
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2013-018 August 6, 2013

Sound Input Filter Generation for Integer
Overflow Errors
Fan Long, Stelios Sidiroglou-Douskos, Deokhwan
Kim, and Martin Rinard

Sound Input Filter Generation for Integer Overflow Errors

Fan Long, Stelios Sidiroglou-Douskos, Deokhwan Kim, Martin Rinard
MIT CSAIL

{fanl, stelios, dkim, rinard}@csail.mit.edu

Abstract
We present a system, SIFT, for generating input filters that
nullify integer overflow errors associated with critical pro-
gram sites such as memory allocation or block copy sites.
SIFT uses a static program analysis to generate filters that
discard inputs that may trigger integer overflow errors in the
computations of the sizes of allocated memory blocks or the
number of copied bytes in block copy operations. The gen-
erated filters are sound — if an input passes the filter, it will
not trigger an integer overflow error for any analyzed site.

Our results show that SIFT successfully analyzes (and
therefore generates sound input filters for) 52 out of 58 mem-
ory allocation and block memory copy sites in analyzed in-
put processing modules from five applications (VLC, Dillo,
Swfdec, Swftools, and GIMP). These nullified errors include
six known integer overflow vulnerabilities. Our results also
show that applying these filters to 62895 real-world inputs
produces no false positives. The analysis and filter genera-
tion times are all less than a second.

1. Introduction
Many security exploits target software errors in deployed
applications. One approach to nullifying vulnerabilities is to
deploy input filters that discard inputs that may trigger the
errors.

We present a new static analysis technique and imple-
mented system, SIFT, for automatically generating filters
that discard inputs that may trigger integer overflow errors
at analyzed memory allocation and block copy sites. We fo-
cus on this problem, in part, because of its practical impor-
tance. Because integer overflows may enable code injection
or other attacks, they are an important source of security vul-
nerabilities [22, 29, 32].

Unlike all previous techniques of which we are aware,
SIFT is sound — if an input passes the filter, it will not
trigger an overflow error at any analyzed site.

1.1 Previous Filter Generation Systems

Standard filter generation systems start with an input that
triggers an error [8–10, 24, 33]. They next use the input to
generate an execution trace and discover the path the pro-

gram takes to the error. They then use a forward symbolic
execution on the discovered path (and, in some cases, heuris-
tically related paths) to derive a vulnerability signature — a
boolean condition that the input must satisfy to follow the
same execution path through the program to trigger the same
error. The generated filter discards inputs that satisfy the vul-
nerability signature. Because other unconsidered paths to the
error may exist, these techniques are unsound (i.e., the filter
may miss inputs that exploit the error).

It is also possible to start with a potentially vulnerable site
and use a weakest precondition analysis to obtain an input
filter for that site. To our knowledge, the only previous tech-
nique that uses this approach [4] is unsound in that 1) it uses
loop unrolling to eliminate loops and therefore analyzes only
a subset of the possible execution paths and 2) it does not
specify a technique for dealing with potentially aliased val-
ues. As is standard, the generated filter incorporates checks
from conditional statements along the analyzed execution
paths. The goal is to avoid filtering potentially problematic
inputs that the program would (because of safety checks at
conditionals along the execution path) process correctly. As
a result, the generated input filters perform a substantial (be-
tween 106 and 1010) number of operations.

1.2 SIFT

SIFT starts with a set of critical expressions from memory
allocation and block copy sites. These expressions control
the sizes of allocated or copied memory blocks at these
sites. SIFT then uses an interprocedural, demand-driven,
weakest precondition static analysis to propagate the critical
expression backwards against the control flow. The result
is a symbolic condition that captures all expressions that
the application may evaluate (in any execution) to obtain
the values of critical expressions. The free variables in the
symbolic condition represent the values of input fields. In
effect, the symbolic condition captures all of the possible
computations that the program may perform on the input
fields to obtain the values of critical expressions. Given an
input, the generated input filter evaluates this condition over
the corresponding input fields to discard inputs that may
cause an overflow.

1 2013/8/5

Annotated
Modules

Static
Analysis

Symbolic
Conditions

Critical Site
Identification

Filter
Generator Drop Input?

Incoming
Input

Application

No

Yes Generate
Report

Property Checker

Figure 1. The SIFT architecture.

A key challenge is that, to successfully extract effec-
tive symbolic conditions, the analysis must reason precisely
about interprocedural computations that use pointers to com-
pute and manipulate values derived from input fields. Our
analysis meets this challenge by deploying a novel combi-
nation of techniques including 1) a novel interprocedural
weakest precondition analysis that works with symbolic rep-
resentations of input fields and values accessed via pointers
(including input fields read in loops and values accessed via
pointers in loops) and 2) an alias analysis that ensures that
the derived symbolic condition correctly characterizes the
values that the program computes.

Another key challenge is obtaining loop invariants that
enable the analysis to precisely characterize how loops
transform the propagated symbolic conditions. Our analy-
sis meets this challenge with a novel symbolic expression
normalization algorithm that enables the fixed point analysis
to terminate unless it attempts to compute a symbolic value
that depends on a statically unbounded number of values
computed in different loop iterations (see Section 3.2).

• Sound Filters: Because SIFT takes all paths to analyzed
memory allocation and block copy sites into account, it
generates sound filters — if an input passes the filter, it
will not trigger an overflow in the evaluation of any crit-
ical expression (including the evaluation of intermediate
expressions at distant program points that contribute to
the value of the critical expression).1

• Efficient Filters: Unlike standard techniques, SIFT in-
corporates no checks from the program’s conditional
statements and works only with arithmetic expressions
that contribute directly to the values of the critical ex-

1 As is standard in the field, SIFT uses an alias analysis that is designed to
work with programs that do not access uninitialized or out of bounds mem-
ory. Our analysis therefore comes with the following soundness guarantee.
If an input passes the filter for a given critical expression e, the input field
annotations are correct (see Section 3.4), and the program has not yet ac-
cessed uninitialized or out of bounds memory when the program computes
a value of e, then no integer overflow occurs during the evaluation of e (in-
cluding the evaluations of intermediate expressions that contribute to the
final value of the critical expression).

pressions. It therefore generates much more efficient fil-
ters than standard techniques (SIFT’s filters perform tens
of operations as opposed to tens of thousands or more).
Indeed, our experimental results show that, in contrast
to standard filters, SIFT’s filters spend essentially all of
their time reading the input (as opposed to checking if
the input may trigger an overflow error).

• Accurate Filters: Our experimental results show that,
empirically, ignoring execution path constraints results
in no loss of accuracy. Specifically, we tested our gener-
ated filters on 62895 real-world inputs for six benchmark
applications and found no false positives (incorrectly fil-
tered inputs that the program would have processed cor-
rectly). We attribute this potentially counterintuitive re-
sult to the fact that standard integer data types usually
contain enough bits to represent the memory allocation
sizes and block copy lengths that benign inputs typically
elicit.

1.3 SIFT Usage Model

Figure 1 presents the architecture of SIFT. The architecture
is designed to support the following usage model:
Module Identification. Starting with an application that is
designed to process inputs presented in one or more input
formats, the developer identifies the modules within the ap-
plication that process inputs of interest. SIFT will analyze
these modules to generate an input filter for the inputs that
these modules process.
Input Statement Annotation. The developer annotates the
relevant input statements in the source code of the modules
to identify the input field that each input statement reads.
Critical Site Identification. SIFT scans the modules to find
all critical sites (currently, memory allocation and block
copy sites). Each critical site has a critical expression that
determines the size of the allocated or copied block of mem-
ory. The generated input filter will discard inputs that may
trigger an integer overflow error during the computation of
the value of the critical expression.
Static Analysis. For each critical expression, SIFT uses a
demand-driven backwards static program analysis to auto-

2 2013/8/5

matically derive the corresponding symbolic condition. Each
conjunct expression in this condition specifies, as a function
of the input fields, how the value of the critical expression is
computed along one of the program paths to the correspond-
ing critical site.
Input Parser Acquisition. The developer obtains (typically
from open-source repositories such as Hachoir [1]) a parser
for the desired input format. This parser groups the input bit
stream into input fields, then makes these fields available via
a standard API.
Filter Generation. SIFT uses the input parser and symbolic
conditions to automatically generate the input filter. When
presented with an input, the filter reads the fields of the input
and, for each symbolic expression in the conditions, deter-
mines if an integer overflow may occur when the expression
is evaluated. If so, the filter discards the input. Otherwise, it
passes the input along to the application. The generated fil-
ters can be deployed anywhere along the path from the input
source to the application that ultimately processes the input.

1.4 Experimental Results

We used SIFT to generate input filters for modules in
five real-world applications: VLC 0.8.6h (a network me-
dia player), Dillo 2.1 (a lightweight web browser), Swfdec
0.5.5 (a flash video player), Swftools 0.9.1 (SWF manipu-
lation and generation utilities), and GIMP 2.8.0 (an image
manipulation application). Together, the analyzed modules
contain 58 critical memory allocation and block copy sites.
SIFT successfully generated filters for 52 of these 58 crit-
ical sites (SIFT’s static analysis was unable to derive sym-
bolic conditions for the remaining six critical sites, see Sec-
tion 5.2 for more details). These applications contain six
integer overflow vulnerabilities at their critical sites. SIFT’s
filters nullify all of these vulnerabilities.
Analysis and Filter Generation Time. We configured SIFT
to analyze all critical sites in the analyzed modules, then gen-
erate a single, high-performance composite filter that checks
for integer overflow errors at all of the sites. The maximum
time required to analyze all of the sites and generate the com-
posite filter was less than a second for each benchmark ap-
plication.
False Positive Evaluation. We used a web crawler to obtain
a set of least 6000 real-world inputs for each application (for
a total of 62895 input files). We found no false positives —
the corresponding composite filters accept all of the input
files in this test set.
Filter Performance. We measured the composite filter exe-
cution time for each of the 62895 input files in our test set.
The average time required to read and filter each input was at
most 16 milliseconds, with this time dominated by the time
required to read in the input file.

1.5 Contributions

This paper makes the following contributions:

• SIFT: We present SIFT, a sound filter generation sys-
tem for nullifying integer overflow vulnerabilities. SIFT
scans modules to find critical memory allocation and
block copy sites, statically analyzes the code to automat-
ically derive symbolic conditions that characterize how
the application may compute the sizes of the allocated
or copied memory blocks, and generates input filters that
discard inputs that may trigger integer overflow errors in
the evaluation of these expressions.

In comparison with previous filter generation techniques,
SIFT is sound and generates efficient and empirically
precise filters.

• Static Analysis: We present a new static analysis that au-
tomatically derives symbolic conditions that capture, as a
function of the input fields, how the integer values of crit-
ical expressions are computed along the various possible
execution paths to the corresponding critical site.

Key elements of this static analysis include 1) a precise
backwards symbolic analysis that soundly and accurately
reasons about symbolic conditions in the face of instruc-
tions that use pointers to load and store computed values
and 2) a novel normalization procedure that enables the
analysis to effectively synthesize symbolic loop invari-
ants.

• Experimental Results: We present experimental results
that illustrate the practical viability of our approach in
protecting applications against integer overflow vulnera-
bilities at memory allocation and block copy sites.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an example that illustrates how SIFT works.
Section 3 presents the core SIFT static analysis for C pro-
grams. Section 4 presents the formalization of the static anal-
ysis and discusses the soundness of the analysis. Section 5
presents the experimental results. Section 6 presents related
work. We conclude in Section 7.

2. Example
We next present an example that illustrates how SIFT

nullifies an integer overflow vulnerability in Swfdec 0.5.5,
an open source shockwave flash player.

