
MIT Open Access Articles

Sharp Holder continuity of tangent cones for spaces 
with a lower Ricci curvature bound and applications

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Colding, Tobias, and Aaron Naber. “Sharp Hölder continuity of tangent cones for 
spaces with a lower Ricci curvature bound and applications.” Annals of Mathematics 176, no. 2 
(September 1, 2012): 1173-1229.

As Published: http://dx.doi.org/10.4007/annals.2012.176.2.10

Publisher: Princeton University Press

Persistent URL: http://hdl.handle.net/1721.1/79896

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/79896
http://creativecommons.org/licenses/by-nc-sa/3.0/


ar
X

iv
:1

10
2.

50
03

v2
  [

m
at

h.
D

G
]  

22
 S

ep
 2

01
1
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Ricci curvature bound and applications
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Abstract

We prove a new kind of estimate that holds on any manifold witha lower Ricci bound. It relates
the geometry of two small balls with the same radius, potentially far apart, but centered in the interior
of a common minimizing geodesic. It reveals new, previouslyunknown, properties that all generalized
spaces with a lower Ricci curvature bound must have and it hasa number of applications.

This new kind of estimate asserts that the geometry of small balls along any minimizing geodesic
changes in a Hölder continuous way with a constant depending on the lower bound for the Ricci cur-
vature, the dimension of the manifold, and the distance to the end points of the geodesic. We give
examples that show that the Hölder exponent, along with essentially all the other consequences that we
show follow from this estimate, are sharp. The unified theme for all of these applications is convexity.

Among the applications is that the regular set is convex for any non-collapsed limit of Einstein
metrics. In the general case of potentially collapsed limits of manifolds with just a lower Ricci curvature
bound we show that the regular set is weakly convex anda.e. convex, that is almost every pair of points
can be connected by a minimizing geodesic whose interior is contained in the regular set. We also show
two conjectures of Cheeger-Colding. One of these asserts that the isometry group of any, even collapsed,
limit of manifolds with a uniform lower Ricci curvature bound is a Lie group; the key point for this is to
rule out small subgroups. The other asserts that the dimension of any limit space is the same everywhere.
Finally, we show a Reifenberg type property holds for collapsed limits and discuss why this indicates
further regularity of manifolds and spaces with Ricci curvature bounds.

1 Introduction

We begin by giving two almost equivalent versions of the mainHölder continuity result for tangent cones.

After having done this we discuss and prove various of the almost immediate consequences. In the final

subsection of this introduction we describe the examples that show that almost all of these results are sharp,

including the Hölder behavior in the main theorem.
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and anaber@math.mit.edu. The first author was partially supported by NSF Grant DMS 0606629 and NSF FRG grant DMS
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1.1 Hölder continuity of tangent cones

Let M be a completen-dimensional manifold with

RicM ≥ −(n− 1) , (1)

and suppose thatγ : [0, ℓ] → M is a (unit speed) minimizing geodesic. Our main theorem is the following

result that has two essentially equivalent formulations (the second formulation concerns limit spaces and

will be given shortly):

Theorem 1.1. (Hölder continuity of geometry of small balls with same radius). There existsα(n), C(n) and

r0(n) > 0 such that given anyδ > 0 with 0 < r < r0δℓ andδℓ < s< t < ℓ − δℓ, then

dGH(Br(γ(s)), Br (γ(t))) <
C
δℓ

r |s− t|α(n) . (2)

We will see from the proof thatα(n) is effectively1
2, which is to say that the Gromov-Hausdorff approxi-

mation (or map) is in fact12-Hölder continuous on sets of arbitrarily full measure. Note thatα, C andr0 in

this Theorem do not depend onγ or evenM.

In fact this theorem, as everything else in this paper, holdsfor possibly singular limits of manifolds. To

state the Theorem for singular limits let us consider a sequence Mn
i of n-dimensional manifolds (possibly

collapsing) each satisfying (1) and letM∞ be a Gromov-Hausdorff limit ofMi. (So M∞ may have lower

Hausdorff dimension.) We say a geodesic

γ : [0, ℓ] → M∞

is a limit geodesic if there exists geodesicsγi : [0, ℓi ] → Mi with ℓi → ℓ such that

γi → γ ,

pointwise. Though it is not clear a geodesic onM∞ is always a limit geodesic, what will be most important

for us is that given any two pointsx, y ∈ M∞ there always exists a limit geodesic connecting them. In

fact we will see that the collection of limit geodesics onM∞ are in abundance and have all the measure

theoretic properties one would hope for (see Section 1.4, Section 1.5 and Appendix A). The main estimate

for singular spaces is then:

Theorem 1.2. Theorem 1.1 holds for limit geodesics in M∞.

If ( M∞, d∞) is a Gromov-Hausdorff limit,x ∈ M∞ and sj → 0, then a subsequence of the blows up

(M∞, s−1
j d∞, x) converges in the Gromov-Hausdorff topology to a metric space called a tangent cone atx. If

the sequenceMi is non-collapsing then it was shown in [ChC2] that tangent cones are metric cones; however,

this is not necessarily the case in the collapsing case, see example 8.95 of [ChC2], and in fact tangent cones

may not even be polar spaces in the collapsed case, see [M4]. Even for general non-collapsed limits tangent

cones can be non-unique, see [ChC2] for examples and cf. [P2]1.

1In the Einstein setting uniqueness of tangent cones is unknown.
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Theorem 1.1 implies that tangent cones change in a Hölder continuous way even for collapsed limits.

Note that this has to be understood in an appropriate way because of the non-uniqueness of the tangent

cones. To do this suppose thatx, y ∈ M∞ are points inM∞ with Yx, Yy tangent cones inM∞ centered at

x andy, respectively. Then we sayYx andYy come from the same sequence of rescalingsif there exists a

sequencesj → 0 such that

(M∞, s
−1
j d∞, x)→ Yx ,

(M∞, s
−1
j d∞, y)→ Yy . (3)

Now given a limit geodesicγ : [0, ℓ] → M∞ we state the main estimate for tangent cones alongγ.

Theorem 1.3. (Hölder continuity of tangent cones). There existsα(n) and C(n) > 0 such that given any

δ > 0 with δℓ < s < t < ℓ − δℓ and Yγ(s), Yγ(t) tangent cones from the same sequence of rescalings, then we

have

dGH(B1Yγ(s), B1Yγ(t)) <
C
δℓ
|s− t|α(n) . (4)

Here B1Ys and B1Yt are the unit balls around the ‘cone’ tips.

Remark1.1. An immediately corollary is that tangent cones from the samesequence of rescalings onγ

change continuously, see also Example 1.2.

This Theorem and Examples 4.1, 4.2 should be contrasted to a result of Petrunin, [Pn], who showed a

conjecture of Yu. Burago asserting that for Alexandrov spaces the tangent cones remains the same along

the interior of a geodesic. Since the regular set of an Alexandrov space is the collection of points whose

cone is Euclidean space it follows easily from Petrunin’s result that for an Alexandrov space the regular set

is convex.

A useful consequence of the Hölder continuity of the tangent cones that we will use several times is that

the set of interior points of a geodesic where the tangent cone is unique and equal to a given metric space is

closed relative to the interior. This is the following:

Corollary 1.4. If γ : [0, ℓ] → M∞ is a limit geodesic and(Y, 0) is a fixed pointed metric space, then

1. The set of interior points onγ where the tangent cone is unique and equal to Y is closed relative to

the interior.

2. If the set is also dense in the interior, then it is all of theinterior.

Remark1.2. In fact the assumption of uniqueness of the tangent cones is not necessary. Relative to any

sequencer j → 0 the collection of points ofγ whose tangent cone from this sequence of rescalings is equal

to Y is a closed set.

1.2 Convexity of the regular set for non-collapsed Einsteinlimits

Let M∞ be a pointed limit ofn-dimensional manifoldsMi with pi ∈ Mi and

Vol(B1(pi)) ≥ v > 0 , (5)

|RicMi | ≤ (n− 1) . (6)
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As mentioned above for non-collapsing limits it was shown in[ChC2] (see theorem 5.2 there) that tangent

cones are metric cones of Hausdorff dimensionn. A metric coneC(X) with cross-sectionX is a warped

product (0,∞) ×r X with warping function f (r) = r, r ∈ (0,∞). By theorem 5.2 of [ChC2]X is a length

space with diameter at mostπ and dimension equal to (n − 1). The regular set ofM∞ are points where a

neighborhood is a smooth Einstein manifold; the complementof the regular set is the singular set. It can be

shown, see theorem 0.3 in [C3] and cf. [ChC2], that a point is regular if and only if oneof its tangent cones

is isometric toRn; so in this case uniqueness follows. As a first application ofTheorem 1.3 we have the

following convexity result for the regular set.

Theorem 1.5. (Convexity of the regular set). The regular set is convex forany non-collapsed limit of a

sequence of n-manifolds with uniformly bounded Ricci curvatures.

That is, if Mi are as above and M∞ is a limit of the Mi ’s with γ∞ : [0, ℓ] → M∞ a limit geodesic segment

in M∞ such that one point onγ∞ is regular (possibly an endpoint), then every interior point of γ∞ is a

regular point.

Note that in section 3 of [ChC3] a much weaker statement is shown. Namely, there it is shown (see,

in particular, corollary 3.10 in [ChC3]) that in a non-collapsed limit of spaces with a uniform lower Ricci

curvature bound any pair of regular points can be connected by a curve consisting entirely of almost regular

points. See [ChC3] for the precise statement. See also the three last paragraphs on page 408 of [ChC3]

where it is discussed that one would like to know thatR is connected in the collapsed case.

As a consequence of 1) in Corollary 1.4 we get Theorem 1.5:

Proof. (of Theorem 1.5). By [C3], see also section 7 of [ChC2], the regular set of a non-collapsed limit of

spaces with uniformly bounded Ricci curvatures is an open set. This follows since by [C3] the following

two are equivalent for such a limit:

1. A tangent cone atx isRn.

2. An open neighborhood ofx is aC1,β Riemannian manifold.

By Corollary 1.4.1 the regular points inγ∞ are also a closed set, hence the Theorem follows. The theorem

follows from this together with 1) of Corollary 1.4. �

The following effective version of the regular set being convex, or rather that if one endpoint of a limit

minimizing geodesic is a regular point, then the whole interior consists of regular points. This is the follow-

ing which is interesting even whenMi andM∞ are all the same smooth Riemannian manifold:

Theorem 1.6. (Rate of blow-ups along geodesics). There exists c(n), r0(n) > 0 andα(n) > 1 such that if

M∞ is as in Theorem 1.5 withγ∞ : [0, 2ℓ] → M∞ a limit minimizing unit speed geodesic withℓ ≤ 1, r ≤ r0ℓ,

and

dGH(Br(γ∞(ℓ)), Br (0)) < ǫ r , (7)

then for all0 < s< 1

dGH(Bcsαr(γ∞(sℓ)), Bcsαr (0)) < ǫ c sα r . (8)
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Here Bt(0) ⊂ Rn is the Euclidean ball.

Moreover, if all Mi ’s are Einstein, then the curvature R blows-up atγ(0) at most to the power−2α. That

is, after choosing c even smaller we get by combining (8) with[C3] that all balls Bcsαr(γ(s)) are smooth and

sup
Bcsαr (γ(s))

|R| ≤ s−2α r−2 . (9)

Recall that a ballBr(p) in a manifoldM is said to havebounded geometryif the (sectional) curvatureR is

bounded byr−2 and the injectivity radius atp is at leastr. The next corollary is for simplicity only stated for

Ricci flat manifolds though holds with obvious changes for Einstein manifolds. Roughly speaking it says

that in an Einstein manifold regions with bounded geometry propagates throughout the manifold (as any

pair of points in the manifold obviously can be joined by a minimizing geodesic and thus bounded geometry

near one point mean by the corollary bounded geometry near the other).

Corollary 1.7. Given an integer n, there exist constantsα = α(n) ≥ 1 and C = C(n) > 0 such that the

following holds: Suppose that Mn is a Ricci flat n-manifold andγ : [0, 2L] → M is a unit speed minimizing

geodesic, then the radius of balls centered atγ(r) that have bounded geometry decay at most like

C
( r
L

)−α
(10)

fromγ(L) to γ(0).

Theorem 1.6 follows from iterating the following lemma:

Lemma 1.8. Given an integer n, there existsǫ = ǫ(n), δ = δ(n), r0 = r0(n) > 0, so that if Mn is a smooth

manifold with|Ric| ≤ ǫ andγ : [0, 2] → M is a unit speed minimizing geodesic with r≤ r0 and

dGH(Br(γ∞(1)), Br (0)) < ǫ r , (11)

then

dGH (Bδr (γ∞ (1/2)) , Bδr(0)) < ǫ δ r . (12)

Proof. Theorem 1.1 above gives the assertion except with 2ǫ instead ofǫ and atν instead of at12, whereν

is close to 1 depending onǫ, but independent ofr. By [C3] (see also section 7 of [ChC2]) the metric on the

ball B r
2
(γ(ν)) is C1,β with fixed small scale invariantC1,β norm of the difference of the metric and the flat

gi, j = δi, j Euclidean metric on the ball, providedǫ is fixed small. Hence, going to a smaller scale givesǫ as

opposed to 2ǫ. Repeating this argument12ν many times yields the claim. �

We note that there exists a limitM∞ of a non-collapsing sequence of smooth 4-manifoldsM4
i with RicMi ≥

0 and a unit speed geodesicγ∞ : [0, 1] → M∞ such thatγ∞(1) is a smooth point, but the curvature blows up

faster than quadratically atγ∞(0). This follows from one of the examples in [CN1] that show that there is

such a limit where one tangent cone atγ∞(0) is smooth and another not; cf. also section 8 of [ChC2], [P2],

and the examples section later in this paper. In the Ricci flatcase the Eguchi-Hanson metrics, [EH], show

that quadratic blow up of the curvature (and thus linear blowup of the geometry) is the best that one can

hope for. This would correspond to thatα can be chosen to be 1 in Corollary 1.7. In fact, we conjecture that

this is the case:
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Conjecture1.1. α in Corollary 1.7 can be chosen to be 1. (A similarly statementshould hold for general

Einstein manifolds).

An affirmative answer to this conjecture would have various applications. In particular, it would immedi-

ately give the following:

Conjecture1.2. If Mn is an open Ricci flat manifold with Euclidean volume growth and one tangent cone at

infinity is smooth, then all tangent cones at infinity are smooth. (A similarly statement should hold for local

tangent cones of non-collapsed limits of Einstein manifolds.)

For later use we conclude this subsection by mentioning thatthere is a natural stratification of the singular

set of M∞ based on tangent cones; see top of page 410 of [ChC2]. This is valid even in the case of non-

collapsed limit of manifolds with a uniform lower Ricci curvature bound. Namely,

Sk ≡ {x : x is singular and no tangent cone atx splits off aRk+1 factor} . (13)

That is, no tangent cone atx is isometric toRk+1 × Y for some metric spaceY. Thus

S0 ⊂ S1 ⊂ · · · ⊂ Sn
2.

1.3 Branching geodesics and local dimension

A geodesic is said to be branching if there exists another geodesic that coincide withγ on a open subset,

but that at some point the two curves depart (branch) from each other. Precisely, there does not exists a

common extension of the two geodesics. Obviously, for smooth or evenC1,β manifolds branching cannot

occur as geodesics are entirely determined by their initialconditions (initial velocity). Even for Alexandrov

spaces it follows directly from the Toponogov triangle comparison theorem that geodesics do not branch;

see page 384 of [GvPe] and [BGP]. However, for general limitsof manifolds with lower Ricci curvature

bounds it is unknown whether or not geodesics can branch in the interior; cf. [CN2]. Some simple branching

that potentially could come from one-dimensional pieces have been rule out in section 5 of [ChC3]; see the

example below. Moreover, we will recall below the known examples of limit spaces that have geodesics that

start out tangent and then branch. An immediate corollary ofthe results above is:

Corollary 1.9. If M∞ is a non-collapsing limit of a sequence of n-manifolds with uniformly bounded Ricci

curvature, andγ∞ is a branching limit geodesic, thenγ∞ is entirely contained in the singular set of M∞.

In [ChC2] and [ChC3] the following two examples of metric spaces were discussed. It was show there

that one of them could in fact occur as a limit spaces whereas the other could not.

Example1.1. (The horn and the trumpet; see example 8.77 of [ChC2] and example 5.5 of [ChC3]). As

shown in [ChC2], the metric hornY5, with metric

dr2
+

(

1
2

r1+ǫ
)2

gS
4
, (14)

2It was shown in [ChC2] thatS = Sn−2 and that dimSk ≤ k. Hence, the conclusion that non-collapsed limits of Einstein

manifolds are smooth outside a closed subset of Hausdorff codimension 2. See [C4], [Ch], [F2], [Ga], [W] for surveys of these

results.
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arises as the limit of a collapsing sequence, (M8
i , gi). The trumpet is the space obtained by attaching at the

origin, a line segment, [− j, 0], to the horn,Y5. It follows from theorem 5.1 of [ChC3] (see example 5.5 in

[ChC3]), that for noj > 0 does the trumpet arise as the limit of a sequence of manifolds with uniform lower

Ricci curvature bounds.

