this chapter presents a methodology
for analyzing the causative impact of leaders. We find that leaders do matter, and they matter

to something as significant as national economic growth.

24Policy instruments that can promote leadership change include the leverage of international financial insti-
tutions, foreign aid, amnesty offers, economic sanctions, and military intervention. Such instruments are used
often with leadership change in mind; recent examples include Robert Mugabe in Zimbabwe, Charles Taylor in
Liberia, and Saddam Hussein in Iraq
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Table 1;: How Leaders Leave Power

92 Developing Countries
All Leaders from 1945 or National Independence Date through 2000
Number of Observations, by Type

Voluntary
Lost Election ~ Term Limits Retirement Deposed Death® Other Total
76 114 46 197 74 176 683°
A
~ _
Assassination Natural Accidental
21 43 10 74
A
'l TN
Heart Other Surgical
disease  Cancer Disease complications Other Air crash Other
19 8 5 3 8 9 1 53
Notes

? There are 18 further cases (not included here) where leaders are killed during a coup.
® There are 771 distinct terms in which leaders are in power in the data set, but only 683 counted in this table, as we do
not witness the exit of leaders who are still in power.




Table 2: Random Deaths of National Leaders

Year of
Country Leader Death Tenure  Nature of Death
Algeria Houari Boumediene 1978 13.5 Waldenstrom’s disease (blood disorder)
Angola Agostinho Neto 1979 3.9 Cancer of the pancreas
Argentina Juan Peron 1974 7 Heart and kidney failure
Bolivia Rene Barrientos (Ortuna) 1969 2.7% Helicopter crash
Botswana Sir Seretse Khama 1980 13.8 Cancer of the stomach
Brazil Arthur da Costa e Silva 1969 2.6 Paralytic stroke, then heart attack
Burundi Cyprien Ntaryamira 1994 2 Plane crash (assassination quite likely)
China Mao Tse-tung 1976 26.9 Parkinson’s disease
China Deng Xiaoping 1997 19.2 Parkinson’s disease
Comoros Prince Sa'id Muhammad Jaffar 1975 4 While on pilgrimage to Mecca
Comoros Mohamad Taki 1998 2.7 Heart attack
Cote d'Ivoire Felix Houphouet-Boigny 1993 333 Following surgery for prostate cancer
Ecuador Jaime Roldos (Aguilera) 1981 1.8 Plane crash
Egypt Gamal 'Abd an-Nasir (Nasser) 1970 15.9 Heart attack
Gabon Leon Mba 1967 7.3 Cancer (in Paris)
Guinea Sekou Toure 1984 25.5 Heart attack during surgery in Cleveland
Guyana Linden Burnham 1985 19.2 During surgery
Guyana Cheddi Jagan 1997 4.4 Heart attack a few weeks after heart surgery
India Jawaharlal Nehru 1964 16.8 Stroke
India Lal Bahadur Shastri 1966 1.6 Heart attack
Iran Ayatollah Ruhollah Khomeini 1989 10.3 Following surgery to stem intestinal bleeding
Israel Levi Eshkol 1969 5.7 Heart attack
Jordan Hussein ibn Talal al-Hashimi 1999 46.5 Non-Hodgkin’s lymphoma
Kenya Jomo Kenyatta 1978 14.7 While sleeping
Liberia William V.S. Tubman 1971 27.6 Complications surrounding surgery on prostate
Malaysia Tun Abdul Razak 1976 5.3% Leukemia (in London)
Mauritania Ahmed Ould Bouceif 1979 1 Plane crash in sandstorm over Atlantic
Morocco Mohammed V 1961 5.3" Following operation to remove growth in throat
Morocco Hassan 11 1999 38.4 Heart attack
Mozambique Samora Machel 1986 113 Plane crash
Nepal Tribhuvan 1955 4.1 Heart attack in Zurich
Nepal Mahendra 1972 16.9 Heart attack
Nicaragua Rene Schick Gutierrez 1966 33 Heart attack
Niger Seyni Kountche 1987 13.6 Cancer (brain tumor)
Nigeria Sani Abacha 1998 4.6 Heart attack (some say poisoned)
Pakistan Mohammed Ali Jinnah 1948 1.1 Heart failure
Pakistan Mohammed Zia Ul-Haq 1988 111 Plane crash
Panama Domingo Diaz Arosemena 1949 9 Heart attack
Panama Omar Torrijos Herrera 1981 12.8 Plane crash
Philippines Manuel Roxas y Acuna 1948 1.9 Heart attack
Philippines Ramon Magsaysay 1957 32 Plane Crash
Rwanda Juvenal Habyarimana 1994 20.8 Plane crash (assassination quite likely)
Sierra Leone Sir Milton Margai 1964 3.0 After “brief illness”
South Africa Johannes G. Strijdom 1958 3.7 Heart disease
Sri Lanka Don Stephen Senanayake 1952 4.5 Thrown from horse
Swaziland Sobhuza I1 1982 60.7 Unknown
Syria Abu Sulayman Hafiz al-Assad 2000 29.6 Heart attack
Taiwan Chiang Kai-Shek 1975 25.3° Heart attack
Taiwan Chiang Ching-Kuo 1988 12.8 Heart attack
Thailand Sarit Thanarat 1963 5.1 Heart and lung ailments
Uruguay Tomas Berreta 1947 4 During emergency surgery
Uruguay Luis Ganattasio 1965 9 Heart attack
Uruguay Oscar Gestido 1967 .8 Heart attack

