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Background
We previously described a t(2;11)(p21;q23) chromosomal translocation found in patients with
myelodysplasia or acute myeloid leukemia that leads to over-expression of the microRNA miR-
125b, and we showed that transplantation of mice with murine stem/progenitor cells over-
expressing miR-125b is able to induce leukemia. In this study, we investigated the mechanism
of myeloid transformation by miR-125b.

Design and Methods
To investigate the consequences of miR-125b over-expression on myeloid differentiation,
apoptosis and proliferation, we used the NB4 and HL60 human promyelocytic cell lines and the
32Dclone3 murine promyelocytic cell line. To test whether miR-125b is able to transform
myeloid cells, we used the non-tumorigenic and interleukin-3-dependent 32Dclone3 cell line
over-expressing miR-125b, in xenograft experiments in nude mice and in conditions of inter-
leukin-3 deprivation. To identify new miR-125b targets, we compared, by RNA-sequencing,
the transcriptome of cell lines that do or do not over-express miR-125b.

Results
We showed that miR-125b over-expression blocks apoptosis and myeloid differentiation and
enhances proliferation in both species. More importantly, we demonstrated that miR-125b is
able to transform the 32Dclone3 cell line by conferring growth independence from interleukin-
3; xenograft experiments showed that these cells form tumors in nude mice. Using RNA-
sequencing and quantitative real-time polymerase chain reaction experiments, we identified
multiple miR-125b targets. We demonstrated that ABTB1, an anti-proliferative factor, is a new
direct target of miR-125b and we confirmed that CBFB, a transcription factor involved in
hematopoiesis, is also targeted by miR-125b. MiR-125b controls apoptosis by down-regulating
genes involved in the p53 pathway including BAK1 and TP53INP1.

Conclusions
This study demonstrates that in a myeloid context, miR-125b is an oncomiR able to transform
cell lines. miR-125b blocks myeloid differentiation in part by targeting CBFB, blocks apoptosis
through down-regulation of multiple genes involved in the p53 pathway, and confers a prolif-
erative advantage to human and mouse myeloid cell lines in part by targeting ABTB1. 
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ABSTRACT



Introduction

MicroRNA modulate a variety of cellular pathways,
including development, differentiation, proliferation, and
apoptosis, and dysregulation of microRNA expression
underlies specific oncogenic events in human cancer.1,2
In a previous study, we showed that a t(2;11)(p21;q23)

chromosomal translocation found in 19 patients with
acute myeloid leukemia or myelodysplastic syndrome
leads to up-regulation of microRNA miR-125b compared
to the levels in healthy individuals and leukemic patients
lacking this translocation.3 MiR-125b is expressed at high
levels in many other cancers. For example, miR-125b is
over-expressed in Down syndrome patients with
megakaryoblastic leukemia.4 Its over-expression is also
found in association with several chromosomal transloca-
tions including TEL-AML1 in acute lymphoid leukemia,5
PML-RARA in acute promyeloblastic leukemia6 and BCR-
ABL in chronic myeloid leukemia and B-cell acute lym-
phoblastic leukemia.7 MiR-125b is also involved in the
t(11;14)(q24;q32) chromosomal translocation found in B-
cell acute lymphoblastic leukemia, which juxtaposes the
immunoglobulin heavy chain enhancer to the miR-125b
locus leading to miR-125b over-expression.8 In solid
tumors, miR-125b is over-expressed in prostate9 and colo -
rectal10 cancers. Interestingly, miR-125b was found to be
down-regulated in breast11,12 and oral13 cancers, in
melanoma14 and in hepatocellular15 and thyroid anaplastic
carcinomas.16 Thus miR-125b seems to have a dual role
depending on the cell type or context. It can act as an
onco-microRNA (onco-miR) in hematologic malignancies
by targeting tumor suppressor genes or as a tumor sup-
pressor miR in breast cancer by targeting oncogenes. For
example, miR-125b targets multiple genes involved in the
p53 pathway and induces a blockage of apoptosis in
human neuroblastoma cells.17 However, in breast cancer,
in which it is down-regulated, miR-125b cannot regulate
its targets, leading to over-expression of the ETS111 or
MUC118 oncogenes.
In vitro experiments showed that miR-125b over-expres-

sion blocks granulocytic and monocytic differentiation of
human promyelocytic leukemic cell lines and perturbs
myeloid differentiation of primary mouse cells.3,4 In vivo,
transplantation experiments in mice by miR-125b-over-
expressing lineage-negative cells perturb hematopoiesis
and in some conditions induce hematologic malignan-
cies.19-21 High miR-125b expression leads to the develop-
ment of acute myeloid leukemia20 and lower expression
can induce B-cell or T-cell acute lymphoid leukemia in
transplanted mice.19 Enomoto et al. developed a transgenic
mice model mimicking the t(11;14)(q24;q32) chromoso-
mal translocation found in patients with B-cell acute lym-
phoblastic leukemia; these mice over-expressed miR-125b
driven by the IGH enhancer and promoter and developed
lethal B-cell malignancies with clonal proliferation.7
Normally miR-125b is highly expressed in hematopoiet-

ic stem cells (HSC) and its expression decreases in com-
mitted progenitors.20,22 MiR-125b over-expression in HSC
confers better engraftment in transplanted mice.20,22
In this study, using human and mouse myeloid cell lines,

we examined the role of miR-125b as an oncomiR in
myeloid malignancies.

