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Abstract

We use LVDSMC simulations to calculate the second-order temperature jump co-
efficient for a dilute gas whose temperature is governed by the Poisson equation with a
constant forcing term. Both the hard sphere gas and the BGK model of the Boltzmann
equation are considered. Our results show that the temperature jump coefficient is dif-
ferent from the well known linear and steady case where the temperature is governed
by the homogeneous heat conduction (Laplace) equation.

1 Introduction

Slip-flow theory is a powerful tool that enables the continued use of the Navier-Stokes de-
scription as the characteristic flow lengthscale (L) approaches the molecular mean free path
(λ) [14]. It can be rigorously derived from asymptotic solution of the Boltzmann equation
in the limit Kn = λ/L � 1; such an analysis shows that, in this limit, the Navier-Stokes
description remains valid in the bulk, but fails near the boundaries [16, 17]. Fortunately,
the kinetic effects associated with the inhomogeneity introduced by the walls are only im-
portant within a layer of thickness O(λ) near the boundaries (known as the Knudsen layer)
and can be accounted for by a boundary-layer type of analysis where an inner kinetic solu-
tion is matched to the outer Navier-Stokes solution [16, 17]. Slip/jump boundary conditions
and the associated non-adjustable slip coefficients emerge from this analysis as the matching
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condition between the inner and outer solution [16, 17]. Carrying out such an analysis to
second order in Kn yields second-order slip/jump models [16, 17], which can be very useful
in a variety of cases [14].

Accurate determination of slip coefficients using this rigorous procedure is quite chal-
lenging in general and becomes increasingly more challenging as the order of the expansion
increases. Original studies focused on the BGK model of the Boltzmann equation [3, 6],
for which all first-order and second-order coefficients are known [16, 17]. The first-order
coefficients for the hard-sphere gas have also since been calculated [5]. However, although
the form of the slip expression is known to second order in Kn, second-order slip coefficients
for the hard-sphere gas are mostly unknown.

As the companion paper shows [7], the recently developed reciprocity relations by Takata
[1, 2] can be used to calculate these coefficients. An alternative approach amounts to ex-
tracting slip coefficients from hydrodynamic fields by comparing solutions of the Boltzmann
equation with Navier-Stokes solutions [8, 14]. In these approaches, in addition to high ac-
curacy (including low statistical uncertainty if a stochastic method is used for solving the
Boltzmann equation), care needs to be exercised to avoid comparison of the two solutions
in the Knudsen layer, where the Navier-Stokes solution is not equivalent to the Boltzmann
solution [14]. This has led to a number of erroneous results in the past.

In this paper we use this process to calculate the second-order temperature jump coeffi-
cient for a dilute gas when the temperature field is governed by the Poisson equation with
constant forcing term. We calculate this coefficient using the recently developed low-variance
deviational Monte Carlo simulation method [12, 13, 15, 18, 9], which is naturally suited to
low-signal problems and thus allows calculations at infinitessimal temperature differences.
The latter are necessary because finite temperature differences introduce density gradients
and temperature-dependent transport coefficients which may alter the result.

Our result is verified and put on a more firm theoretical footing by the companion paper
[7] which considers a mathematically equivalent time-dependent problem, thus clarifying why
the temperature jump law and coefficient reported here are in general different from the one
obtained by linear steady-state analysis [16].

2 Background

We consider a dilute hard-sphere gas of molecular mass m and molecular diameter σ, in
contact with a planar diffusely reflecting boundary at temperature TB. We also consider the
BGK model of such a gas, with collision frequency τ−1. In the case of the hard-sphere gas,
λ = (

√
2πn0σ

2)−1, while for the BGK gas λ = 2c0τ/
√
π, where c0 =

√
2RT0 is the most

probable speed based on the reference temperature T0, n0 is a reference number density,
R = kB/m is the gas constant and kB is Boltzmann’s constant.