Notes: * Second time in power.




Table 3: Error Specification Tests

Panel 1: Cross-country specification tests

Null Hypothesis  Alternative Hypothesis  Test Statistic P-value
Homoskedastic Heteroskedastic by LM (Breusch-Pagan) Chi2(149)=3979.295 <0.0001
country

LR Chi2(149)=2981.43 <0.0001
Common AR(1)  Country-specific AR(1) LR Chi2(149)=292.30 <0.0001
process processes

Panel 2: Breusch-Godfrey AR(1) tests by Country
Percentage of countries that reject Null
at given significance level

Null Hypothesis __ Alternative Hypothesis ~ Test 0.90 0.95 0.99
No serial AR(1) process LM (Breusch-Godfrey) 26.7% 19.6% 7.1%

correlation




Table 4: Do Leaders Matter?

P-values: Probability that average growth does not change
systematically across randomly-timed leader deaths

Number of Number of

) 2 €)) @) Leader country-year
OLS FGLS FGLS FGLS Deaths observations
Treatment Timings
t .0328** .0514* 1462 .0582* 42 5544
t+1 .0345** .0405** 1239 .0676* 40 5544
t+2 4073 .0371%* .0876* .0444** 37 5544
Control Timings
t-5 .8221 5719 177 6167 41 5544
t-6 7238 4915 .6864 .6796 39 5544
Country-specific No Yes Yes Yes
heteroskedasticity
Common AR(1) error No No Yes No
Country-specific AR(1) error No No No Yes
Notes:

(i) The table reports p-values, indicating the probability that the null hypothesis is false. Under the null hypothesis,
growth is the same before and after randomly-timed leader transitions. Asterisks are used to indicate the significance
with which the null is rejected:

* indicates 90% significance; ** indicates 95% significance; *** indicates 99% significance.

(ii) The regressions reported in this table compare 5-year growth averages before and after leader deaths.

(ii1) All specifications exclude Rwanda and Burundi. Including these deaths will increase the strength of the results
using treatment timings.




Table 5: Interactions with Type of Political Regime in Year Prior to Death

P-values: Probability that average growth does not change across randomly-timed leader deaths

Autocrats Democrats
¢)) ) Number 3) (€)) Number of Number of Obs
OLS FGLS of Deaths OLS FGLS Deaths
Treatment Timings
t 0005***  003g*** 23 .9860 .8466 19 5544
t+1 0003**%  Q15%** 22 9965 9279 18 5544
t+2 1636 .0043 % 21 .7889 .6975 16 5544
Unconstrained Leaders Constrained Leaders
) (6) Number @) ®) Number of
OLS FGLS of Deaths OLS FGLS Deaths
Treatment Timings
t 0012%**  0pg2*** 26 9912 .7488 13 5544
t+1 .0008***  0p29*** 24 .9886 7951 13 5544
t+2 1920 .0047%*x 23 .9992 9571 11 5544

Notes:
(i) The table reports p-values, indicating the probability that the null hypothesis is false. Under the null hypothesis, growth
is the same before and after randomly-timed leader transitions. Asterisks are used to indicate the significance with which
the null is rejected: * indicates 90% significance; ** indicates 95% significance; *** indicates 99% significance.
(i1) FGLS regressions assume heteroskedasticity by country.
(iii) Distinctions across leader sets are defined using variables in the Polity IV data set in the year prior to the leader’s death.
Autocrats are defined by having the lowest score for the democracy variable (DEMOC). Democrats are those leaders with
greater than the lowest score. Unconstrained leaders are defined by having the less than the median value of the executive
constraint variable (XCONST). Constrained leaders are defined by having the median value or above.

