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DESCENT AND FORMS OF TENSOR CATEGORIES

PAVEL ETINGOF AND SHLOMO GELAKI

Abstract. We develop a theory of descent and forms of tensor
categories over arbitrary fields. We describe the general scheme of
classification of such forms using algebraic and homotopical lan-
guage, and give examples of explicit classification of forms. We
also discuss the problem of categorification of weak fusion rings,
and for the simplest families of such rings, determine which ones
are categorifiable.

1. Introduction

The goal of this paper is to give an exposition of the theory of forms
of tensor categories over arbitrary fields, providing a categorical coun-
terpart of the classical theory of forms of algebraic structures (such
as associative algebras, Lie algebras, Hopf algebras, algebraic varieties,
etc.). We provide a classification of forms both in the algebraic lan-
guage and in the homotopical language, using the theory of higher
groupoids, similarly to [ENO2]. Ideologically, this is not really new,
since it is an application of the general ideology of descent theory. The
point of this paper is to work out the classification of forms more or less
explicitly in the setting of tensor categories, and to discuss examples of
this classification for specific tensor categories. In particular, we show
that even in the simplest cases, such classification problems reduce to
interesting questions in number theory, such as the classification of con-
structible regular polygons (i.e., Fermat primes), the Merkurjev-Suslin
theorem, and global class field theory.
The organization of the paper is as follows. In Section 2, we recall

the classical theory of forms of algebraic structures (i.e., the theory of
descent), and reformulate it in the homotopical language. In Section
3, we explain a generalization of this theory to semisimple abelian
categories and then to semisimple tensor categories. Finally, in Section
4, we discuss the theory of categorification of weak unital based rings
by rigid tensor categories over arbitrary fields.
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2. Forms of algebraic structures

In this section we give an exposition of the well known theory of
forms of algebraic structures.

2.1. Definition of a form. Let K be a field, and let L be an extension
field of K. Let C be an algebraic structure defined over L (associative
algebra, Lie algebra, Hopf algebra, algebraic variety, etc.).

Definition 2.1. A form of C over K (or a descent of C to K) is an
algebraic structure C defined over K, of the same type as C, together
with an L−linear isomorphism ξ : C ⊗K L→ C.
An isomorphism of two forms (C1, ξ1), (C2, ξ2) is an isomorphism

θ : C1 → C2 not necessarily respecting ξ1, ξ2. A framed isomorphism
is an isomorphism θ such that ξ2 ◦ θ = ξ1.

2.2. The first condition. Let us recall necessary and sufficient con-
ditions for the existence of a form of C over K. For simplicity let us
assume that L is a finite Galois extension of K (the case of infinite
Galois extensions is similar, and the general case can be reduced to the
case of a Galois extension). Let Γ := Gal(L/K) be the Galois group of
L over K.
For any g ∈ Γ, let gC denote the algebraic structure obtained from C

by twisting its L−structure by means of g. This operation is a functor:
any morphism β : C → D gives rise to a morphism g(β) : gC → gD,
which set-theoretically is the same as β (its only difference from β is
that its source and target have been twisted by g).
Let us call a pair (g, ϕ) consisting of g ∈ Γ and an isomorphism

ϕ : gC → C, a twisted automorphism of C, and let AutK(C) be the
group of all twisted automorphisms of C. We have a group homo-
morphism ψ : AutK(C) → Γ whose kernel is the group Aut(C) of
automorphisms of C. Clearly, if a form of C over K exists then ψ must
be surjective, i.e., there is a short exact sequence of groups

(1) 1 −→ Aut(C) −→ AutK(C)
ψ−→ Γ −→ 1.
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Equivalently, in topological terms, there is a fibration

(2) BAutK(C)

BAut(C)
��

BΓ

where BG denotes the classifying space of a group G.

2.3. The second condition. Moreover, if a form of C over K exists,
we must be able to choose a set of representatives

ϕ := {ϕg ∈ ψ−1(g) | g ∈ Γ}

such that the conditions

(3) ϕgh = ϕg ◦ g(ϕh), g, h ∈ Γ,

are satisfied, that is, the extension in (1) must split. Equivalently, the
fibration in (2) must have a section σϕ.

2.4. Sufficiency of the two conditions. It turns out that this is also
sufficient. Namely, we have the following standard result.

Proposition 2.2. A form of C over K exists if and only if the ex-
tension in (1) splits, i.e., if and only if the fibration in (2) has a sec-
tion. �

For example, if C is an (associative, Lie, Hopf, etc.) algebra A over
L and the extension in (1) splits via ϕ then the set of fixed points
A := {a ∈ A | ϕg(a) = a, ∀g ∈ Γ} is a form of A over K. Conversely,
it is easy to see that any form canonically defines a splitting.

Example 2.3. Suppose that Aut(C) is an abelian group. In this case,
extension (1) yields an action of Γ on Aut(C), and the obstruction
to the existence of a form of C over K lies in H2(Γ,Aut(C)). Indeed,
suppose ψ is surjective, and pick a collection of pre-images ϕg ∈ ψ−1(g)
for g ∈ Γ. Then we have

ϕgh = α(g, h) ◦ ϕg ◦ g(ϕh),

where α : Γ×Γ → Aut(C), and it easy to check that α is a 2−cocycle:
α ∈ Z2(Γ,Aut(C)). Moreover, ϕg can be corrected to satisfy (3) if
and only if this cocycle is a coboundary. Thus the obstruction to the
existence of a form is the class [α] ∈ H2(Γ,Aut(C)).
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2.5. Classification of forms. Let us now recall the classification of
forms of C over K. For this purpose, assume that a form exists. Let
us fix one such form, call it C, and classify all the forms of C over K
(which in this situation are also called twisted forms of C).
As explained above, forms of C over K correspond to splittings of

extension (1) (i.e., homotopy classes of sections of fibration (2)). So,
if we choose such a splitting ϕ (which, in particular, defines an action
of Γ on Aut(C)) then for any other splitting ϕ′, we have ϕ′

g = λg ◦ ϕg,
g ∈ Γ, for some function λ : Γ → Aut(C), g 7→ λg.
The following proposition is standard.

