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Abstract

Consider a limit space (Mα, gα, pα)
GH→ (Y, dY, p), where theMn

α have a lower Ricci curvature bound
and are volume noncollapsed. The tangent cones ofY at a pointp ∈ Y are known to be metric cones
C(X), however they need not be unique. LetΩY,p ⊆MGH be the closed subset of compact metric spaces
X which arise as cross sections for the tangents cones ofY at p. In this paper we study the properties of
ΩY,p. In particular, we give necessary and sufficient conditionsfor an open smooth familyΩ ≡ (X, gs)
of closed manifolds to satisfyΩ = ΩY,p for somelimit Y and pointp ∈ Y as above, whereΩ is the
closure ofΩ in the set of metric spaces equipped with the Gromov-Hausdorff topology. We use this
characterization to construct examples which exhibit fundamentally new behaviors. The first application
is to construct limit spaces (Yn, dY, p) with n ≥ 3 such that atp there exists for every 0≤ k ≤ n − 2 a
tangent cone atp of the formRk × C(Xn−k−1), whereXn−k−1 is a smooth manifold not isometric to the
standard sphere. In particular, this is the first example which shows that a stratification of a limit space
Y based on the Euclidean behavior of tangent cones is not possible or even well defined. It is also the
first example of a three dimensional limit space with nonunique tangent cones. The second application
is to construct a limit space (Y5, dY, p), such that atp the tangent cones are not only not unique, but
not homeomorphic. Specifically, some tangent cones are homeomorphic to cones overCP2♯CP

2
while

others are homeomorphic to cones overS4.

1 Introduction

In this paper we are interested in pointed Gromov-Hausdorfflimits (Mα, gα, pα)
GH→ (Y, dY, p) such that the

Mα’s aren-dimensional and satisfy the lower Ricci bound

Ric(Mα) ≥ −(n− 1)g , (1)

and the noncollapsing assumption

Vol(B1(pα)) ≥ v > 0 . (2)
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For any such limitY, by Gromov’s compactness theorem [GLP, G], any sequencer i → 0 contains a

subsequencer j such that (Y, r−1
j dY, p)

GH→ (Yp, d, p), whereYp is a length space. Any such limitYp is said

to be a tangent cone ofY at p. By the noncollapsing assumption (2) it follows from [ChC1], [ChC2] that

any tangent cone must be a metric coneYp ≡ C(Xp) over a compact metric spaceXp with diamXp ≤ π
and Hausdorff dimension equal ton− 11. However, by [ChC2] tangent cones ofY at p need not be unique;

cf. [P2]. More precisely, it may happen that there is a different sequence ˜r j → 0 such that (Y, r̃−1
j dY, p)

GH→
(C(X̃p), d, p) converges to a tangent coneC(X̃p) whereX̃p andXp are not isometric. We are therefore justified

in defining forp ∈ Y the familyΩY,p ≡ {Xs} of metric spaces such thatC(Xs) arises as a tangent cone ofY at

p.

It is known that the familyΩY,p ⊆ MGH, viewed as a subset of the space of all compact metric spaces

endowed with the Gromov-Hausdorff topology, is compact andpath connected. It follows from [ChC2] that

the volume Vol(·), or more precisely the (n− 1)-dimensional Hausdorff measure, is independent of the cross

sectionXs ∈ ΩY,p and is bounded from above by that of the round unit sphere of dimensionn− 1. That is,

Vol(Xs) = V ≤ Vol(Sn−1(1)) . (3)

Further, ifXs ∈ ΩY,p is a smooth cross section, e.g. a smooth closed manifold, then because Ric(C(Xs)) ≥ 0

we have that

Ric(Xs) ≥ n− 2 . (4)

In fact, it is fairly clear that (4) holds in the more general sense of [LV], [S] even for singularXs. To fully

understand the familyΩY,p we introduce one more concept, that of Ricci closability.

Definition 1.1. Let (Mn−1, g) be a smooth closed Riemannian manifold. We say thatM is Ricci closable if

for everyǫ > 0, there exists a smooth (open) pointed Riemannian manifold(Nn
ǫ , hǫ , qǫ ) such that:

1. Ric(Nǫ) ≥ 0.

2. The annulusA1,∞(qǫ ) ⊆ Nǫ is isometric toA1,∞(C(M, (1− ǫ)g)).

Remark1.1. Note that if the stronger condition that there existsN with Ric(N) ≥ 0 and A1,∞(q) ≡
A1,∞(C(M, g)) holds, then (M, g) is certainly Ricci closable. Ricci closability acts as a form of geomet-

ric trivial cobordism condition.

