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Abstract
This thesis describes real-time model identification for ground vehicle trajectory
estimation by means of the Automatic Dynamic Trajectory Recognition System. A
theoretical approach to trajectory model identification for the ADTR system using
Kalman filter residual analysis is developed. This approach selects the best trajectory
model from an array of candidates by comparing residual vectors generated by a bank of
Kalman filter estimators built upon the candidate models. The filter with the lowest RMS
residual magnitude value is identified as containing the best trajectory model.

The system is implemented in Draper Laboratory's C-Sim simulation environment. The
system simulation contains a sensor model as well as a dynamic model of the ground
vehicle. The simulation results demonstrate a correlation between the RMS value of the
filter residual magnitude and the RMS magnitude of the ground vehicle position
prediction error of extrapolating four seconds into the future. The results support the
model identification approach.
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1 Introduction

Trajectory recognition is a part of many human tasks. As humans, we are very adept at sizing up a

situation and making seat-of-the-pants estimations about how a moving object is going to behave

based on experiential knowledge and upon a useful 'mental model' of the physics of a system. If

a ball is thrown to us, we can anticipate well enough to catch it. If we look down the street at

oncoming cars, we can ascertain the safety of crossing it.

As we migrate to autonomous systems, it is essential that we include functionality into systems

that allow identification of appropriate mathematical 'mental models' of the environment they are

interacting with. The concept of the 'mental model' translates very well to the subject of

automation and artificial intelligence because of analogous ideas existing in estimation theory.

Utilization of an appropriate mathematical model is key to the success of many systems. An

engineer does appreciable work when developing a useful mathematical model using analytical

and empirical methods. The performance of a model is generally confirmed in actual operation or

in simulated operation with a post-processing evaluation approach. However, robustness is given

to an autonomous system if it is able to choose from a group of models that span a set of

scenarios and assumptions in real-time.

1.1 Objective

In order to improve the accuracy of air-to-ground targeting systems we will identify a model that

describes a moving ground vehicle's short-term trajectory in real-time operation. The objective of

the Automatic Dynamic Trajectory Recognition System (ADTR) described in this thesis is to

select the best trajectory model from an array of candidates by considering position measurement

data. The selected trajectory model is useful in predicting the future position of the ground

vehicle.

1.2 Approach

The approach taken is to sample the position of a moving ground vehicle from an Unmanned

Arial Vehicle (UAV) by way of the combined sensor data of an Embedded GPS/INS navigation

system (EGI) and a laser radar (LADAR). This data is processed with the Automatic Dynamic

Trajectory Recognition System. The ADTR system contains a bank of Kalman filters running in
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parallel. Each Kalman filter uses a different vehicle trajectory model and corresponding state

vector. Each filter estimates state variables (including position) of the vehicle trajectory. The

residual vector is an iteration-by-iteration measure of the difference between the measured

position and each filter's estimate of position. The system analyzes the performance of each

Kalman filter by calculating the RMS value of the magnitude of the filter's residual vector.

The ADTR system is implemented in a simulation system. The simulation is built using the

CSIM Simulation Framework. This implementation allows for system development, filter

parameter selection and system demonstration using a two dimensional vehicle dynamics

simulator and ADTR system software.

1.3 TOPART and Other Previous Work

Here is summarized the previous research work that has motivated the work described in this

thesis. The idea for The ADTR system was developed as an outgrowth to the Tomahawk /

Predator Advanced Real Time Targeting (TOPART) project. The goal is to extend the TOPART

targeting capability to include maneuvering ground targets. The TOPART project, along with

several other articles and reports, became the foundation for the development of the system.

