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Abstract

Important knowledge about the determinants of complex human phenotypes can be obtained from the estimation of
heritability, the fraction of phenotypic variation in a population that is determined by genetic factors. Here, we make use of
extensive phenotype data in Iceland, long-range phased genotypes, and a population-wide genealogical database to
examine the heritability of 11 quantitative and 12 dichotomous phenotypes in a sample of 38,167 individuals. Most previous
estimates of heritability are derived from family-based approaches such as twin studies, which may be biased upwards by
epistatic interactions or shared environment. Our estimates of heritability, based on both closely and distantly related pairs
of individuals, are significantly lower than those from previous studies. We examine phenotypic correlations across a range
of relationships, from siblings to first cousins, and find that the excess phenotypic correlation in these related individuals is
predominantly due to shared environment as opposed to dominance or epistasis. We also develop a new method to jointly
estimate narrow-sense heritability and the heritability explained by genotyped SNPs. Unlike existing methods, this approach
permits the use of information from both closely and distantly related pairs of individuals, thereby reducing the variance of
estimates of heritability explained by genotyped SNPs while preventing upward bias. Our results show that common SNPs
explain a larger proportion of the heritability than previously thought, with SNPs present on Illumina 300K genotyping
arrays explaining more than half of the heritability for the 23 phenotypes examined in this study. Much of the remaining
heritability is likely to be due to rare alleles that are not captured by standard genotyping arrays.
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Introduction

Although genome-wide association studies (GWAS) have

resulted in the discovery of thousands of novel associations of loci

to hundreds of phenotypes [1], concerns have been raised about

the finding that these loci appear to explain a relatively small

proportion of the estimated heritability, the fraction of phenotypic

variation in a population that is due to genetic variation [2]. This

has led to considerable speculation by researchers about the

genetic basis of complex human phenotypes and the ‘‘missing

heritability’’, i.e. the fraction of heritability not accounted for by

the associations discovered to date [3,4,5,6,7,8,9]. Among the

proposed explanations for missing heritability is the existence of

many presently unidentified common variants with small effect

sizes, rare variants not captured by current genotyping platforms,

structural variants, epistatic interactions, gene-environment inter-

actions, parent-of-origin effects, or inflated heritability estimates

[3,5,10]. Studies that examine the sources of missing heritability

can help researchers to evaluate the prospects of future studies

focusing on common versus rare variation and thereby devise

effective strategies to discover the remaining sequence variants that

affect disease risk and other aspects of phenotypic variation in

humans.

The narrow-sense heritability of a phenotype (h2) is the fraction

of phenotypic variance that can be described by an additive model

over the set of SNPs that are functionally related to the phenotype

(i.e. the causal SNPs) [11]. It is commonly estimated by comparing

the phenotypic correlation of monozygotic (MZ) to that of

dizygotic (DZ) twins. The difference between h2 and the fraction

of phenotypic variance accounted for by variants discovered by

means of GWAS (h2
gwas) is the so-called missing heritability.

Recently, Yang et al [12] developed a method to estimate the

variance explained by all SNPs on a genotyping platform including

those that are not genome-wide significant (h2
g ), representing the

limit of h2
gwas for infinite sample size.

There are two major challenges in comparing h2 and h2
g to

quantify missing heritability. First, there is the potential for

inflation of h2 estimates based on closely related individuals such as

MZ/DZ twins. It is well known that epistatic interactions can

inflate heritability estimates in studies of related individuals [13].
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Recent work from Zuk et al [10] has examined this in detail.

Other factors that could also lead to inflated estimates of h2 using

closely related pairs of individuals include dominance and shared

environment. Second, there is a tradeoff between inflation and

sampling variance when estimating h2
g. The recent variance

component approach described by Yang et. al results in inflated

estimates of h2
g in the presence of related individuals

[12,14,15,16,17]. However, removing related individuals reduces

the sample size, resulting in a larger standard error around the

estimate [18,19]. Both of these issues can adversely affect estimates

of missing heritability.

Here, we analyze the heritability of 23 complex phenotypes in

an Icelandic cohort of 38,167 individuals, leveraging both a

population-wide genealogical database and genotype data from

over 300,000 SNPs that have been long-range phased across and

between chromosomes (i.e. where not only the phase, but also the

parental origin of alleles has been determined) [20]. Importantly,

we develop an approach that allows h2 to be estimated on the basis

of both closely and distantly related pairs of individuals. We find,

for all of the quantitative phenotypes, that our estimates of h2 are

smaller than those from the literature that were based on MZ/DZ

twins [21]. Our results indicate that previous estimates were

inflated by the impact of epistasis or shared environment.

We further introduce a new variance components method that

provides simultaneous estimates of h2 and h2
g. This method has two

principal advantages. First, by adequately taking account of both

closely and distantly related pairs of individuals, it minimizes the

standard error of the estimates, whilst avoiding the upward bias that

can result from calculations based on closely related pairs. Second, it

produces both estimates of heritability for the same population

sample, ensuring that h2 and h2
g are directly comparable.

For most of the 23 phenotypes examined here, our results show

that h2
g accounts for more than half of h2. As GWAS have not

identified many SNPs with large effect sizes (i.e. h2
gwas is small), and

h2
g is greater than h2

gwas by a considerable margin, it follows that

there must be many associated sequence variants that remain to be

discovered, i.e. these phenotypes are highly polygenic. Currently,

only common variants are well captured by the genotyping arrays

used in most GWAS studies. As the difference between h2
g and h2

is likely due to common and rare variants not captured by the

genotyping array [12], it may be assumed that a fair number of

association signals remain to be identified through more compre-

hensive approaches, such as whole genome-sequencing. However,

our estimates of h2
g show that GWAS genotyping arrays capture a

greater proportion of h2 than indicated by previous twin-based

estimates of h2.

Results

Overview of methods
Below, we provide an overview of the approaches we used to

estimate various components of heritability. The details of these

approaches are provided in the Methods section.

We used a linear mixed model approach to estimate compo-

nents of heritability. In this approach, each phenotype is modeled

using a multivariate normal distribution. Each of the components

of heritability that we estimated corresponds to a different model

of the phenotypic covariance.