Now we ask the question:

What subsetsΩ ⊆ MGH can arise asΩY,p for some limit spaceY coming from a sequenceMα → Y

which satisfies conditions (1) and (2)?

We have written down some basic necessary conditions onΩY,p, and our main theorem is that these condi-

tions are sufficent as well.
1Without the noncollapsing assumption tangent cones need not be metric cones by [ChC2] and need not even be polar spaces

by [M4].
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Theorem 1.1. LetΩ be an open connected manifold, our parameter space. Let{(Xn−1, gs)}s∈Ω ⊆MGH, with

n ≥ 3, be a smooth family of closed manifolds such that (3) and (4) hold and such that for some s0 we have

that Xs0 is Ricci closable. Then there exists a sequence of complete manifolds (Mn
α, gα, pα)

GH→ (Y, dY, p)

which satisfy (1) and (2) for which{Xs} = ΩY,p, where{Xs} is the closure of the set{Xs} in the Gromov-

Hausdorff topology.

Remark1.2. In fact, in the construction we will build theMα to satisfy Ric(Mα) ≥ 0. Note here thatΩ, as a

parameter space, is a smooth manifold which we are viewing asbeing embeddedΩ ⊆MGH inside the space

of metric spaces.

In the applications we will be interested not so much in the smooth conesC(Xs) which arise as tangent

cones atp ∈ Y, but in the conesC(X) whereX lies in the boundary of the closureX ∈ {Xs} \ {Xs}. There are

two primary examples we will be interested in constructing through Theorem 1.1. First, we will construct

an example of a limit space (Y, dY, p) such that atp ∈ Y tangent cones are highly nonunique, and in fact, for

every 0≤ k ≤ n− 2 we can find a tangent cone that splits off precisely anRk factor. Note this is in distinct

contrast to theRn case, where if one tangent cone at a point isRn, then so are all the other tangent cones at

that point, see [C]2. Note that if a tangent cone splits off anRn−1 factor, then by [ChC2] it is actually aRn

factor, so that the nonunique splitting ofRk factors for every 0≤ k ≤ n− 2 is the most degenerate behavior

one can get at a single point. More precisely we have the following:

Theorem 1.2. For every n≥ 3, there exists a limit space(Mn
α, gα, pα)

GH→ (Y, dY, p) where each Mα satisfy

(1) and (2), and such that for each0 ≤ k ≤ n − 2, there exists a tangent cone at p which is isometric to

Rk ×C(X), where X is a smooth closed manifold not isometric to the standard sphere.

This example has the, potentially unfortunate, consequence that a topological stratification of a limit space

Y in the context of lower Ricci curvature can’t be done based ontangent cone behavior alone. This should

be contrasted to the case of Alexandrov spaces, see [P3]. This also gives an example of a three dimensional

limit space with nonunique tangent cones.

Our next example is of a limit space (Y, dY, p), such that atp ∈ Y there exist distinct tangent cones which

are not only not isometric, but they are not even homeomorphic. More precisely we have:

Theorem 1.3. There exists a limit space(M5
α, gα, pα)

GH→ (Y5, dY, p) of a sequence Mα satisfying (1) and (2),

and such that there exists distinct tangent cones C(X0), C(X1) at p∈ Y with X0 homeomorphic toCP2♯CP
2

and X1 homeomorphic to S4.

Both of the last two theorems have analogues for tangent cones at infinity of open manifolds with non-

negative Ricci curvature and Euclidean volume growth. We say that an openn-dimensional manifold with

nonnegative Ricci curvature has Euclidean volume growth iffor somep ∈ M (hence allp ∈ M) there exists

somev > 0 such that for allr > 0 we have that Vol(Br(p)) ≥ v rn.

Theorem 1.4. We have the following:

2For a limit of a sequence that collapses the situation is quite different, see [M2].
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1. For n ≥ 3, there exists a smooth open Riemannian manifold(Mn, g) with Ric ≥ 0 and Euclidean

volume growth such that for each0 ≤ k ≤ n − 2 one tangent cone at infinity of M is isometric to

Rk ×C(X), where X is a smooth closed manifold not isometric to the standard sphere.

2. There exists a smooth open Riemannian manifold(M5, g) with Ric≥ 0 and Euclidean volume growth

that has distinct tangent cones at infinity C(X0) and C(X1) with X0 homeomorphic toCP2♯CP
2

and

X1 homeomorphic to S4.