The first-order temperature jump condition at the gas-wall interface is given by [16, 17]

T̂
∣∣
B
− T̂B = d1k

∂T̂

∂n̂

∣∣∣
B
, (1)
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where T̂ = T/T0, k =
√
π
2
Kn =

√
π
2

(λ/L), |B denotes the boundary location, n̂ is the unit
(inward) normal direction and L is the characteristic system length scale; the numerical
constant d1 obtains the non-adjustable values of 2.4001 for a hard sphere gas and 1.30272 for
a BGK gas [16]; we emphasize that these values correspond to diffusely-reflecting boundaries.

The utility of first-order slip/jump models primarily depends on the amount of error
that can be tolerated. Temperature jump coefficients (both first-order and the second-order
measured here) turn out to be larger than their velocity slip counterparts. As a result, a
second-order temperature jump correction becomes important at smaller Knudsen numbers.
In other words, the first-order result (1) is typically adequate for Kn < 0.1.

Asymptotic expansion to second order in k [16, 17] for linear and steady problems extends
(1) to the following jump condition

T̂
∣∣
B
− T̂B = d1k

∂T̂

∂n̂

∣∣∣
B

+ d3k
2∂

2T̂

∂n̂2

∣∣∣
B
. (2)

This condition is valid for a quiescent gas—more precisely, a gas that is quiescent under
no-slip boundary conditions; in the presence of gas flow, additional terms related to the flow
stress need to be included [16]. We also emphasize that according to the analysis that yields
this condition, for linear and steady problems, energy conservation reduces to

∇2T̂ =
∂2T̂

∂x̂2
+
∂2T̂

∂ŷ2
+
∂2T̂

∂ẑ2
= 0, (3)

where (x̂, ŷ, ẑ) = (x/L, y/L, z/L), and L is the characteristic problem lengthscale. In the
special case of one-dimensional problems, equation (3) further reduces to

∇2T̂ =
d2T̂

dn̂2
= 0, (4)

which makes the value of d3 irrelevant. This is actually utilized below to calculate the slip
coefficient due to a forcing term in the temperature equation.

In summary, jump condition (2) is to be used when the governing equation is (3). Within
this approximation, d3 is only known (d3 = 0) for the special case of the BGK model [16, 17].
We also note that Deissler’s result [4] for second-order velocity slip and temperature jump is
based on approximate mean-free-path arguments and does not correspond to a self-consistent
solution of the Boltzmann equation; as a result, it captures neither the correct form of the
slip/jump relation nor the correct values of the slip coefficients (e.g. compare equations
(3.40)-(3.42) in [17] to equations (24a) and (51) in [4]).

3 Calculation of the temperature jump coefficient

To extract the slip coefficient in a dilute gas governed by the Poisson equation with constant
forcing term, we simulate the steady state of a one-dimensional gas layer bounded by two
isothermal, diffuse walls at x = ±L/2 and at temperature T0, subject to volumetric heating

3



at a constant rate Q̇. In dimensionless form, the one-dimensional heat equation with constant
volumetric heating can be written as

∇2T̂ =
d2T̂

dx̂2
= − 5ε

4γ2k
, (5)

where x̂ = x/L, γ2 is a dimensionless form of the thermal conductivity— equal to 1.9228 for
hard spheres and unity for BGK [17]—and

ε =
L Q̇

c0P0

� 1 (6)

is the dimensionless form of the volumetric heat addition rate. Here, P0 = n0kBT0 is a
reference pressure.

The asymptotic analysis yielding (2) does not apply to the non-homogeneous equation
(5). A rigorous derivation which takes the inhomogeneous term into account by considering
an equivalent unsteady problem can be found in the companion paper [7], which shows that
in a quiescent gas, in one spatial dimension, the resulting second-order slip relation is given
by

T̂
∣∣
B
− T̂B = d1k

∂T̂

∂n̂

∣∣∣
B

+ d′3k
2∂

2T̂

∂n̂2

∣∣∣
B
. (7)

We emphasize that, although the structure of the slip relation is the same as in equation (2),
the second-order coefficient is different. It is also convenient that (7) does not contain d3; this
allows calculation of d′3 from volumetric heating calculations without explicit knoweldge of d3.
This last feature, as well as the similarity of (2) and (7) is due to fortuitous cancellation; as
discussed further in section 6, under more general conditions (e.g. higher spatial dimensions),
this cancellation does not take place and terms containing both d3 and d′3 appear.

