Decoupling Congestion Control and Bandwidth Allocation Policy With
Application to High Bandwidth-Delay Product Networks

by
Dina Katabi

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
[June 2003]
March 2003

(© Massachusetts Institute of Technology 2003. All rights reserved.

21 N A=
Author 7 [FE 17t R T T T T e e e e e e e, :
% Department of Electrical Engineering and Computer Science
: , March 7, 2003
— — [IAN
Cel‘tlﬁed by ce e D R S I (i A S R < (I T T T TS
David Clark
Senior Research Scientist
Thesis Supervisor
PN
T T e T
ACCCpth by o A I I I B IR SRy S ar S o o

Arthur C. Smith
Chairman, Department Committee on Graduate Students

[~ MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

ARCHIVES : JuL 07 2003

LIBRARIES

Decoupling Congestion Control and Bandwidth Allocation Policy With Application
to High Bandwidth-Delay Product Networks
by
Dina Katabi

Submitted to the Department of Electrical Engineering and Computer Science
on March 7, 2003, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

In this dissertation, we propose a new architecture for Internet congestion control that decouples the
control of congestion from the bandwidth allocation policy. We show that the new protocol, called
XCP, enables very large per-flow throughput (e.g., more than 1 Gb/s), which is unachievable using
current congestion control. Additionally, we show via extensive simulations that XCP significantly
improves the overall performance, reducing drop rate by three orders of magnitude, increasing uti-
lization, decreasing queuing delay, and attaining fairness in a few RTTs. Using tools from control

theory, we model XCP and demonstrate that, in steady state, it is stable for any capacity, delay,
~ and number of sources. XCP does not maintain any per-flow state in routers and requires only a
few CPU cycles per packet making it implementable in high-speed routers. Its flexible architecture
facilitates the design and iinplementation of quality of service, such as guaranteed and proportional
bandwidth allocations. Finally, XCP is amenable to gradual deployment.

Thesis Supervisor: David Clark
Title: Senior Research Scientist

Acknowledgments

I have been fortunate to have Dave Clark as my adviser. Dave simultaneously provided the freedom
to work on what I wanted and the guidance that enabled me to succeed in my work. My PhD
committee: Charles Rohrs, John Guttag, and Hari Balakrishnan provided valuable counsel on both
research and writing. Mark Handley collaborated on part of this work and contributed much insight.
Tim Shepard and Mangesh Kasbekar read this dissertation and provided important comments. John
Wroclawski, Karen Sollins, Barbara Liskov, Frans Kaashoek have supported me at various stages
of my graduate career. I am very grateful to all my friends on the 5th floor of LCS who made my

graduate years at MIT exciting and pleasurable.

Contents

1 Overview

1.1 Decoupling Congestion Control from the Bandwidth Allocation Policy
1.2 Congestion Control in Large Bandwidth-Delay Product Networks
1.3 Contributions & Organization
14 SUMMArY ot vt e e e e

2 Background & Related Work

2.1 Definitions. EETIP A oL e

2.2 Internet Congestion Control e P
221 End-Systerh Céngéstion Control Protocols D
2.2.2 Router Congestion Controllers

2.3 Expressiveness & State
231 ECN .. e

2.3.2 Packet Pair & Fair Queuing

2.3.3 Core Stateless Fair Queuing (CSFQ)

23.4 ABRCongestionControl

2.4 The Challenges for Internet Congestion Control
2.5 SUMMATY . . .« v o e e e e e e e

3 The Problem

3.1 TCP’s Performance in High Bandwidth-Delay Product Networks '
3.2 SimulationResults oo e
33 SUMMATY . .« v v v v e e e e e e e e e e e

4 XCP: eXplicit Control Protocol

4.1
42
43
4.4
4.5
4.6
4.7

4.8
4.9

Design Rationale
The XCPProtocol o
Framework
The CongestionHeader,
The XCP Sender e
The XCPReceiver ittt e
The XCP Router: The Control Laws
47.1 The Efficiency Controller (EC)
4.7.2 The Fairness Controller (FC)
4.7.3 Notes on the Efficiency and Faimess Controllers
Stability Analysis
Summary

5 Performance

51
52

53

5.4
5.5
5.6
5.7

6.1

SimulationSetup..........i'.
Comparison with TCP and AQM Schemés C .7 B
5.2.1 Impabt oingh Capa(‘:ity‘ e .- L A
522 ImpaCtkofFeédba.ék'Délay A L
523 Impactof Numberof Flows
5.2.4 Impact of Short Web-Like Traffic
525 Faimess e e e
5.2.6 A More Complex Topology
The Dynamics of XCPo
5.3.1 Convergence Dynamics
5.3.2 Robustness to Sudden Increase or Decrease in Traffic Demands
Robustness to Large RTT Variance
Impact of Error-Based Drops
Large Scale Simulations

Summary

Quality of Service (QoS)

QoSModels

6.2 Providing QoS Within the XCP Framework

6.3 Relative Bandwidth Allocationin XCP
6.3.1 Evaluation
6.4 Providing Bandwidth Guaranteesin XCP
6.4.1 Service Framework . . .‘
6.4.2 Modifying the Congestion Header
6.4.3 BehavioroftheSender L. .

6.4.4 Control Plane: Distributed Admission Control With No Per-Flow State

6.4.5 DataPlane e
6.4.6 Evaluation @ @ i e e e e e e e
6.5 Concluding Remarks

Non-Compliant Flows

7.1 Flow MOnitoring o vt e e e e e
7.2 Networks with No Flow Protection e e e e
7.3 Senders’ Misconduct e L
731 TheTliar AU e .
732 TheD-Har. . ..ot
7.3.3 Responsive ABUSETS
7.34 Unresponsive ADUSET e
7.4 Receivers’ Misconduct e
7.5 ConcludingRemarks oo
Gradual Deployment
8.1 XCP-based Core Stateless Fair Queuing
82 ATCP-Friendly XCP i
83 Summary e

Conclusion & Future Work

9.1 Contributions e e
9.1.1 Good Performance in Networks with Large Bandwidth-Delay Product . . .
9.1.2 XCP Outperforms Other Protocols With No Per-Flow State

9.1.3 Integrating Control Theory with Internet Protocols

9.1.4 New Concepts for Internet Bandwidth Management 112

9.1.5 A Simple Approach to Quality of Service 113
9.2 Limitations e e e e 114
921 Deployment. 114
9.2.2 Security Without Per-Flow State 114
9.3 Outstanding Problems & Future Work 115
9.3.1 Multi-AccessLinks 115
9.3.2 Increasing Robustness to RTT Variance 116
9.3.3 Specifying the Bit Format of the Congestion Header 116
94 FinalRemarks 117
XCP Implementation 118
Analysis of XCP Stability 121
B.1 Model e 121
B.2 Stability, 122

List of Figures

2-1

3-1
3-2
3-3

4-1

5-4

5-5

5-6

5-7

TCP . o 21
A single bottleneck topology. Lo 33
TCP’s average utilization decreases with increased bottleneck bandwidth. 34
TCP’s average utilization decreases with increased delay. 35
Congestion header. 41

A single bottleneck wopology. PR s
A parking lot topology. Arrows represent traffic directions. 53

XCP significantly outperforms TCP in high bandwidth environments. The graphs
compére the efficiency of XCP with that of TCP éver RED, CSFQ, REM, and AVQ,
as a function of capacity. Lo 54
XCP significantly outperforms TCP in high delay environments. The graphs com-
pare bottleneck utilization, average queue, and number of drops as round trip delay
increases when flows are XCPs and when they are TCPs over RED, CSFQ, REM,
and AVQ. 55
XCP is efficient with any number of flows. The graphs compare the efficiency of
XCP and TCP with various queuing schemes as a function of the number of flows. 56
XCP is robust and efficient in environments with arrivals and departures of short
web-like flows. The graphs compare the efficiency of XCP to that of TCP over
various queuing schemes as a function of the arrival rate of web-like flows. 57
XCP is fair to both equal and different RTT flows. The graphs compare XCP’s
Fairness to that of TCP over RED, CSFQ, REM, and AVQ. Graph (b) also shows

XCP’s robustness to environments with different RTTs. 59

5-8 Simulation with multiple congested queues. Utilization, average queue size, and
number of drops at nine consecutive links (topology in Figure 5-2). Link 5 has the
lowest capacity along thepath.

5-9 XCP’s smooth convergence to high fairness, good utilization, and small queue size.
Five XCP flows share a 45 Mb/s bottleneck. They start their transfers at times 0, 2,
4,6,and 8seconds. e,

5-10 XCP is more robust against sudden increase or decrease in traffic demands than TCP.
Ten FTP flows share a bottleneck. At time ¢t = 4 seconds, we start 100 additional
flows. Att = 8 seconds, these 100 flows are suddenly stopped and the original 10
flows are left to stabilize again.

5-11 The RTT distribution at an OC3 access link at the Supercomputer center in San
Diego, (a reproduction of Figure 13-a-topin [42]).

5-12 The performance of XCP and TCP+RED+ECN when the RTT is distributed accord-
ing to Figure 5-11 (values are logged every second).

5-13 The performance of XCP and TCP+RED when the RTT is uniformly distributed

over [5 ms, 7], where 7 is the value on the x-axis. e

5-14 The throughput of a single XCP fiow as a function of packet error rate. Capacity |

is 4 Gb/s, RTT = 80 ms. For a reference, the figure also shows the steady state
throughput of a TCP flow as a function of the packet errorrate.
5-15 A large simulation with 50 nodes, 153 links, and 1000 flows.
5-16 A comparison between the efficiency of XCP and TCPover RED.

6-1 Comparison between XCP’s relative bandwidth allocation and MulTCP [24], CSFQ
[75], and Weighted Fair Queuing (WFQ) [25]. Three flows each transferring a 10
MB file over a shared 10 Mb/s bottleneck. Flow 1's weight is 5, Flow 2’s weight is
10, and Flow 3’s weight is 15. Throughput is averaged over 200 ms (5 RTTs). . . .
6-2 The range of relative bandwidth allocation provided with XCP, MulTCP, CSFQ,
and WFQ. The figure shows the ratio of the throughputs of two flows sharing a
bottleneck as a function of the ratio of their weights. Each point is the average of

10runs.

60

61

62

63

64

75

6-3

6-5

6-6

6-7
6-8

7-1

7-2

7-3

7-4

R, tracks the reservation made by the guaranteed bandwidth flows. The guaranteed
bandwidth flows arrive separated by 5 sec. Each flow requests 15% of the bottleneck
bandwidth. The rest of the bandwidth is filled up by best-effort flows. Since G = 0.8
capacity, we can accommodate at most 5 guaranteed bandwidth flows. At ¢ = 50,
active guaranteed flows are stopped, which frees up the reserved bandwidth. The
cycle repeats with new arrivals of guaranteed flows.
Admission control with on-off flows. The guaranteed service flows all arrive around
t = 10s and stop at t = 90s. The router accepts them as long as B, < G. The
figure shows that although the on-off flows do not use all of their reserved bandwidth
(R., < Ry), the router maintains the reservations. e e e e e
The service perceived by the guaranteed bandwidth flows. 6-5-a shows that the
flows obtain their reserved throughput. 6-5-b shows that the delay perceived by
guaranteed service flows is almost always the RTT.
The service perceived by best-effort traffic. A 10 Mb/s bottleneck is shared by 10

best-effort flows and 5 guaranteed service flows. The guaranteed service flows are

consuming 75% of the bandwidth. The rest is used by the best-effort traffic.

A large simulation topology with 153 links and 50 nodes. o
Guaranteed bandwidth flows experience negligible worst case queuing delays. The
figure shows the maximum G-queue size at each of the links in Figure 6-7, which

is the worst case queuing delay experienced by guaranteed bandwidth flows at that

The impact of T-lying on fairness. The throughput of a single T-liar that is sharing
a bottleneck with 19 compliant flows.
The impact of T-lying on efficiency. The utilization and queue size of a bottleneck
traversed by 20 T-liars.
The impact of D-lying on faimess.The throughput of a single D-liar that is sharing
a bottleneck with 19 compliant flows.
The impact of D-lying on efficiency. The utilization and queue size of a bottleneck
shared by 20 flows. The graphs are for the cases when all flows are D-liars, 75% of

the flows are D-liars, and 50% of the flows are D-liars.

10

&3

84

85

86
87

89

95

95

97

7-5

7-6

7-7

7-8

8-1

9-1

B-1
B-2

The impact of a responsive abuser on faimess. The graphs on the right use TCP,
whereas the graphs on the leftuse XCP. 100
A comparison between the efficiency of XCP and TCP, when all users increase
aggressively by multiplying their fair positive increase by again > 1.. 101
A comparison between the efficiency of XCP and TCP, when all users decrease
leniently by multiplying their fair negative decrease by again < 1. 101

The impact of a non-responsive abuser in an XCP and a TCP network. The graphs

on the right use TCP whereas the graphs on the leftuse XCP. 103
XCPisTCP-friendly. 108

A black box model of the efficiency controller and the fairness controller. 112
The feedback loop and the Bode plot of its open loop transfer function. 123
The Nyquist plot of the open-loop transfer function with a very small delay. 123

11

List of Tables

6.1

QoSModels e

6.2 The throughputs of the guaranteed bandwidth flows that got admission into the net-

7.1

work in Figure 6-7.

Various sender’s misconducts, their impact on efficiency and fairness, and whether
a strategic sender has an incentive to perform such a misconduct. IG and DG are the
increase and decrease gains respectively, 7; is the rate of unresponsive traffic, and
C is the capacity. To evaluate the incentive of the user, we assume that the sender is

a strategic agent who misbehaves ic increase its throughput.

12

88

Chapter 1

Overview

In this dissertation, we take a step back and re-examine the design of Internet congestion control.

Although congestion control is a two-decade old problem, which has been studied in a large number

of papers and theses, we believe that it is time to re-visit the principles underlying the current

design for two reasons. First, current TCP-based congestion control exhibits poor performance

in environments with a large per-flow bandwidth-delay product and cannot deliver a large end-to-

end throughput (i.e., more than Gb/s) even when the path ;hasienough_spare bandwidth {5, 32, 28].
Currently, this problem occurs only over a smail number of paths that enjoy a significantly large .
end-to-end bandwidth [3, 28, 2]. However, technology trends indicate that we are moving quickly
toward an Internet where tens of Gb/s end-to-end paths are common [7, 21]. Demands for using
this bandwidth are also increasing at an exponential rate [21], creating a need for protocols that
can achieve a very large per-flow throughput. Second, congestion control remains a hard and open
problem. As a community, we have made many advances since the installation of congestion control
in the Internet in 1989 [39]. However, there are still many open problems such as the need for a
less oscillatory and more predictable behavior [54] and better fairness over shorter time scales [12].
Thus, this dissertation proposes a new architecture for managing Internet bandwidth that is based
on decoupling congestion control from the bandwidth allocation policy. It shows that this approach
stays efficient as the per-flow bandwidth delay product increases, and also improves the overall

performance in current networking environments.

13

1.1 Decoupling Congestion Control from the Bandwidth Allocation
Policy

The management of Internet resources involves two objectives:

1. Efficiency: The bandwidth should be used efficiently but without congesting the network. This

means maintaining high link utilization, small queue size, and almost no packet drops.

2. Bandwidth Allocation Policy: The resources should be divided among the users to satisfy some
desired bandwidth allocation policy. For example, bandwidth may be divided among users accord-
ing to max-min fairness, where users who share the bottleneck link and have enough demands are
allocated equal bandwidth shares.! Also, bandwidth may be allocated to users proportionally to the
price they pay, or according to their priorities, etc.

Internet resources are managed by end-system congestion control protocols and router queuning
mechanisms. The vast majority of these [13, 66, 34, 35, 11] do not distinguish the problem of
congest1on control and efficient network usage from the problem of apport1on1ng the bandw1dth

‘between 1nd1v1dua1 users; they use a s1ngle control rule to regulate both For example TCP wh1ch

| is the dormnant congestion control protocol in the Internet uses a smgle control law called Add1t1ve—
‘v_Increase Multlpl1cat1ve Decrease (AIMD) to control both congest1on and fairness [20] "Thus, wh11e .,
'controllmg congest1on TCP enforces on its users a particular bandwidth allocation?

The coupling of efficient network utilization and a particular bandwidth allocation in congestion
control protocols results in two adverse effects. First, it becomes difficult to change the bandwidth
allocation policy without affecting the dynamics of congestion/efficiency control. Second, imposing
two objectives on a single control law (i.e., efficiency and a particular allocation) makes it hard to
find a control law that excels in achieving either goal. For example, in the case of TCP, AIMD
neither converges to optimal utilization [78, 51, 58] nor achieves high fairness [12, 37, 587

We propose a new approach for bandwidth regulation that decouples congestion control from
the process that enforces the bandwidth allocation policy. This decoupling is done by recognizing
that efficiency and the occurrence of congestion are determined by aggregate traffic on a link, and
are independent of the relative rates of the individual flows in the aggregate traffic. In contrast, a

bandwidth allocation policy is concerned with the relative rates of individual flows inside aggregate

'For an exact definition, see §2.1.
The enforcement happens as long as the the routers do not actively intervene to change this allocation.
31t is typical for the rates of competing TCP flows to differ by 25% to 50% of the fair share.

14

traffic. Thus, congestion control can be decoupled from the bandwidth allocation policy by using
two controllers, one for controlling the aggregate traffic and another for controlling the relative
throughputs of the flows inside the aggregate. More precisely, the congestion controller is concerned
with matching the input aggregate traffic at a link to its capacity and draining any persistent queue.
The allocation controller shuffles the bandwidth inside the aggregate traffic, changing the relative
rates of the flows without changing the rate of the aggregate so that the flows converge to the desired
bandwidth allocation.

We show that this decoupling simplifies protocol design, improves network efficiency, and en-
ables the protocol to better match the desired bandwidth allocation, all of which can be achieved
while maintaining the scalability of current congestion control. More importantly, the decoupling
allows us to solve the poor performance problem facing TCP in high bandwidth-delay product net-

works.

1.2 Congestion Control in Large Bandwidth-Delay Product Networks

High bandwidth-delay networks are environments where th'g per-flow bandwidth can reach a few
Gbl/s, or the delay is so large that the flow has a few MB of outstanding traffic in the pipe. These
environments are becoming more common in today’s Internet [3, 28, 2]. In particulaf, with the
advent of gigabit Ethernet, many paths can potentially provide a very large end-to-end throughput.
Further, with the fiber capacity increasing exponentially with time [21, 56], these environments are
expected to become more common. The huge per-flow bandwidth is unlikely to eliminate network
congestion because demands for bandwidth are doubling every year [21]. In today’s Internet, many
organizations generate a few Gb/s of data that they want to transfer over the Internet from the
collecting site to the processing site (e.g., astronomy researchers, physicists, backup systems, and
shared storage). However, current TCP-based congestion control does not allow a few Gb/s end-to-
end steady state throughput [5, 28, 32]. There are two major reasons why TCP cannot maintain a
very large per-flow throughput. First, the AIMD law in TCP increases by one packet every round
trip time (RTT). Although this increase is reasonable in current networks, it becomes too slow in
environments with very large spare bandwidth; TCP might take thousands of RTTs to ramp up to
full utilization when a large amount of bandwidth becomes suddenly available after a period of
congestion. Second, the TCP throughput is inversely proportional to the square root of the packet

loss rate. A very large end-to-end TCP throughput requires an exceptionally small packet error rate

15

(PER) that is challenging even to low bit error rate fiber link technology?

As a remedy, we propose the eXplicit Control Protocol (XCP), a congestion control protocol
that embodies the principle of decoupling congestion control from bandwidth allocation and uses
this decoupling to achieve good performance in high bandwidth-delay networks. XCP provides a
joint design of the end systems and the router and is characterized by the existence of separate con-
gestion/efficiency controller and fairness controller at the router. The separation of the controllers
allows XCP to use a fast controller to control congestion, which increases the rate proportionally
to the amount of unused bandwidth along the path and decreases it proportionally to the degree of
congestion. This allows XCP to quickly increase its rate when a large amount of spare bandwidth
becomes suddenly available. To control fairness, XCP uses an AIMD control law, which has been

shown to achieve fair bandwidth allocation [20].

1.3 Contributions & Organization

This dils_.sqgtkationy contributes a new architecture for Internet congestion control that is based on de-
co‘u‘lplily‘lgvcoAI:lgestion control from the bandwidth allocation policy. It develops XCP, an explicit -
congestion control protocol that pérforms' efﬁbi‘ehtly in large bandwidth-delay product networks
and traditional lower bandwidth environments. The dissertation studies the performance of XCP
using extensive simulations and demonstrates some of its stability properties using control theoretic
analysis. Further, it develops a simple approach for quality of service that uses the XCP frame-
work to deliver proportional and guaranteed bandwidth allocations. A complete description of our
contributions is in §9.

The rest of this dissertation is organized as follows. In §2, we provide the background necessary
to understand the objectives of a congestion control protocol and the constraints that involve its
design. We also describe previous work in the area. In §3, we describe in more details the problems
facing TCP congestion control as the per-flow bandwidth-delay product increases. §4 forms the
core of this thesis, where we present XCP, a congestion control protocol that decouples congestion
control from bandwidth allocation. Using extensive simulations, we show in §5 that XCP outper-

forms TCP both in traditional environments and high bandwidth-delay product networks. In §6,

“The typical bit error rate (BER) over fiber is 107'° to 10~ [69, 10]. Assuming a packet size of 1000 bytes and a
BER = 1072, the packet error rate (PER) is around 10~®. Substituting this value in the TCP throughput equation and
assuming RTT = 100ms, one finds that the throughput is slightly less than 1 Gb/s. If one takes into account the existence
of multiple links along the path and other sources of errors at routers or switches, the maximum throughput would be
substantially smaller.

16

we show that the XCP framework is flexible enough to provide both proportional and guaranteed
bandwidth allocations. Further, XCP provides all of that without any per-flow state at the routers. In
§7 we analyse the robustness of XCP against users’ misbehavior in, and in §8 we provides a gradual
deployment path. Finally, we conclude in §9 with a discussion of the advantages and limitations
of the proposed architecture along with directions for future work. Additionally, this dissertation
contains two appendixes. Appendix A explains the details of our ns [59] implementation, whereas

appendix B uses tools from Control Theory to demonstrate the stability of XCP.

1.4 Summary

This thesis addresses the problem of providing efficient congestion control in high bandwidth-delay
product environments while maintaining the desirable properties of current congestion control. To
solve this problem, we introduce an architecture that decouples congestion control from the band-
width allocation policy. We use this architecture to develop a congestion control protocol called
XCP (eXplicit Control Protocol). In the rest of this dissertation, we show that XCP outperforms
_ TCP both in traditional environments and in high bandwidth-delay product networks. Further, XCP

maintains TCP’s scalability and robustness, and can provide a variety of qualities of service.

17

Chapter 2

Background & Related Work

The purpose of this chapter is to provide the reader with a general understanding of Internet con-
gestion control and its relation to bandwidth allocation. We start by providing a few definitions.
Next, we describe previous work in congestion control and its relevance to this thesis. Then, we
talk about the difficulties and the design choices made by various congestion control protocols and
- queuing disciplines, which Ydi_ffer in the amount of state they »stot’e in the network and the precision .

- or expressiveness of the congestion feedback.

2.1 Definitions
Below are a few definitions that we use throughout this document.

(a) Flow: A network flow is a sequence of packets that share the sender and destination IP
addresses, and the sender and destination port numbers. To a large extent, packets in a flow

follow the same path in the network [65].

(b) Round Trip Time (RTT): The round trip time for a flow is the total time taken by the network
both to deliver a packet from this flow to its receiver, and to deliver its acknowledgment to

the sender.

(c) Propagation Delay: The propagation delay is the round trip delay after subtracting the queu-

ing time.

(d) Congestion Window : The congestion window is the maximum number of packets a flow can

send in an RTT. When the application has data to send, the congestion window also refers to

18

the number of outstanding packets for which the sender has not received an acknowledgment,

and the flow’s rate (i.e., throughput) is the ratio of its congestion window to its RTT.

(e) Window vs. Rate Based Congestion Control Protocols: Congestion control protocols gov-
ern the sending rate and the burstiness of the sources by deciding the maximum amount of
traffic a source can send in an RTT. In a rate-based protocol the source uses a timer to pace the
traffic it is allowed to send. In contrast, a window-based congestion control protocol limits
the sending rate of a flow by regulating the size of its congestion window. The congestion
window is updated upon the arrival of an acknowledgment and constitutes an upper bound on
the burstiness of the source. The advantage of a rate-based protocol is its smoothness caused
by the spreading of traffic over the RTT. The advantage of the window-based algorithm stems
from its robustness against light congestion. In particular, when congestion begins, packets
start accumulating at the router creating a queue. The queuing time increases the RTT, which
decreases the sending rate of the flow without the need for the congestion control protocol
to exercise any direct control over the rate of the source. Additionally, in window-based
protocois, new packets are sent upon the arrival of an acknowledgment (self-clocking), a

characteristic that has been shown to increase robustness against high drop rate [14].

(f) Max-Min Fairness: Max-min faimess maximizes the minimum throughput of the flows shar-
ing a single bottleneck. More precisely, when multiple sources with infinite demands share a
bottleneck link, they all obtain equal throughputs. If a source’s demands are less than its fair
share of the bandwidth, the source gets the minimum of its demands and its fair share. The
extra bandwidth is divided equally among the other sources. Many protocols such as TCP try
to approximate max-min fairness. We refer to these approximations using the general term of

“fairness”.

(g) Weighted Fairness: Weighted fairness allocates the bandwidth of the bottleneck to the
sources proportionally to their weights.
2.2 Internet Congestion Control

The congestion control problem is to control the traffic rate in the network to achieve high link
utilization, small queue size, and few packet drops.

The control of Internet congestion is the result of the cooperative work of both the routers and

19

the end systems (i.e., senders and receivers). Traditionally, the role of the routers is limited to drop-
ping packets as a sign of congestion. The senders run a congestion control protocol that interprets a
packet loss as a sign of congestion to which they react by decreasing the sending rate. This model
still dominates most of the Internet, where most of the routers are drop-tail routers (drop packets
upon buffer overflow) and most senders run TCP as the congestion control protocol. However, the
research community has moved toward giving the router a more active role in anticipating conges-
tion and signaling it to the senders. Congestion controllers located at the routers, such as RED
[35], REM [11], AVQ [50], ARED [33], etc., are referred to as Active Queue Management schemes
(AQMs).

We note that the majority of previous work in Internet congestion control concerns itself with
either the design of the controllers at the routers, i.c., an AQM, or the design of the congestion
control protocol at the end systems (i.e., sender and receiver). In contrast, this thesis presents a joint

design of the end systems and the routers.

2.2.1 End-System Congestion Control Protocols T R

v.IlntérI‘let ‘con‘gestion control protocols use é Closéd—lbop ébﬁtrqi; fhe‘y ﬁrc-)beb the nétv(/dfk to’discov'er
whét.;hér»"thérre is congestidn. "The pfot_oéols use baclv(.et“ dfops ﬁs fan fmplicit signal of éongestioh.
.They can \discover drops by sequentihlly nufnbering the packets and having the receiver acknowl-
edge the packets it receives. As long as there is no drop, the sender incfeases its sending rate. When
the sender discovers a drop, it interprets it as a signal of congestion and decreases the sending rate.
The protocols differ from one another by their increase-decrease rules. The increase-decrease rules
are designed such that the average sending rate of a flow is around its fair share of the bandwidth.

Of these protocols, TCP stands out as the de facto congestion control protocol of the Internet.

Transmission Control Protocol (TCP)

TCP was designed to provide reliable transmission of data [66]. However, it has evolved to provide
congestion control too [39]. Below, we focus on just the congestion control aspects of TCP.

TCP is a window-based congestion control protocol. Thus, it controls the window of outstanding
packets in the network. Like most other congestion control protocols, TCP relies on drops to detect
congestion. It has two mechanisms to discover the occurrence of a drop. First, when a packet is
sent, the TCP sender initializes a timer. If the timer expires before the packet is acknowledged,

TCP considers the packet to have been dropped. Second, when the TCP receiver receives an out-

20

Congestion window

Congestion Aveldance
(linecr growth) Window-hulving
upon congestion
loss

T3 Fess5t retremsmission

Slow Start
(exponenticl growth) Window = 1

upon timeout

Slow Sturt

N
o

Time

Figure 2-1: TCP

of-order packet, it sends an acknowledgment (Ack) for the most recent in-order packet it received.