Figure 2 presents (simplified) source code from Swfdec.
When Swfdec opens an SWF file with embedded JPEG im-
ages, it calls jpeg_decoder_decode() (line 1 in Figure 2)
to decode each JPEG image in the file. This function in
turn calls the function jpeg_decoder_start_of_frame()
(line 7) to read the image metadata and the function

3 2013/8/5

1 int jpeg_decoder_decode(JpegDecoder *dec) {
2 ...
3 jpeg_decoder_start_of_frame(dec, ...);
4 jpeg_decoder_init_decoder (dec);
5 ...
6 }
7 void jpeg_decoder_start_of_frame(JpegDecoder*dec){
8 ...
9 dec->height = jpeg_bits_get_u16_be (bits);

10 /* dec->height = SIFT_input("jpeg_height", 16);*/
11 dec->width = jpeg_bits_get_u16_be (bits);
12 /* dec->width = SIFT_input("jpeg_width", 16); */
13 for (i = 0; i < dec->n_components; i++) {
14 dec->components[i].h_sample =getbits(bits, 4);
15 /* dec->components[i].h_sample =
16 SIFT_input("h_sample", 4); */
17 dec->components[i].v_sample =getbits(bits, 4);
18 /* dec->components[i].v_sample =
19 SIFT_input("v_sample", 4); */
20 }
21 }
22 void jpeg_decoder_init_decoder(JpegDecoder*dec){
23 int max_h_sample = 0;
24 int max_v_sample = 0;
25 int i;
26 for (i=0; i < dec->n_components; i++) {
27 max_h_sample = MAX(max_h_sample,
28 dec->components[i].h_sample);
29 max_v_sample = MAX(max_v_sample,
30 dec->components[i].v_sample);
31 }
32 dec->width_blocks=(dec->width+8*max_h_sample-1)
33 / (8*max_h_sample);
34 dec->height_blocks=(dec->height+8*max_v_sample-1)
35 / (8*max_v_sample);
36 for (i = 0; i < dec->n_components; i++) {
37 int rowstride;
38 int image_size;
39 dec->components[i].h_subsample=max_h_sample /
40 dec->components[i].h_sample;
41 dec->components[i].v_subsample=max_v_sample /
42 dec->components[i].v_sample;
43 rowstride=dec->width_blocks * 8 * max_h_sample /
44 dec->components[i].h_subsample;
45 image_size=rowstride * (dec->height_blocks * 8 *
46 max_v_sample / dec->components[i].v_subsample);
47 dec->components[i].image = malloc (image_size);
48 }
49 }

Figure 2. Simplified Swfdec source code. Input statement
annotations appear in comments.

jpeg_decoder_init_decoder() (line 22) to allocate mem-
ory buffers for the JPEG image.

There is an integer overflow vulnerability at lines 43-47
where Swfdec calculates the size of the buffer for a JPEG
image as:
rowstride * (dec->height_block * 8 * max_v_sample /
dec->components[i].v_subsample)

At this program point, rowstride equals:
(jpeg_width + 8 * max_h_sample - 1) / (8 * max_h_sample)

* 8 * max_h_sample / (max_h_sample / h_sample)

while the rest of the expression equals

(jpeg_height + 8 * max_v_sample - 1) / (8 * max_v_sample)

* 8 * max_v_sample / (max_v_sample / v_sample)

where jpeg_height is the 16-bit height input field value that
Swfdec reads at line 9 and jpeg_width is the 16-bit width

input field value that Swfdec reads at line 11. h_sample is
one of the horizontal sampling factor values that Swfdec
reads at line 14, while max_h_sample is the maximum
horizontal sampling factor value. v_sample is one of the
vertical sampling factor values that Swfdec reads at line 17,
while max_v_sample is the maximum vertical sampling
factor value. Malicious inputs with specifically crafted val-
ues in these input fields can cause the image buffer size cal-
culation to overflow. In this case Swfdec allocates an image
buffer that is smaller than required and eventually writes be-
yond the end of the allocated buffer.

The loop at lines 13-20 reads an array of horizontal and
vertical factor values. Swfdec computes the maximum val-
ues of these factors in the loop at lines 26-31. It then uses
these values to compute the size of the allocated buffer at
each iteration in the loop (lines 36-48).
Analysis Challenges: This example highlights several chal-
lenges that SIFT must overcome to successfully analyze and
generate a filter for this program. First, the expression for
the size of the buffer uses pointers to access values derived
from input fields. To overcome this challenge, SIFT uses an
alias analysis [17] to reason precisely about expressions with
pointers.

Second, the memory allocation site (line 47) occurs in a
loop, with the size expression referencing input values read
in a different loop (lines 13-19). Different instances of the
same input field (h_sample and v_sample) are used to
compute (potentially different) sizes for different blocks of
memory allocated at the same site. To reason precisely about
these different instances, the analysis works with an abstrac-
tion that materializes, on demand, abstract representatives of
accessed input field and computed values (see Section 3). To
successfully analyze the loop, the analysis uses a new loop
invariant synthesis algorithm (which exploits a new expres-
sion normalization technique to reach a fixed point).

Finally, Swfdec reads the input fields (lines 14 and 17)
and computes the size of the allocated memory block (lines
45-46) in different procedures. SIFT therefore uses an in-
terprocedural analysis that propagates symbolic conditions
across procedure boundaries to obtain precise symbolic con-
ditions.

We next describe how SIFT generates a sound input filter
to nullify this integer overflow error.
Source Code Annotations: SIFT provides an declarative
specification interface that enables the developer to spec-
ify which statements read which input fields. In this ex-
ample, the developer specifies that the application reads
the input fields jpeg_height, jpeg_width, h_sample, and
v_sample at lines 10, 12, 15-16, and 18-19 in Figure 2.
SIFT uses this specification to map the variables dec-
>height, dec->width, dec->components[i].h_sample,
and dec->components[i].v_sample at lines 9, 11, 14, and

4 2013/8/5

C : safe((((sext(jpeg_width[16], 32) + 8[32] × sext(h_sample(1)[4], 32)− 1[32])/(8[32] × sext(h_sample(1)[4], 32))

×8[32] × sext(h_sample(1)[4], 32))/(sext(h_sample(1)[4], 32)/sext(h_sample(2)[4], 32)))

×(((sext(jpeg_height[16], 32) + 8[32] × sext(v_sample(1)[4], 32)− 1[32])/(8[32] × sext(v_sample(1)[4], 32))

×8[32] × sext(v_sample(1)[4], 32))/(sext(v_sample(1)[4], 32)/sext(v_sample(2)[4], 32))))

Figure 3. The symbolic condition C for the Swfdec example. Subexpressions in C are bit vector expressions. The superscript
indicates the bit width of each expression atom. “sext(v, w)" is the signed extension operation that transforms the value v to
the bit width w.

17 to the corresponding input field values. The field names
h_sample and v_sample map to two arrays of input fields
that Swfdec reads in the loop at lines 14 and 17.
Compute Symbolic Condition: SIFT uses a demand-
driven, interprocedural, backward static analysis to com-
pute the symbolic condition C in Figure 3. We use notation
“safe(e)" in Figure 3 to denote that overflow errors should
not occur in any step of the evaluation of the expression e.
Subexpressions inC are in bit vector expression form so that
the expressions accurately reflect the representation of the
numbers inside the computer as fixed-length bit vectors as
well as the semantics of arithmetic and logical operations as
implemented inside the computer on these bit vectors.

In Figure 3, the superscripts indicate the bit width of each
expression atom. sext(v, w) is the signed extension opera-
tion that transforms the value v to the bit width w. SIFT also
tracks the sign of each arithmetic operation in C. For sim-
plicity, Figure 3 omits this information. SIFT soundly han-
dles the loops that access the input field arrays h_sample
and v_sample. The generated C reflects the fact that the
variable dec->components[i].h_sample and the variable
max_h_sample might be two different elements in the
input array h_sample. In C, h_sample(1) corresponds
to max_h_sample and h_sample(2) corresponds to dec-
>components[i].h_sample. SIFT handles v_sample sim-
ilarly.
C includes all intermediate expressions evaluated at lines

32-35 and 39-46. In this example, C contains only a single
term in the form of safe(e). However, if there may be multi-
ple execution paths, SIFT generates a symbolic condition C
that conjuncts multiple terms in the form of safe(e) to cover
all paths.
Generate Input Filter: Starting with the symbolic condi-
tion C, SIFT generates an input filter that discards any input
that violates C, i.e., for any term safe(e) in C, the input trig-
gers integer overflow errors when evaluating e (including all
subexpressions). The generated filter extracts all instances of
the input fields jpeg_height, jpeg_width, h_sample, and
v_sample (these are the input fields that appear in C) from
an incoming input. It then iterates over all combinations of
pairs of the input fields h_sample and v_sample to con-
sider all possible bindings of h_sample(1), h_sample(2),
v_sample(1), and v_sample(2) in C. For each binding, it

checks the entire evaluation of C (including the evaluation
of all subexpressions) for overflow. If there is no overflow
in any evaluation, the filter accepts the input, otherwise it
rejects the input.

3. Static Analysis
This section presents the static analysis algorithm in SIFT.
We have implemented our static analysis for C programs
using the LLVM Compiler Infrastructure [2].

3.1 Core Language and Notation

s := l: x = read(f) | l: x = c | l: x = y |
l: x = y op z | l: x = ∗p | l: ∗p = x |
l: p = malloc | l: skip | s′; s′′ |
l: if (x) s′ else s′′ | l: while (x) {s′}

s, s′, s′′ ∈ Statement f ∈ InputField
x, y, z, p ∈ Var c ∈ Int l ∈ Label

Figure 4. The Core Programming Language

Figure 4 presents the core language that we use to present
the analysis. The language is modeled on a standard lowered
program representation in which 1) nested expressions are
converted into sequences of statements of the form l: x = y
op z (where x, y, and z are either non-aliased variables or
automatically generated temporaries) and 2) all accesses to
potentially aliased memory locations occur in load or store
statements of the form l: x = ∗p or l:∗p = x. Each statement
contains a unique label l ∈ Label.

A statement of the form “l: x = read(f)” reads a value
from an input field f . Because the input may contain mul-
tiple instances of the field f , different executions of the
statement may return different values. For example, the loop
at lines 14-17 in Figure 2 reads multiple instances of the
h_sample and v_sample input fields.
Labels and Pointer Analysis: Figure 5 presents three utility
functions first : Statement → Label, last : Statement →
Label, and labels : Statement → Label in our notations.
Intuitively, given a statement s, firstmaps s to the label that
corresponds to the first atomic statement inside s; last maps
s to the label that corresponds to the last atomic statement
inside s; labels maps s to the set of labels that are inside s.

5 2013/8/5

first(s) =

{
first(s′) s = s′; s′′

l otherwise, l is the label of s

last(s) =

{
last(s′′) s = s′; s′′

l otherwise, l is the label of s

labels(s) =
labels(s′) ∪ labels(s′′) s = s′; s′′

{l} ∪ labels(s′) s = while (x) {s′}
{l} ∪ labels(s′) ∪ labels(s′′) s = if (x) s′ else s′′

{l} otherwise, l is the label of s

Figure 5. Definitions of first, last, and labels

We use LoadLabel and StoreLabel to denote the set of
labels that correspond to load and store statements, respec-
tively. LoadLabel ⊆ Label and StoreLabel ⊆ Label.

Our static analysis uses an underlying pointer analy-
sis [17] to disambiguate aliases at load and store statements.
The pointer analysis provides two functions no_alias and
must_alias:

no_alias : (StoreLabel× LoadLabel)→ Bool
must_alias : (StoreLabel× LoadLabel)→ Bool

We assume that the underlying pointer analysis is sound
so that 1) no_alias(lstore, lload) = true only if the load state-
ment at label lload will never retrieve a value stored by the
store statement at label lstore; 2) must_alias(lstore, lload) =
true only if the load statement at label lload will always re-
trieve a value from the last memory location that the store
statement at label lstore manipulates (see Section 4.2 for a
formal definition of the soundness requirements that the alias
anlayisis must satisfy).

3.2 Intraprocedural Analysis

Because it works with a lowered representation, our static
analysis starts with a variable v at a critical program point.
It then propagates v backward against the control flow to
the program entry point. In this way the analysis computes a
symbolic condition that soundly captures how the program,
starting with input field values, may compute the value of
v at the critical program point. The generated filters use the
analysis results to check whether the input may trigger an
integer overflow error in any of these computations.
Condition Syntax:

Figure 7 presents the definition of symbolic conditions
that our analysis manipulates and propagates. A condition
consists of a set of conjuncts in the form of safe(e), which
represents that the evaluation of the symbolic expression
e should not trigger an overflow condition (including all
sub-computations in the evaluation, see Section 4.5 for the
formal definition of a program state satisfying a condition).