_(iv) To be conservative, all specifications exclude the 1994 plane crash that killed the leaders of Rwanda and Burundi.




Table 6: Interactions with Deterministic Variables

P-values: Probability that average growth does not change across randomly-timed leader deaths

Sub-Saharan Africa Latin America
)] ) Number 3) 6] Number of Number of Obs
OLS FGLS of Deaths OLS FGLS Deaths
Treatment Timings
t .0001*** .0402%* 14 8163 .2001 10 5544
t+1 .0005*** .0884* 14 .3945 0277** 10 5544
t+2 .2076 4783 12 2752 0038*** 9 5544
British Colony French Colony
5) 6) Number @) ® Number of
OLS FGLS of Deaths OLS FGLS Deaths
Treatment Timings
t 1377 .1708 14 .5887 7789 10 5544
t+1 1113 2991 13 .8754 .9586 9 5544
t+2 .9968 9779 11 1391 2234 8 5544
High Settler Mortality Low Settler Mortality
) 10) Number (11) (12) Number of
OLS FGLS of Deaths OLS FGLS Deaths
Treatment Timings
t L0015%** 0758* 13 9590 1820 14 5544
t+1 .0025%** .0533* 12 .8921 2345 14 5544
t+2 .2838 .0308** 11 9867 5911 13 5544
High Ethnic Fragmentation Low Ethnic Fragmentation
(13) (14) Number (15) (16) Number of
OLS FGLS of Deaths OLS FGLS Deaths
Treatment Timings
t .0084*** .0866* 30 7187 .1499 12 5544
t+1 .0093%** .0619* 29 7185 .1604 11 5544
t+2 4403 1314 26 3495 .0383%* 11 5544
Notes:

(i) The table reports p-values, indicating the probability that the null hypothesis is false. Under the null hypothesis, growth
is the same before and after randomly-timed leader transitions. Asterisks are used to indicate the significance with which
the null is rejected: * indicates 90% significance; ** indicates 95% significance; *** indicates 99% significance.

(ii) FGLS regressions assume heteroskedasticity by country. Results are nearly identical when additionally allowing for

country-specific AR(1) processes.
(iii) To be conservative, all specifications exclude the 1994 plane crash that killed the leaders of Rwanda and Burundi.




Table 7: How does growth change when different types of leaders die?

o) @) 3) (4) (5) () M @®)
Autocrat 0.020** 0.030*
(0.010) (0.015)
Unconstrained 0.029%*** 0.033**
Executive (0.010) (0.016)
Age of Leader 0.00009 0.00082 0.00064
(0.00037) (0.00049)  (0.00046)
Tenure of Leader 0.00039 -0.00129 -0.00083
(0.00062) (0.00102)  (0.00089)
British Colony -0.016 -0.012 -0.003
(0.011) (0.014) (0.015)
French Colony 0.007 0.026 0.014
(0.016) (0.024) (0.024)
Latin America 0.007 0.002 0.001
(0.014) (0.019) (0.019)
Sub-Saharan Africa -0.0002 -0.020 -0.017
(0.0120) (0.019) (0.019)
High Ethnic 0.003 0.019 0.016
Fragmentation (0.011) (0.015) (0.014)
Constant -0.01 -0.011* -0.011 0.004 -0.001 -0.001 -0.057 -0.05
(0.007)  (0.006) (0.024) 0.007)  (0.007)  (0.007)  (0.034) (0.033)
Observations 39 39 39 42 42 38 36 36
R-squared 0.10 0.29 0.02 0.07 0.01 0.00 0.26 0.26
Notes:

This table presents the results from estimating equation (2) using weighted least-squares. The dependent variable is
the average difference in annual growth rates between the five years after the leader’s death and the five years before
the leaders death, estimated by FGLS with country-specific heteroskedasticity using equation (1). Standard errors in

parentheses.