The TOPART project involves the targeting of stationary objects in World Geodetic Survey 1984

(WGS-84) coordinates using a laser radar (LADAR), and an Embedded GPS/INS (EGI)

navigation unit mounted on an Unmanned Aerial Vehicle (UAV). In this project the UAV is the

Predator vehicle and the Tomahawk cruise missile is the intercept vehicle. The objective of this

targeting task is to achieve a coordinate fix of a stationary target by combining line-of-site (LOS)

position information from the LADAR and UAV position information from the EGI navigation

unit on the UAV. The coordinate accuracy is degraded by atmospheric transmission delays of the

GPS satellite signals, drift in the inertial sensors and calibration errors and noise in the LADAR

data. The target coordinate data is then handed off to the intercept vehicle along with the specific

GPS satellite constellation used. The GPS constellation information allows the intercept vehicle

to use the same satellites for its EGI navigator and steer to the WGS-84 location with comparable

errors. High correlation in the targeting coordinate errors and the intercept vehicle navigation

errors (because the same GPS constellation was used) acts to nullify the EGI system errors if the

events are closely spaced in time (10 minutes or so.) The remaining error is largely due to

calibration errors and noise in the LADAR sensor. Draper Laboratory is developing an additional
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capability to calibrate the targeting sensor system as part of the mission but prior to targeting the

unknown stationary object. This is called "Dynamic Bore-sighting." This is achieved by first

targeting several accurately surveyed landmarks and generating error correction information

about the sensor system.

The ADTR system is based on a similar scenario, but uses a moving ground target instead of a

stationary target. In order to handle a moving target there must be a mechanism for trajectory

prediction. Much work has been done in this area, especially in radar tracking and gun-siting

systems.

Perkins discusses a solution for predictive gunfire control against moving ground vehicles using

turret mounted guns in the article, "Sub-optimal State Estimation as Related to Predictive Fire

Control System Design" [10]. The purpose of a gunfire control system is to adequately predict

the position of a maneuvering ground target at the time of impact so as to move the turret to

anticipate the target. The method uses a sub-optimal Kalman filter estimating the position,

velocity and acceleration of the target. The vehicle states for aiming are the (LOS) coordinates:

range, azimuth and elevation angle. For the Kalman filter, the LOS states are actually estimated

in hybrid coordinates. Position states are in LOS coordinates but velocity and acceleration are

expressed in a Cartesian coordinate frame aligned with the range vector. The state estimates for

velocity and acceleration of azimuth are easily computed from estimates of range, velocity and

acceleration components normal to the range vector. With this information available it is possible

to extrapolate the LOS states forward to the impact time and move the turret to that location.

This application is similar in concept to the random walk acceleration model found in Section

3.3.2; the difference being the mixture of LOS and Cartesian coordinate frames used in the

gunfire control system.

Burke proposes a nonlinear prediction concept for curved paths called the Circular Arc Aimed

Munitions (CAAM) fire control solution [1]. The CAAM concept is a modification of the

standard parabolic prediction equation. The standard parabolic prediction equation extrapolates

position based on velocity and constant acceleration estimates. The CAAM prediction concept

extrapolates a circular arcing trajectory by adding two factors to the velocity and acceleration

estimates in the standard parabolic prediction equations. These factors are functions of the

rotational velocity of the vehicle. Still this prediction relies on a linear estimator to generate

velocity and acceleration states.
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Bird develops a survey of Kalman filter approaches for tracking, estimating and predicting

moving target trajectories in the report "Some Applications of Kalman Filtering in Advanced

Land Fire Control Systems" [2]. He covers guidelines for choosing target models for Kalman

filters. He also defines several common linear target models. These models are: random walk

velocity, random walk acceleration, exponentially correlated velocity and exponentially

correlated acceleration. He develops these models in both rectangular and spherical coordinates.

He lays out guidelines for tuning performance of a filter design through model choice and

assignment of Kalman covariance matrices.

In the paper "Identification of Maneuvering Aircraft using Class Dependent Kinematics Models"

Cutaia and O'Sullivan develop multiple model tracking filters used both to track and to identify

aircraft class [5]. The aircraft class models use physical aircraft attribute, allowable pilot

commands and pilot behavior to discriminate between a set of classes. A multiple model tracking

filter is developed for each aircraft class. This filter generates an aircraft state estimate based on

radar measurements and attitude measurements from a high-resolution sensor. Class

identification is achieved by choosing the class model that maximizes the probability of the

sensor observations.