Related to the above examples we conjecture the following:

Conjecture 1.1. Let Yn be a noncollapsed limit of Riemannian manifolds with lower Ricci bounds. Let

NU ⊆ Y be the set of points where the tangent cones at the given point are not unique, thendimHaus(NU) ≤
n− 3.

Conjecture 1.2. Let Yn be a noncollapsed limit of Riemannian manifolds with lower Ricci bounds. Let

NH ⊆ Y be the set of points where the tangent cones at the given point are not of the same homeomorphism

type, thendimHaus(NH) ≤ n− 5.

In particular, we believe that for a four dimensional limit at each point tangent cones should be homeo-

morphic.

Finally, we mention that [CN1] and [CN2] contains some related results. In particular, in [CN2] we will

use some of the constructions of this paper.

2 Proof of Theorem 1.1

The main technical lemma in the proof of Theorem 1.1 is the following.

Lemma 2.1. Let Xn−1 be a smooth compact manifold with g(s), s ∈ (−∞,∞), a family of metrics with

h∞ < 1 such that:

1. Ric[g(s)] ≥ (n− 2)g(s).

2. d
dsdv(g(s)) = 0, where dv is the associated volume form.

3. |∂sg(s)|, |∂s∂sg(s)| ≤ 1 and |∇∂sg(s)| ≤ 1, where the norms are taken with respect to g(s).

Then there exist functions h: R+ → (0, 1) and f : R+ → (−∞,∞) with limr→0h(r) = 1, limr→∞h(r) = h∞,

limr→0 f (r) = −∞, limr→∞ f (r) = ∞ and limr→0,∞r f ′(r) = 0 such that the metric̄g = dr2
+ r2h2(r)g( f (r)) on

(0,∞) × X satisfies Ric[ḡ] ≥ 0.

Further if for some T∈ (−∞,∞) we have that g(s) = g(T) for s ≤ T then we can pick h such that for r

sufficiently small h(r) ≡ 1.

Proof. We only concern ourselves with the construction off andh for r ∈ (0, 1). Extending the construction

for larger is the same.
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Now first we note that if ¯g = dr2
+ r2h2(r)g( f (r)) as above then the following equations hold for the Ricci

tensor, where the primes representr derivatives.

Ricrr = −(n− 1)
(rh)′′

rh
+

1
4

gabgpqg′apg
′
bq −

(rh)′

rh
gabg′ab −

1
2

gabg′′ab. (5)

Ricir =
1
2

[∂a(gabg′bi) − ∂i(g
abg′ab) +

1
2

(gab)′(∂igab − gibgpq∂agpq)] (6)

Rici j = Rici j + r2h2[(−(n− 2)(
(rh)′

rh
)2 −

(rh)′′

rh
−

1
2

gabg′ab)gi j

+(−
n
2

(rh)′

rh
−

1
4

gabg′ab)g
′
i j +

1
2

gabg′aig
′
b j] (7)

In the estimates it will turn out that terms involving eithersecond derivatives ofg or products of first

derivatives ofh andg cannot be controlled in general. Luckily the constant volume form tells us that

gabg′ab = 0 ,

and by taking ther derivative we get that

gabg′′ab = gabgpqg′apg
′
bq .

When we substitute these into (5) above we get

Ricrr = −(n− 1)
(rh)′′

rh
− 1

4
gabgpqg′apg

′
bq , (8)

similar substitutions may be made for the other equations.

Now for positive numbersE, F ≤ 1 to be chosen define the functions

h(r) = 1− ǫ(r) = 1− E
log(− log(r0r))

(9)

and

f (r) = −F log(log(− log(r0r))) , (10)

for r ≤ r0 to be chosen. The following computations are straight forward:

ǫ(r) =
E

log(− log(r0r))
, ǫ′(r) =

E

(log(− log(r0r)))2(− log(r0r))r
,

ǫ′′(r) =
E(−1+ 1

(− log(r0r)) +
2

log(− log(r0r))(− log(r0r)))

(log(− log(r0r)))2(− log(r0r))r2
(11)

and so

(rh)′

rh
= (

1
r
− ǫ′

1− ǫ
) =

1
r

(1− E

(1− ǫ)(log(− log(r0r)))2(− log(r0r))
) ≤ 1

r
, (12)
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(rh)′′

rh
= (− ǫ

′′

1− ǫ
− 2ǫ′

r(1− ǫ)
) =
−E(1+ 1

(− log(r0r)) +
2

log(− log(r0r))(− log(r0r)) )

