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Abstract 

The process of assembling particles into organized functional structures is influenced by the rheological 

properties of the matrix fluid in which the assembly takes place. Therefore, tuning these properties 

represents a viable and as yet unexplored approach for controlling particle assembly. In this letter, we 

examine the effect of the matrix fluid yield stress on the directed assembly of polarizable particles into 

linear chains under a uniform external magnetic field. Using particle-level simulations with a simple 

yield stress model, we find that chain-growth follows the same trajectory as in Newtonian matrix fluids 

up to a critical time that depends on the balance between the yield stress and the strength of magnetic 
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interactions between particles; subsequently, the system undergoes structural arrest. Appropriate 

dimensionless groups for characterizing the arresting behavior are determined and relationships between 

these groups and the resulting structural properties are presented. Since field-induced structures can be 

indefinitely stabilized by the matrix fluid yield stress and ‘frozen’ into place as desired, this approach 

may facilitate the assembly of more complex and sophisticated structures. 

Keywords: directed assembly, yield stress, structural arrest, dipolar chains, magnetorheological fluids 

1. Introduction 

The assembly of colloids and nanoparticles into complex and highly-ordered structures 

continues to be an important and effective method for creating functional materials with unique and 

technologically attractive properties.1,2 Through manipulation of the thermodynamic and kinetic 

interactions between particle building blocks, authors have demonstrated the assembly of materials such 

as photonic crystals3 and electronic circuits,4,5 as well as biomaterials such as peptide-based scaffolds for 

regenerative medicine.6,7 Approaches to controlling the assembly process generally fall into three 

categories: adjusting particle or template properties like shape, size, patterning, and chemical 

functionality;8,9 tuning particle interactions via thermodynamic variables such as temperature or pH;10,11 

and directing particle behavior with external flows or fields, such as electric or magnetic fields.2,12 In 

particular, by applying a uniform magnetic field to polarizable colloids suspended in a matrix fluid, 

directed assembly of the particles into aggregated chain-like structures in the direction of the external 

field can be achieved.13 The anisotropic mechanical properties of these structures have been exploited in 

magnetorheological (MR) fluids,14,15 which undergo dramatic changes in bulk rheological properties 

upon formation of particle chains, as well as for lab-on-a-chip separations.16 The matrix fluid in most 

particle assembly studies, as well as in most MR fluids and devices, is typically Newtonian; however, it 

has long been known in the rheology community that the behavior of suspended particles is significantly 

influenced by the matrix fluid rheology.17 For example, Feng and Joseph demonstrated that spherical 

particles dispersed in viscoelastic Boger fluids subjected to bulk torsional flow undergo radial migration 

to form distinct ring patterns; by contrast, no such microstructure was observed in the Newtonian case.18 

Additionally, the use of yield stress matrix fluids to prevent sedimentation in MR suspensions has 

motivated questions about the effects of the yield stress on the formation of field-induced structures.19,20 

With these considerations in mind, we present in this letter a new approach to controlling 

particle assembly via the non-Newtonian properties of the matrix fluid. Because of the immediate 

relevance to MR fluid technology, we specifically demonstrate this approach by examining the effect of 

the matrix fluid yield stress on the directed assembly of polarizable particles under a uniform external 
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magnetic field. Using 2-D particle-level simulations, we find that chain growth initially follows the 

same trajectory as in Newtonian matrix fluids, but is arrested at a critical time that scales with a 

dimensionless group that characterizes the balance between the yield stress and inter-particle magnetic 

stresses. Adjusting this balance allows the properties of the arrested structure, including the average 

cluster size, to be tuned. Assuming the matrix fluid yield stress dominates over other forces on particles 

(i.e., thermal, gravitational, electrostatic, etc.), arrested structures are indefinitely stable even after the 

magnetic field is removed, being essentially ‘frozen’ in the matrix until additional manipulation is 

desired. This behavior is generic to particle dynamics in yield stress matrix fluids and could be exploited 

in other types of assembly processes, including assembly via electric fields, fluid flow, or chemical 

interactions. Finally, this letter will have important implications for the formulation and understanding 

of MR suspensions stabilized by yield stress matrix fluids. We identify regimes in which the arrest of 

dipolar chain-formation due to the matrix fluid yield stress is expected to significantly impact the field-

induced rheological properties. 