1.4 CSIM Simulation Framework

The CSIM Framework, developed at C. S. Draper Laboratory, is a tool designed to aid in the

development and execution of real-time vehicle simulation software written in C. The CSIM

Framework is well suited for human-in-the-loop and hardware-in-the-loop simulations. It

consists of a database preprocessor that creates a hierarchical organization of simulation variables

using nested data structures and a powerful execution environment. Simulation software

development is enhanced by the existence of simulation function libraries. These include such

things as simulation I\O, matrix data types/arithmetic, Gaussian noise generation.

The execution environment blends many powerful tools. A command line interface allows

control of the simulation during runtime. Commands can be executed through use of command

script input files, or an X-window based console. This is coupled with a Motif-based graphical

user interface (GUI). This execution environment allows display and modification of simulation

variables before or during runtime using the command line interpreter or simulation variable
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browse windows as shown in Figure 1.1. Inside the browse window the displayed units of the

simulation variables can be changed in run-time. Additionally, CSIM framework configuration

variables can be changed just like simulation variables.

Figure 1.1: CSIM Framework Simulation Execution Environment

Variable visibility is also enhanced through use of an on screen dynamic plotting facility. Other

features include data logging and exporting of variable histories. A large part of the CSIM

framework not utilized in this thesis is devoted to simulation project graphics for immersive

human-in-the-loop simulations and vehicle visualization.

1.5 Thesis Content Summary

Chapter 1 is this introduction. Chapter 2 describes the components and interaction of the total

targeting system and the ADTR system. Chapter 3 develops the ADTR algorithm. Chapter 4

describes the implementation of the total system in simulation. Chapter 5 describes the

simulation demonstration and data collected from it. Chapter 6 draws conclusions from the

demonstration and provides recommendations for future work.
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2 System Description

This chapter is an overview description of the Automatic Dynamic Trajectory Recognition

System. Section 2.1 describes the operational scenario used as a foundation for the system.

Section 2.2 describes the coordinate frames used in the system for the expression of target

position. Section 2.3 describes the sensor input to the system and the output of the system.

Section 2.4 describes the assumptions made in formulating a workable problem.

Targeting System

Grun Vhile Target X Target
Dond icle Sensor ADTR Prediction

Model

PTarget

PTarget

10 GNC logic Intercept Vehicle -+ Prediction -

Intercept I1ntercept

Figure 2.1: Third Party Targeting System Top Level Diagram

The Automatic Dynamic Trajectory Recognition System utilizes an Unmanned Aerial Vehicle

(UAV) that act as a third party targeting system for weapons delivery. The goal of the system is

to identify a short-term trajectory model for a ground vehicle based on position measurements

over time. This model is useful in a targeting system for extrapolating the position of the vehicle

STarget into the future IT~arget . This information can be used by an intercept vehicle or weapon to

control the future position of the intercept vehicle SIntercept to coincide with the future position of

the target.
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2.1 Operational Scenario

The basic scenario is for the UAV to circle a ground target at a fixed altitude and turning rate and

observe the ground vehicles position over time. Measurements are gathered by the UAV using a

laser radar (LADAR) and an Embedded GPS/INS (EGI) navigation system to sense the position

of the ground vehicle. The UAV observes the ground vehicles movement by taking samples with

the EGI and LADAR sensors at a constant rate of 5 Hz. The LADAR measures the position of the

target relative to the UAV. This measurement is represented by PTarget,UAV . This notation

defines the position vector P of the target relative to the UAV. The EGI estimates the position of

the UAV relative to the datum point or origin of an earth fixed inertial coordinate frame notated

as PUAV. Coordinate frames are discussed further in Section 2.2. These vectors add together to

produce the position of the target relative to the earth-fixed inertial coordinate frame.

PTarget = PUAV + PTarget,UAV (2.1)

This equation is illustrated in Figure 2.2.