Proposition 2.4. The following hold:
(i) ϕ′ is a splitting if and only if λ ∈ Z1(Γ,Aut(C)) (i.e., λ is a

1−cocycle).
(ii) λ1, λ2 ∈ Z1(Γ,Aut(C)) determine the same form up to a framed

isomorphism if and only if they define the same cohomology class in
H1(Γ,Aut(C)). �

Corollary 2.5. The framed isomorphism classes of twisted forms of
C over K are in a natural bijection with the set H1(Γ,Aut(C)), and
the unframed isomorphism classes of twisted forms are in a natural
bijection with orbits of the group Aut(C)Γ = Aut(C) on H1(Γ,Aut(C)).

�

Remark 2.6. If the group Aut(C) is abelian, the action of Γ on Aut(C)
is defined a priori, and the above discussion shows that the set of
isomorphism (or framed isomorphism) classes of forms of C over K
is naturally a (possibly empty) torsor T over the group H1(Γ,Aut(C)),
which is trivialized once we choose a form C ∈ T .

3. Forms of categories

3.1. Definition of a form. Let K be a field (which for simplicity we
will assume to be perfect), and let L be a field extension of K.
Let C be a semisimple abelian category overK with finite-dimensional

Hom−spaces. Then one can define a semisimple abelian category
C := C⊗K L, which is the Karoubian envelope of the category obtained
from C by extending scalars from K to L in the spaces of morphisms
(for example, if G is a finite group, then RepK(G)⊗K L = RepL(G)).
Note that under this operation, simple objects of C may cease to be
simple, and decompose into several simple pieces (in particular, C may
have more simple objects than C). Also note that this operation re-
spects the structures of a tensor category, braided tensor category, etc.
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Let us say that a semisimple abelian category C over K is split if
for any simple object X ∈ C, one has End(X) = K. If C is split, then
extension of scalars reduces just to tensoring up with L, and taking the
Karoubian envelope is not needed.
Let C be a semisimple L−linear category with finite-dimensional

Hom−spaces (possibly with extra structure, e.g., tensor, braided, etc.).
In this section, we develop a theory of forms of such categories, cate-
gorifying the results of the previous section. 1

Definition 3.1. A form of C over K (or a descent of C to K) is a
category C defined over K, of the same type as C, together with an
L−linear equivalence Ξ : C ⊗K L→ C.
An equivalence of two forms (C1,Ξ1), (C2,Ξ2) of C over K is an

equivalence Θ : C1 → C2 not necessarily respecting Ξ1,Ξ2. A framed
equivalence is an equivalence Θ together with an isomorphism of func-
tors Ξ2 ◦Θ ∼= Ξ1. We will say that an equivalence admits a framing if
it can be upgraded to a framed equivalence.

The necessary and sufficient conditions for the existence of a form
of C over K are similar to the case of algebraic structures. Namely, as
before, let us assume for simplicity that L is a finite Galois extension
of K, and let Γ := Gal(L/K) be the Galois group of L over K.

3.2. The first condition. Let C be an L−linear category (abelian,
tensor, braided, etc.). For any g ∈ Γ, let gC denote the category
obtained from C by twisting its L−structure by means of g. This
operation is a 2−functor.
Let us call a pair (g,Φ) consisting of g ∈ Γ and an equivalence

Φ : gC → C, a twisted auto-equivalence of C, and let AutK(C) be the
categorical (1−)group (or gr-category) of all twisted auto-equivalences
of C.
Remark 3.2. There is an (equivalent) approach in which one considers
an auto-equivalence Φg : C → C, which is semi-linear relative to g (see
e.g. [DM, p.158]). A similar approach can be taken in the algebraic
setting of Section 2, as well.
The reason we prefer to use twisted auto-equivalences is that it ex-

hibits more clearly why the cohomology classes we get as obstructions

1Although for simplicity we work with semisimple categories, our constructions
can be generalized to the non-semisimple case, using an appropriate notion of ex-
tension of scalars for linear categories (see e.g. [DM, p. 155]). Also, the condition
that K is perfect can be dropped without any changes if we work with absolutely
semisimple categories, i.e., categories in which endomorphism algebras of simple
objects are separable (which means semisimple after any field extension).
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or freedoms are with twisted coefficients (i.e., with coefficients in a
non-trivial module).

We have a categorical group homomorphism Ψ : AutK(C) → Γ
(where Γ is the usual Galois group regarded as a categorical group)
whose kernel is the categorical group Aut(C) of auto-equivalences of C.
Clearly, if a form of C over K exists then Ψ must be surjective, i.e.,
there is a short exact sequence of categorical groups

(4) 1 −→ Aut(C) −→ AutK(C)
Ψ−→ Γ −→ 1.

Equivalently, in topological terms, there is a fibration

(5) BAutK(C)
BAut(C)
��

BΓ.

Here BG denotes the classifying space of a categorical group G. Re-
call that this space is 2−type, i.e., it has two non-trivial homotopy
groups π1 = G := Ob(G) and π2 = A := Aut(1), and its structure is
determined by an action of G on A and an element of H3(G,A).

Example 3.3. Let L := C, let p be a prime of the form 4k − 1,
and let C := VecωZ/pZ(C) be the category of Z/pZ−graded complex
vector spaces with a non-trivial 3−cocycle ω. Let K := R, and let

g ∈ Gal(C/R) be the complex conjugation. Then gC = Vecω
−1

Z/pZ(C),
which is not equivalent to C, since −1 is a quadratic non-residue modulo
p. Hence C is not defined over R.

3.3. The second condition. Moreover, if a form exists, we must be
able to choose a set of representatives

Φ := {Φg ∈ Ψ−1(g) | g ∈ Γ}
such that the conditions

(6) Φgh ∼= Φg ◦ g(Φh), g, h ∈ Γ,

are satisfied. That is, the extension in (4) must split at the level of
ordinary groups. Equivalently, the fibration in (5) must have a section
over the 2−skeleton of the base.

Example 3.4. Let us keep the setting of Example 3.3, except that p
is a prime of the form 4k + 1. Let m ∈ Z/pZ be such that m2 = −1.
Then we have an equivalence Φg : gC → C such that Φg(X1) = Xm

(where X0 := 1, . . . , Xp−1 are the simple objects of C). So the square
of this functor is not the identity on simple objects, i.e., equation (6)
is not satisfied (for any choice of m and Φ). This implies that C still
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does not have a real form, even though it is equivalent to its complex
conjugate category.