Narrow-sense heritability (h2) estimates from variance compo-

nent models rely on covariance matrices specifying the genome-

wide genetic relatedness of individuals in the data set. An estimate

of h2 can be obtained by using an identity-by-descent (IBD) based

covariance matrix, which is trivial to obtain from long-range

phased genotype data (see below).

The fine-scale estimates of IBD used here rely on long-range

phasing data that are not available in most data sets. An estimate

of h2 can also be obtained by using an identity-by-state with

threshold (IBS.t) based covariance matrix with all values below a

threshold t set to 0, i.e. focusing on closely related individuals. An

alternative is to use the full IBS based covariance matrix to obtain

an estimate of the heritability explained by genotyped SNPs (h2
g),

however, this requires removing related individuals [12]. If related

individuals are included, the resulting estimate is neither an

estimate of h2 nor an estimate of h2
g.

Previous approaches to estimating the heritability explained by

genotyped SNPs (h2
g ) required filtering related individuals, thereby

increasing the standard error of the estimates. However, joint

estimates of h2 and h2
g can be obtained using two covariance

matrices based on IBS.t and IBS. The first component provides

an estimate of h2, and the second provides an estimate of h2
g. This

approach removes the need to filter related individuals. Alternate-

ly, joint estimates of h2 and h2
g can be obtained using two

covariance matrices based on IBD and IBS, where here IBD

replaces IBS.t to estimate h2.

Broad-sense heritability (H2) is the sum of additive, dominant,

and epistatic components of heritability. The additive, dominant,

environmental (ADE) model can be used to obtain joint estimates

of dominance and additive components of heritability, using two

covariance matrices based on IBD2 (two copies shared IBD) and

IBD [22].

Below, we investigate all of these modeling approaches. Table

S1 contains definitions of all parameters quantifying components

of heritability that are used in the text.

Estimates of narrow-sense heritability (h2)
Ideally, estimates of narrow-sense heritability of a particular

phenotype would be based on a genetic relationship matrix

Author Summary

Phenotype is a function of a genome and its environment.
Heritability is the fraction of variation in a phenotype
determined by genetic factors in a population. Current
methods to estimate heritability rely on the phenotypic
correlations of closely related individuals and are poten-
tially upwardly biased, due to the impact of epistasis and
shared environment. We develop new methods to
estimate heritability over both closely and distantly related
individuals. By examining the phenotypic correlation
among different types of related individuals such as
siblings, half-siblings, and first cousins, we show that
shared environment is the primary determinant of inflated
estimates of heritability. For a large number of pheno-
types, it is not known how much of the heritability is
explained by SNPs included on current genotyping
platforms. Existing methods to estimate this component
of heritability are biased in the presence of related
individuals. We develop a method that permits the
inclusion of both closely and distantly related individuals
when estimating heritability explained by genotyped SNPs
and use it to make estimates for 23 medically relevant
phenotypes. These estimates can be used to increase our
understanding of the distribution and frequency of
functionally relevant variants and thereby inform the
design of future studies.

Components of Heritability via Extended Genealogy
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constructed from causal variants, representing the true genetic

contribution to the phenotype [23]. However, as this set of variants

is typically not known for most phenotypes, a proxy must be used

for the pair-wise genetic covariance of individuals at the causal

variants. Traditionally, this proxy has been derived from

genealogical information, representing, for each pair of individuals

in a sample, the expected fraction of their genomes that is

identical-by-descent (IBD) – i.e. identical as a result of being

inherited from a recent common ancestor [23]. The availability of

dense genome-wide data from microarray SNP genotyping

platforms has made it possible to directly estimate the fraction of

the genome shared IBD between each pair of individuals (KIBD).

However, fine-scale estimation of KIBD in population samples is

dependent on information about the chromosomal phase of alleles,

which requires long-range phasing of the data [17,24,25]. Previous

studies reporting h2 estimates in close relatives based on KIBD

[26,27,28] had very high standard errors based on their study

design and sample size. Recent work has examined IBD-based

heritability estimates from distantly related individuals [29]. Ours

is the first study to provide fine-scale IBD-based estimates of h2

based on pairs of individuals at a range of relationship from

siblings to distant relatives. We refer to these estimates as h2
IBD.

IBD-based estimates of h2 for the 11 quantitative traits (h2
IBD)

are shown in Table 1. For these and subsequent estimates of h2,

age, sex, and geographic region were included as covariates to

prevent confounding. These estimates range from 0.099 for

recombination rate to 0.691 for height. The only quantitative trait

yielding an estimate not significantly different from 0 was sex-ratio

of offspring. For each of the eight quantitative phenotypes with

published estimates of h2, our estimates were smaller than the

mean published estimate. For example, our estimate of 0.69 for

height was lower than previous estimates of 0.80 [30], but was

consistent with previous estimates in being lower for females (0.724

s.e. 0.019) than males (0.780 s.e. 0.029) [31].

Previous studies, based on either genealogical or direct estimates

of IBD sharing, have been limited to closely related individuals

(first-cousins or closer), and may therefore be upwardly biased due

to the impact of shared environment, dominance, or epistatic

interactions [10]. On average, our estimates of h2 were lower than

those from previous studies by a ratio of 0.75 (s.e. 0.067), most

likely because the latter were inflated by one of the three

aforementioned factors. We return to this point below, performing

a pedigree-based analysis to assess the impact of these factors.

Dichotomous phenotypes in this study were ascertained to increase

the number of available cases, leading inflation in h2. A discussion

of this inflation and the resulting estimates are presented in Text

S1 and Table S2.

In most cases, researchers do not have access to long-range

phased genotypes with which to estimate h2. One suggested

solution to this problem is the use of KIBS, the genome-wide

proportion of alleles shared identical-by-state (IBS) at all geno-

typed loci, as a substitute for KIBD [32], when estimating h2 on the

basis of closely-related pairs of individuals (it is assumed that KIBS

provides a poor estimate of KIBD for distantly related pairs of

individuals). Taking advantage of long-range phase based

estimates of KIBD, we sought to evaluate the use of KIBS for the

estimation of h2. For this purpose, we computed KIBS as defined in

[12] and found that it produced downwardly biased estimates of h2

for both simulated and real data sets that included many pairs of

distantly related individuals (see Methods). As noted by Vattikuti et

al [19], this bias is due to the fact that, when used to estimate h2,

the KIBS matrix captures information from two distinct sources,

depending on the degree of relationship between pairs of

individuals. For large values of IBS it estimates genetic covariance

over all SNPs in the genome. For low values of IBS it estimates

genetic covariance over just those SNPs on the genotyping

platform h2
g (see next section). Thus, the resulting heritability

estimates from KIBS therefore tend to lie between the true value,

h2, and the typically lower value of h2
g.