* significant at 10%; ** significant at 5%; *** significant at 1%



Table 8a: Alternative specifications of the relative effect of eliminating autocrats

Random Leaders Transitions

3 Year Windows 5 Year Windows 7 Year Windows
No Controls
t 0.023%* 0.020%* 0.013
(0.013) (0.010) (0.010)
t+1 0.025* 0.019* 0.017*
(0.013) (0.010) (0.010)
t+2 0.014 0.014 0.020%**
(0.014) (0.010) (0.008)
Full Controls
t 0.033 0.030* 0.025*
(0.020) (0.015) (0.014)
t+1 0.036* 0.030* 0.029%**
(0.018) (0.016) (0.014)
t+2 0.016 0.024 0.027**
(0.020) (0.016) (0.012)

Notes:

Each cell reports the coefficient on autocrat from a separate estimation of equation (2) using weighted least-squares.
The regressions listed under “controls” also include the leader’s age and tenure in the year before he died, colonial
origin dummies, continent dummies, and a dummy for whether the country had a high degree of ethnic
fragmentation as defined in Section 4. Number of observations varies from 32 to 39, depending on specification.

Standard errors in parentheses.

* indicates 90% significance; ** indicates 95% significance; *** indicates 99% significance.

Table 8b: Alternative specifications of relative effect of eliminating unconstrained leaders

3 Year Windows 5 Year Windows 7 Year Windows
No Controls
t 0.032** 0.029*** 0.025%*
(0.013) (0.010) (0.010)
t+1 0.035%** 0.022%* 0.021%*
(0.013) (0.010) (0.010)
t+2 0.022 0.012 0.018%**
(0.014) (0.011) (0.009)
Full Controls
t 0.040* 0.033** 0.034**
(0.020) (0.016) (0.015)
t+1 0.044%** 0.029 0.029*
(0.019) (0.018) (0.016)
t+2 0.03 0.023 0.023
(0.021) (0.018) (0.014)

Notes:

See notes to Table 8a. Each cell reports the coefficient on unconstrained leader from a separate regression.




Table 9: Robustness Checks

P-values: Probability that average growth does not change across randomly-timed leader deaths

3-Year Dummies

7-Year Dummies )
Number of

€)) 2 Number 3) @) Number of Obs
OLS FGLS of Deaths OLS FGLS Deaths
Treatment Timings
t .0440%* .0360** 42 0081*** Q025+ 42 5544
t+1 4544 .0831* 40 0078%** - 0037*** 40 5544
t+2 7984 .0054*** 39 .2480 .0519* 39 5544
‘ Tenure >=2 Tenure>=4
6) (6) Number @) 8 Number of
OLS FGLS of Deaths OLS FGLS Deaths
Treatment Timings ’
t ’ .0186** .0220** 36 .0494** 0672% 28 5544
t+1 .0164%* .0617* 34 .024 1%+ .0518* 26 5544
t+2 .5199 .0343** 31 4524 .0536* 24 5544
Tenure>=6 Tenure>=12
C) 10) Number an (12) Number of
OLS FGLS of Deaths OLS FGLS Deaths
Treatment Timings
t 2331 .1489 21 .9466 7039 17 5544
t+1 .1034 .0509* 19 7777 3011 15 5544
t+2 2622 .0356%* 19 .6376 .0648*. 15 5544
Autocrats Democrats
No Alternative Death Theory No Alternative Death Theory
(13) 14) Number (15) (16) Number of
OLS FGLS of Deaths OLS FGLS Deaths
Treatment Timings
t .0797* .0580* 18 9815 .8601 18 5544
t+1 .1160 1171 17 .9943 .9144 17 5544
t+2 5186 2509 17 7622 7682 15 5544
Notes:

(1) The table reports p-values, indicating the probability that the null hypothesis is false. Under the null hypothesis, growth
is the same before and after randomly-timed leader transitions. Asterisks are used to indicate the significance with which
the null is rejected: * indicates 90% significance; ** indicates 95% significance; *** indicates 99% significance.

(i) FGLS regressions assume heteroskedasticity by country. Results are nearly identical when additionally allowing for
country-specific AR(1) processes

(iii) To be conservative, all specifications exclude the 1994 plane crash that killed the leaders of Rwanda and Burundi.




Figure 1: China’s Growth Experience

(source: Penn World Tabl;;)" '




Figure 2: Growth and random leader deaths




Figure ‘2‘ (continued)
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Figure 3: Changes in growth around random leader deaths
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