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Abstract

Consider a limit spaceMy, 9, Po) Y (Y, dy, p), where theM have a lower Ricci curvature bound
and are volume noncollapsed. The tangent conésaifa pointp € Y are known to be metric cones
C(X), however they need not be unique. K_B,tp C MgHn be the closed subset of compact metric spaces
X which arise as cross sections for the tangents con¥sabp. In this paper we study the properties of
ﬁyp. In particular, we give necessary and sufficient conditimnsan open smooth famil@ = (X, gs)
of closed manifolds to satisf@ = ﬁY,p for somelimit Y and pointp € Y as above, wher€ is the
closure ofQ in the set of metric spaces equipped with the Gromov-Hadistigology. We use this
characterization to construct examples which exhibit amdntally new behaviors. The first application
is to construct limit space«((, dy, p) with n > 3 such that ap there exists forevery&@ k< n-2a
tangent cone ap of the formRX x C(X" 1), whereX" -1 is a smooth manifold not isometric to the
standard sphere. In particular, this is the first examplewkhows that a stratification of a limit space
Y based on the Euclidean behavior of tangent cones is nothp@ssi even well defined. It is also the
first example of a three dimensional limit space with nonugitangent cones. The second application
is to construct a limit spaceY?, dy, p), such that ap the tangent cones are not only not unique, but
not homeomorphic. Specifically, some tangent cones are bimmghic to cones ovelEPzﬂﬁz while
others are homeomorphic to cones o%ér

1 Introduction

arXiv:1108.3244v3 [math.DG] 6 Jan 2012

In this paper we are interested in pointed Gromov-Hausdionfts (M,, 9., Pa) by (Y, dy, p) such that the
M, ’'s aren-dimensional and satisfy the lower Ricci bound

Ric(M,) > —(n - 1)g, 1)
and the noncollapsing assumption

Vol(B1(p,)) = v> 0. 2
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For any such limitY, by Gromov’s compactness theorem [GLR, G], any sequenee O contains a
subsequence; such that Y, rj‘ldy, p) e (Yp, d, p), whereYp is a length space. Any such limt, is said
to be a tangent cone &f at p. By the noncollapsing assumptidd (2) it follows from [CACIGZhCZ?] that
any tangent cone must be a metric cofje= C(Xp) over a compact metric spac, with diamX, < n
and Hausdorff dimension equal to- 1@ However, by[[ChCR] tangent cones¥fat p need not be unique;
cf. [P2]. More precisely, it may happen that there is a défférsequence; — 0 such that, Fj‘ldy, p) et
(C(Xp), d, p) converges to a tangent coG€X,) whereX, andX, are notisometric. We are therefore justified
in defining forp € Y the familyﬁy,p = {Xs} of metric spaces such th@(Xs) arises as a tangent coneYoat
p. _

It is known that the familyQy, € MgH, viewed as a subset of the space of all compact metric spaces
endowed with the Gromov-Hausdorff topology, is compact jpaith connected. It follows from [ChC2] that
the volume Vol(), or more precisely then(- 1)-dimensional Hausdorff measure, is independent of thescr
sectionXs € ﬁy,p and is bounded from above by that of the round unit spherenoésionn — 1. That is,

Vol(Xs) = V < Vol(S™1(1)). (3)

Further, ifXs € ﬁy,p is a smooth cross section, e.g. a smooth closed manifold dbeause Ri€{(Xs)) > 0
we have that

Ric(Xs) > n—2. (4)

In fact, it is fairly clear that[(#) holds in the more generahse of[[LV], [S] even for singulaKs. To fully
understand the familﬁy,p we introduce one more concept, that of Ricci closability.

Definition 1.1. Let (M™1, g) be a smooth closed Riemannian manifold. We say khag Ricci closable if
for everye > 0, there exists a smooth (open) pointed Riemannian mar(if¢ich., g.) such that:

1. Ric(N¢) > 0.
2. The annulug\; .(0e) S N is isometric toA1 .(C(M, (1 - €)Q)).

Remark1.1 Note that if the stronger condition that there existswith Ric(N) > 0 and A1 (Q) =
A1.(C(M, g)) holds, then 4, g) is certainly Ricci closable. Ricci closability acts as anfioof geomet-
ric trivial cobordism condition.