 

2. Simulation Details 
The simulation method used in this work is adopted from a previously described algorithm,21,22 

which was developed to study field-induced chaining of dipolar particle suspensions in Newtonian 

matrix fluids. We review the essential features of this method and discuss the modifications necessary to 

incorporate a matrix fluid yield stress. The pair-wise magnetic interaction energy mag
ijU  between two 

dipoles separated by a distance rij is given by: 
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Here m = |m| is the magnitude of the dipole moment, μ0 is the magnetic permeability of the medium 

(assumed to be equal to the permeability of free space), and θij is the angle that the line connecting the 

particle centers makes with the direction of the applied magnetic field. Though eq 1 neglects mutual 

magnetic induction and treats particles as point dipoles with identical dipole moments aligned with the 

external magnetic field, this expression has been successful in quantitatively capturing the particle-level 

behavior in MR suspensions subject to a uniform external magnetic field,21,23,24 providing results 

consistent with experimental observations.25 In the work of Haghgooie,22 the Heyes–Melrose 

displacement algorithm is used to correct for hard-sphere overlaps between dipolar particles at each time 

step of the simulation.26 This approach complicates the incorporation of a matrix fluid yield stress, 
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however, because it accounts for excluded volume interactions through a constraint rather than an 

explicit potential. Additionally, we find that when attempts are made to incorporate a matrix fluid yield 

stress, the Heyes–Melrose algorithm leads to unphysical behavior such as ‘kinked’ chains that drift in a 

direction perpendicular to the applied magnetic field. Therefore, we instead include a short-ranged 

repulsive potential between particles:27 
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where d is the particle diameter, and rc is a constant that controls the range of the interaction. For our 

work, we set rc = 0.05d. Lower values of rc better approximate a hard-sphere potential, but require 

prohibitively short time steps. The pre-exponential factor, including its dependence on m and µ0, ensures 

that the magnetic and excluded volume interactions are of a similar order of magnitude for particle 

separations on the order of rc, resulting in stable simulations that approximate the behavior of hard-

sphere magnetic particles. In order to simplify the simulation so that effects of the matrix fluid yield 

stress can be more easily distinguished, we neglect thermal forces and hydrodynamic interactions. In 

this case, the total force Fi on particle i at time t is calculated as: 
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The Langevin equation describing the particle velocity is then 

 

 ( ) ( )1
i id t t dt

ζ
r F;  (4) 

 

where ζ is the drag coefficient of a particle. Eq 4 therefore represents a balance between magnetic, 

excluded volume, and drag forces on a particle. In order to generalize the simulation results, eq 4 is 

made dimensionless using the characteristic length scale d and the characteristic force 

( )22
0 24charF πd µ ρM= , where ρ is the particle mass density, and M is the particle magnetization per 

unit mass. M is related to the dipole moment m via the expression M m Vρ= , where V is the volume of 

a particle. Fchar represents the force between two particles aligned with the field and in contact. Applying 

these scalings, the dimensionless Langevin equation becomes 
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 ( ) ( )ˆˆ ˆ ˆî id t t dtr F;  (5) 

 

where ^ represents dimensionless variables. Setting ( )2024chart ζ πdµ ρM=  as the characteristic time 

scale removes all free parameters from the dimensionless Langevin equation. This time scale represents 

the time necessary for a particle to move a distance of one particle diameter in response to the 

characteristic driving force Fchar. 

 A Bingham viscoplastic model for a yield stress matrix fluid is incorporated by applying a 

constraint to eq 5. We make the simple approximation that a particle moves during a time step only if 

the sum of the forces on the particle (including both magnetic and short-range steric forces) is sufficient 

to overcome the matrix fluid yield stress, τy. Otherwise, the particle remains motionless for that time 

step. Mathematically, if 2 2i yπd τ C≥F , then the particle executes a step according to eq 5; otherwise, 