C := C ∧ safe(e) | safe(e)
e := e1 op e2 | atom

atom := x | c | f(id) | l(id)

id ∈ {1, 2, . . . } x ∈ Var c ∈ Int
l ∈ LoadLabel f ∈ InputField

Figure 7. The Condition Syntax

Symbolic conditions may contain four kinds of atoms:
c represents a constant, x represents the variable x, f(id)
represents the value of an input field f (the analysis uses
the natural number id to distinguish different instances of
f), and l(id) represents a value returned by a load statement
with the label l (the analysis uses the natural number id to
distinguish values loaded at different executions of the load
statement).
Analysis Framework: Given a series of statements s, a label
l within s (l ∈ labels(s)), and a symbolic condition C at
the program point after the corresponding statement with
the label l, our demand-driven backwards analysis computes
a symbolic condition F (s, l, C). The analysis ensures that
if F (s, l, C) holds before executing s, then C will hold
whenever the execution reaches the program point after the
corresponding statement with the label l (see Section 4.5 for
the formal definition).

Given a program s0 as a series of statements and a vari-
able v at a critical site associated with the label l, our analysis
generates the condition F (s, l, safe(v)) to create an input fil-
ter that checks whether the input may trigger an integer over-
flow error in the computations that the program performs to
obtain the value of v at the critical site.
Analysis of Assignment, Conditional, and Sequence
Statements: Figure 6 presents the analysis rules for basic
program statements. The analysis of assignment statements
replaces the assigned variable x with the assigned value (c,
y, y op z, or f(id), depending on the assignment statement).
Here the notation C[ea/eb] denotes the new symbolic condi-
tion obtained by replacing every occurrence of eb in C with
ea. The analysis rule for input read statements materializes
a new id to represent the read value f(id). This mecha-
nism enables the analysis to correctly distinguish different
instances of the same input field (because different instances
have different ids).

If the label l identifies the end of a conditional statement,
the analysis of the statement takes the union of the symbolic
conditions from the analysis of the true and false branches of
the conditional statement. The resulting symbolic condition
correctly takes the execution of both branches into account.
If the label l identifies a program point within one of the
branches of a conditional statement, the analysis will prop-
agate the condition from that branch only. The analysis of

6 2013/8/5

Statement s Rules
l : x = c F (s, l, C) = C[c/x]

l : x = y F (s, l, C) = C[y/x]

l : x = y op z F (s, l, C) = C[y op z/x]

l : x = read(f) F (s, l, C) = C[f(id)/x], f(id) is fresh.
s′; s′′ F (s, l, C) = F (s′, last(s′), F (s′′, l, C)), if l ∈ labels(s′′)

F (s, l, C) = F (s′, l, C), if l ∈ labels(s′)
l : if (v) s′ else s′ F (s, l, C) = F (s′, last(s′), C) ∧ F (s′′, last(s′′), C)

F (s, l′, C) = F (s′, l′, C), if l′ ∈ labels(s′)
F (s, l′, C) = F (s′′, l′, C), if l′ ∈ labels(s′′)

l : while (v) {s′} F (s, l, C) = Cfix ∧ C, if norm(F (s′, last(s′), Cfix ∧ C)) = Cfix

F (s, l′, C) = F (s, l, C′), if F (s′, l′, C) = C′ and l′ ∈ labels(s′)
l : p = malloc F (s, l, C) = C

l : x = ∗p F (s, l, C) = C[l(id)/x], l(id) is fresh.
l : ∗p = x F (s, l, C) = C(l1(id1), l, x)(l2(id2), l, x) . . . (ln(idn), l, x) for all l1(id1), . . . , ln(idn) in C, where:

C(lload(id), l, x) =

C no_alias(l, lload)

C[x/lload(id)] ¬no_alias(l, lload) ∧must_alias(l, lload)

C[x/lload(id)] ∧ C ¬no_alias(l, lload) ∧ ¬must_alias(l, lload)

Figure 6. Static analysis rules. The notation C[ea/eb] denotes the symbolic condition obtained by replacing every occurrence
of eb in C with ea. norm(C) is the normalization function that transforms the condition C to an equivalent normalized
condition.

sequences of statements propagates the symbolic expression
set backwards through the statements in sequence.
Analysis of Load and Store Statements: The analysis of
a load statement x = ∗p replaces the assigned variable x
with a materialized abstract value l(id) that represents the
loaded value. For input read statements, the analysis uses a
newly materialized id to distinguish values read on different
executions of the load statement.

The analysis of a store statement ∗p = x uses the alias
analysis to appropriately match the stored value x against
all loads that may return that value. Specifically, the analysis
locates all li(idi) atoms in C that either may or must load a
value v that the store statement stores into the location p. If
the alias analysis determines that the li(idi) expression must
load x (i.e., the corresponding load statement will always
access the last value that the store statement stored into
location p), then the analysis of the store statement replaces
all occurrences of li(idi) with x.

If the alias analysis determines that the li(idi) expression
may load x (i.e., on some executions the corresponding load
statement may load x, on others it may not), then the analysis
produces two symbolic conditions: one with li(idi) replaced
by x (for executions in which the load statement loads x)
and one that leaves li(idi) in place (for executions in which
the load statement loads a value other than x).

We note that, if the pointer analysis is imprecise, the sym-
bolic condition may become intractably large. SIFT uses the
DSA algorithm [17], a context-sensitive, unification-based
pointer analysis. We found that, in practice, this analysis

1 Input: Expression e

2 Output: Normalized expression enorm

3

4 enorm ←e

5 f_cnt← {all→0}
6 l_cnt← {all→0}
7 for a in Atoms(e) do
8 if a is in form f(id) then
9 nextid←f_cnt(f) + 1

10 f_cnt←f_cnt[f →nextid]

11 enorm ←enorm[∗f(nextid)/f(id)]

12 else if a is in form l(id) then
13 nextid←l_cnt(l) + 1

14 l_cnt←l_cnt[l→nextid]

15 enorm ←enorm[∗l(nextid)/l(id)]

16 end if
17 end
18 for a in Atoms(enorm) do
19 if a is in form ∗f(id) then
20 enorm ←enorm[f(id)/ ∗ f(id)]

21 else if a is in form ∗l(id) then
22 enorm ←enorm[l(id)/ ∗ l(id)]

23 end if
24 end

Figure 8. Normalization function norm(e). Atom(e) iter-
ates over the atoms in the expression e from left to right.

is precise enough to enable SIFT to efficiently analyze our
benchmark applications (see Figure 14 in Section 5.2).
Analysis of Loop Statements: The analysis uses a fixed-
point algorithm to synthesize the loop invariant Cfix required
to analyze while loops. Specifically, the analysis of a state-

7 2013/8/5

ment while(x){s′} computes a sequence of symbolic condi-
tions Ci, where C0 = ∅ and Ci = norm(F (s′, last(s′), C∧
Ci−1)). Conceptually, each successive symbolic condition
Ci captures the effect of executing an additional loop itera-
tion. The analysis terminates when it reaches a fixed point
(i.e., when it has performed n iterations such that Cn =
Cn−1). Here Cn is the discovered loop invariant. This fixed
point correctly summarizes the effect of the loop (regardless
of the number of iterations that it may perform).

The loop analysis normalizes the analysis result
F (s′, last(s′), C∧Ci−1) after each iteration. For a symbolic
condition C = safe(e1) ∧ . . . ∧ safe(en), the normalization
of C is norm(C) = remove_dup(safe(norm(e1)) ∧ . . . ∧
safe(norm(en))), where norm(ei) is the normalization of
each individual expression in C (using the algorithm pre-
sented in Figure 8) and remove_dup() removes duplicate
conjuncts from the condition.

Normalization facilitates loop invariant discovery for
loops that read input fields or load values via pointers. Each
analysis of the loop body during the fixed point computa-
tion produces new materialized values f(id) and l(id) with
fresh ids. The new materialized f(id) represent input fields
that the current loop iteration reads; the new materialized
l(id) represent values that the current loop iteration loads via
pointers. The normalization algorithm appropriately renum-
bers these ids in the new symbolic condition so that the first
appearance of each id is in lexicographic order. Because the
normalization only renumbers ids, the normalized condition
is equivalent to the original conditions (see Section 4.5). This
normalization enables the analysis to recognize loop invari-
ants that show up as equivalent successive analysis results
that differ only in the materialized ids that they use to repre-
sent input fields and values accessed via pointers.

The above algorithm will reach a fixed point and ter-
minate if it computes the symbolic condition of a value
that depends on at most a statically fixed number of val-
ues from the loop iterations. For example, our algorithm
is able to compute the symbolic condition of the size pa-
rameter value of the memory allocation in Figure 2 —
the value of this size parameter depends only on the val-
ues of jpeg_width and jpeg_height, the current values
of h_sample and v_sample, and the maximum values of
h_sample and v_sample, each of which comes from one
previous iteration of the loop at line 26-31.

Note that the algorithm will not reach a fixed point if it
attempts to compute a symbolic condition that contains an
unbounded number of values from different loop iterations.
For example, the algorithm will not reach a fixed point if it
attempts to compute a symbolic condition for the sum of a
set of numbers computed within the loop (the sum depends
on values from all loop iterations). To ensure termination,
our current implemented algorithm terminates the analysis

1 Input: A symbolic condition C

2 Output: F (lcall : v = call proc v1 . . . vk, lcall, C),
3 where proc is defined as:
4 proc(a1, a2,. . .,ak) { s; ret vret }
5 Where: l1(id1), l2(id2), . . . , ln(idn)

6 are all atoms of the form l(id)

7 that appear in S.
8

9 R← ∅
10 ST0 ←F (s, last(s),safe(vret))

11 for e0 in exprs(ST0[v1/a1] . . . [vn/an]) do
12 ST1 ←F (s, last(s), safe(l1(id1)))

13 for e1 in exprs(ST1[v1/a1] . . . [vn/an]) do
14 ...
15 STn ←F (sb, last(s),safe(ln(idn)))

16 for en in exprs(STn[v1/a1] . . . [vn/an]) do
17 e′0 ←make_fresh(e0, C)

18 ...
19 e′n ←make_fresh(en, C)

20 R←R ∧ C[e′0/v] . . . [e′i/labeli(idi)] . . .

21 end
22 ...
23 end
24 end
25 F (lcall : v = call proc v1 . . . vk, lcall, C)← R

Figure 9. Procedure Call Analysis Algorithm.
make_fresh(e, C) renumbers ids in e so that oc-
currences of l(id) and f(id) will not conflict with
the condition C. exprs(C) returns the set of expres-
sions that appear in the conjuncts of C. For example,
expr(safe(e1) ∧ safe(e2)) = {e1, e2}.

and fails to generate a symbolic condition C if it fails to
reach a fixed point after ten iterations.

In practice, we expect that many programs may contain
expressions whose values depend on an unbounded number
of values from different loop iterations. Our analysis can
successfully analyze such programs because it is demand
driven — it only attempts to obtain precise symbolic repre-
sentations of expressions that may contribute to the values of
expressions in the analyzed symbolic condition C (which, in
our current system, are ultimately derived from expressions
that appear at memory allocation and block copy sites). Our
experimental results indicate that our approach is, in prac-
tice, effective for this set of expressions, specifically because
these expressions tend to depend on at most a fixed number
of values from loop iterations.

3.3 Inter-procedural Analysis

Analyzing Procedure Calls: Figure 9 presents the inter-
procedural analysis for procedure call sites. Given a sym-
bolic condition C and a function call statement lcall :
v = call proc v1 . . . vk that invokes a procedure proc(a1,

8 2013/8/5

a2,. . .,ak) { s; ret vret }, the analysis computes F (v =
call proc v1 . . . vk, lcall, C).