For the horn all points have a unique tangent cone. At the tip the tangent cone is equal to the half-line

[0,∞) and all other points have tangent cone equal toR5. The trumpet has also unique tangent cones, but

on the entire closed line segment tangent cones are equal toR. In particular, for the trumpet there are two

open (non-empty) subsets so that on one the tangent cone is unique and equal to one Euclidean space and

on the other tangent cones are also unique, but equal to a different Euclidean space. It was conjectured in

[ChC3] that this should not happen for limits of manifolds with a uniform lower Ricci curvature bound. The

fact that the trumpet could not occur as a limit was given as support of this conjecture, however the tools to

show even simple generalizations of the trumpet (e.g. the trumpet cross a torus) cannot arise as a limit have

remained elusive. We prove this conjecture in full in the next subsection, but first let us apply Theorem 1.3

to see that these generalized trumpets can not occur as limitspaces. The proof of the full conjecture is in the

same spirit, if technically more involved.

Example1.2. Let Z5 ≡ [− j, 0] ∪ Y5 be the trumpet constructed in Example 1.1 and letX ≡ Z5 × Mn be the

trumpet cross ann-manifold. We claimX cannot arise as a Gromov-Hausdorff limit of manifolds with lower

Ricci bounds. To prove this letx, y ∈ X be points inX such that the tangent cones in a neighborhood ofx

are unique and equal toRn+1, while the tangent cones in a neighborhood ofy are unique and equal toRn+5.

Let γ be a limit geodesic connectingx andy and note that the tangent cones at each point ofγ are unique

and are isometric to eitherRn+1 orRn+4, with both arising as tangent cones at some interior point. However

as in the remark following Theorem 1.3 the tangent cones are changing continuously, which is not possible

if the tangent cones acquire both of only two possible values.

Horns are examples of length spaces where geodesics that areinitially tangent branch and trumpets are

examples of length spaces where geodesic branch at some interior point.

In [CN2] we will construct almost Euclidean limit spaces where geodesics that are initially tangent

branch; just like in the example of the horn, but with the additional property that the space is almost maximal.

1.4 Convexity of the regular set in general limits and constant local dimension

In this subsection we will state and prove a convexity resultfor general limits that follows from our main

Hölder continuity result. Once we have that we are in a position to prove a conjecture of Cheeger-Colding.

They conjectured that the dimension of any limit is the same at almost every point, see Example 1.2 where

we use Theorem 1.3 to prove this in a simplified setting. To make the general results precise we need to

recall the renormalized limit measures and the measured Gromov-Hausdorff convergence. This summarizes

some of the results in section 1 of [ChC2]. These measures were first constructed by Fukaya, [F1], who

used a different argument than the one given in [ChC2].

In the non-collapsed case, the limit measure exists withoutthe necessity of passing to a subsequence, or

of renormalizing the measure. The unique limit measure is just the Hausdorff measure,Hn; see theorem 5.9

in [ChC2]. (If, for the sake of consistency, one does renormalize the measure, then one obtains a multiple of
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Hn, where as usual, the normalization factor depends on the choice of base point.) However, in the collapsed

case the renormalized limit measure on the limit space can depend on the particular choice of subsequence;

see example 1.24 in [ChC2].

Let Mn satisfy RicMn ≥ −(n− 1). Fix p and define the renormalized volume function by

V(x, r) = Vol(Br(x)) =
Vol(Br(x))
Vol(B1(p))

. (15)

Let (Mn
i , pi ,Vi) be a pointed sequence ofn-dimensional manifolds with reference pointspi and renor-

malized measuresVi defined with respect to these reference points. Combining the proof of Gromov’s

compactness theorem with a modification of the proof of the theorem of Arzela-Ascoli, one obtains that

a subsequence of these metric-measure spaces converges to ametric-measure space. The limit will auto-

matically satisfy a local doubling condition both metrically and measure-wise (in fact, it satisfies a Bishop-

Gromov volume inequality); see section 1 of [ChC2] for details. The Radon measureν uniquely defined

from such a limitVi → ν is said to be a renormalized limit measure on the Gromov-Hausdorff limit M∞.

Suppose thatM∞ is a measured Gromov-Hausdorff limit with renormalized measureν. If A ⊂ M∞
has renormalized measure zero, ie,ν(A) = 0, then for any pair of balls inM∞ almost all limit minimal

geodesics from one ball to the other intersectA in a set of measure zero. Precisely, we have the following

(which is a direct consequence of the segment inequality theorem 2.6 in [ChC4], see also theorem 2.11 in

[ChC1] - we are below using the notation from theorem 2.11). Let A1, A2 be open subsets ofM∞ with

γa1,a2 : [0, a1, a2] → M∞ a limit minimal geodesic connectinga1 anda2 and let

Ia1,a2(A) = inf
γa1,a2

|t : γa1,a2(t) ∈ A| (16)

where| · | denotes the measure of a set and the infimum in (16) is taking over all minimal limit geodesics

connectinga1 anda2. Equip the productA1×A2 with the product measureν×ν. Then we have the following:

Lemma 1.10. If ν(A) = 0 then forν × ν almost every(a1, a2) ∈ A1 × A2 we have

|Ia1,a2(A)| = 0 . (17)

Proof. Apply theorem 2.6 of [ChC4] to the indicator function ofA. �

We will also need the notion of a regular point in the collapsed case. We say thatx ∈ M∞ is ak-regular

point if every tangent cone is equal toRk. There are examples, see [M2], where one, but not all, of the

tangent cones at a point isRk, so uniqueness is a non-trivial assumption.3 We will write

Rk ≡ {x : x is k-regular} , (18)

for the set ofk-regular points and

R ≡ ∪kRk , (19)

3In the non-collapsing case if one tangent cone isRn, then all are; see theorem 0.3 in [C3].
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for the set of all regular points. The singular setS is the complement of the regular set, so

S = M∞ \ R . (20)

In theorem 2.1 of [ChC2] it is shown thatν(S) = 0 (and henceR is dense inM∞). From this together with

Theorem 1.1 and the segment inequality in form of Lemma 1.10 we conclude:

Lemma 1.11. For ν × ν almost every point(a1, a2) ∈ A1 × A2 there exists a limit minimal geodesic from a1

to a2 whose interior lies entirely insideRk for some k. That is, the entire interior consists of k-regular for

the same k.

Proof. Applying Lemma 1.10 toA = S and using that by theorem 2.1 of [ChC2]ν(S) = 0 it follows that for

a.e.a1 anda2 there is a limit minimal geodesicγ : [0, ℓ] → M∞ connecting them so that the intersection of

γ with the regular setR has full measure (and hence is dense) in [0, ℓ]. For any such pair (a1, a2) it follows

now easily from Corollary 1.4 that if 0< s< t < ℓ with γ(s) ∈ Rks, andγ(t) ∈ Rkt , thenks = kt.

Namely, it follows from 1) of Corollary 1.4 that for eachk the intersection

γ̆ ∩ Rk , (21)

of the interior of the geodesic is closed relative to the interior. Sincek ≤ n by [C3] (see also [ChC2]),

there are at most finitely manyRk’s that are non-empty. It follows that the intersection ofR = ∪kRk with

the interior ofγ is closed relative to the interior and since it is also dense it follows that the regular set is

all of the interior. Since{Rk}k are all pairwise disjoint, the intersection of eachRk with the interior of the

geodesic is closed, and the union is all of the interior, it now follows that there is only onek so thatγ̆ ∩ Rk

is non-empty. �

We have now that the dimension of the tangent cone isν almost everywhere the same. Results of this

form were originally proved in the four dimensional Einstein case in the fundamental works of [BKN] and

[Ti]. In the general noncollapsed case the result was first proved in [ChC2], where the following collapsed

version was conjectured to hold as well.

Theorem 1.12.There is a unique k so that

ν(R \ Rk) = 0 . (22)

Combining this with thatν(S) = 0 by theorem 2.1 of [ChC2] it follows thatν(M∞ \ Rk) = 0. We call this k

the dimension of M∞.

Remark1.3. It is not clear that the dimension of the regular set is equal to the Hausdorff dimension of the

limit space.

Proof. This is a consequence of Lemma 1.11 together with the following technical result (see Corollary A.4

below) that we prove in an appendix:

• a.e. pair (x, y) ∈ M∞×M∞ is in the interior of a limit geodesic, that is, a.e. pair lie on a limit geodesic

that can be extended as a limit geodesic on both sides.

To see the result now assume∃ k, l such thatν(Rk), ν(Rl) > 0. Then by the segment inequality and the

above statement there exists a limit minimizing geodesicγ∞ which intersects bothRk andRl in the interior

while satisfying Lemma 1.11. Hencek = l as claimed. �
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1.5 Rk is connected and weakly convex, and the isometry group of a limit is a Lie group

We give two more applications of the Hölder continuity here, one pertaining the convexity structure of the

regular set and the other to the isometry group of limit spaces. Recall that it was conjectured in section 4 of

[ChC3] that the isometry group for any limit is a Lie group. Infact, it was proven in section 4 of [ChC3]

that the isometry group is a Lie group provided that one couldprove that the regular set is connected in a

certain weak sense. It was also shown in [ChC3] that in the non-collapsed case the regular set is connected

in this sense and, thus, in the non-collapsed case the isometry group is a Lie group.

Now we introduce two notions of convexity. We call aν-measurable setU a.e.-convex if forν×ν a.e. pair

(x, y) ∈ U × U it holds that there exists a minimizing geodesicγ ⊆ U which connects the two. For instance

consider the exampleRn \ {0}.
We also consider the notion of a weakly convex subset. Given two pointsx, y ∈ X of a length spaceX we

say that a curveγ connecting them is anǫ-geodesic if

||γ| − d(x, y)| ≤ ǫ2d(x, y) .

We say that a subsetU ⊆ X is weakly convex if the induced length space distance onU is the same as the

restricted metric. In other words ifx, y ∈ U, thenU may not contain a minimizing geodesic connectingx

andy, but for eachǫ > 0 there is anǫ-geodesic connectingx andy which is contained completely insideU.

Again consider the example ofRn \ {0}. Now we state our convexity Theorem.

Theorem 1.13.The following hold.

1. Rk is a.e. convex.

2. Rk is weakly convex.

Proof. The first statement is just a restatement of Lemma 1.11 and Theorem 1.12. For the second statement

note that the a.e-convexity ofRk implies that a.e.z0 ∈ Rk has the property that for a.e.z1 ∈ Rk there exists

a limit minimizing geodesicγz0,z1 connectingz0 andz1 such that ¯γz0,z1 ⊆ Rk. Let us denote

R
c
k ≡ {z0 : for a.e.z1 ∈ Rk there exists a minimizingγz0,z1 with γ̄ ⊆ Rk} , (23)

as the collection of suchz0’s and

R
z0
k ≡ {z1 : ∃γz0,z1 with γ̄z0,z1 ⊆ Rk} , (24)

as the corresponding set ofz1’s.

Now let x, y ∈ Rk be arbitrary and forǫ > 0 fixed let us definer i ≡ ǫ210−i . We will define{xi}, {yi} in the

following manner. Let

x1 ∈ Br1(x) ∩ R
c
k , y1 ∈ Br1(y) ∩ R

x1
k ∩ R

c
k ,

with γ1 ⊆ Rk a unit speed minimizing geodesic connecting them. Now we define xi+1 andyi+1 inductively.

Givenxi let

xi+1 ∈ Br i+1(x) ∩ R
xi
k ∩R

c
k ,
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with

γx
i+1 ⊆ Rk

a minimizing geodesic connectingxi to xi+1, and similarly givenyi let

yi+1 ∈ Br i+1(y) ∩ R
yi

k ∩ R
c
k ,

with

γ
y
i+1 ⊆ Rk

a minimizing geodesic connecting them. Now we can letγ be the unit speed curve which is the join of the

curves{γx
i }, γ1 and{γy

i }. We have thatγ connectsx andy with γ ⊆ Rk and

|γ| =
∑

(

|γx
i | + |γ

y
i |
)

+ |γ1| ≤ d(x, y) + ǫ2 , (25)

as claimed. �

As a simple consequence of this we have thatRk is connected. This leads us to our next application, which

follows from a mildly more uniform version of Lemma 1.11 and Theorem 1.13. In [FY] it was shown that

for Alexandrov spaces the isometry group is a Lie group and in[ChC3] it was shown that for non-collapsed

limits of manifold with a uniform lower Ricci curvature bound the isometry group is a Lie group. In fact, in

theorem 4.5 in [ChC3] it was shown that for general locally compact metric spaces for which the regular set

is dense and where eachRk is connected in a weak sense, then the isometry group is a Lie group. We use a

mild generalization of theorem 4.5 in [ChC3] as well as Appendices A and B to prove the following.

Theorem 1.14.The isometry group of a limit space M∞ is a Lie group.

Proof. Let k be the dimension ofM∞, see Theorem 1.12, withRk the dense collection ofk-regular points

and

(Rk)ǫ,δ ⊆ Rk , (26)

the subset such thatx ∈ (Rk)ǫ,δ iff ∀ 0 < r < δ we have that

dGH(Br(x), Bk
r (0)) < ǫr ,

whereBk
r (0) is ther-ball in Rk. To apply theorem 4.5 of [ChC3] it is enough to find a pointx ∈ Rk such

thata.e. y ∈ Rk has the property that for everyǫ > 0 there exists aδ > 0 and a geodesicγx,y connectingx

andy such thatγx,y ⊆ (Rk)ǫ,δ (in fact theorem 4.5 requires that such a connectedness property hold forevery

y ∈ Rk, however it is easy to check that the proof goes through verbatim if it is only assumed to hold fora.e.

y ∈ Rk).

To find such anx ∈ Rk we will actually show thata.e. x ∈ Rk has this property. In fact by Corollary A.4

we note thata.e. x ∈ Rk has the property that fora.e. y ∈ Rk we have a limit minimizing geodesicγx,y such

that x andy are interior points of a limit minimizing geodesicγx,y. So fix such anx ∈ Rk and letRx
k be the

collection ofy’s such that there exists such a limit minimizing geodesicγx,y. However, the fact that for every

ǫ > 0 there exists aδ > 0 such thatγx,y ⊆ (Rk)ǫ,δ now follows from Theorem B.1. �
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1.6 Examples of non–collapsed limit spaces

Both as a supplement to the main results and to show sharpnessof the main results we construct various new

examples of non-collapsed limits with lower Ricci bounds inSection 4.

Although much more restrictive it is instructive when putting the Theorems and Examples of this paper

into context to begin by looking at Alexandrov spaces. For spaces with such lower sectional bounds it was

conjectured by Burago, and proven by Petrunin [Pn], that tangent cones on the interior of a minimizing

geodesic are isometric. Of course it has been known since [ChC1] for limit spaces with only lower Ricci

bounds that tangent cones need not be unique. In particular there is no hope that tangent cones on the interior

of a minimizing geodesic need be unique for limit spaces withonly lower Ricci bounds.

However Theorem 1.2 does potentially suggest a version of Burago’s conjecture for limit spaces with only

lower Ricci bounds. Namely, it is reasonable to ask if tangent cones which come from the same sequence

of rescalings are unique on the interior of a minimizing geodesic. Example 4.1 constructs a limit space

which shows that this is not the case. More specifically, Example 4.1 is a non-collapsed limit spaceX with a

minimizing limit geodesicγ ⊆ X such that at each distinct point ofγ the tangent cone is unique but for any

s, t we have that the tangent cones atγ(s) andγ(t) are not isometric. In particular, tangent cones from the

same sequence of rescalings alongγ are not isometric and we see that a generalized Burago conjecture for

limits with only lower Ricci bounds cannot hold.

Now although two tangent conesXγ(s), Xγ(t) from the same sequence of rescalings on the interior of

a minimizing geodesicγ need not be isometric, it does follow from Theorem 1.2 that they change at a

continuous rate, in fact at aCα(n)-Hölder rate. It even follows from the proof that the Gromov-Hausdorff map

from B1Xγ(s) to B1Xγ(t) is C
1
2 bounded on sets of arbitrarily full measure ofB1Xγ(s). The natural question is

whether this is a sharp result, and it might even be hoped thatthe Gromov-Hausdorff maps can be controlled

in a Lipschitz fashion. Example 4.2 shows however that this is not the case, and that in fact the1
2-Hölder

exponent is sharp. More specifically, for eachδ > 0 Example 4.2 constructs a non-collapsed limit space

Xδ with a limit minimizing geodesicγ ⊆ Xδ so that tangent cones from the same sequence of rescalings

alongγ change at aC1/2-Hölder rate but not at aC1/2+δ-Hölder rate. Thus we will see that Theorem 1.3 is

sharp. In fact this also has the consequence of showing that the estimates of Section 2.2 are sharp, namely

the estimate
∫

γ

>
Br (γ(s)) |Hessh|2 ≤ C cannot be replaced with the stronger estimate

>
Br (γ(s)) |Hessh|2 ≤ C,

whereh is the parabolic approximation function. If it could the techniques of Section 3 would show that the

Gromov-Hausdorff maps are effectively Lipschitz, which does not hold by the above example.