îdr  is set to 0. C is a constant that relates the matrix fluid yield stress to the critical force necessary to 

cause an embedded particle to yield. For spherical particles in Bingham fluids, Beris et al. showed using 

finite-element modeling that C ≈ 0.143.28 In dimensionless terms, the criteria for yielding is 
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The dimensionless yield parameter *
MY  can be understood as the characteristic inter-particle magnetic 

stress divided by the matrix fluid yield stress τy. That is, for *
MY 1? , magnetic forces dominate over the 

yield stress, while *
MY 1=  corresponds to an immobilized system in which magnetic forces are too 

weak to overcome the yield stress. Note that this dimensionless group is similar to the so-called 

“magnetic yield parameter” introduced by previous authors.19 

 Simulations are conducted in 2-D with a uniform external magnetic field in the vertical 

direction. The simulation box is square with a side length equal to 100 particle diameters and periodic 

boundary conditions on all sides. To begin simulations, particles are initially placed in the box in a 

random configuration with no particle overlaps and eq 5 is integrated forward in time using a simple 
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Euler scheme for 1000 time steps at a time-step size of 7ˆΔ 3.3 10t −= × . The purpose of this short 

preparatory simulation using a very small time step is to resolve the trajectories of any particles 

positioned very close to each other in the random initial placements. Subsequently, the time-step size is 

increased to 4ˆΔ 3.3 10t −= ×  for the remainder of the simulation. The constraint in eq 6 is applied at each 

time step. A dimensionless spatial cutoff (scaled with the particle diameter) for the inter-particle forces 

of 15 was used along with a linked-list binning algorithm with bin sizes that slightly exceed the cutoff 

value.21,22,29 Interested readers are referred to earlier communications for additional details about the 

simulation algorithm.21,22 

 

3. Results and Discussion 

It is well-known that applying a uniform magnetic field to a dispersion of polarizable spherical particles 

in a Newtonian matrix fluid results in the formation of long-chain structures in the direction of the 

external field. Since a matrix fluid with a strong enough yield stress will completely immobilize 

particles, we examine magnetic directed assembly in a regime where both magnetic interactions and the 

matrix fluid yield stress play an important role in structure formation. Because the characteristic force in 

our simulations is defined as the maximum force between two dipolar particles, the regime of interest 

corresponds to values *
MY  > 1. 

 Images of magnetically assembled structures after long times ( )ˆ 2667t =  are shown in Figure 1 

for dispersions with a particle area fraction of fφA = 0.15 and magnetic yield parameters of (A) *
MY 6.7= , 

(B) *
MY 67= , and (C) the Newtonian case ( )*

MY →∞ . At *
MY 6.7= , only a marginal development of the 

structure from the initial condition is observed, as the arrested configuration consists of a randomly 

distributed mixture of individual particles and small chains; the magnetic interactions are not strong 

enough to generate large-scale structures. At *
MY 67= , the average chain length is significantly longer 

in the arrested state, and the vast majority of particles are incorporated in vertically-aligned chains. As 
*
MY  increases, the limiting Newtonian case is approached, for which domain-spanning chains are 

formed and some lateral aggregation of chains is evident. We note that while (A) and (B) represent 

arrested configurations, chaining and lateral aggregation continue very slowly in the Newtonian system 

even up to ˆ 2667t = . See the supporting information included with this article for movies of magnetic 

directed assembly at fφA = 0.15 and various values of *
MY . 

 As a first step towards understanding this behavior, we consider a simpler system of two dipolar 

particles in a yield stress matrix fluid. With one particle fixed at the origin, yielding occurs if the 
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distance to the second particle is sufficiently small that the inter-particle force overcomes the matrix 

fluid yield stress; otherwise, both particles remain immobile. For this system, the critical positions for 

yielding can be found by solving for the contour on which the magnitude of the dimensionless force on 

the second particle is equal to *
M1 Y , as in the yield criteria in eq 6. Neglecting the repulsive steric force, 

which is much smaller than the magnetic force for these inter-particle distances, the magnitude of the 

force on the particle is calculated from eqs 1 and 3: 
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Figure 1. Magnetically assembled structures at fφA = 0.15 at long times ( )ˆ 2667t =  for dimensionless 

magnetic yield parameters of (A) *
MY 6.7=  and (B) *

MY 67,=  and (C) the Newtonian case ( )*
MY →∞ . 