For example, assume the receiver receives packets 1 to 5, and packet 6 gets dropped. When the

receiver receives packet 7, it sends a dupack for packet 5. A TCP sender considers the arrivals of

three duplicate acknowledgment (dupacks) as a sign of a packet drop.

A TCP connection goes through two phases: slow-start and the AIMD phase. Figure 2-1 shows

a typical trajectory of the TCP congestion window.

(a) Slow-Start: TCP goes to slow-start mode at the beginning of a connection. During slow-

start, the sender increases its sending rate exponentially. In particular, at the beginning of
slow-start the congestion window is set to one packet. Thus, the sender sends a packet and
waits until the receiver acknowledges it. Once the Ack reaches the sender, the sender increases
its congestion window by 1, sends two packets, and waits for the corresponding Acks. For
each arriving Ack the sender can send two packets, which results in an exponential increase
in the congestion window. TCP exits slow-start when a packet is dropped. The drop causes

the sender to halve its congestion window and enter the AIMD phase.

(b) Additive Increase Multiplicative Decrease (AIMD) : In this mode, as long as there is no

drop, a TCP sender increases its congestion window by one packet per RTT. When a packet
is dropped, TCP halves the current congestion window. As a result, the throughput exhibits
a sequence of additive increase followed by a multiplicative decrease event. This behavior

is usually referred to as the “TCP sawtooth” (see Figure 2-1). The objective of AIMD is to

21

allow TCP to operate around the correct sending rate. Further, it causes TCP flows that are

competing for the same bottleneck to approach a fair bandwidth allocation [20]!

Finally, when congestion is severe, too many packets might get dropped, which causes the
sender to experience timeout while waiting for the acknowledgment of its packets. A timeout

causes TCP to go again into slow-start.

2.2.2 Router Congestion Controllers

The involvement of the routers in controlling congestion varies dramatically. Traditionally, the role
of routers in controlling the traffic is limited to dropping packets when the buffer overflows. This
scheme is called drop-tail, which is the common queuing policy in the current Internet.

There are many well-known problems with drop-tail such as being biased against bursty flows,
and maintaining a persistent large queue size. To mitigate these problems, researchers have pro-
posed that the routers take a more active role in the control protocol and send an early signal to the
senders about anticipated congestion. Suc;h queuing policies are called Active Queue Management

.

Random Eaﬂy Deiéction. (RED) | [35] drops packets proportionaily: to the average queue length.

More precisely, RED defines a running average of the queue length:

Qavgzwx‘hﬂg"‘(l_w)xq’

where 0 < w < 1, and q is the queue length seen by an arriving packet. Packets are dropped with

probability p computed as follows:

qa’Ug <min = pP= 0,

Gavg — TN

min < Qoug < MAT = P = X Pmaz

max — min

Javg > maz = p=1,

where min and max are constant parameters, and ppq, is the maximum drop probability.
One objective of RED is to prevent bursty drops. By starting to drop early, RED spreads the
drops over a longer interval and provides smoother behavior. Further, it sends an early congestion

signal to the flow to slow down before the queue overflows, which helps in maintaining a smaller

!Actually, in TCP the average congestion window - not the rate - approaches fair allocation.

22

average queue length.
RED has inspired a large number of AQM proposals that differ in the way they compute the
dropping probability [35, 11, 50]. We describe REM and AVQ because they are the most famous

schemes and the ones against which we compare XCP.

Random Early Mark (REM) [11] makes the dropping probability a function of the mismatch in
traffic rate and the mismatch in the queue size. In particular, it defines a quantity called price, pr,

which is updated upon the arrival of a packet:
pT(t + 1) = pr(t) + - (O{ ; (q(t + 1) - Qtarget) + -'L'(t + 1) - C)a

where g is the queue size, gqrget 1S a constant that specifies a desirable target queue length, z is
the traffic rate, C' is the capacity of the link, and v > 0 and @ > 0 are constant parameters. The
drop probability is chosen as 1 — ¢~P", where ¢ is a constant. Thus, while RED looks only at the
queue size, REM takes into account the mismatch between the input traffic and the capacity of the
link. Further, REM addresses a particular problem with RED, which is the coupling of the drop
probabilit_y‘andb the queue size. In particular, the TCP throughput is inversely propo‘rtionall to the
~ square root of the drop probability [60]. Hence, as the number of flows increases the drop probability
should increase if one to maintain a particular aggregate throughput. However, since RED makes
the drop probability proportional to the average queue, a larger drop rate will increase the queue
size and consequently the queuing delay. By introducing the price variable, REM decouples the
drop probability form the queue size, allowing the system to stabilize around a target queue that is

independent of the number of flows.

Adaptive Virtual Queue (AVQ) [50] maintains a virtual queue whose capacity is less than the actual
capacity of the link. The capacity of the virtual queue is updated according to
C=a (v - C — X), where C is the virtual capacity, C is the actual capacity of the link, X is
the input traffic rate, 0 < & < 1 and 0 < y < 1 are constant parameters. The intuition underlying
AVQ is that since the virtual capacity is always smaller than the real capacity, the arrival rate into
the real queue is smaller than the departure rate. Consequently, any persistent real queue is bound

to drain after some time.

There is a large amount of research that attempts to characterize the various AQMs. Yet, the

community still has concerns about the safety of deploying AQM schemes in the Internet [54].

23

One important problem with AQM schemes is the existence of many tunable parameters whose
values significantly affect the performance. Good operational values for these parameters depend
on the number of flows traversing the bottleneck, the capacity of the bottleneck, and the round trip
delays. Some of these parameters are unknown to the operator, might vary with time, and are hard

to estimate.

2.3 Expressiveness & State

Two important characteristics of congestion control protocols are the expressiveness of the conges-
tion feedback and the amount of state maintained at each of the routers. Expressiveness refers to the
amount of information about the state of the network that is returned to the senders. Most conges-
tion control protocols have a very low level of expressiveness [39, 13, 34, 72]. In particular, TCP
uses implicit and binary congestion feedback. The feedback is implicit because the sender inter-
prets a packet loss as a sign of congestion. The feedback is binary as well because the TCP sender
identifies only two cases: a loss indicating congestion; no loss indicating no congestion. Given that
the cdﬁgesﬁon information is limited to whether a drop occurred or not, the sender has to oscillate
between overestimating the available bandwidth and underestimating it. To some extent this coarse
~reaction and the corresponding oscillations seem to be avoidable. Routers have information about
the degree of congestion such as how big the current queue is or by how much the input traffic ex-
ceeds the link capacity. By restricting ourselves to this very coarse congestion feedback that relies
on a packet drop, it seems that we are wasting information 2

So why not use this congestion information possessed by the routers to enhance the performance
of our congestion control protocols? One of the earliest examinations of congestion control in a
control theoretic framework demonstrates the power of expressive control to eliminate oscillations
even in the case of networks with long delays [70]. Other proposals have considered protocols that
use more expressive feedback than packet drops. The simplest of these is called Explicit Congestion
Notification (ECN) [67]; it replaces a drop by a one-bit congestion mark in the IP header. In contrast,
the authors [40, 18] have attempted more drastic change. They have sent precise information about
the exact rate that the sender should use. The problem these protocols have faced is that to decide
the fair rate of a sender, the router needs to know the number of senders traversing the link and

which of them can increase their sending rates (and which are prevented from doing so because

2Note that the argument above does not mean to ignore drops as a sign of congestion but rather to strengthen and
fine-tune this signal by using more information.

24

they are blocked at a different bottleneck). One approach for solving this problem is to count the
flows at the router and maintain some information about the sending rates and the demands of these
flows. However, this leads to installing per-flow state in each router, which limits the scalability of
the system. To understand why this is the case, let us define the term “per-flow state”.

When we talk about the state maintained for congestion control, we focus usually on the state
at the routers. This state is expensive because the routers have limited resources and need to op-
erate at a very high speed. As a result, the more state they keep, the more the constraints on
their performance. For example, drop-tail, RED [35], and most of Internet queuing disciplines
[33, 11, 50, 31, 75, 64] do not require per-flow state at routers. On the other hand, ATM congestion
control protocols [40, 18, 41] usually make the switch maintain an entry for every flow traversing
it. The common wisdom in the Internet is to avoid per-flow state at routers because maintaining
such a state in an environment as dynamic as the Internet would limit the speed of the routers. In
particular, the number of flows traversing a backbone router could be tens of thousands. Classifying
packets from these flows and updating the per-flow information to reflect which flows are active at
any point in time is too much work for the routers.

From the above discussion we see that though the expresswenese of the protocol and the state.
it malntams at routers are dlfferent issues, _the use of more expresslveness usua]ly leads to per-ﬂow
- state at routers Wthh limits the scalab111ty of the congestion control protocol. Below we bneﬂy

discuss a few protocols that differ in their expressiveness and the state they maintain.

2.3.1 ECN

Explicit Congestion Notification (ECN) attempts to prevent packet drops through the use of a special
field in the IP header to signal congestion to the sender. Thus, ECN moves from an implicit form of
congestion feedback to an explicit feedback. Yet, ECN maintains the binary nature of the congestion
feedback where the sources know only whether there is congestion or not. As a result, ECN does
not change the dynamics or characteristics of the congestion control protocol (i.e., TCP).

ECN was originally designed to work in conjunction with RED queues to send an early signal
to the sources about anticipated congestion. The hope was that the early reduction in the sending
rate would prevent a queue overflow and the ensuing packet drops. Recently, ECN has been used
with congestion controllers other than RED [62, 11].

XCP generalizes ECN because it replaces the one-bit congestion feedback with a field that

reflects the degree of congestion along the path. This replacement allows a faster and more accurate

25

response from the senders.

2.3.2 Packet Pair & Fair Queuing

Packet pair [48] is a rate based congestion control protocol that addresses both router and end-system
design. Routers queue packets from different flows separately and drain these per-flow queues by
simulating round-robin at the byte level (see [25] for details), a disciplines usually referred to as
“fair queuing”. A sender continuously estimates the speed of its bottleneck by transmitting its data
as pairs of back-to-back packets. When a pair of back-to-back packets traverses the bottleneck link,
the round-robin forwarding paces the packets according to sender’s fair share of the capacity. The
separation between the data packets is reflected in the separation of the Acks. By measuring the
separation between pairs of returning Acks, the sender discovers the departure rate from its queue
and adjusts its rate to avoid both overflow and underflow of its buffer.

In comparison with the combination of TCP and AQM or drop-tail, this scheme is less scalable
because 1t requ1res per—ﬂow queuing at routers. On the other hand, packet pair is fa1rer and prov1des
» good protectlon agalnst mlsbehavmg ﬂows v o l

Packet palr is partlcularly 1nterestmg because 51m11ar1y to XCP at decouples the concept of -
congestlon control from fairness. Fa1mess is established usmg falr queumg at routers. (‘ongesuon
control is delegated to the sources which measure the speed of their bottleneck using packet pairs.
Nonetheless, XCP is substantially different from packet pair because it uses explicit feedback and

does not require per-flow state in the network.

2.3.3 Core Stateless Fair Queuing (CSFQ)

Core Stateless Fair Queuing attempts to solve the contradiction between providing better fairness
and maintaining the high scalability of stateless networks. Estimating the fair bandwidth share of
a flow requires knowing the number of flows traversing a link and identifying which of them can
use its fair share and which of them is limited to a lower throughput by another link along its path.
This information necessarily implies some form of per-flow state. The contribution of CSFQ is in
the recognition that a flow’s state can be provided in its packets and need not be kept at the router.
As such, the router need not classify an arriving packet to decide which flow it comes from and how
much bandwidth that flow is currently using. All of that state can be kept in the packet.

Since legacy TCP senders do not provide a flow’s state in the packets, CSFQ works in a network

cloud where edge routers estimate the flows’ rates and insert the estimates in the packets’ header.

26

Core routers estimate the fair rate and drop packets preferentially on the basis of the differences
between the estimated rate and the fair rate.

XCP builds on CSFQ’s idea of pushing the per-flow state to the edges of the network. However,
the state used in XCP is different from that in CSFQ. In addition to the flow’s current sending
rate, the XCP state contains the flow’s RTT. This information allows the routers to scale the control
according to the feedback delay in the system, which is essential for the stability of any control

system [62, 52].

2.3.4 ABR Congestion Control

The ATM Forum has adopted an explicit end-to-end rate-based flow-control protocol (EERC) for
controlling Available Bit Rate (ABR) traffic [49]. In EERC, each source periodically sends special
resource management (RM) cells. These cells include a field called the explicit rate field (ER),
which the source initializes to the desired sending rate. Each switch along the path computes the
source’s max-min fair rate. If the max-min fair rate is smaller than the value in the ER field, the
- switch sets ER to the max-min fair rate. The receiver reiays the RM cells back to the sender, which
then adjusts its rate to that indicated in the RM cell. Note that EERC does not specify how the
max-min fair rate is computed. A few algorithms have been proposed for doing this computation
[8, 18, 40, 41]. |

XCP resembles ABR congestion control in several ways. First, they both send explicit and
precise feedback. Second, in both cases, the framework is independent from the exact control law
used so that the control law can be changed while the framework is maintained. Yet, the differences
between the two approaches are crucial. First, most ABR flow control protocols maintain per-flow
state at the switches [8, 18, 40, 41], whereas XCP does not keep any per-flow state in routers. Sec-
ond, in ABR control protocols the switch computes the fair bandwidth allocation of each flow and
tries to jump to that allocation in one step. In contrast, in XCP the router makes gradual rate adjust-
ments whose size is chosen to maintain stability. Third, XCP has self-clocking, a characteristic that
improves stability [15], and is not provided by ABR congestion control. Finally, XCP is built on
top of TCP. XCP’s window adjustments have finer granularity, but when a drop occurs it reverts to a

TCP-like behavior. This allows XCP to enjoy TCP’s well-tested robustness to congestion collapse?

*Informally, congestion collapse is a long period of severe congestion.

27

2.4 The Challenges for Internet Congestion Control

The Internet literature is rich with proposals for congestion control. Despite the differences in their
design, all of these proposals attempt to maximize the link utilization while minimizing the queue
size and number of drops. In their effort to achieve the above objective, Internet congestion control

protocols try to build on a few principles that have proven useful in practice.

L. A distributed protocol: It is hard to imagine controlling congestion in the Internet by send-
ing the state of every link and sender to a centralized computer and computing the optimal
sending rate of each flow. The size and dynamics of the Internet make such an approach im-
practical. Thus, all congestion control protocols must operate in a distributed manner, where
each sender and router makes decisions by looking only at local information and without

consulting distant network entities.

2. Router simplicity: Internet routers are complex and expensive devices that run at very high
speeds. Today’s high-speed routers can spend only a few nanoseconds on a packet before
the packet is due to depart on the link. Hence, protocols t.‘hat require the routers to maintain
pér-ﬂdw queues and classify every pa'cketbarc'gonside'red too Compléx. Such pro'toco‘lls fe(juife
rnore:m'emory,‘making the routers too éxpehsivé. Furthérmofe, ‘they'pel."fbrmva few memory

accesses per packet, and this usually takes too long.

3. Stability & robustness: Robustness is another important principle in designing congestion
control protocols. The Internet is a heterogeneous environment; different Internet paths con-
tain links whose bandwidth, latency, error rate, and technology differ drastically. Addition-
ally, an Internet flow may traverse a few networks operated by different entities. Thus, a
congestion control protocol for the Internet should have minimal assumptions about the envi-

ronment and be robust against errors, packet losses, and traffic variations.

4. Deployment: Deployment is an important problem that any practical congestion control pro-
tocol needs to address. For the protocol to perform correctly, the sender, the receiver, and the
nodes along the path have to comply with the assumptions of the protocol. Updating all of
these components at once is a difficult task. Thus, deployable proposals must include a de-
scription of a gradual deployment path that allows for the new protocol to coexist with legacy

systems and for only a few network entities to be updated at any one time.

28

2.5 Summary

Congestion control is the problem of deciding the sources’ rates to achieve high utilization without
causing congestion. Currently, most hosts on the Internet run TCP as their congestion control pro-
tocol. Most routers are drop-tail; they use FIFO queues and drop packets when the queue overflows.
This approach to congestion control is both robust and scalable; however, it shows limitations in
controlling utilization and fairness. More stable and tighter control protocols are desirable but they
should not jeopardize the scalability or the robustness of congestion control. Further, to be success-
ful, a new congestion control protocol should maintain a simple behavior at the routers and provide

a gradual deployment path.

29

Chapter 3

The Problem

For the Internet to continue to thrive, its congestion control mechanism must remain effective as the
network evolves. Technology trends indicate that the future Internet will have a large number of
very high-bandwidth links. Less ubiquitous but still commonplace will be satellite and multi-hop
wireles_s links with high latency. These trends are problematic because TCP reacts adversely to an

increase in the per-flow ‘ba‘ndwidth—delay produét.

3.1)' TCP’s Performance in High Bandwidth-Delay Product Networks

We use the term “high bandwidth-delay networks” to refer to environments where the per-flow band-
width can reach a few Gb/s, or the delay is so large that the flow has a few MB of outstanding traffic
in the pipe. Currently these environments are limited to a few research organizations connected to
the Internet via high performance research networks [3, 2]. However, with the proliferation of giga-
bit Ethernet [7], more users will traverse high capacity end-to-end paths. Further, with fiber capacity
and bandwidth demands both increasing exponentially with time [21, 56], achieving a large per-flow
throughput will soon become a pressing issue. Indeed, even in today’s Internet many organizations
generate a few Gb/s of data that they want to transfer over the Internet from the generating site to
the processing site (e.g., astronomy data, distributed storage, backup systems, etc.), yet they cannot
because current TCP-based congestion control cannot achieve or maintain a very high end-to-end
throughput, particularly over a wide-area network (WAN) [73, 28].

The problem facing TCP as the per-flow bandwidth-delay increases is multi-fold. Parts of the
problem are caused by an inefficient implementation of the TCP stack at the host, which prevents the

sender or receiver machine from sustaining a high-speed data stream. Recent papers have attempted

30

to solve this problem by modifying the TCP stack in the operating system. In particular, in [19],
the authors discuss a few optimizations to the host’s TCP implementation that Would allow TCP to
send at a peak rate of one Gb/s over a LAN. The objective of these modifications is to minimize the
overhead involved in sending and receiving packets by the host machine. The modifications include
interrupt coalescing, checksum off-loading, and data copy avoidance by page remapping, as well as
the use of a jumbo packet size.

Although optimizing the TCP implementation at the host is necessary to attain a very high per-
flow throughput, this optimization constitutes only the first step toward this goal. Achieving and
maintaining a very large per-flow throughput over a WAN will necessarily require some changes to
TCP’s congestion control algorithm. The objective of this thesis is to redesign Internet congestion
control to work efficiently in these environments. Below, we describe the main challenges to TCP’s

congestion control as the per-flow bandwidth-product increases.

1. Ramping up quickly when there is spare bandwidth: The poor performance of TCP in high
bandwidth-delay environments is caused by both its slow-start and AIMD modes. In particular,
h AIMD limits TCP’s ability to acqu'ir‘e spafe bandwidth to one packet per RTT. In high bandwidth
environments, it is common to allocate or deallocate a full pure optical path. As a result, a- huge
- ‘aﬁlount of spare bandwidth becomes availa‘ble suddenly. However, a:TCP, incréasing by'onévpacket
per RTT, would take a long period to acquire this bandwidth!

Similarly, slow-start adversely interacts with a high bandwidth-delay product. At first glance, it
might seem that slow-start with its exponential increase should help TCP quickly acquire the spare
bandwidth, and consequently should mitigate the problem caused by the slow adaptation of AIMD.
Unfortunately, this is not the case. The exponential increase performed by a TCP in slow-start is too
aggressive and causes an adverse effect. In particular, as the per-flow bandwidth-delay increases,
there will be some flows at the bottleneck with very large congestion windows (cwnd). When a new
TCP flow starts increasing exponentially, it causes many drops from these flows with very large
cwnd. As a result, these flows release a large amount of spare bandwidth into the system. The other
flows start grabbing the excess bandwidth by increasing their throughput by one packet per RTT.
Given that the released throughput might be thousands of packets, it takes a while before the flows

ramp up again. This process repeats with the arrival of a long TCP flow, causing the average link

'It is worth noting that the use of jumbo packets improves the performance but does not solve the problem. Jumbo
packets are likely to get fragmented in a WAN environment. Also, there are limitations on the size of the packet that are
imposed by the size of the fields in various protocols and the effectiveness of error correction at the data link layer. For
example, the Ethernet CRC becomes ineffective for packets larger than 9000 bytes.

31

utilization to stay low.

Since TCP’s increase rule is too slow for high bandwidth environments, it is natural to ask:
Why would TCP not increase faster than one packet per RTT? Indeed, if TCP increased faster it
would acquire the fast response necessary for high bandwidth-delay environments, but while doing
so TCP might cause severe congestion in low bandwidth environments. In particular, TCP uses a
packet loss as a congestion signal. Hence, its congestion feedback is too crude and does not carry
information about the degree of congestion or the amount of spare bandwidth in the network. In the
absence of this information, TCP adopts a conservative strategy and increases only by one packet
per RTT. Note that one packet/RTT can be too much if the spare bandwidth is hovering around zero
or if the capacity of the bottleneck link is just a few Kb/s. One packet/RTT might be too little if the
spare bandwidth is a few Gb/s, as is likely in very high bandwidth-delay product environments. The
binary feedback does not allow TCP to distinguish between these two cases. Thus, TCP does not
have the information necessary to allow it to increase quickly without risking severely congesting

the network.

2 Sustammg a few Gb/s steady state throughput The 1nteract10n between TCP’s congestlon

'control and the lmk bit errors prevents a ﬂow from ma1nta1n1ng a few Gb/s steady state throughput ‘

~ Asnoted in [60], TCP’s average throughput, R, is inversely proportional to the square root of the

packet drop rate, p:

[0}
R~ T g5 (3.1)

where s is the packet size and « is a constant equal to 1.2.2 Thus, to maintain an average throughput
on the order of a few Gb/s, the packet drop rate needs to be exceptionally small. As an example, for
a standard TCP with a 1500-bytes packets to maintain a 1 Gb/s steady state throughput over a 100
ms round-trip path, the protocol needs a drop rate smaller than 10~ 8 and a bit error rate (BER) less
than 10~12. This BER is challenging even to low BER fiber links [69, 10]. The problem becomes
significantly harder once we take into account higher rates, multiple links along the path, and other

sources of errors.

3. Queue size and routers price: Routers are complex and expensive devices. A large proportion of
the router’s cost is dedicated to providing a large and fast buffer (usually a combination of SRAM

and DRAM). In particular, because TCP is oscillatory, it requires a large queue size to absorb

2To simplify the equation, we ignored the term caused by timeouts. Also, we note that the units in the equation should
be matched (e.g., R in Kb/s, s in Kb, and RTT in seconds).

32

Bottleneck

- -

Figure 3-1: A single bottleneck topology.

its oscillations. The current recommendation is to make the buffer size at the routers equal to
the bandwidth-delay product. However, as the link capacity becomes very large, it becomes very

expensive to provide such a huge amount of memory in the router?

4. More oscillations and less stability: Mathematical analysis of current congestion control al-
gorithms reveals that, regardless of the queuing scheme, as the per-flow bandwidth-delay product
increases, TCP becomes oscillatory and prone to instability. By casting the problem into a control
theory framework, Low et al. [53] show that as capacity or delay increases, Random Early Discard
(RED) [35], Random Early Marking (REM) [11], Proportional Integral Controlier (PI) [38], and
Virtual Queue (VQ) [36] all eventually become osciilatory and prone to instability. They further -
~ argue that it is unlikely that any Active Queue Management scheme (AQM) can inaintain étability
jover very high-capacity or large-delay links. Furthermore, Katabi andrBlake [44] show that Adap-
tive Virtual Queue (AVQ) [50] also becomes prone to instability when the link capacity is large

enough (e.g., gigabit links).

S. Increased network bandwidth is useless for short flows: The majority of the flows in the
Internet are short flows of a few tens of packets. The increase in link capacity does not improve
the transfer delay of short flows because these flows cannot acquire the spare bandwidth faster than
slow-start permits. Consequently, they will waste valuable RTTs ramping up even when bandwidth

1s available.

3.2 Simulation Results

In this section, we show simulation results that reveal TCP’s inefficiency in high bandwidth-delay
environments. Our simulations are run in ns-2 [59], which provides a fairly detailed implementation

of TCP. We simulate the topology in Figure 3-1. The simulations contain 50 long-lived FTP flows

3Even in today’s Internet, router manufacturers are finding it hard to provide a bandwidth-delay product of buffer
space and are pushing toward smaller buffers [6].

33

Average Utilization

0.4 TCP-RED-ECN 2 i
TCP-CSFQ-ECN +
TCP-REM-ECN o
TCP-AVQ-ECN x
TCP-DropTail — ©) .
0 1000 2000 3000 4000

Bottleneck Capcity (Mb/s)

Figure 3-2: TCP’s average utilization decreases with increased bottleneck bandwidth.

.with the same RTT The flows interarrival time is exponentially distributed with an average of 2

o RTTs The data packet size is 1000 bytes, th\, flows are TCP Reno and the buffer size is always

set to the delay-bandwidth product. All simulations run for at least 300 RTTs and eontam reverse
trafﬁr created by 50 TCP ﬂows We repeat these simulations for various queuing mechamsms at
the routers, such as drop-tail, RED, REM, CSFQ, and AVQ. The parameters of these AQMs are set
according to their authors’ recommendations [68, 11, 75, 50]. In particular, the RED parameters
are w = 0.002, praz = 0.1, Mingpresp is one-third of the buffer, mazipyesp is two-thirds of the
buffer, and the gentle option is on. For REM, ¢ = 1.001, v = 0.001, the update interval is set to the
transmission time of 10 packets, and gref is set to one-third of the buffer size. For AVQ, v = 0.98
and o = 0.15. For CSFQ, the averaging constants are set to twice as much as the maximum queuing
delay as recommended in [75], and the other parameters are set to their default values. In Figure 3-
2, we set the round trip propagation delay to 80ms and vary the bottleneck capacity, whereas in
Figure 3-3 we set the bottleneck capacity to 155 Mb/s and vary the propagation delay.

The simulation results show that TCP performs poorly as the per-flow bandwidth-delay product
increases. In particular, Figures 3-2 and 3-3 show the average bottleneck utilization as a func-
tion of increased bandwidth and as a function of increased delay, respectively. (Each point on the
graph is the average utilization of a single run.) The figures reveal that, regardless of the queuing
discipline, TCP wastes the bandwidth of the bottleneck as either the per-flow bandwidth or delay

increases. Given that TCP’s behavior depends on the simulation’s topology and parameters, these

34

Average Utilization

0.4 + TCP-RED-ECN 2
TCP-CSFQ-ECN +
TCP-REM-ECN o i
TCP-AVQ-ECN x
TCP-DropTail o .) . .
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Round Trip Propagation Delay (s)

Figure 3-3: TCP’s average utilization decreases with increased delay.

figures should not be taken as an exact prediction of TCP’s utilization as the bandwidth or delay
- increases. Rather, they should be taken as an illustration of a clear trend of degraded performance

as the per-flow bandwidth-delay product increases.

3.3 Summary

Traditionally, the trends in the Internet have pushed toward an increase in the per-flow bandwidth-
delay product. This is expected to continue since the capacity of the links is increasing exponen-
tially. Further, the integration of satellite and multi-hop wireless links in the Internet increases the
delay along the paths containing such links.