(log(− log(r0r)))2(− log(r0r))r2(1− ǫ)

= − E

2(log(− log(r0r)))2(− log(r0r))r2
, (13)

where the last inequality holds forr ≤ 1 andr0 sufficiently small. Also by our assumptions ong(s) we have

that |g′| ≤ | f ′| ≤ F
log(− log(r0r))(− log(r0r))r . Finally, if we plug all of this into our equations for the Ricci tensor

we get, whereD = D(n) is a dimensional constant:

Ricrr ≥
E

(log(− log(r0r)))2(− log(r0r))r2
−

DF2

(log(− log(r0r)))2(− log(r0r))2r2

≥ E

2(log(− log(r0r)))2(− log(r0r))r2
, (14)

Ricir ≥
−DF

log(− log(r0r))(− log(r0r))r
, (15)

Ricii ≥ r2h2[
(n− 2)ǫ

r2h2
+

E

2(log(− log(r0r)))2(− log(r0r))r2
−

DF

log(− log(r0r))(− log(r0r))r2

−
DF2

(log(− log(r0r)))2(− log(r0r))2r2
] ≥ r2h2 E

log(− log(r0r))r2
, (16)

where the last inequalities on (14) and (16) requireE ≥ E(n, F) andr0 sufficiently small. Now it is clear

from the above that we get positive Ricci in ther andM directions. The difficulty is that we have a mixed

term (15) which can certainly be negative and in fact dominates the positivity of (14). To see positivity fix a

point (r, x) ∈ (0, 1)× M and assume at this pointgi j ( f (r)) = δi j . Then every unit direction at this point is of

the formδr̂ +
√

1−δ2
rh î for δ ∈ [0, 1] and we can compute:

Ric
(δr+

√
1−δ2
rh i)(δr+

√
1−δ2
rh i)

≥
1

log(− log(r0r))r2
[

Eδ2

2 log(− log(r0r))(− log(r0r))

−2DFδ
√

1− δ2
(− log(r0r))h

+ E(1− δ2)] (17)

≥
1

2 log(− log(r0r))r2
[

Eδ2

log(− log(r0r))(− log(r0r))
−

DFδ
√

1− δ2
(− log(r0r))

+ E(1− δ2) , (18)

where the last inequality is forr ≤ 1 and after possibly changingD. To see this is positive for anyδ ∈ [0, 1]

we break it into two cases, when
√

1− δ2 ≥ 1
(− log(r0r)) and

√
1− δ2 ≤ 1

(− log(r0r)) . For the first case we see

that

Ric
(δr+

√
1−δ2
rh i)(δr+

√
1−δ2
rh i)

≥
√

1− δ2
log(− log(r0r))r2

[
−DF

(− log(r0r))
+

E
(− log(r0r))

] ≥ 0 , (19)

for E ≥ DF. For the case
√

1− δ2 ≤ 1
(− log(r0r)) we first note thatδ ≥ 1

2 for r ≤ 1 and then group the first two

terms to get:

Ric
(δr+

√
1−δ2
rh i)(δr+

√
1−δ2
rh i)

≥ δ

log(− log(r0r))(− log(r0r))r2
[

E
2 log(− log(r0r))

− DF
(− log(r0r))

] ≥ 0 (20)
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for E ≥ DF andr ≤ 1, andr0 sufficiently small as claimed.

Now extendingf andh to the rest ofr can be done in the same manner, and handling the case when

g(s) = g(T) stabilizes is comparatively simple and can be done with a cutoff function so thath(r) is concave

in this region. Note for anyh∞ we can pickF, and henceE, sufficiently small as to make the volume loss as

small as we wish. �

With the above in hand it is easy to finish Theorem 1.1.

Proof of Theorem 1.1.We begin by constructing what will be the limit spaceY = C(X) of the theorem. Let

c : (−∞,∞) → Ω be a smooth map such that for every open neighborhoodU ⊆ Ω there areta → ∞ such

thatc(−ta) = c(ta) ∈ U.

In the case when condition (3) is assumed we can apply a theorem of Moser [Mo], which tells us that for

a compact manifoldX if w0,w1 are volume forms with the same volume then there exists a diffeomorphism

φ : X→ X such thatw1 = φ
∗w0. With this in mind there is no loss in assuming that for eachs, t ∈ (−∞,∞)

we havedvg(c(s)) = dvg(c(t)), since the other conditions of the theorem are diffeomorphism invariant.