PUAV

EGI Navigation
PTarget,UAV

LADAR

"Target

Datum

Figure 2.2: Sensor System Concept
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This LADAR operates on RADAR principles but with a laser that has a much higher

electromagnetic frequency. It is mounted on the UAV and pivots itself along pitch and yaw axes

while sweeping the viewing area with the laser. The LADAR receives reflected laser light and

makes a measurement of the line-of-site (LOS) range of the reflection and the direction relative to

a coordinate frame coincident with the mounting point of the LADAR.

The EGI navigation system combines the merits of the Global Positioning System (GPS) and an

Inertial Navigation System (INS) in one package. Inertial navigation uses three accelerometers

and three gyros to measure linear accelerations and angular rates in six degree-of-freedom (DOF)

of the body they are mounted to. The EGI integrates the measurement signals to get velocity,

position and orientation of the UAV. INS sensor readings drift from true values due to imperfect

sensor quality. INS is very accurate and fast for navigating in the short term, but over the long

term, large errors can accumulate. The GPS system uses radio navigation principles to calculate

the position of a GPS receiver relative to a worldwide constellation of GPS satellites. GPS

systems may exhibit large bias errors due to atmospheric effects. These change somewhat

slowly, however. The GPS and INS data are redundant, but have complimentary performance

strengths. They are blended by the EGI using estimation techniques into a single integrated

measure of position. This is shown in Figure 2.3

The ADTR system stores the current sampled data and processes them with four parallel Kalman

filters as shown in Figure 2.4. Each of these four filters is based on a different trajectory model.

Two of the filters are based on linear models that are common in target tracking applications.

The remaining two filters are based on nonlinear models which use a special case discrete form of

the extended Kalman filter algorithm developed in this thesis.
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Sensor System

Ground Vehicle LADAR

TOPART ADTR Identification
Sensor Integration

UAV GPS receiver i GI

INS

Figure 2.3: Sensor System Information Flow

Ground Vehicle

Human Operator

Vehicle Dynamics
Output

I- Model Selection

Sensor Syste mA

ADTR System

- Kalman Filter 1--

ECEF (x,y.,z) -+Kla itr2 -

- Kalman Filter 3 -

Coordinate Transformnation --- KamnFle4 -- Statistical

ECEF to NED Scoring
NED (x,y) Residuals

Figure 2.4: ADTR Block Diagram
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The residual vector of these filters represent the difference of each position sample compared to

the filter's position estimate. The filter iterates at a 5 Hz rate so that there are residuals calculated

for each of the four filters for each measurement interval. Even though the position samples are

corrupted with noise, the filter that is estimating position most accurately will have the smallest

residual over time. The converse is that the filter with the smallest residual over time has the

most valid position estimate. It follows that the filter that is estimating the position most

accurately is doing so because it has the most valid model of the target's trajectory.

The ground vehicle is a free roaming wheeled vehicle that is driven by a human who controls

turning and speed. The environment is flat, relatively featureless and benign. The ground

vehicle's trajectory is not constrained by any known roads or terrain. It is, however, constrained

by performance limits dictated by the mechanism. These constraints are of the form of

acceleration limits in different directions.

2.2 Coordinate Frames

The target position data in the ADTR is expressed in two different earth fixed coordinate frames.

One is the World Geodetic Survey 1984 (WGS-84) Earth-Centered-Earth-Fixed (ECEF)

coordinate. The other is the North-East-Down (NED) coordinate frame. Earth fixed coordinate

frames are non-inertial. We will make an assumption for inertial coordinate frames in Section 2.4

The WGS-84 ECEF frame is a Cartesian coordinate frame with the origin at the earth's center of

mass. The x-axis passes through the equator at zero degrees longitude. The y-axis passes

through the equator and is perpendicular to the x-axis. The z-axis is aligned with the earth's axis

of rotation. The WGS-84 ECEF coordinate frame rotates with the earth as seen in Figure 2.5.

The NED coordinate frame has its origin at a datum point local to the ground vehicle's position.