Unfortunately, TCP was not designed to work with a very large per-flow bandwidth-delay prod-
uct. The TCP congestion control mechanism does not allow it to achieve and maintain a few Gb/s
steady-state throughput over the WAN. We can identify a few reasons for this poor performance.
The first and most important reason is the lack of fast response; TCP increases by one packet ev-
ery RTT, which is too slow for high bandwidth-delay environments. Second, TCP’s throughput is
inversely proportional to the packet drop rate. As a result, achieving a very high per-flow through-
put requires links with exceptionally low bit error rate. Third, TCP’s oscillations require a buffer
of bandwidth-delay product at the router. As the bandwidth increases, this requirement will be ex-

tremely difficult to satisfy and will drastically increase the router’s cost. Finally, TCP becomes more

35

oscillatory and less stable as either delay or capacity increases.

Although the full impact of large bandwidth-delay products is yet to come, we can see the
seeds of these problems in the current Internet. For example, TCP over satellite links has revealed
network utilization issues and an undesirable bias against long RTT flows [9]. Also, currently many
organizations would like to use Internet2 to attain a few Gb/s end-to-end throughput, but they are

unable to achieve this large throughput using TCP [73, 5, 28].

36

Chapter 4

XCP: eXplicit Control Protocol

XCP is a congestion control protocol that embodies the principle of decoupling congestion control
from bandwidth allocation and uses this decoupling to achieve good performance in high bandwidth-
delay networks. Although our main objective is efficient congestion control in high bandwidth-delay
netw_orks, we also want XCP to excel in thc traditional environments and to be as scalablé and
robust as current cdngestion control. Thus, we start this chapter by asking a general question of
how to design congestion control protocols. We argue that decoupling congestion control (i.e., the
efﬁciency question) from fairness (i.e., the bandwidth allocation policy) is a desirable architecture,
independent of the networking environment. Then we show that this architecture is particularly
important in high bandwidth-delay product networks because it provides the fast response necessary

for these environments. Next, we develop the details of the protocol and analyze its characteristics.

4.1 Design Rationale

Our initial objective is to step back and rethink Internet congestion control without caring about
backward compatibility or deployment. If we were to build a new congestion control architecture
from scratch, what might it look like?

The first observation is that packet loss is a poor signal of congestion. While we do not believe
a cost-effective network can always avoid loss, dropping packets should be a congestion signal of
last resort. As an implicit signal, loss is bad because congestion is not the only source of loss,
and because a definite decision that a packet was lost cannot be made quickly. As a binary signal,
loss only signals whether there is congestion (a loss) or not (no loss). Thus senders must probe the

network to the point of congestion before backing off. Moreover, since the feedback is imprecise,

37

to prevent congestion the increase policy must be conservative and the decrease policy must be
aggressive.

Tight congestion control requires explicit and precise congestion feedback. Congestion is not a
binary variable, so congestion signalling should reflect the degree of congestion. We propose using
precise congestion signalling, where the network explicitly tells the sender the state of congestion
and how to react to it. This allows the senders to decrease their sending windows quickly when the
bottleneck is highly congested, while performing small reductions when the sending rate is close to
the bottleneck capacity. The resulting protocol is both more responsive and less oscillatory.

Second, the aggressiveness of the sources should be adjusted according to the delay in the
feedback-loop. The dynamics of congestion control may be abstracted as a control loop with feed-
back delay. A fundamental characteristic of such a system is that it becomes unstable for some large
feedback delay. To counter this destabilizing effect, the system must slow down as the feedback
delay increases. In the context of congestion control, this means that as delay increases, the sources

should change their sending rates more slowly. This issue has been ralsed by other researchers

. [53 62] but the important questlon is how exactly feedback should depend on delay to estabhsh

v ‘stablhty Usmg tools from control theory, we conjecture that congestion feedback based on rate-
»mlsmatch should be 1nverse1y proportlonal to delay, and feedback based on queue mlsmatch should
be inversely proportional to the square of delay! |
Robustness to congestion should be independent of unknown and quickly changing parameters,
such as the number of flows. A fundamental principle from control theory states that a controller
must react as quickly as the dynamics of the controlled signal; otherwise the controller will always
lag behind the controlled system and will be ineffective. In the context of current proposals for
congestion control, the controller is an Active Queue Management (AQM) scheme. The controlled
signal is the aggregate traffic traversing the link. The controller seeks to match input traffic to link
capacity. However, this objective might be unachievable when the input traffic consists of TCP
flows, because the dynamics of a TCP aggregate depend on the number of flows (V). The aggregate
rate increases by N packets per RTT, or decreases proportionally to 1/N for each drop. Since the
number of flows in the aggregate is not constant and changes over time, no AQM controller with
constant parameters can be fast enough to operate with an arbitrary number of TCP flows. Thus,
a third objective of our system is to make the dynamics of the aggregate traffic independent of the

number of flows.

!See Appendix B for the derivation.

38

This leads to the need for decoupling efficiency control (i.e., control of utilization or congestion)
from fairness control. Robustness to congestion requires the behavior of aggregate traffic to be
independent of the number of flows in it. However, any fair bandwidth allocation intrinsically
depends on the number of flows traversing the bottleneck. Thus, the rule for dividing bandwidth
among individual flows in an aggregate should be independent from the control law that governs the
dynamics of the aggregate.

Traditionally, efficiency and faimess are coupled since the same control law (such as AIMD in
TCP) is used to obtain both fairmess and efficiency simultaneously [8, 18, 40, 41, 39]. Conceptually,
however, efficiency and fairness are independent. Efficiency involves only the aggregate traffic’s
behavior. When the input traffic rate equals the link capacity, no queue builds and utilization is
optimal. Fairness, on the other hand, involves the relative throughput of flows sharing a link. A
scheme is fair when the flows sharing a link have the same throughput irrespective of congestion.

In our approach, a router has both an efficiency controller (EC) and a fairness controller (FC).
This separation simplifies the design and analysis of each controller by reducing the requirements
imposed. It also peymits modifying one of the controllers without redesigning or re-analyzing the
other. Furthermore, the separation of the controllers provides a fiexible ffamework’ for integrating
diffqrential baﬁdwidth allocations. For example, allocating bandwidth to senders according to their
priorit_ies or the price they' péy réquires changing only the fairnéss con‘tréiler and does not affect the
efficiency or the congestion characteristics. Finally, the decoupling allows XCP to attain a very large
end-to-end throughput and perform efficiently in high bandwidth-delay product networks. This is
because XCP uses a fast controller to control congestion, which increases the traffic proportionally
to the amount of spare bandwidth in the network and decreases it proportionally to the degree of
congestion. To control faimess, XCP uses an AIMD law which has been shown to lead to fairness

[20].

4.2 The XCP Protocol

XCP provides a joint design of end systems and routers. Like TCP, XCP is a window-based con-
gestion control protocol intended for best effort traffic. However, its flexible architecture can easily
support differentiated services as explained in §6. The description of XCP in this section assumes
a pure XCP network. In §8, we show that XCP can coexist with TCP in the same Internet and be

TCP-friendly. Further, our description assumes that Ack traffic is rarely the cause of congestion. If

39

needed, it is fairly easy to extend the protocol to control Ack traffic in addition to data traffic.
First we give an overview of how control information flows in the network, then in §4.7 we

explain feedback computation.

4.3 Framework

Senders maintain their congestion window, cwnd, and round trip time, rtt> They communicate
their throughput (i.e., cwnd/rtt) and their rtt to the routers via a congestion header in every packet.
Routers monitor the input traffic rate to each of their output queues. Based on the difference between
the link bandwidth and its input traffic rate, the router tells the flows sharing that link to send faster
or slower. It does this by annotating the congestion header of data packets. The value of feedback
is divided between flows based on their throughput and RTT values so that the system converges to
fairness. A more congested router later in the path can further reduce the feedback in the congestion
header by overwriting it. Ultimately, the packet will contain the feedback from the bottleneck along
the path. When the feedback reaches the receiver, it is returned to the sender in an acknowledgment

packet, and the sender updates its rate accordingly.

4.4 The Congestion Header

Each XCP packet carries a congestion header (Figure 1), which is used to communicate a flow’s
state to routers and feedback from the routers on to the receivers. The field H_throughput is the
sender’s current throughput, whereas H_rtt is the sender’s current RTT estimate. These are filled
in by the sender and never modified in transit. The remaining field, H. feedback, takes positive or
negative values and is initialized by the sender. Routers along the path modify this field to directly

control the throughputs of the sources.

4.5 The XCP Sender

As with TCP, an XCP sender maintains a congestion window of the outstanding packets, cwnd, and
an estimate of the round trip time, rtt. On packet departure, the sender attaches a congestion header

to the packet and sets the H_throughput field to cwnd/rtt and H_rtt to its current rtt. In the first

2In this document, the notation RTT refers to the round trip time, rtt refers to the variable maintained by the source’s
software, and H _rtt refers to a field in the congestion header.

40

H_throughput (set to sender’s current throughput)

Filled in by
the sender H_rtt (set to sender’s rtt estimate) Initialized by
— : the sender;
~ H_feedback (intialized to sender’s demands) } modified by
B LN S TR VO TR o the routers

Figure 4-1: Congestion header.

packet of a flow, H_rtt is set to —1 to indicate to the routers that the source does not yet have a
valid estimate of the RTT.

The sender initializes the H_feedback field to request its desired throughput increase. For
most best effort applications the desired rate is assumed to be infinite and the H. feedback field is
initialized to the maximum possible value. Yet, when the application has a particular desired rate,
r, the sender sets H_feedback to the desired increase in the rate (r — cwnd/rtt) divided by the
number of packets in the current congestion window. If bandwidth is available, this initialization
allows the sender to reach the desired rate after one RTT. ‘

~ Whenever a new acknowledgmént arrives, posiiive feedback increases the sénvders;cw.)vnd' 'énd

’negﬁtivé feedback reduces it:
" cwnd = max(cwnd + H _feedback x rtt, s), 4.1)

where s is the packet size, and rtt is the most recent estimate of the round trip time. Note that
although XCP is a window-based protocol, the feedback returned by the router is an increment in
the throughput, which the sender translates into an increment in cwnd.

Additionally, when the application does not send enough traffic to fill the congestion window,
the XCP sender quickly ages its cwnd variable to reflect the used window. In particular, for every
RTT in which the sender does not send enough to fill the congestion window, cwnd is reduced by
0.5 x (cwnd — K), where K is the number of outstanding packets. Also, as long as the sender does
not use all of its cwnd, it initializes H_feedback to zero.

Finally, in addition to direct feedback, XCP still needs to respond to packet losses. At this
stage of the design and until the community builds more experience with XCP, we choose to be
conservative and react in a similar manner to TCP (i.e., halve cwnd). However, we believe that
a better approach would use the TCP throughput equation to estimate a TCP fair rate from recent

drops [60]. When drops occur the XCP sender sets its rate to the minimum of the rate derived from

41

the explicit feedback and that derived from the TCP throughput equation. This prevents drastic rate
reduction when a packet is lost because of errors at the data link layer. We have not experimented

with this approach and we leave it for future work.

4.6 The XCP Receiver

An XCP receiver is similar to a TCP receiver except that when acknowledging a packet, it copies

the feedback from the data packet to its acknowledgment?

4.7 The XCP Router: The Control Laws

The job of an XCP router is to compute a feedback that causes the system to converge to optimal
efficiency and max-min fairness. XCP does not drop packets. It operates on top of a dropping policy
such as drop-tail, RED, or AVQ. The objective of XCP is to prevent, as much as possible, the queue
from building up to the point at which a packet has to be dropped.

To compute the feedback, an XCP router uses an efficiency controller and a fazmess controller
: --Both of these compute estimates over the average RTT of the flows traversmg the 11nk Wthh
smooths the burstiness of a window-based control protocol. Estimating parameters over 1ntervals
longer than the average RTT leads to sluggish response, while estimating parameters over shorter in-
tervals leads to erroneous estimates. Also, the XCP controllers make a single control decision every
average RTT (the control interval). This is motivated by the need to observe the results of previous
control decisions before attempting a new control. For example, if the router tells the sources to
increase their congestion windows, it should wait to see how much spare bandwidth remains before
telling them to increase again.

The router maintains a per-link estimation-control timer that is set to the most recent estimate
of the average RTT of the flows traversing the link. In the remainder of this chapter, we refer to
the router’s current estimate of the average RTT as d to emphasize this is the feedback delay. The
average RTT of the flows is computed every estimation-control interval using the information in the
congestion header. To compute the average RTT of the flows the router needs to count the RTT of
each flow only once and divide by the number of flows. This however is not simple since the router

does not have per-flow state, and consequently cannot distinguish packets of different flows. If the

3Note that an XCP receiver may use delayed Acks, in which case the receiver accumulates the feedback and sends the
sum of all pending feedback since the last Ack.

42

router computes the average RTT over the packets then the RTT of each flow would be multiplied
by the number of packets this flow sends in the estimation interval d. Thus, one way to estimate the
average RTT of the flows is to take the average RTT over the packets normalized by the number of
packets a flow sends in a control interval. The number is E’; - d, where 7; is the flow’s throughput in

bytes/sec, and s; is the packet size in bytes. Thus, the average RTT is:

__ Zrtti-%}

where both sums are over the packets observed by the router in a control interval. (Note that d is
constant for the duration of the estimation interval, and hence it cancels out.)

The router also estimates the input traffic rate at each link by summing up the traffic arriving dur-
ing an estimation interval and dividing the sum by d. Upon timeout the router updates its estimates

and its control decisions.

4.7.1 The Efficiency Controller (EC)
The efficiency controller’s goal is to maximize ‘link utilization while miniﬁﬁzin g drop fate and per-
sistent queues. It looks only at aggregate traffic and need not care about fairneés issués, such 'as
‘which flow a packet belongs to.

The EC computes a desired increase or decrease in the aggregate traffic rate. This aggregate
feedback, ¢, is computed each control interval:

p=a-S-p-—, 4.3)

O

« and (3 are constant parameters, whose values are set based on our stability analysis (§4.8) to 0.4
and 0.226, respectively. The term d is the average RTT, and S is the spare bandwidth defined as the
difference between the input traffic rate and link capacity. Note that S can be negative. Finally, Q
is the persistent queue size (i.e., the queue that does not drain in a round trip propagation delay), as
opposed to a transient queue that results from the bursty nature of all window-based protocols. We
compute) by taking the minimum queue seen by an arriving packet during the last propagation
delay, which we estimate by subtracting the local queuing delay from the average RTT.

Equation 9.3.1 makes the feedback proportional to the spare bandwidth because, when S > 0,

the link is underutilized and we want to send positive feedback, while when S < 0, the link is

43

congested and we want to send negative feedback. However this alone is insufficient because it
would mean we give no feedback when the input traffic matches the capacity, and so the queue
does not drain. To drain the persistent queue, we make the aggregate feedback proportional to the
persistent queue too. Finally, since the feedback is in bytes/s, to match the unit the queue, @, is
divided by the control interval d. (Indeed, @) should be scaled down by d to ensure that the system
is stable for any feedback delay, as shown in Appendix B.)

To achieve efficiency, we allocate the aggregate feedback to single packets as H_ feedback.
Since the EC deals only with the aggregate behavior, it does not care which packets get the feedback
and by how much each individual flow changes its rate. All the EC requires is that the total traffic
changes by ¢ over this control interval. How exactly we divide the feedback among the packets

(and hence the flows) affects only fairness, and so is the job of the fairness controller.

4.7.2 The Fairness Controller (FC)

The job of the fairness controller (FC) is to apportion the feedback to individual packets to achieve
A falrness The FC rehes on the same prmmple TCP uses to converge to fa1rness namely Addmve—
Increase Multzplzcanve -Decrease (AIMD). Thl.lb we want to compute the | per packet feedback ac—

cordmg to the policy:

If$>0, allocate it equally to all flows.

If ¢ < 0, allocate it to flows proportionally to their current throughputs.
This ensures continuous convergence to fairness as long as the aggregate feedback ¢ is not zero. To
prevent convergence stalling when efficiency is around optimal (¢ ~ 0), we introduce the concept
of bandwidth shuffling. This is the simultaneous allocation and deallocation of bandwidth such that
the total traffic rate (and consequently the efficiency) does not change, yet the throughput of each
individual flow changes gradually to approach the flow’s fair share. The shuffled traffic is computed

as follows:

h = max(0,7 -y — |¢]), (44)

where y is the input traffic rate and ~y is a constant set to 0.1. This equation ensures that, every
average RTT, at least 10% of the traffic is redistributed according to AIMD? The choice of 10% is
a tradeoff between the time to converge to fairness and the disturbance the shuffling imposes on a

system that is near optimal efficiency.

*Note that ¢ is always distributed according to AIMD. Thus, the total amount redistributed according to AIMD every
d is h + |¢|, which is at least 10% of the traffic.

44

Next, we compute the per-packet feedback that allows the FC to enforce the above policies.
Since the increase law is additive whereas the decrease is multiplicative, it is convenient to com-
pute the feedback assigned to packet 7 as the combination of a positive feedback p and a negative
feedback n;.

H_feedback; = p; — n;. 4.5)

First, we compute the case when the aggregate feedback is positive (¢ > 0). In this case, we
want to increase the throughput of all flows by the same amount. Thus, we want the change in the
throughput of any flow 7 to be proportional to the same constant, (i.e., Ar; < constant). The next
step is to translate this desired change of throughput to per-packet feedback that will be reported
in the congestion header. The total change in the throughput of a flow is the sum of the per-packet
feedback it receives. Thus, we obtain the per-packet feedback by dividing the change in throughput
by the expected number of packets from flow ¢ that the router sees in a control interval d. This
number is proportional to the flow’s throughput (in bytes per second) divided by its packet size
(in bytes), % Since d is constant for the duration of the control interval, the per-packet positive
feedback is inverse_ly proportional to its throughput divided by its packet size, (ie., p WlsT) .
Thus, positive feedback p; is given by: A ' o
P=b, @0

where ¢, is a constant.
The total increase in the aggregate traffic rate is A + max(¢,0), where maz(¢,0) ensures that
we are computing the positive feedback. This is equal to the sum of the increase in the rates of all

flows in the aggregate, which is the sum of the positive feedback a flow has received, and so:

L

where L is the number of packets seen by the router during the control interval d. From this, & can

be derived as:
_ h + max(¢,0)

sa

Similarly, we compute the per-packet negative feedback given when the aggregate feedback is

&p (4.8)

negative (¢ < 0). In this case, we want the decrease in the throughput of flow 4 to be proportional to
its current throughput (i.e., Ar; o 7;). Again, the desired per-packet feedback is the desired change

in throughput divided by the expected number of packets from this flow that the router sees in an

45

interval d. As shown above, this latter number is proportional to % Thus, we finally find that the
per-packet negative feedback should be proportional to the packet size (i.e., o s;). Thus negative
feedback n; is given by:

ni = &n - 8 (4.9)

where &, is a constant.
As with the increase case, the total decrease in the aggregate traffic rate is the sum of the decrease

in the rates of all flows in the aggregate:

L
h + max(—¢,0) =) _n,. (4.10)
As s0, &, can be derived as:
_ h+max(—¢,0)

€n = (4.11)

> S ’

where the sum is over all packets in a control interval (average RTT).
- The per-packet feedback derived above allows the‘.FC to allocate bandwidth according to the

- AIMD vpoli.(:iy. All of the values that ap‘pe,ﬁr in the -abol\}eve,quatioﬁs' are easily obtained at the router. .

In pémicular, the throughpuf, 74, is in the coﬁgestidn header, the packet size, s;, ié in the IP header, -

and the aggrégafe'trafﬁc rate, y, and the average RTT, d, are measured by the router.

Finally, the FC tracks the total amounts of positive and negative allocations since the beginning
of the current control interval. It stops giving positive feedback when the sum of the positive feed-
back allocated since the beginning of the interval reaches the target of h + maz(¢,0), and stops
allocating negative feedback when the sum of the negative feedback allocated since the beginning
of the interval reaches the target of h + max(—¢,0). This helps bounding the allocation error in

the aggregate traffic and tightly adheres with the decision of the EC.

4.7.3 Notes on the Efficiency and Fairness Controllers

This section summarizes the important points about the design of the efficiency controller and the

fairness controller.

e As mentioned earlier, the efficiency and fairness controllers are decoupled. Specifically,
the efficiency controller uses a Multiplicative-Increase Multiplicative-Decrease law (MIMD),
which increases the traffic rate proportionally to the spare bandwidth in the system (instead

of increasing by one packet/RTT/flow as TCP does). This allows XCP to quickly acquire the

46

positive spare bandwidth even over high capacity links. The fairness controller, on the other
hand, uses an Additive-Increase Multiplicative-Decrease law (AIMD), which converges to

fairness [20]. Thus, the decoupling allows each controller to use a suitable control law.

The particular control laws used by the efficiency controller (MIMD) and the fairness con-
troller (AIMD) are not the only possible choices. For example, in [45] we describe a fairness
controller that uses a binomial law similar to those described in [13]. We chose the control

laws above because our analysis and simulation demonstrate their good performance.

e We note that the efficiency controller satisfies the requirements in §4.1. The dynamics of the
aggregate traffic are specified by the aggregate feedback and stay independent of the number
of flows traversing the link. Additionally, in contrast to TCP where the increase/decrease
rules are indifferent to the degree of congestion in the network, the aggregate feedback sent
by the EC is proportional to the degree of under- or over-utilization. Furthermore, since the
aggregate feedback is given over an average RTT, XCP becomes less aggressive as the round
trip delay increases. Scaling down the gain with increased delay is a well-known technique

that helps stabilizing feedback control loops [62]. 3

e Although the fairness controller uses AIMD, it converges to fairness faster than TCP. As
shown in [20], TCP converges to fairness because of the sequence of additive increases and
multiplicative decreases. However, in TCP, multiplicative-decrease is tied to the occurrence
of a drop, which should be a rare event. In contrast, with XCP multiplicative-decrease is

decoupled from drops and is performed every average RTT.

e XCP is fairly robust to estimation errors. For example, we estimate the value of &, every d
and use it as a prediction of &, during the following control interval (i.e., the following d). If
we underestimate ¢, we will fail to allocate all of the positive feedback in the current control
interval. Nonetheless, the bandwidth we fail to allocate will appear in our next estimation of
the input traffic as a spare bandwidth, which will be allocated (or partially allocated) in the
following control interval. Thus, in every control interval, a portion of the spare bandwidth
is allocated until none is left. Since our underestimation of &, causes reduced allocation, the
convergence to efficiency is slower than if our prediction of & had been correct. Yet the error

does not stop XCP from reaching full utilization. Similarly, if we overestimate & then we will

5The relation between XCP’s dynamics and feedback delay is hard to fully grasp from Equation 9.3.1. We refer the
reader to Equation B.2, which shows that the change in throughput based on rate-mismatch is inversely proportional to
delay, and the change based on queue-mismatch is inversely proportional to the square of delay.

47

allocate more feedback to flows at the beginning of a control interval and run out of aggregate
feedback quickly. This uneven spread of feedback over the allocation interval does not affect
convergence to utilization but it slows down convergence to faimess. A similar argument can
be made about most estimation errors; they mainly affect the convergence time rather than

the correctness of the controllers.

There is however one type of error that may prevent convergence to complete efficiency,
which is the unbalanced allocation and deallocation of the shuffled traffic. For example, if
by the end of a control interval we deallocate all of the shuffled traffic but fail to allocate
it, then the shuffling might prevent us from reaching full link utilization. Yet note that the
shuffled traffic is only 10% of the input traffic. This limits the impact of the worst case under-
utilization that might happen because of a completely unbalanced shuffling. Furthermore,

shuffling exists only when |$| < 0.1y.

e XCP’s parameters (i.e., @ and) are constant whose values are independent of the number of
“sources, the delay, and the capacity of the bottleneck. This is a significant improvement over
ﬁreviqus approaches where specific values for the pafametel's work only iﬁfs‘beéiﬁéléﬁ\;}iréii'-f
ments (e.g, RED), or the parameters have to be chosen differently depending on the number of
sources, the capacity, and the delay (e.g., AVQ). In §4.8, we show how these constant values

are chosen.

¢ Finally, implementing the efficiency and fairness controllers is fairly simple and requires only
a few lines of code as shown in Appendix A. We note that an XCP router performs only a few
additions and 3 multiplications per packet, making it an attractive choice even as a backbone

router. A pseudo code of our implementation is provided in Appendix A.

4.8 Stability Analysis

We use a fluid model of the traffic to analyze the stability of XCP. Our analysis considers a single link
traversed by multiple XCP flows. For the sake of simplicity and tractability, similarly to previous
work [50, 38, 53, 57], our analysis assumes flows are long-lived and have a common, finite, and
positive round trip delay, and neglects boundary conditions (i.e., queues are bounded, rates cannot
be negative). In §5, we demonstrate through extensive simulations with larger topologies, different

RTTs, and boundary conditions, that our results still hold for these cases.

48

The main result can be stated as follows.

Theorem 1 Suppose the round trip delay for all sources is d. If the parameters o and (3 satisfy:

™
0<a<—= and B=0o?V2,
S 2 P

then the system is stable independently of delay, capacity, and number of sources.

The details of the proof are given in Appendix B. The idea underlying the stability proof is the
following. Given the assumptions above, our system is a linear feedback system with delay. The
stability of such systems may be studied by plotting their open-loop transfer function in a Nyquist
plot. We prove that by choosing o and 3 as stated above, the system satisfies the Nyquist stability
criterion with gain margin greater than one and positive phase margin, independently of delay,
capacity, and number of sources®
Theorem 1 provides a range for . The exact value of « is a trade-off between fast response

and robust stability. A large « allows XCP to converge quickly to optimal utilization but a small o

increases the protocol’s robustness against estimation errors.

4.9 Slimmary

We have presented XCP, a new congestion control protocol designed around the principle of de-
coupling the mechanism that controls congestion from the bandwidth allocation policy. We have
analyzed the design principles underlying XCP and shown that the decoupling is a desirable archi-
tecture for any networking environment, and is particularly useful in high bandwidth-delay product
networks. XCP is a window-based protocol in which the routers tell the senders explicitly how to
adjust their rates to eliminate congestion and achieve good utilization. An XCP router has a con-
gestion controller and a fairness controller. The congestion controller controls the aggregate traffic
matching it to the capacity of the link. It increases proportionally to the spare bandwidth which
allows it the fast response necessary for sustaining a large per-flow bandwidth-delay product. The
faimess controller, on the other hand, controls the relative throughput of the flows in the aggregate

without affecting the aggregate rate. It uses an AIMD control law to converge to fair bandwidth

The gain margin determines by how much we can multiply the signal (i.e., total traffic) while maintaining stability.
The phase margin is the difference between the maximum phase shift and 180 degrees and addresses the stability with
respect to delays.

49

allocation. Using tools from control theory, we have modeled XCP and shown the model is stable

independent of delay, capacity, and number of sources.

50

Chapter 5

Performance

In this chapter, we use extensive simulations to explore the characteristics of XCP and compare
it with TCP. We focus on a pure XCP network where all flows use XCP for congestion control.
In §8, we explore the coexistence of XCP with other types of traffic, particularly TCP. Our sim-
ulations demonstrate that XCP outperforms TCP both in conventional and high bandwidth-delay
* environments. They also reveal that XCP has the characteristic of almost never dropping packets.
Additionally, the simulations show that in contrast to TCP, the new protocol dampens oscillations
and smoothly converges to high utilization, small queue size, and fair bandwidth allocation. Fur-
ther, théy show that the protocol is robust to highly varying traffic demands and high variance in the
flows’ round trip times. Finally, by complying with the conditions in Theorem 1, we were able to a
priori choose constant values for o and /3 that worked for every single scenario that we simulated.
The simulations in this chapter cover a wide variety of scenarios. In particular, we simulate
capacities in [1.5 Mb/s, 4 Gb/s], propagation delays in [10 ms, 1.4 sec], number of long-lived
sources in [1, 1000], and arrival rates of Web-like flows in [10/sec, 1000/sec]. We also simulate
2-way traffic (with the resulting Ack compression' [80]) and dynamic environments with arrivals
and departures of short Web-like flows. In all of these simulations, we set @ = 0.4 and 8 = 0.226

showing the applicability of the results in Theorem 1.

!Ack compression refers to the phenomenon in which multiple Acks arrive at the sender back-to-back, which causes
the TCP sender to transmit a burst of back-to-back packets.