The applied magnetic field is in the vertical direction. While a mixture of individual particles and short 

chains is observed at *
MY 6.7,=  increasing *

MY  results in an arrested state with greater numbers of 

particles incorporated into longer chains. In (D), contours show the critical configurations at which 

yielding occurs in a 2-particle system at various values of *
MY . With one particle fixed at the origin, a 

second particle yields if its position is on or inside the contour (given by eq 10); otherwise, the system is 

arrested. Depending on the angle between the line connecting the particle centers and the direction of 
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the dipole moment m, magnetic interactions are attractive or repulsive. The yield contours expand with 
*
MY  and are symmetric across the vertical and horizontal axes. 

 

 

The magnitude of the dimensionless force is therefore 
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Setting *
M

ˆ 1 Yi =F  gives the expression for the yield contour. 
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Contours corresponding to eq 10 are plotted in Figure 1(D) for identical vertically-directed dipole 

moments m and *
MY  values of 6.7, 67, and 333. As *

MY  increases, the contours expand and particles 

positioned farther from the origin are able to yield in response to the applied magnetic field. Because of 

the angular dependence of dipolar interactions, the inter-particle force is either attractive (0° ≤ θij < 55°, 

solid lines), for which yielded particles undergo aggregation, or repulsive (55° < θij ≤ 90°, dotted lines), 

for which particles tend towards an unaggregated arrested state. Though only one quadrant is shown in 

Figure 1(D), the contours are symmetric across the vertical and horizontal axes. While multi-particle 

interactions captured in the full simulations (including the behavior of particle chains) are more complex 

than this two-particle system, the contours in Figure 1(D) are nonetheless helpful in understanding the 

basic physical phenomena underlying dipolar particle suspensions in the presence of a yield stress. In 

particular, Figure 1(D) implies that a particle (or a chain of particles) is arrested when the envelope 

defined by the yield contour becomes devoid of particles. By extension, the entire system becomes 

arrested when all distances between distinct clusters fall outside of the yield contours that result from 

the summation of all inter-particle interactions. 

 The images in Figure 1 imply that the magnetically assembled structures consist primarily of 

vertically-connected, chain-like aggregates, and that a relatively small amount of lateral aggregation can 

occur at higher values of *
MY . To explore the directionality of structures quantitatively, we calculate the 
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vertical connectivity, Cv, and the horizontal connectivity, Ch, defined as the number of vertical and 

horizontal connections, respectively, scaled by N – 1, where N is the number of particles in the 

simulation.22 One connection is counted for each pair of particles with centers separated by a 

dimensionless distance of at most 1.05 (i.e., the radii at contact + 5%). Connections are considered to be 

vertical if θij ≤ 30° or  θij ≥ 150°, and horizontal if 30° < θij < 150°. The vertical and horizontal 

connectivities Cv and Ch, respectively, are plotted in Figure 2 as functions of the dimensionless time for 

various values of *
MY , with the top curves representing Cv and the bottom curves representing Ch. All 

simulations begin with the same initial condition of randomly placed particles. The vertical connectivity 

Cv generally grows with time and, after an initial rearrangement of the starting configuration, is at least 

an order of magnitude greater than Ch for all *
MY . These observations are consistent with the formation 

of vertically-aligned chains as shown in Figure 1. The horizontal connectivity Ch decreases during the 

initial rearrangement, exhibiting some scatter due to very small numbers of horizontal connections, then 

increases as some lateral aggregation of chains occurs on longer time scales. Perhaps the most striking 

feature of the results is that at a critical time (which increases with *
MY ) both connectivity measures 

diverge from the common trajectory that coincides with the behavior of the Newtonian system. 

Subsequent to this separation, both Cv and Ch plateau and cease to evolve in the systems with a yield 

stress matrix fluid. Movies of the particle behavior (see supporting information) confirm that all 

particles are immobilized when the plateau in the connectivity data is attained. This behavior implies 

that while the matrix fluid yield stress does not affect the mechanism of structural development, it 

results in an arrest of chain growth. Though it is reasonable to expect that a matrix fluid yield stress 

would hinder structure formation, it is remarkable that the dynamics for all *
MY  values appear to follow 

the Newtonian trajectory until a critical time corresponding to the onset of structural arrest. 