Design and Methods

Cell culture, transfection and transduction
NB4 and 32Dclone3 cell lines were purchased from the Deutsche

Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) and
American Type Culture Collection (ATCC), respectively. HL60E
expressing the murine ecotropic receptor was a generous gift from
Brad Fletcher. The 293T cell line was purchased from the ATCC. 
NB4 cells were cultured in RPMI 1640 (Invitrogen) supplement-

ed with 10% fetal bovine serum, L-glutamine, penicillin and strep-
tomycin. Transient transfections of microRNA negative control #1
(Dharmacon CN-001000-01) or hsa-miR-125b mimic (Dharmacon
C-300595-03-0005) (22.5 mL of each mimic at the concentration of
50 mM) into NB4 cells (3x106) were performed by electroporation
at 200 V and 950 mF, using Pulser (BioRad). Transient transfections
of microRNA hairpin inhibitor negative control #1 (Dharmacon
IN-001005-01) or mmu-miR-125b inhibitor (Dharmacon IH-
310393-07) (8 mL of each inhibitor at a concentration of 100 µM)
into NB4 or 32Dclone3 cells (3x106) were performed by electropo-
ration at 200 V and 950 mF, using Pulser (BioRad). HL60E were cul-
tured in Iscove’s modified Dulbecco’s medium (Gibco) supple-
mented with 1.5 g/L sodium bicarbonate and 10% fetal bovine
serum. 32Dclone3 cells were grown in 10% fetal bovine serum,
10% interleukin-3 (IL-3) (WEHI media) and 1% penicillin and
streptomycin (Gibco). 32Dclone3 and HL60E were stably infected
with XZ or XZ-miR-125b, as described previously.19 Infection was
performed twice with two different virus supernatants for each
condition. Then, all of the experiments were performed at least
twice for each of the infected cells.

Differentiation assay
Differentiation of 32Dclone3 was induced by adding granulo-

cyte colony-stimulating factor at a final concentration of 100
ng/mL to the media. Five days later, cells were stained with anti-
CD11b and anti-Gr1 antibody for fluorescence activated cell sort-
ing (FACS) analysis on an LSRII (BD Biosciences). Morphological
analysis was performed with May-Grünwald Giemsa staining
(Sigma Aldrich) and slides were visualized under a AxioCam MRc
microscope (Zeiss).

Apoptosis assay
For NB4 and HL60E, apoptosis was induced with camptothecin

at a final concentration of 10 mM. The cells were harvested at day
2 after induction and stained using an annexin V-phycoerythin/7-
aminoactinomycin apoptosis detection kit (BD Biosciences)
according to the manufacturer’s instructions. For 32Dclone3,
apoptosis was triggered by removing IL-3 from the media and
stained 4 days later for flow cytometry analysis.

Proliferation assay
32Dclone3 and HL60E infected cells (green fluorescent protein-

positive; GFP+) were mixed with wild-type cells (green fluorescent
protein-negative; GFP–) at a ratio of 1:3. The percent of GFP+ cells
was determined by FACS analysis every 3 days for 15 days.
For cell cycle analysis, cells were collected, washed, suspended

in cold phosphate-buffered saline, fixed in 80% ethanol and
stained with propidium iodide.

mRNA-sequencing
For each cell line, four samples were used to generate four

libraries, which were duplicates of two conditions: 32Dclone3
control (1 and 2) and 32Dclone3 125b (1 and 2); NB4 transiently
transfected with control mimics (1 and 2) and NB4 transiently
transfected with miR-125b mimics (1 and 2), at day 3 post-trans-
fection. Total RNA of the cells was extracted using a RNAeasy kit
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(Qiagen) and mRNA libraries of each sample were prepared fol-
lowing instructions and using reagents from Illumina/Solexa. The
libraries were prepared using polyA+ enriched RNA according to
the manufacturer’s instructions (Illumina) and then sequenced on
a Solexa sequencing cell. All reads were aligned to the mouse mm9
genome or to the human genome (HG18) using the UCSC data-
base for 32Dclone3 and NB4, respectively. Gene expression values
were calculated as Reads Per Kilobase of Exon Model Per Million
Mapped Reads (RPKM). The expression threshold of 1 RPKM was
used as a cut-off for sets of aligned genes. The RPKM values from
miR-125b over-expressing cells were expressed as a fold-change
relative to control cells. The RNA-seq analysis data have been
deposited at the National Center for Biotechnology Information
Gene Expression Omnibus (repository numbers GSE37018 and
GSE37061). To calculate the enrichment of miR-125b targets
among the genes down-regulated in both cell lines, we used the
software available at http://serge.mehl.free.fr/anx/loi_hypergeo.html.
Population size: 10417 for 32Dclone3 and 10772 for NB4; sample
size:83; number of events with the selected criteria: 1244; success
in the sample: 25