51

5.1 Simulation Setup

Our simulations use the packet-level simulator ns-2 [59], which we have extended with an XCP

module.2 We compare XCP with TCP Reno® over the following queuing disciplines:

¢ Random Early Discard (RED [35]). Our experiments use the “gentle” mode and set the pa-
rameters according to the authors’ recommendations in [68]. The minimum and the maximum

thresholds are set to one-third and two-thirds the buffer size, respectively.

¢ Random Early Marking (REM [11]). Our experiments set REM parameters according to
the authors’ recommendation provided with their code. In particular, ¢ = 1.001, v = 0.001,
the update interval is set to the transmission time of 10 packets, and gref is set to one-third of

the buffer size.

e Adaptive Virtual Queue (AVQ [50]). As recommended by the authors, our experiments use
v = 0.98 and compute « based on the equation in [50]. Yet, as shown in [44], the equation
for setting v does not admit a solution for high capaéitiesn In these cases, we use o = 0.15 as

"‘:.iis’éd‘ii‘]'[g()]. . et e _ _ y e e

OCore Stateles_é Fair Queuing (CSFQ [75]). In contrast to the above AQMs, .whose goal is
to achieve high utilization and small queue size, CSFQ aims for providing high faimess ina
network cloud with no per-flow state in core routers. We compare CSFQ with XCP to show
that XCP can be used within the CSFQ framework to improve its faimess and efficiency.
Again, the parameters are set to the values chosen by the authors in their ns implementation

except for the averaging constants which are set to 100 ms as recommended in [75].

The simulator code for these AQM schemes is provided by their authors. Further, to allow these
schemes to exhibit their best performance, we simulate them with ECN enabled.

In all of our simulations, the XCP parameters are set to & = 0.4 and 8 = 0.226. We experi-
mented with XCP with both drop-tail and RED dropping policies. There was no difference between

the two cases because XCP almost never dropped packets.

Most of our simulations use the topology in Figure 5-1. The bottleneck capacity, the round trip

delay, and the number of flows vary according to the objective of the experiment. The buffer size

2The code is available at www.ana.lcs.mit.edw/dina/XCP.
3Reno is a particular variant of TCP that is widely used in today’s Internet [61].

52

S

Bottleneck

S,

—— -

Sy

Figure 5-1: A single bottleneck topology.

Bottleneck

Figure 5-2: A parking lot topology. Arrows represent traffic directions.

is always set to the delay-bandwidth product. The data packet size is 1000 bytes. Simulations over

the topology in Figure 5-2 are used to show that our results generalize to larger and more complex

topologies; When unspecified, it should be as.sﬁmed that the simulation topoiogy is that in Figure 5-
.1, the flows RTTs are equivalent, and the sources are long-lived FTP flows. The simulation running

times vary depending on the propagation delay but are always larger than 300 RTTs.

5.2 Comparison with TCP and AQM Schemes

In this section, we compare XCP’s performance with that of TCP with various queuing schemes.
We show that, unlike TCP, XCP provides good performance in environments with large per-flow
bandwidth-delay product. Further, even in traditional environments, XCP is more efficient and

fairer than TCP.

5.2.1 Impact of High Capacity

Since our main objective in designing XCP is to solve the problems TCP faces in large bandwidth-
delay networks, we start our XCP evaluation by examining the behavior of both TCP and XCP as
the per-flow bandwidth increases. In this experiment, 50 long-lived FTP flows share a bottleneck.
The round trip propagation delay is 80 ms. Additionally, there are 50 flows traversing the reverse

path and used merely to create a 2-way traffic environment with the potential for Ack compression.

53

0.9

c
S
§ o8
5 07
2 06
§ o5
- -
@ 04 E
0.3 1 — 1 L 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
0 Bottleneck Capacity (Mb/s)
£ 3000 ; : r T r . T
3 XCP o
< 2500 A, RED x
: T 3
2 2000 | B
5 A AVQ o
g 1500 o i
5 .
£ 1000 Pr-a-.
5 o
° 500 [& I
RN :
3 0 500 1000 1500 2000 2500 3000 3500 4000

Bottleneck Capacity (Mb/s)

& 90000 : :
§ 80000 xch .+ 1
S 70000 | _cara T
e
£ 60000 - REM o |
& so000f . AVQ o]
G 40000 - e]
x o
% 30000 | .]
§ 20000 [P)
@ 7 gegegeymeRyer | L L

o 500 1000 - 1500 2000 2500 ° 3000 3500 4000

" Bottieneck Capacity (Mb/s)

‘Figure 5-3: XCP significantly outperforms TCP in high bandwidth environments. The graphs com-
pare the efficiency of XCP with that of TCP over RED, CSFQ, REM, and AVQ, as a function of
capacity.

Since XCP is based on a fluid model and estimates some parameters, the existence of reverse traffic,
with the resulting burstiness, tends to stress the protocol.

Figure 5-3 shows that an increase in link capacity (with the resulting increase of per-flow band-
width) causes a significant degradation in TCP’s performance, irrespective of the queuing scheme.
(The trend in Figure 5-3 also applies to drop-tail, which we did not include in the figure to maintain
readability. See Figure 3-2.) In contrast, XCP’s utilization is always near optimal, independent
of the link capacity. Furthermore, XCP never drops any packet, whereas TCP, with all AQMs but
AVQ, drops thousands of packets despite its use of ECN. Although the XCP queue increases with
the capacity, the queuing delay does not increase because the larger capacity causes the queue to

drain faster.

54

Bottleneck Utilization

4000 T T T Py T v —
RED x

L CSFQ &
3000 REM o
AVQ o

2000 + a. b

1000

0 0.2 04 06 0.8

Average Bottleneck Queue (packets)

Round-Trip Propagation Delay (sec)
60000 T — T T T X(‘) e . .
50000 | RED .-
REM o
| [
40000 - o AVQ-—B

Bottleneck Drops (packets)

0 02 0.4 0.6 - 08 1 12 14
Round-Trip Propagation Delay (sec) -

Figure 5-4: XCP significantly outperforms TCP in high delay environments. The graphs compare
bottleneck utilization,-average queue, and number of drops as round trip delay increases when flows
are XCPs and when they are TCPs over RED, CSFQ, REM, and AVQ.

5.2.2 Impact of Feedback Delay

We set the bottleneck capacity to 150 Mb/s and study the impact of increased delay on the per-
formance of congestion control. All other parameters have the same values used in the previous
section.

Figure 5-4 shows that as the propagation delay increases, TCP’s utilization degrades consider-
ably regardless of the queuing scheme. (The trend in Figure 5-4 also applies to drop-tail, which we
did not include in the figure to maintain readability. See Figure 3-3.) In contrast, XCP maintains
high utilization independently of delay. The adverse impact of large delay on TCP’s performance
has been noted over satellite links. The bursty nature of TCP has been suggested as a potential
explanation and packet pacing has been proposed as a solution [9]; however, this experiment shows
that burstiness is a minor factor. In particular, XCP is a bursty window-based protocol but it copes

with delay much better than TCP. It does so by adjusting its aggressiveness according to round trip

55

T - ’ _ l J\ |
o
i)
E 4
N
| 4
x
o i
g -
S o5 o
3 .
o 04 F i |
AVQ o
03 : . L 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
(a) Number of FTP Flows
1500 T T T T T T T T
--------- AA.-n"--.-.'N.--A""’XI:'F’----".--...,.
..... T RED x
...--Ar‘---"--- CSE'\QA :
0 |- PSR ; EI -
100 5"

500

0
0 100 200 300 400 500 600 700 800 900 1000

Average Botlleneck Queue (packets)

400 ¢ 500 60D 700 . 80C 900 1000
(c) Number of FTP Flows

" Bottleneck Drops (packets)

Figure 5-5: XCP is efficient with any number of flows. The graphs compare the efficiency of XCP
and TCP with various queuing schemes as a function of the number of flows.

delay.

5.2.3 Impact of Number of Flows

We set the bottleneck capacity to 150 Mb/s and round trip propagation delay at 80 ms and repeat
the same experiment with a varying number of FTP sources. Other parameters have the same values
used in the previous experiment.

Figure 5-5 shows that, overall, XCP exhibits good utilization, reasonable queue size, and no
packet losses. The increase in XCP queue as the number of flows increases is a side effect of its high
faimess (see Figure 5-7). When the number of flows is larger than 500, the fair congestion window
is between two and three packets. In particular, the fair congestion window is a real number but the
effective (i.e., used) congestion window is an integer number of packets. Thus, as the fair window
size decreases, the effect of the rounding error increases causing a disturbance. Consequently,

the queue increases to absorb this disturbance. The various AQM schemes are not as affected by

56

Utilization

400 600 800 1000
(a) Mice Arrival Rate (new mice /sec)

E 7 R N

5}

3

o

=%

e

o

2

: o

Cz, 6 e
_________ PRS-

o F D —— _

=} .

g soge-—tT T e

g . "

<

400 600

(b) Mice Arrival Rate (new mice /sec)

160000 . , T
o 120000 F
Q
3
a Nl
5 80000 |
e
wwor o
e
e " et I ol

0 200 400 600 800 1000
(c) Mice Arrival Rate (new mice /sec)

Figure 5-6: XCP is robust and efficient in environments with arrivals and departures of short web-
like flows. The graphs compare the efficiency of XCP to that of TCP over various queuing schemes
as a function of the arrival rate of web-like flows.

rounding errors because they are not as fair as XCP (see Figure 5-7). Also, it is worth noting that
as the number of sources increases to the point that the per-flow cwnd is a few packets (i.e., 2 or
3 packets), AVQ achieves 0.03 more utilization than XCP and almost half the average queue size.
On the other hand, in these simulations AVQ (with ECN) drops thousands of packets, whereas XCP

drops no packets at all.

5.24 Impact of Short Web-Like Traffic

Since most of flows in the Internet are short web-like flows, it is important to investigate the impact
of such dynamic flows on congestion control. In this experiment, we have 50 long-lived FTP flows
traversing the bottleneck link. Also, there are 50 flows traversing the reverse path whose presence
emulates a 2-way traffic environment with the resulting Ack compression. The bottleneck band-
width is 150 Mb/s and the round trip propagation delay is 80 ms. Short flows arrive according to

a Poisson process. Their transfer size is derived from a Pareto distribution with an average of 30

57

packets (ns implementation with shape_. = 1.35), which complies with real web traffic [23].
Figure 5-6 plots bottleneck utilization, average queue size, and total number of drops, all as
functions of the arrival rate of short flows. The figure demonstrates XCP’s robustness in dynamic
environments with a large number of flow arrivals and departures. XCP continues to achieve high
utilization, small queue size, and zero drops even as the arrival rate of short flows becomes signif-
icantly high. At arrival rates higher than 800 flows/s (more than 10 new flows every RTT), XCP
starts dropping packets. This behavior is not caused by the environment being highly dynamic, it
happens because at such high arrival rates the number of simultaneously active flows is a few thou-
sand. Thus, there is no space in the pipe to maintain a minimum of one packet from each flow and
XCP drops become inevitable. In this case, XCP’s behavior approaches the underlying dropping
policy, which is RED for Figure 5-6. The above argument might seem contradictory since AVQ can
maintain a low drop rate for the same number of flows. But actually, for XCP, drops are inevitable
because our current ns implementation does not decrease the congestion window below one packet
per-flow regardless of the how negative the feedback is. Thus, to reduce the sending rate to less
than 1 packet/RTT the router has to drop packets to activate the exponentlal back-off.* In the AVQ
-srmulanon we have the ECN optlon on. Thus the router can activate the exponentlal back off by
L markmg the packets instead of droppmg them The exponentral back-off causes some flows to stay
s11ent for most of the simulation time leavmg a smaller number of simultaneously active flows. We
note that we did not call the exponential back-off function when an XCP sender with cwnd = 1 re-
ceives a negative feedback only to simplify the ns code, however, we believe that in this case either
the sender should back-off or decrease the packet size appropriately. It is also worth noting, that in
comparison with RED, CSFQ, and REM which are simulated with ECN on, AVQ does a better job

at higher arrival rates.

5.2.5 Fairness

Next, we shift our attention to fairness and show that XCP is significantly fairer than TCP, regardless
of the queuing scheme. We have 30 long-lived FTP flows sharing a single 30 Mb/s bottleneck. We
conduct two sets of simulations. In the first set, all flows have a common round-trip propagation
delay of 40 ms. In the second set of simulations, the flows have different RTTs in the range [40 ms,

330 ms] (RTT;+1 = RTT; + 10ms).

*The “exponential back-off” happens in both XCP and TCP when a sender with cwnd of 1 packet receives a drop
or an ECN mark. In this case, the sender keeps cwnd = 1 and stops sending for sometime. If the sender receives more
congestion signals then the silence period increases exponentially.

58

T
L XCP o L2 XCP e |
25 Ah o 2514 RED o
CSFQ x ; CSFQ x
REM . REM o
AVQ + : AVQ o+

Flow Throughput (Mb/s)
Flow Throughput (Mb/s)

05,

0 5 10 15 20 25 30 0 5 10 15 20 25 30
(a) Equal-RTT Flow ID (b) Different-RTT Flow 1D

Figure 5-7: XCP is fair to both equal and different RTT flows. The graphs compare XCP’s Fair-
ness to that of TCP over RED, CSFQ, REM, and AVQ. Graph (b) also shows XCP’s robustness to
environments with different RTTs.

Figures 5-7-a and 5-7-b demonstrate that, in contrast to other approaches, XCP provides a fair
| bﬁndwidth allocation and does not have any bias against long RTT flows. Furthermore, Figm.'e' 5-
>7-b demonstrates XCP robustness to high variance in the RTT distribution. ‘Thus, although XCP
compﬁtés aﬂ estimate o:f the average RTT of the system,' it siilf oﬁéréteé éofre;fly in this environmént

where different flows have .substantially different RTTs. This issue is further investigated in §5.4.

5.2.6 A More Complex Topology

For the sake of clarity, the above experiments used a simple topology with a single bottleneck. In
this section, we show that XCP maintains a good performance in more complex scenarios with
larger topologies and multiple bottlenecks. This experiment uses the 9-link topology in Figure 5-2,
although results are very similar for topologies with more links. Link 5 has the lowest capacity,
namely 50 Mb/s, whereas the other links are 100 Mb/s. All links have 20 ms one-way propagation
delay. Fifty flows, represented by the solid arrow, traverse all links in the forward direction. Fifty
cross flows, illustrated by the small dashed arrows, traverse each individual link in the forward
direction. Fifty flows also traverse all links along the reverse path.

Figure 5-8 illustrates the average utilization, queue size, and number of drops at every link. In
general, all schemes maintain a reasonably high utilization at all links (note the y-scale). However,

the trade-off between optimal utilization and small queue size is handled differently in XCP from

59

1 T T T T T T T
c
S
T
N
5
2500 T T T T T T ch
/”? []
2 A RED x
g RO T R o OSER 2
g 1500 - o AVQ o -
1}
3 1000 | Py g
) it s - e
o B R, - B B
g 500 =TI IIT v CA— Ef T
< L, o
1] . 2
1 2 3 4 5 6 7 8 9
(b) Link ID
12000 - 7 : r T
o KGR0
10000 L8, e RED-.. x 4
o A, . CSFQ
a gooo F T T a REM o 4
g AVQ o
% 6000 - 4
2000 E5
0 s — : ‘
e 2 3 4 . 5 6 7 8 9.

© Link ID .

" Figure 5-8: Simulation with multiple congested queues. Utilization, average queue size, and number
of drops at nine consecutive links (topology in Figure 5-2). Link 5 has the lowest capacity along the
path. '

the various AQM schemes. XCP trades a few percent of utilization for a considerably smaller queue
size. XCP’s lower utilization in this experiment compared to previous ones is due to disturbance
introduced by shuffling. In particular, at links 1, 2, 3, and 4 (i.e., the set of links preceding the lowest
capacity link along the path), the faimess controller tries to shuffle bandwidth from the cross flows
to the long-distance flows, which have lower throughput. Yet, these long-distance flows are throttled
downstream at link 5, and so cannot benefit from this positive feedback. This effect is mitigated at
links downstream from link 5 because they can observe the upstream throttling and correspondingly
reduce the amount of negative feedback given (see implementation in Appendix A). In any event,
as the total shuffled bandwidth is less than 10%, the utilization is always higher than 90%.

It is possible to modify XCP to maintain 100% utilization in the presence of multiple congested
links. In particular, we could modify XCP so that it maintains the queue around a target value
rather than draining all of it. This would cause the disturbance induced by shuffling to appear as a

fluctuation in the queue rather than as a drop in utilization. However, we believe that maintaining

60

— I‘I'hroughput gf Flow 1 .
g Throughput of Flow2 o i
= Throughput of Flow 3
= Throughput of Flow 4 b
3 Throughput of Flow 5 4
.g. -
2
o _
£
- ~
E
o
w -
L L 1
10 12 14

(a) Time (seconds)

1.2 T T T T T LI T
Bottleneck Utilization ~ «
r Y 'y -
c 08F .,
L
LL‘} 06 [b
5 0.4 - -
02 4
0 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14
(b} Time (seconds)
5 L T T T

L T
Bottleneck Queue »

Queue at Packet Arrival (Packets)

o. 2 4 6 g . 10 12 14
{c) Time (seconds)

Figure 5-9: XCP’s smooth convergence to high fairness, good utilization, and small queue size. Five
XCP flows share a 45 Mb/s bottleneck. They start their transfers at times 0, 2, 4, 6, and 8 seconds.

a small queue size is more valuable than a few percent increase in utilization when flows traverse
multiple congested links. In particular, it leaves a safety margin for bursty arrivals of new flows. In
contrast, the large queues maintained at all links in the TCP simulations cause every packet to wait

at all of the nine queues, which considerably increases end-to-end delay.

At the end of this section, it is worth noting that, in all of our simulations, the average drop rate
of XCP was less than 108, which is on average three orders of magnitude smaller than the other

schemes despite their use of ECN.

5.3 The Dynamics of XCP

While the simulations presented above focus on long term average behavior, this section shows
the short term dynamics of XCP. In particular, we show that XCP’s utilization, queue size, and
throughput exhibit very limited oscillations. Therefore, the average behavior presented in the section

above is highly representative of the general behavior of the protocol.

61

ToP

1t
fl
08 0.8 !

0.6 06 |!

Utilization Averaged over an RTT

Utilization Averaged over an RTT

|
|
0.2 »I
}

= — T T
—
s

TR A
04 04 F " | l l
02 \ 1’ I) h Ma‘j"w
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
(a) Time (seconds) (c) Time (seconds)
2 500t XCP—— 4 ¥ s00 TP ———
8 8
o A=
= 400 | = 400 |
3 1 3]
€ | E
< 300 f < 300 Ff
° ko] !
X X H
§ 200 { 3 200 i ﬂ
a o
o 100 —L\ g 100 F
=) 3
g . b g
C:’ 0 L 2 Stk s . C=! 0 .
0 2 4 6 8 10 12 14 12 14

(b) Time (seconds) (d) Time (seconds)

Figure 5-10: XCP is more robust against sudden increase or decrease in traffic demands than TCP.
Ten FTP flows share a bottleneck. At time ¢ = 4 seconds, we start 100 additional flows. At¢ = 8
seconds, these 100 flows are suddenly stopped and the original 10 flows are left to stabilize again.

531 Convergence Dynamics

WeShOW ltil’at_}iCP dampens bscillafibhs and com;er.ge’s.s.moothly and quickly to high uti:li"zve(l'tiioi
;mail' queues and fair bandwidth allocation. Tn this experiment, 5'long-livéd flows share a 45 Mb/s
bottleneck and have a common RTT of 40 ms. The flows start their transfers two seconds apart at 0,
2,4, 6, and 8 seconds.

Figure 5-9-a shows that whenever a new flow starts, the fairness controller reallocates bandwidth
to maintain max-min fairness. Figure 5-9-b shows that decoupling utilization and fairness control

ensures that this reallocation is achieved without disturbing the utilization. Finally, Figure 5-9-c

shows the instantaneous queue, which effectively absorbs the new traffic and then drains afterwards.

5.3.2 Robustness to Sudden Increase or Decrease in Traffic Demands

In this experiment, we examine performance as traffic demands and dynamics vary considerably.
We start the simulation with 10 long-lived FTP flows sharing a 100 Mb/s bottleneck with a round
trip propagation delay of 40 ms. At ¢ = 4 seconds, we start 100 new flows and let them stabilize.
At t = 8 seconds, we stop these 100 flows, leaving the original 10 flows in the system.

Figure 5-10 shows that XCP adapts quickly to a sudden increase or decrease in traffic. It shows

the utilization and queue, both for the case when the flows are XCP, and for when they are TCPs

62

SDC (11:49, 05/14/2001)

100

— RTT of interface 1 |-
~--- RTT of interface 2| -

CDF (%)

11

0 500 1000 1500 2000 2500

Figure 5-11: The RTT distribution at an OC3 access link at the Supercomputer center in San Diego,
(a reproduction of Figure 13-a-top in [42]).

traversing RED queues. XCP absorbs the new burst of flows without dropping any packets, while

maintaihing high utilization. TCP, on the other hand; ié highly disturbed by the sudden increase = -
~in the traffic and takes a long time to restabilize. When thqﬂgwsA are suddenly stopped at ¢ = 10 .

seconds, XCP quickly reallocates tl'léAsp‘are band\&idth >and .cohtinues t6 have high utilizatioh. In

contrast, TCP takes long time to acquire the spare bandwidth and wastes the network resources.

5.4 Robustness to Large RTT Variance

Our model and analysis of XCP assume that flows have the same RTT, yet in reality flows differ
widely in their RTTs. Thus, our implementation uses the average RTT as an estimate of the feedback
delay in the system. In particular, XCP sets the estimation control interval to d = min(5ms, RT'T),
where RTT is the average RTT of the flows traversing the link. In this section, we examine the
robustness of using the average RTT as our control and estimation interval when the flows traversing
the bottleneck have very different RTTs.

First, we simulate an environment where the RTT distribution is the same as the one reported
in recent measurements [42]. Figure 5-11° shows the RTT distribution on both interfaces of an
OC3 access link at the San Diego Supercomputer center which carries commodity Internet traffic,

a distribution that is fairly representative of major high bandwidth links [42]. We use this CDF

5The figure is a reproduction of Figure 13-a-top in [42].

63

Bottleneck Utilization

XCP o
TCP+RED x
0.3 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
Time (sec)
1200 T T T T T T T T
XCP e
1000 [TCP+RED x4

Average Bottleneck Queue (pkts)

Time (sec)
2000 T T T T T T T T T

— ’{ XCP ' o
2 TCP+RED x
E 1500 (¥} i
[
Q ':
2 |
S 1000 : i
S 500 i .
8 ,z’

o Lo Mﬁ%{ wx&&w s P e Mwww

: : B 0 - 10 20 307 _40‘ .50 60 ‘70 80 90 100 °
’ Time (sec} o

Figure 5-12: The performance of XCP and TCP+RED+ECN when the RTTis d1str1buted accordmg
to Figure 5-11 (values are logged every second)

to generate the RTTs of the flows in our simulation, which we run on the topology in Figure 5-1.
There are 100 long-lived flows along the forward direction. The bottleneck capacity is 100 Mb/s,
the queues have enough space to buffer packets for 200 ms, and the reverse traffic is generated by
50 long-lived flows (all other parameters comply with the description in §5.1). Figure 5-12 shows
the performance of XCP given the RTT distribution in Figure 5-11. (The values are logged every
second.) The XCP performance is very satisfactory; the utilization is close to optimal and the
drop rate is virtually zero. In comparison with TCP over RED+ECN, XCP shows a larger average
queue. XCP uses this queue to absorb the oscillations resulting from the variance in the RTT, and
to maintain optimal utilization and zero drop rate, which TCP fails to achieve®

Next, we want to stress the design further by increasing the RTT variance. In particular, although
the RTTs in Figure 5-11 span a wide range, most flows have an RTT < 200 ms. To increase the

variance, we use a uniform distribution of RTTs over the range [5 ms, 7]. We repeat the above

5We have run the same simulation with TCP over drop-tail. We have also repeated the simulations with short Web-like
flows which arrive at 100 flow/s. The results are similar in nature to those reported in Figure 5-12.

64

0.9 %oy
08
07
06
05 -
04 1

0.3 L 1 1 1 1 L 1 1 A
0 100 200 300 400 500 600 700 800 900 1000

Maximum RTT (ms)
200 T T T T T T T

Bottleneck Utilization

XCPTl—o—u
TCP+RED +--%---!

0 100 200 300 400 500 600 700 800 900 1000

Average Bottleneck Queue (packets)

20000 T T T T T T T

XCP LH

}\
15000 ™

10000 T ‘ .

5000 | .)

0 4 L e P J’/f"?_”?—_’?—_j
S) 0 100 200 300 400 500 600 700 800 900 1000
Maximum RTT (ms}

Bottleneck Drops (packets)

Flgure 5-13: The performance of XCP and TCP+RED when the RTT is unlformly distributed over
[5 ms, 7], where 7 is the value on the x-axis.

experiment with various values of 7 and plot the average utilization, average queue size, and total
number of drops all as functions of 7 for both XCP and the combination of TCP Reno with RED
queues. The TCP plot is used as a reference. As seen in Figure 5-13, for 7 < 200 ms XCP
performance is nearly optimal. As 7 increases, the performance degrades smoothly but for RTTs
€ [5 ms, 1000 ms], the XCP performance stays acceptable. In comparison, TCP over RED also
seems to suffer from increased RTT variance. The impact in the case of TCP is more complex since
TCP suffers from the increase in the average delay (see Figure 5-4) as well as the increases in the

variance.

5.5 Impact of Error-Based Drops

Packets may be dropped because of errors at the physical or data-link layer. In this section, we
use simulation to explore the impact of such non-congestion drops on XCP. Before presenting our

simulation results, we emphasize that the impact of a certain packet error rate on XCP’s performance

65

4000 {
3500 \
3000
2500

2000

Throughput (Mb/s)

1500

1000

500

0 1 1 1 " i s ek
1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01

4 L 1

Packet Error Rate (PER)

Figure 5-14: The throughput of a single XCP flow as a function of packet error rate. Capacity is 4
Gb/s, RTT = 80 ms. For a reference, the figure also shows the steady state throughput of a TCP flow
as a function of the packet error rate.

“depends on the way XCP reacts to ’d‘I"OPS.“Oli;I' éﬁ_rrent implementation reacts to a drop by halving ’

cwnd. We believe this reaction is sﬁb-optimal,‘but uﬁtil the coni_munity gains more expeﬁeﬁce with .
. XCP, it 1s deéirable to be as conséﬁative as TCP is in reaciing to drops. The simulations in this
section show the impact of error-based drops on XCP’s throughput given the current design.

In this experiment, we run a single flow over a 4 Gb/s link. The round trip delay is 80 ms,
and the buffer size is set to a bandwidth-delay product. The duration of each simulation varies
between 50 sec and 300 sec depending on the error rate. The link drops packets according to a
Bernoulli random variable with a varying average. Figure 5-14 shows the throughput of a single
XCP flow as a function of the packet error rate (PER). For comparison, the figure shows the steady
state TCP throughput as estimated by Equation 3.17 The figure shows that XCP’s throughput is
almost an order of magnitude larger than TCP’s throughput for the same PER and RTT. (Note that

the throughput cannot be larger than 4 Gb/s, which is the capacity of the link.)

"We compare against the TCP throughput as computed by equation 3.1 rather than the simulated throughput because,
unless we run the simulations for very long time, the simulation results will be drastically affected by slow-start and do
not reflect the steady state TCP throughput. This is particularly true for low drop rates. Given the high capacity of the
link it takes a few days of real time to run such simulations. XCP on the other hand does not perform slow start, and thus
does not suffer from this effect.

66

Generated Network

T T T L T T T T
i
Lo
e X
.
- |
ZZ
[A
=31 1
0 h
I\ K
L I\ I
AR I
[} I
(Y I
LY I
AURY I
[i
L (R
[N g
1N
Vo
M !
[“
i i |
[|
H |
i \ |
;_ / “
L \ I
\)
\ t
\ B |
\ I |
k \ \ I
: \ \ |
- \) =y
i - \ ¥
I 1 i
i . i i/
[i RN
r L SRS 4 /,/ !
iy .
e i RSN \1
M/NTXE ~¥
- T T e -
1 1 1 1 1 1 1 1
o o o o =] o o -] o
o g =] [=3 [=] =] o =] [=]
0 in =1 I e n =] n
< <] [™~ N - -

aauejsiq [BOIUAA

1000 1500 2000 2500 3000 3500 4000 4500
Number of Nodes: 50

500

Horizontal Distance

Figure 5-15: A large simulation with 50 nodes, 153 links, and 1000 flows.