Becauseg(x) is smooth forx ∈ Ω we can be sure, after possibly reparametrizingc, thatg(t) ≡ g(c(t))

satisfies Lemma 2.1. We take

ḡ = dr2
+ r2h2(r)g( f (r))

from this lemma. The conditions onh guarantee that the metric extends to a complete metric on theconeY.

Now we argue thatY satisfies the conditions of the theorem, hence for eachs ∈ Ω̄ that the metric cone

C(Xs) is realized as a tangent cone ofY. So letra → 0 such thatc( f (ra)) → s, which we can do by the

conditions onf and the construction ofc. If we consider the rescaled metric

r−2
a ḡ ≈ dr2

+ r2h2(rar)g( f (rar)) ,

then by the condition limr→0 r f ′(r) = 0 we see that this converges to the desired tangent cone as claimed.

Finally, we wish to show that if for somes0 ∈ Ω that if Xs0 is Ricci closable, then (Y, d) can be realized

as a limit (Mα, gα, pα) of Riemannian manifolds with nonnegative Ricci curvature. For eachα let cα(t) be a

smooth curve such that

cα(t) =















c(t) if t ≥ −α
s0 if t ≤ −2α

.

For eachα let (C(X), dα) be the metric space associated with the curve

gα(t) ≡ (1− α−1)g(cα(t)) ,

as by Lemma 2.1 (again, if need be we can reparametrizecα(t) for t < −α to force gα(t) to satisfy the

requirements of the Lemma). Near the cone point we have that (C(X), dα) is isometric toC(X, (1− 1
α )g(s0)).

By the assumption of Ricci closability there exists a complete Riemannian manifold (Nα, hα, pα) such that

Ric(Nα) ≥ 0 ,

and

A1,∞(pα) ≡ A1,∞(C(M, (1− α−i)g(s0))) .

7



Thus we can glue these together to construct smooth Riemannian manifolds (Mα, gα, pα). This is our desired

sequence. �

3 Example I

Our first application of Theorem 1.1 is to provide, forn ≥ 3, examples of limit spaces

(Mn
α, gα, pα)

GH→ (Yn, dY, p) , (21)

where eachMα has nonnegative Ricci curvature with Vol(B1(pα)) > v > 0, and such that atp ∈ Y the

tangent cones are not only nonunique, but for each 0≤ k ≤ n− 2 we can find a sequencerk
a→ 0 such that

(Y, (rk
a)−1dY, p)

GH→ R
k ×C(Xn−k−1) , (22)

where theXn−k−1 are smooth manifolds with Vol(Xn−k−1) < Vol(Sn−k−1). That is, for each 0≤ k ≤ n − 2

we can find a tangent cone which splits off precisely anRk factor. As was remarked earlier this is optimal,

in that if any tangent cone were to split aRn−1-factor, then by [ChC2] we would have thatp is actually a

regular point ofY, and in particular by [C] every tangent cone would beRn.

To construct our example we will build a family of smooth manifolds (Sn−1, ḡs) , and apply Theorem 1.1.

To describe this family let us first define for 0< t ≤ 1 thet-suspension,St(X), over a smooth manifoldX.

That is, for 0< t ≤ 1 and a smooth manifoldX, the metric spaceSt(X) is homemorphic to the suspension

overX and its geometry is defined by the metric

dr2
+ sin2(

1
t
r) d2

X ,

for r ∈ (0, tπ). Notice then thatS1(X) is the standard metric suspension ofX. Now for any~t ∈ D ≡ {~t ∈
Rn−1 : 0 < tn−1 ≤ tn−2 ≤ . . . ≤ t1 ≤ 1} we can define the metric

g~t ≡ St1(. . .Stn−2(S
1(tn−1))) ,

whereS1(tn−1) is the circle of radiustn−1. Note in particular thatg(t,...,t) is then− 1 sphere of radiust. More

generally, we have thatg(1,...,1,t,...,t), where the firstk entries are 1, is isometric to thek-fold suspension of the

n− k− 1 sphere of radiust. This tells us in particular that

C((Sn−1, g(1,...,1,t,...,t))) ≡ R
k ×C(Sn−k−1(t)) .

Let us define the subsetΩ ⊆ Rn−1 by the condition

Ω ≡ {~t ∈ Rn−1 : 0 < tn−1 ≤ tn−2 ≤ . . . ≤ t1 < 1 and Vol(g~t) = Vol(g1
2 ,...,

1
2
)} .