3.4. The third condition (vanishing of oΦ(C) ∈ H3(Γ,Aut(IdC))).
Unlike the case of algebraic structures, the first two conditions are not
sufficient, and there is another obstruction that must vanish in order for
a form to exist. Namely, suppose that exact sequence (4) splits at the
level of ordinary groups. Then we can choose functorial isomorphisms

Jg,h : Φg ◦ g(Φh) → Φgh, g, h ∈ Γ.

Thus, we obtain two functorial isomorphisms

Φg ◦ g(Φh) ◦ gh(Φk) → Φghk, g, h, k ∈ Γ,

namely, Jgh,k ◦ Jg,h and Jg,hk ◦ g(Jh,k). If there exists a form, there
should be a choice of Jg,h such that these two functorial isomorphisms
are equal. However, we may consider the element

ω = ωΦ = {ωg,h,k ∈ Aut(Φghk) ∼= Aut(IdC) | g, h, k ∈ Γ}
such that

ωg,h,k ◦ Jgh,k ◦ Jg,h = Jg,hk ◦ g(Jh,k).
It is easy to see that the splitting of exact sequence (4) at the level

of ordinary groups gives a homomorphism Γ → AutK(C), and hence
an action of Γ on Aut(IdC). Moreover, it is readily seen that ω is a
3−cocycle for this action: ω ∈ Z3(Γ,Aut(IdC)). Finally, changing Jg,h
corresponds to changing ω by a coboundary. Thus the last obstruction
to existence of a form of C over K is the class oΦ(C) of ω = ωΦ in
H3(Γ,Aut(IdC)); a form exists if and only if this obstruction vanishes.
Topologically speaking, this condition is equivalent to the condition
that the section σΦ of fibration (5) over the 2−skeleton of BΓ defined
by Φ lifts to the 3−skeleton. This is equivalent to the condition that σΦ
lifts to the entire BΓ, since any section of (5) over the 3−skeleton of BΓ
extends canonically (up to homotopy) to the entire base (as BAut(C)
has only two non-trivial homotopy groups).
Summarizing, we obtain the following proposition.

Proposition 3.5. A form of C over K exists if and only if extension
(4) splits as an extension of categorical groups, i.e., if and only if the
fibration in (5) has a section.

Proof. The “only if” part is clear from the above discussion. To prove
the “if” part, let C be a semisimple category over L, and assume that
extension (4) splits via (Φ, J). In this case, define a Γ−stable object of
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C to be an objectX ∈ C together with an isomorphism αg : Φg(X) → X
for each g ∈ Γ, such that

αgh ◦ Jg,h|X = αg ◦ Φg(αh).

(Note that simple objects may fail to admit a Γ−stable structure since
they may be non-trivially permuted by Γ.) Given two Γ−stable objects
X, Y , the L−space Hom(X, Y ) has a natural action of Γ defined by αg.
Define the category C of Γ−stable objects of C with

HomC(X, Y ) = HomC(X, Y )Γ.

Then there is a canonical equivalence C ⊗K L → C, so C is a form of
C over K. Indeed, since J satisfies the 2−cocycle condition, one can
show that any object Y ∈ C is a direct summand in a Γ−stable object
of C. �

Example 3.6. (Minimal field of definition.) Keep the setting of Exam-
ple 3.3, with an arbitrary odd prime p. We would like to determine the
minimal field of definition of the category C := VecωZ/pZ(C). Clearly,
this category is defined over the cyclotomic field L := Q(ζ), where
ζ := e2πi/p. So we would like to find the minimal subfield K ⊆ L over
which this category has a form. By the main theorem of Galois theory,
such subfields K correspond to subgroups Γ ⊆ F×

p = Gal(L/Q), so we
are looking for the largest possible subgroup Γ. Note that by Exam-
ples 3.3, 3.4, K cannot be a real field, and hence Γ is of odd order (as
it cannot contain −1, i.e., complex conjugation). So if we write p as
p = 2mr + 1, where r is odd, then the largest Γ can be is the group
Γ := Z/rZ = (F×

p )
2m .

Let us show that this group in fact works, i.e., there is a form of C
over the corresponding field K (which has degree 2m over Q). To see
this, note that since r is odd, we have a square root homomorphism
s : Γ → Γ. Now, for g ∈ Γ, let Φg : gC → C be defined on objects by
Φg(X1) = Xs(g). This can be extended to a tensor functor (since raising
to power a in Fp acts on ω by a−2). Moreover, it is easy to see that the
functors Φg satisfy the 1−cocycle condition, and the obstruction oΦ(C)
must vanish since it lies in H3(Γ,Z/pZ) = 0. Thus, there is a form
C of C over K (which is in fact unique since H2(Γ,Z/pZ) = 0). The
simple objects of C are Y0 := 1 and Y1, . . . , Y2m (of Frobenius-Perron
dimension r).
We see that the initial field of definition L is minimal only very rarely.

This happens if r = 1 (i.e., the form C is split), which is equivalent to
the condition that p is a Fermat prime, i.e., a prime of the form 22

n

+1
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(there are only five such primes known, namely, 3, 5, 17, 257, and
65537).
Also, note that if p = 4k − 1 then m = 1, and thus C is defined

over the imaginary quadratic field Q(
√−p). The corresponding form

C has three simple objects 1, X,X∗, with FPdimX = p−1
2

= 2k − 1,
and fusion rules

(7) X ⊗X = (k − 1)X ⊕ kX∗

and
X ⊗X∗ = X∗ ⊗X = (2k − 1)1⊕ (k − 1)(X ⊕X∗).