1.7 Outline of the Proof of Theorem 1.1

The bulk of the rest of the paper deals with the proof that tangent cones change in a Hölder way along a

minimizing geodesic, that is, the proof of Theorem 1.1.

Before getting into the actual strategy of the proof let us try to explain why it might be true and in

particular why it requires substantially new estimates. Consider therefore a minimizing geodesicγ : [0, 1]→
M which is parametrized by unit speed in ann-dimensional manifoldM with RicM ≥ −(n−1). By the almost

splitting theorem of [ChC1] ifδ > 0 is fixed andδ ≤ s< τ < t ≤ 1− δ, then forr0 = r0(δ, n) > 0 sufficiently

small andr with r0 > r > 0 the ballB3r
2
(γ(τ)) almost splits. This implies that the ballsBr(γ(τ − r

2)) and

12



Br(γ(τ + r
2)) are Gromov-Hausdorff close to each other. This allows oneto compare balls with different

centers, but with same radii, centered along a minimizing geodesic. This is exactly what we would like

to do. The downside with this argument is that as the radii become smaller, the distance between the pair

of centers of the balls that we can compare become smaller as well. One may think that if we iterate this

argument along the geodesic going fromγ(s) and toγ(t), then perhaps we get the desired estimate. The

issue is that we would have to iterate this process roughlyt−s
r many times, while the error induced from each

iteration is roughlyrβ, whereβ(n) is a small dimensional constant which comes from the Abresch-Gromoll

inequality. Thus, when we iterate this processt−s
r times we get that the scale invariant Gromov-Haudorff

distance between the first and last ball is roughly bounded byt−s
r rβ = (t − s) rβ−1, which converges to∞ as

r → 0 and so in other words blow up. It is therefore clear that thisnaive argument does not work, rather we

need better estimates that we can integrate up from a neighborhood ofγ(s) to a neighborhood ofγ(t).

To examine and explain the better estimates that we need, we will need to explain how the almost splitting

in [ChC1] is proven. The overall strategy of the proof is to first approximate certain distance functions with

functions with better properties4. The better property that was needed in [ChC1] was anL2 bound for the

hessian of the approximating functions which distance functions themselves may not have; see remark 4.102

in [ChC1]. With the hessian bound one can integrate over geodesics and use the outcome in combination

with the first variation formula to turn it into information about the Gromov-Hausdorff distance.

Before we explain in more detail the better estimates that weprove here, and how it give us the desired

Hölder continuity, let us focus on the crucialL2 bound for the hessian of the approximating functions. To

see what may be possible let us again examine a minimizing geodesicγ : [0, 1] → M. Obviously, in the

interior of the geodesic the distance to one of the endpointsis a smooth functiond and the Bochner formula

applied tod is simply the matrix Riccati equation. Moreover, a simple argument, that we give in Section 3

and has in roots in an old paper of E. Calabi, [Ca], shows that

∫ 1−δ

δ

|Hessd|2 ≤
C
δ
. (27)

The key improved hessian estimate that we show is a version ofthis estimate for the approximating function.

Moreover, it is easy to see that if one applies the Cauchy-Scwarz inequality to this hessian bound and

integrates along the geodesic, then one get an infinitesimalversion of the desired Hölder estimate. Where

the Hölder exponent12 comes from is the Cauchy-Schwarz inequality.

We will next be more specific about the proof of Theorem 1.1 andhow it differs from the proofs of the

almost maximal, almost metric cone, and almost splitting theorems in [C1]–[C3], [ChC1].

Section 2 below contains the new functional estimates of thepaper. Section 2.1 is dedicated to a new

mean value inequality and the proof of a new excess estimate.Recall that given pointsp, q ∈ M we have the

excess function

e(x) ≡ d(p, x) + d(x, q) − d(p, q) . (28)

Along a minimizing geodesicγ connectingp andq we have thate takes its minimum valuee|γ ≡ 0. A

simple estimate using the lipschitz nature ofe(x) then gives forx ∈ Br(γ(t)), whereγ(t) is some interior

4The basics of this overall strategy was already present in the earlier papers [C1]–[C3].
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point of the geodesic, thate(x) ≤ Cr. It is an important estimate by Abresch and Gromoll that thiscan be

improved to the statement

e(x) ≤ C r1+α(n) , (29)

whereα is a small dimensional constant andx ∈ Br(γ(t)). This estimate plays a key role in the estimates

of [ChC1]. In the proof of Theorem 1.1 it is important to have an improvement of this estimate. Namely,

if we were on a smooth manifold withbounded curvature, then we would expect an estimate of the form

e(x) ≤ C r2. This is becausee(x) would be a smooth function which would obtain a minimum atγ(t). In the

case of a lower Ricci bound takingα ≡ 1 seems to be a strong statement, however Theorem 2.6 says that if

we only ask for this to hold at most points then this is possible. More precisely it is proved that
?

Br (γ(t))
e≤ C r2 . (30)

In fact, combining this with|∇e| ≤ 2 immediately gives a new proof of the Abresch-Gromoll estimate.

Section 2.2 is then focused on building new approximation functions to the distance functiondp(x). In

[ChC1] a key point is to approximatedp by a harmonic functionh. Althoughdp is clearly not smooth, they

are able to prove useful estimates on this harmonic approximation. Most importantly, with the help of the

Abresch-Gromoll inequality, they prove an estimate on the hessian
?

Br (γ(t))
|Hessh|2 ≤ C r−2(1−α) . (31)

Although this estimate blows up withr, it is better than the scale invariant estimate that was proven and

used in [C3]. For our purposes this is not enough, see Section2.2 for a more detailed explanation. It is

important in our situation that we be able to takeα ≡ 1 in order to get the fullL2-bound on the hessian; cf.

the discussion in the beginning of the subsection. To make improvements in terms of getting a better hessian

bound it will be important to consider a new class of approximating functions. Instead of the harmonic

approximation todp we will consider parabolic approximation. The idea is that if instead of approximating

a distance function on a ball with the harmonic function withthe same boundary values, then one ought

to be doing better if one instead replace the distance function by the function where we flow it by the heat

equation. The harmonic approximation can then be thought ofas the limit when one flow tot → ∞. By

flowing for a relative short amount of time the approximationshould resemble the original distance more and

yet serve as a regularization. Precisely, we will flowdp by the heat flow for roughly timer2. These functions

will turn out to have much better properties than the harmonic approximations. Even so, the estimate with

α ≡ 1 may fail to hold for some ballBr(γ(t)), see Example 4.2. What we will prove in Theorem 2.14 is that

it holds formostballsBr(γ(t)), that is
∫

γ

?
Br (γ(t))

|Hessh|2 ≤ C . (32)

See Theorem 2.14 for a more precise statement.

Section 3 is then dedicated to finishing the proof of Theorem 1.1. We begin in Section 3.1 by proving an

infinitesimal version of the estimate (mentioned earlier inthis subsection), which is itself quite instructive
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and gives rise to a Jacobi field estimate. To then extend this infinitesimal version and finish the proof

of Theorem 1.1 we must actually construct mappings between the ballsBr(γ(s)) andBr(γ(t)) and use the

estimates of Section 2 to prove the Gromov-Hausdorff properties of these maps. The map itself will be the

gradient flow induced by−∇dp. This mapping is of course only a measurable map, and in general controlling

the gradient flow of a Lipschitz function without hessian estimates requires some technical work. The results

of Section 3.2 will show that to control this map it is enough to controlnearbysmooth functions. One of the

primary technical challenges is to show thatmostgeodesics which begin and end near one another remain

close. Namely, ifx ∈ Br(γ(t)) andγp,x is the geodesic connectingp andx, then it is not at all clear that the

geodesicsγp,x(u) andγ(u) even remain near one another asu varies. In this case the gradient flow mapping

map not even mapBr(γ(t)) nearBr(γ(s)), much less define a Gromov-Hausdorff approximation. Section

3.3 deals with this issue, which requires essentially everytool developed in this paper. Finally, Section 3.4

finishes the proof of Theorem 1.1.

2 Hessian bounds for approximations of distance functions

Throughout this section (Mn, g) has Ric≥ −(n − 1) and p, q are points inM with d(p, q) = dp,q ≤ 1.

Obviously, one can consider points further apart by applying the estimates of this section recursively. We

will also assume, for simplicity, thatM is complete, though these estimates are purely local and this is much

stronger than what is needed. We will be dealing often with the functions

• d−(x) ≡ d(p, x),

• d+(x) ≡ d(p, q) − d(q, x),

• and the excess functione(x) ≡ d(p, x) + d(x, q) − d(p, q) ≡ d−(x) − d+(x).

In the proof of the local almost splitting theorem in section6 of [ChC1] (see also [C3]) a key point is to

approximate the partial Busemann functionsd+ andd− by harmonic functionsb± on a ballBr centered at

a point of small excess. The key observation for those results is that inBr the hessian of the functionsb±

is bounded in a fashion which is better than scale invariant,at least in anL2 sense. In other words, a scale

invariant bound would be that for some constantC(n) one has
?

Br

|Hessb|2 ≤ C r−2 ,

for all 0 < r < 15, but in [ChC1] the better estimate
?

Br

|Hessb|2 ≤ C r−2+α ,

is proved for some dimensionalα > 0. This estimate is enough to prove a local splitting theoremon Br . This

key L2 bound on the hessian is then, in those papers, integrated over all geodesic segments within theBr

ball, the resulting integral is integrated once more and used in combination with the first variation formula

and turned into estimates on distances.
5The scale invariant bound was used in [C3].
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On the other hand one can instead takes two balls far apart relative tor. In particular if one takes balls

Br(x) andBr(y) with sayd(x, y) ≥ δdp,q and tries to compare these, then the hessian being bounded ina way

that is better than scale invariant on eachr-ball is not enough. In particular it is not enough to iteratethe

local splitting theorem. Using this type of argument and theestimates of [ChC1] the version of Theorem 1.1

one would obtain is in fact that

dGH(Br(γ(s)), Br (γ(t))) ≤ C|t − s| r
α
2 ,

for some smallα > 0. For anyα < 2 this cannot be used to compare tangent cones.

We need therefore a sharper hessian bound that does not degenerate withr. The sharpest one could hope

for in this context is an actualL2 bound, namely
>

Br
|Hessb|2 ≤ C. Unfortunately a first difficulty is that

Example 4.2 tells us that such a bound can indeed fail under a lower Ricci curvature bound. What will turn

out to be true, and is in fact a sharp estimate in its precise form, is that this sort of bound holdsfor most

balls Br along the geodesic. More precisely,6 if σ is a minimizing geodesic betweenx andy, then we have

an estimate of the form
∫ (1−δ)dp,q

δdx,y

?
Br (σ(t))

|Hessb|2 ≤ C .

Actually, this estimate only holds for a different comparison function. In fact, instead of considering the har-

monic approximations ofd± we will consider parabolic approximations by flowingd± by the heat equation

some chosen amount of time7. For technical reasons this allows for certain pointwise estimates that may fail

for the harmonic approximation.

The improvement that allowed one to go from the scale invariant bound for the hessian ofb in [C3] to

a better than scale invariant bound in [ChC1], with a dimensional exponentα, came from bringing in the

Abresch-Gromoll inequality, [AbGl] and getting a better average gradient bound than that of [C3]. Recall

that the Abresch-Gromoll inequality is a bound for the excess of thin triangles. The Abresch-Gromoll

inequality was used in [ChC1] in combination with the Laplacian comparison theorem to get an improved

bound for the average of the difference between the norm of the gradient of the approximation to the distance

function and the norm of the gradient of distance function itself (which is of course 1). To prove our better

hessian bound we begin with a mean value inequality that willallow us to get better bound for the norm of

the gradient of the approximation. It will also give us a better excess bound. In the second subsection that

follows we apply this mean value inequality to get the desired hessian bound.

2.1 Mean value and integral excess inequalities

In this subsection we will record a direct consequence of themean value inequality for almost sub-solutions

of the heat equation on a Riemannian manifold (Mn, g) with a lower Ricci curvature bound Ric≥ −(n− 1).

As an application we get an integral inequality for the excess which is sharp. This excess bound, as well as

the mean value inequalities, is used in the next subsection when we prove the estimates for the hessian of

the approximations of distance functions and in Section 3. The next lemma will also be applied in the next

6Theorem 2.14 is actually a bit more general.
7The chosen time isr2 which is the scale invariant amount of time corresponding toballs of radiusr.
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subsection to get a good bound for the average of||∇h±t |2 − 1|, whereh±t are approximations to the distance

functions. This good bound is one of the keys to get the desired hessian bound.

We will below assumeM is complete, however, the estimates are purely local and this is not needed.

Lemma 2.1. If u : M × [0, r2] → R is a non-negative continuous function u(x, t) = ut(x) with compact

support for each fixed time,0 < r < R, and(∂t − ∆) u ≥ −c0 in the distribution sense, then
?

Br (x)
u0 ≤ c(n,R)

[

ur2(x) + c0 r2
]

. (33)

Remark2.1. The above more generally gives that
>

Br (x) u0 ≤ c(n,R)
[

infy∈Br (x)ur2(y) + c0 r2
]

, hence anL1-

Harnack inequality.

The proof relies on the following heat kernel estimate. The estimate is similar in nature to estimates

proved by Li-Yau in [LY], however the nature of the estimate,which is a little more general than those in

[LY], is such that we are required to use different techniques for the proof. Namely the existence of a good

cutoff functions as in [ChC1] are required.

Lemma 2.2. Let Ht(x, y) be the heat kernel with0 < r ≤ R and t≤ R2. Then we have

1. if y ∈ B10
√

t(x) then c−1(n,R)
Vol(B10

√
t(x)) ≤ Ht(x, y) ≤ c(n,R)

Vol(B10
√

t(x)) .

2.
∫

M\Br (x) Ht(x, y) dvg(y) ≤ c(n,R) r−2 t .

Proof. Let ψr be a cutoff function onB20r(x) as in [ChC1], henceψr (y) = 1 on B10r(x), ψr(y) = 0 outside

B20r(x) and we have the estimatesr |∇ψr |, r2 |∆ψr | ≤ c(n,R). Let

ψr
t (y) ≡

∫

Ht(y, z)ψ
r (z) ,

denote the solution to the heat equation, then we have that

|∆ψr
t |(y) =

∣

∣

∣

∣

∣

∫

∆yHt(y, z)ψ
r (z)

∣

∣

∣

∣

∣

(34)

=

∣

∣

∣

∣

∣

∫

∆zHt(y, z)ψ
r (z)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Ht(y, z)∆ψ
r (z)

∣

∣

∣

∣

∣

≤ cr−2 ,

where we can interchange the laplacians becauseψr has compact support. Thus we get that

|ψr
t (y) − ψr (y)| ≤

∫ t

0
|∆ψr

s|ds≤ c r−2t . (35)

In particular, if we then taketr = 1
2cr2 we get that|ψr

tr (x) − 1| ≤ 1
2, and hence we get the two equations:

1
2
≤

∫

Htr (x, z)ψ
r (z) ≤

∫

B20r (x)
Htr (x, z) , (36)

∫

B20r(x)
Htr (x, z) ≤

∫

Htr (x, z) ≤ 1 . (37)
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In particular we find that there must be at least one pointz ∈ B20r(x) such that 1
2Vol(B10

√
t(x)) ≤ Htr (x, z) ≤

2
Vol(B10

√
t(x)) . However, a straight forward application of the Li-Yau Harnack inequality, [LY], now proves the

first statement fort = r2 and anyy ∈ B10r(x).

To prove the second statement the setup is similar. In this case letφ(y) = 1 − ψr(y) whereψr is now a

cutoff function like above withψr (y) = 1 in Br/2(x) andψr (y) = 0 outsideBr(x). If we let φt denote the

solution of the heat equation then the same argument as abovegives that

φt(x) ≤ c(n,R) r−2t .

Finally this gives us that
∫

M\Br (x)
Ht(x, y) dvg(y) ≤

∫

Ht(x, y)φ(y)dvg(y) = φt(x) ≤ c r−2t , (38)

as claimed. �

Now we can finish Lemma 2.1

Proof of Lemma 2.1:Differentiating, using the heat equation, in particular, thatH is a fundamental solution,

and integrating by parts yields

d
ds

(∫

u(y, s) H(x, y, r2 − s) dy

)

=

∫

∂tu H −
∫

u∂tH (39)

=

∫

∂tu H −
∫

u∆H =
∫

H (∂t − ∆) u ≥ −c0

∫

H = −c0 .