 

 

Figure 2. Time evolution of the vertical and horizontal connectivities (Cv and Ch, respectively) of 

magnetically assembled anisotropic chain structures for a system at fφA = 0.15 and various values of *
MY . 
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All simulations begin with the same initial condition of randomly placed particles. With the exception of 

an initial decline in Ch during rearrangement of the starting configuration, the connectivities generally 

grow with time, following the Newtonian result until deviations begin at a critical time and connectivity 

that increase with *
MY . The fact that v hC C?  after the initial rearrangement indicates that chains are 

primarily vertically connected, as is seen in Figure 1. 

 

 

 

Figure 3. Average cluster size c of magnetically assembled structures as a function of time for various 

values of *
MY . The data is extracted from the same simulations as in Figure 2, for which fφA = 0.15. As 

with the connectivity results, c  generally increases with time, but chain growth is eventually arrested 

when a yield stress matrix fluid is present. For all values of *
MY , c  follows a common trajectory until 

structural arrest begins at a critical time (and a critical cluster size) that grows with *
MY . The arrest time, 

ârrestt , defined as the time at which c  becomes less than 90% of the Newtonian case, is shown in the 

inset as a function of *
MY . Results for four concentrations collapse onto a single common power law 

relationship. 

 

The observation that suspensions of dipolar particles in yield stress matrix fluids undergo 

structural arrest from a common trajectory is also supported by data for the time-evolution of the 

average cluster size, c , shown in Figure 3 for the same simulation conditions shown in Figure 2. The 
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average cluster size is calculated as cc N N= , where Nc is the total number of clusters and a cluster is 

identified as a collection of continuously connected particles according to the definition of a connection 

given above.22 The average cluster size grows with time and, in accordance with the connectivity results, 

data at finite values of *
MY  break away from a common trajectory at a critical time that increases with 

*
MY . Upon reaching structural arrest in the yield stress systems, c  plateaus at values that grow with 

*
MY  but are uniformly smaller than the long-time Newtonian result. Taking the critical arrest time, ârrestt , 

as the time at which c  becomes less than 90% of the Newtonian value, we plot ârrestt  as a function of 

*
MY  in the inset of Figure 3 for four different concentrations of magnetic particles. The data follows a 

power law behavior, and least-squares fitting provides the relationship ( )1.3*
Mˆ 0.26 Yarrestt ≈ , which is 

shown by the black line. The results for all four concentrations collapse onto this function, indicating 

that the arrest time is approximately independent of area fraction fφA and that *
MY  is the appropriate 

dimensionless group for characterizing the dynamics of structural arrest over a range of concentrations. 

 

Figure 4. Comparison of the magnetically assembled structures for particle suspensions in Newtonian 

and yield stress matrix fluids at fφA = 0.15. An imposed magnetic field in the vertical direction induces a 

vertically-aligned dipole moment on the particles. For times of (A) ˆ 3.3t = and (B) ˆ 67t = , images of a 

Newtonian system are shown in black and images of a yield stress system at *
MY 67=  are overlaid in 
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white. Therefore, any visible black structures indicate differences between the two systems. (A) and (B) 

correspond to times before and just after structural arrest in the yield stress system, respectively. At 

early times, the structures of the two systems are nearly identical, whereas significant deviations are 

apparent after the onset of structural arrest. The supporting information provides movies analogous to 

these overlaid images, as well as a magnified image of (A) that more clearly portrays the particle 

overlaps. In (C), the ensemble-averaged root mean square difference between particle positions in the 

Newtonian and yield stress system is plotted as a function of time for various values of *
MY . This 

measure of the deviation in the structure from the Newtonian case is essentially zero up to a critical 

time, then grows once the yield stress systems become arrested. 