Similar analysis applies to the situation when C := VecωZ/nZ(C), where

ω is a generator of H3(Z/nZ,C×), where n > 1 is a positive integer,
not necessarily a prime. In this case, the a priori field of definition is
L := Q(e2πi/n), with Galois group (Z/nZ)×, of order ϕ(n). We write
ϕ(n) = 2mr, where r is odd. Then the minimal field of definition K is
of degree 2m over Q, and the group Γ = Gal(L/K), of order r, is the
group of elements of odd order in (Z/nZ)×. So we have

Proposition 3.7. The minimal field of definition of C := VecωZ/nZ(C)
is L (i.e., Γ = 1) if and only if the regular n−gon can be constructed
by compass and ruler, i.e., if and only if n is a Gauss number, n = 2sq,
where q is a product of distinct Fermat primes. �

3.5. Classification of forms. Let us now describe the classification
of forms of C over K in the case when they do exist. For this purpose,
fix one such form, call it C, and classify all the forms of C over K (which
in this situation are also called twisted forms of C).
As explained above, forms of C over K correspond to splittings of ex-

tension (4) (i.e., homotopy classes of sections of fibration (5)) together
with collections of isomorphisms J = (Jg,h). So, if we choose such a
splitting Φ of the extension of ordinary groups (which, in particular,
defines an action of Γ on Aut(C)) then for any other splitting Φ′, we
have Φ′

g = Λg ◦ Φg, g ∈ Γ, for some 1−cocycle Λ = ΛΦ : Γ → Aut(C),
g 7→ Λg, and conversely, any 1−cocycle defines a splitting. Moreover,
two 1−cocycles define equivalent splittings if and only if they are in
the same cohomology class.
Furthermore, it is easy to show that the obstruction oΦ′(C) is the

pullback of the canonical class o(C) ∈ H3(AutK(C),Aut(IdC)) (defining
the associativity isomorphism in AutK(C)) under the homomorphism
γΛ : Γ → AutK(C) defined by Λ.
Thus, we obtain the following proposition.

Proposition 3.8. The following hold:
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(i) An element Λ ∈ Z1(Γ,Aut(C)) gives rise to a twisted form of
C if and only if γ∗Λo(C) = 0; this condition depends only on the class
[Λ] ∈ H1(Γ,Aut(C)).
(ii) If the condition of (i) is satisfied then framed equivalence classes

of twisted forms of C corresponding to Λ are parameterized by a torsor
over H2(Γ,Aut(IdC)).
(iii) Unframed equivalence classes of twisted forms correspond to or-

bits of Aut(C)Γ = Aut(C) on the data of (i),(ii).

Proof. For a given Φ′, choices of J ′ up to equivalence are parameterized
by a torsor over H2(Γ,Aut(IdC)). �

3.6. Forms of semisimple abelian categories.

Example 3.9. Let C := Vec(L) be the abelian L−linear category of
finite-dimensional vector spaces over L. Let C := Vec(K). We have
Aut(C) = 1, so there is a unique choice of Φ. The obstruction oΦ(C)
vanishes since there is a form of C (namely, C). Therefore, the twisted
forms of C are classified by H2(Γ,Aut(IdC)) = H2(Γ, L×), which is the
relative Brauer group Br(L/K). Indeed, for any a ∈ Br(L/K), there is
a division algebra Da over K with trivial center (which splits over L),
and the form of C corresponding to a is just the K−linear category of
finite-dimensional left vector spaces over Da.

Example 3.10. Let C := Vec(L)n be the direct sum of n copies of the
category Vec(L). Let C := Vec(K)n. We have Aut(C) = Sn, with a
trivial action of Γ. Thus, choices of Φ correspond to homomorphisms
Φ : Γ → Sn, i.e., commutative semisimple K−algebras R of dimension
n with a splitting over L. The obstruction oΦ(C) vanishes for all Φ,
since for any R we have a form CR of C over K, which is the category
of finite-dimensional R−modules. So all the forms corresponding to Φ
are parameterized by H2(Γ, (L×)n), where the action of Γ corresponds
to Φ.
The algebra R is a direct sum of field extensions of K:

R = K1 ⊕ · · · ⊕Km.

These extensions correspond to orbits of Γ on the set {1, ..., n}. Thus
it suffices to consider the case when there is just one orbit; the general
case is obtained by taking the direct sum. In the case of one orbit,
R is a field extension of K of degree n, and Γ acts transitively on
(L×)n. By the Shapiro Lemma, H2(Γ, (L×)n) = H2(Γ1, L

×), where
Γ1 is the stabilizer of 1 ∈ {1, ..., n}. But Γ1 is the Galois group of
L over R, so we get that the twisted forms are parameterized by the
relative Brauer group Br(L/R). Indeed, given a ∈ Br(L/R), let Da
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be the corresponding division algebra with center R; then the form
corresponding to R is the K−linear category of finite-dimensional left
vector spaces over Da.

3.7. Forms of tensor categories. Let us now pass to tensor cate-
gories.

Example 3.11. Let K be the algebraic closure of K, and let
C := VecZ/2Z(K) be the tensor category of Z/2Z−graded K−vector

spaces. Let C := VecZ/2Z(K). Then Aut(C) = 1, so there is a unique
choice of Φ, the obstruction oΦ(C) vanishes, and twisted forms are clas-
sified by H2(Γ,Aut⊗(IdC)) = H2(Γ,Z/2Z).
Let µn denote the group of roots of unity of order n in K, re-

garded as a Γ−module. Recall that H2(Γ, µn) is the group Brn(K) :=
Ker (n|Br(K)) of n−torsion in the Brauer group of K. Indeed, we have
a short exact sequence of Γ−modules

1 −→ µn −→ K
× n−→ K

× −→ 1,

which yields an exact sequence

H1(Γ, K
×
) → H2(Γ, µn) → H2(Γ, K

×
) → H2(Γ, K

×
).

Since by Hilbert theorem 90, H1(Γ, K
×
) = 0, the claim follows.

So the forms of the tensor category VecZ/2Z(K) over K are classified
by the group Br2(K) of elements of order ≤ 2 in the Brauer group
Br(K) (which is H2(Γ,Z/2Z)).
For example, if K = R then Γ = Z/2Z and H2(Z/2Z,Z/2Z) =

Z/2Z, so there is one non-trivial form. Its simple objects are the unit
object 1 and an object X satisfying X ⊗X = 4 · 1, with End(1) = R

and End(X) = H (the algebra of quaternions).
Similar analysis applies to the category VecωZ/2Z(K) with a non-trivial

associator (over a field of characteristic different from 2). Its forms over
K are parameterized by Br2(K), and for K = R there is one trivial
and one non-trivial form.

Example 3.12. Here is an example where oΦ(C) 6= 0.
For a finite group G, let Out(G) denote the group of outer auto-

morphisms of G, and let Z(G) be the center of G. Let H be another
finite group, and let φ : H → Out(G) be a homomorphism; then H
acts naturally on Z(G). It is well known that there is a canonical
Eilenberg-MacLane class E ∈ H3(H,Z(G)) corresponding to φ, which
is not always trivial.
Indeed, here is an example, pointed out to us by David Benson.