Quantitative real-time reverse transcriptase polymerase
chain reaction analysis
Total RNA was isolated using the Trizol extraction protocol

according to the manufacturer’s instructions. Reverse transcription
was performed with Superscript II reverse transcriptase
(Invitrogen). Quantitative polymerase chain reaction (PCR) was
performed with SYBRgreen Master Mix (Applied Biosystems) on
96-well plates using ABI 7600 and the primers listed in Online
Supplementary Table S1. The data presented correspond to the
mean of 2-ΔΔCt from at least three independent experiments, nor-
malized to the mouse Gapdh and/or Hprt reference genes for
32Dclone3 experiments and to the human MLN51 and ACTIN ref-
erence genes for NB4 and HL60 experiments.

Western blot
The cells were harvested and lysed by ELB buffer [250 mM

NaCl, 0.1% Nonidet P-40, 50 mM HEPES (pH 7.0), 5 mM EDTA]
containing proteinase inhibitor cocktail (Roche). For western blot-
ting, 50 mg of protein were denatured by NuPAGE loading buffer
(Invitrogen) at 70 °C for 10 min. Western blots were probed with
the following rabbit polyclonal antibodies: anti-CBFB (ab33516,
Abcam), anti-ABTB1 (ab99547, Abcam) and anti-GAPDH (sc-
25778, Santa Cruz Biotechnology).

Luciferase assay
Using primers listed in Online Supplementary Table S1, fragments

corresponding to 3’UTR of putative targets containing the binding
sites for miR-125b were amplified by PCR. The PCR products
were cloned into reporter vector psicheck2 (Promega) using XhoI
and NotI restriction sites. 
Primers reported in Online Supplementary Table S1were used for

site-directed mutagenesis. The mutagenesis PCR reaction was per-
formed with 50 ng of plasmid, 1 mL of primers (10 mM each), 1 mL
dNTP mixture (10 mM each) and PfuTurbo DNA polymerase at
the concentration of 2.5 U/mL in a thermal cycler (BioRad) at 95 °C
for 30 s, then 22 cycles of 95 °C for 30 s, 53 °C for 1 min and 66
°C for 8 min. DpnI was added to digest the non-mutated parental
DNA templates. 
One day before transfection, 293T cells were seeded into 96-

well white plates at 1-2x104 cell/well. Cells were co-transfected
with 1 mL of 1 mM miR-125b mimic or control mimic
(Dharmacon) and 10 ng of constructs by using Lipofectamin 2000
according to the manufacturer’s protocol (Invitrogen). The
luciferase activity was measured 48 h after transfection using a

Dual-Glo Luciferase kit (Promega) and TECAN luminescence
reader. The Renilla luciferase signal, which accounts for the effect
of miR-125b on the 3’UTR of the Renilla gene, was normalized to
the Firefly luciferase signal, which is an internal control.

Xenograft experiments in nude mice
All experimental protocols were approved by the Ethics

Committee for Animal Experimentation of the Whitehead
Institute for Biomedical Research. In these experiments 1x107 cells
of 32Dclone3 XZ-miR-125b [1 and 2 (10 mice each)], 32Dclone3
XZ [1 and 2 (10 mice each)] or 32Dclone3 cells independent of IL-
3 [1 and 2 (5 mice each)] were injected subcutaneously into nude
mice (Taconic CrTac:NCr-Foxn1nu). The endpoint was the time
when the cells formed an aggregate tumor greater than 1 cm in
diameter. Euthanasia was achieved by CO2 inhalation.