Now we ask the question:

What subset€) € Mgy can arise as_zy,p for some limit space coming from a sequendd, —» Y
which satisfies condition§l(1) ard (2)?

We have written down some basic necessary conditior@yg and our main theorem is that these condi-
tions are sufficent as well.

lwithout the noncollapsing assumption tangent cones needenmetric cones by [ChC2] and need not even be polar spaces
by [M4].



Theorem 1.1. LetQ be an open connected manifold, our parameter spacel(K&t:, gs)lsca € MgH, With

n > 3, be a smooth family of closed manifolds such thht (3) &hd ¢#) &nd such that for some sve have
that X, is Ricci closable. Then there exists a sequence of completéoius (M}, d., Pa) s (Y, dy, p)

which satisfy[{IL) and{2) for whichXs} = Qvp, where{Xs} is the closure of the sdis} in the Gromov-
Hausdorff topology.

Remarkl.2 In fact, in the construction we will build thil, to satisfy RicM,) > 0. Note here tha®, as a
parameter space, is a smooth manifold which we are viewilgiag embeddef C Mgy inside the space
of metric spaces.

In the applications we will be interested not so much in theatim cone<C(Xs) which arise as tangent
cones ap € Y, but in the cone€(X) whereX lies in the boundary of the closubee {Xs} \ {Xs}. There are
two primary examples we will be interested in constructingptigh Theorerh I11. First, we will construct
an example of a limit space,(dy, p) such that ap € Y tangent cones are highly nonunique, and in fact, for
every 0< k < n— 2 we can find a tangent cone that splits off preciselyR4riactor. Note this is in distinct
contrast to théR" case, where if one tangent cone at a poiftfisthen so are all the other tangent cones at
that point, se€ [lﬂ] Note that if a tangent cone splits off &f* factor, then by [ChC?2] it is actually R"
factor, so that the nonunique splitting BF factors for every < k < n— 2 is the most degenerate behavior

one can get at a single point. More precisely we have theviialig:

Theorem 1.2. For every n> 3, there exists a limit spacgM), 9., P.) e (Y, dy, p) where each I satisfy
(@) and [2), and such that for eadh< k < n - 2, there exists a tangent cone at p which is isometric to
RX x C(X), where X is a smooth closed manifold not isometric to thedstahsphere.

This example has the, potentially unfortunate, consequtrat a topological stratification of a limit space
Y in the context of lower Ricci curvature can’t be done basetbogent cone behavior alone. This should
be contrasted to the case of Alexandrov spaces| sée [P3]alEui gives an example of a three dimensional
limit space with nonunique tangent cones.

Our next example is of a limit spac¥, fly, p), such that ap € Y there exist distinct tangent cones which
are not only not isometric, but they are not even homeomorphore precisely we have:

Theorem 1.3. There exists a limit spad@/2, gu. Po) et (Y°, dy, p) of a sequence Msatisfying[(1) and:ﬂ%),
and such that there exists distinct tangent con@%; C(X;) at p Y with % homeomorphic t€P24CP
and X homeomorphic to’s

Both of the last two theorems have analogues for tangentscahniafinity of open manifolds with non-
negative Ricci curvature and Euclidean volume growth. Wetlkat an opem-dimensional manifold with
nonnegative Ricci curvature has Euclidean volume growtbrifsomep € M (hence allp € M) there exists
somev > 0 such that for alt > 0 we have that Vo, (p)) > vr".

Theorem 1.4. We have the following:

2For a limit of a sequence that collapses the situation isdlifferent, see [M2].



1. For n > 3, there exists a smooth open Riemannian manifMd, g) with Ric > 0 and Euclidean
volume growth such that for eadh< k < n — 2 one tangent cone at infinity of M is isometric to
RX x C(X), where X is a smooth closed manifold not isometric to thedstahsphere.