Conceptually, the analysis performs two tasks. First, it re-
places any occurrences of the procedure return value v in C
(the symbolic condition after the procedure call) with sym-
bolic expressions that represent the values that the proce-
dure may return. Second, it transforms C to reflect the ef-
fect of any store instructions that the procedure may exe-
cute. Specifically, the analysis finds expressions l(id) in C
that represent values that 1) the procedure may store into a
location p 2) that the computation following the procedure
may access via a load instruction that may access (a poten-
tially aliased version of) p. It then replaces occurrences of
l(id) in C with symbolic expressions that represent the cor-
responding values computed (and stored into p) within the
procedure.

The analysis examines the invoked procedural body s

to obtain the symbolic expressions that corresponds to
the return value (see line 10) or the value of l(id) (see
lines 12 and 15). The analysis avoids redundant analysis
of the invoked procedure by caching the analysis results
F (s, last(s), safe(vret)) and F (s, last(s), safe(l(id))) for
reuse.

Note that symbolic expressions derived from an analysis
of the invoked procedure may contain occurrences of the
formal parameters a1, ..., ak. The interprocedural analysis
translates these symbolic expressions into the name space of
the caller by replacing occurrences of the formal parameters
a1, ..., ak with the corresponding actual parameters v1, ..., vk
from the call site (see lines 11, 13, and 16 in Figure 9).

Also note that the analysis carefully renumbers the ids
in the symbolic expressions derived from an analysis of the
invoked procedure before the replacements (see lines 17-19).
This ensures that the occurances of f(id) and s(id) in the
expressions are fresh in C.
Propagation to Program Entry: To derive the final sym-
bolic condition at the start of the program, the analysis prop-
agates the current symbolic condition up the call tree through
procedure calls until it reaches the start of the program.
When the propagation reaches the entry of the current pro-
cedure proc, the algorithm uses the procedure call graph to
find all call sites that may invoke proc.

It then propagates the current symbolic conditionC to the
callers of proc, appropriately translating C into the naming
context of the caller by substituting any formal parameters of
proc that appear in C with the corresponding actual param-
eters from the call site. The analysis continues this propaga-
tion until it has traced out all paths in the call graph from the
initial critical site where the analysis started to the program
entry point. The final symbolic condition C is the conjunc-
tion of the conditions derived along all of these paths.

3.4 Extension to C Programs

We next describe how to extend our analysis to real world C
programs to generate input filters.
Identify Critical Sites: SIFT transforms the application
source code into the LLVM intermediate representation
(IR) [2], scans the IR to identify critical values (i.e., size
parameters of memory allocation and block copy call sites)
inside the developer specified module, and then performs the
static analysis for each identified critical value. By default,
SIFT recognizes calls to standard C memory allocation rou-
tines (such as malloc, calloc, and realloc) and block copy
routines (such as memcpy). SIFT can also be configured to
recognize additional memory allocation and block copy rou-
tines (for example, dMalloc in Dillo).
Bit Width and Signness: SIFT extends the analysis de-
scribed above to track the bit width of each expression atom.
It also tracks the sign of each expression atom and arith-
metic operation and correctly handles extension and trunca-
tion operations (i.e., signed extension, unsigned extension,
and truncation) that change the width of a bit vector. SIFT
therefore faithfully implements the representation of integer
values in the C program.
Function Pointers and Library Calls: SIFT uses its under-
lying pointer analysis [17] to disambiguate function point-
ers. It can analyze programs that invoke functions via func-
tion pointers.

The static analysis may encounter procedure calls (for ex-
ample, calls to standard C library functions) for which the
source code of the callee is not available. A standard way to
handle this situation is to work with an annotated procedure
declaration that gives the static analysis information that it
can use to analyze calls to the procedure. If code for an in-
voked procedure is not available, by default SIFT currently
synthesizes information that indicates that symbolic expres-
sions are not available for the return value or for any values
accessible (and therefore potentially stored) via procedure
parameters (code following the procedure call may load such
values). This information enables the analysis to determine
if the return value or values accessible via the procedure pa-
rameters may affect the analyzed symbolic condition C. If
so, SIFT does not generate a filter. Because SIFT is demand-
driven, this mechanism enables SIFT to successfully analyze
programs with library calls (all of our benchmark programs
have such calls) as long as the calls do not affect the analyzed
symbolic conditions.
Annotations for Input Read Statement: SIFT provides
a declarative specification language that developers use to
indicate which input statements read which input fields. In
our current implementation these statements appear in the
source code in comments directly below the C statement
that reads the input field. See lines 10, 12, 15-16, and 18-

9 2013/8/5

19 in Figure 2 for examples that illustrate the use of the
specification language in the Swfdec example. The SIFT
annotation generator scans the comments, finds the input
specification statements, then inserts new nodes into the
LLVM IR that contain the specified information. Formally,
this information appears as procedure calls of the following
form:

v = SIFT_Input("field_name", w);

where v is a program variable that holds the value of the
input field with the field name field_name. The width (in
bits) of the input field is w. The SIFT static analyzer recog-
nizes such procedure calls as specifying the correspondence
between input fields and program variables and applies the
appropriate analysis rule for input read statements (see Fig-
ure 6).
Input Filter Generation: We prune any conjuncts that con-
tain residual occurrences of abstract materialized values
l(id) in the final symbolic condition C. We also replace ev-
ery residual occurance of program variables v with 0. For-
mally speaking, these residual occurances correspond to ini-
tial values of the program state σ and h̄ in abstract semantics
(see Section 4.3). The result condition CInp will contain only
input value and constant atoms.

The filter operates as follows. It first uses an existing
parser for the input format to parse the input and extract the
input fields used in the input condition CInp. Open source
parsers are available for a wide of input file formats, in-
cluding all of the formats in our experimental evaluation [1].
These parsers provide a standard API that enables clients to
access the parsed input fields.

The generated filter evaluates each conjunct expression
in CInp by replacing each symbolic input variable in the
expression with the corresponding concrete value from the
parsed input. If an integer overflow may occur in the evalu-
ation of any expression in CInp, the filter discards the input
and optionally raises an alarm. For input field arrays such as
h_sample and v_sample in the Swfdec example (see Sec-
tion 2), the input filter enumerates all possible combinations
of concrete values (see Figure 12 for the formal definition
of condition evaluation). The filter discards the input if any
combination can trigger the integer overflow error.

Given multiple symbolic conditions generated from mul-
tiple critical program points, SIFT can create a single effi-
cient filter that first parses the input, then checks the input
against all symbolic conditions in series on the parsed input.
This approach amortizes the overhead of reading the input
(in practice, reading the input consumes essentially all of the
time required to execute the filter, see Figure 15) over all of
the symbolic condition checks.

4. Soundness of the Static Analysis
We next formalize our static analysis algorithm on the core
language in Figure 4 and discuss the soundness of the anal-
ysis. We focus on the intraprocedural analysis and omit a
discussion of the interprocedural analysis as it uses standard
techniques based on summary tables.

4.1 Dynamic Semantics of the Core Language

Program State: We define the program state
(σ, ρ, ς, %, Inp) as follows:

σ: Var → (Loc + Int + {undef}) ς: Var → Bool
ρ: Loc → (Loc + Int + {undef}) %: Loc → Bool
Inp: InputField → P(Int)
σ and ρ map variables and memory locations to their cor-

responding values. We use undef to represent unintialized
values. We define that if any operand of an arithmetic oper-
ation is undef, the result of the operation is also undef. Inp
represents the input file, which is unchanged during the exe-
cution. ς maps each variable to a boolean flag, which tracks
whether the computation that generates the value of the vari-
able (including all sub-computations) generates an overflow.
% maps each memory location to a boolean overflow flag
similar to ς .

The initial states σ0 and ρ0 map all variables and loca-
tions to undef. The initial states of ς0 and %0 map all vari-
ables and locations to false. The values of uninitialized vari-
ables and memory locations are undefined as per the C lan-
guage specification standard.
Small Step Rules: Figure 10 presents the small step dy-
namic semantics of the language. Note that in Figure 10,
overflow(a, b, op) is a function that returns true if and only
if the computation a op b causes overflow. A main point of
departure from standard languages is that we also update ς
and % to track overflow errors during each execution step.
For example, the op rule in Figure 10 appropriately updates
the overflow flag of x in ς by checking whether the com-
putation that generates the value of x (including the sub-
computations that generates the value of y and z) results in
an overflow condition.

4.2 Soundness of the Pointer Analysis

Our analysis uses an underlying pointer analysis [17] to
analyze programs that use pointers. We formally state our
assumptions about the soundness of the underlying pointer
alias analysis as follows:

Definition 1 (Soundness of no_alias and must_alias).
Given a sequence of execution

〈s0, σ0, ρ0, ς0, %0〉 −→ 〈s1, σ1, ρ1, ς1, %1〉 −→ · · ·
and two labels lstore, lload, where lstore is the label for the
store statement sstore such that sstore = “lstore : ∗p = x”

10 2013/8/5

read
c ∈ Inp(f) σ′ = σ[x→ c] ς′ = ς[x→ false]

〈l : x = read(f), σ, ρ, ς, %, Inp〉 −→ 〈nil: skip, σ′, ρ, ς′, %, Inp〉 const
σ′ = σ[x→ c] ς′ = ς[x→ false]

〈l : x = c, σ, ρ, ς, %, Inp〉 −→ 〈nil: skip, σ′, ρ, ς′, %, Inp〉

assign
σ′ = σ[x→ σ(y)] ς′ = ς[x→ ς(y)]

〈l : x = y, σ, ρ, ς, %, Inp〉 −→ 〈nil: skip, σ′, ρ, ς′, %, Inp〉 malloc
ξ ∈ Loc ξ is fresh σ′ = σ[p→ ξ] ς′ = ς[p→ false]

〈l : p = malloc, σ, ρ, ς, %, Inp〉 −→ 〈nil: skip, σ′, ρ, ς′, %, Inp〉

seq-1 〈null: skip; s, σ, ρ, ς, %, Inp〉 −→ 〈s, σ, ρ, ς, %, Inp〉 load
σ(p) = ξ ξ ∈ Loc σ′ = σ[x→ ρ(ξ)] ς′ = ς[x→ %(ξ)]

〈l : x = ∗p, σ, ρ, ς, %, Inp〉 −→ 〈nil: skip, σ′, ρ, ς′, %, Inp〉

seq-2
〈s, σ, ρ, ς, %, Inp〉 −→ 〈s′′, σ′, ρ′, ς′, %′, Inp〉

〈s; s′, σ, ρ, ς, %, Inp〉 −→ 〈s′′; s′, σ′, ρ′, ς′, %′, Inp〉 store
σ(p) = ξ ξ ∈ Loc ρ′ = ρ[ξ → σ(x)] %′ = %[ξ → ς(x)]

〈l : ∗p = x, σ, ρ, ς, %, Inp〉 −→ 〈nil: skip, σ, ρ′, ς, %′, Inp〉

op
σ(y) /∈ Loc σ(z) /∈ Loc b = ς(y) ∨ ς(z) ∨ overflow(σ(y), σ(z), op)

〈l : x = y op z, σ, ρ, ς, %, Inp〉 −→ 〈nil: skip, σ[x→ σ(y) op σ(z)], ρ, ς[x→ b], %, Inp〉

if-t
σ(x) 6= 0

〈l : if (x) s else s′, σ, ρ, ς, %, Inp〉 −→ 〈s, σ, ρ, ς, %, Inp〉 if-f
σ(x) = 0

〈l : if (x) s else s′, σ, ρ, ς, %, Inp〉 −→ 〈s′, σ, ρ, ς, %, Inp〉

while-f
σ(x) = 0

〈l : while (x) {s}, σ, ρ, ς, %, Inp〉 −→ 〈nil: skip, σ, ρ, ς, %, Inp〉 while-t
σ(x) 6= 0 s′ = s; l : while (x) {s}

〈l : while (x) {s}, σ, ρ, ς, %, Inp〉 −→ 〈s′, σ, ρ, ς, %, Inp〉

Figure 10. The small step operational semantics of the language. “nil" is a special label reserved by the semantics.

and lload is the label for the load statement sload such that
sload = “lload : x′ = ∗p′”, we have:

no_alias(lstore, lload)→
∀i,first(si)=lstore∀j,first(sj)=lload,i<j σi(p) 6= σj(p′)

must_alias(lstore, lload)→
∀i,first(si)=lstore∀j,first(sj)=lload,i<j

((∀k,i<k<jfirst(sk) 6= lstore)→ (σi(p) = σj(p′)))

Intuitively, 1) no_alias(lstore, lload) = true only if
the load statement at label lload will never retrieve a
value stored by the store statement at label lstore; 2)
must_alias(lstore, lload) = true only if the load statement at
label lload will always retrieve a value from the last memory
location that the store statement at label lstore manipulates

4.3 Abstract Semantics

We next define an abstract semantics that allows us to cer-
tify the operation of our static analysis algorithm. The key
difference between the abstract and original semantics is
that the abstract semantics enables the non-deterministic
branch selection of conditional statements (i.e., if- and
while-statements) and the use of a non-deterministic mem-
ory model. This accurately captures how our analysis ig-
nores control flow conditions and uses an underlying pointer
analysis to handle pointers.
Abstract Program State: We define abstract program state
(σ, ς, h̄, Inp) as follows:

σ: Var → Int ς: Var → Bool
h̄: LoadLabel → P(Int × Bool)

Intuitively, σ and ς are the counterparts of σ and ς in the
original semantics, but σ and ς only track values and flags for

variables that have integer values. h̄ maps the label of each
load statement to the set of values that the load statement
may obtain from the memory.