We have thatΩ satisfies the following basic properties:

1. Ω is a smooth, connected, open submanifold of dimensionn− 2.

2. (1
2 , . . . ,

1
2) ∈ Ω.

8



3. For each 0≤ k ≤ n − 2 ∃ 0 < tk < 1 and~ti ∈ Ω → (1, . . . , 1, tk, . . . , tk) such that (Sn−1, g~ti )
GH→

(Sn−1, g(1,...,1,tk,...,tk)), where the firstk entries are 1.

Now the collectiongs with s ∈ Ω almost defines our family. Notice in particular that sinceg( 1
2 ,...,

1
2 ) is the

n− 1 sphere of radius12 it is certainly Ricci closable, and that for every 0≤ k ≤ n− 2 we have by the third

condition above thatRk × C(Sn−k−1(tk)) ∈ g(Ω), where the closure is in the Gromov-Hausdorff sense. The

remaining issue is simply that our metricsgs onSn−1 are not smooth. However, for~t ∈ Ω they do satisfy

sec[g~t] > 1+ ǫ(~t) ,

both on the smooth part and in the Alexandrov sense on the whole, whereǫ(~t) → 0 as~t → ∂Ω. Although

not smooth, the singularities are isometric spheres and maybe easily smoothed in a canonical fashion by

writing in normal coordinates with respect to the singular spheres, see [P1], [M1], [M3] for instance. We

let ḡ~t be such a smoothing, where for each~t we can then easily arrange, by smoothing a sufficiently small

amount, that

sec[ḡ~t] > 1+
1
2
ǫ(~t) (23)

while

|Vol(ḡ~t) − Vol(g~t)| < δ(~t) , (24)

whereδ(~t) << ǫ(~t). Thus, after a slight rescaling of each ¯g~t, we can guarantee that the volumes continue

to coincide and that sec~t ≥ 1 for s ∈ Ω. This family thus satisfies Theorem 1.1, and we can constructthe

desired limit space (Mn
α, gα, pα)→ (Yn, dY, p) as in the Theorem.

4 Example II

In this section we present one further example of interest. We wish to construct a complete limit space

(M5
α, gα, pα)→ (Y5, dY, p) , (25)

where eachMα satisfy Ricα ≥ 0, Vol(B1(pα)) ≥ v > 0, and such that atp the tangent cones ofY are not only

not unique, but there exist distinct tangent cones which arenot even homeomorphic. Specifically there are

sequencesra→ 0 andr′a→ 0 with

(Y, r−1
a dY, p)→ (C(Xp), dYp, p) ,

(Y, r′−1
a dY, p)→ (C(X′p), dY′p, p) , (26)

and such that homeomorphically we have

Xp ≈ CP2♯CP
2
,

X′p ≈ S
4 . (27)
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To construct our example we wish to again use Theorem 1.1. We will construct a family of metrics

(CP2♯CP2, gt) with t ∈ (0, 2] which satisfy the hypothesis of the theorem and such that

lim
t→0

(CP2♯CP
2
, gt) = (S4, g0) .

Geometrically, (S4, g0) will contain two singular points and will look roughly likea football. On the other

hand, (CP2♯CP2, g2) will have a sufficiently nice form that we will be able to showthat it is Ricci closable.

Once this family is constructed we can immediately apply Theorem 1.1 to produce our example.

The construction of the family will be done in several steps.We begin by introducing our basic ansatz.

Let S3 be the three sphere, viewed as the Lie GroupS U(2), with the standard frameX, Y, Z such that

[X,Y] = 2Z , [Y,Z] = 2X, [Z,X] = 2Y .

Each piece of the various constructions will be a metric on (r0, r1) × S3 which takes the form

dr2
+ A(r)2dX2

+ B2(r)
(

dY2
+ dZ2

)

, (28)

where 0≤ r0 < r1 ≤ π
2. Notice that by employing various boundary data onA and B we can get these

metrics to close up to smooth metrics onCP2, CP2♯CP
2

or CP2 \ D
4
, whereD

4
is the closed 4-ball. The

Ricci curvature of these metrics satisfy the equations

Ric(r, r) = −A′′

A
− 2

B′′

B
, (29)

1

|X|2
Ric(X,X) = −

A′′

A
− 2

A′B′

AB
+ 2

A2

B4
, (30)

1
|Y|2

Ric(Y,Y) = −B′′

B
− A′B′

AB
−

(

B′

B

)2

+ 2
2B2 − A2

B4
, (31)

1
|Z|2

Ric(Z,Z) = −B′′

B
− A′B′

AB
−

(

B′

B

)2

+ 2
2B2 − A2

B4
, (32)

with all other Ricci terms vanishing.