2. There exists a smooth open Riemannian man{fdi®l g) with Ric> 0 and Euclidean volumezgrowth
that has distinct tangent cones at infinityX@) and Q(X;) with Xg homeomorphic t€CP24CP" and
X1 homeomorphic tos

Related to the above examples we conjecture the following:

Conjecture 1.1. Let Y" be a noncollapsed limit of Riemannian manifolds with lowearcRbounds. Let
NU C Y be the set of points where the tangent cones at the givehgreinot unique, thedimya,dNU) <
n-3.

Conjecture 1.2. Let Y" be a noncollapsed limit of Riemannian manifolds with low@cRbounds. Let
NH C Y be the set of points where the tangent cones at the givehareinot of the same homeomorphism
type, therdimpaudNH) < n-5.

In particular, we believe that for a four dimensional limitesch point tangent cones should be homeo-
morphic.

Finally, we mention thaf [CN1] and [CN2] contains some mthatesults. In particular, in [CNI2] we will
use some of the constructions of this paper.

2 Proof of Theorem[1.1

The main technical lemma in the proof of Theorlem 1.1 is thiefohg.

Lemma 2.1. Let X" be a smooth compact manifold witlish s € (-0, ), a family of metrics with
h. < 1 such that:

1. Ridg(9)] = (n - 2)g(s).
2. disdv(g(s)) = 0, where dv is the associated volume form.
3. 10s9(9)1, 10s9s9(9)| < 1 and|Vasg(9)| < 1, where the norms are taken with respect (e)g

Then there exist functions:HiR* — (0, 1)and f: R* — (—oo, co) with lim,;_oh(r) = 1, lim; .h(r) = h,
limy Lo f(r) = —oo, lim;_o f(r) = co and lim _,0...r f/(r) = 0 such that the metrig = dr? + r?h?(r)g(f(r)) on
(0, ) x X satisfies Rig] > 0.

Further if for some Te (-0, o0) we have that ) = g(T) for s < T then we can pick h such that for r
sufficiently small {r) = 1.

Proof. We only concern ourselves with the constructiorf @ndh forr € (0, 1). Extending the construction
for larger is the same.



Now first we note that ify = dr? + r?h?(r)g(f(r)) as above then the following equations hold for the Ricci
tensor, where the primes represeuerivatives.

Ric, = —(n- 1)( ) + g °9PI0,0hq (h) gabgab——g""bgg{b (5)
Din 1 ab ./ ab 1 aby/ pq
Rici =§[«9a(g Oi) — 0i(g gab)+§(g ) (0iGab — Gib3""9aGpqg)] (6)

. rh)’ rh)” 1 .,
RiG; = Rig + 21[(-(n- 2y - T 2oy,
n(rh)’ 1 ,
Hogm o — 7970 + gabga.gb,] ™

In the estimates it will turn out that terms involving eittegcond derivatives aj or products of first
derivatives ot andg cannot be controlled in general. Luckily the constant vaduiorm tells us that

9" = 0,
and by taking the derivative we get that

ab ./,

0*°g, = 9°°90P G4 pThg -
When we substitute these infd (5) above we get

(rh)/l

—_— 1 .,
Ric = —(n- 1) - 26™°0"0. 00 (8)

similar substitutions may be made for the other equations.
Now for positive numberg, F < 1 to be chosen define the functions

E
h(r)=1—e(r)=1—m 9)

and

f(r) = —F log(log(-log(ror))) , (10)

forr < rgto be chosen. The following computations are straight fotwa

e(r) = ___ B €)= E
~ log(-log(ror))’ ~ (log(-log(ror)))2(- log(ror))r’
- g * oo TogTo o5ty
€)= T log(C log(ror)2(~ log(ror)r2 ()
and so
thy 1 & 1. E 1
rh (r 1—e) B r(1 (1 - €)(log(- log(ror)))2(- Iog(ror))) = r (12)



1 2
chy e 2 ~E(+ g6y * et ogtaCTogta))
rh Y 1-€ r(1-¢’  (log(-log(ror)))2(- log(ror))r2(1 — €)
E
= - , 13
2(109( 109(ron))?(— ogon)1? 49
where the last inequality holds for< 1 andrg sufficiently small. Also by our assumptions g¢s) we have
that|g'| < [f'] < e Iog(ror'):)(—log(ror))r' Finally, if we plug all of this into our equations for the Ridensor

we get, wherd = D(n) is a dimensional constant:

Ric £ DF?
& = {10g(-og(ro))2(~ log(ron)r2 _ (10g(~ 10g(for)))2(— I0g(ror))2r2
E
> 2(logC 10g(ron)?(— ogFon)r2 (14)
== —DF
R 2 o9 Tog o) 10g(ron)r (15)
Ric. 212 (n- 2)6 E _ DF
Rici = I are ™ * 2(logCTogran) (- Togran)r?  Tog(-—1ogfon)(— 109 fan)r?
DF2 92 E
~log(- Toglron)2(—Toglron)2r? = ' " iog(log@oryrZ” O

where the last inequalities on_(14) and](16) reqiire E(n, F) andrg sufficiently small. Now it is clear
from the above that we get positive Ricci in thand M directions. The difficulty is that we have a mixed
term [15%) which can certainly be negative and in fact doneisdie positivity of[(14). To see positivity fix a
point (r, x) € (0,1) x M and assume at this poigy (f(r)) = dij. Then every unit direction at this point is of
the forméf + ‘/?'A ,1] and we can compute:

Rig 1 E&?
IC(5r+ \/_l)(ar+—‘/; log(- log(ror))r2 [ 2log(=log(ror))(—log(ror))
_2DF§V1-42 )
Clogtar)n. +E(1-69)] (17)
1 Es? DF6 V1 - 62

- 2
> 2109 Toglror)r2 109 Togran)(—ogto) ~ (—loglon)) o *): (18)

where the last inequality is far< 1 and after possibly changirig. To see this is positive for anye [0, 1]

we break it into two cases, whew1 — 52 > o9t Iog(r y and V1-62 < —poaeys Iog(r my- For the first case we see
that
V1-62 -DF E

Ric >0 19
' (6r+‘/_|)(6r+\/_ ] - ( )

> +
) Iog(— log(ror))r?" (—log(ror)) = (~log(ror))
for E > DF. For the caseVl - 62 < m we first note thab > % for r < 1 and then group the first two
terms to get:

) [ E DF
log(~ log(ror))(— log (ror))r2 -2 log(- log(ror))  (~log(ror))

Ric (6r+—h—\/_|)(6r+—h—\/_|) ] =0 (20)



for E > DF andr < 1, andr sufficiently small as claimed.

Now extendingf andh to the rest ofr can be done in the same manner, and handling the case when
g(s) = g(T) stabilizes is comparatively simple and can be done witht@ficiunction so that(r) is concave
in this region. Note for ani., we can pickF, and hencé, sufficiently small as to make the volume loss as
small as we wish. ]

With the above in hand it is easy to finish Theoffeni 1.1.

Proof of Theoreri T11We begin by constructing what will be the limit spa¢e- C(X) of the theorem. Let
C: (—o0,0) — Q be a smooth map such that for every open neighbortbatl Q there ard, — oo such
thatc(—tg) = c(ty) € U.

In the case when conditionl(3) is assumed we can apply a timeoir&oser [Ma], which tells us that for
a compact manifolX if wp, wy are volume forms with the same volume then there exists eatifbrphism
¢ . X > X such thatvy = ¢*wp. With this in mind there is no loss in assuming that for eadhe (—co, o)
we havedvy(s) = dvy(y), Since the other conditions of the theorem are diffeomerphinvariant.

Becausegy(x) is smooth forx € Q we can be sure, after possibly reparametrizinghatg(t) = g(c(t))
satisfies Lemma2.1. We take

g = dr? + r2h?(r)g(f(r))

from this lemma. The conditions dnguarantee that the metric extends to a complete metric orotheY .