Results

miR-125b over-expression blocks differentiation 
and apoptosis and induces proliferation of human 
and mouse myeloid cell lines

32Dclone3 is a mouse promyelocytic cell line that can
be induced toward granulocytic differentiation by addi-
tion of granulocyte colony-stimulating factor. This cell line
is also dependent on IL-3 and so is a good model for study-
ing apoptosis induced by cytokine deprivation. We previ-
ously reported that transient transfection of miR-125b
mimics into the human promyelocytic leukemic cell lines
NB4 and HL60 blocks granulocytic and monocytic differ-
entiation in the presence of all-trans retinoic acid and
dimethylsulfoxide, respectively.3 HL60E cells express the
murine ecotropic receptor and allowed us to use the
bicistronic murine retroviral vector (XZ) system to stably
induce expression of mature miR-125b; the vector con-
tains a RNA polymerase II promoter driving miRNA
expression followed by an internal ribosome entry site
and GFP.19 Thus GFP expression marks cells ectopically
expressing miR-125b. 
HL60E and 32Dclone3 cell lines were transduced with

XZ-miR-125b or the empty vector XZ alone, sorted for
GFP+ cells, and tested for apoptosis, proliferation and dif-
ferentiation. In parallel the NB4 cell line was transiently
transfected with miR-125b mimic or a negative control
mimic. 
Quantitative reverse transcriptase PCR experiments

showed a miR-125b over-expression of approximately
4000-fold in transiently transfected NB4 cells, 3000-fold in
infected HL60 cells and 2000-fold in infected 32Dclone3
cells compared to control cells (Online Supplementary Figure
S1B-D). MiR-125b levels in patients with myeloid
leukemia described in the literature range from 4-fold to
760-fold higher than those in the control samples (Online
Supplementary Figure S1A).3,4,6,7,23 However, the level of
expression of miR-125b in human samples was evaluated
on total bone marrow cells, so miR-125b over-expression
in leukemic blasts is largely underestimated. Of note, NB4
is a promyelocytic leukemic cell line with the PML-RARA
chromosomal translocation but the endogenous level of
miR-125b in NB4 is low and does not mimic the miR-125b
over-expression found in human acute promyelocytic
leukemia.24 The main abnormality found in the HL60
human promyelocytic leukemic cell line is a c-Myc ampli-
fication and miR-125b is not highly expressed in these
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cells.25,26 32Dclone3 is a non-tumorigenic cell line derived
from normal murine bone marrow and, like NB4, does not
express a high level of endogenous miR-125b.27 We used
these cell lines because they are good models for studying
in vitro apoptosis, proliferation and myeloid differentiation
as they can be induced to differentiate after treatment.
Apoptosis was induced upon camptothecin treatment in

NB4 and HL60E cells and by removal of IL-3 in 32Dclone3
cells. As shown in Figure 1A, 80% of control 32Dclone3
cells are apoptotic (annexin V+/7-aminoactinomycin D–) 4
days after removal of IL-3 compared to 30% of the cells
over-expressing miR-125b. There was a similar relative
decrease in apoptosis of NB4 and HL60E cells ectopically
expressing miR-125b compared to control cells (Figures
1B-C). Thus miR-125b blocks apoptosis in both human
and mouse cell lines. As previously observed with NB4
and HL60,3 32Dclone3 cells ectopically expressing miR-
125b show a blockage of granulocyte colony-stimulating
factor-induced myeloid differentiation, as quantified both
by FACS using the CD11b marker for granulocyte differ-
entiation (Online Supplementary Figure S2A) and by mor-
phological analysis (Online Supplementary Figure S2B).
To test the effects of miR-125b expression on cell

growth, GFP+ HL60E or 32Dclone3 cells expressing miR-
125b or the control vector were mixed with wild-type
cells (GFP–) at a ratio of 1:3. As judged by the absence of
changes of the ratio of GFP+ to GFP– cells over time, the

control vector had no effect on the relative rate of division
of either cell line. In contrast, the ratio of GFP+ miR-125b
expressing cells to GFP– control cells increases steadily
over time, reflecting the proliferative advantage conferred
by miR-125b over-expression. The doubling time of con-
trol 32Dclone3 cells was 19.1 h whereas that of miR-125b-
expressing 32Dclone3 cells was 18 h (Figure 2A). In the
HL60E cell line, the effect was even more dramatic with a
doubling time of 34.3 h for control cells and 28.36 h for
miR-125b-expressing cells (Figure 2B). By cell cycle analy-
sis, we observed a proliferative advantage in miR-125b
infected cells as shown by a decrease in the percentage of
cells in the G1 phase and an increase in the percentage of
cells in S phase (Online Supplementary Figure S3). Thus
miR-125b confers a proliferative advantage in both human
and mouse cell lines.
In summary, we demonstrated that miR-125b blocks

differentiation, apoptosis and induces proliferation in
mouse and human cell lines.