Sinceu(x, r2) = lims→r2

∫

u(y, s) H(x, y, r2 − s) dy the claim follows by integration provided
∫

u(y, 0)H(x, y, r2) dy≥ c
?

Br (x)
u(y, 0)dy (40)

This however follows by Lemma 2.2 sinceu ≥ 0 and

inf
Br (x)

H(x, ·, r2) ≥
c

Vol(Br(x))
. (41)

�

Applying Lemma 2.1 to a function that is constant in time gives (cf. theorem 9.22 in [GiTr]):

Corollary 2.3. If u ∈ Cc(M) is a non-negative function with∆u ≤ c0 in the distributional sense, then for

each x∈ M and0 < r ≤ R ?
Br (x)

u ≤ c(n,R)
[

u(x) + c0 r2
]

. (42)

Remark2.2. The above more generally gives that
>

Br (x) u0 ≤ c(n,R)
[

infy∈Br (x)ur2(y) + c0 r2
]

, hence anL1-

Harnack inequality.

To use the above to prove the integral excess inequality we need good cutoff functions, which follows

from [ChC1] and an standard covering argument. For a closed subsetC ⊆ M and 0< r0 < r1 we define the

annulusAr0,r1(C) ≡ Tr1(C) \ Tr0(C), whereTr (C) is ther-tubular neighborhood ofC.
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Lemma 2.4. For every0 < r0 < 10r1 ≤ R, there exists a functionψ : Ar0,r1(C)→ R such that

1. ψ ≥ 0 with ψ(x) = 1 for x ∈ A3r0,r1/3(C) andψ(x) = 0 for x < A2r0,r1/2(C).

2. |∇ψ| ≤ c(n,R) r−1
0 and |∆ψ| ≤ c(n,R) r−2

0 in A2r0,3r0(C).

3. |∇ψ| ≤ c(n,R) r−1
1 and |∆ψ| ≤ c(n,R) r−2

1 in Ar1/3,r1/2(C).

Proof. Let {xi} ∈ A3r0,r1/3(C) be some maximal subset of points such thatBr i/16(xi) are disjoint, where

r i = d(xi ,C). By maximalityBr i/4(xi) coverA3r0,r1/3(C). Also if two balls atxi, x j overlap, then the ratio of

r i andr j is bounded by 4, hence the usual volume comparison argumentstell us that the collection{Br i/2(xi)}
overlap at mostc(n,R) times at any point.

It follows from theorem 6.33 of [ChC1] that we can construct non-negative functionsψi : M → R with

compact support and withψi = 1 onBr i/4(xi), ψi = 0 outsideBr i/2(xi) andr i |∇ψi |, r2
i |∆ψi | ≤ c(n,R).

Consider first the function

ψ̄(x) =
∑

ψi(x) .

We have thatψ̄(x) vanishes forx < A2r0,r1/2(C) and satisfies the sought after bounds as the supports of

eachψi intersect each point at mostc(n,R) times. Further, since{Br i/2(xi)} coverA3r0,r1/3(C) we have for

x ∈ A3r0,r1/3(C) that 1≤ ψ̄(x) ≤ c(n,R), and so if we letf : [0,∞)→ R be a fixed smooth function such that

f (s) = 0 for snear zero andf (s) = 1 for s≥ 1, thenψ(x) = f (ψ̄(x)) is our desired function. �

In the next section we will use Lemma 2.1 in combination with the following lemma:

Lemma 2.5. If h solve the heat equation,φ ≥ 0 has compact support and is time independent,|φ|, |∇φ|,
|∆φ| ≤ K1, and |∇h| ≤ K2 on {φ > 0}, then(∂t − ∆) [|∇h|2 φ2] ≤ c = c(n,K1,K2).

Proof. By the elementary inequality 2ab≤ a2
+ b2 and since|∇|∇h|2|2 ≤ 4 |Hessh|2 |∇h|2 we have

4φ |〈∇|∇h|2,∇φ〉| ≤ 2ǫ φ2 |∇|∇h|2|2 + 2
ǫ
|∇φ|2 ≤ 8ǫ φ2 |∇h|2 |Hessh|2 +

2
ǫ
|∇φ|2 . (43)

Chooseǫ > 0 so small so that 8K2
2 ǫ ≤ 2, then by the Botcher formula we have

∆ [|∇h|2 φ2] = φ2
∆|∇h|2 + 2〈∇|∇h|2,∇φ2〉 + |∇h|2∆φ2

≥ 2φ2 |Hessh|2 + 2φ2 〈∇∆h,∇h〉 − 2(n− 1)φ2 |∇h|2 + 4φ 〈∇|∇h|2,∇φ〉 + |∇h|2∆φ2 (44)

≥ 2φ2 〈∇∆h,∇h〉 − c .

Using that∆h = ∂th, so∂t|∇h|2 = 2〈∇∆h,∇h〉, and thatφ is independent of time gives the claim. �

We finish by stating and proving the integral inequality for the excess, which is one of the main results of

this Section. Recall that the excess ofp, q ∈ M is the function

ep,q(x) ≡ d(p, x) + d(x, q) − d(p, q) ≥ 0 . (45)

If γ(t) is a minimizing geodesic connectingp andq thene attains its minimum valuee|γ ≡ 0 onγ. If M

had uniform estimates on its curvature and injectivity radius, thene would be a smooth function near the
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interior of γ, and one would expect forx ∈ Br(γ(t)) the estimatee(x) ≤ Cr2. In the case of only a lower

Ricci curvature bound onM this is a lot to ask for, however an important estimate by Abresh and Gromoll

gives

e(x) ≤ Cr1+α(n) , (46)

whereα(n) is a small dimensional constant andx ∈ Br(γ(t)). The next Theorem is an improvement of

this statement, where we show that even if we can’t takeα ≡ 1, that in fact we can atmostpoints. More

precisely:

Theorem 2.6. Let p, q ∈ M with dp,q ≡ d(p, q) ≤ 1 and 0 < ǫ < 1. If x ∈ Aǫdp,q,2dp,q({p, q}) satisfies

e(x) ≤ r2 dp,q ≤ r̄2(n, ǫ) dp,q, then ?
Brdp,q(x)

e≤ c(n, ǫ) r2 dp,q .

Remark2.3. Let us observe that when combined with the estimate|∇e| ≤ 2 that we recover the original

Abresch-Gromoll estimate.

Proof. Let ψ be given by the previous lemma whereC ≡ {p, q}. Setē≡ ψeand note that

∆ē= ∆ψe+ 2〈∇ψ,∇e〉 + ψ∆e≤ c(n, ǫ)
dp,q

. (47)

This estimate depends one being appropriately small where∆ψ is large and vice versa. We can therefore

apply Corollary 2.3 to ¯e to get the result. �

2.2 Parabolic approximation

In this subsection we will show the desired hessian bound
∫ (1−δ)dp,q

δdx,y

>
Bǫ(σ(t)) |Hess|2 ≤ C for the parabolic

approximation to the distance function. However, before proving that we will need several lemmas.

Let ψ± : M → R be the cutoff functions given by Lemma 2.4 such that for some fixedδ > 0 we have

ψ− =















1 onAδ
4dp,q,8dp,q

(p)

0 on M \ A δ
16dp,q,16dp,q

(p)
, ψ+ =















1 onAδ
4dp,q,8dp,q

(q)

0 onM \ A δ
16dp,q,16dp,q

(q)
,

and letψ = ψ+ ψ−. Set

Mr,s ≡ Ardp,q,sdp,q(p) ∩ Ardp,q,sdp,q(q) , (48)

and leth±t andet be solutions to the heat equation (∂t − ∆) = 0 onM with h±0 = ψd±, e0 = ψe. In particular,

h±0 = d±, e0 = eon Mδ/4,8, and by uniquenesset = h−t − h+t .

We start with the following lemma:

Lemma 2.7. There exists c(n, δ) such that

∆h−t ,∆et ,−∆h+t ≤
c(n, δ)
dp,q

. (49)
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Proof. We prove it foret, the proof can be repeated verbatim for the others. Note firstthat

∆e0 = e∆ψ + 2〈∇ψ,∇e〉 + ψ∆e≤
c(n, δ)
dp,q

. (50)

This inequality holds distributionally, and becausee0 has compact support it holds distributionally on func-

tions which themselves may not have compact support. Now ifHt(x, y) = H(x, y, t) is the heat kernel, then

et(x) =
∫

Mδ/16,16
Ht(x, y)ψ(y) e(y) dvg(y). Thus we get

∆et(x) =
∫

Mδ/16,16

∆x Ht(x, y)ψ(y) e(y) dy =
∫

Mδ/16,16

∆y Ht(x, y)ψ(y) e(y) dy ≤
c(n, δ)
dp,q

. (51)

�

From this we get:

Lemma 2.8. There exists c(n, δ) such that for eachǫ ≤ ǭ(n, δ) and x∈ Mδ/2,4 the following holds for each

y ∈ B10dǫ (x), where dǫ = ǫ dp,q:

1. |ed2
ǫ
(y)| ≤ c

(

ǫ2dp,q + e(x)
)

.

2. |∇ed2
ǫ
|(y) ≤ c

(

ǫ +
ǫ−1e(x)

dp,q

)

.

3. | ddted2
ǫ
|(y), |∆ed2

ǫ
|(y) ≤ c

(

1
dp,q
+

ǫ−2e(x)
d2

p,q

)

.

4.
>

Bdǫ (y) |Hessed2
ǫ

|2 ≤ c
(

1
dp,q
+

ǫ−2e(x)
d2

p,q

)2
.

Remark2.4. In particular, if we have the pointwise estimatee(x) ≤ ǫ2dp,q, then onBǫdp,q(x) we have the

inequalities|ed2
ǫ
| ≤ cǫ2dp,q, |∇ed2

ǫ
| ≤ cǫ, and| ddted2

ǫ
|, |∆ed2

ǫ
|,
>

Bdǫ
|Hessed2

ǫ

|2 ≤ c
dp,q

.

Proof. It follows from the previous lemma that

∆et(x) ≤
c

dp,q
. (52)

By the definition of the heat equation this means that

et(x) = e0(x) +
∫ t

0
(∆es) ds≤ e(x) +

c
dp,q

t . (53)

Hence, for allt ∈ [d2
ǫ /4, 4d2

ǫ ] we get that

et(x) ≤ e(x) + cǫ2dp,q . (54)

In particular, we can apply the Li-Yau Harnack inequality, [LY], for t = d2
ǫ andy ∈ B10dǫ (x) = B10

√
t(x)

to get that there is a constantc(n, δ) such thated2
ǫ
(y) ≤ c

(

ǫ2dp,q + e(x)
)

, which proves the first statement.

To see the third statement observe first that the two claims itconsists of are equivalent sinceet satisfies

the heat equation. Using this the third statement follows from the Li-Yau gradient estimate combined with

the previous lemma and the first statement. The second statement follows from the first statement together

with the equivalence of the inequalities in the third statement, the previous lemma, and the Li-Yau gradient

estimate, [LY]. The final statement is proved using a Bochnerformula as in [ChC1] (see pages 217–218 and

228 there), [C1]–[C3], and also Theorem 2.14. �
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We can now begin to estimate the approximation functionsh± themselves:

Lemma 2.9. There exists c(n, δ) such that for everyǫ ≤ ǭ(n, δ) and x∈ Mδ/2,4 we have

|h±
d2
ǫ
− d± |(x) ≤ c

(

ǫ2 dp,q + e(x)
)

. (55)

Remark2.5. A first important difference between the parabolic approximationsh± and the harmonic ap-

proximations of [ChC1], [C3] is that the error term above is controlledpointwiseby e, as opposed to theL∞

norm ofeon Bǫdp,q(x).

Proof. As in the proof of the last lemma we see because

∆h− ≤
c

dp,q
, (56)

and

−
c

dp,q
≤ ∆h+ , (57)

that from Lemma 2.7 we immediately get for everyx ∈ Mδ/2,4 that

h−
d2
ǫ
(x) ≤ d−(x) + cǫ2 dp,q , (58)

and

d+(x) − cǫ2 dp,q ≤ h+
d2
ǫ
(x) . (59)

These are equivalent toh−
d2
ǫ

(x) − d−(x) ≤ cǫ2 dp,q and−(h+
d2
ǫ

(x) − d+(x)) ≤ cǫ2 dp,q. The reverse inequalities

follow from

h−
d2
ǫ
(x) − d−(x) = h+

d2
ǫ
(x) − d+(x) + ed2

ǫ
(x) − e(x) , (60)

since by the last lemma

|ed2
ǫ
| ≤ c

(

ǫ2 dp,q + e(x)
)

. (61)

�

An obvious, but important, corollary of the last lemma is that h±
d2
ǫ

andd± are automatically close atx

when the excesse(x) is small. More generally, we would like to prove smallness results alongǫ-geodesics.

Recall that anǫ-geodesic betweenp andq is simply a unit speed curveσ such that||σ| − d(p, q)| ≤ ǫ2dp,q.

The following obvious lemma tells us the basics of what we need to know aboutǫ-geodesics:

Lemma 2.10. The following statements hold:

1. Letσ be anǫ-geodesic connecting p and q and let z∈ σ, then e(z) ≤ ǫ2 dp,q.

2. Let x∈ M such that e(x) ≤ ǫ2 dp,q, then there exists anǫ-geodesicσ such that x∈ σ.
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We can now prove the promised corollary:

Corollary 2.11. There exists c(n, δ) so that for everyǫ-geodesicσ connecting p, q, and any x∈ σ ∩ Mδ/2,4

|h±
d2
ǫ
− d± | ≤ cǫ2 dp,q . (62)

This can equivalently be stated that for each t withδ
2dp,q < t < (1− δ

2) d(p, q) we have that

|h±
d2
ǫ
(σ(t)) − t| ≤ cǫ2dp,q . (63)

Proof. By Lemma 2.9, and becauseσ is unit speed, the statements hold for eachz with e(z) ≤ ǫ2dp,q and

z ∈ Mδ/2,4. However, by Lemma 2.10, the excess estimate does, in fact, hold for eachz∈ σ as claimed. �

The next lemma gives a sharp upper bound for the gradient ofh±:

Lemma 2.12. There exists c(n, δ) such that for all x∈ Mδ/2,4 andǫ ≤ ǭ(n, δ) we have that

|∇h±
d2
ǫ
| ≤ 1+ c d2

ǫ . (64)

Proof. Note first that

|∇h±0 | ≤ |∇ψ |d
±
+ ψ |∇d± | ≤ c(n) ,

|∇h±0 | = 1 on Mδ/4,8 , (65)

|∇h±0 | = 0 outsideMδ/16,16 .

By the Bochner formula we can choosec(n) so that

(∂t − ∆)[e−ct |∇h±t |2] ≤ 0 . (66)

Thus by the parabolic maximum principle and the Li-Yau, [LY], upper bound for the heat kernel for all

x ∈ Mδ/2,4 andt ≤ 4d2
ǫ

e−ct|∇h±t |2(x) ≤
∫

Mδ/16,16

Ht(x, y) |∇h±0 |
2(y) ≤

∫

Mδ/4,8

Ht(x, y) + c
∫

Mδ/16,16\Mδ/4,8

Ht(x, y) ≤ 1+ c t . (67)

This implies (64) as claimed. �

We will next combine the above with Corollary 2.11 and Lemma 2.1 to get:

Theorem 2.13.There exists a constant c(n, δ) such that for allǫ ≤ ǭ(n, δ) we have

1. If x ∈ Mδ,2 with e(x) ≤ ǫ2 dp,q, then
>

B10dǫ (x) ||∇h±
d2
ǫ

|2 − 1| ≤ cǫ.