 

 While the correspondence of statistical quantities like Cv, Ch, and c  between the Newtonian 

and yield stress systems prior to arrest is a compelling indicator of a common trajectory of structural 

states, these averaged quantities do not uniquely identify the magnetically assembled structures. To 

more convincingly demonstrate that systems at finite values of *
MY  truly pass through the same 

structural states as the Newtonian system, it is useful to examine the positions of each particle at a given 

time. A simple and instructive way to compare the positions of many particles simultaneously is to 

effectively subtract a snapshot of a simulated structure in a yield stress matrix fluid from that of the 

Newtonian system at the same dimensionless time. This can be accomplished by displaying the structure 

of the Newtonian system in black, and overlaying the structure of yield stress system in white, so that 

any visible black regions indicate structures that are not common between the two systems. Such 

comparisons between structures in a Newtonian matrix fluid and a matrix fluid at *
MY 67=  (starting 

from the same initial condition at fφA = 0.15) are shown in Figure 4 at dimensionless times of (A) ˆ 3.3t =  

and (B) ˆ 67t = , corresponding to times before and just after the onset of structural arrest in the yield 

stress system, respectively (here ˆ 60arrestt = ). This effective subtraction of images almost completely 

obscures the structure at ˆ 3.3t = , suggesting that the magnetically assembled structures of the 

Newtonian and yield stress systems are essentially the same prior to structural arrest. Note that the light 

gray outlines indicate that the white particles of the system at *
MY 67=  are overlaid almost exactly on 

the black particles of the Newtonian simulation [see supporting information for a magnified image of 

Figure 4(A)]. At ˆ 67t = , however, there are significant deviations between the two systems, reflecting 

the fact that while chain-formation continues in the Newtonian system, structural evolution in the yield 

stress system has slowed almost to a halt. These images are consistent with the behavior presented in 
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Figures 2 and 3, and support the hypothesis that particles in the Newtonian and yield stress systems 

follow very similar trajectories up to the critical arrest time ârrestt , after which the yield stress systems 

are quenched and deviations between the structures in the two systems grow. Movies analogous to the 

overlaid images in Figures 4(A) and 4(B) are provided as supporting information. The deviations 

between the Newtonian and yield stress systems can be explored quantitatively by calculating the 

ensemble-averaged root mean square difference in particle position between the structures in the 

Newtonian matrix fluid and the yield stress matrix fluid. Denoted ( )
1 22

,i Newt ir r− , this quantity is zero 

if particles are in the same positions in the two systems, and grows as the structures diverge. Figure 4(C) 

shows that for all *
MY , ( )

1 22
, 0i Newt ir r− ≈  up to a critical time that increases with *

MY  and corresponds 

approximately with the values of ârrestt  shown in the inset of Figure 3. Subsequently, ( )
1 22

,i Newt ir r−  

grows with time as the yield stress systems are arrested and structural development continues in the 

Newtonian system. These results provide further demonstration that the magnetically assembled 

structures in yield stress matrix fluids closely match those in Newtonian matrix fluids up to a critical 

time corresponding to the onset of structural arrest in the yield stress systems. See Figure S2 in the 

supporting information for a plot analogous to Figure 4(C), but with time re-scaled by ârrestt  to 

demonstrate that the deviations between particle positions develop due to the onset of structural arrest in 

the yield stress systems. 

 The results presented thus far have implications in the design of structures generated via directed 

assembly or self-assembly. While previous approaches to tuning particle assembly have focused on 

modifying particles (i.e., their shape, size, patterning, or chemical functionality8) or employing particle 

systems that respond to externally applied fields or stimuli,30 the concept of regulating assembled 

structures via matrix fluid rheology has yet to be explored. Our simulations suggest that by 

incorporating a matrix fluid with a yield stress, the chain structures that form in suspensions of dipolar 

particles in Newtonian matrix fluids can be arrested at essentially any point in their development. If the 

yield stress is sufficient to suppress sedimentation and Brownian motion, then arrested structures will be 

‘frozen’ into place indefinitely even if the magnetic field is decreased or removed. Increasing the 

magnetic field (i.e., increasing *
MY ) leads to the continuation of chain growth, and the resulting long-

time value of c  is approximately independent of the exact history as long as it is approached from 

below. See the supporting information for a figure demonstrating this behavior. In order to confirm the 

results presented here, it will be necessary to show that experiments corroborate our observations. These 



 

14 

experiments could be accomplished by examining the magnetic directed assembly of monodisperse 

spherical polymer-based superparamagnetic particles (available from a variety of vendors) in a yield 

stress matrix fluid. A simple yield stress fluid that exhibits negligible thixotropy, such as a Carbopol 

‘microgel’, would be useful in exploring and demonstrating the basic phenomena of these field-

activated suspensions.31,32 For example, a system at *
MY 67≈  could be achieved by suspending 4.5 µm 

Dynabeads® superparamagnetic particles (Invitrogen, Carlsbad, CA) in a dilute Carbopol microgel with 

a yield stress of about 0.1 Pa33 and by applying a uniform magnetic field of about 0.1 T (according to 

magnetization data provided by the manufacturer). 