Now we argue thaY satisfies the conditions of the theorem, hence for @aei that the metric cone
C(Xy) is realized as a tangent coneYof So letr, — 0 such thac(f(ry)) — s, which we can do by the
conditions onf and the construction af. If we consider the rescaled metric

rag ~ dr? + r?h(rang(f(rar)).

then by the condition lim,orf/(r) = 0 we see that this converges to the desired tangent coneimedla

Finally, we wish to show that if for somg) € Q that if Xg, is Ricci closable, thenY{d) can be realized
as a limit M, g., p.) of Riemannian manifolds with nonnegative Ricci curvatufer eachr let c,(t) be a
smooth curve such that

6 (1) = c(t) ?ftz—a
s Ift<-2a

For eachr let (C(X), d,) be the metric space associated with the curve
%(t) = (1 - a Hg(C(t)) ,

as by Lemma 2]1 (again, if need be we can reparametyi@é for t < —a to force g,(t) to satisfy the
requirements of the Lemma). Near the cone point we have@{x9(d,) is isometric toaC(X, (1 — %)g(so)).
By the assumption of Ricci closability there exists a cortgplRiemannian manifold\,, h,, p,) such that

Ric(N,) > 0,

and
Areo(Pa) = ALeo(C(M, (1 - a7)g(0))) -

7



Thus we can glue these together to construct smooth Riearanmanifolds W, 9., p.). This is our desired
sequence. o

3 Example |

Our first application of Theorem 1.1 is to provide, fop 3, examples of limit spaces

GH
(M(r;’ gm pa) - (Yn’ de p) ’ (21)

where eachVl, has nonnegative Ricci curvature with \BI(p,)) > v > 0, and such that gb € Y the
tangent cones are not only nonunique, but for eaghkO< n — 2 we can find a sequenck — 0 such that

(Y, ()2, p) S R* x o(xm Yy, (22)

where theX" k-1 are smooth manifolds with VO™ *-1) < Vol($"*1). That is, for each & k < n-2
we can find a tangent cone which splits off preciselyR&rfactor. As was remarked earlier this is optimal,
in that if any tangent cone were to splifRf~-factor, then by[[ChC2] we would have thptis actually a
regular point ofY, and in particular by [C] every tangent cone wouldlb&

To construct our example we will build a family of smooth nfatds (S, gs) , and apply Theorem 1.1.
To describe this family let us first define for<0t < 1 thet-suspensionS;(X), over a smooth manifolX.
That is, for O< t < 1 and a smooth manifol¥, the metric spac&;(X) is homemorphic to the suspension
over X and its geometry is defined by the metric

dr? + sinz(%r)d2 ,

for r € (0,tr). Notice then thaB,(X) is the standard metric suspensionXf Now for anyte D = {f'e
R™:0<th1 <tho<...<t; <1} we can define the metric

0= Su, (.. S, (8 (tn-1))) .

.....

generally, we have thaky . 1t..1, where the firsk entries are 1, is isometric to thefold suspension of the
n— k — 1 sphere of radius This tells us in particular that

C(S™ ™ g...at..0)) = RE X CE™F(1).
Let us define the subsgx ¢ R"* by the condition
......
We have thaf2 satisfies the following basic properties:

1. Qis a smooth, connected, open submanifold of dimensier.

2. 3.....5)eq



3. ForeachO< k <n-230<t <landf e Q — (L...,L1t,...,t) such that$”‘1,gﬁ) coh
(S”‘l,g(l ,,,,, Lt....t)), Where the firsk entries are 1.

Now the collectiongs with s € Q almost defines our family. Notice in particular that sigge 1) is the
n— 1 sphere of radiué it is certainly Ricci closable, and that for every<k < n — 2 we have by the third
condition above thaR* x C(S"*1(t)) € g(Q), where the closure is in the Gromov-Hausdorff sense. The
remaining issue is simply that our metrigson $"* are not smooth. However, fére Q they do satisfy

secpd > 1+ €(f),

both on the smooth part and in the Alexandrov sense on theewhbleres(f) — 0 ast — 4Q. Although

not smooth, the singularities are isometric spheres andbwaagasily smoothed in a canonical fashion by
writing in normal coordinates with respect to the singulaineres, see [P1], [M1], [M3] for instance. We
let g¢ be such a smoothing, where for edolie can then easily arrange, by smoothing a sufficiently small
amount, that

sechd > 1+ %e(f) (23)
while
IVol(gg) — Vol(gg)l < &(F) , (24)

wheres(f) << e(f). Thus, after a slight rescaling of eagh we can guarantee that the volumes continue
to coincide and that see 1 for s € Q. This family thus satisfies Theordm 1.1, and we can consthect
desired limit spaceN, 9., p.) — (Y",dy, p) as in the Theorem.