Take G := SL(2,F9) (it is a double cover of the alternating group
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A6 = PSL(2,F9)) and let H := Z/2Z. Then Z(G) = Z/2Z and
Out(G) = Out(A6) = (Z/2Z)2. Consider the map φ : H → Out(G)
for which the corresponding extension of Z/2Z by A6 is the Mathieu
group M10 (i.e., the image of the non-trivial element of Z/2Z under φ
is the outer automorphism defined by the composition of conjugation
by a matrix whose determinant is a non-square with the Frobenius
automorphism). Then it is easy to show that there is no extension
of Z/2Z by SL(2,F9) implementing φ, so the Eilenberg-MacLane class
E ∈ H3(Z/2Z,Z/2Z) = Z/2Z is non-trivial.
Let L := K, let G be a finite group as above, and let C := RepK(G)

be the tensor category of representations of G. In this case, we have
a natural homomorphism ζ : Aut(G) → Aut(C) which factors through
Out(G) and lands in Aut(C)Γ. So any homomorphism η : Γ → Out(G)
gives rise to a homomorphism Γ → Aut(C)Γ ⊆ Aut(C) (which is also
a 1−cocycle), and hence to a homomorphism Φ : Γ → AutK(C). Also,
we have Aut⊗(IdC) = Z(G). Thus, oΦ(C) ∈ H3(Γ, Z(G)), and one can
show that oΦ(C) = η∗(E). For any G and H ⊂ Out(G), one can find K,
L and η such that the image of η is H , which gives a desired example.
Note that if oΦ(C) = 0 then forms obtained from Φ are parameterized

by a torsor over H2(Γ, Z(G)). Also note that if η factors through
Aut(G) then oΦ(C) = 0 and moreover the torsor parameterizing forms
is canonically trivial. The point 0 of this torsor corresponds to the form
of the (algebraic) group G defined by η.

Example 3.13. Let C be a split semisimple tensor category over L,
and let C be a form of C over K. Let us say that a twisted form of C
is quasi-trivial if the corresponding 1−cocycle Λ is trivial. It follows
from the above that quasi-trivial forms (up to framed equivalence)
are classified by H2(Γ,Aut⊗(IdC)). Let us compute this group in the
case L = K. Let UC be the universal grading group of C ([GN]),
i.e., the group such that C is UC−graded, and any faithful grading of
C comes from a quotient of UC (for example, if C := VecG(L), then

UC = G). Then Aut⊗(IdC) = Hom(UC, K
×
) as a Γ−module. So if

(UC)ab =
⊕N

j=1 Z/njZ, then by the above discussion we get that quasi-

trivial twisted forms of C are parameterized by

N⊕

j=1

Brnj
(K).

For instance, for Tambara-Yamagami categories [TY], UC = Z/2Z, so
quasi-trivial forms are parameterized by Br2(K). This is a generaliza-
tion of Example 3.11.
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3.8. Split forms. It is an interesting question whether a given split
semisimple tensor category C over L has a split form over a given
subfield K ⊆ L (see [MoS, Section 2.1] for a discussion of this question).
In particular, if G is a finite group, it is an interesting question to
determine a minimal number field K over which there is a split form
of the category Rep(G) of representations of G; e.g., for which G can
we take K = Q?
We note that, as pointed out in [MoS, Section 2.1], the irrationality

of characters of G does not imply that Rep(G) has no split form over
Q: e.g., if G is abelian then Rep(G) = VecG∨ and hence has a split form
over Q. However, if the action of the group Gal(Q/Q) on irreducible
representations of G does not come from outer automorphisms of G,
then the minimal field K must be larger than Q. This happens for most
finite simple groups of Lie type, since the outer automorphism groups
of these groups are very small, while Galois orbits of representations
increase with the corresponding prime p.

3.9. Forms of braided and symmetric categories. The theory of
forms of braided and symmetric tensor categories C is completely paral-
lel to the theory of forms of usual tensor categories. The only change is
that the categorical group of tensor auto-equivalences of C needs to be
replaced by the categorical group of braided (respectively, symmetric)
auto-equivalences. This group is a subgroup of all auto-equivalences
at the level of π1, and has the same π2 (which is the group of tensor
automorphisms of the identity functor).
As an example consider forms of the nondegenerate braided cate-

gories C := VecZ/pZ where p is an odd prime (see [DGNO]). It is well
known that braidings on this category correspond to quadratic forms
on Z/pZ. Suppose we are given such a form β, which is nondegener-
ate. Then C is defined and split over the cyclotomic field L := Q(ζ),
ζ := e2πi/p, and one can ask what is the minimal field of definition K.
Since the braiding is defined by a quadratic form, the answer is the
same as in Example 3.6: we have to write p − 1 as 2mr, where r is
odd, and K is the fixed field of the subgroup Z/rZ ⊆ F×

p (of degree
2m). So we have that K = L if r = 1, i.e., if p is a Fermat prime, and
K = Q(

√−p) if p = 4k − 1.

4. Categorification of weak unital based rings

4.1. Definition of weak unital based rings.

Definition 4.1. A weak unital based ring is a ring R with Z−basis
bi, i ∈ I, containing the unit element 1, whose structure constants
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Nk
ij (defined by bibj =

∑
kN

k
ijbk) are non-negative integers, with an

involution ∗ : I → I defining an anti-involution of R, such that the
coefficient of 1 in bibj is zero if i 6= j∗ and positive if i = j∗. A weak
fusion ring is a weak unital based ring of finite rank. A unital based
ring (respectively, fusion ring) is a weak unital based ring (respectively,
weak fusion ring) such that the coefficient of 1 in bibi∗ equals 1.

It is well known that the Grothendieck ring of a semisimple rigid ten-
sor category (respectively, fusion category) over an algebraically closed
field K is a unital based ring (respectively, a fusion ring) (see e.g.
[ENO1]). Similarly, we have the following proposition.

Proposition 4.2. The Grothendieck ring of a semisimple rigid tensor
category (respectively, fusion category) over a general (perfect) field K
is a weak unital based ring (respectively, a weak fusion ring).

Proof. The properties of a weak unital based ring are obvious, except
for the property of the coefficient of 1 in bibj , which follows from Schur’s
lemma. �

This gives rise to the problem of categorification of weak unital based
rings, and in particular weak fusion rings, i.e., finding a rigid tensor
category whose Grothendieck ring is a given weak unital based ring.
This problem is discussed in the following subsection.