The solution to Equation (5) subject to boundary condition (7) is

T̂ =
1

2

4ε

5γ2k

[(
1

4
− x̂2

)
+ d1k − 2d′3k

2

]
. (8)

Comparison of this solution to LVDSMC simulations away from the Knudsen layer allows
us to calculate the coefficient d′3. In this work, we extract the value of d′3 from the slope of

5γ2
4ε
T̂ (x̂ = 0)− 1

8k
− d1

2
(9)

as a function of k for k → 0.

4 Computational method

The Low-variance Deviational Simulation Monte Carlo (LVDSMC) method [12, 13, 15, 18, 9]
efficiently simulates [10] the Boltzmann equation

∂f

∂t
+ c · ∂f

∂x
=

[
∂f

∂t

]
coll

(10)
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written here in the absence of external body forces, by simulating only the deviation fd =
f −fMB from an equilibrium state fMB. Here, f = f(x, c, t) is the single particle distribution
function [16]. This approach results in a greatly reduced level of statistical uncertainty for
low signal problems compared to the standard DSMC [11] approach and is therefore well
suited to the present application.

Volumetric heating is modeled by simulating the equation

∂f

∂t
+ c · ∂f

∂x
=

[
∂f

∂t

]
coll

+
Q̇

P0

(
2

3

c2

c20
− 1

)
f 0 (11)

where
f 0 =

ρ0
π3/2c30

e−||c||
2/c20 (12)

and ρ0 = mn0 is a reference mass density. More details on the simulation of the additional
term on the right hand side can be found in section 4.2.

In the versions implemented here, equilibrium is described by a Maxwell-Boltzmann
distribution

fMB =
ρMB

π3/2c3MB

exp

(
−||c− uMB||2

c2MB

)
, (13)

based on local (cell-based) mass density ρMB, velocity uMB, temperature TMB, and most
probable velocity cMB =

√
2RTMB. Because fd can take positive and negative values, it is

represented by signed (or deviational) particles.
As in the DSMC approach, LVDSMC solves the Boltzmann transport equation through a

time-splitting approach using a timestep ∆t. The associated advection and collision substeps
are described below.

4.1 Advection substep

During the advection substep, particles move according to the standard DSMC procedure
(i.e. for particle i, xi(t + ∆t) = xi(t) + ci∆t), with additional particles generated at the
boundaries and cell interfaces. Each of these additional generation steps are implemented
by drawing particles from differences of fluxal distributions.

At a stationary boundary, particles are generated by sampling from

c · n (ρBφ
B − fMB) ∆A∆td3c, (14)

where ∆A is the surface area element at the boundary, fMB is the equilibrium distribution
in the cell adjacent to the boundary, and φB is the “boundary distribution” given by

φB =
e−c

2/c2B

π3/2c3B
, (15)

where the cB =
√

2RTB; the “boundary density” ρB is evaluated from the mass conservation
statement

ρB

∫
c·n>0

c · nφBd3c = −
∫
c·n<0

c · nfMBd3c. (16)
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Particles are also generated at the cell interfaces to account for the spatial discontinuities
in fMB [13, 15]; they are sampled from

c · n
(
fMB

− − fMB

+

)
∆Aint∆td3c, (17)

where ∆Aint is the area of the interface, fMB
± are the equilibrium distributions in adjacent

cells, and n points from fMB
− to fMB

+ .

4.2 Collision substep

The collision substep treatment is based on published LVDSMC implementations [15, 9], suit-
ably modified to include the effect of volumetric heating. We first discuss the BGK collision
operator and the corresponding volumetric heating implementation; the hard-sphere case
follows. Due to the small deviations from equilibrium, here we consider the linearized form
of these collision operators; methods for simulating the corresponding non-linear versions
can be found in [18, 13, 10].