2. If σ is anǫ-geodesic connecting p and q, then
> (1−δ)dp,q

δdp,q

>
B10dǫ (σ(s)) ||∇h±

d2
ǫ

|2 − 1| ≤ cǫ2.
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Proof. We will prove the claims forh−, the argument forh+ is the same with obvious changes. Set

wt = 1+ ct− |∇h−t |2 ,

wherec(n, δ) is chosen from the last lemma so thatwt ≥ 0 onMδ/2,4. It follows from Lemma 2.5 that

(∂t − ∆) [φ2 wt] ≥ −c , (68)

whereφ = φ+ φ− andφ± are given by Lemma 2.4 similarly toψ± exceptφ = 1 on Mδ,2 andφ = 0 outside

Mδ/2,4. By Lemma 2.1 for ally ∈ Mδ/2,4

?
B10
√

t(y)
wt ≤ c

(

inf
B10
√

t(y)
w2t + t

)

. (69)

Sett = d2
ǫ . To complete the proof we need to show there is a point inB10dǫ (y) wherew2t is small. To do this

letσ be anǫ-geodesic connectingp andq. In 1) assumeσ is the piecewise geodesic passing throughx as in

Lemma 2.10. To prove 1) note that by Corollary 2.11

|h−
2d2

ǫ
(x) − h−

2d2
ǫ
(σ(dp,x − 10dǫ )) − 10dǫ | ,

≤ |d−(x) − d−(σ(dp,x − 10dǫ )) − 10dǫ | + cǫ2 dp,q = cǫ2 dp,q . (70)

Combining this with the Cauchy-Schwarz inequality and the fundamental theorem of calculus gives

∫ dp,x

dp,x−10dǫ
w2d2

ǫ
=

∫ dp,x

dp,x−10dǫ

(

1+ c d2
ǫ − |∇h−

2d2
ǫ
|2
)

(σ(s))ds≤ 10dǫ + cd3
ǫ −

1
10dǫ













∫ dp,x

dp,x−10dǫ
∇σ̇ h−

2d2
ǫ
ds













2

= 10dǫ + cd3
ǫ −

1
10dǫ

(

h−
2d2

ǫ
(σ(dp,x)) − h−

2d2
ǫ

(σ(dp,x − 10dǫ ))
)2

(71)

≤ 10dǫ − 10dǫ + 2cǫ2 dp,q + c2ǫ4 d2
p,q = 2cǫ2 dp,q + c2ǫ4 d2

p,q .

In particular, there is some point ofσ(dp,x−10dǫ , dp,x) with w2d2
ǫ
≤ cǫ. From this the first statement follows.

The argument for 2) is similar. As before, by Corollary 2.11 for all swith δdp,q < s< (1− δ) dp,q

∣

∣

∣

∣

∣

(

h−
2d2

ǫ
(σ(s)) − h−

2d2
ǫ
(σ(δdp,q))

)

−
(

s− δdp,q

)

∣

∣

∣

∣

∣

≤ cǫ2 dp,q . (72)

Arguing as before we get that
∫ (1−δ)dp,q

δdp,q

w2d2
ǫ
(σ(s)) ds≤ cǫ2 dp,q , (73)

and
∫ (1−δ)dp,q

δdp,q

?
B10dǫ (σ(s))

||∇h−
d2
ǫ
|2 − 1| ≤

∫ (1−δ)dp,q

δdp,q

?
B10dǫ (σ(s))

wd2
ǫ
+ cǫ2dp,q (74)

≤ c
∫ (1−δ)dp,q

δdp,q

inf
B10dǫ (σ(s))

w2d2
ǫ
+ cǫ2dp,q ≤ c

∫ (1−δ)dp,q

δdp,q

wd2
ǫ
(σ(s)) + cǫ2dp,q ≤ cǫ2dp,q .

�
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We will next use the above estimates to prove the following main estimate, for convenience we repeat

a few previous estimates to have them collected under one theorem (given the estimates above the proof

follows very similar arguments in [C1]–[C3], [ChC1]):

Theorem 2.14.There exists a constant c(n, δ) such that for allǫ ≤ ǭ(n, δ), any x∈ M δ
2 ,4

with e(x) ≤ ǫ2 dp,q

and anyǫ-geodesicσ connecting p and q there exists r∈ [ 1
2 , 2] with

1. |h±
rd2
ǫ

− d±|(x) ≤ cǫ2 dp,q.

2.
>

Bdǫ (x) ||∇h±
rd2
ǫ

|2 − 1| ≤ cǫ.

3.
∫ (1−δ)dp,q

δdp,q

>
Bdǫ (x) ||∇h±

rd2
ǫ

|2 − 1| ≤ cǫ2.

4.
∫ (1−δ)dp,q

δdp,q

>
Bdǫ (σ(s)) |Hessh±

rd2
ǫ

|2 ≤ c
d2

p,q
.

Proof. 1) is Corollary 2.11 while 2), 3) are contained in Theorem 2.13. The proof of 4) uses the Bochner

formula as in [ChC1] (see also [C1]–[C3] for a very similar argument). To begin with for anyσ(s) it follows

from theorem 6.33 of [ChC1] that we can construct a cutoff function φ such thatφ(y) = 1 on Bdǫ (σ(s))

and vanishes outsideB3dǫ (σ(s)) while satisfying the estimatesdǫ |∇φ|, d2
ǫ |∆φ| ≤ c(n). Further leta(t) be a

smooth function in time with 0≤ a ≤ 1 anda(t) = 1 for t ∈ [ 1
2d2

ǫ , 2d2
ǫ ], vanishing fort < [ 1

4d2
ǫ , 4d2

ǫ ] and

satisfying|a′| ≤ 10d−2
ǫ . By the Bochner formula and since (∂t − ∆) h± = 0 we have

−
1
2

(∂t − ∆)
(

|∇h± |2 − 1
)

= −
1
2

(∂t − ∆) |∇h± |2 = |Hessh± |2 + Ric(∇h±,∇h±) . (75)

Multiplying by 2a(t)φ(y) and integrating we see that for eacht

2
∫

M
a(t)φ |Hessh±t |

2
=

∫

M
a(t)φ∆

(

|∇h±t |2 − 1
)

− 2
∫

M
a(t)φRic(∇h±t ,∇h±t ) −

∫

M
a(t)φ ∂t

(

|∇h±t |2 − 1
)

=

∫

M
a(t)

(

|∇h±t |2 − 1
)

∆φ − 2
∫

M
a(t)φRic(∇h±t ,∇h±t ) −

∫

M
a(t)φ ∂t

(

|∇h±t |2 − 1
)

. (76)

For the last equality we integrated by parts (in space). It follows that

2
∫

Bdǫ (σ(s))
a(t) |Hessh±t |

2 (77)

≤
c

d2
ǫ

∫

B3dǫ (σ(s))

∣

∣

∣|∇h±t |2 − 1
∣

∣

∣ + 2(n− 1)
∫

B3dǫ (σ(s))
|∇h±t |2 −

∫

B3dǫ (σ(s))
a(t)φ ∂t

(

|∇h±t |2 − 1
)

.

Integrating over time, integrating by parts (in time), and using the Bishop-Gromov volume comparison

theorem to bound the volume of the ballB3dǫ (σ(s)) by the volume of the concentric ballBdǫ (σ(s)) yields
∫ 2d2

ǫ

1
2d2

ǫ

(?
Bdǫ (σ(s))

|Hessh±t |
2
)

dt ≤ c d−2
ǫ

∫ 4d2
ǫ

1
4d2

ǫ

(?
B3dǫ (σ(s))

||∇h±t |2 − 1| + c d2
ǫ

)

dt . (78)

Now this inequality holds for eachs∈ [δdp,q, (1− δ)dp,q] and hence if we integrate over this interval we get

∫ 2d2
ǫ

1
2d2

ǫ













∫ (1−δ)dp,q

δdp,q

?
Bdǫ (σ(s))

|Hessh±t |
2













dt ≤ cd−2
ǫ

∫ 4d2
ǫ

1
4d2

ǫ













∫ (1−δ)dp,q

δdp,q

?
B3dǫ (σ(s))

||∇h±t |2 − 1| + cd2
ǫ













dt . (79)

Hence, for somer ∈ [ 1
2, 2] the claim holds fort = r d2

ǫ . �
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We conclude this section with some estimates, which will be useful in Section 3.

Lemma 2.15. Let x∈ Mδ,2 withσx a unit speed minimizing geodesic from p to x. Then for anyδ ≤ s< t ≤
dp,x the following estimates hold:

1.
∫ dp,x

δ
||∇h−

r2|2 − 1| ≤ c(n,δ)
dp,q

(e(x) + r2).

2.
∫ dp,x

δ
|〈∇h−

r2,∇d−〉 − 1| ≤ c(n,δ)
dp,q

(e(x) + r2).

3.
∫ t

s
|∇h−

r2 − ∇d− | ≤ c(n,δ)
√

t−s√
dp,q

(
√

e(x) + r).

Proof. 1) and 2) are contained in the proof of Theorem 2.13 above. For3) note that

|∇h− − ∇d− |2 = |∇h−|2 + 1− 2〈∇h−,∇d−〉 ≤ ||∇h− |2 − 1| + 2 |〈∇h−,∇d−〉 − 1| . (80)

Combining this with 1), 2), and the Cauchy-Schwarz inequality gives 3). �

3 Gromov–Hausdorff approximations

This section is dedicated to completing the proof of Theorem1.1. Throughout this section (Mn, g) satisfies

Ric ≥ −(n−1) andγ : [0, 1] → M is a unit speed minimizing geodesic withγ(0) = pandγ(1) = q. For points

γ(s), γ(t) ∈ γ([δ, 1− δ]), in order to prove Theorem 1.1 we will need to construct a Gromov-Hausdorff map

between the ballsBr(γ(s)) andBr(γ(t)). To construct this map we will flow by the gradient of the distance

function−∇dp. Of course, this gradient flow is not well defined at every point, and the distance function

is far from a smooth function, both of which cause certain technical difficulties. These difficulties will be

addressed in Section 3.2. Even if these basic difficulties were to be ignored, the most troublesome issue is

that if z ∈ Br(γ(t)) andγp,z is a minimizing geodesic connectingp andz, then there is no reason at allγp,z(u)

needs to remain nearγ(u) for u not neart. In this case the gradient flow map doesn’t even mapBr(γ(t)) near

Br(γ(s)), much less construct for us a Gromov-Hausdorff map. We will show in Section 3.3 that for a set of

large measure inBr(γ(t)) that the mentioned geodesicsγp,z in fact will remain nearγ. Finally in Section 3.4

we will finish the proof of Theorem 1.1.

Let us begin with a couple definitions that will be used throughout this section. First let

ψs : M → M , (81)

be the gradient flow defined by−∇dp. It is understood thatψs is a measurable map which is defined only on

a set of full measure. A main technical issue to be dealt with is knowing thatmostpoints nearγ remain near

γ under this flow. For this reason we are interested in the following sets:

Definition 3.1. For 0< s< t < 1 define the setAt
s(r) ≡ {z∈ Br(γ(t)) : ψu(z) ∈ B2r(γ(t − u)) ∀0 ≤ u ≤ s}.

SoAt
s(r) defines the set of points inBr(γ(t)) which remain a distance of 2r from γ through the gradient

flow, at least up until times. We will show the volume ofAt
s(r) is a Hölder function ofs.
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3.1 Hessian bound along a geodesic and consequences

In this short subsection we give anL2 bound for the hessian of the distance function to the end point p = γ(0)

of a minimizing geodesic segmentγ : [0, 1] → M. This L2 bound holds in a manifold with Ric≥ −(n− 1)

and it is a infinitesimal version of theL2 that we obtained in the previous section (it should be compared with

theorem 2 of [Ca] and, in particular, its proof, see, for instance, page 674 there). As a direct consequence

of this we get a bound for the distortion of distances along the geodesic that is the infinitesimal version of

the desired Hölder bound. The problem of course is that the bound is infinitesimal and sufficiently small

here may depend on the manifold and geodesic in question, which is not terribly useful. The estimates

of Theorem 2.14 may be viewed as a non-local version of this, and in a sense the entire purpose of these

estimates and the constructions of this section are about taking the following basic infinitesimal estimate and

making it less local in nature. Nonetheless, this estimate will be directly used in the proof of Proposition

3.6.

Lemma 3.2. Letγ : [0, 1] → M be a minimizing geodesic as above, p= γ(0) and q= γ(1), then
∫ 1−δ

δ

|Hessdp|2 ≤
c(n)
δ

. (82)

Proof. If dp(x) is the distance function top then onγ([δ, 1− δ]) we have the estimate

|∆dp| ≤
c(n)
δ

.

The upper bound is the usual comparison principle while the lower bound follows becausedp(x) + dq(x)

obtains a smooth minimum onγ, hence

∆dp ≥ −∆dq ≥ −
c(n)
δ

onγ([δ, 1− δ]) as claimed. Thus we can integrate the equation

d
dt
∆dp(γ(t)) + |Hessdp |

2(γ(t)) ≤ n− 1

to get the claim. �

Integrating this lemma and using the Cauchy-Schwarz inequality gives:

Corollary 3.3. If J is a Jacobi field onγ which vanishes at p and s, t ∈ [δ, 1− δ], then

1−
c(n)
√
δ

√
t − s≤

|J|(t)
|J|(s)

≤ 1+
c(n)
√
δ

√
t − s. (83)

Proof. Since d
dt |J|

2
= Hessdp(J, J) we get from the lemma that

∣

∣

∣

∣

∣

d
dt

log |J|2
∣

∣

∣

∣

∣

≤ |Hessdp| , (84)

which implies that

∣

∣

∣

∣

∣

∣

log
|J|2(t)

|J|2(s)

∣

∣

∣

∣

∣

∣

≤
∫ t

s
|Hessdp| ≤

√
t − s

√

∫ 1−δ

δ

|Hessdp|2 ≤
c(n)
√
δ

√
t − s. (85)

From this the claim easily follows. �
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3.2 The gradient flow

This subsection is dedicated to addressing the issue that weare flowing by the gradient flow of a function

which is not smooth. We begin with the next lemma, which in essence tells us that we do not need good

estimates ondp in order to take its gradient flow. Instead, we only need to know that there exists nearby

functions for which we have the required estimates. A related estimate was shown in [ChC2], though there

is the important but subtle difference that here we are controlling the gradient flow map, while in [ChC2] the

map in question was a projection map. The reasoning behind this difference is that we will need to compare

balls over large distances, and a projection map will break down over such distances while the gradient flow

will not.

Lemma 3.4. Letσ1, σ2 be two unit speed geodesics in M and let h: M → R be a smooth function. Then

the following estimate holds:
∣

∣

∣

∣

∣

d
dt

d(σ1(t), σ2(t))
∣

∣

∣

∣

∣

≤ |∇h− σ′1|(σ1(t)) + |∇h− σ′2|(σ2(t)) + inf
∫

γσ1(t),σ2(t)

|Hessh| (86)

whereinf is taken with respect to all minimizing geodesics connecting σ1(t) to σ2(t), and the derivative is

meant in the sense of forward difference quotients at non-differentiable points.

Proof. First note that without loss we can assume we are estimating at t = 0, and by an approximation

argument we can assume that for everys in a small neighborhood of 0 that the geodesic fromσ1(s) to

σ2(s) is unique. We call these geodesicsτs and letls ≡ d(σ1(s), σ2(s)) be their lengths. Now we have the

following computation:

∫ t

0

∫ ls

0
ls Hessh(τ̇s, τ̇s)(τs(v))dvds=

∫ t

0
ls (〈∇h, τ̇s〉(τs(ls)) − 〈∇h, τ̇s〉(τs(0)))

=

∫ t

0
ls

(

〈σ′2, τ̇s〉(τs(ls)) − 〈σ′1, τ̇s〉(τs(0))
)

(87)

+

∫ t

0
ls

(

〈∇h− σ′1, τ̇s〉(τs(ls)) − 〈∇h− σ′2, τ̇s〉(τs(0))
)

=
1
2

(

l2t − l20
)

+

∫ t

0
ls

(

〈∇h− σ′1, τ̇s〉(τs(ls)) − 〈∇h− σ′2, τ̇s〉(τs(0))
)

.

Rearranging terms and dividing byt gives

1
2t

[

d2(σ1(t), σ2(t)) − d2(σ1(0), σ2(0))
]

≤
1
t

∫ t

0
ls |∇h− σ′1| +

1
t

∫ t

0
ls |∇h− σ′2| (88)

+
1
t

∫ t

0

∫ ls

0
ls |Hessh|(τs(v)) dv ds.

Letting t tend to zero and dividing byd(σ1(0), σ2(0)) gives the result. �

The next result is the primary use of the scaled segment inequality of [ChC1] (see theorem 2.11 there).

This Lemma will be combined with the estimates of Theorem 2.14 in order to see that Lemma 3.4 can be

applied to control the gradient flow map.
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Lemma 3.5. Let t ∈ (δ, 1− δ), 0 ≤ s≤ t − δ and let cts : Br(γ(t)) × Br(γ(t)) be the characteristic function of

the setAt
s(r) ×At

s(r). Then we have the following:

?
Br (γ(t))×Br (γ(t))

ct
s(x, y)













∫

γψs(x),ψs(y)

|Hessh|












≤ C(n, δ) r

(

Vol(Br(γ(t − s)))
Vol(Br(γ(t)))

)2?
B5r (γ(t−s))

|Hessh|. (89)

Proof. We begin with the computation
?