160

XCP Utilization
TCP Utilization ---<---

140

120

100

80
(a) Link ID

60

40

20

1t
0.8
0.6

uoneln

]

| —
<+ o o
o ©

abelony

XCP Queue

80 100 120
(b) Link ID

60

40

0 [TCP Queue -

60
5

1 1 1 1 0
QO O O O O
< MO N -

(spqd) enanp) abelany

2000 || TCP Drops -~
500 |

2500 | XCP Drops

1500 +
1000

(spid) sdouq

40 60 80 100 120 140 160
(c) Link ID

20

Figure 5-16: A comparison between the efficiency of XCP and TCP over RED.

67

5.6 Large Scale Simulations

The objective of this section is to increase our confidence that XCP is safe to run in the Internet,
and that the performance it shows over small topologies is representative and scales to larger and
more complex scenarios. Although the simulations in this section are in no way close in size or
heterogeneity to that of the Internet, they are much larger than the ones traditionally used to eval-
uate congestion control protocols. We note that, since we have already established XCP’s superior
performance in large bandwidth-delay networks (see §5.2.1), in this section we only use links with
moderate capacity and delay, showing that even in these traditional environments, XCP outperforms
TCP.

Our simulation uses the topology in Figure 5-15, which has been generated using the fiers
topology generator [26]. The topology consists of a WAN and three LANS, and contains 50 nodes
and 153 simplex links. The links’ capacities are either 100 Mb/s or 10 Mb/s, and their one-way
propagation delays vary between 2 ms and 45 ms. Values for capacities and delays are chosen
automatically by fiers. The simulation contains 1000 FTP flows, whose sources and destination are
* chosen randomly from the nodes in the graph. The buffer sizé is set to 150 packets at all queues.

We run the same simulation first with XCP, then with TCP With-_RED queues and the ECN option -

on.

Our results show that XCP has a better perférmance than TCP. In particular, Figure 5-16-a
illustrates the average utilization for all links in the graph. The x-axis is the link ID, and the y-axis
is its average utilization. The IDs are ordered according to the increased XCP utilization. The lines
connecting the points only help in tracking the various values. Some links have low XCP utilization
because they are not bottlenecks and the flows traversing them are constrained somewhere else.
Figure 5-16-a shows that in most cases XCP improves utilization. In particular, there are a few
cases where XCP results in a good utilization while TCP shows a 0% utilization (e.g., link 147).
These links usually have one or two flows that encountered a large number of drops in slow start.
The drops cause an exponential back-off which ultimately stall the flows. In XCP, there are no drops
and the flows efficiently use the links.

Figure 5-16-b plots the average queue size. It shows that XCP always maintains smaller queues
than TCP. Finally, Figure 5-16-c, shows that while TCP dropped tens of thousands of packets despite
the ECN option, XCP dropped only 5 packets.

68

5.7 Summary

We use extensive ns simulations to evaluate XCP and compare it with TCP. Our simulations show
that XCP is particularly useful in high bandwidth-delay environments. It quickly acquires a large
amount of spare bandwidth when the link is underutilized, and releases it in time of congestion.
Even in traditional environments, XCP improves the utilization, reduces the queue size, and almost

eliminates packet drops. Further, XCP is fairer than TCP and has no bias against large RTT flows.

69

Chapter 6

Quality of Service (QoS)

Internet quality of service (QoS) has been an extremely active area of research for many years. It
addresses the problem of providing a controllable and predictable differentiation in the throughput,
delay, or loss rate of different flows. The differentiation may be in absolute terms (e.g., flow ¢
0bta1ns a1 Mb/s throughput) or in relatlve terms (e g flow ¢ obtains more throughput than flow j).
The ob]ectlve of this chapter is two fold F1rst we show that the XCp framework can uceommo—
r;te QoS and that prev1ous QoS proposals contmue to be apphcable Second we develop in detarl
‘a small set of simple services that can support almost all applrcatron requlrements In partlcular
since XCP maintains small queues and very low drop rates, QoS mechanisms that provide delay or
loss differentiation become less important than in the context of a TCP-based Internet. Thus, we
focus on bandwidth differentiation and develop mechanisms that provide both relative and absolute
bandwidth allocations.
In this chapter, we assume the users comply with the rules of the protocol and do not address
misbehaving, which we discuss in §7. The rest of this chapter is organized as follows. First, we
look at the various QoS models and the services they provide. Second, we explore the QoS that

can be provided within the XCP framework. Then, we explain our relative and absolute bandwidth

differentiation schemes.

6.1 QoS Models

Internet QoS may take one of two forms: 1) relative service differentiation; 2) absolute service
differentiation. Relative service differentiation is motivated by the fact that users differ in the value

they attach to using the network. Some users are willing to pay more than others for obtaining better

70

service in time of congestion. Thus, the relative service differentiation model does not specify the
bandwidth, delay, or loss rate a flow perceives in absolute terms. It only specifies how much better
the service would be compared to that received by a lower service flow.

The relative differentiation can be coarse where there are few classes from which the user

chooses [27], or it can be fine-grained where there is an infinite spectrum of service differentiation
[46, 24,75, 25]. For example, in [27], Dovrolis et al propose a scheduler that provides proportional
delay differentiation between a small number of service classes. The network operator controls the
ratios of the average delays in these classes by adjusting the associated weights. The user chooses
the class that fits its application requirements, knowing that flows in higher classes experience lower
delays. In contrast to the previous example where there are a few service classes, Crowcroft and
Oechslin propose a scheme for an infinite spectrum of relative bandwidth differentiation [24]. Their
protocol, called MulTCP, is a modified TCP that allocates bandwidth to flows proportionally to their
weights. MulTCP achieves this differentiation by simulating a number of TCPs equal to the flow’s
weight.
" The second QoS model, called absolute service, is motivated by application needs. Some appli-
cations such as video streaming, IP-telephony, and games have specific throughput or delay require-
ments and do not adapt well to variations in these'parameters. To acc.ommodate these épplicatioris,
the absolute service model provides the users with some guarantees regarding their bandwidth, de-
lay, or drop rate. Unlike relative services, the absolute service model specifies the quality of the
service in absolute terms. For example, a flow might be guaranteed a bandwidth of one Mb/s or a
zero drop rate.

There are three different approaches for providing absolute QoS. The first is guaranteed ser-
vice, which is defined in the context of the IntServ IETF group [4]. It provides per-flow bandwidth
and delay guarantees at the expense of high router complexity. In particular, current solutions for
providing guaranteed service require each router to process a per-flow signaling message and to
maintain per-flow state on the control path, as well as to perform per-flow classification, scheduling
and buffer management on the data path. Performing per-flow maintenance at the routers is prob-
lematic because the size of this information increases linearly with the number of flows. Even more
important, the information is dynamic, changing very quickly. As a result, tracking the state of the
active flows is difficult and not robust.

The second approach is premium service, which is defined in the context of the DiffServ IETF

group [1]. It provides per-flow bandwidth guarantees and per-aggregate delay guarantees. In con-

71

| Relative Service W Absolute Service |

Few Classes | Infinite IntServ | DiffServ | SCORE
Differentiation

Table 6.1: QoS Models

trast to guaranteed service, to provide a premium service in DiffServ, only edge routers need to
maintain per-flow state, while maintaining simple behavior at core routers. Pushing the complexity
to the edge routers improves the scalability of the service.

The third approach, called SCORE [74], bridges the gap between a stateful and stateless archi-
tecture. In SCORE, only edge routers maintain per-flow state, which they transfer to core routers by
annotating the packets of a flow. The core routers do not keep any per-flow state. They use the state
in the packet to make their decisions. A SCORE network emulates a Jitter Virtual Clock (JVC) and
provides guarantees on the per-packet delay. Thus, SCORE provides a service similar to IntServ
but with lower complexity. However, SCORE is still more complex than DiffServ since core routers
have to do per-packet scheduling and random access to packets in the queue.

Independent of the approach absolute QoS models requlre elther a substantlally provmoned
network or admlssmn control. Otherw1se the resources mlght become over—comm1tted Wthh pre

vents the dehvery of the service. Table 6.1 summarizes the varlous QoS models.

6.2 Providing QoS Within the XCP Framework

Since there is a huge number of QoS proposals, it is very difficult to discuss each one of them
and its applicability to an XCP environment. Thus, we limit the discussion in this chapter to the
QoS models themselves. First, we look at the relative service model. We note that delay and loss
differentiation are not as important in the XCP framework because XCP exhibits a small queue
and a near zero drop rate as shown in §5. Thus, we focus on relative bandwidth differentiation
and demonstrate in §6.3 that XCP can effectively provide a wide range of continuous bandwidth
differentiation.

Shifting attention to the absolute QoS model, we note that mechanisms that provide absolute
bandwidth or delay guarantees usually do not need congestion control. In this case, each flow has
a service profile that specifies its rate and burstiness. Adherence to the service profiles prevents
congestion. Thus, in this case, the absolute QoS mechanism controls the guaranteed traffic. Still,

XCP can play an important role by controlling the best-effort traffic to efficiently use the spare

72

bandwidth left by the guaranteed traffic. In §6.4, we present a DiffServ approach for providing

bandwidth guarantees in an XCP network.

6.3 Relative Bandwidth Allocation in XCP

Since XCP naturally exhibits small queue size and near-zero drop rate, providing relative delay or
loss differentiation is less important in an XCP network than it is in traditional TCP-like environ-
ments. Therefore, in this section we focus on relative bandwidth allocation.

By decoupling efficiency and fairness, XCP provides a flexible framework for designing a va-
riety of bandwidth allocation policies. In particular, the max-min fairness controller, described in
§4.2, may be replaced by a controller that causes the flows’ throughputs to converge to a different
bandwidth allocation (e.g., proportional fairness, priority, etc.). To do so, the designer needs to
replace the AIMD policy used by the FC with a policy that allocates the aggregate feedback to the
individual flows so that they converge to the desired rates.

We describe a simple scheme that provides relative bandwidth allocation. Each flow has a
weight. As long as the flow does not facé any congestion, it can increase its rate to Satisfy its

demands. In time of congestion, the network allocates bandwidth so that the throughputs of the flows

throughput; __ throughputj)l

bottlenecked at the same link are proportional to their weights, (i.e., =4 9hh = —weight;

We provide this relative bandwidth differentiation by replacing the AIMD policy with:
If ¢ > 0, allocate it to flows proportionally to their weights;
If ¢ <0, allocate it to flows proportionally to their current throughputs.

The algorithm above allows each flow to simulate multiple flows, where the number of simulated
flows is proportional to the weight. This causes the flows to achieve the desired relative bandwidth
allocation. |

We can implement the above algorithm by modifying the congestion header. In particular, the
sender replaces the H_throughput field with the current throughput divided by the weight of the
flow (i.e, throughput/weight). Since the fairness controller uses only the H.throughput field to
define the fair share of a flow, this minor modification of the meaning of H.throughput is enough to

produce a service that complies with the above model.

'Of courese, flows that do not have enough demands can send at lower throughputs than the ones indicated by the
equality. One can think of these flows as being bottlenecked at the source rather than the link.

73

6.3.1 Evaluation

In this section, we show that, in contrast to other protocols, XCP can provide relative bandwidth
allocation over very short time scales (a few RTTs). Further, the relative differentiation of sources’
rates in XCP can reach more than three orders of magnitude, whereas other schemes fail in providing

accurate differentiation when the weight ratios become very large.

Experiment 1: In the first experiment, three XCP sources share a 10 Mb/s bottleneck. The cor-
responding weights are w; = 5, wp = 10, and w3 = 15. Each source wants to transfer a file of
10 MB, and they all start together at ¢ = 0. The simulations are run over the topology in Figure
5-1 where the round trip delay is set to 80 ms and the queue size is set to the delay bandwidth
product. The results are illustrated in Figure 6-1-a. At the beginning, when all flows are active,
their throughputs are 5 Mb/s, 3% Mb/s, and 1% Mb/s, which are proportional to their corresponding
weights. After Flow 1 finishes its transfer, the remaining flows acquire the freed bandwidth such

that their throughputs continue to be proportional to their weights. Note the high responsiveness
of the system In pamcular when Flow l ﬁnlshes its transfer freeing half of the llnk capac1ty9 the

Hother flows’ sendlng rates adapt in a few RTTs (with no overshoot or oscﬂlatlons)

‘We compare our scheme against MulTCP r24] CSFQ [75] and Weighted Fair Queumg (WFQ) -

[25]. We have implemented MulTCP in ns. The »MulTCP simulations in this chapter use RED
queues with w = 0.002, prez = 0.1, MiNypresh is one-third of the buffer, mazipyesn is two-thirds
of the buffer, and the gentle option is on. (We tried MulTCP with drop-tail but the performance was
much worse because of drop synchronization.) The CSFQ code is provided by its designers. The
averaging constants are set to twice as much as the maximum queuing delay as recommended in
[75], and the queue threshold is set to 0.4 the buffer size2 We extended the ns fair queuing (FQ)
module to provide weighted fairness. One problem that we faced is that the FQ code allocates to
each flow a separate buffer and does not allow different flows to share buffer space. Thus, we had
to set the buffer space for each flow to a delay bandwidth product, which means that the total buffer
size used by WFQ is three times as much as that used by the other schemes including XCP.

We repeat the experiment above with each of these schemes. The results are illustrated in
Figures 6-1-b, 6-1-c, and 6-1-d. MulTCP and CSFQ are less accurate than XCP in allocating the
bandwidth to the flows proportionally to their weights. Furthermore, the throughputs of the flows in
6-1-b and 6-1-c oscillate, and their transfers take longer, indicating that both MulTCP and CSFQ

2We could not find any clear recommendations for setting this parameter, so we set it to the value that seemed to
achieve the best performance.

74

10 Figwo ~ +
Flow 1
Flow 2
B -
z foran g
S sf P s
_§- ,"'u’»'»‘nfu*.“‘.-“‘-.u\.ﬂ‘-..-'x."‘v"‘..“‘.f":.?5 é
=] i H
g afg :
E ?5 ERTEHEL N IS SN N S
2 H
0 i 1 I 1 1 1 1 I 1 1 L o Jimagth i n 1 I 1 I L 1 L
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24
Time (seconds) Time (seconds)
(a) XCP (b) MulTCP with RED
10 Fgwo - 10 FFigw o
Flow1 © Flow1 o
Flow 2 Flow 2
8t 8}
0 3
S -]
2 6} Z 6
= 5
Y 2 i I
g 4r g 4 | 5
£ $ = o i
= T
. 1
2 2 Fal
iy,
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24
Time (seconds) . Time (seconds)
(c) CSFQ L " (d) WFQ

Figure 6-1: Comparison between XCP’s relative bandwidth allocation and MulTCP [24], CSFQ
[75], and Weighted Fair Queuing (WFQ) [25]. Three flows each transferring a 10 MB file over a
shared 10 Mb/s bottleneck. Flow 1’s weight is 5, Flow 2’s weight is 10, and Flow 3’s weight is 15.
Throughput is averaged over 200 ms (5 RTTs).

do not use the link bandwidth as efficiently as XCP does. On the other hand, the weighted fairness
achieved by WFQ is more accurate than XCP. This is expected given that WFQ maintains per-flow
queues at routers and does more complex per-packet processing.? Due to WFQ’s start-up transient,

XCP finishes the transfers one second earlier than WFQ, indicating a better bandwidth utilization.

Experiment 2: Next, we want to explore the range of relative bandwidth differentiation available
with XCP. For example, can XCP provide three orders of magnitude differentiation between the
throughput of various flows? To explore this point, we run an experiment in which two flows share

a single bottleneck. We set the weight of the first flow to wy = 1, and vary the weight of the

*In addition to having per-flow queues, WFQ needs to order the packets according to their departure time.

75

10000 . ,

XCP —e—
MulTCP-Reno-RED ----&---
MulTCP-Sack-RED - IO
1000 + WFQ-Sack -~ G

100

10 |

Throughout 2 / Throughput 1

17

1 10 100 1000
Weight 2 / Weight 1

Figure 6-2: The range of relative bandwidth allocation provided with XCP, MulTCP, CSFQ, and
WEFQ. The figure shows the ratio of the throughputs of two flows sharing a bottleneck as a function
of the ratio of their weights. Each point is the average of 10 runs.

| :'s'é'cov'nd‘ _ﬂ‘ow wy :E [1,1000]. If XCP can su'pp~ort félativé éiloca;tidns in this "rar'lge then the ratio of
fhroughputg ,’tb ithroughput; should valwa.y's; follow wy /w1 .- |
- The simulations are run over the topology in Figure 5-1. The round trip propagation delay is
80 ms and the queue size is a delay bandwidth product. For this set of simulations, we use a small
packet size of 100 bytes and we vary the capacity of the bottleneck with up so that the fair share of
flow 1 is always 100 Kb/s. We do so to prevent the rounding of the congestion window from biasing
the results of the experiment. For example, assume wp = 7, w; = 1 and the pipe is 10 packets. In
this case, to achieve the relative differentiation, flow 1’s congestion window should be 1.25 packets,
and flow 2’s congestion window should be 8.75 packets. However, the congestion window has to
be an integer number of packets. To prevent these rounding errors from skewing our results, we
change the capacity of the bottleneck with wj so that the fair congestion window of flow 1 is always
10 packets. We use a small packet size so that the capacity can be kept below 100 Mb/s even when
wa /wy = 1000.
Figure 6-2 shows that XCP can provide accurate relative bandwidth allocation for a range that
spans three orders of magnitude. In contrast, MulTCP fails in providing relative allocation when

the ratio of the weights is larger than 10. This failing happens whether MulTCP simulates Sack

76

or Reno TCP. The range of differentiation that may be provided with CSFQ is relatively small and
the differentiation becomes inaccurate for weight ratio larger than 4. Finally, in our simulations,
WEFQ provides an accurate bandwidth differentiation for weight ratios below 25. For larger ratios,
the throughput of Flow 2 becomes too large. The TCP sender of Flow 2 cannot ramp up quickly
after a drop to re-acquire the bandwidth. Drops substantially affect the rate of Flow 2 when there
are multiple drops from the same window, which tend to happen because FQ uses a drop-tail policy.
The router drains packets from Flow 1 whenever there are no packets in Flow 2’s queue, which
inflates the rate of Flow 1.

At the end of this section, we note that the simulations addressed only the case in which the
weighted fair share of all flows is larger than a few packets per RTT. For smaller weighted shares,

some low-rate flows might enter the exponential back-off mode, which makes it considerably diffi-

cult for any of the above schemes to provide accurate differentiation.

6.4 Providing Bandwidth Guarantees in XCP

~ We now describe an approach that allows a flow to ask for a particular minimum bandwidtk. Our
approach falls within the DiffServ realm; it requires no per-flow state in the routers, provides per-
- flow bandwidth guarantees, and does not provide worst case per-flow delay guarantees. However,
our approach differs from other services defined under DiffServ in that it supplies a distributed
admission control scheme with no per-flow state.

We could have provided a stronger service that achieves worst case per-flow delay guarantees
but we chose not to do so for the following reasons. First, worst case delays show up only in
constructed and unrealistic environments [16, 17]. Common delays in our approach are very close
to the round trip propagation delay (as shown in §6.4.6). Second, providing delay bounds increases
the computational complexity of packet scheduling from O(1) to O(log n), where n is the number
of flows in IntServ and the number of queued packets in SCORE. The increase in complexity is
fundamental and independent of the particular scheduling algorithm [79]. This higher complexity

might burden high-speed routers and prevent them from forwarding packets at line speed.

6.4.1 Service Framework

A flow may belong to either one of two classes: a guaranteed bandwidth class, or a best-effort class.

A flow in the guaranteed bandwidth class has a profile that indicates the minimum throughput the

77

flow would accept (bytes/sec). When a flow with guarantees starts transmission, it uses its first
packet to probe for admission into the network. The network can either admit the flow or deny it
admission. Once the flow is admitted, the network allocates to it a rate that is at least equal to its
profile. To maintain this guarantee the source should send every RTT at least one packet, declaring
the profile in the congestion header. Without this refreshment message, the reservation will expire.
The network also requires a guaranteed bandwidth flow to pace its packets.

Best-effort traffic, on the other hand, has no guarantees. It fills up the capacity unused by
the guaranteed service flows. In this best-effort class, flows can still ask for relative bandwidth
allocation (as described in §6.3). We note that the best-effort flows can use any reserved bandwidth
not in use by the guaranteed bandwidth flows; however, they are forced to release the bandwidth
when the guaranteed flows start sending again.

We assume the existence of policing agents at the edge of the network to ensure that the flows
do not lie about their profiles and do abide by the feedback they receive. These agents can also take
_ca.re of b1111ng the users of the guaranteed service class. Furthermore, the agents can send packets

~ on behalf of the user to refresh the reservatlons and can pace the trafﬁc 1f the user fa11s to do so

Ty

| ~16 4. 2 Modlfylng the Congestion Header

To prOV1de guaranteed bandwidth, the routers need two pieces of information. First, they need to
allow the flows with profiles to ask for admission. This requires one bit in the congestion header,
which we call the AC bit (i.e., the admission control bit). Second, the routers needs to know the

profile of each active flow. To do so, we add to the congestion header a new field called H profile?

6.4.3 Behavior of the Sender

The sender declares its profile in the H_profile field in the congestion header and sets the the admis-
sion control bit in its first packet. The receiver relays the value of the admission control bit to the
sender in the acknowledgment. Thus, when the sender receives the Ack for its first packet, it knows
whether the network can support the flow with the specified profile?

If the flow is not admitted, the sender has two options. The sender can either give up and try

later, or revert to best-effort. If the flow is admitted, the sender can send at a rate as large as its

“We note that since guaranteed flows receive no congestion feedback they meed not use the the fields Hortt and
H_feedback. Thus, it is possible for these flows to use a smaller header that does not provide these fields.

51t is fairly easy to modify the scheme to allow the router to decrease the profile field in order to inform the sender of
the maximum profile the router can guarantee.

78

profile without being controlled by the network. The sender can exceed the profile; however, it must
set the H_profile field to zero in all out-of-profile packets. Further, the H_throughput field in the in-
profile packets should be set to the throughput of the in-profile packets, whereas the H throughput
field in the out-of-profile packets should be set to the out-of-profile throughput. In other words, the
sender can send more than its profile by simulating two flows: 1) an in-profile flow sending at the
profile rate; 2) an out-of-profile flow that adjusts its sending rate to the feedback it receives. For
simplicity, the rest of this chapter assumes that a guaranteed bandwidth flow never sends beyond its

reserved bandwidth.®

6.4.4 Control Plane: Distributed Admission Control With No Per-Flow State

The first packet of each guaranteed bandwidth flow is used to ask for admission to the network.
The sender sets the AC bit in the first packet. Each router along the path maintains an estimate of
the total reserved bandwidth, Ry. The router admits the new flow if the sum of R, and the flow’s
profile does not exceed the capacity allocated to guaranteed traffic. Otherwise the router denies
admission to the flow by resetting the AC bit in the packet. Once the AC bit is reset the ﬁow is
denied admission and downstream routers do not consider it for admission control. Eventually the
packet reaches the receiver, which informs the sender whether the flow has been admitted or not.

Next we describe how the routers estimate the total reserved bandwidth R;. The naive way
to estimate the total reservations is to start from R, = 0, and whenever a flow is accepted we
update Ry, = R, + profile. This naive approach is problematic for two reasons. First, flows that
are admitted at an upstream router might be denied admission at a downstream router. Thus, the
upstream router will reserve the bandwidth though the flow might never use it. Second, flows usually
do not free the resources after they leave the network, which prevents reallocating the resources to
new flows.

Our objective is to compute an estimate of the total reserved bandwidth given that each flow tells
us its profile in its packets. We compute the estimate by looking at the profile field of all packets in
an interval Te. If each flow sends exactly one packet in T, then we can compute R, by summing
the values of the profile field in these packets. However, a flow sends on average throughput x T,
packets in 7, seconds, where the throughput is in packets/sec. Thus, we can compute the total

reserved bandwidth by dividing the profile by the number of packets from a flow, then taking the

SIf the sender exceeds the profile packets may get out of order as a result of the different treatment of in-profile and
out-of-profile packets. Our simulation results, below, show that the size of the out-of-profile queue is negligible, which
means that the impact of reordering is limited.

79

sum, ie., Rg = Y. p; X i ><T , where p; is the flow’s profile, T is the estimation interval, s; is the
packet size in bytes, r; is the flow’s throughput in bytes/sec.

However, this estimate ignores the most recent reservations. In particular, there might be
recently admitted flows whose senders have not yet learned of the admission. To count these
reservations we keep a second variable R,, which is updated whenever a reservation is made
R, = R, + profile, and is reset at the beginning of the estimation interval T.. Then, R, =
Ry + pi X s

Finally, for additional robustness, we measure the actual total throughput of the guaranteed
traffic every T, which we call R, and use it as a lower bound on Ry, i.e.,

S
T3 X Te

R, = max(R, + Zpi X , Ry). 6.1)

Below is a pseudo code for both admission control and R, estimation. The first block of code
runs when the router receives a request for reserving bandwidth with the AC bit set. The variable
G refers to the maximum bandw1dth that may be allocated to guaranteed traffic. The value of this

| parameter is chosen by the network adm1n1strat0r Choosmg a small G limits the total bandw1dth ‘
allocated to guaranteed traffic and may cause the network to turn away guaranteed ﬂows that could
have been supported. On the other hand, a large value for G increases the probability of over-
committing the bandwidth. In particular, B, is an estlmate of the currently committed bandwidth.
The simulations in section §6.4.6 indicate that the error in this estimate is less than 0.2 x C, where C
is the capacity of the link. Thus, to prevent over-committing the bandwidth, we recommend setting
G to less than 80% of the capacity of the link.

The second block of code estimates the currently used reservations and the total committed
bandwidth. Finally, the third block of code estimates R;. To smooth the estimate, we use a run-
ning average that is biased toward larger values. The bias prevents underestimating the committed

bandwidth, and thus prevents over-committing the resources.

80

On request arrival do:
if (R, + H_profile < G)
reset the AC bit
else
R, += H_profile
R, += H_profile

On packet arrival:
if (H_profile > 0)
R, += packet_size / T,

sum_profiles += H_profile x packet size / (H_throughput x T,)

On T, timeout:
tmp = max(sum-profiles, R,) + R,
if (tmp > Ry)
Ry =tmp
else
Ry =04 x tmp + 0.6 x R,

sum_profiles = 0

6.4.5 Data Plane

The router keeps a separate queue for the guaranteed traffic, which we call the G-queue. Packets in
the G-queue are given priority over best-effort traffic and are transmitted before any queued best-
effort packets. The average size of the G-queue stays small because admission control ensures that
the arrival rate to the G-queue is smaller than the departure rate from the G-queue, (the latter is the
link’s capacity). Also, the variations in the G-queue size stay small because the guaranteed service
traffic is paced and has very little burstiness. (The delay variations are not bounded as in IntServ but
our simulations indicate that they are negligible.)

We allocate a separate queue to the guaranteed service flows to minimize the queuing delay and

81

jitters they might incur. In particular, when a new reservation is made, some bandwidth should be
moved from the best-effort traffic to the guaranteed traffic. The new guaranteed service flow starts
sending at a high rate causing a queue buildup at the router and potential packet drops. It takes some
time for the best-effort traffic to back-off and drain the queue. By putting the guaranteed traffic in a

separate queue, we isolate it from the resulting jitter and delay.

6.4.6 Evaluation
We use simulation to show that:

1. R, tracks the reservations,
2. throughput of a guaranteed flow is equal to its profile,
3. the network operates efficiently, and

4. the best-effort traffic experiences a good fairness and a high efficiency.