This frame is oriented such that the x-axis points north, the y-axis points east and the z-axis points

down toward the center of the earth. In this coordinate frame, yaw angles are measured

clockwise from the x-axis (which is North). This is the same convention as measuring a compass

bearing.
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Figure 2.5: ECEF and NED coordinate frames

2.3 Input and Output Da ta

The input for the ADTR is an estimate of the position of the ground vehicle coming from the

TOPART sensor as shown in Figure 2.4. This data is expressed in WGS-84 ECEF coordinates. A

preprocessor in the ADTR system transforms the input data to NED coordinates with the origin

located at the surface of the earth at the initial estimated vehicle location. This transformation

aligns the x-y plane tangent to the surface of the earth. This allows the dominant components of

vehicle motion to lie in the x-y plane.

The output for the ADTR is the identification number of the selected trajectory model. This is

accompanied by the RMS statistics of the residuals for the selected model and the other three

models.

Transformations from ECEF to NED are made by performing a coordinate rotation and then a

translation. We will use a notation that expands on that previously described. PTargerUv means

the position of the target with respect to the UAV. PTarget with only one subscript means the
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position of the target with respect to the origin of the implied coordinate frame. For this

discussion, the coordinate frame the vector is expressed in may be explicitly notated as a

superscript, i.e. PNED

A coordinate rotation can be achieved by multiplication by an appropriate matrix. This

intermediate coordinate frame that is only rotated will be called NED'. The notation for the

rotation matrix of frame NED' with respect to frame ECEF is CNED'. This matrix is the rotation

transformation from ECEF to NED' coordinates expressed as a direction cosine matrix

P NED' NED'ECEF2.2)
Target 7' 0 ECEF OTarget -

The direction cosine matrix is a 3 x 3 matrix whose entries represent the cosine of the angle

between an axis in one frame and an axis in the other frame. For example, the direction cosine

matrix entry CXAYB represents the cosine of the angle between the x-axis in the A-frame and the

y-axis in the B-frame. The direction cosine matrix is defined by:

CXAXB CXBYA CXBZA

CB=CXAB AB BzA (2.3)

CXAZB CYAZB CZAZB

The specific direction cosign matrix for the rotation transformation from ECEF to NED' is [11]:

- sinp cos L - sin p sin L cos 1
CFNED' sin L cos L 0 (2.4)

cos p -cos p - sin/p

Where p is the geodetic latitude of the datum point and L is the longitude. Geodetic latitude

differs from geocentric latitude for an elliptical sphere like earth. Geodetic latitude is the angle

formed between the equatorial plane and a line perpendicular to the elliptical surface of the earth

at the datum point as seen in Figure 2.6.
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z

p Geodetic Latitude

x

Geocentric Latitude

Figure 2.6 Geodetic Latitude for an Ellipsoid Earth

All that is left is a translation from the NED' coordinate frame to the NED coordinate frame.

This is the same thing as expressing a NED' vector with respect to the datum point at the origin

of the NED coordinate frame.

pNED pNED'
Target - Target,Datum (2.5)

An alternate expression for a NED' vector with respect to the datum point is:

p NED' NED' NED'
Target,Datum = Target ~ PDatum (2.6

Substituting (2.2) and (2.5) into (2.6) gives the complete transformation:

NED NED' ECEF _ ECEF'Page CED (PfT a r (2.7)Target - ECEF arget Datum

2.4 Assumptions

Several assumptions are made to simplify the systems development. One assumption is that the

path of the ground vehicle can be sufficiently modeled on a two dimensional coordinate frame.

This is to say that the ground vehicle is approximately traveling along the surface of a plane. In

reality, the surface of the earth is curved. For this system we assume that the curvature of the
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earth has a negligible effect within the domain of distances traveled by the ground vehicle. Also,

a vehicle will change altitude in any earth fixed coordinate frame due to changes of altitude in

terrain. This change in altitude is neglected. It is minor in comparison to changes in latitude or

longitude. Also, the driver of a ground vehicle is not able to choose an altitude trajectory, he is

constrained to whatever altitude environment he is in. The behavior this system is trying to

capture is the planar trajectory as controlled by the vehicle's driver.