Br(γ(t))×Br (γ(t))
ct

s(x, y)













∫

γψs(x),ψs(y)

|Hessh|












=

?
At

s(r)×At
s(r)

∫

γψs(x),ψs(y)

|Hessh| (90)

≤ C(n, δ)
?
ψs(At

s(r))×ψs(At
s(r))

∫

γx,y

|Hessh| ,

where the last inequality follows from the volume comparison under the gradient flow. Sinceψs(At
s(r)) ⊆

B2r(γ(t − s)) by definition we may apply the scaled segment inequality toget
∫

ψs(At
s(r))×ψs(At

s(r))

∫

γx,y

|Hessh| ≤ C(n) r Vol(ψs(A
t
s(r)))

∫

B5r (γ(t−s))
|Hessh|

≤ C(n) r Vol(B5r(γ(t − s)))
∫

B5r (γ(t−s))
|Hessh| (91)

≤ C(n) r Vol(Br(γ(t − s)))2
?

B5r (γ(t−s))
|Hessh| ,

where the last inequalities follow from volume monotonicity. Finally, by dividing out by Vol(Br(γ(t)))2 and

using volume comparison one more time we have our result. �

3.3 Volume comparison

We are now in a position to tackle the technical heart of the construction. The goal of this Section is to

prove the following Proposition, which gives at least some base control over the drifting of points under the

gradient flow. In particular, the next Proposition tells us that formostpointsz ∈ Br(γ(t)) that the minimizing

geodesicγp,z remains nearγ for a definite amount of time.

Proposition 3.6. There exists r0(n, δ) andǫ(n, δ) such that ifδ < t′ < t < 1− δ with |t − t′| ≤ ǫ then∀r ≤ r0

we have

1
2
≤

Vol(At
t′ (r))

Vol(Br(γ(t)))
≤ 2 . (92)

We will need an improvement on this in the proof of Theorem 2.14, namely that this volume ratio is

behaving in a Hölder fashion, but this alone has at least oneuseful consequence we will quickly discuss.

Notice that

Vol(Br(γ(t − t′))) ≥ C(n)Vol(ψt−t′ (A
t
t′ (r))) ≥ C(n)Vol(Br(γ(t))) ,

and that by applying Proposition 3.6 to the geodesic ¯γ(t) ≡ γ(dp,q − t) we obtain the reverse inequality

Vol(Br(γ(t))) ≥ C(n)Vol(Br(γ(t − t′))) ,

for |t − t′| ≤ ǫ(n, δ). Iterating this immediately gives us:
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Corollary 3.7. There exists r0(n, δ) and C(n, δ) such that for all s, t ∈ (δ, 1− δ) and for any r≤ r0 we have

that

C−1 ≤ Vol(Br(γ(s)))
Vol(Br(γ(t)))

≤ C . (93)

This gives the interesting result that two points in the interior of a limit geodesic are absolutely continuous

with respect to the renormalized limit measure relative to one another. There is, in fact, a stronger version

of this we will get to shortly. First we finish the proposition.

Proof of Proposition 3.6.Let us fixt ∈ (δ, 1− δ) and define

St ≡ {s∈ (δ, 1− δ) :
1
2
<

Vol(Br(γ(s)))
Vol(Br(γ(t)))

< 2∀r ≤ r0} , (94)

wherer0 ≤ ǭ(n, δ), where ¯ǫ(n, δ) is from Theorem 2.14. We will first claim that there is anǫ(n, δ) such that

[t − ǫ, t + ǫ] ⊆ St, which notice is a strictly weaker claim than that of the proposition.

Notice first that sinceM is a smooth manifold that for allr sufficiently small (depending onM) that

Vol(Br(γ(s)))
wnrn

is uniformly close to one for everys. In particular, it is easy to see thatSt is an open set. We will findǫ(n, δ)

such that [t − ǫ, t + ǫ] ∩ St is closed, and then the claim will follow.

To do this we begin by finding the relevant estimates, these will make heavy use of Theorem 2.14 and

Lemma 2.15. So letǫ > 0 not yet be specified andt′ ∈ S̄t ∩ [t − ǫ, t + ǫ], with either |t′ − t| = ǫ or with t′

being the closest point of̄St \ St to t, whereS̄t is the closure ofSt. Note thatt′ , t by openness. We of

course wish to showt′ ≡ t − ǫ for ǫ effectively chosen. We can assume without loss of generality that t′ < t

and get that

1
2
≤

Vol(Br(γ(s)))
Vol(Br(γ(t)))

≤ 2∀s ∈ [t′, t] and∀r ≤ r0 . (95)

Now recall the excess functionep,q(x) ≡ d(p, x) + d(x, q) − d(p, q) and let

I r
s ≡
?

Br (γ(t))×Br (γ(t))

∫ s

0
ct

u(x, y)













∫

γψu(x),ψu(y)

|Hesshr2
|












du dvg(x) dvg(y) , (96)

wherehr2 is the parabolic approximation function from Subsection 2.2 andct
u is the characteristic function

At
u(r) ×At

u(r). Let us define

Tr
η ≡











x ∈ Br(γ(t)) : ep,q(x) ≤ η−1r2 and
?
{x}×Br (γ(t))

∫ t−t′

0
ct

s(x, y)













∫

γψs(x),ψs(y)

|Hesshr2
|












≤ η−1I r
t−t′











, (97)

and withx ∈ Tr
η let us define

Tr
η(x) ≡











y ∈ Br(γ(t)) :
∫ t−t′

0
ct

s(x, y)













∫

γψs(x),ψs(y)

|Hesshr2
|












ds≤ η−2I r
t−t′











. (98)
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For the proof of the claim we will end up pickingη some fixed small constant, though because we will

need it later we will be very explicitly about the dependenceof ǫ on the choice ofη. Note from the integral

excess inequality Theorem 2.6 that

Vol(Tr
η)

Vol(Br(γ(t)))
≥ 1−C(n, δ)η , (99)

and hence

Vol(Tr
η(x))

Vol(Br(γ(t)))
≥ 1−C(n, δ)η ∀x ∈ Tr

η . (100)

Note also from Lemma 3.5, Theorem 2.14 and (95) that

I r
t−t′ =

∫ t−t′

0

?
Br (γ(t))×Br (γ(t))

ct
u(x, y)













∫

γψu(x),ψu(y)

|Hesshr2
|












≤ C(n, δ) r
∫ t−t′

0

(

Vol(Br(γ(t − u)))
Vol(Br(γ(t)))

)2?
B5r (γ(t−s))

|Hesshr2
|

≤ C(n, δ) r
∫ t−t′

0

?
B5r (γ(t−s))

|Hesshr2
|

≤ C(n, δ)r
√

t − t′
(∫ 1−δ

δ

?
B5r (γ(s))

|Hesshr2
|2
)1/2

≤ C(n, δ)
√

t − t′ r . (101)

It follows from Lemma 2.15 that ifx ∈ Tr
η andy ∈ Tr

η(x), then for unit speed minimal geodesicsσx from p

to x andτs from ψs(x) to ψs(y) we have
∫ t

t′
|∇hr2 − ∇dp| ≤ η−1/2 C(n, δ)

√
t − t′ r , (102)

and
∫ t

t′

∫

τs

ct
s(x, y) |Hesshr2

| ≤ η−2 C(n, δ)
√

t − t′ r . (103)

Now let us give an imprecise outline of how the proof of the claim will proceed. We wish to estimate

the volume of the set of pointsz ∈ Br(γ(t)) for which γp,z(u) remains nearγ(u) for all t′ ≤ u ≤ t. Volume

monotonicity tells us that if this set is large, relative to Vol(Br(γ(t))), then the volume ofBr(γ(t′)) is bounded

below by the volume ofBr(γ(t)). The argument will be symmetric int andt′, and thus we will be able esti-

mate the pointsz ∈ Br(γ(t′)) for which the geodesicsγq,z remain nearγ, and hence also bound Vol(Br(γ(t))

from below by Vol(Br(γ(t′))).

To simplify matters for our outline, let us assume briefly that γ(t) ∈ Tr
η. Then for anyx ∈ Tr

η(γ(t)) ∩ Tr
η

we may use (102) and (103), along with Lemma 3.4, so that we will be able to conclude that

d(γp,x(t
′), γ(t′)) < Cη−2

√
t − t′r ≤ Cη−2√ǫr .

In particular, the minimizing geodesics betweenφt−u(x) = γp,x(u) andγ(u) cannot grow in length too quickly,

and by fixingη > 0 andǫ(n, δ) > 0 correspondingly small we have the desired conclusion of the last

paragraph.
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The primary issue with this outline is that there is no reasonwe can assumeγ(t) ∈ Tr
η. Instead, we will

connect the pointsx ∈ Tr
η to γ(t) by a piecewise geodesic whose length is not much larger thanr. The

vertices of this piecewise geodesic will be denoted by{xi}, with x0 = x, and will satisfy

xi+1 ∈ Tr i
η (xi) ∩ Tr i+1

η . (104)

It will turn out that this is enough to show that the piecewisegeodesics with vertices defined by{ψt−u(xi)}
will also have length roughly equal tor, which in particular shows the desired conclusion thatψu−t = γp,x(u)

does not stray too far fromγ(u). Now let us proceed to make this all rigorous.

Let 0< µ(n, δ, η) < 1
10 be chosen momentarily withr i ≡ µir. Let

x ≡ x0 ∈ Tr
η (105)

be arbitrary and let us definexi inductively in two steps as follows. First, givenxi ∈ Tr i
η let

xi+1 ∈ Tr i
η (xi) ∩ Tr i+1

η . (106)

Note that by a simple volume comparison argument using (99) that if we chooseµ ≡ µ(n, δ)η
1
n , with µ(n, δ)

sufficiently small, then for allη ≤ η0(n, δ) sufficiently small the setsTr i+1
η andTr i

η (xi) will have nonempty

intersection by their almost maximal volume properties, and hence such axi+1 will always exist. Now we

wish to end this induction after a finite number of steps with aspecially chosen lastxI . The claim is that for

all I large enough it automatically holds that we can pick the vertex xI with the property that

d(ψs(xI ), γ(t − s)) ≤ (1+
µ

10
)r I , (107)

for all s ≤ ǫ(n, δ, η). We should note thatapriori we make and need no claims about effective control over

how largeI has to be chosen, only that there exists such anI . To see that such anI exists is where the Jacobi

estimate of Lemma 3.3 come in. So let us define

Hr ≡ {y ∈ Br(γ(t)) : d(ψs(y), γ(t − s)) ≤ (1+ 2C(n, δ)
√

s) r ∀s≤ t − δ} , (108)

whereC(n, δ) in the definition is chosen to be twice the constant from Lemma 3.3. Becauseψs is a smooth

map in a neighborhood ofγ([δ, 1− δ]), and because Jacobi fields satisfy the estimates of Lemma 3.3, we see

that

lim
r→0

Vol(Hr )
Vol(Br(γ(t)))

= 1 . (109)

In particular, there existsǫ(n, δ, η) ≡ ǫ(n, δ)η 1
2n such that forI sufficiently large we may pick

xI ∈ Tr I−1
η (xI−1) ∩ Hr ,

and hence

d(ψs(xI ), γ(t − s)) ≤ (1+
µ

10
)r I ,

for all s ≤ ǫ(n, δ, η) as claimed. Note that althoughI depends on the manifold and geodesic in question the

constantǫ(n, δ, η) does not.
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Now letσ(s) be the piecewise geodesic with vertices{ψs(xi)}I0, and letσi(s) be the segments connecting

ψs(xi) to ψs(xi+1). Assumei is such that

ψs(xi+1) ∈ B(1+µ)r i+1(γ(t − s)) , (110)

for all s≤ t − t′ and let

si ≡ min{t − t′, sup{u : ψs(xi) ∈ B(1+µ)r i (γ(t − s))∀s≤ u}} . (111)

So si is the maximums, up to t − t′, such thatψs(xi) remains inB(1+µ)r i (γ(t − s)). Now for any suchi as

in our assumption and alls ≤ si we have that the characteristic functioncs
t (xi , xi+1) is identically one, and

hence by Lemma 3.4 and equations (102),(103) we have that

||σi(si)| − |σi(0)|| ≤ C(n, δ) η−2
√

t − t′ r i ≤
µ

10
r i , (112)

where the last inequality holds so long as|t − t′| ≤ ǫ(n, δ, η) ≡ ǫ(n, δ)η4+ 1
2n are chosen sufficiently small. In

particular, we see that

|σi(si)| < (1+
1
2
µ)r i ,

and hence

ψsi (xi) ∈ B(1+µ)r i (γ(t − si)) ,

and thus we have thatsi ≡ t − t′. Therefore, we have shown that for alli such that

ψs(xi+1) ∈ B(1+µ)r i+1(γ(t − s))∀s≤ t − t′ ,

we have that

ψs(xi) ∈ B(1+µ)r i (γ(t − s))∀s≤ t − t′ .

In particular, since this holds fori = I − 1 it holds for alli and hence we have that for allη ≤ η0(n, δ) there

existsµ(n, δ, η) = µ(n, δ)η
1
n andǫ(n, δ, η) = ǫ(n, δ)η4+ 1

2n such that ifx ∈ Tr
η thenψs(x) ∈ B(1+µ)r(γ(t − s)) for

all s≤ t − t′. This, in particular, implies that

Tr
η ⊆ A

s
t ∀s≤ t − t′ . (113)

We are nearly done with the claim. To finish it note that this implies that

Vol(Br(γ(t − t′)))
Vol(Br(γ(t)))

≥
1

(1+C(n)µ)n

Vol(B(1+µ)r(γ(t − t′)))

Vol(Br(γ(t)))
≥

1
(1+C(n)µ)n

Vol(ψt′ (Tr
η))

Vol(Br(γ(t)))

≥
1

(1+C(n)µ)n(1+C(n)ǫ)n

Vol(Tr
η)

Vol(Br(γ(t)))
≥

1−Cη
(1+C(n)µ)n(1+C(n)ǫ)n . (114)

Hence, forη(n, δ) sufficiently small we have that

Vol(Br(γ(t − t′)))
Vol(Br(γ(t)))

>
1
2
.

To see the reverse inequality we argue in a verbatim manner with respect to the gradient flow by the function

−∇dq, which shows thatt′ ∈ St and hencet′ = t − ǫ(n, δ)η4+ 1
2n , which proves the claim. The proof of the

proposition follows immediately because witht′ = t − ǫ we see thatTr
η ⊆ As

t ∀s≤ ǫ. �
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3.4 Proof of Theorem 1.1

We can now finish the proof of Theorem 1.1:

Proof of Theorem 1.1.Let us begin by summing up some of the technical constructions obtained in the proof

of Proposition 3.6. It was shown that for everyη ≤ η0(n, δ) andr ≤ r0(n, δ) that there existsµ ≡ µ(n, δ) and

ǫ ≡ ǫ(n, δ) such that ifx ∈ Tr
η andy ∈ Tr

η ∩ Tr
η(x) then the following hold

ψs(x) ∈ B
(1+µη

1
n )r

(γ(t − s)) ∀s≤ ǫη21+2n
n (115)

|d(ψs(x), ψs(y)) − d(x, y)| ≤ µη
1
n r ∀s≤ ǫη21+2n

n , (116)

with the additional property that

Vol(Tr
η)

Vol(Br(γ(t)))
,

Vol(Tr
η(x))

Vol(Br(γ(t)))
≥ 1−C(n, δ) η . (117)

Given this we see thatTr
η is anC(n, δ)η

1
n dense subset. Further fors≤ ǫη21+2n

n we see that

Vol(Br(γ(t − s))) ≥ (1−C(n, δ)η)Vol(B
(1+µη

1
n )r

(γ(t − s))) ≥ (1−C(n, δ)η)Vol(ψs(T
η
r )) (118)

≥ (1−C(n, δ)η)(1−C(n, δ)η4n+2)Vol(Tη
r ) ≥ (1−Cη)Vol(Br(γ(t))) ,

while we can get the opposite inequality by considering the flow by−∇dq and hence we get fors≤ ǫη21+2n
n

1−Cη ≤ Vol(Br(γ(t)))
Vol(Br(γ(t − s)))

≤ 1+C η . (119)

It follows from the above that
Vol(ψs(Tr

η))

Vol(B
(1+µη

1
n )r

(γ(t − s)))
≥ 1−Cη

and in particular thatψs(Tr
η) is C(n, δ)η

1
n dense inBr(γ(t − s)). Given all this now letx, y ∈ Tr

η be arbitrary

points. The volume constraints onTr
η, Tr

η(x) andTr
η(y) guarantee that there exists a point

z ∈ Tr
η ∩ Tr

η(x) ∩ Tr
η(y) ∩ B

C(n,δ)η
1
n
(x) .

It then follows from equation (115) that fors≤ ǫη21+2n
n we have

|d(ψs(x), ψs(y)) − d(x, y)| ≤ |d(ψs(z), ψs(y)) − d(z, y)| + |d(ψs(x), ψs(y)) − d(ψs(z), ψs(y))| + |d(x, y) − d(x, z)|

≤ |d(ψs(z), ψs(y)) − d(z, y)| + |d(ψs(x), ψs(z))| + |d(x, z)| ≤ Cη
1
n . (120)

Rearranging and lettingη = ǫ−ns
n

2(1+2n) we see thatdGH(Br(γ(t)), Br(γ(t − s))) ≤ C(n, δ) s
1

2(1+2n) , as claimed.