To avoid this bias, we implemented a different approach,

retaining all individuals for the calculation of h2, but setting values

of KIBS less than or equal to a threshold t (KIBS.t) to 0, for t = 0.00,

0.025 and 0.05. This threshold defines the separation between

closely and distantly related individuals. We evaluated this

approach using both simulations and real data sets and observed

a significant downward bias of narrow-sense heritability estimated

from tresholded IBS (h2
IBSwt) at t = 0. For example, when t = 0

h2
IBSwt for height is 0.58, while when t = 0.05 h2

IBSwt = 0.70

(similar results were obtained for the other phenotypes). We

observed no bias at t = 0.025 or t = 0.05 (see Methods and Table

S3). To err on the side of caution, we present h2 values for t = 0.05

(h2
IBSw0:05) in Table 1 and Table S2, for the quantitative and

dichotomous traits, respectively. The difference between narrow-

Table 1. Narrow-sense heritability estimated from IBD (h2
IBD) and thresholding IBS (h2

IBSw0:05) for 11 quantitative traits.

Quantitative trait Na h2
IBD s.e. h2

IBSw0:05 s.e. h2
Pub

Body Mass Index (kg/m2) 20000 0.422 0.018 0.433 0.018 0.4–0.6 [6]

Cholesterol High Density Lipoprotein 19977 0.446 0.017 0.457 0.018 0.5 [6]

Cholesterol Low_Density Lipoprotein 4547 0.196 0.062 0.198 0.063 0.376 [42]

Height (cm) 20000 0.691 0.016 0.704 0.016 0.8 [6]

Menarche Age (years) 15150 0.443 0.022 0.454 0.022 0.4–0.7 [43]

Menopause Age (years) 5540 0.400 0.047 0.409 0.048 0.4–0.6 [44]

Monocyte White Blood Cell 9651 0.343 0.032 0.351 0.032 0.378 [42]

Waist-Hip Ratio 5538 0.181 0.037 0.187 0.038 0.3–0.6 [45]

Sex Ratio of offspring 15000 0.026 0.017 0.021 0.018 -

Total Children 15000 0.103 0.017 0.111 0.018 -

Recombination Rate 10259 0.099 0.023 0.110 0.030 -

aN is the number of individuals used in the analysis of each phenotype. h2
Pub are previously published estimates of heritability from different populations.

doi:10.1371/journal.pgen.1003520.t001

Components of Heritability via Extended Genealogy

PLOS Genetics | www.plosgenetics.org 3 May 2013 | Volume 9 | Issue 5 | e1003520



sense heritability estimated from IBD (h2
IBD ) and h2

IBSw0:05 was less

than 0.015 for all traits and not statistically significant for any of

them. The correlation between the two estimators was 0.9998 and

0.9999 for the quantitative and dichotomous traits, respectively.

Furthermore, in our extensive simulations over real data, the

difference between the estimators was always less than 0.02 and

not statistically significant (see Methods and Tables S3, S4, S5).

These results indicate that when phase information is not available

KIBS can provide unbiased and precise estimates of h2, by means of

h2
IBSw0:05, in data consisting of a mixture of closely and distantly

related pairs of individuals. The choice of threshold t is a function

of the relatedness structure of the individuals in the study as well as

the properties of the population they are drawn from (see

Discussion).

Joint estimation of h2 and h2
g for quantitative phenotypes

Recently, Yang et al [12] developed a method for estimating h2
g,

the fraction of narrow sense heritability explained by genotyped

SNPs (and SNPs in LD with genotyped SNPs). The interest in h2
g

derives from the fact that it is the upper bound on the heritability

that can be described from GWAS (h2
gwas) conducted on the same

genotyping platform used to estimate h2
g. The Yang et al. method

is based on a variance component model with a genetic

relationship matrix KIBS estimated from the genotyped SNPs.

To prevent inflation, the method requires that all pairs of

individuals have KIBS,0.025 [12]. In studies where the Yang et

al. [12] approach has been applied [18,19], the removal of related

individuals resulted in a significant decrease in sample size and a

concomitant increase in the standard error of the heritability

estimates (e.g. a standard error of 19% in one study [18]). Filtering

such that KIBS,0.025 for all individuals in our data leaves less

than 3000 individuals, which is not adequate to estimate h2
g with

low standard error(for example, resulting in a standard error for h2
g

of 10.0% for height).

To enable unbiased calculation of h2
g in data sets that contain a

both closely and distantly related pairs of individuals, we have

devised an alternative approach based on a model with two

variance components (see Methods). The first variance compo-

nent, KIBS has a parameter h2
g,IBSz

and is an estimate of h2
g, the

genetic variance due genotyped SNPs. The second variance

component KIBS, has a parameter h2
IBSwtz

and is an estimate of

h2, the total narrow-sense heritability (the subscript+is used for

both parameters to denote that they are estimated simultaneously).

Although we have access to fine-scale estimates of KIBD, based on

long-range phased genotype data, we demonstrate the application

of this approach using KIBS.t, because fine-scale KIBD estimates

are typically not available to most researchers. We note that in the

empirical results and in simulation, the use of KIBD and KIBS in the

model produced results that were similar to those obtained using

KIBS.t and KIBS (see Methods). Extensive testing of this model was

performed to demonstrate that it estimates the appropriate

quantities (see Methods), and estimates of h2
IBSwtz

closely match

those of narrow-sense heritability estimated from tresholded IBS

and IBD (h2
IBSwt and h2

IBD), both in our data and in simulations.