4.2. Categorification of weak fusion rings. Let us now discuss the
classification problem of categorifications of given weak fusion rings.

4.2.1. The rings Rm. We start by considering the simplest non-trivial
weak fusion rings Rm, with basis 1 and X , and fusion rules

X2 = m1, X∗ = X,

where m is a positive integer.
Recall that the categorifications of R1 over an algebraically closed

field K are VecZ/2Z(K), and also VecωZ/2Z(K) if char(K) 6= 2 (where ω

is the non-trivial element of H3(Z/2Z, K×) = Z/2Z).
The classification of categorifications of Rm over any perfect field K

of characteristic 6= 2 is given by the following theorem.

Theorem 4.3. Let K be a perfect field of characteristic 6= 2.
(i) Categorifications D±

Q of Rm over K are parameterized by a central
division algebra Q over K of dimension m such that Q = Qop, and a
choice of sign.
(ii) Categorifications D±

Q of R4 over K are parameterized by a choice
of a quaternion division algebra Q over K (i.e. a division algebra
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Qa,b with generators x, y and relations xy = −yx, x2 = a, y2 = b, for
a, b ∈ K), as well as a choice of sign.
(iii) If Rm admits a categorification over K then m = 4n for some

non-negative integer n.
(iv) Any categorification D of R4n over K is a subcategory in a cat-

egory of the form D±

Q1
⊠ D+

Q2
⊠ · · · ⊠ D+

QN
, where Qi are quaternion

division algebras.
(v) If K is a number field or K = R then Rm is categorifiable over

K if and only if m = 1 or m = 4.
(vi) R4n is categorifiable over K := C(a1, ..., an, b1, ..., bn).

Proof. Let C be a categorification of Rm, and let C := C ⊗K K. Then
Γ := Gal(K/K) acts by automorphisms of the Grothendieck ring Gr(C)
as a unital based ring, and X ∈ C decomposes in C as (

⊕
Z∈O Z)

ℓ,
where O is the Γ−orbit of simple objects corresponding to X , and ℓ is
a positive integer. Since X ⊗X = m1, the orbit O consists of a single
element Z, and Z is invertible, with Z⊗Z = 1. So we see that m = ℓ2,
and C = VecZ/2Z(K) or C = VecωZ/2Z(K). Thus, C is a form over K
of one of these two categories, so it is determined by a choice of sign
(+ in the first case and − in the second case) as well as a central
division algebra Q ∈ Br2(K) over K, namely, Q = End(X). So we see
that dimQ = ℓ2. This implies (i) and (ii), since in the later case we
have m = 4, so Q is a quaternion division algebra.
Statement (iii) follows from the following theorem of Brauer.

Theorem 4.4. (see [GS]) The dimension of a central division algebra
over K and its order in the Brauer group Br(K) have the same prime
factors.

Statement (iv) follows from the following theorem of Merkurjev.

Theorem 4.5. [M] Any element of order 2 in Br(K) is represented by
a tensor product of quaternion algebras over K.

Statement (v) follows from a well known result of global class field
theory (see [AT, p.105], [E, Theorem 3.6]) saying that any element of
order 2 in Br(K) for fields K as in (v) is represented by a quaternion
algebra (i.e., taking the tensor product is not necessary).
Finally, to prove (vi), we take the category corresponding to the

division algebra Q := ⊗n
i=1Qai,bi over K, which is a division algebra of

dimension 4n. �

4.2.2. The rings Rp,r. Theorem 4.3 can be generalized to the setting
involving the p−torsion in the Brauer group for primes p > 2. Namely,
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for any prime p define the weak fusion ring Rp,r with basis 1 and Xi,
i ∈ F×

p , and relations

X∗
i = X−i, XiXj = rXi+j for i+ j 6= 0, XiX−i = r21.

Thus, R2,r = Rr2 . Then we have the following result.

Theorem 4.6. Let K be a perfect field which contains a primitive p−th
root of unity ζ (so in particular charK 6= p).
(i) Categorifications Dω

Q of Rp,r overK are parameterized by a central

division algebra Q over K of dimension r2 such that Q⊗p = Matrp(K)

and a choice of ω ∈ H3(Z/pZ, K
×
) = Z/pZ.

(ii) Categorifications Dω
Q of Rp,p over K are parameterized by a

choice of a cyclic division algebra Q over K (i.e., an algebra Qa,b,p with
generators x, y and relations xy = ζyx, xp = a, yp = b, for a, b ∈ K),

as well as a choice of ω ∈ H3(Z/pZ, K
×
) = Z/pZ.

(iii) If Rp,r admits a categorification over K then r = pn for some
non-negative integer n.
(iv) Any categorification D of Rp,pn over K is a subcategory in a

category of the form Dω
Q1
⊠D1

Q2
⊠· · ·⊠D1

QN
, where Qi are cyclic algebras

of dimension p2.
(v) If K is a number field then Rp,r is categorifiable over K if and

only if r = 1 or r = p.
(vi) Rp,pn is categorifiable over K := C(a1, ..., an, b1, ..., bn).

Proof. The proof is parallel to the proof of Theorem 4.3. Let C be a
categorification of Rr,p, and let C := C ⊗K K. Then Γ := Gal(K/K)
acts by automorphisms of Gr(C), and X := X1 ∈ C decomposes in C as
(
⊕

Z∈O Z)
ℓ, where O is the Γ−orbit of simple objects corresponding to

X , and ℓ is a positive integer. Since X⊗X∗ = r21, the orbit O consists
of a single element Z, and Z is invertible, with Z ⊗ Z∗ = 1. So we see

that ℓ = r, and C = VecωZ/pZ(K) for some ω ∈ H3(Z/pZ, K
×
) = Z/pZ.