miR-125b is able to transform the 32Dclone3 cell line
To test whether miR-125b is able to transform myeloid

cells, we used the mouse promyelocytic 32Dclone3 cell
line, which is dependent on IL-3 for growth. In the
absence of IL-3, all control 32Dclone3 cells died within 16
days. However, miR-125b 32Dclone3 cells survived and
became independent of IL-3 for their growth (Figure 3A).
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Figure 1. miR-125b blocks
apoptosis of mouse and
human cell lines (A)
32Dclone3 infected cells were
deprived of IL-3 from the
media and annexinV-phycoery-
thrin/7-aminoactinomycin D
(7-AAD) staining was per-
formed 4 days later. Annexin
V+/7-AAD– cells are apoptotic
cells. One representative flow
cytometry plot is shown. The
histogram represents the aver-
age of apoptotic cells (annexin
V+) from three independent
experiments. (B) The human
promyelocytic NB4 cell line
was transiently transfected
with a miR-125b mimic or
mimic control. One day later,
apoptosis was induced by
adding camptothecin and the
percentage of apoptotic cells
was assessed 2 days later by
annexin V/7-AAD staining.
One representative flow
cytometry plot is shown. The
histogram represents the aver-
age of apoptotic cells (annexin
V+) from five independent
experiments. (C) The human
promyelocytic HL60E cell line
was stably infected with XZ or
XZ-miR-125b. GFP+ cells were
sorted and induced to apopto-
sis by camptothecin treat-
ment. Apoptosis was quanti-
fied 2 days later by flow
cytometry with annexin V
staining. One representative
flow cytometry plot is shown.
The histogram represents the
average of apoptotic cells
(annexin V+) from three inde-
pendent experiments.
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Of note, some miR-125b over-expressing cells died at the
beginning of the IL-3 deprivation as shown by 25% of
apoptotic cells at day 2 after removal of IL-3 and then they
recovered and grew in the absence of IL-3. 
To evaluate the effect of miR-125b over-expression in

tumor induction we used a 32Dclone3 xenograft model in
nude mice. In this experiment 1x107 32Dclone3 cells over-
expressing miR-125b or not were injected subcutaneously
into the dorsal side of nude mice. MiR-125b 32Dclone3
cells produced an aggregate tumor burden greater than 1
cm in diameter within 65 to 75 days in all subcutaneously
injected nude mice but no tumors were observed follow-
ing injection with control 32Dclone3 cells (Figure 3B).
When the tumor reached 1 cm of diameter the mice were
sacrificed and analyzed for metastases. All of the mice
injected with miR-125b over-expressing cells had
splenomegaly, hepatomegaly, and huge lymph nodes full
of miR-125b over-expressing cells (Figure 3C). In summa-
ry, miR-125b is an oncomiR able to transform the
32Dclone3 cell line.

Identification of miR-125b targets in myeloid cell lines
To better understand the mechanisms of blockage of

myeloid differentiation and apoptosis and induction of

proliferation by miR-125b, we proceeded to identify miR-
125b target genes involved in these pathways. We first
analyzed the total cellular gene expression pattern by
RNA-sequencing of the parental 32Dclone3 myeloid cell
line and that ectopically expressing miR-125b. We gener-
ated four cDNA libraries corresponding to duplicates of
miR-125b and control cells. The same experiment was
done with the NB4 cell line transiently transfected with
miR-125b or control mimics. The list of genes with
decreased mRNA levels in the presence of miR-125b was
then overlapped with the list of genes containing at least
one predicted binding site in its 3’UTR matching the seed
region of miR-125. A total of 2396 genes, irrespective of
site conservation, are putative miR-125b targets in mice
and 2964 genes in humans; 1244 genes are predicted tar-
gets in both mice and humans. As Bak1 (Bcl-2 antagonist
killer 1) and PPP1CA were previously described as miR-
125b targets6,9,28 and were found to be down-regulated
1.24-fold/1.61-fold and 1.18-fold/1.34-fold, respectively, in
duplicate experiments in miR-125b 32Dclone3 cells, we
decided to use 1.15 as a threshold to identify down-regu-
lated genes. For each cell line, genes down-regulated more
than 1.15-fold in duplicate RNA-sequencing experiments
were selected. For 32Dclone3 cells infected with XZ-miR-
125b, 1366 genes out of 10417 expressed genes were
down-regulated more than 1.15-fold compared to control
cells infected with XZ in duplicate RNA-sequencing exper-
iments (Online Supplementary Figure S4A). For NB4 cells
transiently transfected with miR-125b mimics, 1272 genes
out of 10772 expressed genes were down-regulated more
than 1.15-fold compared to control cells transiently trans-
fected with control mimics. Eighty-three genes were
down-regulated in both 32Dclone3 and NB4 cells over-
expressing miR-125b. Among these, 25 genes (Online
Supplementary Table S2) are predicted miR-125b targets;
hypergeometric analysis showed that there is an enrich-
ment in predicted miR-125b targets among the genes
down-regulated in both cell lines (*P=5x10-6).
Online Supplementary Figure S4B shows that the levels of