4 Example
In this section we present one further example of interegtwWigh to construct a complete limit space
(M2, Qo Po) = (Y°, dy, p), (25)

where eactM,, satisfy Rig, > 0, Vol(B1(p,)) = v > 0, and such that gi the tangent cones &f are not only
not unique, but there exist distinct tangent cones whichhateeven homeomorphic. Specifically there are
sequences, — 0 andrj — 0 with

(Y.ratdy. p) = (C(Xp). dy,. P).
(Y.rg v, p) — (C(Xp). dvy. )., (26)

and such that homeomorphically we have

X, ~ CPACP,
Xy~ §4 (27)



To construct our example we wish to again use Thedrer 1.1. Weonstruct a family of metrics
(CP24CP?, o) with t € (0, 2] which satisfy the hypothesis of the theorem and such that

lim (C P24TP . ) = (S* qo).

Geometrically, $*, go) will contain two singular points and will look roughly lika football. On the other
hand, CP?4CP?, g,) will have a sufficiently nice form that we will be able to sheat it is Ricci closable.
Once this family is constructed we can immediately applyoree[1.1 to produce our example.

The construction of the family will be done in several stepf&e begin by introducing our basic ansatz.
Let $3 be the three sphere, viewed as the Lie Gr8u(2), with the standard fram¥, Y, Z such that

[X, Y] =2Z,[Y,Z] =2X, [Z,X] = 2Y.
Each piece of the various constructions will be a metricrgrr() x $° which takes the form
dr? + A(r)?dX? + B(r) (dY? + dz%) , (28)

where 0< rg < r; < 5. Notice that by employing various boundary dataskand B we can get these

: . —2 — —4 .
metrics to close up to smooth metrics 6®2, CP24CP” or CP? \ D4, WhereD4 is the closed 4-ball. The
Ricci curvature of these metrics satisfy the equations

A/I B/I

Ric(r,r) = A ZF’ (29)
%Ric(x, X) = —AT" - 2% + Z%i, (30)
ﬁRic(Y, Y) = —%" - % - (%)z 2# , (31)
&Ric(Z, 2) = —%” - % - (%,)2 2#, (32)

with all other Ricci terms vanishing.

4.1 Bubble Construction

Our bubbles mimic those af [IP1], see also [M1], [M3]. Lek(y < 1 be a constant which will be fixed at
the end of the construction. For eack @ < 1 let us consider the metric spacBSdefined by

A5(r) = bO% sin(2), (33)
. 1 1 1 €
B3 (r) = bo 100" (§ - ﬁ))e) cosh(ﬁ)r), (34)

forr € (0,r], wherer, is such thatA;,(r.) = Bf(r¢). Our bubblesB¢ are smooth manifolds with boundary

which are homeomorphic t6'P? \ D*. Notice that 0< ri < re < ro = %, and that for each suchthe

10



boundarydB. is an isometric sphere of radius betwe%@ and%. The second fundamental forms of each
boundary,T (0B¢), are uniformly positive and satisfy the estimate

T(0B¢) > Acbo, (35)

wherel, — 0 ase — 0. Further, the bounda§gB° has zzero second fundamental form, and two copies of
B may be glued to contruct a smooth metric@R24CP". Note for allbyg sufficiently small, that by[{29)
the Ricci curvatures of each of these spaces are uniforndigiy® independent of € [0, 1].

Step 1:

Here we construct the metric@l?zjiﬁz,gt) for t € (0,1]. The metrics will have the claimed property
that ast — 0, (CP24TP", g) — (5%, go). We will show simply that the metrics satisfy

Vol >n>0

RiCt>7]>0,

independent of. It then holds that condition§](3) arid (4) can be forced afpgropriate rescalings.
For each? > 0 we first consider the football metri€§ defined by

AL(r) = %Ksin(Zr), (36)

BL(r) = %Ksin(Zr), (37)

forr € (0, 3). By definition we letF(s) be the smooth manifold with boundary, homeomorphic 1] s3,
gotten by the restriction € [s, 5 — |. For alls > 0 we can pick/ < 6_(5) such that for all O< s < 7 the
boundary ofF,(s) is a sphere of radiys(s) and has a second fundamental form which satigf(@s,(s)) >
—op(9)-