 With the exception of data for the critical arrest time shown in the inset of Figure 3, all the 

results presented thus far have been at a representative concentration of fφA = 0.15. While systems at 

different concentrations exhibit qualitatively similar behavior (and, in particular, Figure 3 shows that 

ârrestt  is approximately independent of concentration), it would be beneficial to identify the scaling 

relationship between structural parameters and particle concentration. A simple approximation for the 

effect of particle concentration can be obtained by adjusting the characteristic length scale in the 

problem to reflect the concentration dependence of the average inter-particle distance in the random 

initial condition. For a 2-dimensional homogeneous spatial distribution of spherical particles with 

diameter d, the average inter-particle distance scales according to 1 2
Ad −fφ . The effect of re-defining 

1 2
Ad −fφ  as the new characteristic length scale can be seen from the non-dimensionalization and 

rearrangement of eq 8, for example. With this new scaling, the expression analogous to eq 10 contains 

the product * 2
MY Afφ  rather than simply *

MY  as in eq 10. This motivates the definition of a re-scaled yield 

parameter, *
M,Y fφ , that incorporates the concentration dependence:  

  

 ( )20* * 2 2
M, MY Y

12A A
y

µ C ρM
τ

= =fφ fφ fφ  (11) 

By analogy with the yield parameter *
MY , we expect largely immobilized particles for *

M,Y 1=fφ , and 

extensive chain formation for *
M,Y 1?fφ . The average cluster size at structural arrest, 

arrest
c , is shown as 

a function of *
M,Y fφ  in Figure 5 for four particle area fractions. Despite the crude approximations used to 

arrive at the concentration scaling in eq 11, plotting 
arrest

c  as a function of *
M,Y fφ  collapses data at 

different concentrations over almost two orders of magnitude of *
M,Y fφ . For *

M,Y fφ  values of about 0.2 to 7, 

a range in which both the matrix fluid yield stress and magnetic interactions are expected to play 
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significant roles in the structure and dynamics, 
arrest

c  is given by the expression ( )0.65*
M,4.5 Y

arrest
c ≈ fφ  

for 0.10 0.25A≤ ≤fφ . The collapse of data for different concentrations indicates that eq 11 provides an 

appropriate scaling for describing the arrested structure in this regime. The scaling breaks down, 

however, above about *
M,Y 7≈fφ . In this regime, the values of c  at long times approach the Newtonian 

values and for *
M,Y 60≈fφ  the systems essentially behave as Newtonian. The gray band gives the range of 

long-time c  values for Newtonian systems with concentrations 0.10 0.25A≤ ≤fφ , which represents an 

upper bound for 
arrest

c  at a given concentration. For the Newtonian systems, the values of c  at long 

times exhibit a weak dependence on fφA that precludes perfect collapse of the data at large values of 
*
M,Y fφ . Below about *

M,Y 0.2≈fφ , the arrested structures consist almost entirely of un-yielded individual 

particles that are arrested immediately in their initial positions, so that 
arrest

c  approaches 1 for 

*
M,Y 1=fφ . 

 

 

Figure 5. Average cluster size at structural arrest, ,
arrest

c  as a function of the concentration-scaled 

magnetic yield parameter, *
M,Y fφ  (see eq 11). Data for four concentrations of magnetic particles collapse 

onto a universal power law over almost two orders of magnitude in *
M,Y .fφ  Below about *

M,Y 0.2,=fφ  the 

arrested structures consist primarily of individual particles, so that 
arrest

c  approaches unity. The scaling 

begins to break down for *
M,Y fφ  values greater than about 7, as Newtonian behavior is approached. 