We define the initial state σ0 and ς0 to map all variables
to 0 and false respectively. We define the initial state h̄0 to
map all labels of load statements to the empty set.
Small Step Rules: Figure 11 presents the small step rules
for the abstract semantics.

The rules for conditional, loop, malloc, load, and store
statements capture the main difference between the abstract
semantics and the original semantics. The rules for condi-
tional and while statements (if-t, if-f, while-t, and while-f
rules) in abstract semantics ignore branch conditions and
allow non-deterministic execution of either path. The rule
for store statements maintains the state h̄ according to
the alias information. The rule for load statements non-
deterministically returns an element from the corresponding
set in h̄.

4.4 Relationship of the Original and the Abstract
Semantics

We next formally state the relationship of the original se-
mantics and the abstract semantics as the follow theorem.
We present the proof sketch of this theorem in the appendix.

Theorem 2. Given any execution trace in the original se-
mantics

〈s0, σ0, ρ0, ς0, %0〉 −→ 〈s1, σ1, ρ1, ς1, %1〉 −→ · · · ,

there is an execution trace in the abstract semantics

〈s0, σ0, ς0, h̄0〉 −→a 〈s1, σ1, ς1, h̄1〉 −→a . . .

11 2013/8/5

read
c ∈ Inp(f) σ′ = σ[x→ c] ς′ = ς[x→ false]

〈l : x = read(f), σ, ς, h̄, Inp〉 −→a 〈nil:skip, σ′, ς′, h̄, Inp〉
constant

σ′ = σ[x→ c] ς′ = ς[x→ false]

〈l : x = c, σ, ς, h̄, Inp〉 −→a 〈nil: skip, σ′, ς′, h̄, Inp〉

assign
〈l : x = y, σ, ς, h̄, Inp〉 −→a 〈nil: skip, σ[x→ σ(y)], ς[x→ ς(y)], h̄, Inp〉

if-t
〈l : if (x) s else s′, σ, ς, h̄, Inp〉 −→a 〈s, σ, ς, h̄, Inp〉

op
b = ς(y) ∨ ς(z) ∨ overflow(σ(y), σ(z), op) σ′ = σ[x→ σ(y) op σ(z)]

〈l : x = y op z, σ, ς, h̄, Inp〉 −→a 〈nil: skip, σ′, ς[x→ b], h̄, Inp〉
if-f

〈l : if (x) s else s′, σ, ς, h̄, Inp〉 −→a 〈s′, σ, ς, h̄, Inp〉

while-f
〈l : while (x) {s}, σ, ς, h̄, Inp〉 −→a 〈nil: skip, σ, ς, h̄, Inp〉

while-t
〈l : while (x) {s}, σ, ς, h̄, Inp〉 −→a 〈s; while (x) {s}, σ, ς, h̄, Inp〉

seq-1
〈nil: skip; s, σ, ς, h̄, Inp〉 −→a 〈s, σ, ς, h̄, Inp〉

seq-2
〈s, σ, ς, h̄, Inp〉 −→a 〈s′′, σ′, ς′, h̄′, Inp〉

〈s; s′, σ, ς, h̄, Inp〉 −→a 〈s′′; s′, σ′, ς, h̄′, Inp〉

malloc
〈l : p = malloc, σ, ς, h̄, Inp〉 −→a 〈nil: skip, σ, ς, h̄, Inp〉

load
(c, b) ∈ h̄(l) σ′ = σ[x→ c] ς′ = ς[x→ b]

〈l : x = ∗p, σ, ς, h̄, Inp〉 −→a 〈nil: skip, σ′, ς′, h̄, Inp〉

store
h̄
′ satisfies (*)

〈l : ∗p = x, σ, ς, h̄, Inp〉 −→a 〈nil: skip, σ, ς, h̄′, Inp〉

∀lload ∈ LoadLabel : h̄
′
(lload) =

 h̄(lload) no_alias(l, lload)
{(σ(x), ς(x))} ¬no_alias(l, lload) ∧must_alias(l, lload)

{(σ(x), ς(x))} ∪ h̄(lload) ¬no_alias(l, lload) ∧ ¬must_alias(l, lload)

(*)

Figure 11. The small step abstract semantics. “nil" is a special label reserved by the semantics.

such that the following conditions hold

∀i∀x∈Var

(σi(x) ∈ Int→ (σi(x) = σi(x) ∧ ςi(x) = ςi(x)))
(1)

∀i,first(si)=l,l∈LoadLabel,left(si)=“l:x=∗p”
(ρi(σi(p)) ∈ Int→ (ρi(σi(p)), %i(σi(p))) ∈ h̄i(l)) (2)

where left(s) denotes an utility function that returns the
leftmost statement in s if s is a sequential composite and
returns s if s is not a sequential composite.

The intuition of Condition 1 is that σi and σi as well
as ςi and ςi always agree on the variables holding integer
values. The intuition of Condition 2 is that h̄i(l) corresponds
to the possible values that the corresonding load statement of
the label l may obtain from the memory. Thus when a load
statement is executed, the obtained integer value should be
in the corresponding set in h̄i.

4.5 Soundness of the Analysis

Evaluation of the Condition C: Our static analysis main-
tains and propagates the symbolic conditionC. Figure 12 de-
fines the evaluation rules of the symbolic condition C over
the abstract program states. We use (σ, ς, h̄, Inp) |= C to
denote that the abstract program state (σ, ς, h̄, Inp) satisfies
the condition C.

Note that the evaluation rule for safe(e1 op e2) not only
ensures that the overflow error does not occur at the last
computation step, but also ensures no overflow error occurs
in sub-computations recursively.

Also note that, intuitively, atoms in the form of f(id)
and l(id) correspond to a set of possible values from an

input field or a load statement (Inp(f) or h̄(l)). Thus the
evaluation rules enumerate all possible value bindings and
make sure that each value binding satisfies the condition.

The definition of the evaluation rules also indicates the
normalization algorithm in Section 3.2 that renumbers ids in
a symbolic condition C does not change the semantic mean-
ing of the condition. Therefore for a given symbolic condi-
tion C, the normalization algorithm produces an equivalent
condition norm(C).
Soundness of the Analysis over the Abstract Semantics:
We formally state the soundness of our analysis over the
abstract semantics as follows.

Theorem 3. Given a series of statements si, a pro-
gram point l ∈ labels(si) and a start condition C, our
analysis generates a condition F (si, l, C) such that if
(σi, ςi, h̄i, Inp) |= F (si, l, C), then 〈si, σi, ςi, h̄i〉 −→∗a
〈sj−1, σj−1, ςj−1, h̄j−1〉 −→a 〈sj , σj , ςj , h̄j〉 ∧
first(sj−1) = l implies (σj , ςj , h̄j , Inp) |= C.

This guarantees that if the abstract program state before
executing si satisfies F (si, l, C), then the abstract program
state at the program point after the statement of the label
l will always satisfy C (“ −→∗a ” represents to execute
the program for an arbitrary number of steps in the abstract
semantics).
Soundness of the Analysis over the Original Semantics:
Because of the consistency of the abstract semantics and the
original semantics (see Section 4.3), we can derive the fol-
lowing soundness property of our analysis over the original

12 2013/8/5

∀c∈Inp(f) : (σ, ς, h̄, Inp) |= C[c/f(id)]

(σ, ς, h̄, Inp) |= C

∀(c,b)∈h̄(l) : (σ[tmp→ c], ς[tmp→ b], h̄, Inp) |= C[tmp/l(id)] tmp is fresh in C

(σ, ς, h̄, Inp) |= C

(σ, ς, h̄, Inp) |= C (σ, ς, h̄, Inp) |= safe(e)

(σ, ς, h̄, Inp) |= C ∧ safe(e)
(σ, ς, h̄, Inp) |= safe(e1) ∧ safe(e2) overflow([[e1]](σ), [[e2]](σ), op) = false

(σ, ς, h̄, Inp) |= safe(e1 op e2)

ς(x) = false

(σ, ς, h̄, Inp) |= safe(x)
[[c]](σ) = c [[x]](σ) = σ(x) [[e1 op e2]](σ) = [[e1]](σ) op [[e2]](σ)

Figure 12. Condition evaluation rules.

semantics based on the soundness property over the abstract
semantics:

Theorem 4. Given a program s0, a program point l ∈
labels(s0), and a program variable v, our analysis gen-
erates a condition C = F (s0, l, safe(v)) such that if
(σ0, ς0, h̄0, Inp) |= C, then 〈s0, σ0, ρ0, ς0, %0〉 −→∗
〈sn−1, σn−1, ρn−1, ςn−1, %n−1〉 −→ 〈sn, σn, ρn, ςn, %n〉 ∧
first(sn−1) = l ∧ σn(v) ∈ Int implies ςn(v) = false.

This guarantees that if the input satisfies the generated
condition C (note that σ0, ς0, and h̄0 are predefined con-
stant initial state in Section 4.3), then for any execution in
the original semantics (“ −→∗ ” represents to execute the
program for an arbitrary number of steps in the original se-
mantics), at the program point after the statement of the label
l, as long as the variable v holds an integer value (not an un-
defined value due to unintialized access), the computation
history for obtaining this integer value contains no overflow
error.

5. Experimental Results
We evaluate SIFT on modules from five open source ap-
plications: VLC 0.8.6h (a network media player), Dillo 2.1
(a lightweight web browser), Swfdec 0.5.5 (a flash video
player), Swftools 0.9.1 (SWF manipulation and generation
utilities), and GIMP 2.8.0 (an image manipulation applica-
tion). Each application uses a publicly available input format
specification and contains at least one known integer over-
flow vulnerability (described in either the CVE database or
the Buzzfuzz paper [13]). All experiments were conducted
on an Intel Xeon X5363 3.00GHz machine running Ubuntu
12.04.

5.1 Methodology

Input Format and Module Selection: For each application,
we used SIFT to generate filters for the input format that trig-
gers the known integer overflow vulnerability. We therefore
ran SIFT on the module that processes inputs in that format.
The generated filters nullify not only the known vulnerabil-
ities, but also any integer overflow vulnerabilities at any of
the 52 memory allocation or block copy sites in the modules

Application Distinct Fields Relevant Fields
VLC 25 2
Dillo 47 3
Swfdec 219∗ 6
png2swf 47 4
jpeg2swf 300 2
GIMP 189 2

Figure 13. The number of distinct input fields and the num-
ber of relevant input fields for analyzed input formats. (*)
For Swfdec the second column shows the number of distinct
fields in embedded JPEG images in collected SWF files.

for which SIFT was able to generate symbolic conditions
(recall that there are 58 critical sites in these modules in to-
tal).
Input Statement Annotation: After selecting each module,
we added annotations to identify the input statements that
read relevant input fields (i.e., input fields that may affect
the values of critical expressions at memory allocation or
block copy sites). Figure 13 presents, for each module, the
total number of distinct fields in our collected inputs for each
format, the number of annotated input statements (in all of
the modules the number of relevant fields equals the number
of annotated input statements — each relevant field is read
by a single input statement). We note that the number of
relevant fields is significantly smaller than the total number
of distinct fields (reflecting the fact that typically only a
relatively small number of fields in each input format may
affect the sizes of allocated or copied memory blocks).