We start by describing the simulation environment. We implement a guaranteed flow as a

" wmdow based ﬂow Thls means that the ﬂow sets cwnd always to the reservations times the RTT,

"'whlch it estlmates We use thlS approaeh because it mlmmlzes the modlﬁcatlons needed to extend
the XCP sender to provide guarantees ' : | -

: Simulations in this section use the topo_logies iﬁ Figﬁre 5-1 and Figﬁre 5-2. We start our eQalﬁa—
tion by looking at simple scenarios with one bottleneck, then we examine more complex scenarios

with multiple bottlenecks. The maximum reserved bandwidth G is set to 80% of the link capacity.

A. R, Tracks the Reservations

First, we show that our estimate of the total committed bandwidth tracks the reservations. This
tracking is important to ensure that guaranteed service flows are not admitted when they cannot be
satisfied and are not tuned away when they can be supported.

We first start with an experiment in which a single bottleneck of 10 Mb/s is shared by best-effort
traffic and guaranteed service flows (Figure 5-1). The round trip delay is 80 ms. There are 10 best-
effort flows that start at time ¢ = 0. Guaranteed flows start arriving at ¢ = 5 separated by 5 seconds.
Each guaranteed service flow asks for 15% of the capacity of the bottleneck. Since G is set to 80%
of the link capacity, at any time there could be no more than 5 guaranteed flows in the network and

a maximum of 7.5 Mb/s of guaranteed traffic. At time ¢ = 50, all of the currently active guaranteed

82

1.25 T T T T T

-
Utilization
Rg (normalized by capacity) ----+---—

5]
5 1
Q
@
>
3 1
he) , ;:
% 0.75 'f“‘{"“'-‘mmw‘ ."*f“"","
E ! ! |
& | I
I-u (I{vhvl : flm"qxn"
i 5 -
o 05 | P P |
& | v
3 b o

[T P
i L
o 025 H i : |
* P .

oy e
| |
0 H 1 1 1 1 | I . | . .

[22]
o

0 10 20 30 40 50 70 80 90 100

Time (second)

Figure 6-3: R, tracks the reservation made by the guaranteed bandwidth flows. The guaranteed
bandwidth flows arrive separated by 5 sec. Each flow requests 15% of the bottleneck bandwidth.
The rest of the bandwidth is filled up by best-effort flows. Since G = 0.8 capacity, we can accommo- .
date at most 5 guaranteed bandwidth flows. Att = 50, active guaranteed flows are stopped, Wthh '
frees up the reserved bandwidth. The cycle repeats with new arrivals of guaranteed flows.

flows are stopped, to let the sum of reservations, Bg go to zero again. The release of reservations
allows new guaranteed flows to be accepted into the system.

Figure 6-3 shows that the router’s estimate of the reservations tracks the correct reservations
with good accuracy. In particular, R, increases by 15% every 5 seconds with an arrival of a new
guaranteed flow. The router accepts a maximum of 5 guaranteed flows. After that no more flows
are accepted since the difference between the current reservations and G does not satisfy the needs
of any new guaranteed flow. At time ¢ = 50s, all currently active guaranteed flows are terminated.
Although none of the terminated flows sends a message to release the reserved bandwidth, the router
quickly discovers the release of the reserved bandwidth and starts reallocating it to new requests.
The figure also shows the utilization of the bottleneck link. It reveals that the bandwidth unused by
the guaranteed flows is efficiently used by best-effort traffic.

Next, we examine the impact of on-off flows on the estimate of Ry;. As mentioned above, an
on-off flow can maintain its reservations by refreshing the reservations every RTT. The flow sends a
small packet that contains only the congestion header. The H.profile field is set to the flow’s reserved

bandwidth, The H_rtt field is set to the flow’s recent estimate of the RTT, and the H_throughput field

33

| | Rg (Total Reservations) -

1r Ru (Used Reservations) -------- i
: L
2 .
[
Q :
m l W
© o075t :)
o ~:
g 5
IS f
: ;
E | :
g 0.5 ‘é |
(2] :;) 3
5 : P
S : bood
s L D
@ 025 ; L 1
v { .
@« . " |

:E ;11

0 : . L 1 1 HY

° 20 40 60 80 100

Time (second)

Figure 6-4: Admission control with on-off flows. The guaranteed service flows all arrive around
t = 10s and stop at ¢ = 90s. The router accepts them as long as R, < G. The figure shows that
although the on-off flows do not use all of their reserved bandwidth (R, < Ry), the router maintains

the reservations. - ' o : o e

is set fq one packet per RTT. We run-an‘experimenvt in which 5 guaranteed flows start together at

¢t =10s and stop at ¢ = 90s. The gudranteed traffic shares ihc link with best-effort flows that last
for the whole simulation. Each guaranteed service flow asks for 15% of the link bandwidth. The
guaranteed service flows are on-off flows with an idle period whose length is distributed according
to a Pareto distribution with an average of 10 seconds. In this experiment, the maximum committed
bandwidth, G, is set to 80% of the capacity of the link.

Figure 6-4 shows that our estimate of the total reservations tracks the committed bandwidth
despite the fact that the on-off flows did not use all of their reserved bandwidth. In fact R slightly
overestimates the reservations. This overestimation is intentional and caused by the bias of our filter
toward larger values of Ry. As mentioned above, we bias the Ry estimate to prevent over-committing
the bandwidth.

Finally, both Figures 6-3 and 6-4 indicate that our estimate of R, is within 10% of the actually
committed bandwidth. To be conservative, we recommend setting G < 0.8 x C, where C is the
link capacity. Although unlikely, it is still possible that the router might over-commit the bandwidth
because of its underestimation of R, or because of a route change. Our protocol does not specify

the reaction taken by the network in this case, which could vary depending on the policy of the

84

0.16 T — T T T T T T T T 4

I — - G-hueue:lrpacketérrivals !
014 | % 35
]
. 012 | é 3t ®
S
§ o1t . 25+
5
S 008 E 2t cmwo o
: :
3 006 = 15f
£ =
004 + B E 1F
Flow 1 ——
Flow 2 -------
0.02 - Flow 3 e g 05
Flow 4 -~ - O
o X X , Flow5 --- 0
0O 10 20 30 40 50 60 70 80 90 100 110 10 20 30 40 50 60 70 80 90 100
Time (second) Time (second)
(a) Throughput of Guaranteed Flows (b) Guaranteed traffic queue

Figure 6-5: The service perceived by the guaranteed bandwidth flows. 6-5-a shows that the flows
obtain their reserved throughput. 6-5-b shows that the delay perceived by guaranteed service flows
is almost always the RTT.

administrator. Some administrators might choose to slow down all guaranteed service flows pro-
portionally to their profiles. Other administrators may adapt an approach similar to that adapted by

telephone networks and decide to deny service to some of the admitted flows.

B. The Quality of the Guaranteed Service

In this section, we examine the delay and throughput obtained by the guaranteed service traffic. We
remind the reader that our scheme does not use any scheduling mechanism. To provide bandwidth
and delay guarantees, it relies on the facts that the bandwidth of the guaranteed traffic is always
below the capacity of the link and that the guaranteed service flows pace their packets. Thus, it is
important to check that the scheme can provide the guaranteed service without scheduling.

In this experiment, guaranteed service flows start arriving at ¢ = 10s separated by 10 seconds.
Each of them asks for 15% of the bandwidth of the link. In addition to the flows above, there are 10
best-effort flows that last for the duration of the simulation. Figure 6-5 shows the service perceived
by the flows that obtained reservations. In particular, 6-5-a shows that the router made reservations
for 5 flows. All of these flows obtained the throughput they were promised by the network. Further-
more, 6-5-b shows that the guaranteed service queue has been almost always empty, which means
that the guaranteed service flows almost never faced any queuing delay. Although our scheme does
not provide worst case delay guarantees, the simulation results show that the queuing delay expe-

rienced by guaranteed flows is negligible. In §6.4.6, we show that this behavior scales to larger

85

1.05

>

" Instantanteous Best-Effort Queue =

-
'
T

Frroaa - e AN " 2 I ARAR A
1 P DN FNIA e ST N W A M AN AN i]

0.95 H

-
~
T

09 H

-
o
T

085 i

08

Utilizatoin

0.75

0.7

Best-Effort Instantaneous Queue (pkts)
@

0.65 1 2

, Instantanteous Utilization --------

L L - A i i i [y i i N 1 LN
08 0 10 20 30 40 50 60 70 80 90 100 0 o 10 20 30 40 50 80 70 80 90 100
Time (second) Time (second)
(a) Bottleneck Utilization (b) Best-Effort Queue

Figure 6-6: The service perceived by best-effort traffic. A 10 Mb/s bottleneck is shared by 10 best-
effort flows and 5 guaranteed service flows. The guaranteed service flows are consuming 75% of
the bandwidth. The rest is used by the best-effort traffic.

topologies and more complex scenarios.

C. The Service Perceived by fhe Best-Effort Flows

In this section, we show that the best-effort flows fill up the bandwidth unused by the guaranteed
service flows. Further, the existence of the guaranteed service flows does not cause unacceptable
delay or drop rate to the best-effort traffic. In particular, Figure 6-6 shows the service perceived
by the best-effort traffic in the experiment described in the previous section (i.e., §6.4.6-B). Figure

6-6-a shows that the bottleneck utilization is optimal, while 6-6-b shows that the best-effort queue

size is just a few packets. Finally we note that there were no drops in this experiment.

D. The Guaranteed Bandwidth Service in Complex Scenarios

Next we show that the good performance of the guaranteed bandwidth service scales to larger
topologies and more complex scenarios. We simulate the topology in Figure 6-7, which has 50
nodes and 153 simplex links. Link capacities are either 10 Mb/s or 100 Mb/s, propagation delays
vary between 2 ms and 45 ms. The simulation contains 500 best-effort flows and 100 guaranteed
bandwidth flows. Each guaranteed bandwidth flow asks for 1.5 Mb/s. The source and destination
of a flow are chosen randomly.

Figure 6-8 shows the maximum G-queue size for each link. This is the worst case queuing

delay experienced by guaranteed bandwidth flows at that link. The figure shows that although our

86

Generated Network

4500 T T T T T T T T
WAN -
4000 | P LAN -
AN I P
£\ T g -
3500 | '} \ R .
[\ s
b -7
S \ -
o 3000 F L X/'}Sa\ - .
: SN \
] e | \ -7
% 2500 | [TP | .
2] j
W I i i
§ 2000 i
s —
1500 |- / 7]
‘\
/‘I AN “%\
1000 - S -
500 | e] ;
[R . S
0 1 1 1 1 1 1 L 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Horizontal Distance Number of Nodes: 50

Figure 6-7: A large simulation topology with 153 links and 50 nodes.

service does not guarantee a small bound of queuing delay, in practicé, the maximum queuing delay
experienced by guaranteed bandwidth flows is insignificant.

Table 6.2 shows the throughput of the guaranteed bandwidth flows normalized by their profiles.
Flows that did not obtain admission to the network did not send any traffic, and therefore do not
show up in the table. As can be seen from the table, all flows obtained a throughput very close to
their profile. The third column of the table shows the variance in the throughput. The low variance

shows that the throughput was constant and smooth during the whole simulation time.

6.5 Concluding Remarks

In this chapter, we showed that the XCP framework is flexible enough to provide both relative
bandwidth differentiation and absolute bandwidth guarantees.

The XCP framework can provide an infinite spectrum of relative bandwidth differentiation. This
is done by a minor modification to the meaning of the fields in the congestion header and without
adding any complexity to the routers. Our simulations show that XCP’s relative bandwidth allo-
cation is more accurate over short time scales than MulTCP and CSFQ and almost as accurate as
WEFQ. Further, XCP achieves a relative differentiation that spans more than three orders of magni-

tude, which we is difficult to obtain in other schemes.

87

Flow ID | Avg. Throughput / Profile | Standard Deviation
0 1.01162 0.000414976
1 1.02847 0.000629459
3 0.951795 0.00111228
8 1.00515 0.000763478
13 1.00099 0.00067902
18 1.01706 0.000618956
20 0.99539 0.000668748
21 1.05205 6.07975e-05
22 0.949202 0.000134563
25 0.972687 0.000337
29 1.00106 0.000498876
; 30 | 0.985789 - 0.000989847
38 1.00514 0.00059358
45 0.979103 0.000442315
50 1.00438 0.000390816
54 1.0063 0.00049031
55 0.984493 0.000326533
57 0.981836 0.000574069
59 1.00144 0.000647926
63 0.98392 0.000542434
64 0.990253 0.000619996
72 0.90828 0.000725442
80 0.991811 0.00063294
81 0.995918 0.000648337
84 0.908417 0.000711554
94 1.25362 0.0049869
95 1.00643 0.000728655

Table 6.2: The throughputs of the guaranteed bandwidth flows that got admission into the network
in Figure 6-7.

38

Max G-'Queue e ' ' ' I '
5 i
=3
g4 ! H §
[} n H
=] I i
[n H
3 : ; : i
@37 o IR
E i ! b Boano
5 i . i i Bodon
E i i | S IR .
s 2F i it i mHAmE Y fipdems 5
g TN R O 1 LY
SN 1 J LML (N i O
TR R B R R
o 'H‘UI Ifll |§ Ii “:llfli' l‘“illi Il': ' : ‘U? 1 1
0 20 40 60 120 140 160

(a) Link ID

Figure 6-8: Guaranteed bandwidth flows experience negligible worst case queuing delays. The
figure shows the maximum G-queue size at each of the links in Figure 6-7, which is the worst case
queuing delay experienced by guaranteed bandwidth flows at that link.

The XCP guaranteed bandwidth service allows a sender to reserve bandwidth for tﬁe duration
of the flow. Admission control is done in a distributed manner without any per-flow state at the
router. The resulting scheme is work conserving, does not increase the complexify of the routers,
and delivers the promised service. Further, the best-effort traffic enjoys a good service with a small
queue size and almost no drops.

We have focused on mechanisms that provide relative or absolute bandwidth differentiation
because we believe that providing delay or loss differentiation is less important in an XCP network
than in a TCP network. We have shown in the previous chapter that XCP maintains small queues and
almost never drops packets. Further, we have shown in this chapter that guaranteed flows usually
experience no queuing delay and no drops. Thus, we believe that the vast majority of applications

will be satisfied with the delay and loss rate achieved by XCP’

7Still, mechanisms that provide delay bounds may be added if needed.

89

Chapter 7

Non-Compliant Flows

The Internet is a heterogeneous environment run by multiple administrative authorities and shared
by users with different interests. It is natural for such an environment to contain misconfigured
machines or malicious users who might not adhere to the rules of a congestion control protocol.
Although current experience with the Internet shows that the number of such non-compliant entities
is small [77, 55], it is important for any new congestion control ‘protocol to éxplore the danger
1mpo§edby byrhi!ébeha\izing. T ' it |

- In this chapter, we address the problem of misbehaving users. Misbehaving ié an old problem,
which is usually addressed by monitoring the flows (or a subset of the flows) inside the network
[63, 76, 30]. Monitoring is a general solution that allows the administrator to identify and isolate
misbehaving flows independently of the congestion control protocol. We start this chapter by show-
ing that XCP facilitates monitoring and detection of misbehaving flows. Then, we explore various
ways a user can misbehave and the impact of such behavior on the network in the absence of flow

monitoring and protection.

7.1 Flow Monitoring

Similarly to TCP, in XCP security against misbehaving sources requires an additional mechanism
that polices the flows and ensures that they obey the congestion control protocol. This monitoring
may be done by policing agents located at the edges of the network or by statistical sampling at the

routers.

90

1. Policing Agents at the Edges of the Network: The agents maintain per-flow state and mon-
itor the rate of the flows to detect and isolate unresponsive sources. Because these agents
are at the edges of the network they see fewer flows and can maintain per-flow state without

endangering scalability.

Unlike TCP, XCP facilitates the job of these policing agents because of its explicit feedback.
Isolating the misbehaving source becomes faster and easier because the agent can use the
explicit feedback to test a source. More precisely, in TCP isolating an unresponsive source
requires the agent/router to monitor the average rate of a suspect source over a fairly long
interval to decide whether the source is reacting according to AIMD. Also, since the source’s
RTT is unknown, the source’s appropriate sending rate is unspecified, which complicates the
task even further. In contrast, in XCP, isolating a suspect flow is easier. The router can send
the flow a test feedback requiring it to decrease its congestion window to a particular value.
If the flow does not react in a single RTT, then it is unresponsive. That the flow specifies its
RTT in its packets makes the monitoring easier because the policing agent needs to monitor
- the flow only over a few RTTs. Further, since the flow cannot tell when an agent/router is

‘monitoring its behavior, it always has to follow the explicit feedback.

2. Statistical Sampling in the Network: Statistical sampling is similar to edge policing except -
that flow monitoring is done independently at each router. To reduce the required per-flow
state, a router samples the traffic to catch the high-rate flows. These are the ones worth
monitoring, whereas small misbehaviors are not worth the effort of the router. Both [30] and
[63] provide mechanisms for statistical sampling of traffic, using a manageable amount of
state at routers. These mechanisms can capture the fast flows. Once the high-rate flows are

detected they can be tested using the explicit feedback as described in the above paragraph.

7.2 Networks with No Flow Protection

Flow monitoring is relatively expensive because it requires the monitoring entities to maintain per-
flow state. Current measurements of Internet traffic show that most flows do abide by the congestion
control protocol, though no monitoring is in place. [77, 55]. Indeed, misbehaving requires either
modifying the congestion control protocol in the kernel or running applications on top of UDP. Since
most large bandwidth commercial applications use some form of congestion control, misbehaving

is currently limited to a small subset of users who are willing to invest time and effort in cheating

91

the network, and who do not have a moral prohibition against such misconduct.

Next, we examine the impact of misbehaving on XCP networks when no flow protection is
available. Although flow monitoring solves all of the problems listed below, we are interested in
examining the danger of misbehaving flows when the network does not provide any monitoring or

flow protection.

7.3 Senders’ Misconduct

What are the different ways an XCP source can misbehave? How do they affect the performance?
And for each particular misconduct, does the source have an incentive to do it? These are the
questions that we answer in this section.

The sender’s misconduct could be intentional, aiming at obtaining more bandwidth or disrupting
the service of the other users, or it could be unintentional, caused by bugs in its code. Independent of

the reasons of misconduct, we can classify misbehaving XCP sources as liars and abusers. Liars lie

- about the mformatlon in the congestron header, reportlng an incorrect throughput or round trlp delay

3

We refer to flows which lie about their throughput as T-hars, and flows which lie about the1r round ’
‘ trip‘delay as D-liars. We call a lie that reports a value larger than the true one an upward lie, whereas
wei calll a lie that reports a smaller value a downward lie. In contrast to liars, abusers report their
correct throughput ztnd delay, but they do not appropriately react to the feedback they receive. Some
abusers may completely ignore the feedback they receive, in which case we call them unresponsive
abusers. Less abusive are responsive abusers, which decrease in time of congestion and increase
when there is spare bandwidth, yet they increase more and decrease less than they are told. We note
that in practice a misbehaving user might be both a liar and an abuser. Our classification separates
these issues to help disentangling the effects of various attacks. Table 7.1 shows some ways an XCP
sender can misbehave, the impact of the attack on efficiency and fairmess, and whether a strategic
sender has an incentive to perform such an attack. The incentive is evaluated assuming the sender
is selfish and interested in maximizing its own rate but is not particularly interested in harming
the network. (This complies with the definition of a “strategic user” in Game Theory, but we do
not claim that the “incentive” reflects the behavior of the strategic sender at the equilibrium of the

game.) The rest of this section explains the results in Table 7.1.

92

| Misconduct | Direction | Impact on Efficiency | Impact on Fairness Incentive
T-liar Upward No Impact Makes sender looks like a | No
fraction of a flow — gets
less than fair share

Downward | No Impact sender simulates multiple | Yes

flows — gets more than
fair share

D-liar Upward Slows down convergence | Negligible impact (slows | No
down convergence to fair-
ness)

Downward | Makes system faster; can | No impact No
cause instability if the true
delay is much larger than
the declared one

Abuser IG>1 System 1is fairly robust | Limited unfairness Yes
against this attack but in
the extreme it might get
destabilized

DG <1 System is fairly robust | No significant impact No
against this attack but in
the extreme it might get
destabilized

Unresponsive| r; < C Almost no impact Unfair Yes
Abuser _ »

r; > C Destabilizes the system | Unfair Yes (as
causing it to degenerate o long as
to the underlying dropping the abuser
policy (i.e., RED) does not

mind the
drops).

Table 7.1: Various sender’s misconducts, their impact on efficiency and fairness, and whether a
strategic sender has an incentive to perform such a misconduct. IG and DG are the increase and
decrease gains respectively, r; is the rate of unresponsive traffic, and C is the capacity. To evaluate
the incentive of the user, we assume that the sender is a strategic agent who misbehaves to increase

its throughput.

7.3.1 The T-liar

We distinguish between two cases:

1. Upward T-Liar: In this case the sender declares a value larger than its throughput in the

H_throughput field in the congestion header. This lie affects only fairness but does not affect

the congestion state of the network, because the efficiency controller at the routers does not

use the H_throughput field. It computes the total traffsic rate by measuring the incoming

93

traffic at the link. Thus, lying about the throughput has no impact on the congestion or the
efficiency in the network. On the other hand, reporting a throughput larger than the true one
causes the throughput to converge to a fraction of the fair share. In particular, although in
XCP each flow increases by a constant amount, the increase is spread over all packets. Thus,
by reporting more packets per second, the per-packet positive feedback given to this flow
decreases. In contrast, the negative feedback increases since the fairness controller in times
of congestion cuts down the rate of a sender proportionally to its throughput. Hence, given
that the flow gets less than its fair share of the bandwidth, a strategic sender has no incentive

to carry on such misconduct.

. Downward T-Liar: In this case the sender declares a value smaller than its throughput in
the H_throughput field in the congestion header. As a result, the sender would be simulat-
ing multiple flows, where the number of simulated flows is the ratio of the true throughput
to the declared one. For example, if the sender advertises a throughput that is half its true
throughput, then the router would consider the flow two separate flows. This happens be-
cause the router has no per-flow information and the only notion of a flow it has comes from

“the advertise‘d throughput. Similarly to the upwdfd T-liar, this lie does not affect the efficiency
or the congestion state of the network because the efficiency confroller relies on direct mea-
surements of traffic and does not use the H_throughput field. As for fairness, by simulating
multiple flows, the flow acquires more than its fair share. This increased throughput creates

an incentive for the sender to misbehave.

In general, simulating multiple flows is an attack to which no congestion control protocol
is immune (e.g., XCP, TCP, etc.). Further, it is impossible to detect such attack without

maintaining a per-flow state in the network.

Simulation Results

Below we show simulation results that support our argument above, namely that T-lying has impact

only on fairness but not on utilization.

Impact on Fairness: In this simulation, a single T-liar shares a 20 Mb/s bottleneck with 19 compli-

ant flows. The topology is that in Figure 5-1, the round trip propagation delay is 80 ms, and there

are 20 flows along the reverse path. Other parameters comply with the description in §5.1. We call

the ratio of the true throughput to declared throughput the gain of the T-liar. Figure 7-1 illustrates

94

100 T

Throughput of T-liar «-s-s
o —
% 10 b “n p
= P
e o
~ o
g = :
=] E
3 &
-.m ‘."'
E 0.1 goeoetemermneeeaenenas 5}3 i
-
0.01 1 1 1 1)
0.01 0.1 1 10 100

The T-liar's Gain (true throughput / declared throughput)

Figure 7-1: The impact of T-lying on fairmess. The throughput of a single T-liar that is sharing a
bottleneck with 19 compliant flows.

0.9765 T T - T T
All Flows Are T-liars +---x---
0.976 . . X i
s i
S 09755 | i 1
g : i ; T 1
= 0975 LT : i p
5 i . : ek |
2 09745 | | AN SRRV e A 4
8 i ER - T i H
5 0.974 i H
3 09735 |
0973} ! 4
0.9725 ot L _ T— L
0.01 0.1 1 10 100
The Gain of the T-liars (true throughput / declared throughput)
-~ 22 T T
£ : P All Flows Are T-liars +--—x---
2 H Toobd : _
9 2 i L T
3 H HE H H 4 - ToT H
g : A Pl {
R Vs NI i
[} : N RN H H Pl -3
gor | AR G s S] :
2 | I i
< [i i | | o !
x 1875 P A]
e ! : ! A
e ! P P
s 17t * _
3
D 16 L . . .
0.01 0.1 1 10 100

The Gain of the T-liars (true throughput / declared throughput)

Figure 7-2: The impact of T-lying on efficiency. The utilization and queue size of a bottleneck
traversed by 20 T-liars.

the ratio of the throughput of the T-Liar to its fair share as a function of its gain. The figure shows
that for a wide range of gain (i.e., gain in [0.2, 8]), the T-liar achieves a throughput equal to its fair
share multiplied by its gain. This is expected as the T-liar simulates a number of flows equal to its

gain. As the gain increases beyond this range, the throughput of the T-liar starts leveling off. This

95

is attributed to the fact that other flows continue to have at least a window of one packet. Similarly,
when gain < 0.1, the T-liar reaches its minimum throughput which corresponds to one packet per
RTT. Note that the exact gain values at which the throughput of the T-liar stabilizes in Figure 7-1

depend on the pipe size, but the trend is general.

Impact on Efficiency: Next, we look at the impact of T-lying on the efficiency of the network and
its congestion state. In this simulation, all flows are T-Lying. The gain they are using is distributed
according to a normal distribution with a standard deviation equal to the average (negative values are
ignored). The average gain varies from one experiment to another and takes values in [0.01,100].
We plot the average utilization, and the average queue size as functions of the T-liar gain. As seen
in Figure 7-2, T-lying has no impact on the efficiency of the network. We also note that there were

no drops in these sets of simulations.

7.3.2 The D-liar

We distil}guish between the following two cases.
1. Upward D-Liar: By advertising a delay larger than its RTT, the flow increases the average
. delay computéd by the router, and consequently increases the éo'ntrol interval. Both the EC
and FC allocate bandwidth every controi interval. Thus, an increase in this interval makes
the controllers more sluggish and slows down convergence to fairness and optimal utiliza-
tion. However, increasing the control interval does not prevent such convergence. A strategic

sender has no incentive to intentionally advertise a larger delay.

2. Downward D-Liar: Advertising an RTT smaller than the true one has the opposite effect to
the attack above. Namely, the router’s estimated average delay becomes smaller, decreasing
the control interval. As a result, the EC becomes more aggressive and attempts to change
the traffic rate too quickly. If the control interval becomes too short in comparison with the
RTT of the flows, the EC might get out of phase with the sources, which causes oscillations
and decreases the utilization. As for fairess, advertising a smaller delay has no impact on the
average bandwidth allocated to the flow, though it may increase the short term variance. Thus,
a strategic sender has no incentive to intentionally advertise a smaller delay, but a vandal may

use this attack to disturb the network performance.

To make XCP more robust against D-lying, the network operator can specify upper and lower

bounds on the value of the control interval. These are bounds on the control interval not the RTT,

96

175 |
15}
125 b
0.75 £

05

D-liar's Throughput / Fair Share

t-3
4

i

H

i

B!

W

By

0.25 +

throughput of D-liar +----a--- .

0.01 0.1 1 10 100
The D-lair's Gain (true RTT/ declared RTT)

Figure 7-3: The impact of D-lying on faimess.The throughput of a single D-liar that is sharing a
bottleneck with 19 compliant flows.

which could be outside the range specified by the bounds. Our ns implementation does not allow
the control interval to become smaller than 5 ms (which is about the RTT on a LAN). Also, it
~ does not allow the control interval to increase beyond 1 sec (which'is about the maximum RTT in
today’s Internet). Our bounds are loose and have been chosen to allow both long and short-RTT
, simulations. In practice, the operator can choose tighter bounds. The propagation delay on the
link is a natural bound on the minimum control ‘interval. Further, the geographic location of the
link usually holds information about the expected RTT distribution [42]. For example, transatlantic
links may be configured with a minimum control interval of 30 ms, whereas access links may be

configured with a maximum control interval of 200 ms.

Simulation Results

We examine via simulation the impact of D-Lying on both efficiency and fairness. Our results
indicate that D-lying has almost no impact on fairness. Further, as long as the number of D-liars
is limited, D-lying does not cause any major inefficiency. However, the utilization considerably

degrades when most flows declare an RTT much smaller than the true one.