The second assumption is that of a constant noise variance of the LADAR sensor. Measurements

from a LADAR become noisier as the line-of-sight (LOS) distance between the vehicles

increases. We will assume that the altitude and circling path of the UAV are adequate

proportioned to make the angle qp relatively constant, see Figure 2.7. Thus we will assume that

the LOS distance between the UAV and ground vehicle and the LADAR noise are relatively

constant.

LOS distance

Figure 2.7: UAV and Target

A third assumption is that of unbiased noise for the integrated TOPART sensor system. The

nominal target position data received from sensor system contains errors from the LADAR sensor

and errors from the EGI navigation sensor. These take the form of random noise and bias errors.
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PNominal = truth biaSEGI+ noise EGI + biasIADAR + noise L4DAR (2.8)

Constant biases do not interfere with trajectory estimation since every point in the trajectory is

offset the same amount. They do confound absolute coordinate prediction. To address both

issues, we assume that the LADAR bias term is negligible because of the "Dynamic Bore-

sighting" work for the TOPART sensor as discussed in Section 1.3. Further, we will assume that

the EGI bias term is constant because the bias moves on the order of minutes and this system

predicts on the order of seconds. Additionally, the third party targeting system developed for the

TOPART project assumes that an intercept vehicle with a comparable EGI unit using the same

GPS satellite constellation will navigate with an equivalent bias. The result is that we can assume

that the true position Ptruth is effectually corrupted by a single lumped unbiased noise

component.

A final assumption is that the earth fixed coordinate frames used in this system are approximately

inertial coordinate frames. This assumption neglects the rotation of the earth due to the small

time periods involved in targeting compared to the rotational period of the earth.
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3 Algorithm Development

This chapter describes the theoretical development of the Automatic Dynamic Trajectory

Recognition System apart from simulation implementation details. Section 3.1 describes some

general concepts behind the use of the Kalman filter in this system. Section 3.2 describes the

discrete Kalman filter algorithm for linear models and a new special discrete approximation of the

extended Kalman filter algorithm for a special class of nonlinear models. Section 3.3 describes

two linear and two nonlinear state-space ground vehicle dynamics models used in the system.

Section 3.4 shows the discretization and linearization of these state space models to fit the

Kalman filter algorithm. Section 3.5 describes the measurement model used in all four filters.

Finally, Section 3.6 describes the development of the filter performance-scoring algorithm used to

select the best maneuver model.

3.1 General Concepts

In trajectory estimation it is necessary to identify behaviors of interest. For a wheeled ground

vehicle, behaviors of interest include turning, accelerating and braking. Four models are chosen

to represent sets of these behaviors, each model adding sophistication to the previous ones.

These models will estimate:

* Straight-line travel at a constant velocity

* Travel with a constant straight line acceleration

* Travel with a constant turning acceleration and constant speed

* Travel with a constantly varying speed and constantly varying turning acceleration

Each models is expressed mathematically as a systems of first-order differential equations, each

with a state vector, X , which defines the trajectory parameters that are estimated in each

scenario.

i = f(X (t))+u(t) (3.1)

X is the time derivative of the state vector. f(X (t)) is a vector of general functions of the

continuous state vector X (t). u(t) is the model input vector. The differential equations are

rigid-body dynamic equations, describing the relationship of the vehicle's body in a two

dimensional inertial coordinate frame.
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In these models, there are no deterministic inputs as in a control scenario. Inputs are unknown

maneuvers. All inputs are modeled as a random disturbance vector. Specifically, lower order

terms have zero values and higher order terms are modeled as random walk variables. A random

walk is a stochastic process described by the two-degree-of-freedom (2-DOF) analogy of a

drunken man taking steps in random directions. The random walk process is shown here in

continuous scalar form with w(t) representing unbiased Gaussian white noise:

i= w(t) (3.2)

The random walk process in discrete scalar form is:

Xk+1 = Xk + Wk (3.3)

The approach at modeling unknown vehicle maneuvers with a 2-DOF random walk is very

simple and is common in the literature [2][10]. The simplistic models from the literature contain

a mathematical admission that we don't really know very much about how the vehicle is

constrained to maneuver. For example, a vehicle is commonly modeled as a 2-DOF random walk

of its acceleration state. This does not include any information about a car's constraint to only

travel in a relatively smooth series of tangent arcs. An attempt has been made in the system

development to include models that constrain the random walk model to arcing trajectories.