The maximum amount of time required to annotate any
module was approximately half an hour (Swfdec). The total
annotation time required to annotate all benchmarks, includ-
ing Swfdec, was less than an hour. This annotation effort
reflects the fact that, in each input format, there are only a
relatively small number of relevant input fields.
Filter Generation and Test: We next used SIFT to generate
a single composite input filter for each analyzed module. We
then downloaded at least 6000 real-world inputs for each
input format, and ran all of the downloaded inputs through

13 2013/8/5

the generated filters. There were no false positives (the filters
accepted all of the inputs).
Vulnerability and Filter Confirmation: For each known
integer overflow vulnerability, we collected a test input that
triggered the integer overflow. We confirmed that each gen-
erated composite filter, as expected, discarded the input be-
cause it correctly recognized that the input would cause an
integer overflow.

5.2 Analysis and Filter Evaluation

Figure 14 presents static analysis and filter generation re-
sults. This figure contains a row for each analyzed mod-
ule. The first column (Application) presents the application
name, the second column (Module) identifies the analyzed
module within the application. The third column (# of IR)
presents the number of analyzed statements in the LLVM
intermediate representation. This number of statements in-
cludes not only statements directly present in the module,
but also statements from analyzed code in other modules in-
voked by the original module.

The fourth column (Total) presents the total number of
memory allocation and block copy sites in the analyzed
module. The fifth column (Input Relevant) presents the num-
ber of memory allocation and block copy sites in which the
size of the allocated or copied block depends on the values
of input fields. For these modules, the sizes at 49 of the 58
sites depend on the values of input fields. The sizes at the re-
maining nine sites are unconditionally safe — SIFT verifies
that they depend only on constants embedded in the program
(and that there is no overflow when the sizes are computed
from these constants).

The sixth column (Inside Loop) presents the number of
memory allocation and block copy sites in which the size
parameter depends on variables that occurred inside loops.
For these modules, the sizes at 29 of the 58 sites depend on
loops relevant variables, for which SIFT needs to compute
loop invariants to generate input filters.

The seventh column (Max Condition Size) presents, for
each application module, the maximum number of conjunts
in any symbolic condition that occurs in the analysis of that
module. The conditions are reasonably compact (and more
than compact enough to enable an efficient analysis) — the
maximum condition size over all modules is less than 500.

The final column (Analysis Time) presents the time re-
quired to analyze the module and generate a single compos-
ite filter for all of the successfully analyzed critical sites. The
analysis times for all modules are less than a second.

SIFT is unable to generate symbolic conditions for 6 of
the 58 call sites. For two of these sites (one in Swfdec and
one in png2swf), the two expressions contain subexpres-
sions whose value depends on an unbounded number of val-
ues from loop iterations. To analyze such expressions, our

Application Format # of Input Average Time
VLC WAV 10976 3ms (3ms)
Dillo PNG 18983 16ms (16ms)

Swfdec SWF 7240 6ms (5ms)
png2swf PNG 18983 16ms (16ms)
jpeg2swf JPEG 6049 4ms (4ms)

GIMP GIF 19647 9ms (9ms)

Figure 15. Generated Filter Results.
1 #define __EVEN(x) (((x)%2 != 0) ? ((x)+1) : (x))
2

3 static int Open(vlc_object_t * p_this) {
4 ...
5 // search format chunk and read its size
6 if(ChunkFind(p_demux, "fmt ", &i_size))
7 {
8 msg_Err(p_demux, "cannot find ’fmt ’ chunk");
9 goto error;

10 }
11 /* i_size = SIFT_input("fmt_size", 32); */
12 ...
13 // where integer overflow happens.
14 p_wf_ext = malloc(__EVEN(i_size) + 2);
15 }

Figure 17. The simplified source code from VLC with an-
notations inside comments.

analysis currently requires an upper bound on the number
of loop iterations. Such an upper bound could be provided,
for example, by additional analysis or developer annotations.
The remaining four expressions (two in png2swf and two in
jpeg2swf) depend on the return value from strlen(). SIFT is
not currently designed to analyze such expressions.

For each input format, we used a custom web crawler
to locate and download at least 6000 inputs in that format.
The web crawler starts from a Google search page for the
file extension of the specific input format, then follows links
in each search result page to download files in the correct
format.

Figure 15 presents, for each generated filter, the number
of downloaded input files and the average time required to
filter each input. We present the average times in the form
Xms (Yms), where Xms is the average time required to filter
an input and Yms is the average time required to read in the
input (but not apply the integer overflow check). These data
show that essentially all of the filter time is spent reading in
the input.

5.3 Vulnerability Case Studies

In Section 2 we showed how SIFT handles the integer
overflow vulnerability in Swfdec. We next investigate how
SIFT handles the remaining five known vulnerabilities in
our benchmark applications. Figure 16 presents the symbolic
conditions that SIFT generates for each of the five vulnera-
bilities in the analyzed modules.

5.3.1 VLC

14 2013/8/5

Application Module # of IR Total Input Relevant Inside Loop Max Condition Size Analysis Time
VLC demux/wav.c 1.5k 5 3 0 2 <0.1s
Dillo png.c 39.1k 4 3 3 410 0.8s

Swfdec jpeg/*.c 8.4k 22 19 2 144 0.2s
png2swf all 11.0k 21 18 18 16 0.2s
jpeg2swf all 2.5k 4 4 4 2 <0.1s

GIMP file-gif-load.c 3.2k 2 2 2 2 <0.1s

Figure 14. Static Analysis and Filter Generation Results

VLC safe((fmt_size[32] + 1[32]) + 2[32]) ∧ safe(fmt_size[32] + 2[32])

png2swf ∧4
c=1safe((c[32] × png_width[32])× png_height[32] + 65536[32])

jpeg2swf safe((jpeg_width[32] × jpeg_height[32])× 4[32])

Dillo ∧4
c=1(safe(((png_width[32] × (c[32] × sext(png_bitdepth[8], 32)) + 7[32]) >> 3[32])× png_heightht[32])∧
safe(png_width[32] × ((c[32] × sext(png_bitdepth[8], 32)) >> 3[32])× png_height[32]))

GIMP safe((gif_width[32] × gif_height[32])× 2[32]) ∧ safe(gif_width[32] × gif_height[32] × 4[32])

Figure 16. The symbolic condition C in the bit vector form for VLC, Swftools-png2swf, Swftools-jpeg2swf, Dillo and GIMP.
The superscript indicates the bit width of each expression atom. “sext(v, w)" is the signed extension operation that transforms
the value v to the bit width w.

The VLC wav.c module contains an integer overflow
vulnerability (CVE-2008-2430) when parsing WAV sound
inputs. Figure 17 presents (a simplified version of) the source
code that is related to this error. When VLC parses the
format chunk of a WAV input, it first reads the input field
fmt_size, which indicates the size of the format chunk (line
6). VLC then allocates a buffer to hold the format chunk
(line 14 in Figure 17). A large fmt_size field value (for
example, 0xfffffffe) will cause an overflow to occur when
VLC computes the buffer size.

We annotate the source code to specify where the module
reads the fmt_size input field (line 11). SIFT then analyzes
the module to obtain the symbolic condition C (Figure 16),
which soundly summarizes how VLC computes the buffer
size from input fields.

5.3.2 Dillo

Dillo contains an integer overflow vulnerability (CVE-
2009-2294) in its png module. Figure 18 presents the sim-
plified source code for this example. Dillo uses the libpng
library to read PNG images. The libpng runtime calls
png_process_data() (line 2) to process each PNG image.
This function then calls png_push_read_chunk() (line
11) to process each chunk in the PNG image. When the
libpng runtime reads the first data chunk (the IDAT chunk),
it calls the Dillo callback png_datainfo_callback() (lines
66-75) in the Dillo PNG processing module. There is an in-
teger overflow vulnerability at line 73 where Dillo calcu-
lates the size of the image buffer as png->rowbytes*png-
>height. On a 32-bit machine, inputs with large width and
height fields can cause the image buffer size calculation to

overflow. In this case Dillo allocates an image buffer that is
smaller than required and eventually writes beyond the end
of the allocated buffer.

Figure 16 presents the symbolic condition C for Dillo.
C soundly takes intermediate computations over all execu-
tion paths into consideration, including the switch branch at
lines 45-59 that sets the variable png_ptr->channels and
PNG_ROWBYTES macro at lines 26-29. Note that the
constant c[32] in C corresponds to the possible values of
png_ptr->channels, which are between 1 and 4.

5.3.3 Swftools

Swftools is a set of utilities for creating and manipulat-
ing SWF files. Swftools contains two tools png2swf and
jpeg2swf, which transform PNG and JPEG images to SWF
files. Each of these two tools contains an integer overflow
vulnerability (CVE-2010-1516).

Figure 19 presents (a simplified version of) the source
code that contains the png2swf vulnerability. When pro-
cessing PNG images, Swftools calls getPNG() (lines 20-
43) at png2swf.c:763 to read the PNG image into memory.
getPNG() first calls png_read_header() (lines 1-18) to
locate and read the header chunk which contains the PNG
metadata. It then uses the metadata information to calcu-
late the length of the image data at png.h:502 (lines 39-40).
There is no bounds check on the width and the height value
from the header chunk before this calculation. On a 32-bit
machine, a PNG image with large width and height values
will trigger the integer overflow error.

We annotate lines 7 and 10 the statements that read in-
put fields png_width and png_height and use SIFT to de-

15 2013/8/5

1 // libpng main data process function.
2 void png_process_data(png_structp png_ptr,
3 png_infop info_ptr, ...) {
4 ...
5 while (png_ptr->buffer_size) {
6 // This is a wrapper for png_push_read_chunk
7 png_process_some_data(png_ptr, info_ptr);
8 }
9 }

10 // chunk handler dispatcher
11 void png_push_read_chunk(png_structp png_ptr,
12 png_infop info_ptr) {
13 if (!png_memcmp(png_ptr->chunk_name,png_IHDR,4)){
14 ...
15 png_handle_IHDR(png_ptr, info_ptr, ...);
16 }
17 ...
18 else if (!png_memcmp(png_ptr->chunk_name,
19 png_IDAT, 4)) {
20 ...
21 // Datainfo callback is called
22 png_push_have_info(png_ptr, info_ptr);
23 ...
24 }
25 }
26 #define PNG_ROWBYTES(pixel_bits,width)\
27 ((pixel_bits)>=8?\
28 ((width)*(((png_uint_32)(pixel_bits))>>3)):\
29 ((((width)*((png_uint_32)(pixel_bits)))+7)>>3))
30 void png_handle_IHDR(png_structp png_ptr,
31 png_infop info_ptr, ...) {
32 ...
33 // read individual png fields from input buffer
34 width = png_get_uint_31(png_ptr, buf);
35 /* width = SIFT_input("png_width", 32); */
36 height = png_get_uint_31(png_ptr, buf + 4);
37 /* height = SIFT_input("png_height", 32); */
38 bit_depth = buf[8];
39 /* bit_depth = SIFT_input("png_bitdepth", 8); */
40 ...
41 png_ptr->width = width;
42 png_ptr->height = height;
43 png_ptr->bit_depth = (png_byte)bit_depth;
44 ...
45 switch (png_ptr->color_type) {
46 case PNG_COLOR_TYPE_GRAY:
47 case PNG_COLOR_TYPE_PALETTE:
48 png_ptr->channels = 1;
49 break;
50 case PNG_COLOR_TYPE_RGB:
51 png_ptr->channels = 3;
52 break;
53 case PNG_COLOR_TYPE_GRAY_ALPHA:
54 png_ptr->channels = 2;
55 break;
56 case PNG_COLOR_TYPE_RGB_ALPHA:
57 png_ptr->channels = 4;
58 break;
59 }
60 png_ptr->pixel_depth = (png_byte)(
61 png_ptr->bit_depth * png_ptr->channels);
62 png_ptr->rowbytes = PNG_ROWBYTES(
63 png_ptr->pixel_depth, png_ptr->width);
64 }
65 // Dillo datainfo initialization callback
66 static void Png_datainfo_callback(png_structp png_ptr,
67 ...) {
68 DilloPng *png;
69 png = png_get_progressive_ptr(png_ptr);
70 ...
71 // where the overflow happens
72 png->image_data = (uchar_t *) dMalloc(
73 png->rowbytes * png->height);
74 ...
75 }

Figure 18. The simplified source code from Dillo and
libpng with annotations inside comments.