Impact on Fairness: In this simulation, a single D-liar shares a 20 Mb/s bottleneck with 19 compli-
ant flows. There are 20 flows along the reverse path. Other parameters comply with the description
in §5.1. We call the ratio of the true RTT to declared RTT the gain of the D-liar. Figure 7-3 illus-
trates the ratio of the throughput of the D-Liar to its fair share as a function of its gain. The figure

shows that the D-liar’s throughput is the same as its fair share as long as its gain € [0.2,100]. For

97

0.95
.5 09 1 .
8 ossp X
5 o8}/
T ors5f]
® . Y
c X .
o 07¢ AN b
= JERN X
@ 065 N A
06 _ AllDiars w-x-- 1
50% D-liars —e— [
0.55 L L 4
0.01 0.1 1 10 100
The D-liar's Gain (true RTT/ dectared RTT)
80 : —— .
All D-liars +---%---

70 . 50% D-liars —e—

Bottleneck Average Queue (packets)

0.01 0.1 1 10 100
The D-liar's Gain (true RTT/ declared RTT)

Figure 7-4: The impact of D-lying on efficiency. The utilization and queue size of a bottleneck
- shared by 20 flows. The graphs are for the cases when all flows are D-liars, 75% of the ﬂows are
D-liars, and 50% of the flows are D-liars.

'gains' < O.Z (véry large declared RTT), the variation in the throughput increases but the average
remains close to the fair share (i.e., within 20%). We note that the light decrease in throughput for
gain < 0.1 is caused by our maximum control interval of 1 second. When a flow declares an RTT
larger than 1 sec, bandwidth allocation to this flow becomes slower than the other flows. As a result,

the flow takes more time to ramp up, which appears as a slight decrease in the average throughput.

Impact on Efficiency: Next we simulate a bottleneck of 20 Mb/s shared by 20 flows where: 1)all
flows are lying about their RTTs; 2)half the flows are lying about their RTTs. We call the ratio of
the true RTT to the declared one the gain of the D-liar. For this experiment, the gain of the various
flows is chosen from a normal distribution with a standard deviation equal to the average (negative
values for the gain are ignored). The average of the distribution varies from one run to another and
takes values in [0.01, 100]. Figure 7-4 shows the average utilization and the average queue size as
functions of the gain for both when all flows are D-liars and when only 50% of the flows are D-liars.

Based on these figures, declaring an RTT larger than the true one decreases the efficiency. How-
ever, close inspection of the behavior of the flows reveals that the decrease in efficiency is caused

by a long ramping up time at the beginning of the simulation. The link still converges to optimal

98

utilization. Thus, the inefficiency is transient. On the other hand, drastically underestimating the
RTT or declaring a large D-liar gain by most users causes a substantial degradation in utilization.
This degradation happens because of oscillations in traffic rate, and thus is different in nature from
the transit inefficiency at low gains. However, the figures also indicate that when most of the flows
do not lie about their RTT, or when the lie is not substantial, the system maintains an acceptable
level of efficiency. We note that it is possible to increase the robustness against a downward D-lie by
using a smaller « or by increasing the minimum control interval. In both cases the operator would

be accepting a more sluggish behavior in order to increase stability.

7.3.3 Responsive Abusers

In this case the sender reports its state correctly to the routers; but does not adhere to the feedback
it receives. Whenever the feedback is positive, the abuser increases its rate by IG x feedback,
where IG > 1 is the increase gain. When the feedback is negative, the abuser decreases its rate by
DG x feedback, where DG < 1 is the decrease gain. By doing so, the abuser is trying to achieve
higher throughput by using more aggressive paramﬁters than the competing flows. The impact of the
attack on the stability aﬁd efficiency of the system depends on the total amount of abusive traffic. We
use the term ‘abuse gain’ to refer .Ato the ratio of the total abusive traffic to all traffic at the bottleneck.
The larger the gain is the more the system oscillates. Our simulations, described below, indicate that
despite potential oscillations the system’s performance remains acceptable for a fairly wide range of
abuse gains.! As for fairness, using more aggressive parameters increases the abuser’s throughput

by a limited amount. Thus, there is some incentive for a selfish abuser to conduct such an attack.

Simulation Results

A responsive abuser uses an aggressive increase policy or a lenient decrease policy. In particular,
when the legitimate behavior is to increase the rate by Ar, the abuser increases by IG s Ar, where
IG > 1. When the legitimate behavior is to decrease the congestion window by Ar, the abuser
decreases by DG * Ar, where DG < 1. We examine the impact of such malicious behavior on both
XCP and TCP with RED queues. (A responsive TCP abuser increases its cwnd by 1 x IG packets
every RTT, and decreases it by 0.5 x DG for each drop.) The simulations in this section use the

topology in Figure 5-1. The bottleneck capacity is 20 Mb/s, the round trip propagation delay is 80

'In theory, if the abuse gain exceeds the gain margin, the abusive traffic might destabilize the router and cause oscil-
lations. The gain margin decreases with an increase in . For o = 0.4, the gain margin is around 2.2.

99

5 35 T T - a5 | I

3 Responsive Abusers Throughput / Avg. Throughput &] Responsive Abuser’s Throughput / Avg. Throughput »----s--=

3 g |

2 3t ‘v -

| Q

2 | .2

77} | w

¥ 5 25)

a Q ‘. :

3 3 ;

c 2l -

B k]

5 E]

2 15} 5

§ PO i & h g»

g ...,.........A..A.v....... 5 |

£ 1¥ =

[| '_ ' ‘
1 10 -] | 10)

The Responsive Abuser Increase Gain The Responsive Abuser Increase Gain

5 35 o ’

g o Abusers_rhmughpm/Avg e % Responsive Abuser's Throughput / Avg. Throughput &

2 4l -

| Q

2 :

m i)

o S 25f

; j=3

3 3

c ol B d

B k]

é _gl 15

2 :)

| * — o) S

F E A

0.01 0.1 1 0.01 0.1 1

The Responsive Abuser Decrease Gain The Responsive Abuser Decrease Gain
(XCP) (TCP)

Figure 7-5: The impact of a responswe abuser on faimess. The graphs on the right use TCP whereas
the graphs on the left use XCP. SR . . o

' mS, band there are 20 ﬂows along the reverse path. There are 20 flows alon g the forward path some

of which may be abusive. Other parameters comply with the deScription in §5.1.

Impact on Fairness: In this experiment, one abusive flow is sharing the link with 19 compliant
flows. Figure 7-5, plots the throughput of the abusive flow relative to its fair share as a function of
the flow’s gain for both XCP and TCP. The figure shows that when the abuser uses an aggressive
increase or a lenient decrease parameter its throughput becomes larger than its fair share. The
throughput increase is moderate for both XCP and TCP with RED. This is because the more the
throughput of an XCP flow the larger the negative feedback it receives. Similarly, RED is designed

to drop more from large bandwidth flows.

Impact on Efficiency: Next, we consider the impact of the responsive abuser on efficiency. In
this experiment, all users are responsive abusers. Figure 7-6 shows the impact of abusers who
increase aggressively on the average utilization and queue size, whereas Figure 7-7 shows the impact
of abusers who decrease leniently on the average utilization and average queue size. The figures
indicate that, both XCP and TCP are reasonably robust against responsive attack. In particular, the

efficiency stays acceptable for an increase gain as large as 100 and a decrease gain as small as 0.01.

100

Bottleneck Utilization

Bottleneck Average Queue (packets)

11

09t

08

07 |

0.6

140
120
100
80
60
40
20

100

y Avg. Utilization :----a---:
......... i
o ae :
3t
1)
The Responsive Abuser's Increase Gain
L Avg. Queue s]
P'" |
1 .

The Responsive Abuser’s Increase Gain

(XCP)

100

Bottleneck Utilization

Bottleneck Average Queuse (packets)

11

09t

o8|

0.7

Avg. Utilization =--a---:

r

0.6

10 100
The Responsive Abuser's Increase Gain

140
120

20

T

Avg. Queue +-o-

10 100
The Responsive Abuser’s Increase Gain

(TCP)

Figure 7-6: A comparison between the efficiency of XCP and TCP, when all users increase aggres-

s1vely by multlplylng their fair positive increase by a gain > 1.

Bottleneck Utilization

Bottleneck Average Queue (packets)

1.1

1

0.9

08

0.7

140

120 &
100 +

Avg. Utilization »----a---:

el e

.01

0.1
The Responsive Abuser's Decrease Gain

Avg. Queue e

0.1
The Responsive Abuser's Decrease Gain

(XCP)

Bottleneck Utilization

Bottleneck Average Queus (packets)

1.1

Al
09

0.8

1

Avg. Utilization :----s---=

0.1 1
The Responsive Abuser's Decrease Gain

140
120
100 |

Avg. Queue s |

S
i

0.1 1
The Responsive Abuser's Decrease Gain

(TCP)

Figure 7-7: A comparison between the efficiency of XCP and TCP, when all users decrease leniently
by multiplying their fair negative decrease by a gain < 1.

101

7.3.4 Unresponsive Abuser

This abuser declares its true throughput and RTT, but completely ignores the feedback from the
network, and continues sending at a particular rate it wants. In this case, the abuser achieves a
throughput that is the minimum of its sending rate and the bottleneck bandwidth. Thus, the band-
width allocation is not fair. As long as the abuser’s sending rate is below the bottleneck bandwidth,
the EC still maintains good utilization, but the unresponsiveness of the abuser causes the conver-

gence to become slower.

Simulation Results

In this experiment, 10 unresponsive abusers share a 20 Mb/s bottleneck with 10 compliant flows.
The round trip propagation delay is 80 ms, and there are 20 flows along the reverse path. Other
parameters comply with the description in §5.1. We vary the abusive traffic rate and repeat the same
experiment for different abuse gains, where the abuse gain is the ratio of the abusive traffic rate to
 the capacity of the llnk We run the same experiments first Wlth XCP then with Reno TCP and RED
, .queues Flgure 7-8-a shows that the abusers obtain the throughputs they want as long as the sum
of their rates is lower than the capacity of the link both in XCP and TCP networks. Figures 7-8-b,
7<8-c, and 7-8-d show that és long as the unresponsive abusers are sending less than the capacity of
the bottleneck, the responsive flows fill up the rest of the bandwidth and the system stays efficient
(though unfair). In general there is little difference between the reaction of XCP and TCP to non-
responsive abusers. The only difference is that XCP shows better utilization than TCP when the

abusive traffic is less than the capacity of the link.

7.4 Receivers’ Misconduct

Even when the sender abides by the rules of the congestion control protocol, the receiver can cheat
the sender into misbehaving by changing the feedback sent by the routers. This has been first
observed in [71], where the authors explain how a TCP receiver can increase the throughput of the
transfer by acking fractions of a TCP segments. Similarly, in [29], the authors note that a receiver
can increase the sending rate beyond the fair share by resetting the ECN marks. As a remedy, they
propose that the sender inserts a random nonce in the IP header. The routers reset the nonce if there
is congestion. The receiver should relay the nonce to the sender. If the relayed nonce does not match

the one the sender inserted in the packet, then the packet has faced congestion (i.e., packet has been

102

% 1 % 1
Q Abuser's Throughput s o Q .
5 08} . 1 S 08]
a a
3 06 o E 3 o,s(E
£ 04} 4 £ o4t 1
o L » L
B 02 — g 02} o |
'g 0 o vnen e A X]) W g aeeed .
2 oo 0.1 1 10 2 oot 0.1 1 10
The Unesponsive Abuser Gain (Rate/Capacity) The Unesponsive Abuser Gain (Rate/Capacity)
s 1 . — g ! pe
8 oo} 4 & oss} e
2 o9t] 2 o9} .
i 3 iy
§ o085 1 § 085} e 1
=S Avg. utilization «--a-- E e T Avg. utilization +--e--
ccn, 08 N 9 uttization 8 0.8 N Vg o]
0.01 0.1 1 10 0.01 0.1 1 10
The Unesponsive Abuser Gain (Rate/Capacity) The Unesponsive Abuser Gain (Rate/Capacity)
250 r T 250 r
Avg. Queue (pkts) o Avg. Queue (pkis) +--a--x
g 200} 9 (pkts) — 2 200 g (pkts) N]
S ol -] s |
o I) = 1
2 5| ; q 2 -]
0 r - i 1
0.01 01 1 10 0.01 0.1 1 10
The Unesponsive Abuser Gain (Rate/Capacity) The Unesponsive Abuser Gain (Rate/Capacity)
700000 T T 700000 T T
3_ 600000 Packet Drops &&=] ﬂ 600000 |+ Packet Drops s ;
2] ;
& 500000 | S 500000 -
X 400000 - e % 400000 | b
8 300000 | T g 300000 | o
%’ 200000 | e 4 g 200000 | E
& 100000 - 1 g wogof “ .
0 Y. a 0 L e
' 0.01 0.1 : - 1 16 " 0.01 . E E 0t . 1 10
The Unesponsive Abuser Gain (Rate/Capacity) The Unegponsive Abuser Gain (Rate/Capacity)
Xcp) (TCP)

Figure 7-8: The impact of a non-responsive abuser in an XCP and a TCP network. The graphs on
the right use TCP whereas the graphs on the left use XCP.

marked).

Flow monitoring by policing agents at network edges or statistical monitoring at routers can
catch a flow with a misbehaving receiver. Further, similarly to an ECN nonce, one can design an
alternative solution that does not require any additional work from the routers. The XCP sender
can initialize the feedback field in each packet to random values derived from a distribution with an
average that matches the sender’s demands and has a reasonable probability of values lower than
the recently returned feedback. If the receiver lies about the feedback it conveys to the sender and
sends a higher value than the one received in the packet, there will be a positive probability that the
receiver picks a value larger than the initial value chosen by the sender. As a result, the sender will
detect the misbehaving receiver. Since this approach is probabilistic allowing the receiver to get
away with cheating some times, to disincentivize the receiver from cheating the punishment should

be relatively severe such as shutting down the connection (and possibly labeling the receiver as a

103

destination to avoid in future interactions).

7.5 Concluding Remarks

In this chapter, we examined the impact of users’ misbehavior on the fairness and efficiency of an
XCP network. We found that lying about one’s throughput causes unfairness but does not affect
efficiency, whereas lying about the RTT has little impact on faimess but may degrade the efficiency.
In our simulations, the degradation is negligible when the declared RTT is within one order of
magnitude of the true RTT, or when a the number of liars is small (i.e., less than 50% of the flows).
But the degradation becomes significant when most of the flows significantly lie about their RTTs.
We also studied the impact of ignoring the feedback or partially reacting to it. We found that when
sharing the link with a completely unresponsive flow (i.e., a cbr), the XCP flows adapt to fill up
the bandwidth unused by the unresponsive flow. On the other hand, if the abusive flow is partially
reacting to the feedback but is too aggressive in grabbing the bandwidth and too lenient in releasing
- it, then it can obtain more bandwidth than other flows. All of these types of users’ misconduct can

"be throttled by ﬁidniiorihg agents located at the édgeé Of the network or via statistical samplmg of
' tl;(: t‘rgfﬁc.'b | “ | -

Th(_—:re ‘.are other types of errors and malicious behavior that are not discuséed in this chapter. In
particular, we did not discuss the impact of malicious or erroneous routers. However, since most
of the bugs at the routers result in an erroneous reading of the values in the congestion header or
an erroneous computation of the feedback, the effect of these errors is similar to those created by
a misbehaving sender who inserts incorrect values in the congestion header or does not react ap-
propriately to congestion feedback. Also, we did not discuss the impact of a route change on XCP.
Nonetheless, we note that a route change in XCP is more benign than in a TCP network. In partic-
ular, when a flow is moved from one route to another, the current throughput might be completely
unsuitable to the new path, but the fact that XCP adapts quickly to the available bandwidth or the

congestion state on the new path reduces the damaging effects of a route change.

104

Chapter 8

Gradual Deployment

Deploying a new congestion control protocol in the Internet is not an easy task. It is quite obvious
that one cannot turn the Internet off, update all hosts and routers, then turn the Internet on again.
A gradual deployment path is necessary for any practical protocol. Since XCP provides a joint
design of the end systems and the routers, its deployment requires modifying the routers and the
congestion control protécol iﬁ the operating system of the host machines. This cha.pter’ discusses
two independent incremental deployment paths that allow updating a cloud of routers or a few

machines at a time.

8.1 XCP-based Core Stateless Fair Queuing

XCP can be deployed in a cloud-based approach similar to that proposed by Core Stateless Fair
Queuing (CSFQ) [75]. An XCP cloud could be a network domain or an autonomous system. This
approach allows each ISP to update the routers in its network (or a cloud in its network) without
coordinating with other ISPs, and independently from whether the end hosts have been updated.

To use XCP in this way, the edge routers surrounding the cloud would act on behalf of the
senders and receivers. In other words, we map TCP or UDP flows across a network cloud onto XCP
flows between the ingress and egress border routes. Each XCP flow is associated with a queue at
the ingress router. Arriving TCP or UDP packets enter the relevant queue, and the corresponding
XCP flow across the core determines when they can leave. For this purpose, H.rtt is the measured
propagation delay between ingress and egress routers, and H_throughput is the speed at which the
ingress router forwards packets from the flow’s queue.

Maintaining an XCP core can be simplified further. First, there is no need to attach a congestion

105

header to the packets, as feedback can be collected using a small control packet exchanged between
border routers every RTT. Second, multiple TCP micro flows that share the same pair of ingress and
egress routers can be mapped to a single XCP flow. The differential bandwidth scheme, described in
§6.3, allows each XCP macro-flow to obtain a throughput proportional to the number of micro-flows
in it. The router will forward packets from the queue according to the XCP macro-flow’s rate. TCP
will naturally cause the micro-flows to converge to share the XCP macro-flow fairly, although care
should be taken not to mix responsive (e.g., TCP) and unresponsive (e.g., UDP) flows in the same
macro-flow.

We note that an ISP has an incentive to update its network cloud to provide XCP even when
end systems and others ISPs are not XCP enabled. Using XCP inside a cloud has several benefits.
It would force unresponsive or UDP flows to use a fair share without needing per-flow state in the
network core. It would improve the efficiency of the network cloud because an XCP core allows
higher utilization, smaller queue sizes, and minimal packet drops. Further, it would allow an ISP to
provide differential bandwidth allocation internally in their network. CSFQ shares these objectives,
- but our simulations indicate that XCP provides more fairness, higher utilization, lower delay, and -

smaller drop rate.

8.2 A TCP-Friendly XCP

In this section, we describe a mechanism that allows end-to-end XCP to compete fairly with TCP
in the same network. This design can be used to allow XCP to exist in a multi-protocol network, or
as a mechanism for incremental deployment.

To start an XCP connection, the sender must check whether the receiver and the routers along the
path are XCP-enabled. If they are not, the sender reverts to TCP or another conventional protocol.
These checks can be done using simple TCP or IP options.

" We then extend the design of an XCP router to handle a mixture of XCP and TCP flows while
ensuring that XCP flows are TCP-friendly.! The router distinguishes XCP traffic from non-XCP
traffic and queues it separately. TCP (and other non-XCP) packets are queued in a conventional
RED queue (the T-queue). XCP flows are queued in an XCP-enabled queue (the X-queue, described
in §4.7). We need to use a separate queue for the XCP traffic to prevent TCP from starving the

XCP flows. In particular, XCP reacts to congestion much earlier than TCP. While TCP reacts to

1A protocol is TCP-friendly if it fairly shares the bandwidth with competing TCP flows.

106

congestion after the queue has grown to the point of causing a drop, XCP starts decreasing its
sending rate as soon as the input traffic rate exceeds the capacity. Thus, when the input traffic rate
exceeds the capacity of the bottleneck, XCP starts releasing the bandwidth. TCP, which has not yet
detected congestion, would be increasing its rate grabbing the bandwidth XCP is releasing. This
continues until XCP releases all of its bandwidth to TCP. Then, the queue will buildup, causing a
drop and TCP too will back off, but after it has starved the XCP flows.

To be fair, the router should process packets from the two queues such that the average through-
put observed by XCP flows equals the average throughput observed by TCP flows, irrespective of
the number of flows. This is done using weighted-fair queuing with two queues where the weights
are dynamically updated and converge to the fair shares of XCP and TCP. The weight update mech-
anism uses the T-queue drop rate, p, to compute the average congestion window of the TCP flows.

The computation uses a TFRC-like [34] approach, based on TCP’s throughput equation:

cwndr = (8.1)

s
VE +120/% x (14 32p%)
where cwndr is the average TCP congestion window, and s is the average packet size (both in
bytes). .

The average XCP congestion window is computed similarly to the average RTT (see Equation
4.2). In particular, the flow’s congestion window is cwnd; = r; - rtt;, where r; is the flow’s
throughput and rt¢; is its round trip time, both are in the header. As described in §4.7, to find the
average cwnd of the flows, we take the average cwnd over the packets and normalize by the number

of packets the router sees from a flow in a control interval d. This number is d EL Thus,

i

_— Z Ttt; - 85
cundy = =———, 8.2)
o
where both sums are over the packets observed by the router in a control interval.
When the estimation-control timer fires, the weights are updated as follows:
cundy — cwndr
wr = wr + K 8.3
T T cwndx + cwndr’ ®3)
cwndr — cuwnd
wx = wx + Ke—eel X (8.4)

cwndx + cwndr’

where £ is a small constant in the range (0,1), and wr and wx are the T-queue and the X-queue

107

3 2+ X TCP x
51.8 - XCP +
3

0 1.6

= X

E1.4 x

B1.2 - X % X x X

@ X WX X X X + o+ 4
N X XK v X% f&x X +><X+X++>ZL+

T T . S | | i @%& %”&if@“
©

E0.38 - N X[x X0k | RS ’W A3
2 0.6 -

Z .

3 TCP 5 TCP 15TCP 30TCP 30TCP 30TCP 30TCP
30XCP 30XCP 30XCP 30XCP 15XCP 5XCP 3 XCP

Figure 8-1: XCP is TCP-friendly.

weights. This updates the weights to decrease the difference between TCP’s and XCP’s average
congestion windows. When the difference becomes zero, the weights stop changing and stabilize.
Finally, the aggregate feedback is modified to cause the XCP traffic to converge to its fair share
of the link bandwidth:
p=a-Sx—p- (85)

where o = 0.4 and 8 = 0.226 are constant parameters, d is the control interval, Qx is the size of

the X-queue, and Sx is XCP’s fair share of the spare bandwidth computed as:
Sx = wx ¢~ yx, (8.6)

where wx is the XCP weight, c is the capacity of the link, and yx is the total rate of the XCP traffic

traversing the link.

Simulation Results: Figure 8-1 shows the throughputs of various combinations of competing TCP
and XCP flows normalized by the fair share. The topology is that of Figure 5-1, the bottleneck
capacity is 45 Mb/s, the round trip propagation delay is 40 ms, the buffer size is a delay-bandwidth
product, and the data packet size is 1 KB. The RED parameters are w = 0.002, pyq, = 0.1,
MiNresh, 18 one-third of the buffer, and mazip,esh is two-thirds of the buffer. The simulations
results demonstrate that XCP is as TCP-friendly as other protocols that are currently under consid-

eration for deployment in the Internet [34].

108

8.3 Summary

This chapter shows that XCP can be deployed in the Internet incrementally. This gradual deploy-
ment can take two independent paths. First, the ISPs motivated by XCP’s ability to maximize the
utilization of their network resources might start deploying XCP in their network clouds. The bor-
der routers of these clouds provide the appropriate interface with the rest of the Internet. Second,
the hosts may modify their network code to become XCP enabled. The sender runs XCP only if it

detects that the whole path and the receiver are XCP enabled, otherwise it falls back to TCP.

109

Chapter 9

Conclusion & Future Work

In this chapter, we conclude the dissertation by summarizing our contributions, enumerating several
remaining challenges, clarifying the limitations of our approach to congestion control, and propos-

ing directions for future work.

9.1 Contributions
Below, we highlight the contributions of this thesis.

9.1.1 Good Performance in Networks with Large Bandwidth-Delay Product

The main reason why we re-examine congestion control now is to allow individual flows to ob-
tain large end-to-end throughput (e.g., a few Gb/s). Current TCP-based congestion control cannot
provide a large per-flow end-to-end bandwidth-delay product. This becomes a serious limitation
as more users access the Internet using gigabit Ethernet or other high bandwidth link technolo-
gies. The limitation arises from two characteristics of TCP. First, TCP cannot quickly acquire large
amounts of spare bandwidth because it increases by a constant amount of 1 packet/RTT. Second,
TCP’s throughput is inversely proportional to the packet drop rate. As a result, the packet error rate
(PER) of the underlying link technology sets an upper bound on the end-to-end TCP throughput,
which prevents the TCP from obtaining a very high throughput even over low PER fiber links [69].

In contrast, our simulation results in §5 show that XCP remains efficient as the bandwidth or
the delay along the path increases. This happens because the XCP congestion controller increases
the traffic rate proportionally to the spare bandwidth. The proposed adjustments allow the flows to

ramp up quickly when the link is severely under-utilized, and perform minor adjustments when the

110

traffic is near the capacity of the link. Even when a drop occurs due to a link error, XCP, with its
fast dynamics, can re-acquire the bandwidth quickly and recover from this error.

Recently, a few researchers proposed various modifications to TCP to allow it to achieve a large
end-to-end throughput [32, 47, 43]. At the time of writing this dissertation, these protocols are still
works-in-progress and there is little experimental results to show their performance. Hence, in this
document we do not provide a comparison between XCP and these protocols. However, we note that
one major difference between these proposals and XCP is that the latter addresses the congestion
control problem in general and attempts to provide fairer, more stable, and more efficient behavior

both in large bandwidth-delay product networks, and in traditional environments.

9.1.2 XCP Outperforms Other Protocols With No Per-Flow State

Having no per-flow state is desirable since it reduces the complexity of the router and improves
the scalability of the design. XCP and most queue management schemes adapt this simple design
objective [75, 35, 50, 11]. Our simulation results in §5 show that XCP outperforms other conges-
tion control protocdls that similarly'use no per-flow state, both in high bandwidth and traditiongl
environments. In pénicular, XCP reduces thé drop rate by three orders of magnitude, improveé ‘the
- utilization, and maintains on average a smgll Queue size. Further, XCP exhibits no oscillation in
steady state as seen in simulation and demonstrated using our model in §4.8. Additionally, while
TCP is asymptotically fair, XCP is fair over a time scale of a few RTTs. This overall improved per-
formance means that XCP contributes to the knowledge of the community by extending the space

of achievable performance without per-flow state.

9.1.3 Integrating Control Theory with Internet Protocols

The design of XCP integrates concepts from control theory with the lessons the Internet community
has learned from practice. Principles from control theory such as the Nyquist criterion are used to
establish stability in steady state for any delay, capacity or number of flows. These are combined
with Internet common practice such as self-clocking [39], which has been shown to increase robust-
ness in dynamic environments [14]. Although this work is not the first to apply control theory to
congestion control in the Internet, it manages to blend the principles of feedback control into the
design of the XCP protocol while maintaining a simple distributed and practical implementation.
Then, using large scale packet-level simulations, we have shown that the insight gained from the

simple feedback control model has indeed resulted in an improved performance in both steady state

111

aggregate _ aggregate per-packet
Congestion Controller Fairmess Controller | ————»
feedback feedback

Figure 9-1: A black box model of the efficiency controller and the faimmess controller.

and dynamic environments.

Early applications of control theory to congestion control required a repeated dumping of the
state of all routers to a centralized server, which computes the control signal [22]. Later, Kelly
et al have formulated the congestion control problem as a distributed optimization problem and
proposed optimal distributed solution. This work has motivated a number of proposals including
ours. In comparison to XCP’s analysis, Kelly’s model can incorporate complex topologies but it
assumes no queues in the network. Recently, Doyle and Low have proposed a scalable distributed
congestion control protocol whose design relies on control theory. In comparison with our protocol,
their model is more general and takes into account heterogeneous RTTs and multiple control loops,

but their protocol ignores the fairness requirement and focuses only on achieving good utilization.