mRNA bearing different predicted miR-125b binding sites
- 8-mer, 7mer-m8, and 7mer-1A (for definitions, see
http://www.targetscans.org) as defined by TargetScan, were
indeed preferentially down-regulated in 32Dclone3 cells
stably expressing miR-125b, compared to control mRNA
that did not bear seed matches (black line). These cumula-
tive curves validate our RNA-sequencing approach. 
The 25 genes down-regulated in both cell lines and con-

taining a predicted miR-125b binding site included CBFB
(core binding factor beta), coding for a protein that plays
crucial roles in hematopoiesis, especially in myeloid differ-
entiation. CBFB was recently reported to be a miR-125b
target in the human NB4 cell line.29 To evaluate whether
CBFB was a common direct target in both mouse and
human cells, we quantified CBFB mRNA and protein lev-
els by reverse transcriptase PCR and western blots in miR-
125b 32Dclone3 cells and compared these levels to those
in control cells. We did indeed observe down-regulation of
mRNA and protein levels in miR-125b over-expressing
cells (Online Supplementary Figure S5A-B). Similarly, appli-
cation of an miR-125b inhibitor resulted in an increase in
the level of CBFB protein (Online Supplementary Figure
S5B). A luciferase assay demonstrated that CBFB was also
a direct target of miR-125b in mouse (Online Supplementary
Figure S5C). The observed suppression of reporter activity
was completely disabled when only two nucleotides in
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Figure 2. miR-125b confers a proliferative advantage to human and
mouse myeloid cells. (A) 32Dclone3 infected cells (GFP+) expressing
or not miR-125b were mixed with 32Dclone3 wild-type cells (GFP–)
at a ratio ~1:3. The percent of GFP+ cells in the population was
determined every 3 days of culture. Data represent the average of
four independent experiments done with two different batches of
virus for each condition. (B) The same experiment was performed
with HL60E infected cells.
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the putative microRNA responsive element were mutated,
indicating that CBFB is a direct target of miR-125b in
mouse (Online Supplementary Figure S5C). 
CBFB plays a crucial role in hematopoiesis and it is high-

ly expressed in hematopoietic stem cells, early stage
myeloid lineage progenitors, and mature myeloid cells.30-32
We postulated that deregulation of CBFB expression by
miR-125b could be the principal event in the blockage of
myeloid differentiation following miR-125b overexpres-
sion in 32Dclone3 cells. Thus we used an short-hairpin
(sh) RNA to knock-down CBFB expression in 32Dclone3
cells. As shown in Online Supplementary Figures S5D and
S5E by flow cytometry and morphology, respectively,
down-regulation of CBFB partially mimics the blockage of
myeloid differentiation observed with miR-125b over-
expression.
As miR-125b over-expression confers a proliferative

advantage in mouse and human cells, we focused on the
putative miR-125b target ABTB1 (Online Supplementary
Table S2). ABTB1 is a tumor suppressor and mediator of
the PTEN signaling pathway;33 its over-expression in a
colon cancer cell line leads to a decrease in proliferation
and its knockdown confers a proliferative advantage to
the cells.33 At the mRNA level, ABTB1 is down-regulated
3.9-fold in miR-125b 32Dclone3 cells compared to control
cells (Figure 4A). There was a 60% decrease in ABTB1 pro-
tein expression in miR-125b overexpressing cells and a
40% increase in cells treated with a miR-125b inhibitor
(Figure 4B). We validated ABTB1 as a direct miR-125b tar-
get by the luciferase assay shown in Figure 4C. However,

we were not able to observe an increase in proliferation of
32Dclone3 cells expressing an shRNA against ABTB1 (data
not shown), likely because the level of ABTB1 protein was
only partially reduced (Figure 4B). 
We showed that miR-125b over-expression in human

and mouse myeloid cell lines blocks apoptosis, but no pro-
apoptotic genes were among the 25 genes found by RNA-
sequencing (Online Supplementary Table S2). In Figure 4D
we used the more quantitative reverse transcriptase PCR
technique to assess the levels of several mRNA encoding
pro-apoptotic proteins that other researchers had shown
are direct miR-125b targets in various cells and species. As
shown in Figure 4D, BAK1 and TP53INP1 were down-reg-
ulated by miR-125b over-expression in all three cell lines.
Several pro-apoptotic genes, including PLK3, PPP1CA and
PRKRA, were down-regulated in two of the three cell
lines, while PPP2CA was significantly down-regulated
only in HL60 cells. Thus miR-125b expression inhibits
apoptosis by down-modulating levels of different pro-
apoptotic genes in different myeloid cell lines.