Table 2 shows heritability results for quantitative traits using the

joint model where heritability estimated from thresholding IBS

(h2
IBSwtz

) and heritability explained by genotyped SNPs (h2
g,IBSz

)

are fit jointly. We examined the nine quantitative traits where

h2.0. Our results are concordant with the previous estimates of h2
g

for height, high-density lipoprotein (HDL), WHR, and BMI

[6,19]. For most of the traits, h2
g accounts for more than half of h2,

with a maximum of 0.75 for waist-to-hip ratio (WHR), and a

minimum of 0.33 for age at menopause. For each trait, we tested

for deviation from a h2
g/h2 ratio of 0.53 (the average across all the

traits) and found that only height, with a value of 0.58 was

significantly different (p-value,0.0017, see Text S1). However, as

our estimates of h2 were smaller than previous estimates, the

fraction 0.53 (s.e. 0.042) of variance explained by genotyped SNPs

based on our estimates of heritability was larger than the fraction

0.40 (s.e. 0.037) based on published estimates [6].

Joint estimation of narrow-sense and heritability
explained by genotyped SNPs for dichotomous
phenotypes

For dichotomous phenotypes, ascertainment in samples with

closely related pairs of individuals induces an upward bias in

narrow-sense heritability jointly estimated from IBS above a

threshold (h2
IBSwtz

) when converting to the liability scale (Table S6

and Text S1). Thus, our h2
IBSwtz

estimates should be viewed as an

upper bound. However, it is possible to account for case-control

ascertainment amongst distantly related pairs when converting

heritability explained by genotyped SNPs jointly estimated from

IBS below a threshold (h2
g,IBSz

) from the observed to the liability

scale [33]. This correction is not possible when affected relatives

are included in the study. For example, a study that ascertains

affected sib pairs will have severely inflated heritability estimates,

and the case-control ascertainment correction does not address

this type of bias (see Text S1). Table 3 shows h2
g,IBSz

estimates on

the liability scale, derived from a model with two variance

components KIBS.t and KIBS, for 11 dichotomous traits. Estimates

of h2
g,IBSz

primarily capture the heritability derived from distantly

related pairs of individuals. Results on the observed scale are given

in Table S7. The inflated narrow-sense heritability estimates of the

dichotomous phenotypes leads to a lower ratio of heritability

explained by genotyped SNPs (h2
g) to h2.

Our results are lower than previous estimates of the heritability

explained by genotyped SNPs (h2
g ) for rheumatoid arthritis (RA), 2

diabetes (T2D), and coronary artery disease (CAD) [34]. The

differences between our estimates and previous estimates could be

due to the use of population controls in our study rather than non-

affected controls, differences in disease prevalence between

populations, differences in the genotyping platform used, differ-

ences in ascertainment strategies such as age matching in previous

work, or actual differences in the heritability of the phenotype

across populations. If a small number of common variants were

responsible for a large fraction of the phenotypic variation, they

would have been identified by previous GWAS. However, since

most of the loci identified through GWAS have a small effect, our

results suggest a highly polygenic model of disease for the

dichotomous phenotypes, as in the case of the quantitative traits.

This is consistent with previous studies [6].

Estimation of heritability explained by shared
environment, dominance, and epistasis

Shared environment, dominance effects and epistasis (i.e. non-

additive interaction between variants) can upwardly bias estimates

of h2 in data sets that contain closely related pairs of individuals

[10]. Phenotypic covariance in siblings can be strongly affected by

dominance effects, and as siblings have correlated phenotypes due

to shared environment, these two factors are strongly confounded

[11]. In addition, Zuk et al [10] showed that epistatic interactions

also lead to inflated estimates of h2 and is an additional

Components of Heritability via Extended Genealogy
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confounding factor. Inflation due to any of these factors affects

interpretation of the relationship between h2
g and h2 and is likely to

result in overestimates of missing heritability when h2 is estimated

using closely related pairs of individuals. We adopted two

approaches to test for evidence of h2 inflation and to determine

the extent to which it could be accounted for by shared

environment, epistasis, or dominance effects (referred to collec-

tively hereafter as dominance-like effects).

First, we estimated additive and dominance-like effects simul-

taneously under an ADE (additive, dominant, and environmental)

model with variance components KIBD and KIBD2, where the latter

represents the fraction of the genome with both chromosomes

shared IBD for each pair of individuals [26]. A likelihood ratio test

of the ADE model against the single variance component model of

KIBD was performed (see Methods) [35], producing two heritability

estimates h2
IBD.

the narrow sense heritability, and h2
IBD2.

the

heritability due to dominance-like effects (the subscript ‘‘.’’denotes

that these two estimates are generated simultaneously from the

same model). The sum of these two estimates is the broad sense

heritability H2. The only class of relationship with significant IBD2

is siblings who share an expected J of their genome IBD2. This

analysis will therefore focus overwhelmingly on the difference

between siblings and other classes of relationship. Siblings are also

subject to epistatic interactions and shared environment and so

this analysis will be influenced by all three factors (shared

environment, dominance, and epistasis). We note that this analysis

will not detect shared environment effects that decay exactly in

proportion to genome-wide IBD.

We initially examined a subset of 11 quantitative and

dichotomous traits, viewed as likely candidates for environmental

effects, in a subset of 15,000 genotyped individuals using the ADE

framework. The results for these phenotypes are shown in Table 4,

with heritability estimates for dichotomous traits given on the

observed scale. Six phenotypes exhibited h2
IBD2.

that was

significantly greater than zero, with an average value of 0.37,

indicating the impact of dominance-like effects. Hypertension in

pregnancy, T2D, CAD and osteoarthritis showed the strongest

effects (see Figure S1). While these results give clear evidence of

Table 2. Heritability estimated from thresholding IBS (h2
IBSwtz

) and heritability explained by genotyped SNPs (h2
g,IBSz

).

Phenotype h2
IBSwtz

s.e. h2
g,IBSz

s.e.

h2
g,IBSz

h2
IBSwtz

h2
g,Pub

Body Mass Index 0.424 0.018 0.229 0.017 0.540 0.16(0.03) [46]

Cholesterol High Density Lipoprotein 0.450 0.017 0.239 0.017 0.531 0.12(0.05) [19]

Cholesterol Low_Density Lipoprotein 0.199 0.063 0.103 0.065 0.518 -

Height 0.687 0.016 0.399 0.017 0.581 0.42(0.03) [46]

Menarche Age 0.451 0.022 0.225 0.022 0.499 -

Menopause Age 0.409 0.048 0.136 0.053 0.333 -

Monocyte White Blood Cell 0.343 0.032 0.198 0.032 0.577 -

Waist Hip Ratio 0.188 0.037 0.140 0.055 0.745 0.13(0.05) [19]

Total Children 0.102 0.028 0.043 0.023 0.422 -

h2
g,Pub are previously reported estimates of h2

g with standard errors given in ()’s.

doi:10.1371/journal.pgen.1003520.t002

Table 3. Narrow-sense heritability explained by genotyped SNPs (h2
g,IBSz

) for dichotomous phenotypes on the liability scale.