Given this discussion, the models in this system fall into two forms. For the nonlinear case, the

models are in the general form:

General-Gaussian Model

X = f(X(t)) + w(t) (3.4)

The linear models are in a reduced matrix form:

Linear-Gaussian Models
f(X) = FX(t)

X = FX (t) + w(t) (3.5)

F is a square matrix of constants. Kalman filters used for this computer simulation are based on

these continuous models, but ultimately require a discrete treatment of the model. For the linear

models, discretization of F is accomplished by expanding a Taylor series about some point to.

x(t) = x0 +(t- to )ko +±L(t-t ) 2
0 + (t - to ) 3 'o +... (3.6)
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From the models we know that:

X =FX

=F = F 2X (3.7)

so then the discrete version k-l is found by:

Xk =(I +AtF + I At 2 F 2 +-LAt3 F 3 +...)Xk _ (3.8)

k_1= eFAt = I+ AtF+-jAt 2F 2 +y At3 F 3 +... (3.9)(k 12! 3!

Xk =k OkXk_1 (3.10)

3.2 Kalman Filter

The time invariant Kalman filter equations used by the system are summarized here. The linear

models are implemented in the standard form, and the nonlinear models in the extended Kalman

filter form. As discussed in Section 1.2, the approach is to use four separate Kalman filters in

parallel based on the vehicle models discussed in Section 3.3. For a more complete treatment of

the Kalman filter derivation, see [6].

3.2.1 Discrete Linear Kalman Filter Equations

For the discrete Kalman filter the criterion of optimality is based on the assumption that the real

system being estimated is truly represented by the following discrete mathematical model.

Discrete - Linear Kalman Filter Model

Xk = 0_ik-1Xk-_ + Wk (3.11)

Zk = HkXk +Vk (3.12)

The vectors wkl_ and Vk are both unbiased Gaussian white noise vectors and the subscript

identifies the discrete time associated with it. Wk-_ is the discrete form of the input noise w(t)

discussed in Section 3.1. Zk is the measure vector coming from system sensors. It is modeled as

a linear combination of the state vector Xk plus sensor noise Vk . It is assumed that the noise

vectors have no correlation with each other. The noise is described by covariance matrices Qk-1

and Rk as follows:
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Qk-1 = E1wkw[1 }_

{ T 
(3.13)

Rk = Ek IvkV

It is important to note that the diagonal elements of Qk-1 and Rk are the variances for each

member of wk and Vk . A simplifying assumption used in this application is that there is no

correlation between individual elements of the noise vectors, which leaves only a diagonal

matrix.

The Kalman filter algorithm operates as shown in Figure 3.1.

Zk + k -r

Xk

I kk Update Se
-- X

X DelayXklk-l

k Xk-ilk-i
Xkk-1

~k-1 Propagation Step

Figure 3.1: Kalman Filter Diagram

Here X represents the estimate of the state vector X . The first iteration of the filter algorithm

begins at the 'Propagation Step'. This is carried out by propagating an initial state estimate X0 ,

which is the expected value of the state vector at to

X0 = E{Xo } (3.14)
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The state vector is propagated according to the probabilistic expectation of the truth model given

by (3.11). The expected value for unbiased white noise is by definition zero. Also the expected

value for a constant is the value of the constant.

wk = E{Wk} 
(3.15)

Ok-I = E{GkI}I

Thus, the initial state estimate, XO , is propagated to the next time step by multiplying it by the

associated initial state transition matrix, 0 . The result is the filter's prediction of the state

vector at the next measurement event, and is read as the state estimate at tk given the initial state

vector.