�

We quickly note the following corollary of equation (119):

Corollary 3.8. We have for s, t ∈ [δ, 1− δ] and all r ≤ r0(n, δ) that
∣

∣

∣

∣

∣

Vol(Br(γ(t)))
Vol(Br(γ(t − s)))

− 1
∣

∣

∣

∣

∣

≤ C(n, δ) |t − s|
n

2(1+2n) . (121)
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4 Examples

In this section we construct new examples of limits of Riemannian manifolds (Mn
i , gi , pi) → (X, dX, p) that

satisfy Rici ≥ 0 and a non-collapsing assumption Vol(B1(pi)) ≥ v > 0. These examples are specifically

meant to show the sharpness of the theorems of this paper and will illustrate what can happen along the

interior of a minimizing geodesic in a limit space, in fact a limit minimizing geodesic. Specifically Example

4.1 will exhibit a limit spaceX with a limit minimizing geodesicγ such that tangent cones from the same

sequence of rescalings alongγ are not constant. Example 4.2 will push this example furtherto show that

for eachδ > 0 there is a limit space such that the rate of change of these tangent cones is notC1/2+δ. The

constructions are based on multiply warped products and smoothing.

For Alexandrov spaces tangent cones are unique and Petrunin, [Pn], proved a conjecture of Yu. Burago

asserting that tangent cones at any two points in the interior of a geodesic are isometric. It is far too optimistic

to think that such a result should hold for limit spaces with only lower Ricci bounds. For instance, take a

limit spaceY × R where the tangent cone atp ∈ Y is nonunique. As in [ChC2] one can even assume that

this is a non-collapsed limit space. If we consider the geodesic γ ≡ {p} × R, then clearly the tangent cones

at each point along the geodesic are not isometric. However,what does hold is that tangent cones coming

from the same sequence of rescalings are all unique (in fact we even have that for allr > 0 and anys < t

that Br(γ(s)) andBr(γ(t)) are isometric). One might conjecture that analogous to the Alexandrov case that

tangent cones from the same sequence of rescalings are always unique, however Example 4.1 of this section

shows that this is not the case. Example 4.1 is a non-collapsed limit spaceX with a minimizing geodesic

γ ⊆ X such that at each point ofγ the tangent cone is unique, but for anys , t we have that the tangent

cones atγ(s) andγ(t) are not isometric. In particular, tangent cones from the same sequence of rescalings

alongγ are not isometric, and any form of Burago’s conjecture for limits with only lower Ricci bounds must

fail.

Theorem 1.3 gives us that tangent cones along the interior ofa geodesic of a limit space change at most

at aCα(n) Hölder rate, and in fact an analysis of the proof shows thatmostpoints change at aC
1
2 Hölder

rate. We would now like to see that these estimates are sharp.In particular, letX be a limit space and

γ : [a, b] → X a unit speed limit minimizing geodesic withr i → 0 some fixed sequence such that the

respective rescalings (X, r−1
i dX) at eachγ(t) converge to a limit tangent cone. This gives us a well defined

mapγ : [a, b] → M, whereM is the collection of compact metric spaces, by assigning to eachγ(s) the

closed unit ballB̄1(γ(s)) in the tangent cone atγ(s). Theorem 1.3 implies that whenM is equipped with the

Gromov-Hausdorff metric that this is aCα(n) Hölder continuous map, and that for sets of large measure in

each tangent cone there are in factC
1
2 Hölder maps. For eachδ > 0 we construct in Example 4.2 a non-

collapsed limit spaceXδ with a limit minimizing geodesicγ ⊆ Xδ so that this induced map is notC1/2+δ.

Thus we will see that Theorem 1.3 is sharp.

Topologically our examples of limit spaces are of the form ofC(S(M)), that is the cone over the suspen-

sion of a smooth compact manifoldM. Generally speaking this will give rise to two singular rays, the cone

rays through the suspension points ofS(M). It is on these geodesic rays where we will construct limitswith

bad geodesic behavior.
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4.1 Example - non-constant tangent cones

The purpose of this section is to construct a limit spaceX with a limit minimizing geodesicγ such that

tangent cones coming from the same sequence of rescalings alongγ are not constant. We begin by letting

M = S3 be the three sphere,g0 the round metric of constant curvature 1 andV1,V2,V3 a right invariant

orthonormal basis. For any numbers{m1,m2,m3} ∈ R we can consider the right invariant metricgS
3

on S3

defined by〈V j ,Vk〉g = e2mjδ jk. If mj(r, s) are smooth forr ∈ (0,∞) and s ∈ (0, π), then we can define a

metric onC(S(S3)) by

g ≡ dr2
+ a(r)2

(

ds2
+ b(s)2gS

3
(r, s)

)

, (122)

wherea(r) andb(s) are any smooth positive warping factors which will be chosen later. We will require two

constraints on the functionsmj(r). First we require that
∑

mj(r, s) = const, (123)

be independent ofr and s. This has the effect of fixing the volume element for each of the right invariant

metrics onS3. We also require that

〈g′, ġ〉 = 4
∑

m′j(r, s) ṁj(r, s) = 0 . (124)

This turns out to be a cross term in the Ricci curvature onC(S(S3)), which we want to vanish to show

positivity. Given these two conditions we have the following computation:

Lemma 4.1. Let (C(S(S3)), g) be a metric as above, then at any smooth point of C(S(S3)) we have the

following:

1. Ricrr = −4a′′
a −

∑

(m′k)
2.

2. Ricss= −3b··

b −
∑

(ṁk)2
+ a2

[

−a′′

a − 3
(

a′

a

)2
]

.

3. Ricj j = RicS
3

j j + e2mj

[

b2
(

−b··
b − 2

(

ḃ
b

)2
− 3ḃ

bṁj −m··j

)

+ a2b2
(

−a′′
a − 3

(

a′
a

)2
− 4a′

a m′j −m′′j

)]

.

4. Ricrs = Ricr j = Rics j = Ricjk = 0.

Here RicS
3

is the Ricci curvature on the three sphere with the induced right invariant metric gS
3
(r, s).

Now to make appropriate choices of the functionsa(r), b(s) we consider the following:

a(r) =







































a0r for r ≤ t0/2

a0r
(

1− a1
log(− log(r0r))

)

on r ∈ [t0, 1]

a0r/2 for r ≥ 2

|a′| ≤ 2a0, a′′ < 0 onr ∈ [t0/2, 2]

, (125)

b(s) =



























sin(s) on s < [t0/4, π − t0/4]

sin(s)
(

1− b1
log(− log(s0 sin(s)))

)

+ b0 on s ∈ [t0/2, π − t0/2]

|ḃ| ≤ 2, b·· ≤ −b/2 ons ∈ [t0/4, π − t0/4]

, (126)
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wherea0 < 1 and 0< a1, b1, r0, s0, t0 are appropriately small constants that will be fixed andb0 = o(t0) is

chosen below. To see the existence of such functions let us briefly considerb(s), the construction is similar

for a(r). In this case if we letb0 ≡ sin(t0
3 )

(

b1

log(− log(s0 sin(
t0
3 )))

)

, then we can define

b̄(s) ≡ min{sin(s), sin(s)

(

1− b1

log(− log(s0 sin(s)))

)

+ b0} .

We see that̄b satisfies all the requirements ofb away from t0
3 and it satisfies the requirements globally in

a distributional sense. Hence, we can smoothenb̄ near t0
3 to construct the desired functionb. From these

functions we have the following:

Lemma 4.2. There exist constants0 < a0, a1, b1, r0, s0,m0, and0 < a2, b2 such that for all t0 sufficiently

small if the mj(r, s) additionally satisfy

1. RicS
3
(r, s) ≥ 1.

2. mj ≤ −m0.

3. |m′j | ≤
a2( 1

r )
log(− log r0r)(− log r0r) , |m

′′
j | ≤ a2r−2

4. |ṁj | ≤
b2( coss

sins )
log(− log(s0 sins))(− log(s0 sins)) , |m

··
j | ≤ b2 sin−2 s.

5. m′j ≡ 0 for r < [t0, 1] andṁj ,m′j ≡ 0 for s < [t0, π − t0].

Then the induced metric space
(

C(S(S3)), dr2
+ a(r)2(ds2

+ b(s)2gS3(r, s))
)

has nonnegative Ricci curvature

at each smooth point. Further, for s< [t0, π− t0] it is isometric to dr2 + a2(r)(S(S3, ge)), where a is concave

and S(S3, ge) represents the suspension over a small ellipse.

Remark4.1. The key use of the above is that the conditions onm′j andṁj are nonintegrable. This is crucial,

in particular, for smoothing out possible limit spaces to actual smooth manifolds. Becausea(r) is concave

we can modify the metricdr2
+ a2(r)(S(S3, ge)) into a smooth metric near the singular lines.

Proof. We first observe the following computations for allb1, s0, r0, t0 sufficiently small:

a′′(r)
a(r)

≤














− a1
r2 log(− log(ror))2(− log(r0r)) on r ∈ [t0, 1]

0 onr < [t0, 1]
, (127)

b··(s)
b(s)

≤



























−1 on s< [t0/4, π − t0/4]

−1
2 −

(

coss
sins

)2 b1
log(− log(s0 sins))2(− log(s0 sins)) on s∈ [t0/2, π − t0/2]

−1
2 on s∈ [t0/4, π − t0/4]

. (128)

The positivity of Ricrr and Ricss is thus easy to check from Lemma 4.1, the equations above and the

conditions onmj with a2 andb2 sufficiently small relative toa1 andb1, respectively. To check positivity of

the Ricj j term note the inequalities|a2m′′j | ≤ a2 and|b2m··j | ≤ b2 as well as|a′| ≤ 2a0 and|b·| ≤ 2. Combining

these with the first condition gives positivity for the Riccicurvature in theS3 directions. �
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As an immediate consequence of the above we want to constructa non-collapsed limit space (X, d) with

a minimizing geodesic whose tangent cones coming from the same sequence of rescalings are not constant.

We pick our metric functions by the formula

mj(r, s) ≡ ψt0(s)mj(r) − m̄j ,

whereψt0(s) is a cutoff function which is 1 in [t02 , π −
t0
2 ] with support in [t0, π − t0], mj(r) are smooth

functions ofr with support in [12, 1] and them̄j ’s are constants. Now recall the conditions
∑

mj(r, s) = const,
∑

m′j(r, s)ṁj(r, s) = 0 , (129)

must be satisfied in order to apply Lemma 4.1. The first condition is equivalent to
∑

mj(r) = 0 , (130)

for eachr and the second is equivalent to
∑

m2
j (r) ≡ const, (131)

being independent ofr. Hence, we apriori have that themj(r)’s may take values in a circle of possible values.

Now a quick computation tells us that|m′j(r, s)| ≤
∑

|m′j(r)| and |ṁj(r, s)| ≤ c|ψ̇|. Let mj(r) be fixed and

non-constant with support in [1
2 , 1] and letm̄j ≡ 2m0 fixed with m0 sufficiently large as in Lemma 4.2 2),

andmj(r) satisfying the estimates of Lemma 4.2 3). We can thus picka(r) andb(s) as in Lemma 4.2 such

that for all t0 sufficiently small there is a cutoff functionψt0(s) so that the conditions of Lemma 4.2 are

satisfied for the definedmj(r, s) ≡ ψt0(s)mj(r) − 2m0. Note that the existence of such aψt0 follows because

the condition on|ṁj | is nonintegrable. Thus for eacht0 > 0 sufficiently small we have a metric space

(C(S(S3)), dr2
+ at0(r)

2(ds2
+ b2

t0(s) gS
3
(r, s))) ,

which has nonnegative Ricci curvature at each smooth point.Note thatat0(r) andbt0(s) here actually depend

on t0, though only in a small neighborhood of the singular rays andin the termb0, which decays faster

than linearly int0. Near the singular rays the metric space has a standard structure from Lemma 4.2 and

becausea(r) is concave the metric can be smoothed out to even have positive sectional curvature near the

singular ray. In particular, we get a smooth Riemannian manifold with nonnegative Ricci curvature which

is homeomorphic toR5.

For eachi sufficiently large taket0 ≤ i−1 to produce a smooth space (R5, gi) which is isometric to

(C(S(S3)), dr2
+ ai(r)2(ds2

+ b2
i (s) gS

3
(r))) outside increasingly small neighborhoods of the singular rays,

whereg(r) is the family of metrics onS3 defined by the metric functionsmj(r, s) ≡ mj(r) − 2m0 andt0 ≡ 0.

That is,g(r) represents the induced metric onS3 whenψ(s) ≡ 1 is taken to be identically one andt0 is taken

to be zero in equations (125) and (126) . Asi → ∞ and hencet0→ 0 we get that

(R5, gi)
GH→ (C(S(S3)), dr2

+ a(r)2(ds2
+ b2(s) gS

3
(r))) .

If γ(r) is thus one of the singular rays inC(S(S3)), then for eachr we see that the tangent cone of the limiting

metric space atγ(r) is

(R ×C(S3), dt2 + ds2
+ s2 g(r)) .

In particular, we see that tangent cones from the same sequence of rescalings are changing along the

geodesic, as claimed.
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4.2 Example - Ḧolder 1
2 is sharp

The purpose of the next example is to refine the previous construction so that the metricsgS
3
(r, s) are

sufficiently irregular as to show that the Hölder continuity of Theorem 1.3 is sharp. In fact, for eachδ > 0 we

will construct a limit space such that along the interior of aminimizing geodesic there are tangent cones from

the same sequence of rescalings which change at aC
1
2 Hölder rate, but not at aC

1
2+δ Hölder rate. Another

consequence of this example is that the hessian estimates from Theorem 2.14 are sharp. More precisely the

estimate
∫

γ

>
Bǫ(γ(r)) |Hessh|2 ≤ C from Theorem 2.14 cannot be replaced with

>
Bǫ(γ(r)) |Hessh|2 ≤ C for each

point γ(r).

In the example we are interested only in the rate of change of the tangent cones along the interior of a

limit geodesic. Hence, we will only worry about constructing g(r) in a neighborhood ofr = 1. The rest

of the space is much better behaved and it is not difficult to see how to smoothen out the construction on

the rest of the space as in the previous example by cutting up the a(r) function. Now as in the previous

subsection the example will be homeomorphic toC(S(S3)) equipped with a metric of the form

g ≡ dr2
+ a(r)2

(

ds2
+ b(s)2gS

3
(r, s)

)

,

wheregS
3
(r, s) is a smooth two parameter family of metrics onS3 all defined by the relations〈V j ,Vk〉g =

e2mjδ jk for a fixed right invariant basis{V j} which is orthonormal with respect to the standard metric. The

metric functionsmj(r, s) are again assumed to satisfy the conditions that
∑

mj(r, s) = const,
∑

m′j(r, s)ṁj(r, s) = 0 , (132)

so that Lemma 4.1 still holds. As in the last example we define the functionb(s) by equation (126), however

we will define the functiona(r) by a(r) ≡ 2− |r − 1|1+δ, at least in the neighborhood [1− δ, 1+ δ]. Note that

the simple estimates

a < 2,
|a′|
a
≤ |r − 1|δ, a′′

a
< − δ

|r − 1|1−δ
(133)

hold in r ∈ (1 − δ, 1) ∪ (1, 1 + δ) for all small δ > 0. Now a(r) is not a smooth function, which initially

prohibits us from using it in the warped product construction, but the following observations take care of

that. We see that the estimate fora′
a holds on all (1− δ, 1+ δ) becausea is C1, and the estimate ona

′′

a holds

distributionally on all of (1− δ, 1 + δ). Hence, we can smoothena(r) slightly to smooth functions which

satisfy estimates (133) to as close of a degree as we like. Using these functions in place ofa(r) in the below

construction we can limit these smoothings and simply assume a(r) = 2− |r − 1|1+δ. Now by using Lemma

4.1 we have the following version of Lemma 4.2:

Lemma 4.3. There exist constants0 < b1, s0,m0 and0 < a2(δ), b2(δ) such that for all t0 andδ sufficiently

small if the mj(r, s) additionally satisfy

1. mj ≤ −m0.

2. |m′j | ≤ a2|r − 1|− 1−δ
2 , |m′′j | ≤ a2 sin−2 s.

3. |ṁj | ≤
b2( coss

sins )
log(− log(s0 sins))(− log(s0 sins)) , |m

··
j | ≤ b2 sin−2 s.
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4. ṁj ,m′j ≡ 0 for s< [t0, π − t0].

Then the induced metric space(C(S(S3)), dr2
+a(r)2

(

ds2
+ b(s)2gS3(r, s)

)

) has nonnegative Ricci curvature

at each smooth point with r∈ [1−δ, 1+δ]. Further for s< [t0, π− t0] it is isometric to dr2+a2(r)(S(S3, ge)),

where a is concave and S(S3, ge) represents the suspension over a small ellipse.