R

914 New Concepts for Internet Bandwidth Management :
In this dissertation we introduce a few new concepts and techniques that may be used by other

“congestion control protocols outside the XCP framework.

Separate Congestion Controller and Fairness Controller at Routers: We present an architecture
where the congestion controller and the fairness controller at the router are separate. The two
modules representing the controllers are designed as black boxes as shown in Figure 9-1. The
congestion controller takes as input the aggregate traffic rate and the queue size. It generates an
aggregate feedback that should be sent to the combination of the flows traversing the link. The
fairness controller takes as input the aggregate feedback, and decides how to divide it between
individual flows such that the system achieves a particular desired bandwidth allocation.

This modular architecture may be adapted by other congestion congestion control protocols
without adapting the congestion control laws used by XCP. In particular, in XCP the congestion
controller uses MIMD and the fairness controller uses AIMD. However, other protocols might want
a different bandwidth allocation (e.g., proportional fairness) than the one provided by AIMD, so

they might change the control law of the fairness controller, while maintaining the modular design.

Bandwidth Shuffling: We have introduced the concept of bandwidth shuffling which is the simul-

112

taneous allocation and deallocation of bandwidth such that the total traffic rate (and consequently
the efficiency) does not change, yet the throughput of each individual flow changes gradually to
approach the flow’s fair share. This is a general concept that other explicit feedback protocols may

adapt to improve fairness.

Computing the Number of Flows Without per-Flow State: We also provide a technique that
computes an estimate of the number of flows without any per-flow state in the routers. It relies on a
flow advertising its throughput in the packet header. Thus, it can work under CSFQ [75] and similar
protocols.

Indeed, following the same style of equations and argument in §4.7, we can estimate the number
of flows.! In particular, assume that the router estimates the number of flows over an interval d.
Packet + arrives with a label stating the rate of its flow 7;. The router would like to count the flows,
however since it has no per-flow state it can only count the packets. Thus, we need a normalization
factor that allow us to count the flows by counting their packets. This normalization factor is the
expected number of packets flow ¢ sends in d (i.e., %"i). To see why this is the case, assume that
every d, the router counis all packets from flow 7 and divides the count by the average number of
packets flow i sends in d, the result on average should be 1. If the router sums this count ove;' 511
packeté from all flows, then the contribution of each flow to the sum is 1. Thus, the number of flows

N is:

N=Y 2 ©.1)

d X ri’
where s; is the packet size in bytes, r; is the flow’s rate in bytes/sec and the sum is taken over all

packets observed in the estimation interval d, which is measured in seconds.

9.1.5 A Simple Approach to Quality of Service

In §6, we presented a simple architecture that provides both guaranteed and proportional bandwidth
allocation. We argued that these two allocation policies combined with XCP’s natural tendency for

small queue size and almost-zero drop rate satisfy most applications.

!Although we have not explicitly estimated the number of flows in previous chapters, the FC implicitly estimates
the number of flows while computing the positive per-packet feedback. Besides the estimate is just an application of
our general style of computing averages over flows using per-packet information. We have applied this same style in
Equations 4.2, 6.1, and 8.2.

113

9.2 Limitations

As we look at the limitations of this work, we divide them into two categories. The first type of
limitations is open problems that we do not address in this dissertation though they are potentially
solvable within the XCP framework. These are discussed in §9.3. Thé second type of limitations
is what we call fundamental limitations, which are intrinsic to our approach and constitute essential

design trade-offs. These are discussed below.

9.2.1 Deployment

In this thesis, we have chosen to step back and reconsider the design of Internet congestion control
with the objective of providing a fairer and more stable controller that remains efficient as the per-
flow bandwidth-delay product increases. Since the control loop involves both the routers and the
end systems, redesigning congestion control means allowing ourselves to change both. But then,
because XCP modifies both the routers and the end systems, it is harder to deploy than a scheme
that modifies solely the routers or the end systems. We mitigate the deployment hurdle by providing
a gradual vdeployment path. However, we still ;ecognize that the deployment problem. 18 ‘no‘t’ oniy
technig:ali but also economical. We believe that és more organizations connect t6 the Iﬁfémét using
very high Bandwidth access links, there will be a market for protocols like XCP. Whether the market

really evolves in this direction is something to be discovered over the coming years.

9.2.2 Security Without Per-Flow State

All congestion control protocols that have no per-flow state cannot guarantee protection against
malicious flows, which might try to deny compliant flows their fair share of the bandwidth. XCP
being a stateless protocol cannot guarantee flow protection. Further, XCP, being a new and different
architecture, exhibits new ways in which malicious users can cheat. Particularly, because XCP
requires the users to declare their state in the header, flows can misbehave by lying about their state.
In §7, we have studied via simulation these new types of attacks and shown that XCP is reasonably
robust against them. Also, we have proposed two methods to detect and isolate misbehaving flows:
policing agents at the edges of the network, and statistical sampling at the routers. We have also
pointed out that XCP makes monitoring and detection of misbehaving flows easier because the
monitoring agent can detect misbehavior by comparing the information in the congestion header

against its measurements.

114

9.3 Outstanding Problems & Future Work

Below, we enumerate a few challenging issues that our dissertation does not solve. These are not
fundamental limitations of XCP, rather they are outstanding problems that, we believe, are solvable
within the XCP framework. We discuss potential solutions to these problems, but we do not explore

these solutions in detail, and we leave them as directions for future work.

9.3.1 Multi-Access Links

In §4.7, we stated that job of the the efficiency controller is to allocate the spare bandwidth to the
flows. In particular, the EC tries to cause the aggregate traffic to change its rate by the value of the

aggregate feedback ¢:

p=a-5-p52,
where o and 3 are constant parameters, the term d is the average RTT, Q is the persistent queue
size, and S is the spare bandwidth defined as the difference between the input traffic rate and the
link capacity. - k |

The above equation contains two implicit assumptions. First, the administrator knows the ca-
pacity of the link and can configure the router with this value. Although this is the case for most
wired links it is not quite true for wireless links, where the capacity varies over time. The second
assumption is that each link is accessed by a single router, and therefore the spare bandwidth is
the difference between the capacity and the traffic emitted by the router. This assumption becomes
incorrect over multi-access links such as Etherne? and wireless links.

As directions for future work, we propose two potential solutions to this problem. The first and
most intuitive approach is to estimate the the capacity of the link ¢(¢), which is the speed at which

the router drains packets. The equation above becomes:

where y is the input traffic at the router. Further work is needed to study the robustness of this
approach to typical variations in link capacity. The second potential solution is to use a different
efficiency controller at the routers feeding multi-access link. There is no reason why the XCP con-

trollers at different routers along the path should use the same control law. The efficiency controller

“Most Ethernet links are switched but the original design is for a multi-access medium.

115

at routers feeding multi-access links may be modified so that it does not compute the spare band-
width (e.g., when the queue is empty, it increases proportionally to the capacity, and when the queue
has some packets, it decreases proportionally to the queue size). This solution should be examined

further to explore its performance and study its impact on the stability of the control loop.

9.3.2 Increasing Robustness to RTT Variance

The congestion control problem has a fundamental time scale, which is the RTT. Our analysis shows
that when all flows at the bottleneck have the same RTT, setting the control interval d to the RTT
provides stability. However, in reality flows at a bottleneck have different RTTs. Since we need to
pick a single value for the control interval, we chose to set d to the average RTT of the flows (indeed,
d = min(avg. RTT, 5 ms)). Our simulation results in §5 show that this choice is fairly robust for
RTTs € [1 ms, 1000 ms], which is the range of RTTs in the current Internet. As the variance in
the RTTs at a bottleneck exceeds the above range, setting d to the average RTT might not work
efficiently.

"As future work, we propose addressmg this issue by using a small and finite number of R'IT »
;groups For examp]e one can group ﬂows whose RTT < 500 ms in one group, ﬂows w1th
500 ms < RTT < 1000 ms in a second group, flows with 1000 ms < RTT < 1500 ms in a th1rd
~group, and so on. Each of these groups will have a different efficiency and fairness controllers (1.e.,

each group will have separate parameters d, ¢, &, &....)- The fair share of each group can be com-
puted based on the number of its flow, which is computed using equation 9.1 above. The job of the
efficiency controller of each group is to make the traffic in the group converge to the group’s fair

share.

9.3.3 Specifying the Bit Format of the Congestion Header

XCP defines a new congestion header illustrated in Figure 4-1. This document does not specify
the number of bits in each field in the header, or the way the values are represented (integers,
floating points, etc.). The specification of these fields is left to the IETF or similar standardization

organizations.

116

9.4 Final Remarks

In this dissertation, we take a step back and re-examine Internet congestion control, with the objec-
tive of enabling connections with large bandwidth-delay product and improving the overall perfor-
mance. Motivated by CSFQ, we chose to convey control information between the end systems and
the routers using a few bytes in the packet header. The most important consequence of this explicit
control is that it permits a decoupling of congestion control from fairness control. In turn, this
decoupling allows more efficient use of network resources and more flexible bandwidth allocation
schemes.

Based on these ideas, we devised XCP, an explicit congestion control protocol and architecture
that can control the dynamics of the aggregate traffic independently from the relative throughput of
the individual flows in the aggregate. Controlling congestion is done using an analytically tractable
method that matches the aggregate traffic rate to the link capacity, while preventing persistent queues
from forming. The decoupling then permits XCP to reallocate bandwidth among individual flows
without worrying about being too aggressive in dropping packets or too slow in utilizing spare
bandWicifh. We demonstrated a fairess mechanism based on bandWidth shuffling that converges
- much faster than TCP does, and showed how to use this to implement both max-min fairness and
| differential bandwidth allocation. o
| Ouf extensive simulations demonstrate that XCP maintains good utilization and fairness, has
low queuing delay, and drops very few packets. We evaluated XCP in comparison with TCP over
RED, REM, AVQ, and CSFQ queues, in both steady-state and dynamic environments with Web-
like traffic and with impulse loads. We found no case where XCP performs significantly worse
than TCP. In fact when the per-flow bandwidth-delay product becomes large, XCP’s performance
remains excellent whereas TCP suffers significantly.

We believe that XCP is viable and practical as a congestion control scheme. It operates the
network with almost no drops, and substantially increases the efficiency in high bandwidth-delay

product environments.

117

Appendix A

XCP Implementation

Implementing' an XCP router is fairly simple and is best described using the following pseudo
code. There are four relevant blocks of code. The first block is executed at the arrival of a packet

and involves updating the estimates maintained by the router.

' Oﬁ packet arrival do:
input_traffic += pkt_size
sum_inv_throughput +=vpkt§ize / H _throughput
if (Hatt < MAX_INTERVAL) then
sum_rtt_by _throughput += H rtt x pkt_size / H throughput
else

sum rtt_by throughput += MAX INTERVAL X pkt.size / H throughput

The second block of code is executed when the estimation-control timer expires. It involves updat-

ing our control variables, re-initializing the estimation variables, and re-scheduling the timer.

On estimation-control timeout do:
avg_rtt = sum_rtt_by_throughput / sum _inv _throughput
¢ = ax (capacity - input_traffic / control _interval) - Sx Queue/ avg rtt

shuffled_traffic = 0.1 x input_traffic / control interval

'Qur ns implementation is available at www.ana.lcs.mit.edu/dina/XCP.

118

&p = (max(¢,0) + shuffled traffic) / sum inv throughput
&n = ((max(—¢,0) + shuffled traffic) / input traffic
residue_pos _fbk = (max(¢,0)+ shuffled traffic)
residue_neg_fbk = (max(—¢,0)+ shuffled traffic)
input_traffic = 0

sum_-inv_throughput = 0

sum_rtt_by_throughput = 0

control_interval = max(avg rtt, MIN INTERVAL)

timer.reschedule(control .interval)

The third block of code involves computing the per-packet feedback and is executed at packets’

departure.

On packet departure do:
pbs_fbk ={p X pkt_size / H_tﬁroughput
neg_fbk = £, x pkt_size
feedback = pos_fbk - neg fbk
if (H_feedback > feedback) then
H_feedback = feedback
residue_pos_fbk -= pos_fbk
residue_neg_fbk -= neg _fbk
else
if (H_feedback > 0)
residue_pos_fbk -= H_feedback
residue_neg_fbk -= (feedback - H feedback)
else
residue_neg_fbk += H feedback
if (feedback > 0) then
residue_neg fbk -= feedback
residue_pos fbk -= feedback
if (residue_pos fbk < 0) then{, = 0

119

if (residue neg fbk < 0) then €, =0

Finally, to improve the performance, we do not use the instantaneous queue in computing the aggre-

gate feedback. Instead, we use an estimate of the persistent queue, which is computed as follows.

On packet departure do:

if (instantaneous queue < min._queue) then min queue = instantaneous queue

When the queue-computation timer expires do:
Queue = min_queue
min_queue = instantaneous_queue
Tq = max(MIN INTERVAL, (avg 1tt - instantaneous queue / capacity))/2

queue _timer.reschedule(Tq)

. Noté that the code executed when the estimatidn—control of the queue-esiimation timer expires dpeé
not fall on the critical path. The :per-packet code can be made sﬁbstantially faster by replacing
the throughput field in the congestion header by packet size/throughput. This modification spares
the router any division operation, in which case, the router does only a few additions and 3

multiplications per packet.

120

Appendix B

Analysis of XCP Stability

B.1 Model

Consider a single link of capacity c traversed by N XCP flows. Let d be the common round trip
delay of all users, and r;(t) be the sending rate of user 7 at time ¢. The aggregate traffic rate is
y(t) = 3 ri(t), and the shuffled traffic rate is k() = 0.1 - y(2). Every control interval, d, the router
sends sorné aggregate feedback, which it computes according to Equation 9.3.1. The feedback
reaches the sources after a round trip delay. It changes the sum of their rates (i.e.,z r;(t)). Thus,

the aggregate feedback sent per time unit is the sum of the derivatives of the rates:

r=i(ewt-a-9-p. L29D)

Since the input traffic rate is y(t) = 3 r;(t), the derivative of the traffic rate (¢) is:
. a B
§(t) = -5 - (Wt —d) —c) - % -q(t - d).

Ignoring the boundary conditions (i.e., queues are bounded and rates cannot be negative), the

whole system can be expressed using the following delay differential equations.
§(t) =y(t) —c (B.1)
: o B
i) = =S (it~ d) -) - L(t —) ®2)

(1) = ([y(t—d)]++h(t—d))—“—_‘;’))([—y(t—d)]++h<t—d)) (B3)

T
y(t

2|~

121

The notation [y(t — d)]* is equivalent to max(0,y(t — d)). Equation B.3 expresses the AIMD
policy used by the FC; namely, the positive feedback allocated to flows is equal, while the negative

feedback allocated to flows is proportional to their current throughputs.

B.2 Stability

Let us change variable to z(t) = y(t) — c.

Proposition: The Linear system:

q(t) = =(t)
z(t) = —K1z(t — d) — Kaq(t — d)

is stable for any constant delay d > 0 if

~where o and 3 are any constants satisfying:
O<a<i and ﬂ:azx/i.
4y/2
Proof:

The system can be expressed using a delayed feedback (see Figure B-1). The open loop transfer

function is:
K 1S+ K2 —d
G(s) = ————=e %
(5) = 5
For very small d > 0, the closed-loop system is stable. The shape of its Nyquist plot, part of
which is given in Figure B-2, does not encircle —1.
Next, we can prove that the phase margin remains positive independent of the delay. The mag-

nitude and angle of the open-loop transfer function are:

\/K%-u@—l—K%
|G| =

w? ’

’LUK1
/G = — t
G T + arctan e

The break frequency of the zero occurs at: w, = %

122

A
-40 dB/dec.

x(1)

0dB '
\l K -20 dB/dec.

@
>
O L |5

O
[=
v

Figure B-2: The Nyquist plot of the open-loop transfer function with a very small delay.

To simplify the system, we decided to choose « and f3 such that the break frequency of the zero
w, is the same as the crossover frequency w; (frequency for which |G(w.)| = 1). Substituting

We = W, = Iél in |G(w.)| = 1 leads to:
8 = a*V2.

To maintain stability for any delay, we need to make sure that the phase margin is independent

of delay and always remains positive. This means that we need:

_ T p B
LG(we) = 7r+4 a> =<

Substituting 8 from above, we find that we need:

a <

T
42’
in which case, the gain margin is larger than one and the phase margin is always positive (see the

Bode plot in Figure B-1). This is true for any delay, capacity, and number of sources.

123

Bibliography

[1] Differentiated services (diffserv). http://www.ietf.org/html.charters/diffserv-charter.html.
[2] Grid high-performance networking research group. http://www.csm.ornl.gov/ghpn/GHPNHome.html.
[3] high-performance research networks. http://abilene.internet2.edu/html/peernetworks.html.
[4] Integrated services (intserv). http://www.ietf.org/html.charters/intserv-charter.html.
[5] Intefnet2, giga-tcp. http://www.internet2.edu/ shalunov/gigatcp/.
6] June 2002. Private Communicatioq- with Nick McKeown and Sally Floyd.

[71 10 gigabit ethernet technology overview white paper - revision 2, draft a., 2002. The 10’Gigabit

Ethernet Alliance - http://www.10gea.org/Tech-whitepapers.htm.

[8] Y. Afek, Y. Mansour, and Z. Ostfeld. Phantom: A simple and effective flow control scheme.
In Proc. of ACM SIGCOMM, 1996.

[9] M. Allman, D. Glover, and L. Sanchez. Enhancing tcp over satellite channels using standard

mechanisms, Jan. 1999.

[10] G. Asthana and J. Denaro. Gigabit ethernet: An affordable solution. Technical Report ECE
4006C G4, Georgia Institute of Technology, Jan. 2002.

[11] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin. Rem: Active queue management. IEEE
Network, 2001.

[12] H. Balakrishnan, H. Rahul, and S. Seshan. An integrated congestion management architecture

for internet hosts. In Proc. of ACM SIGCOMM, Sept. 1999.

[13] D. Bansal and H. Balakrishnan. Binomial congestion control algorithms. In Proc. of IEEE
INFOCOM °01, Apr. 2001.

124

[14] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker. Dynamic behavior of slowly-responsive
congestion control algorithms. Proceedings of ACM SIGCOMM °01 (To appear), 2001.

[15] D. Bansal, H. Balakrishnan, and S. S. S. Floyd. Dynamic behavior of slowly-responsive con-
gestion control algorithms. In Proc. of ACM SIGCOMM, 2001.

[16] J. C. R. Bennett, K. Benson, A. Charny, W. F. Courtney, and J. Y. L. Boudec. Delay jitter
bounds and packet scale rate guarantee for expedited forwarding. In INFOCOM, pages 1502—
1509, 2001.

[17] J. L. Boudec and A. Charny. Packet scale rate guarantee for non-fifo nodes.

[18] A. Charny. An algorithm for rate allocation in a packet-switching network with feedback.

Master’s thesis, Massachusetts Institute of Technology, 1994.

[19] J. Chase, A. Gallatin, and K. Yocum. End-system optimizations for high-speed tcp. IEEE

Communications, 2000.

[20] D. Chiu and R. Jain. Analysis of the increase and decrease algorithms for congestion avoidance

in computer networks. In Computer Networks and ISDN Systems 17, page 1-14, 1989.

[21] K. G. Coffman and A. M. Odlyzko. Growth of the internet. In Optical Fiber Telecommunica-
tions 1V B: Systems and Impairments, pages 17-56, 2002.

[22] B.F. Controller. On rate-based congestion control in high speed networks: Design of an.

[23] M. E. Crovella and A. Bestavros. Self-similarity in world wide web traffic: Evidence and

possible causes. In IEEE/ACM Transactions on Networking, 5(6):835-846, Dec. 1997.

[24] J. Crowcroft and P. Oechslin. Differentiated end-to-end internet services using a weighted

proportional fair sharing tcp, 1998.
[25] A. Demers, S. Keshav, and S. S.
[26] M. Doar. Tiers topology generator. http://www.isi.edu/nsnam/ns/ns-topogen.html.

[27] C. Dovrolis, D. Stiliadis, and P. Ramanthan. Proportional differentiated service: Delay differ-
entiation and packet scheduling. In Proc. of ACM SIGCOMM’99, Aug. 1999.

[28] P. Dykstra. Issues impacting gigabit networks: Why don’t most users experience high data

rates? http://sd.wareonearth.com/ phil/issues.html.

125

[29] D. Ely, N. Spring, D. Wetherall, S. Savage, and T. Anderson. Robust congestion signaling. In
ICNP, 2001.

[30] C.Estan and G. Varghese. New directions in traffic measurement and accounting, 2002.

[31] W. Feng, D. Kandlur, D. Saha, and K. G. Shin. BLUE: A new class of active queue manage-
ment algorithms. Technical Report CSE-TR-387-99, 15, 1999.

[32] S.Floyd. Highspeed tcp for large congestion windows, 2002. Internet draft, work in progress.

[33] S.Floyd, R. Gummadi, and S. Shenker. Adaptive red: An algorithm for increasing the robust-
ness of red, 2001.

[34] S.Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based congestion control for unicast
applications. In Proc. of ACM SIGCOMM, Aug. 2000.

[35] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. In
IEEE/ACM Transactions on Networking, 1(4):397—413, Aug. 1993.

[_3‘6] RGlbbens and F. Kelly. Distributed co'nnf;c'tibh acCei)tance _c‘ontrbl for a coﬁnéétidniess net-
work. In Proc. of the 16th Intl. Telegraffic Congress, June 1999.A

[37] T. H. Henderson, E. Sahouria, S. McCanne, and R. H. Katz. On improving the fairness of TCP

congestion avoidance. IEEE Globecomm conference, Sydney, 1998.

[38] C. Hollot, V. Misra, D. Towsley, , and W. Gong. On designing improved controllers for agm
routers supporting tcp flows. In Proc. of IEEE INFOCOM, Apr. 2001.

[39] V. Jacobson. Congestion avoidance and control. ACM Computer Communication Review;

Proceedings of the Sigcomm ’88 Symposium, 18, 4:314—329,vAug. 1988.

[40] R.Jain, S. Fahmy, S. Kalyanaraman, and R. Goyal. The erica switch algorithm for abr traffic
management in atm networks: Part ii: Requirements and performance evaluation. In The Ohio

State University, Department of CIS, Jan. 1997.

[41] R. Jain, S. Kalyanaraman, and R. Viswanathan. The osu scheme for congestion avoidance in
atm networks: Lessons learnt and extensions. In Performance Evaluation Journal, Vol. 31/1-2,

Dec. 1997.

[42] H. Jiang and C. Dovrolis. Passive estimation of tcp round-trip times, 2002.

126

[43] C. Jin, D. Wei, S. H. Low, G. Buhrmaster, J. Bunn, D. H. Choe, R. L. A. Cottrell, J. C.
Doyle, H. Newman, F. Paganini, S. Ravot, and S. Singh. Fast kernel: Background theory and

experimental results. In First International Workshop on Protocols for Fast Long-Distance

Networks, Feb. 2003.

[44] D. Katabi and C. Blake. A note on the stability requirements of adaptive virtual queue, 2002.
MIT Technichal Memo, 2002.

[45] D. Katabi and M. Handley. Precise feedback for congestion control in the internet. Technical
report, MIT, 2001.

[46] F.Kelly. Mathematical modeling of the internet. In Proc. of Fourth International Congress on

Industrial and Applied Mathematics, 1999.

[47] T. Kelly. Scalable tcp: Improving performance in highspeed wide area networks. In Submitted
for publication, Dec. 2002.

[48] S. Keshav. Packet-pair flow control. Technical report, Murray Hill, New Jersey, 1994.
[49] S. Keshav. An Engineering Approach to Computer Networks. Addison Wesley, 1997.

[50] S. Kunniyur and R. Srikant. Analysis and design of an adaptive virtual queue. In Proc. of
ACM SIGCOMM, 2001.

[51] R.J. La, P. Ranjan, and E. H. Abed. Nonlinearity of tcp and instability with red. In ITcom,
July 2002.

[52] S.H.Low, F. Paganini, and J. C. Doyle. Internet congestion control: An analytical perspective.

IEEE Control Systems Magazine, 2001.

[53] S. H. Low, F. Paganini, J. Wang, S. Adlakha, and J. C. Doyle. Dynamics of tcp/aqm and a
scalable control. In Proc. of IEEE INFOCOM, June 2002.

[54] M. May, J. Bolot, C. Diot, and B. Lyles. Reasons not to deploy red, June 1999.

[55] S. McCreary and K. C. Claffy. Trends in wide area ip traffic patterns. In Tech. Rep. CAIDA,
Feb. 2000.

[56] N. McKeown. Do optics and routers belong together?, 2001.

127

[57] V. Misra, W. Gong, and D. Towsley. A fluid-based analysis of a network of agm routers
supporting tcp flows with an application to red. In Proc. of ACM SIGCOMM’00, Aug. 2000.

[58] R. Morris. Tcp behavior with many flows. In in International Conference on Network Proto-

cols, Oct. 1997.
[59] The network simulator ns-2. http://www.isi.edu/nsnam/ns.

[60] J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe. Modeling TCP throughput: A simple model
and its empirical validation. In ACM SIGCOMM 98 conference on Applications, technologies,

architectures, and protocols for computer communication, pages 303-314, Vancouver, CA,

1998.

[61] J. Padhye and S. Floyd. On inferring TCP behavior. In Proceedings of ACM Sigcomm 2001,
pages 287-298.

[62] F. Paganini, J. C. Doyle, and S. H. Low. Scalable laws for stable network congestion control.

In IEEE CDC, 2001.

- [63] R. Pan, L. Breslau, B. Prabhakar; and S. Shenker. Approximate faimess through differential
~ dropping, 2001. ‘

[64] R. Pan, B. Prabhakar, and K. Psounis. CHOKE, a stateless active queue management scheme

for approximating fair bandwidth allocation. In INFOCOM (2), pages 942-951, 2000.

[65] V. Paxson. End-to-end Internet packet dynamics. IEEE/ACM Transactions on Networking,
7(3):277-292, 1999.

[66] I. Postel. Transmission control protocol, Sept. 1981.

[67] K. K. Ramakrishnan and S. Floyd. Proposal to add expliéit congestion notification (ecn) to ip,
Jan. 1999.

[68] Red parameters. http://www.icir.org/floyd/red.html#parameters.

[69] R.Hui, B. Zhu, R. Huang, C. Allen, and K. Demarest. 10 gb/s scm fiber system using optical
ssb modulation. 1EEE Photonics Technology Letters, 13, Aug. 2001.

[70] C. Rohrs, R. Berry, and S. O’Halek. Control engineer’s look at atm congestion avoidance.

Comp Comm, 19, Mar. 1996.

128

[71] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson. TCP congestion contorl with a mis-

behaving receiver. Computer Communication Review, 29(5), 1999.

[72] Schulzrinne, Casner, Frederick, and Jacobson. RTP: A transport protocol for real-time appli-

cations. Internet-Draft ietf-avt-rtp-new-01.txt (work inprogress), 1998.

[73] S. Shalunov. Gigatcp - tcp on gigabit ethernet. Internet2/NLANER Joint Techs Workshop,
Boulder, July 2002.

[74] 1. Stoica. Stateless core: A scalable approach for quality of service in the internet, 2000.

[75] I Stoica, S. Shenker, and H. Zhang. Core-stateless fair queuing: A scalable architecture to
approximate fair bandwidth allocations in high speed networks. In Proc. of ACM SIGCOMM,
Aug. 1998.

[76] I. Stoica, H. Zhang, and S. Shenker. Self-verifying csfq.

[77]1 K. Thompson, G. Miller, andM Wllder Wide-area internet traffic patterns and characteristics. .
In IEEE vol. | 1, no. 6, Nov 1997

[78] A. Veres and M. Boda. The chaotic nature of TCP congestion control. In INFOCOM (3),
pages 1715-1723; 2000.

(79] J. Xu and R. J. Lipton. On fundamental tradeoffs between delay bounds and computational
complexity in packet scheduling algorithms. In Proc. of ACM SIGCOMM ’02, Aug. 2002.

[80] S.S.L.Zhang and D. Clark. Observations on the dynamics of a congestion control algorithm:
The effects of two-way traffic. ACM SIGCOMM 91, 1991.

129