Phenotype h2
g,IBSz

s.e. Prevalence h2
g,Pub

Alcohol Dependence 0.235 0.030 0.07

Asthma 0.264 0.067 0.13

Autoimmune Systemic RA SLE SSc AS 0.200 0.048 0.02

Autoimmune Tcell mediated 0.192 0.033 0.05

Breast Cancer 0.117 0.051 0.12

Coronary Artery Disease 0.146 0.017 0.06 0.39(0.06)

Hypertension in Pregnancy 0.083 0.043 0.03

Osteoarthritis 0.126 0.026 0.1

Prostate Cancer 0.204 0.056 0.09

Rheumatoid Arthritis** 0.261 0.061 0.01 0.63(0.06)
0.32(0.07)*

Type 2 Diabetes 0.254 0.041 0.08 0.44(0.06)

h2
g,Pub are previously reported estimates of h2

g with standard errors given in ()’s.

*RA estimate without the MHC region.
**RA in our study contained a mixture CCP positive and negative cases, while the previously published worked is based on CCP positive cases only [34].
doi:10.1371/journal.pgen.1003520.t003
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inflation of h2, they do not distinguish between the possible sources

of inflation. The fact that the narrow sense heritability estimate

h2
IBD.

decreases when fit jointly with h2
IBD2.

demonstrates that the

IBD based estimated conducted over relatives is susceptible to

inflation.

In order to address this issue, we performed a pedigree-based

analysis, making use of genealogical information [36] to assess the

effect of shared environment against those of dominance and

epistasis. For each class of family relationship, we estimated h2 for

each phenotype by dividing the phenotypic correlation by the

genealogical expectation for the fraction of genome shared IBD

(see Methods). Errors in the genealogical database are believed to

be small but may bias the estimates, especially for the more distant

relatives [36]. Each source of inflation is expected to generate a

distinct pattern of heritability estimates across the relationship

classes. We extended our analyses to 17 of the original 23

phenotypes where, for each class of familial relationship, there

were at least 100 pairs of individuals for continuous phenotypes

and at least 50 cases and 50 controls for dichotomous phenotypes

(the full set of phenotypes is given in Text S1). Figure 1 and Table

S8 reveal a gradient of average h2 estimates across the 17

phenotypes, ranging from 0.35 for sibs to 0.2 for avuncular pairs,

that is inconsistent with dominance or epistasis being the sole

source of h2
IBD2.

, either individually or in combination. The large

standard errors prevent more detailed conclusions about the

relative contributions of environment and epistasis. It is possible

that maternal and paternal half siblings have different environ-

mental sharing, but due to their low numbers we analyzed them

together.

If the heritability estimate of two copy IBD when fit jointly with

IBD (h2
IBD2.

) were due to dominance, one would expect all classes

of relationship to exhibit the same value of h2 with the exception of

siblings, but this is not what is observed. (Siblings are the only class

with significant KIBD2 due to dominance and would have larger

estimates of h2 than any other class of relationship.) If h2
IBD2.

were

due to epistasis, one would expect a monotonic relationship

between h2 and KIBD [10], such that all classes sharing the same

fraction of the genome IBD (such as half-siblings and grandparent-

grandchild pairs) yield the same estimate of h2. Again, this is not

what is observed. Finally, if h2
IBD2.

were due to shared

environment, one would expect that relationship classes that

entail considerable shared environment through cohabitation (sibs,

half-sibs and parent-offspring) would have greater values of h2

than relationship classes with the same fraction of IBD but no

cohabitation. Indeed, this is what is observed.

Our results show that h2 estimates for half-siblings are greater

than those of grandparent-grandchild pairs by 0.125 on average.

This suggests that dominance or epistasis are not the sole sources

of h2 inflation in data sets containing many closely related pairs of

individuals. Figure 1 does not imply that first cousins share more

similar environments than parent and offspring or siblings. The

first-cousin phenotypic correlation is multiplied by a factor of eight

to estimate heritability, while the parent-offspring correlation is

only multiplied by two. Thus, first-cousins could share substan-

tially less similar environments (nearly four times less similar), and

still have a higher estimate of heritability as a result.

Two additional results from Table S8 deserve further attention.

First, the greater h2 estimates obtained for parent-offspring than

for avuncular pairs are consistent with shared environment.

Second, the greater h2 estimates obtained for first cousins than for

grand-relatives and avuncular pairs (both have a twofold greater

value of KIBD), suggests that first cousins have shared environ-

mental factors stronger than either of these other classes of

relationship. Although we condition on age a strong non-linear

effect of age on phenotype, or a cohort effect, could produce this

elevated correlation amongst first cousin phenotypes.

Discussion

We have made use of long-range phased genotype data and

genealogical information from an Icelandic cohort to shed light on

the problem of missing heritability, and the relative contributions

of common and rare sequence variants and environmental factors

to complex human phenotypes.

First, we examined IBD based estimation of narrow-sense

heritabilityh2 in data containing both closely and distantly related

individuals. Our estimates were lower than previously published

estimates, which were primarily based on closely related pairs of

individuals. This suggests that previous estimates may be upwardly

biased and that the fraction of variance described by known

associations detected by GWAS of common variants is greater

Table 4. Joint estimates of heritability from two copy (dominant) IBD (h2
IBD2.

) and singly copy (additive) IBD (h2
IBD.

).