Remark4.2. It is important in condition 2) that the bound onm′′ be in terms ofs since thea′′ term is

not positive enough to control a|r − 1|−2 term, which is unlike the previous example and causes some

complications in the construction. Again we have that becausea(r) is concave we can modify the metric

dr2
+ a2(r)(S(S3, ge)) into a smooth metric near the singular lines.

Proof. The proof is much the same as the computations for Lemma 4.2, we point out the main observations

required in the computation. Note that using Lemma 4.1 we seethat the requirement onm′j is precisely what

is needed to guarentee that Ricrr is positive. We also see by using equation (133) that

−a′′

a
− 3

(

a′

a

)2

− 4|a
′

a
||m′j | > 0 , (134)

for δ small, so that Ricss is positive and most of the terms in Ricj j are controlled. The remaining obstacle is

them′′j term from Lemma 4.1, and this is precisely controlled by the assumption|m′′j | ≤ a2 sin−2 s. Hence

the Ricci curvature is positive. �

To define the metric functionsmj(r, s) let us begin by fixingmj(r) : [1 − δ, 1+ δ] → R3 such that
∑

j

mj(r) = 0 ,
∑

j

m2
j (r) = c , (135)

for some fixed constantc and such that the mapmj(r) is C
1+δ
2 Hölder with

|m′j(r)| ≤ a2|r − 1|−
1−δ

2 ,

as in Lemma 4.3. The construction of the example will be slightly more complicated than Example 4.1.

There we used one cutoff function in the definition of the metric functionsmj(r, s), and its primary purpose

was to make the metric one that we could be sure could be smoothed off. However because|m′′j (r)| ≈ |r−1|− 3
2

there is no hope to force positivity of the Ricci tensor if we continued in the manner of the last example.

To this end we define for eachi ∈ N the functionmi j (r) : [1 − δ : 1 + δ] → R3, which is a smooth

approximation ofmj(r). We can easily construct such smoothings so thatmi j (r) = mj(r) outside smaller and

smaller neighborhoods ofr = 1 with
∑

j mi j (r) = 0,
∑

j m2
i j (r) = c and such that|m′j(r)| ≤ a2|r − 1|− 1−δ

2 with

|m′′i j (r)| ≤ a2i2. With that in place letti → 0 be a decreasing sequence of positive numbers such that for each

i we can define the cutoff functions

ψi(s) ≡














1 for s∈ [(3ti + ti+1)/4, (ti−1 + 3ti )/4]ti
0 for s< [(ti + ti+1)/2, (ti−1 + ti)/2]

,

and with the properties that

|ψ̇i | ≤
b2

(

coss
sins

)

log(− log(s0 sins))(− log(s0 sins))
, (136)
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and

|ψ··i | ≤ b2 sin−2 s, (137)

as in Lemma 4.3. Note that such a condition is possible because the right hand sides of each inequality are

nonintegrable, though this forces the ratiosti+1
ti

to be tending to zero. Now let us consider the following

metric functions:

mN j(r, s) ≡
N

∑

i=1

ψi(s)mi j (r) − m̄, (138)

wherem̄ is a constant. Note that themN j do satisfy the requirements of a metric function and that by

construction we have forc sufficiently small and ¯m sufficiently large that the conditions of Lemma 4.3 are

satisfied for eachN. Hence for eachN we now have a metric space (C(S(S3)), gN) which has positive Ricci

curvature at each smooth point and can be smoothed near the singular lines to obtain a sequence of smooth

manifolds (R5
N, g̃N) with the property that

(R5, g̃N)→ (C(S(S3)), g∞) .

If γ(r) is a singular ray in this limit space, then at the pointγ(r) if the sequenceti → 0, then the resulting

tangent cone is isometric to

(R ×C(S3), dt2 + ds2
+ s2g(r))) .

Hereg(r) is the metric onS3 induced by the metric functionsmj(r). Hence in a neighborhood ofr = 1 we

have the metric cones are changing at aC
1+δ
2 Hölder rate and not at aC

1
2+δ rate. This constructs the desired

limit space.

A Extending geodesics

This section is dedicated to proving a technical lemma. Recall that on a smooth Riemannian manifold

(M, g, p) that a.e. pair of points (x, y) ∈ M × M lie in the interior of a minimizing geodesic. We wish to

show that on a Ricci limit spaceM∞ that similarlyν × ν a.e. pair (x, y) ∈ M∞ lie in the interior of a limit

minimizing geodesicγ. We will in fact prove a more effective version of this. This result can be thought

of as a higher degree of freedom analogue that the cut locus set Clx of a point x ∈ M∞ has zero measure,

a result proven in [H]. The key point for both results is to identify this critical point set in terms of excess

functions, which are themselves much easier to estimate andcontrol than geodesics when passing to limits.

We begin with a few definitions. Recall forx, y ∈ M∞ we define the excess function

ex,y(z) ≡ d(x, z) + d(z, y) − d(x, y) . (139)

Thus the excess is how much the triangle inequality fails being an equality. Note thatex,y(z) = 0 iff z lies

on the interior of a minimizing geodesic connectingx andy. Similarly, for (x, y) ∈ M∞ × M∞ we define the

following diagonal excess function by

e(z,w)(x, y) ≡ 1
√

2
dM∞ (x, y) + dM×M((x, y), (z,w)) − 1

√
2

dM∞ (z,w) . (140)
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Note that 1√
2
dM∞ (x, y) is the distance of the point (x, y) from the diagonalM∞ ⊆ M∞ × M∞, and hence the

reference to this as a diagonal excess function. We similarly have thate(z,w)(x, y) = 0 iff ( x, y) lies on the

interior of a minimizing geodesic from (z,w) to the diagonalM∞. We define the following cutlocus and

effective cutlocus sets:

Cl(M∞) ≡ {(x, y) ∈ M∞ × M∞ : e(z,w)(x, y) > 0∀ (z,w) , (x, y)}. (141)

Cl(M∞, r) ≡ {(x, y) ∈ M∞ × M∞ : e(z,w)(x, y) > 0∀ (z,w) < BM×M√
2r

(x, y)}. (142)

Cl(M∞, r, ǫ) ≡ {(x, y) ∈ M∞ × M∞ : e(z,w)(x, y) ≥ ǫ2 ∀ (z,w) < BM×M√
2r

(x, y)} . (143)

We see that a point (x, y) is not in the set Cl(M∞) iff there is a point (z,w) and a minimizing geodesic from

D to (z,w) which contains (x, y) as an interior point. We will see from the below lemma that this implies

that there is a geodesic inM∞ which contains both the pointsx andy as interior points. On the other hand

(x, y) is not in Cl(M∞, r) iff there is a geodesic inM∞ containingx andy such that these points are at least

distancer from the boundary of the geodesic, a point which also followsfrom the below lemma. Finally,

the point (x, y) is not in Cl(M∞, r, ǫ) iff there is anǫ-geodesic with likewise properties. We will see by the

end of this section that geodesic can be replaced by limit geodesic for each of these statements. Important

for us is that the sets Cl(M∞, r, ǫ) are compact.

Lemma A.1. Let (x, y) ∈ M∞×M∞ and(z, z) be a point of the diagonal closest to(x, y). Then if(γ1(t), γ2(t))

is a minimizing geodesic in M∞ × M∞ connecting(x, y) to (z, z) then the join curveγ ≡ γ1 ∪ γ2 in M∞ is a

minimizing geodesic connecting x to y. Further we have that zis the midpoint of this geodesic.

Proof. Assume this is not the case, then there is a curveσ : [0, x, y] → M∞ connectingx andy satisfying

|σ| < |γ|. Then if we consider the curve (σ(t), σ(x, y− t)) : [0, 1
2 x, y] → M∞ × M∞ then this curve connects

(x, y) to the diagonal and has length strictly less than that of (γ1, γ2), which is a contradiction.

To see thatz is the midpoint we can just check the possibilities. So let (x, y) ∈ M∞ × M∞ and let

γ : [0, x, y] → M∞ be any minimizing geodesic betweenx andy with z ∈ γ such that the point (z, z) is

a point on the diagonal closest to (x, y). Hence for somes ∈ [0, 1] we have thatz = γ(sx, y). Since a

minimizing geodesic inM∞ × M∞ projects to minimizing geodesics in each factor we must havethat the

minimizing geodesic from (x, y) to (z, z) is of the form (γ(st), γ(x, y − t(1 − s))). Hence if we compute the

length as a function ofs we getl(s)2
= (s2

+ (1 − s)2)x, y2. It is easy to check this is minimized only for

s= 1
2. �

Now we begin with the following estimate, which should be seen as a generalization of certain estimates

on exponential maps obtained in [ChC2]. We begin by proving the estimate on smooth manifolds (Mn, g, p)

with Ric ≥ −(n − 1), we will then subsequently see that the estimates hold on limit spaces. In the below

lemma we are using for a subsetS ⊆ M the partial annulus

Aδ,δ−1(S) ≡ {(x, y) ∈ M × M : pD(x, y) ∈ S, δ ≤ 1
√

2
d(x, y) ≤ δ−1} ,

wherepD is the projection map to the diagonal and we are identifyingS with its image in the diagonal.
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Lemma A.2. For each0 < δ < 1, R> 0 and anyǫ ≥ 0 there exists C(n, δ,R) such that for any S∈ M with

S ⊆ BR(p) we have that Vol(Cl(M, r, ǫ) ∩ Aδ,δ−1(S)) ≤ C r Vol(B1(p)).

Proof. First it is enough to prove the claim for Cl(M, r) since the constant involved is independent ofǫ. Note

again that the distance function onM × M to the diagonal can be writtendD(x, y) = 1√
2
d(x, y). In particular

the laplacian of this distance function onM × M satisfies

∆dD(x, y) ≤ n− 1
dD(x, y)

.

Let us define the tube

Ts(S) ≡ {(x, y) ∈ M × M : pD(x, y) ∈ S, dD(x, y) ≤ s} ,

and note then thatAs0,s1(S) = Ts1 \ Ts0. The estimate on the laplacian ofdD then tells us that at any smooth

point of ∂Ts(S) that the mean curvature is uniformly bounded from above in terms ofs. To finish the proof

we simply observe, as is in the case for the standard cut locusof a point, that the effective cutlocus Cl(M, r)

intersects each minimal geodesic leaving the diagonalD on a set of measure at mostr. Thus ifχCl(M,r) is the

characteristic function of Cl(M, r) we have by a coarea formula and the mean curvature estimate that

Vol(Cl(M, r) ∩ Aδ,δ−1(S)) =
∫ δ−1

δ

(∫

∂Ts(S)
χCl(M,r)

)

ds (144)

≤ c(n, δ) r Vol(∂Tδ(S)) ≤ C(n, δ) r Vol(B1(S))

≤ C(n, δ,R)rVol(B1(p)),

as claimed. �

Now let us point out the following two stability properties of Cl(M, r, ǫ). To begin with if

(Mi , gi , pi)→ (M∞, d∞, p∞) , (145)

then we can define

Cl(Mi , r, ǫ)
GH→ Cl∞(r, ǫ) . (146)

Note first that for eachη > 0 that we have

Cl(M∞, r − η, ǫ + η) ⊆ Cl∞(r, ǫ) ⊆ Cl(M∞, r, ǫ) , (147)

this follows from the stability of the excess function underGromov-Hausdorff limits. We secondly have that

Bη(Cl(M, r, ǫ)) ⊆ Cl(M, r + η, ǫ) ,

for eachη > 0. Thus by using these observations and a covering argument we may limit in precisely the

manner of [H] to obtain the corresponding result in the limitspace:
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Proposition A.3. For each0 < δ < 1, R> 0 and anyǫ > 0 there exists C(n, δ,R) such that for any S∈ M∞
with S ⊆ BR(p∞) we have that

ν(Cl(M∞, r, ǫ) ∩ Aδ,δ−1(S)) ≤ C r . (148)

Now if (x, y) ∈ Cl∞(r, ǫ) then there exists alimit minimizing geodesicγ with x andy as interior points

which are at least a distancer from the boundary ofγ. Thus as a consequence of the results of this section

and the previous stability properties of Cl(M∞, r, ǫ) we can letǫ → 0 to have the following.

Corollary A.4. The following statements hold for each S⊆ M∞, 0 < δ < 1, R> 0 and r > 0:

1. If (x, y) ∈ Cl(M∞, r) then there exists a limit minimizing geodesicγ with x and y as interior points

which are at least a distance r from the boundary ofγ.

2. If S ⊆ BR(p∞) thenν(Cl(M∞, r) ∩ Aδ,δ−1(S)) ≤ C(n, δ,R) r

3. ν × ν a.e. pair of points(x, y) lie in the interior of some limit minimizing geodesic.

B Reifenberg property for collapsed limits

For non-collapsed limits a key regularity of a neighborhoodof the regular set come from a Reifenberg type

property, see appendix 1 of [ChC2]. This property roughly say that on all scales the space is Gromov-

Hausdorff close to Euclidean space. It is shown in [ChC2] that this implies that a neighborhood of the

regular set for non-collapsed limits is aCα manifold.

In the general, not necessary non-collapsed case, we have the following (uniform) Reifenberg property

for geodesics contained in the regular set:

Theorem B.1. Suppose thatγ : [0, ℓ] → M∞ is a limit geodesic whose interior consists of k-regular points.

Givenǫ > 0, andℓ > s2 > s1 > 0, there exists r0 > 0 such that for all r0 > r > 0 and all s2 ≥ s≥ s1

dGH(Br(γ(s)), BRk

r (0)) < ǫ r . (149)

Proof. By compactness of the closed interval [s1, s2], the theorem would follow if we knew that for each

s∈ [s1, s2], there exists aδ = δ(s) > 0 and ar0 = r0(s) > 0 such that for allt ∈ (s−δ, s+δ) and allr0 > r > 0

dGH(Br(γ(t)), BRk

r (0)) < ǫ r . (150)

However, this follow easily using thatγ(s) is ak-regular point combined with Theorem 1.1. �

In the non-collapsed case when combined with the volume convergence theorem of [C3] (cf. also theorem

5.9 of [ChC2] and section 3 of [ChC3]) it follows that ifγ is as in Theorem B.1, then an entire neighborhood

of γ|[s1, s2] consists of almost regular points. Or, to be precise, an entire neighborhood consists of (ǫ, k)-

regular points in the sense of definition 0.6 of [ChC2]).

A key difference between the collapsed and non-collapsed case is the following:
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• By [C3] (see also [C1], [C2]), then in the non-collapsed casecloseness in the Gromov-Hausdorff

sense ton-dimensional Euclidean space is equivalent to that the volume is almost maximal. By the

Bishop-Gromov volume comparison theorem once the volume isalmost maximal on one scale, then

it is also almost maximal on all smaller scales and hence by [C3] also Gromov-Hausdorff close to

n-dimensional Euclidean space on all smaller scales. This property in the non-collapsed case is where

the Reifenberg property naturally occur; see appendix 1 in [ChC2].

• Even though there is no such monotonicity in the collapsed case, then a key point in the collapsed

case is that the Hölder continuity of tangent cones can at some level replace this monotonicity as is

illustrated in Theorem B.1.

Theorem B.1 generalizes immediately to the situation wherethe tangent cones are unique and constant

along the interior of a geodesic segment, as it played no rolein the proof of this theorem that each point on

the geodesic wask-regular. The only thing that mattered was that the tangent cone is unique at each interior

point and independent of the particular point. Thus we have the following:

Theorem B.2. Suppose thatγ : [0, ℓ] → M∞ is a limit geodesic and that at each interior point the tangent

cone is unique and equal to a fixed pointed metric space(Y, 0) (0 is the ‘cone’ tip). Givenǫ > 0, and

ℓ > s2 > s1 > 0, there exists r0 > 0 such that for all r0 > r > 0 and all s2 ≥ s≥ s1

dGH(Br(γ(s)), BY
r (0)) < ǫ r . (151)

Note that for ak-regular pointy there is no specific requirement on the rate of convergence asr i → 0

of the family of rescaled spaces (M∞, y, r−1
i d∞) to the tangent coneRk. Equivalently, prior to rescaling, the

convergence toRk takes place at the rateo(r). Forα > 0 a pointy is called (k, α) -regular8, if on sufficiently

small ballsBr(y) the convergence toRk takes place at the rate 0(r1+α). The set of (k, α)-regular points is

denotedRk,α. In section 3 of [ChC4] it was shown thatν(Rk \ Rk,α) = 0 for someα(n) > 0 and thatRk,α is

a countable union of sets, each of which is bi-Lipschitz to a subset ofRk. Finally, in section 4 of [ChC4]

it was shown for limit spaces that on the setRk,α any of the renormalized limit measures and the Hausdorff

measure are mutually absolutely continuous. It follows that the collection of all renormalized limit measures

determines a unique measure class.
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