Discussion

The microRNA miR-125b is often up-regulated in can-
cer, in particular in myeloid malignancies, and over-
expression of miR-125b in transplanted murine stem/ pro-
genitor cells is able to induce leukemia. This study makes
several novel points concerning the effects of miR-125b
over-expression on myeloid progenitor cells. We showed
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Figure 3. miR-125b is an oncomiR able to transform 32Dclone3 cells by conferring independence to growth factor removal and inducing
tumors in nude mice (A) Independence from growth factors was assessed by removal of IL-3 from the 32Dclone3 media. Cells were resus-
pended at 300 000 cells/mL every 3 days. Viability of the cells was determined by flow cytometry analysis with annexin V/7-aminoactino-
mycin D (7-AAD) staining every 2 or 3 days. Annexin V–/7-AAD– cells are live cells. Data represent the average of three independent experi-
ments. (B) 1x107 32Dclone3 cells over-expressing miR-125b (n=30 total) or control (n=20 total) 32Dclone3 cells were subcutaneously inject-
ed into the backs of nude mice. Xenograft engraftment was monitored weekly and tumor size was recorded. Mice were sacrificed when the
tumor reached 1 cm in diameter. Experiments were performed twice with 15 and 10 mice respectively injected with miR-125b overexpress-
ing cells or control 32Dclone3 cells. (C) Pictures of nude mouse injected with miR-125b 32Dclone3 cells showing the tumor (left),
hepatomegaly and splenomegaly (middle) and infiltrated lymph nodes (right).
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that miR-125b over-expression is able to block myeloid
differentiation, prevent apoptosis, and support cytokine-
independent proliferation of both mouse and human
myeloid cell lines. Furthermore, we showed that miR-
125b expression is able to transform the 32Dclone3 cell
line by making it independent of IL-3 for its growth and
allowing it to form tumors in nude mice. We demonstrat-
ed that ABTB1, an anti-proliferative factor, is a new direct
target of miR-125b, and showed that in these lines miR-
125b also down-regulates a series of targets previously
identified in other cell types or species, including CBFB, a
transcription factor involved in hematopoiesis, as well as
other genes upstream or downstream of p53 including
BAK1, TP53INP1, PLK3, PPP1CA, PRKRA and PPP2CA.
miR-125b expression promotes myeloid transformation
by down-modulating levels of multiple genes that differ in
different myeloid cell lines.
To identify miR-125b targets involved in myeloid differ-

entiation, apoptosis, and proliferation, we analyzed the
total cellular gene expression pattern by RNA sequencing,
comparing 32Dclone3 and NB4 cells over-expressing or
not miR-125b. Among the down-regulated genes, we
focused on those containing a predicted binding site for
miR-125b in their 3’UTR. In different cell types miR-125b
mediates its proliferative effects through down-regulation
of several mRNA targets including p53,34 pro-apoptotic
Bcl-2 antagonist killer 1 (bak1),12 Bcl-2 modifying factor
(bmf),35 and TP53INP1.36 We identified a new putative miR-
125b target involved in proliferation: ABTB1 (Ankyrin
repeat and BTB/POZ domain containing 1, also called
BPOZ). Unoki et al. demonstrated that over-expression of
ABTB1 in the SW480 cell line decreased the rate of growth
while suppression of ABTB1 expression using anti-sense
oligonucleotides resulted in an increased number of cells.33
By using a luciferase reporter assay, we showed that
ABTB1 was a direct target of miR-125b. However, we
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Figure 4. Identification of miR-125b targets: ABTB1 is a miR-125b target (A) Quantitative reverse transcriptase-PCR of ABTB1 mRNA in
32Dclone3 cells overexpressing miR-125b compared to 32Dclone3 control. *P<0.0005. (B) Western blot showing the down-regulation of
ABTB1 protein in miR-125b over-expressing cells compared to control cells (upper panel). ABTB1 is increased in 32Dclone3 cells transiently
transfected with an inhibitor of miR-125b (lower panel). (C) Repression of luciferase activity due to the binding of miR-125b to the 3’UTR of
ABTB1. The 3’UTR of ABTB1 containing the predicted binding site for miR-125b was cloned 3’ to the renilla luciferase open reading frame
in the psicheck2 vector. The ABTB1 3’UTR mut corresponds to the same construct with an internal mutation in the binding site of miR-125b.
chek2 is the empty vector and it serves as the negative control. The perfect match construct is the positive control containing the miR-125b
binding site only. Each construct was co-transfected in 293T cells with miR-125b mimics or control mimics and luciferase activity was
assessed 2 days after transfection. Renilla activity was normalized to the firefly internal psicheck control. The results presented correspond
to the relative luciferase activity normalized to transfections with control mimics. *P<0.0005. (D) miR-125b targets genes involved in apop-
tosis are down-regulated by miR-125b expression in both human and mouse myeloid cell lines. The mRNA expression levels of BAK1,
PLAGL1, PLK3, PPP1CA, PPP2CA and TP53INP1 were measured in 32Dclone3 and HL60 cells infected with XZ (control) or XZ-miR-125b
vectors, and in NB4 cells 3 days after transient transfection with control or miR-125b mimics. The mRNA expression levels were evaluated
by quantitative real-time PCR, normalized to the expressions of MLN51 and ACTIN in human cells and GAPDH in mouse cells, and presented
as fold change [2-ΔΔCt] ± SD (n ≥ 3) in miR-125b expressing cells relative to control cells. Two-tailed t-test results of *P<0.05 relative to
control cells. 
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were not able to observe an increase in proliferation by
using shRNA against ABTB1 in 32Dclone3 cells, probably
because of the low efficiency of shRNA knockdown of
ABTB1 compared to that induced by miR-125b over-
expression. 
Another important direct target of miR-125b is CBFB,