4.1 Bubble Construction

Our bubbles mimic those of [P1], see also [M1], [M3]. Let 0< b0 ≤ 1 be a constant which will be fixed at

the end of the construction. For each 0≤ ǫ ≤ 1 let us consider the metric spacesBǫ defined by

Aǫ
B

(r) ≡ b0
1
2

sin(2r) , (33)

Bǫ
B

(r) ≡ b0

(

1
100
− (

1
2
−

1
100

)ǫ

)

cosh(
ǫ

100
r) , (34)

for r ∈ (0, rǫ ], whererǫ is such thatAǫ
B

(rǫ ) = Bǫ
B

(rǫ). Our bubblesBǫ are smooth manifolds with boundary

which are homeomorphic toCP2 \ D
4
. Notice that 0< r1 ≤ rǫ ≤ r0 ≡ π

4, and that for each suchǫ the
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boundary∂Bǫ is an isometric sphere of radius betweenb0
100 and b0

2 . The second fundamental forms of each

boundary,T(∂Bǫ), are uniformly positive and satisfy the estimate

T(∂Bǫ) > λǫb0 , (35)

whereλǫ → 0 asǫ → 0. Further, the boundary∂B0 has zero second fundamental form, and two copies of

B0 may be glued to contruct a smooth metric onCP2♯CP
2
. Note for allb0 sufficiently small, that by (29)

the Ricci curvatures of each of these spaces are uniformly positive independent ofǫ ∈ [0, 1].

Step 1:

Here we construct the metrics (CP2♯CP
2
, gt) for t ∈ (0, 1]. The metrics will have the claimed property

that ast → 0, (CP2♯CP
2
, gt)→ (S4, g0). We will show simply that the metrics satisfy

Volt > η > 0

Rict > η > 0 ,

independent oft. It then holds that conditions (3) and (4) can be forced afterappropriate rescalings.

For eachℓ > 0 we first consider the football metricsFℓ defined by

Aℓ
F
(r) ≡

1
2
ℓ sin(2r) , (36)

Bℓ
F
(r) ≡

1
2
ℓ sin(2r) , (37)

for r ∈ (0, π2). By definition we letFℓ(s) be the smooth manifold with boundary, homeomorphic to [0, 1]×S3,

gotten by the restrictionr ∈ [s, π2 − s]. For all δ > 0 we can pickℓ ≤ ℓ̄(δ) such that for all 0< s < π4 the

boundary ofFℓ(s) is a sphere of radiusρ(s) and has a second fundamental form which satisfiesT(∂Fℓ(s)) >

−δρ(s).
Let us fix δ << λ1, whereλ1 is as in (35), and correspondingly letℓ ≤ ℓ̄(δ). For all 0 < t ≤ 1 let gt

be the smooth metric onCP2♯CP
2

gotten by gluingFℓ̄(t π4) with B1 and then smoothing. As in [P1], the

constraints on the second fundamental forms guarantee thatthis smoothing can be done so that it preserve

the positive Ricci curvature. Because the smoothing is donewith respect to normal coordinates on the

boundary, see [P1], it is clear that this can be done smoothlyin t, and that the Ricci curvature is uniformly

positive independent of 0< t ≤ 1. This follows because it holds forFℓ, and near the bubbleB1 we have that

Ric→∞ ast → 0. Notice that the metric (CP2♯CP
2
, g1) is now just a smoothing of two copies ofB1 glued

along their boundaries.

Step 2:

Here we construct the metrics (CP2♯CP
2
, gt) for t ∈ [1, 2]. We will see later that the metric (CP2♯CP

2
, g2)

is Ricci closable. Again, we will only worry about seeing that there exists uniform positive lower bounds on

the volume and Ricci curvature.

Let us now consider the family of metrics (CP2♯CP
2
, gt), t ∈ [1, 2], defined by gluing two copies ofB2−t

along the boundaries and smoothing. Again, it follows from the conditions on the second fundamental forms

11



and [P1] that these metrics themselves have uniformly positive Ricci curvature. Further, as we previously

observed the metric space (CP2♯CP
2
, g2) requires no smoothing, and with only a little care we see that the

smoothing process can be done smoothly int.