Phenotype h2
IBD2.

s.e. h2
IBD.

s.e. Na p-value

Body Mass Index 0.090 0.069 0.381 0.023 15000 0.18

Coronary Artery Disease 0.387 0.078 0.164 0.023 6661 CA 11774 CO 3.36E-04

Cholesterol High Density Lipoprotein 0.141 0.066 0.423 0.023 15000 0.03

Cholesterol Low Density Lipoprotein 0.257 0.071 0.202 0.023 13121 2.81E-04

Osteoarthritis 0.279 0.075 0.181 0.022 2319 CA 11666 CO 3.66E-05

Type 2 Diabetes 0.363 0.072 0.301 0.022 2.86E-08

Total number of children 0.073 0.068 0.095 0.019 15000 0.27

Total number of children (Mothers) 0.180 0.066 0.145 0.020 15000 4.19E-03

Breast Cancer 0.154 0.081 0.128 0.022 2214 CA 11687 CO 0.05

Prostate Cancer 0.296 0.082 0.144 0.027 1792 CA 8328 CO 9.01E-03

Hypertension in Pregnancy 0.826 0.074 0.072 0.021 419 CA 10085 CO 3.33E-16

For dichotomous phenotypes these estimates are inlineed on the observed scale. aN is the number of individuals used in the analysis of each phenotype (CA = cases;
CO = control). The p-values are from the likelihood ratio test of the ADE model against the KIBD model, with values less than 0.05 implying the presence of
environmental, dominance, and/or epistatic interaction effects (i.e. h2

IBD2.
.0).

doi:10.1371/journal.pgen.1003520.t004
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than previously thought. We also showed that estimates of h2

based on thresholding IBS (h2
IBSwt) were nearly identical to those

based on IBD estimates derived from long-range phased genotype

data. Thus, we demonstrate that it is possible to estimate h2 using

either IBD or IBS.t in cases where long-range phased genotypes

are not available.

Second, we developed a new method to estimate h2
g (the

heritability explained by genotyped SNPs), based on both closely

and distantly related pairs of individuals, which has the additional

advantage of providing a joint and directly comparable estimate of

h2. The estimated value of h2
g is an upper bound on the amount of

variation that can be described by SNPs on a given genotyping

platform and is driven almost entirely by common variation.

Previously, it was necessary to prune related individuals from data

sets prior to calculation, substantially increasing the standard error

around the estimate [19,37]. In the case of height in our data set,

the pruning approach resulted in a standard error for h2
g of 10%.

In comparison, our method produced one of only 1.7%.

Finally, we investigated the impact of shared environment,

dominance, and epistasis on estimates of h2 in data sets that

include pairs of closely related individuals. We found that h2

estimates for several phenotypes, including type 2 diabetes and

coronary artery disease, were significantly inflated due to such

dominance-like effects. By examining patterns of correlation across

multiple classes of relationship, we have demonstrated that the

effects of shared environment outweigh those of epistasis and

dominance. However, our results indicate that shared environ-

ment may be the major contributor to inflated values of h2

obtained with data sets that include closely related pairs of

individuals. They also suggest that this inflation, as opposed to

consistently lower heritabilities in Iceland, is the major source of

difference between our estimates those of previously studied

populations. MZ/DZ twin estimates of h2 assume that the two

classes of siblings share the same relevant environmental

exposures. If this is true, then inflation from such studies may be

due instead to epistasis.

A standard way to quantify the contribution of environmental

effects is to fit an ACE model [13]. However, a complexity with

this approach is that it is unclear which relative classes should be

modeled as sharing a common environment. For example, do

parent/child pairs have the same environmental sharing as

siblings? We believe this merits further investigation, although it

is outside the scope of our current work.

Interestingly, our estimate of the heritability of height (0.69) is

lower than previous estimates (0.8) [30] based on studies of twins,

siblings, parent-offspring, half-siblings, and first-cousins. Visscher

[26,27] previously used estimates of IBD amongst siblings instead

of the expected value of 0.5 to estimate the heritability of height.

The standard error of his estimate (mean 0.8, standard error 0.1)

was too large for this estimate to be statistically different from

either 0.69 or 0.8. We note that this estimate would be inflated in

the presence of epistasis since the study focuses on siblings. Zuk et

al [10] proposed that heritability estimates of closely related

individuals maybe inflated in the presence of epistasis, but an

epistasis-only explanation would require a deflation in estimates

Figure 1. Average heritability estimates and 95% confidence intervals of 17 phenotypes for six classes of relationship. The
differences in heritability estimate between classes of relationship are consistent with a shared-environment only effect on phenotypic correlation,
but not with a dominance only or epistasis only effect on phenotypic correlation.
doi:10.1371/journal.pgen.1003520.g001
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moving from closely related individuals (siblings) to more distant

relationships (first-cousins), which is not observed. One possible

explanation is inflation in previous estimates of height due to a

combination of epitasis and shared environment across multiple

levels of relationship (e.g. siblings to first-cousins). These sources of

inflation would be reduced when more distantly related individuals

are available as is uniquely the case in this study (see Text S1).

Heritability may vary between segments of the population, such as

males and females. In this work we chose not to subdivide the

population into segments, but instead make our estimates in the

entire population. The covariates we used (age, sex, geographic

region) will account for mean differences but not differences in

variance or heritability between these groups.

We conclude that, for quantitative traits, more than half of h2 is

explained by genotyped SNPs. Because of our smaller estimates of

h2, this fraction is larger than previous estimates [6,19,34]. It is

encouraging to learn that more can be discovered using the

common variants on microarray SNP genotyping platforms used

in GWAS than some recent pessimistic reports have concluded

[38,39]. One potential reason for the differences between h2
g and

h2 is that rare variation accounts for a significant fraction of the

total narrow-sense heritability. If this is the case, then genome-

wide sequencing studies offer a potential route to capturing the

remaining heritability.

Methods

Ethics statement
This research was approved by the Data Protection Commis-

sion of Iceland and the National Bioethics Committee of Iceland.

The appropriate informed consent was obtained for all sample

donors.

deCODE data set
We analyzed 38,167 individuals from the deCODE data set

genotyped on the Illumina 300K chip. Owing to the sensitive

nature of genotype data, access to these data can only be granted

at the headquarters of deCODE Genetics in Iceland. The details

of the genotyping, quality control, IBD estimation and genealogy

are described elsewhere [20,28]. . The 11 quantitative phenotypes

examined in this study are body mass index (BMI), high density

lipoprotein cholesterol (HDL), low density lipoprotein cholesterol

(LDL), height, age at menarche, age at menopause, monocyte

white blood cell count, waist hip ratio (WHR), sex ratio, number of

offspring, and recombination rate (see Table 1). The 11

dichotomous phenotypes are alcohol dependence, asthma, auto-

immune Systemic RA+SLE+SSc+AS (rheumatoid arthritis, sys-

temic lupus erythematosus, systemic sclerosis, ankylosing spondy-

litis), T-cell mediated autoimmune disease, breast cancer (BC),

coronary artery disease (CAD), hypertension in pregnancy,

osteoarthritis, prostate cancer (PC), rheumatoid arthritis (CCP

positive and negative) (RA), type 2 diabetes (T2D), and left

handedness (see Table S2). Dichotomous phenotypes are diag-

nosed by physicians with the exception of left-handedness, which is

measured by self-report. Continuous phenotypes are measured by

health professionals, medical laboratories, and an extended

genealogy [36]. The exceptions are age at menopause and

menarche, which are measured by self-report.