which plays crucial roles in hematopoiesis, especially in
myeloid differentiation. CBFB associated with AML1
forms the core binding factor complex.37-39 AML1 binds
directly to the enhancer DNA sequence of target genes
and CBFB increases the affinity and stabilizes the binding
of AML1 to DNA.37,39 CBFB and AML1 are commonly
deregulated in acute myeloid leukemia and form part of
chimeric genes that can trigger cancer.40 CBFB is involved
in acute myeloid leukemia; the inversion of chromosome
16 [inv(16)(p13q22)] and the t(16;16)(p13;q22) chromoso-
mal translocation both lead to the formation of an onco-
genic fusion protein CBFB-MYH11 (muscle myosin heavy
chain 11).41,42 The oncogenic mechanism of CBFB-MYH11
remains to be elucidated. Nonetheless, mice lacking the
Cbfb gene or heterozygous for a Cbfb/MYH11 allele pro-
duce an identical phenotype in which the animals undergo
early embryonic death in part caused by the lack of fetal
liver hematopoiesis.43,44
Surdziel et al. found another miR-125b target involved in

myeloid differentiation, the transcription factor STAT3.28
They showed, by luciferase assays and western blotting,
that STAT3 was a direct target of miR-125b and that a
strong reduction of STAT3 expression by shRNA blocks
granulocytic differentiation of 32Dclone3 cells.28
MicroRNA down-regulate multiple mRNA targets that

differ in different cell types and species; they should be
considered more as fine regulators of networks than
strong regulators of a single gene. We thus hypothesize
that the blockage in myeloid differentiation mediated by
miR-125b over-expression is due to partial down-regula-
tion of a combination of genes including CBFB, STAT3 and
ABTB1. Similarly, the ability of miR-125b to block apopto-
sis in different cell types in different vertebrate species is
due to its ability to partially down-regulate sets of
proapoptotic genes in the p53 network, but few specific
genes, are conserved as miR-125b targets. For example,
p53 is a bona fidemiR-125b target in humans and zebrafish

but not in mice.17 Other miR-125b target genes in the p53
network include apoptosis regulators such as Bak1, Igfbp3,
Itch, Puma, Prkra, Tp53inp1, Tp53, Zac1, and cell-cycle reg-
ulators including cyclin C, Cdc25c, Cdkn2c, Edn1, Ppp1ca,
and Sel1l.34 We showed that two of these genes, BAK1 and
TP53INP1, were down-regulated by miR-125b over-
expression in all three myeloid cell lines tested. Others,
including PLK3, PPP1CA, and PRKRA were down-regulat-
ed in two of the three cell lines and PPP2CA was signifi-
cantly down-regulated only in HL60 cells. Interestingly,
the p53mRNA level was not altered by over-expression of
miR-125b in the human NB4 cell line and the other human
line tested, HL60, does not express p53 (data not shown).
Thus miR-125b expression inhibits apoptosis in different
myeloid cell lines by down-modulating levels of different
pro-apoptotic genes involved in the p53 pathway rather
than by down-regulation of a single gene.
The functions of miR-125b and its targets seem to be

cell type-specific as miR-125b can be a tumor suppressor
in some cancers, such as breast, liver or bladder cancers,
but it acts as an oncogene in hematologic malignancies as
it has been involved in myeloid and lymphoid
leukemias.3,4,6-8,11,15,45
In summary, we report that miR-125b is an oncomiR

able to transform several human and murine myeloid cell
lines. miR-125b blocks myeloid differentiation in part by
targeting CBFB, blocks apoptosis through down-regula-
tion of multiple genes involved in the p53 pathway, and
confers a proliferative advantage to human and mouse
myeloid cell lines in part by targeting ABTB1. As miR-
125b is deregulated in different hematologic malignancies,
it could be a therapeutic target of choice in the treatment
of certain leukemias.
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