Let us fixs << Ay, wherei; |s as in [(3b), and correspondingly let< €(5). ForallO<t < 1 letg
be the smooth metric o@PzﬁCP gotten by glumg&"f(t”) with B! and then smoothing. As in [P1], the
constraints on the second fundamental forms guarante¢hibagmoothing can be done so that it preserve
the positive Ricci curvature. Because the smoothing is deitle respect to normal coordinates on the
boundary, see [P1], it is clear that this can be done smodathlyand that the Ricci curvature is uniformly
positive independent of @ t < 1. This follows because it holds f6¥, and near the bubblB* we have that
Ric — oo ast — 0. Notice that the metridE(Pzﬂ@Z, g1) is now just a smoothing of two copies Bf glued
along their boundaries.

Step 2:

Here we construct the metric® Pzﬂﬁz, o) fort € [1, 2]. We will see later that the metri@PzﬁWZ, 02)
is Ricci closable. Again, we will only worry about seeingtthi@re exists uniform positive lower bounds on
the volume and Ricci curvature.

Let us now consider the family of metric@Pzﬁﬁz, g, t € [1, 2], defined by gluing two copies &2
along the boundaries and smoothing. Again, it follows frimdonditions on the second fundamental forms
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and [P1] that these metrics themselves have uniformly igedRicci curvature. Further, as we previously
. —2 . . : .

observed the metric spac€R?4CP, g,) requires no smoothing, and with only a little care we seettia

smoothing process can be done smoothly in

4.2 Closability

Now that we have constructed the 1-parameter family of m(@PZﬂ@Z, o) with t € (0, 2], we need to
show that at least one of these metrics is Ricci closableDséiaition[1.1. A clear necessary condition for
this is that the manifold in question be trivially cobordemtnce our choice dﬁ)PzﬁWZ. We will focus on
the space(( Pzﬁﬁz, 02), whose geometry is explicitly described by the conditions

AS(r) = %sin(zo, (38)
BY(r) = :—2Lbo, (39)

with r € (0, 3). We have viewedJPZﬁ@2 as the warped product ,(§) x S8, where at the boundary ends

the Hopf fiber collapses to glue in tw&?’s. It will now be more convenient to visualiz@sz;*@2 as the
nontrivial S? bundle overS?. Topologically, the 5-manifold which then realizes theitii cobordism of
CPZﬂWZ can be viewed as a nontrivi&l® bundle overS2, whereD3 is the closed 3-ball. The geometric
cobordism we will build on this space, which will satisfy Defion[1.1, will be built in two pieces. These
pieces will themselves then be glued together. Our ansathdanetric construction on each piece will look
similar to before, though a little more complicated. We édesmetrics of the following form:

ds + C2(9)dr? + D?(s)A%(r)dX? + E2(s)B(r) (dY2 + de) , (40)

wheres € (s, 1), I € (0, 3), andX, Y, Z are the standard left invariant vector fields ®has before. The
Ricci curvature on such spaces takes the form

Ric(s, s) = ol g = ZE , (41)
Ric(s,r):g AK,+ %)—%%—22% (42)
#Ric(r, r) = —% - g (g + ZE) -C (ﬁ: 2%") (43)
|X|2R|C(X X) = —g—c Z%N—g(gu.) 2C ZAAE, 2%, (44)
et =-£-c 3 (2.0 6)- o (4. 8). B
|Z|2R'C(Z 2) = _E B C_ZBF” " E (g B E) c ZBB, (i " %) 2%’ (46)

where all other Ricci terms vanish.
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Our first piece of the geometric cobordism, which is a mepace we will denote bg!, will be defined
by the functions

Ax(r) = %sin(Zr), 47
By(r) = % (48)
Ca(s) = D2(s) = Ex(9) = s, (49)

with s € [1, o). That is,C! is simply the top half of the cone ove@(—"zﬁﬁz, g2). To smooth this out near
the cone point we consider the metric sp&elefined by

As(r) = b—zlsin(2r), (50)
Bs(r) = b_21 , (51)
C3s(s) = D3(s) = sin(2s), (52)
Es(s) = ey cosh&ys), (53)

with s € (0, ), Wheresy defined by the conditio®€3(sg) = E3z(Sg). A computation using (41) tells us that
for eachey sufficiently small that fob, sufficiently small we haves, > 0, and that the underlying space
having strictly positive Ricci curvature. Further, in angy with the construction dB€, we have that the
boundarydC? has strictly positive second fundamental form,

T(@OC) >21>0.