The deCODE Genetics genealogy database, containing all

contemporary Icelanders and most of their ancestors going back to

the year 1650, was used to determine the genealogical relation-

ships between individuals [36].

A description of the phenotypes is given in Text S1. Estimation

of IBD2 is analogous to estimation of IBD, but only includes

instances where individuals are IBD on both chromosomes.

Statistical methods
We used a linear mixed model approach to estimate the

components of heritability in our data sets. In this approach, each

phenotype Y is modeled from a multivariate normal distribution

Y*N(m,S) where m is the mean phenotype. Each of the

components of heritability described correspond to a different

model for the phenotypic covariance matrix S.

For a normalized phenotype with mean 0 and variance 1, to

estimate h2
IBD, we set S~KIBDh2

IBDzI(1{h2
IBD) and find the

estimate of h2 that maximized the restricted maximum

likelihood (REML) of Y being generated from S using the

GCTA software [40]. We applied the same method to estimate

h2
IBSwt and h2

IBS using the kinship matrices KIBS.t and KIBS

respectively. To jointly estimate h2
IBSwt�

+h2
g,IBS�

we fit Y with

S~KIBSwt(h
2
IBSwt�

{h2
g,IBS�

)zKIBSh2
g,IBS�

zI(1{h2
IBSwt�

). We

applied the same method to estimate h2
IBD0

+h2
g,IBS0

using kinship

matrices KIBD and KIBS. The intuition for this approach is that

the large elements of genetic covariance matrix KIBS are good

estimates of the pair-wise IBD of individuals. Indeed, this is why

h2
IBSwtz

is a good estimate of h2
IBD. However, the small elements

of KIBS only provide information about SNPs in LD with those

on the genotyping platform. This is why the KIBS applied to

unrelated individuals in the approach of Yang et al. estimates

h2
g. By breaking KIBS into two components, one provides

estimates of the phenotypic variance explained by SNPs on the

genotyping platform, and the other provides an estimate of the

remaining phenotypic variance. The total narrow-sense herita-

bility is the sum of the parameters for KIBS.t and KIBS, and the

heritability explained by genotyped SNPs is the parameter for

KIBS.

To estimate h2
IBD2.

and h2
IBD.

we fit Y with

S~KIBD2h2
IBD2.

zKIBDh2
IBD.

zI(1{h2
IBD2.

{h2
IBD.

). The param-

eter for KIBD2 is a combination of shared environment,

dominance, and epistatic effects. The parameter for KIBD is the

narrow-sense heritability. Under the assumption of no shared

environment or epistatic effects, the sum of these estimates is the

broad-sense heritability. In all cases we adjusted for age, gender,

and region of Iceland as fixed effects. We use REML including a

constant vector instead of ML to prevent bias in heritability

estimation [35]. We estimated the prevalence of each dichotomous

phenotype as the fraction of cases in the entire cohort.

The KIBS matrix is estimated as defined in [12]. Entry j,k is

X

i

(xij{2pi)(xik{2pi)

N2pi(1{pi)
ð1Þ

where xij is the genotype (0,1,2), N is the number of SNPs,

and pi is the minor allele frequency of SNP i in the study.

Entry j,j is an estimate of the inbreeding coefficient

1z
P

i

x2
ij{(1z2pi)xijz2p2

i

N2pi(1{pi)
. KIBS.t is the KIBS matrix with all

entries less than t set to zero, with the exception of the diagonal,

which is not changed.

Entry (i,j) of the KIBD matrix is the fraction of the genome

shared IBD between individuals i and j. Pair-wise IBD estimates

were estimated as described in [28]
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X

s

IBD½j,k�s
L

ð2Þ

where L is the length of the genome and IBD [j,k]at nucleotide s is

1 if individuals j,k are IBD at position s and 0 otherwise. Entry (j,j)

is 1+ the fraction of the genome shared IBD between the maternal

and paternal copies. The IBS matrices are all adjusted to have

mean zero (Equation 1) and the IBD matrices are not (Equation 2).

Entry (i,j) of the KIBD2 matrix is defined similarly, but pair-wise

IBD2 estimates (both chromosomes IBD) are used in place of pair-

wise IBD estimates. That is, a pair of individuals is IBD2 at a

particular SNP if they are IBD on both haplotypes. Entry, (j,j) is set

to 1.0. We note that none of the kinship matrices defined here, and

hence none of the resulting heritability estimates rely on the

genealogy, but are based on direct estimates from the genetic data.

Simulations with simulated genotypes
We performed a set of experiments over simulated genotype

data in order verify that our estimates of h2
g and our h2

IBSwt

estimates of h2 were estimating the correct heritabilities. We

generated simulated observed genotypes of individuals as random

draws from a binomial distribution with minor allele frequencies

p1,p2,…,pN where the number of SNPs N = 5,000 and pi drawn

uniformly between 0.05 and 0.5. We then repeated this process to

create unobserved genotypes for each individual. The observed

genotypes represent those on a genotyping platform and the

unobserved represent those not in LD with the genotyped SNPs.

To simulate a pair individuals with x% of their genome shared

IBD, we copied x% of the SNPs of the first individual’s haplotypes

onto the corresponding SNPs of the second individual in the pair.

We normalized the genotypes to have mean 0 and variance 1 and

set the effect size for each SNP to be the square root of 0.5/10000.

The phenotype for each individual is the sum over all SNPs of the

product of the normalized genotype and the effect size plus noise

drawn from a random distribution with mean 0 and variance 0.5.

This gives a phenotype with mean 0, variance 1, a of heritability

50%, of which 50% is due to observed genotypes and 50% is due

to unobserved genotypes.