Thus, C is a form of one of these categories over K, so it is determined
by a choice of ω as well as a central division algebra Q ∈ Brp(K) over
K, namely, Q = End(X). So we see that dimQ = r2. This implies (i).
To prove (ii), note thatQ is a central division algebra of dimension p2

over K, so by the Albert-Brauer-Hasse-Noether theorem [BHN], [AH],
it is a cyclic algebra.
Statement (iii) follows from Brauer’s theorem (Theorem 4.4).
Statement (iv) follows from the theorem of Merkurjev and Suslin:

Theorem 4.7. ([MeS]) Any element of order p in Br(K) is represented
by a tensor product of cyclic division algebras of dimension p2 over K.
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Statement (v) follows from a well known result of global class field
theory (see [AT, p.105], [E, Theorem 3.6]) saying that any element of
order p in Br(K) for fields K as in (v) is represented by a cyclic algebra
of dimension p2 (i.e., taking the tensor product is not necessary).
Finally, to prove (vi), we take the category corresponding to the

division algebra Q := ⊗n
i=1Qai,bi,p over K, which is a division algebra

of dimension p2n. �

4.2.3. The rings Sk. For a positive integer k define the weak fusion
ring Sk with basis 1, X and relations

X2 = k1+ (k − 1)X, X∗ = X.

Let us classify categorifications C of this ring over a field K, say, of
characteristic zero. We have FPdim(X) = k. Passing to the algebraic
closure, we get X = (

⊕
i∈OXi)

ℓ, where O is a Galois group orbit.
Now, it is clear that FPdim(Xi) = 1 (otherwise we would not be able
to write a decomposition for Xi ⊗X∗

i ), so we get k = ℓ|O|. Also, from
the equation for XX∗ = X2 we get ℓ2|O| = k, which implies that ℓ = 1,
|O| = k. So C := C ⊗K K is the category VecωG(K) for some group G

and 3−cocycle ω ∈ H3(G,K
×
).

The absolute Galois group Γ of K acts on G and has two orbits,
namely {1} and O. This means that all elements of G other than
1 have the same order, which then has to be a prime p, such that
k + 1 = pn for some positive integer n. Moreover, if G were non-
abelian then the Galois group would have to preserve its non-trivial
proper subgroup (the center), which is impossible because we have just
two orbits. Thus G must be abelian, hence a vector space V over
Fp, and we have a homomorphism Φ : Γ → GL(V ) such that Γ acts
transitively on non-zero vectors, i.e., the image Γ of Γ in GL(V ) is a
transitive finite linear group.
On the other hand, if we have any surjective homomorphism

Φ : Γ → GL(V ) then for ω = 1 we obtain a categorification of Sk
over an appropriate field K (the category of representations of the
twisted form of the algebraic group V ∗ defined by the homomorphism
Φ). Thus, we obtain the following proposition, which is somewhat
similar to [EGO, Corollary 7.4].

Proposition 4.8. The weak fusion ring Sk is categorifiable over a suit-
able field if and only if k + 1 is a prime power. �

For example, for k ≤ 10, Sk is categorifiable except for k = 5, 9.
The problem of explicit classification of categorifications of Sk for

k = pn − 1 is rather tricky. For simplicity consider the case when
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p > 3, and K contains a primitive root of unity of order p. In this

case, H3(V,K
×
) = S2V ∗ ⊕ ∧3V ∗ as a Γ−module. Clearly, ω must be

Γ−invariant. Since Γ is transitive, ω cannot have a non-zero component
qω in S2V ∗, since the level sets of qω(v, v) are invariant under Γ. So we
have ω ∈ (∧3V ∗)Γ, and each such ω will give rise to a categorification.
Apart from the case of vanishing ω, if m = 3d, we have the example
Γ = SL3(Fq), where q = pd. In this case, we can take ω(v, w, u) =
ψ(v∧w∧u), where v, w, u ∈ F3

q, and ψ : Fq → Fp is any non-zero linear
function. The full classification of categorifications can be obtained by
using the known classification of transitive finite linear groups (see e.g.
[BH]); we will not do it here.

4.2.4. The rings Tk. Now, consider the fusion ring Tk defined by (7),
where k is a non-negative integer. Let us classify categorifications
C of this ring over a field K, say, of characteristic zero. We have
FPdim(X) = 2k − 1. Passing to the algebraic closure, we get X =
(
⊕

i∈OXi)
ℓ, where O is a Galois group orbit. Now, it is clear that

FPdim(Xi) = 1 (otherwise we would not be able to write a decomposi-
tion for Xi⊗X∗

i ), so we get 2k− 1 = ℓ|O|. Also, from the equation for
X⊗X∗ we get ℓ2|O| = 2k−1, which implies that ℓ = 1, |O| = 2k−1. So
C := C⊗KK is the category VecωG(K) for some group G and 3−cocycle

ω ∈ H3(G,K
×
).

The absolute Galois group Γ of K acts on G and has three orbits,
namely {1}, O, and O−1. This means that all elements of G other
than 1 have the same order, which then has to be an (odd) prime p,
such that 4k− 1 = p2n+1 for some non-negative integer n. Moreover, if
G were non-abelian then the Galois group would have to preserve its
non-trivial proper subgroup (the center), which is impossible because
we have just three orbits. Thus G must be abelian, hence a vector
space V of dimension 2n + 1 over Fp, and we have a homomorphism
Φ : Γ → GL(V ).
Now, for any such p, n, we can take V = Fq, where q = p2n+1, and

Γ = (F×
q )

2. Since p = 4l − 1, and q is an odd power of p, we get
that −1 is a non-square in Fq, so Γ satisfies the above condition, and
we get a categorification with trivial ω. Thus, we obtain the following
proposition.

Proposition 4.9. The weak fusion ring Tk is categorifiable over a suit-
able field if and only if 4k − 1 is an (odd) power of a prime. �

For example, for k ≤ 10, Sk is categorifiable except for k = 4, 9, 10.
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4.2.5. Weak fusion rings of rank 2. Here is a generalization of the re-
sults of Subsection 4.2.3 to general weak fusion rings of rank 2, proposed
by V. Ostrik (based on an argument by Josiah Thornton).
For a positive integer a and a nonnegative integer b define the weak

fusion ring Sa,b with basis 1, X and relations

X2 = a1 + bX, X∗ = X.

Theorem 4.10. The weak fusion ring Sa,b is categorifiable over a suit-
able field of characteristic zero if and only if either a = b = 1 or there
is a prime p and integers m ≥ 0, n ≥ 1 such that a = p2m(pn − 1) and
b = pm(pn − 2).

Note that in the case b = 0 (i.e., p = 2, n = 1) Theorem 4.10 reduces
to the result of Subsection 4.2.1 (in characteristic 0), and in the case
a = b+1 (i.e., m = 0) Theorem 4.10 reduces to the result of Subsection
4.2.3.