The argument now mimicks that &tep 1 If we fix by sufficiently small in comparison t@, then the
second fundamental form of the boundaryp@f is more positive than the second fundamental forri@¥
is negative. Thus, by using [P1] once again and rescalingppropriately, we may glué® with €2 so that
after smoothing we have a manifold with nonnegative Riccvature. Withby chosen appropriate this then
shows that(CPzﬁWZ, 02) is Ricci closable as claimed, and thus finishes the corigtruc

References

[ChC1] J. Cheeger and T.H. Colding, Lower bounds on Riccvature and the almost rigidity of warped
products. Ann. of Math. (2) 144 (1996), no. 1, 189-237.

[ChC2] J. Cheeger and T.H. Colding, On the structure of spadtih Ricci curvature bounded below. I. J.
Differential Geom. 46 (1997), no. 3, 406—480.

[C] T.H. Colding, Ricci curvature and volume convergencenAof Math. (2) 145 (1997), no. 3, 477-501.

[CN1] T.H. Colding and A. Naber, Sharp Holder continuitytahgent cones for spaces with a lower Ricci
curvature bound and applications, prepiint, http://acxy/abs/1102.5003.

13


http://arxiv.org/abs/1102.5003

[CN2] T.H. Colding and A. Naber, Lower Ricci Curvature, Bcaimg, and Bi-Lipschitz Structure of Uni-
form Reifenberg Spaces, preprint.

[G] M. Gromov, Metric structures for Riemannian and non+Rémnian spaces. With appendices by M.
Katz, P. Pansu and S. Semmes. Birkhauser Boston, Inc.oiBd#A, 2007.

[GLP] M. Gromov, J. Lafontaine, and P. Pansu, Structuresiqeds pour les varieties riemanniennces.
Paris: Cedid/Fernand Nathan, 1981.

[LV] J. Lott and C. Villani, Ricci curvature for metric-meae spaces via optimal transport, Ann. of Math.
(2) 169 (2009) No. 3, 903-991.

[M1] X. Menguy, Noncollapsing examples with positive Riagirvature and infinite topological type.
GAFA 10 (2000), no. 3, 600-627.

[M2] X. Menguy, Examples of strictly weakly regular pointSAFA 11 (2001), no. 1, 124-131.

[M3] X. Menguy, Examples of manifolds and spaces with pasitRicci curvature, Ph.D. thesis, Courant
Institute, New York University 2000.

[M4] X. Menguy, Examples of nonpolar limit spaces, Amer. Jathl 122 (2000), no. 5, 927-937.
[Mo] J. Moser, On the volume elements on a manifold, TranseArklath. Soc. 120 (1965), 286-294.

[P1] G. Perelman, Construction of manifolds of positive dRicurvature with big volume and large Betti
numbers. (English summary) Comparison geometry (Berkéldy 1993-94), 157-163, Math. Sci.
Res. Inst. Publ., 30, Cambridge Univ. Press, Cambridge7.199

[P2] G. Perelman, A complete Riemannian manifold of posifRicci curvature with Euclidean volume
growth and nonunique asymptotic cone. Comparison geoniBeykeley, CA, 1993-94), 165-166,
Math. Sci. Res. Inst. Publ., 30, Cambridge Univ. Press, Caigd, 1997.

[P3] G. Perelman, Alexandrov spaces with curvatures balifrden below IlI. preprint, 1991.

[S] K.T. Sturm, On the geometry of metric measure spacesgta Math. 196, 1 (2006), 65-131.

14



	1 Introduction
	2 Proof of Theorem 1.1
	3 Example I
	4 Example II
	4.1 Bubble Construction
	4.2 Closability