We then constructed relationship matrices K using the observed

genotypes. For KIBD, we assumed that we had access to the true

value of IBD for each pair of individuals. We constructed data sets

of 1,400 individuals with several different types of relationship

structure, created 1,000 replicates of each data set, and estimated

narrow-sense heritability h2
IBD using the IBD matrix KIBD, h2

IBSwt

using the IBS matrix KIBS.t, and h2
IBS using the complete IBS

matrix KIBS. We estimated the joint estimates h2
IBSwt�

and h2
g,IBS�

of h2 and h2
g using the h2

IBSwt approximation for IBD, and

compared this to the joint estimates h2
IBD0

and h2
g,IBS0

, which use

IBD directly.

The results shown in Table S3 demonstrate that KIBD and

KIBS.t give good estimates of h2 when there are closely related

individuals in the data set, but have a high variance when the

relationships are more distant. KIBS is not a good estimator of

either h2 or h2
g when there are related individuals in the data set,

since it lies in between h2 and h2
g. Both KIBD+KIBS and

KIBS.t+KIBS provide joint estimates of h2+h2
g without the need

to remove related individuals. When one of every pair of

individuals with KIBS.0.025 is removed from the data set, the

estimate of h2
g has the same mean as when estimated simulta-

neously with KIBS.t, but the variance is significantly higher.

When the related individuals are closely related (e.g. K = 0.5),

KIBS.t is a good estimator of KIBD and the mean heritability

estimate is the true h2. However, while pair-wise IBS is a good

estimate of the pair-wise IBD, the variance of the IBS estimate is

distributed according to the observed genotypes. The heritability

estimate from KIBS is therefore biased towards the heritability

explained by genotyped SNPs. This is why h2
IBS always lies in

between h2 and h2
g and using KIBS to estimate narrow-sense

heritability without thresholding can lead to biased heritability

estimates.

When the relatedness of individuals in the data set is moderate

(e.g. K = 0.125), the joint model KIBS.t+KIBS does not provide a

good estimate of since KIBS.t will be influenced by genotyped

variants. However, h2
g is still unbiased and the variance of h2

g is

lower than it would have been if related individuals were removed.

Therefore, we have a means of including distantly related

individuals when estimating h2
g. The value of KIBS.t as an

estimate for the true heritability depends on the relatedness

structure of the data set. In data sets with families, such as the

cohort examined here, or the FHS data set [19], it is possible to

estimate both h2 and h2
g. In data sets with moderate relatedness,

the robustness of the thresholding approach should be examined

via simulation.

Simulations with real genotypes
We performed a similar set of experiments to those described

above, but this time used real genotype data with simulated

phenotypes in order to verify that issues due to LD, IBD

estimation, population structure, or other similar confounders

did not affect our results. We selected 8000 individuals randomly

from the complete data set and generated two sub-phenotypes for

each individual. We generated two sets of causal variants C1 and

C2 by selecting a causal variant every 500 SNPs along the even

chromosomes for C1 and repeating the process along the odd

chromosomes for C2. We chose effect sizes a1 and a2 for C1 and

C2 respectively and set the sub-phenotypes for an individual by

summing the product of their genotypes (0,1,2) times the

corresponding effect sizes. We then added random noise e1 and

e2 to each sub-phenotype and summed together the two sub-

phenotypes to generate a final phenotype for each individual. The

even chromosomes correspond to the observed genotypes in a

GWAS and the odd chromosomes correspond to SNPs not in LD

with the genotyped SNPs. For any choice of a1 and a2, and

variances of e1 and e2 we can compute the heritability of the

phenotype due to all SNPs h2 and the heritability explained by

genotyped SNPs h2
g.

We recomputed the relationship matrices K using only the even

chromosomes. For each simulated phenotype we estimated

heritability using KIBD, KIBS, KIBS.t, and KIBS.t+KIBS. The

results are shown in Tables S5, S7 and as was the case for the

simulated synthetic data sets above, the heritability estimates are

within one standard deviation of the true value in all cases with the

exception of KIBS, which always lies between h2 and h2
g. We

confirm the bias of using KIBS by examining the estimate of h2
IBS in

several real phenotypes (Table S9). We observe that it always lies

between h2
IBSwtz

and h2
g,IBSz

.

Heritability estimation of classes of related individuals
For a given class of relatives, (e.g. siblings), for each phenotype

we computed the correlation between the phenotype across all

pairs of that class. The heritability estimate was then generated by

dividing the correlation by the fraction of the genome expected to
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be shared IBD (e.g. 0.5 for siblings). It is not possible to place

standard errors on the heritability estimate of the phenotypes due

to the complex relatedness structure of the individuals in each

class. One pair of siblings for example, might be the grandfather

and granduncle of another pair of siblings. However, it is possible

to compute an empirical mean and standard deviation across

traits.

To compare the classes of relatives we computed the empirical

mean and standard deviation of the differences of the heritability

estimates across traits. The standard error of the difference is the

standard deviation estimate divided by the square root of the

number of phenotypes (17 in this case). We applied a Wald test to

determine the p-value [41].

To determine the significance of the combined effects of shared

environment, dominance, and epistatic interaction we constructed

a one degree of freedom likelihood ratio test. We computed the

likelihood of the ADE model fit with covariance matrices

KIBD2+KIBD and the likelihood of the narrow-sense heritability

estimated from KIBD.

Upward biases in narrow-sense heritability estimates
The heritability estimates in Table 1 and Table S2 may be

upwardly biased due to shared environment since closely related

individuals will have correlated phenotyped due to shared genetics

as well as shared environment. The heritability estimates on the

liability scale in Table S2 may be additionally upwardly biased due

to sample ascertainment. As affected individuals in this analysis

were non-randomly ascertained with respect to disease status and

family relationship (for example, the probability of ascertaining

two affected sibs is greater than that of ascertaining two affected

first-cousins.), all h2 estimates based on related pairs of individuals

will tend to be inflated. We converted heritability estimates from

the observed to liability scale (see Table S3) using the prevalences

shown in Table S2 [33], noting that these estimates represent an

upper bound. To our knowledge, no method exists to adjust h2

estimates for this type of ascertainment.

Supporting Information

Figure S1 Average heritability estimates of type 2 diabetes,

coronary artery disease, and hypertension in pregnancy for six

classes of relationship. The differences in heritability estimate

between classes of relationship are consistent with a shared-
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