4.2 Closability

Now that we have constructed the 1-parameter family of metrics (CP2♯CP
2
, gt) with t ∈ (0, 2], we need to

show that at least one of these metrics is Ricci closable, seeDefinition 1.1. A clear necessary condition for

this is that the manifold in question be trivially cobordent, hence our choice ofCP2♯CP
2
. We will focus on

the space (CP2♯CP
2
, g2), whose geometry is explicitly described by the conditions

A0
B

(r) ≡
b0

2
sin(2r) , (38)

B0
B

(r) ≡
1
2

b0 , (39)

with r ∈ (0, π2). We have viewedCP2♯CP
2

as the warped product (0, π2) × S3, where at the boundary ends

the Hopf fiber collapses to glue in twoS2’s. It will now be more convenient to visualizeCP2♯CP
2

as the

nontrivial S2 bundle overS2. Topologically, the 5-manifold which then realizes the trivial cobordism of

CP2♯CP
2

can be viewed as a nontrivial̄D3 bundle overS2, whereD̄3 is the closed 3-ball. The geometric

cobordism we will build on this space, which will satisfy Definition 1.1, will be built in two pieces. These

pieces will themselves then be glued together. Our ansatz for the metric construction on each piece will look

similar to before, though a little more complicated. We consider metrics of the following form:

ds2
+C2(s)dr2

+ D2(s)A2(r)dX2
+ E2(s)B2(r)

(

dY2
+ dZ2

)

, (40)

wheres ∈ (s0, s1), r ∈ (0, π2), andX,Y,Z are the standard left invariant vector fields onS3 as before. The

Ricci curvature on such spaces takes the form

Ric(s, s) = −
C̈
C
−

D̈
D
− 2

Ë
E
, (41)

Ric(s, r) =
Ċ
C

(

A′

A
+ 2

B′

B

)

− Ḋ
D

A′

A
− 2

Ė
E

B′

B
, (42)

1

|r |2
Ric(r, r) = −

C̈
C
−

Ċ
C

(

Ḋ
D
+ 2

Ė
E

)

−C−2
(

A′′

A
+ 2

B′′

B

)

, (43)

1

|X|2
Ric(X,X) = − D̈

D
−C−2 A′′

A
− Ḋ

D

(

Ċ
C
+ 2

Ė
E

)

− 2C−2 A′B′

AB
+ 2

D2A2

B4E4
, (44)

1
|Y|2

Ric(Y,Y) = − Ë
E
−C−2 B′′

B
− Ė

E

(

Ċ
C
+

Ḋ
D
+

Ė
E

)

−C−2 B′

B

(

A′

A
+

B′

B

)

+ 2
2B2E2 − A2D2

B4E4
, (45)

1
|Z|2

Ric(Z,Z) = − Ë
E
−C−2 B′′

B
− Ė

E

(

Ċ
C
+

Ḋ
D
+

Ė
E

)

−C−2 B′

B

(

A′

A
+

B′

B

)

+ 2
2B2E2 − A2D2

B4E4
, (46)

where all other Ricci terms vanish.

12



Our first piece of the geometric cobordism, which is a metric space we will denote byC1, will be defined

by the functions

A2(r) ≡ b0

2
sin(2r) , (47)

B2(r) ≡
b0

2
, (48)

C2(s) = D2(s) = E2(s) ≡ s, (49)

with s ∈ [1,∞). That is,C1 is simply the top half of the cone over (CP2♯CP
2
, g2). To smooth this out near

the cone point we consider the metric spaceC2 defined by

A3(r) ≡ b1

2
sin(2r) , (50)

B3(r) ≡
b1

2
, (51)

C3(s) = D3(s) ≡ sin(2s) , (52)

E3(s) ≡ e0 cosh(e0s) , (53)

with s ∈ (0, s0), wheres0 defined by the conditionC3(s0) = E3(s0). A computation using (41) tells us that

for eache0 sufficiently small that forb1 sufficiently small we haves0 > 0, and that the underlying space

having strictly positive Ricci curvature. Further, in analogy with the construction ofBǫ , we have that the

boundary∂C2 has strictly positive second fundamental form,

T(∂C) > λ > 0 .

The argument now mimicks that ofStep 1. If we fix b0 sufficiently small in comparison toλ, then the

second fundamental form of the boundary of∂C2 is more positive than the second fundamental form of∂C1

is negative. Thus, by using [P1] once again and rescalingC1 appropriately, we may glueC1 with C2 so that

after smoothing we have a manifold with nonnegative Ricci curvature. Withb0 chosen appropriate this then

shows that (CP2♯CP
2
, g2) is Ricci closable as claimed, and thus finishes the construction.
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