 

4. Conclusions 



 

16 

The chain structures formed when dispersions of polarizable particles are subjected to a uniform 

magnetic field provide the basis for a number of emerging and promising technologies involving multi-

phase complex fluids, including magnetorheological suspensions15 and lab-on-a-chip separation 

techniques.16 More generally, field-directed assembly of magnetic colloids and nanoparticles has been 

exploited to design and engineer highly-ordered functional materials34 with unique optical12 or 

electrical35 properties. In this letter, we have used particle-level simulations to investigate a new 

approach for mediating the field-induced assembly of dipolar particles via control of the non-Newtonian 

properties of the matrix fluid. Specifically, we have demonstrated the ability of the matrix fluid yield 

stress to arrest chain formation and growth at a critical point along the Newtonian trajectory. The 

magnetic yield parameter *
MY  (eq 7), which characterizes the balance between inter-particle magnetic 

stresses and the matrix fluid yield stress, as well as the more general form * * 2
M, MY Y A=fφ fφ  (eq 11) 

incorporating concentration variations, have been identified as the appropriate dimensionless groups that 

govern the structure and dynamics in these systems. This work addresses important questions in the 

field of magnetorheological (MR) suspensions regarding the nature of the field-induced microstructure 

when yield stress matrix fluids are used to prevent magnetic particle sedimentation.19,20 Our observations 

indicate that for *
M,Y fφ  values less than about 10, the matrix fluid yield stress will arrest chain growth and 

significantly decrease the size of clusters compared to the Newtonian case. Depending on the gap 

thickness in the rheometer or MR device, these truncated clusters will likely diminish or eliminate the 

gain in the yield stress anticipated upon application of the magnetic field. It is therefore desirable to 

operate yield-stress stabilized MR devices in the regime *
M,Y 10?fφ , where the structures giving rise to 

the MR effect closely resemble those in Newtonian matrix fluids. 

 While the arrested structures demonstrated here represent states along the Newtonian trajectory, 

the effect of the matrix fluid yield stress to ‘freeze’ structures in place could be exploited in more exotic 

systems to assemble and stabilize more complex anisotropic particle structures with high degrees of 

order. As long as the inter-particle forces in the final structured states are insufficient to overcome the 

matrix fluid yield stress (a balance that could be characterized by dimensionless groups analogous to 

those used here), the assembled structures will be stable essentially indefinitely. If necessary, the 

structures can be adjusted subsequently by increasing the forces on particles as desired, or, alternatively, 

by decreasing the yield stress. This approach is not limited to magnetic assembly, but is 

straightforwardly extendable to systems with other types of particle interactions or external forces (e.g., 

electric fields, optical tweezers, etc.). It is even possible that different assembly techniques could be 

applied sequentially, with the yield stress matrix fluid trapping particles in place between steps, 
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allowing the complexity of achievable structures to be greatly expanded. Additionally, other types of 

non-Newtonian behavior in the matrix fluid could be similarly utilized to alter assembly. Though the 

task remains to confirm experimentally the behavior presented here, our results are physically 

reasonable and expected to be in at least qualitative agreement with experiments as long as the matrix 

fluid yield stress and inter-particle dipolar interactions are the dominant phenomena. 
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Supporting Information 

Movies of field-induced chain-formation for fφA = 0.15 at *
MY  values of 6.7, 33, 67, and 133, as well as 

the Newtonian case ( )*
MY →∞ , out to dimensionless times of ˆ 16.7,t =  167, 300, 800, and 2667, 

respectively; movies for fφA = 0.15 of a Newtonian system (black particles) overlaid with a system at 
*
MY 67=  (white particles) starting from the same initial condition out to dimensionless times of ˆ 6.7t =  

and ˆ 1667t = ; evolution of the average cluster size at *
MY 67=  starting from initial conditions 

corresponding to the arrested configurations at other values of *
MY  for fφA = 0.15 (i.e., demonstration of 

history effects); evolution of the ensemble-averaged root mean square difference between particle 

positions in the Newtonian and yield stress system at fφA = 0.15 with dimensionless time re-scaled by the 

arrest time ârrestt ; section of a magnified image of Figure 4(A). 
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