4.2.1 BGK model

In the case of the BGK model, the collision operator is given by[
∂f

∂t

]
coll

= −f − f
loc

τ
, (18)

where f loc is the local equilibrium distribution given by

f loc =
ρ(x, t)

[2πRT (x, t)]3/2
exp

(
−||c− u(x, t)||2

2RT (x, t)

)
, (19)

where ρ(x, t), u(x, t) and T (x, t) are the local mass density, flow velocity and temperature.
Using the approach of Ref. [15], the collision step for the BGK collision operator is

written as [
∂fd

∂t

]
coll

∆t =
∆t

τ

[
f loc − fMB

]
−∆fMB︸ ︷︷ ︸

generation

− ∆t

τ
fd︸ ︷︷ ︸

deletion

, (20)

where ∆fMB is a shift in the equilibrium state. The terms above represent a source term for
generating new particles, and a sink term for deleting existing particles. It can be shown
[15] that the generation term is eliminated for linear problems when the equilibrium state
(for each cell) is shifted according toρMB

uMB

TMB

 (t+ ∆t) =

ρMB

uMB

TMB

 (t) +
∆t

τ

 ρ− ρMB

u− uMB

T − TMB

 (t). (21)

This results in a substantial simplification to step (20), which reduces to the very simple
operation of randomly deleting particles with probability ∆t/τ .
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Because the above method simulates a local equilibrium fMB that is updated in the course
of the simulation, the heat generation term can be introduced directly (and analytically) into
the algorithm using

Q̇ = ρ0
d

dt

(
3

2
RTMB

)
, (22)

which results in the following update for the temperature parameter of the equilibrium
distribution

∆TMB =
2Q̇∆t

3ρ0R
(23)

every timestep.

4.2.2 Hard Sphere model

The hard sphere collision operator is given by[
∂f

∂t

]
coll

=
1

m

∫ ∫
(f ′f ′∗ − ff∗)

σ2

4
||c− c∗||d3c∗ d2Ω, (24)

where primes denote post-collision values and Ω is the spherical angle. The collision step
for this approach [

∂fd

∂t

]
coll

=

∫ [
2K(1) −K(2)

]
(c, c∗)f∗d

3c︸ ︷︷ ︸
generation

− νf︸︷︷︸
deletion

(25)

is processed as a series of Markov particle generation and deletion steps as proposed by
Wagner [10]; the specific algorithms employed are discussed in detail in Refs. [10, 9]. In the
above,

K(1)(c, c∗) =
σ2ρMB√

πmcMB||c− c∗||
exp

(
− [(c− uMB) · (c− c∗)]

2

c2MB||c− c∗||2

)
(26)

K(2)(c, c∗) =
πσ2

m
||c− c∗||fMB(c) (27)

ν(c) =
πσ2ρMBcMB

m

[
e−ξ

2

√
π

+

(
ξ +

1

2ξ

)
erf (ξ)

]
(28)

where ξ = ||c− uMB||/cMB.
In this approach, fMB is not updated during the collision step because the hard-sphere

simulation algorithm used here is based [9, 19] on the fixed global equilibrium distribution f 0.
However, to improve accuracy for the low values of Kn considered here,1 we have developed

1As shown in [15], due to the increasing importance of the local equilibrium distribution as Kn → 0,
LVDSMC simulations with a variable equilibrium distribution significantly outperform their counterparts
with fixed equilibrium distribution, because they can be set up to track the local equilibrium distribution
and thus minimize the number of particles required for the same solution fidelity.
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a special algorithm which uses an equilibrium distribution (fMB) that is not updated during
the collision step but is, however, spatially dependent. In order to determine a suitable form
of fMB, at the early stages of the simulation, this distribution tracks the local equilibrium
distribution (similarly to the BGK algorithm described above) using an iterative algorithm
in which ρMB and TMB are taken from the solution at the previous iteration, while the velocity
uMB is taken to be zero. This process is started with fMB = f 0 and iterated until fMB no
longer changes appreciably, which usually takes less than 2 iterations.

The uniform heat generation is implemented in this case by generating particles from the
distribution [

∂fd

∂t

]
heat

=
Q̇

P0

(
2

3

c2

c20
− 1

)
f 0. (29)

Algorithms for efficiently sampling from distributions of the form (29) are described elsewhere
[15, 9, 19].

5 Results

Numerical simulations of the uniform heat generation problem were performed in order to
extract the second-order jump coefficients by comparing the calculated steady centerline
temperature T̂ (x̂ = 0) with the prediction of equation (8) at x̂ = 0.