Proof. Let C be a categorification of Sa,b over a field K of characteristic
zero. Passing to the algebraic closure, we get X = (

⊕
i∈OXi)

ℓ, where
O is a Galois group orbit. Consider two cases.
Case 1. |O| = 1. Then C := C ⊗K K has two simple objects, 1 and

Y , and Y ⊗ Y = 1⊕ rY . By a theorem of Ostrik [O], r = 0 or r = 1.
If r = 0, and X = ℓY , then b = 0 and a = ℓ2, so the Theorem follows
from Theorem 4.3 (namely, p = 2, n = 1, and m is arbitrary).
If r = 1, then C is the Yang-Lee category or its Galois conjugate.

Let us show that any form C of this category is split. 2 First of all,
any field of definition of a Yang-Lee category must contain

√
5, since it

occurs in the Müger’s squared norm of the nontrivial object Y . Next,
it is explained in [O] that the Yang-Lee category is defined as a split
category over Q(

√
5). Finally, this category has no nontrivial tensor

auto-equivalences or tensor automorphisms of the identity functor, so
by the theory of forms of tensor categories, the split form has no non-
trivial twists, as desired.
Case 2. |O| > 1. In this case we use the argument due to J.

Thornton [Th]. Namely, we claim that FPdim(Xi) = 1. To see this,

2Here is another proof of this fact. Suppose we have a non-split form with
simple objects 1, X and End(X) = D, a central division algebra of dimension s2

over a ground field K (where s > 1). Then extension of scalars turns X into sY ,
so the fusion rule for this form is X2 = s21 + sX , and X∗ = X . Thus we have
Dop ∼= D, and D⊗D (which sits inside End(X⊗X)) injects into End(s21⊕ sY ) =
Mats2(K) ⊕ Mats(D). But since Dop ∼= D, D ⊗ D ∼= Mats2(K), and there is no
homomorphisms from Mats2(K) to Mats(D) (since the former contains nilpotent
elements of nilpotency degree > s). This is a contradiction. Thus, C is split and
we have a = b = 1.
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note first that sinceXi are permuted by the Galois group, FPdim(Xi) =
d is independent of i. Next, if i 6= j (which is possible since |O| > 1)
then Xi⊗X∗

j is a direct sum of Xk, so d is an integer. Finally, Xi⊗X∗
i

is 1 plus a sum of Xk, so d
2 − 1 is divisible by d, hence d = 1.

So FPdim(X) = ℓ|O|, and we get

(ℓ|O|)2 = a + bℓ|O|.
Also, from the relation XX∗ = X2 we get a = ℓ2|O|, which gives
b = ℓ(|O| − 1).
Now, consider the group V formed by the objects Xi and the unit

object X0 = 1. Since V consists of two Galois orbits, it is a vector
space over Fp for some prime p. Thus, |O| = pn − 1 for some n ≥ 1.
It remains to determine ℓ. To this end, let Γ be the Galois group ofK

overK (which acts on V ), and let Γ′ be the stabilizer of some 0 6= i ∈ V .

Let L := K
Γ′

. Then L is a finite extension of K, and C⊗KL has simple
objects Yi labeled by i ∈ V (with Y0 = 1 and Y ∗

i = Y−i), and one has
Yi ⊗ Yj = ℓYi+j if i 6= −j, Yi ⊗ Y−i = ℓ21. Let Di := End(Yi). Then
Di has dimension ℓ2 and it defines an element of order p in the Brauer
group Br(L). So by Brauer’s theorem (Theorem 4.4), Di has dimension
p2m for some nonnegative integer m. This implies that ℓ = pm for some
m ≥ 0, and thus a, b are as required.
Conversely, if a = p2m(pn− 1) and b = pm(pn− 2), then the ring Sa,b

admits a categorification. In showing this, we may (and will) assume
that m > 0, since the case m = 0 is considered in Subsection 4.2.3.
Namely, take the category C := VecFq

, where q = pn. Assume that

the field K is such that the Galois group Γ = Gal(K/K) has a normal
subgroup Γ′ with Γ/Γ′ = F×

q , and let L ⊆ K be the fixed field of this
subgroup (it is a cyclic Galois extension of K of degree pn − 1). So we
can make Γ act on Fq by multiplications so that Γ′ acts trivially. We

have a form C′
of C over K defined by this action, which is split over

L (namely, the category of representations of the twisted form of the
additive group of Fq corresponding to the action of Γ on Fq); this form
categorifies the ring Sk with k = pn−1. Now, this form can be twisted
by an element η of

H2(Γ,Hom(Fq, µp)) = H2(Γ′,Hom(Fq, µp))
Γ/Γ′

= Hom(Fq,Brp(L))
F
×

q ,

where the action of F×
q on Brp(L) is through the isomorphism of F×

q

with Γ/Γ′.
Now we would like to choose a suitable field K. We will take L :=

C(aijk, bijk), where i = 1, . . . , m, j = 1, . . . , pn − 1 and k = 1, . . . , n.
Then we can make the group F×

q act on L by cyclic permutations of
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j, and define K to be the subfield of invariants. Then K, L have the
required properties. Define Djk to be the division algebra over L given
by the formula

Djk := ⊗n
i=1Dijk,

where Dijk is generated by xijk and yijk with

xpijk = aijk, y
p
ijk = bijk, xijkyijk = ζyijkxijk,

where ζ is a primitive p−th root of unity. Let E be the subgroup in
Brp(L) generated by Djk, j = 1, . . . , pn−1, k = 1, . . . , n. Since Djk are
linearly independent vectors in Brp(L), the space E is isomorphic to the
space of matrices over Z/pZ, of size n by pn−1, with F×

q = Z/(pn−1)Z
acting by cyclic permutations of columns. Thus,

Hom(Fq, E)
F
×

q = Hom(Fq, (Z/pZ)
n) ⊆ Hom(Fq,Brp(L))

F
×

q .

Take a nondegenerate element η from this group (i.e., defining an iso-

morphism Fq → (Z/pZ)n). Then the twist C of C′
by η is a categorifi-

cation of Sa,b, as desired. �

Remark 4.11. The assumption of characteristic zero is needed here
because Ostrik’s classification [O] of fusion categories of rank 2 is un-
known in positive characteristic. All the other arguments in this sub-
section can be extended to positive characteristic.
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