1 static int png_read_header(FILE*fi,
2 struct png_header*header) {
3 ...
4 while(png_read_chunk(&id, &len, &data, fi)) {
5 if(!strncmp(id, "IHDR", 4)) {
6 ...
7 header->width = data[0]<<24|data[1]<<16|
8 data[2]<<8|data[3];
9 /*header->width=SIFT_input("png_width",32);*/

10 header->height = data[4]<<24|data[5]<<16|
11 data[6]<<8|data[7];
12 /*header->height=SIFT_input("png_height",32);*/
13 ...
14 }
15 ...
16 }
17 ...
18 }
19

20 EXPORT int getPNG(const char*sname, int*destwidth,
21 int*destheight, unsigned char**destdata) {
22 ...
23 unsigned long int imagedatalen;
24 ...
25 if(!png_read_header(fi, &header)) {
26 fclose(fi);
27 return 0;
28 }
29 ...
30 if(header.mode==3 || header.mode==0) bypp = 1;
31 else if(header.mode == 4) bypp = 2;
32 else if(header.mode == 2) bypp = 3;
33 else if(header.mode == 6) bypp = 4;
34 else {
35 ...
36 return 0;
37 }
38

39 imagedatalen = bypp * header.width *
40 header.height + 65536;
41 imagedata = (unsigned char*)malloc(imagedatalen);
42 ...
43 }

Figure 19. The simplified source code from png2swf in
swftools with annotations inside comments.

rive the symbolic condition for this vulnerability. Figure 16
presents the symbolic condition C.

jpeg2swf contains a similar integer overflow vulnera-
bility when processing JPEG images. At jpeg2swf.c:171
jpeg2swf first calls the libjpeg API to read jpeg image. At
jpeg2swf.c:173, jpeg2swf then immediately calculates the
size of a memory buffer for holding the jpeg file in its own
data structure. Because it directly uses the input width and
height values in the calculation without range checks, large
width and height values may cause overflow errors. Fig-
ure 16 presents the symbolic expression condition C for
jpeg2swf.

5.3.4 GIMP

GIMP contains an integer overflow vulnerability (CVE-
2012-3481) in its GIF loading plugin file-gif-load.c. When
GIMP opens a GIF file, it calls load_image at file-gif-
load.c:335 to load the entire GIF file into memory. For each
individual image in the GIF file, this function first reads the

16 2013/8/5

image metadata information, then calls ReadImage to pro-
cess the image. At file-gif-load.c:1064, the plugin calculates
the size of the image output buffer as a function of the prod-
uct of the width and height values from the input. Because it
uses these values directly without range checks, large height
and width fields may cause an integer overflow. In this case
GIMP may allocate a buffer smaller than the required size.

We annotate the source code based on the GIF specifica-
tion and use SIFT to derive the symbolic condition for this
vulnerability. Figure 16 presents the generated symbolic ex-
pression condition C.

5.4 Discussion

The experimental results highlight the combination of prop-
erties that, together, enable SIFT to effectively nullifying
potential integer overflow errors at memory allocation and
block copy sites. SIFT is efficient enough to deploy in pro-
duction on real-world modules (the combined program anal-
ysis and filter generation times are always under a second),
the analysis is precise enough to successfully generate in-
put filters for the majority of memory allocation and block
copy sites, the results provide encouraging evidence that the
generated filters are precise enough to have few or even no
false positives in practice, and the filters execute efficiently
enough to deploy with acceptable filtering overhead.

6. Related Work
Weakest Precondition: Madhavan et. al. present an approx-
imate weakest precondition analysis to verify the absence of
null dereference errors in Java programs [21]. The under-
lying analysis domain tracks whether or not variables may
contain null references. To obtain acceptable precision for
the null dereference verification problem, the technique in-
corporates null-dereference checks from conditional state-
ments into the propagated conditions.

Because SIFT focuses on integer overflow errors, the un-
derlying analysis domain (symbolic arithmetic expressions)
and propagation rules are significantly more complex. SIFT
also does not incorporate checks from conditional state-
ments, a design decision that, for the integer overflow prob-
lem, produces efficient and accurate filters. Also the prob-
lems are different — SIFT generates filters to eliminate se-
curity vulnerabilities, while Madhavan et. al. focus on veri-
fying the absence of null dereferences.

Flanagan et. al. presents a general intraprocedural weak-
est precondition analysis for generating verification condi-
tions for ESC/JAVA programs [12]. SIFT differs in that it fo-
cuses on integer overflow errors. Because of this focus, SIFT
can synthesize its own loop invariants (Flanagan et. al. rely
on developer-provided invariants). In addition, SIFT is inter-
procedural, and uses the analysis results to generate sound
filters that nullify integer overflow errors.

Anomaly Detection: Anomaly detection techniques gener-
ate (unsound) input filters by empirically learning proper-
ties of successfully or unsuccessfully processed inputs [14,
16, 19, 23, 25, 26, 30, 31]. Web-based anomaly detec-
tion [16, 26] uses input features (e.g. request length and char-
acter distributions) from attack-free HTTP traffic to model
normal behaviors. HTTP requests that contain features that
violate the model are flagged as anomalous and dropped.
Similarly, Valeur et al [30] propose a learning-based ap-
proach for detecting SQL-injection attacks. Wang et al [31]
propose a technique that detects network-based intrusions by
examining the character distribution in payloads. Perdisci et
al [25] propose a clustering-based anomaly detection tech-
nique that learns features from malicious traces (as opposed
to benign traces). Input rectification learns properties of in-
puts that the application processes successfully, then mod-
ifies inputs to ensure that they satisfy the learned proper-
ties [20].

Two key differences between SIFT and these techniques
are that SIFT statically analyzes the application, not its in-
puts, and takes all execution paths into account to generate a
sound filter.
Static Analysis for Finding Integer Errors: Several static
analysis tools have been proposed to find integer errors [6,
27, 32]. KINT [32], for example, analyzes individual pro-
cedures, with the developer optionally providing procedure
specifications that characterize the value ranges of the pa-
rameters. KINT also unsoundly avoids the loop invariant
synthesis problem by replacing each loop with the loop body
(in effect, unrolling the loop once). Despite substantial ef-
fort, KINT reports a large number of false positives [32].

SIFT addresses a different problem: it is designed to nul-
lify, not detect, overflow errors. In pursuit of this goal, it uses
an interprocedural analysis, synthesizes symbolic loop in-
variants, and soundly analyzes all execution paths to produce
a sound filter.
Symbolic Test Generation: DART [15] and KLEE [5] use
symbolic execution to automatically generate test cases that
can expose errors in an application. IntScope [29] and Smart-
Fuzz [22] are symbolic execution systems specifically for
finding integer errors. It would be possible to combine these
systems with previous input-driven filter generation tech-
niques to obtain filters that discard inputs that take the dis-
covered path to the error. As discussed previously, SIFT dif-
fers in that it considers all possible paths so that its gener-
ated filters come with a soundness guarantee that if an input
passes the filter, it will not exploit the integer overflow error.
Runtime Check and Library Support: To alleviate the
problem of false positives, several research projects have
focused on runtime detection tools that dynamically insert
runtime checks before integer operations [3, 7, 11, 34]. An-
other similar technique is to use safe integer libraries such as

17 2013/8/5

SafeInt [18] and CERT’s IntegerLib [28] to perform sanity
checks at runtime. Using these libraries requires that devel-
opers rewrite existing code to use safe versions of integer
operations.

However, the inserted code typically imposes non-
negligible overhead. When integer errors happen in the mid-
dle of the program execution, these techniques usually raise
warnings and terminate the execution, which effectively turn
integer overflow attacks into DoS attacks. SIFT, in contrast,
inserts no code into the application and blocks inputs that
exploit integer overflow vulnerabilities to avoid the attacks
completely.
Benign Integer Overflows: In some cases, developers may
intentionally write code that contains benign integer over-
flows [29, 32]. A potential concern is that techniques that
nullify overflows may interfere with the intended behavior
of such programs [29, 32]. Because SIFT focuses on critical
memory allocation and block copy sites that are unlikely to
have such intentional integer overflows, SIFT is unlikely to
nullify benign integer overflows and therefore unlikely inter-
fere with the intended behavior of the program.

7. Conclusion
Integer overflow errors can lead to security vulnerabilities.
SIFT analyzes how the application computes integer values
that appear at memory allocation and block copy sites to
generate input filters that discard inputs that may trigger
overflow errors in these computations. Our results show that
SIFT can quickly generate efficient and precise input filters
for the vast majority of memory allocation and block copy
call sites in our analyzed benchmark modules.

References
[1] Hachoir. http://bitbucket.org/haypo/

hachoir/wiki/Home.

[2] The LLVM compiler infrastructure. http://www.llvm.
org/.

[3] D. Brumley, T. Chiueh, R. Johnson, H. Lin, and D. Song.
Rich: Automatically protecting against integer-based vulner-
abilities. Department of Electrical and Computing Engineer-
ing, page 28, 2007.

[4] D. Brumley, H. Wang, S. Jha, and D. Song. Creating vulnera-
bility signatures using weakest preconditions. In Proceedings
of the 20th IEEE Computer Security Foundations Symposium,
CSF ’07’, pages 311–325, Washington, DC, USA, 2007. IEEE
Computer Society.

[5] C. Cadar, D. Dunbar, and D. Engler. Klee: unassisted and
automatic generation of high-coverage tests for complex sys-
tems programs. In Proceedings of the 8th USENIX conference
on Operating systems design and implementation, OSDI’08,
pages 209–224, Berkeley, CA, USA, 2008. USENIX Associ-
ation.

[6] E. Ceesay, J. Zhou, M. Gertz, K. Levitt, and M. Bishop. Using
type qualifiers to analyze untrusted integers and detecting
security flaws in c programs. Detection of Intrusions and
Malware & Vulnerability Assessment, pages 1–16, 2006.

[7] R. Chinchani, A. Iyer, B. Jayaraman, and S. Upadhyaya.
Archerr: Runtime environment driven program safety. Com-
puter Security–ESORICS 2004, pages 385–406, 2004.

[8] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado.
Bouncer: securing software by blocking bad input. In Pro-
ceedings of twenty-first ACM SIGOPS symposium on Operat-
ing systems principles, SOSP ’07. ACM, 2007.

[9] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: end-to-end containment
of internet worms. In Proceedings of the twentieth ACM sym-
posium on Operating systems principles, SOSP ’05. ACM,
2005.

[10] W. Cui, M. Peinado, and H. J. Wang. Shieldgen: Automatic
data patch generation for unknown vulnerabilities with in-
formed probing. In Proceedings of 2007 IEEE Symposium
on Security and Privacy. IEEE Computer Society, 2007.

[11] W. Dietz, P. Li, J. Regehr, and V. Adve. Understanding integer
overflow in c/c++. In Proceedings of the 2012 International
Conference on Software Engineering, pages 760–770. IEEE
Press, 2012.

[12] C. Flanagan and J. B. Saxe. Avoiding exponential explosion:
generating compact verification conditions. In Proceedings of
the 28th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’01’, pages 193–205, New
York, NY, USA, 2001. ACM.

[13] V. Ganesh, T. Leek, and M. Rinard. Taint-based directed
whitebox fuzzing. In ICSE ’09: Proceedings of the 31st In-
ternational Conference on Software Engineering. IEEE Com-
puter Society, 2009.