Figure 1 shows our numerical data for −kd′3 and a linear least squares fit passing through
the origin based on the data for k < 0.06, and the values d1 = 1.30272 for BGK and
d1 = 2.4001 for the hard sphere gas [17]. These fits yield d′3 = −1.4 for BGK and −3.1 for
the hard sphere model; the fit quality demonstrates that the leading order term is indeed k2.
The contribution of higher order terms starts to be noticable as k increases. Incidentally,
the complementary analysis of the companion paper [7], based on a finite difference analysis
of the Knudsen-layer problem of the linearized Boltzmann equation, yields d′3 = −1.4276 for
the BGK model and d′3 = −3.180 for the hard-sphere model.

Figure 2 shows the temperature field for the hard sphere case with Kn = 0.05 (equivalent
to k = 0.0443) using the value obtained above (namely d′3 = −3.1) demonstrating excellent
agreement everywhere except in the Knudsen layer close to the boundary, as expected. By
comparing the first- and second-order jump theories, it is clear that the second-order jump
theory provides an improvement over the existing first-order theory, already at Kn = 0.05.
For Kn = 0.1 (Figure 3), the error in the first order solution is quite large, while the second-
order solution is considerably more accurate, provided that the existence of the Knudsen
layers for a large part of the domain is accounted for.

6 Discussion

Using LVDSMC simulations, we have extracted the second-order temperature jump coeffi-
cient for a hard-sphere and a BGK gas in the case that the Navier-Stokes-limit behavior
is captured by an inhomogeneous heat conduction equation, such as the one appearing in

8
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Figure 1: Fits used to extract the second-order jump coefficient d′3 for the hard sphere and
BGK collision models.

-0.5 0 0.50

0.5

1

1.5
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x̂

ε−1T̂

simulation
second-order
first-order

Figure 2: Second-order temperature jump solution (Equation (8)) to the uniform heat
generation problem with Knudsen number Kn = 0.05; simulation results (symbols) are
compared to the first- (dashed line) and second-order (solid line) jump theories (equation
(8) with d′3 = 0 and d′3 = −3.1, respectively).
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Figure 3: Second-order temperature jump solution (Equation (8)) to the uniform heat gen-
eration problem with Knudsen number Kn = 0.1; simulation results (symbols) are compared
to the first-order (dashed line) and second-order (solid line) jump theories (equation (8) with
d′3 = 0 and d′3 = −3.1, respectively).
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the presence of constant volumetric heating. Our results have been validated by a com-
panion paper which provides a deterministic calculation of the same coefficient through a
rigorous asymptotic analysis of the Boltzmann description of a mathematically equivalent
problem, namely that of a quescient gas confined between two parallel walls whose tempera-
ture changes linearly (increases or decreases) in time at a constant (and small) rate. Due to
the time-dependent nature of the latter problem, the analysis in the companion paper goes
beyond the asymptotic theory for steady problems [16]; this also explains why the presently
calculated jump coefficient (d′3) is not equivalent to the one (d3) obtained by the steady
asymptotic analysis of Ref. [16].

Equation (5) and boundary condition (7) can be generalized to two and three-dimensional
steady problems as long as the heat generation in the gas is uniform in space and constant
in time. Specifically, for a quiescent gas, the governing equation and boundary condition in
this case become

∇2T̂ = − 5ε

4γ2k
(30)

and

T̂
∣∣
B
− T̂B = (d1+d5κ̄k)k

∂T̂

∂n̂

∣∣∣
B

+ d′3k
2∂

2T̂

∂n̂2

∣∣∣
B

+ (d′3 − d3)k2
(
∇2T̂ − ∂2T̂

∂n̂2

)∣∣∣∣∣
B

(31)

respectively. Here κ̄/L is the mean boundary curvature and d5 = 1.82181 for the BGK model
[16]; for the hard-sphere gas the value of d5 is unknown. The temperature jump coefficient
d3 for the hard sphere gas, as well as a general second-order slip description of unsteady
problems remain unknown and will be the subject of future work.
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