[14] D. Gao, M. K. Reiter, and D. Song. On gray-box program
tracking for anomaly detection. In Proceedings of the 13th
conference on USENIX Security Symposium - Volume 13,
SSYM’04. USENIX Association, 2004.

[15] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed au-
tomated random testing. In Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation, PLDI ’05, pages 213–223, New York, NY,
USA, 2005. ACM.

[16] C. Kruegel and G. Vigna. Anomaly detection of web-based
attacks. In Proceedings of the 10th ACM conference on Com-
puter and communications security, CCS ’03. ACM, 2003.

[17] C. Lattner, A. Lenharth, and V. Adve. Making context-
sensitive points-to analysis with heap cloning practical for the
real world. In Proceedings of the 2007 ACM SIGPLAN confer-
ence on Programming language design and implementation,
PLDI ’07, pages 278–289, New York, NY, USA, 2007. ACM.

[18] D. LeBlanc. Integer handling with the c++ safeint class.
urlhttp://msdn. microsoft. com/en-us/library/ms972705, 2004.

18 2013/8/5

[19] F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and M. Rinard.
Automatic input rectification. ICSE ’12, 2012.

[20] F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and M. Rinard.
Automatic input rectification. In Proceedings of the 2012 In-
ternational Conference on Software Engineering, ICSE 2012,
pages 80–90, Piscataway, NJ, USA, 2012. IEEE Press.

[21] R. Madhavan and R. Komondoor. Null dereference verifica-
tion via over-approximated weakest pre-conditions analysis.
In Proceedings of the 2011 ACM international conference on
Object oriented programming systems languages and applica-
tions, OOPSLA ’11, pages 1033–1052, New York, NY, USA,
2011. ACM.

[22] D. Molnar, X. C. Li, and D. A. Wagner. Dynamic test genera-
tion to find integer bugs in x86 binary linux programs. Usenix
Security’09.

[23] D. Mutz, F. Valeur, C. Kruegel, and G. Vigna. Anomalous
system call detection. ACM Transactions on Information and
System Security, 9, 2006.

[24] J. Newsome, D. Brumley, and D. X. Song. Vulnerability-
specific execution filtering for exploit prevention on commod-
ity software. In NDSS, 2006.

[25] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering of
http-based malware and signature generation using malicious
network traces. In Proceedings of the 7th USENIX conference
on Networked systems design and implementation, NSDI’10.
USENIX Association, 2010.

[26] W. Robertson, G. Vigna, C. Kruegel, and R. A. Kemmerer.
Using generalization and characterization techniques in the
anomaly-based detection of web attacks. In Proceedings of the
13 th Symposium on Network and Distributed System Security
(NDSS), 2006.

[27] D. Sarkar, M. Jagannathan, J. Thiagarajan, and R. Venkata-
pathy. Flow-insensitive static analysis for detecting integer
anomalies in programs. In IASTED, 2007.

[28] R. Seacord. The CERT C secure coding standard. Addison-
Wesley Professional, 2008.

[29] W. Tielei, W. Tao, L. Zhiqiang, and Z. Wei. IntScope: Au-
tomatically Detecting Integer Overflow Vulnerability In X86
Binary Using Symbolic Execution. In 16th Annual Network
& Distributed System Security Symposium, 2009.

[30] F. Valeur, D. Mutz, and G. Vigna. A learning-based approach
to the detection of sql attacks. In DIMVA 2005, 2005.

[31] K. Wang and S. J. Stolfo. Anomalous payload-based network
intrusion detection. In RAID, 2004.

[32] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. Kaashoek.
Improving integer security for systems with kint. In OSDI.
USENIX Association, 2012.

[33] X. Wang, Z. Li, J. Xu, M. K. Reiter, C. Kil, and J. Y. Choi.
Packet vaccine: black-box exploit detection and signature gen-
eration. CCS ’06. ACM, 2006.

[34] C. Zhang, T. Wang, T. Wei, Y. Chen, and W. Zou. Intpatch:
Automatically fix integer-overflow-to-buffer-overflow vulner-

ability at compile-time. Computer Security–ESORICS 2010,
pages 71–86, 2010.

A. Proof Sketch of the Relationship between
the Original Semantics and the Abstract
Semantics

A.1 The Alias Analyses and the Abstract Semantics

In order to prove the above relationship between the origi-
nal semantics and the abstract semantics, we introduce the
following lemma that states the property between alias rela-
tionships and the abstract semantics.

Lemma 5. Given an execution trace 〈s0, σ0, ς0, h̄0〉 −→a

〈s1, σ1, ς1, h̄1〉 −→a · · · in the abstract semantics, we have

∀i,first(si)=l,left(si)=“l:∗p=x”∀j,i<j∀lload∈LoadLabel
(¬no_alias(l, lload)
∧ (∀i<k<j,first(sk)∈StoreLabel : ¬must_alias(first(sk), lload))
→ ((σi(x), ςi(x)) ∈ h̄j(lload))).

(3)

The intuition of Condition 3 is that σi(x) and ςi(x) are
the integer value and the overflow flag of the variable x that
the corresponding store statement of the label l accesses. If
the store statement and the corresponding load statement of
the label lload may access the same memory location and all
later store statements in the execution trace until the state
〈sj , σj , ςj , h̄j〉 do not have must_alias relationship with
the load statement, then the pair of the integer value and the
overflow flag (σi(x), ςi(x)) should be in h̄j(lload).

Proof. We can prove Condition 3 with the induction on the
number of steps of the execution n.

When n = 0, the condition trivially holds. Now con-
sider the induction case where n > 0. If first(sn−1) /∈
StoreLabel, then based on the small step rules of seman-
tics, h̄n−1 = h̄n. It is straintforward to apply the induction
rule to prove the condition.

If first(sn−1) ∈ StoreLabel and sn−1 = “l : ∗p′ =
x′”, based on the induction, what we need to prove is the
case where j = n:

∀i,first(si)=l,left(si)=“l:∗p=x”,i<n

∀lload∈LoadLabel(¬no_alias(l, lload)∧
(∀i<k<n,first(sk)∈StoreLabel : ¬must_alias(first(sk), lload))
→ ((σi(x), ςi(x)) ∈ h̄n(lload)))

If i = n − 1, from the small step rule of the ab-
stract semantics of the store statement, we can prove that
∀lload∈LoadLabel(¬no_alias(l, lload)) → ((σi(x), ςi(x)) ∈
h̄n(lload)). Therefore the conditon holds.

If i < n − 1, from the small step rule
of the store statement we can prove that
∀lload∈LoadStatement(¬must_alias(first(sn−1), lload)) →

19 2013/8/5

(h̄n−1(lload) ⊆ h̄n(lload)). From the induction rule, we can
show that (σi(x), ςi(x)) ∈ h̄n−1(lload). Therefore, we can
prove the condition holds.

A.2 The Relationship between the Original Semantics
and the Abstract Semantics

Theorem 2. Given any execution trace in the original se-
mantics

〈s0, σ0, ρ0, ς0, %0〉 −→ 〈s1, σ1, ρ1, ς1, %1〉 −→ · · · ,
there is an execution trace in the abstract semantics

〈s0, σ0, ς0, h̄0〉 −→a 〈s1, σ1, ς1, h̄1〉 −→a . . .

such that the following conditions hold

∀i∀x∈Var

(σi(x) ∈ Int→ (σi(x) = σi(x) ∧ ςi(x) = ςi(x)))
(1)

∀i,first(si)=l,l∈LoadLabel,left(si)=“l:x=∗p”
(ρi(σi(p)) ∈ Int→ (ρi(σi(p)), %i(σi(p))) ∈ h̄i(l)) (2)

where left(s) denotes an utility function that returns the
leftmost statement in s if s is a sequential composite and
returns s if s is not a sequential composite.

Proof. The proof of Conditions 1, 2 can be done with induc-
tion on the number of steps in the execution trace n.

For the base case n = 0, we simply verify that initial
states satisfy Conditions 1 2.

For the induction case n > 0, we already have
σ0, . . . , σn−1, ς0, . . . , ςn−1, h̄0, . . . , h̄n−1 that satisfy the
conditions by the induction rule. We first construct σn, ςn,
and h̄n using the corresponding small step rule in abstract
semantics, and then prove the construction satisfies the con-
ditions.
Condition 1: If first(sn−1) /∈ LoadLabel, the proof
is straightforward. For example, if first(sn−1) = l,
left(sn−1) = “l : x = y op z”, based on the small step
rule of the original semantics we know that:

σn = σn−1[x→ σn−1(y) op σn−1(z)]
ςn = ςn−1[x→ ςn−1(y) ∨ ςn−1(z)∨

overflow(σn−1(y), σn−1(z), op)]

and we can construct using the corresponding rule in the
abstract semantics:

σn = σn−1[x→ σn−1(y) op σn−1(z)]
ςn = ςn−1[x→ ςn−1(y) ∨ ςn−1(z)∨

overflow(σn−1(y), σn−1(z), op)]

By the induction rule we have ∀v∈Var σn−1(v) ∈ Int →
σn−1(v) = σn−1(v), so it is easy to show that:

∀v∈V ar,v 6=xσn(x) ∈ Int→ σn(x) = σn(x)

Also consider

σn(x) ∈ Int→
(σn−1(y) ∈ Int ∧ σn−1(z) ∈ Int)→
(σn−1(y) = σn−1(y) ∧ σn−1(z) = σn−1(z))→
((σn−1(y) op σn−1(z)) = (σn−1(y) op σn−1(z)))→
(σn(x) = σn(x))

We can do the proof similarly for ς and ς . Therefore
Condition 1 holds.

If first(sn−1) ∈ LoadLabel and left(sn−1) = “l : x =
∗p”, based on the semantic rules of the load statement, we
know that:

σn = σn−1[x→ ρn−1(σn−1(p))]
ςn = ςn−1[x→ %n−1(σn−1(p))]

From the induction rule of Condition 2,
we know that: ρn−1(σn−1(p)) ∈ Int →
(ρn−1(σn−1(p)), %n−1(σn−1(p))) ∈ h̄(l). Therefore,
if ρn−1(σn−1(p)) ∈ Int, it is possible to construct σn and
ςm as follows based on the abstract semantic rule of the load
statement:

σn = σn−1[x→ ρn−1(σn−1(p))]
ςn = ςn−1[x→ %n−1(σn−1(p))]

From the induction rule of Condition 1, we know that
σn−1 = σn−1 and ςn−1 = ςn−1. These facts together are
enough to show that Condition 1 holds.
Condition 2: If first(sn) /∈ LoadLabel, the proof is trivial
by using induction rule. Next we are going to sketch the
proof of Condition 2, when first(sn) ∈ LoadLabel and
left(sn) = “l : x = ∗p”.

We try to find a program state 〈sm, σm, ςm, ρm, %m〉 in
prior execution steps, such that m < n, first(sm) = l′,
left(sm) = “l′ : ∗p′ = x′”, σm(p′) = σn(p), and

∀m<k<n,left(sk)=“∗p′′=x′′” : σk(p′′) 6= σn(p)

Intuitively, the left(sm) is the latest store statement that
acesses the memory location p. Therefore, the load state-
ment left(sn) should obtain the value that left(sm) stores.
We can use a simple induction on the original small step
semantics to prove that: 1) if we cannot find such inter-
mediate state, we can prove that ρn(σn(p)) /∈ Int; 2) or
σm(x′) = ρn(σn(p)) and ςm(x′) = %n(σn(p)).

Then with the soundness property def-
inition of alias predicate must_alias and
no_alias, we prove that ¬no_alias(l′, l) and
∀m<k<n,first(sk)∈StoreLabel ¬must_alias(first(sk), l).
Therefore, as a direct implication of Condition 3, we
know that (σm(x′), ςm(x′)) ∈ h̄n(sn). With Condi-
tion 1 we have proved, we get (σm(x′) ∈ Int) →
((σm(x′), ςm(x′)) ∈ h̄n(sn)). Therefore, we have
ρn(σn(p)) ∈ Int → (ρn(σn(p)), %n(σn(p))) ∈ h̄n(sn).
Condition 2 holds.

20 2013/8/5