XkIO = Oo (3.16)

A measurement vector Zk is compared to the output estimate vector jA* The error between the

two is the residual vector, r

Ak = HZiA Hk XkIo (3.17)
rk - Zk - Yk

The residual vector is the data source for updating the filter. It is the estimation error added to the

sensor noise. This information is put to use in the 'Update Step'. The residual is multiplied by

the Kalman gain, Kk and the result is added to augment the previous propagation prediction

resulting in the updated current estimate. The result is the state estimate at tk given a

measurement at tk.

XkIk = X kIk-1 + Kkrk (3.18)

The previous propagation prediction XkIk_1 is the general notation for XkIO. At this point we

model the time delay of the discrete system changing the updated current estimate Xkik to

XklkI_ and arrive back at the 'Propagation Step' for the beginning of the next iteration,

compare (3.16).

Xklk-1 k-1k-1k- (3.19)
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For this treatment Ok- is constant. As the algorithm iterates, the state estimate Xk converges

on the value of Xk and follows state perturbations (modeled as wk) according to the

appropriateness of Kk . In order for this to occur properly it is necessary to incorporate a priori

knowledge of covariance matrices Qk and Rk into the selection of the gain matrix Kk . To do

this, we need to be aware of another covariance matrix: the error covariance matrix PkIk.

XkIk = Xkk - Xk

PkIk = E{XkIkIk } 
(3.20)

X is called the estimation error. This matrix contains the expected covariance of estimation

errors and describes the estimated performance of the updated state estimate XkIk . The error

covariance matrix, like the state estimate, begins with an initial estimate PO and is propagated by

combining (3.11) and (3.19) into the following:

XkIk._ = X kIk - Xk

Pk~k-1 E{ S _15 }~kjT
T T TX (3.21)

PkIk-1 = k-1E{Z Z _,I_, }(_- + E[wk.1wk-_ }

PkIk-1 ( k- k-1Ik-1 k-1 + Qk-1

PkIk-1 is updated by combining (3.11), (3.12), (3.17), (3.18) and (3.20) into the following

PIk =(I - KkH )E{X _ }klk( - K H )T + KkE{VkVk T }K[Pk~kk k)j' - k~-I ) k kT k(3.22)

PkIk =(I-KkHk)Pklk l(I -KkHk) +KkRkK[

The strategy in selecting the optimal or Kalman gain matrix is to do so such that the elements of

the diagonal elements of the updated error covariance matrix, Pkk , is minimized [6]. The

expression for the Kalman gain matrix is:

Kk = PkIk_ H' (H PkIk (H _-H [ + Rk -1 (3.23)

With the Kalman gain, (3.22) is reduced to:

PkIk = (I - KkHk )pkk-1 (3.24)

These Kalman filter equations are summarized in Table 3.1.
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Discrete Linear Kalman Filter

Propagation Equations Update Equations

XkIk-1 =k-1Xk-1Ik-1 Kk --- PkIkLHk [Hk PkIkH + Rk]

kI k =-1 + Qk- rk = Zk - HkXkIk_1

XkIk kIk-1 +k * rk

PkIk =kIk-1 - Kk Hk PkIk_1

Table 3.1: Standard Kalman Filter Equations

3.2.2 Discrete Extended Kalman Filter Equations

The extended Kalman Filter differs from the Standard Kalman filter in that it applies linear

techniques to a nonlinear model through the use of iterative linearizations. Much like the

standard Kalman filter, the extended Kalman filter has a criterion of optimality based on the

assumption that the real process is truly represented by the following discrete-continuous

mathematical model:

Discrete-Continuous Extended Kalman Filter Model

I(t)= f (X (t)) + w(t)

Zk = HkXk +Vk
(3.25)

Where input noise w(t) and sensor noise Vk are zero mean white Gaussian random vectors as

discussed in Section 3.2.1. The noise vectors associated with this model are described by the

covariance matrices Q(t)S(t - r) and Rk as follows [2]:

Q(t)3(t - z) = Etw(t)w(r)T }
Rk = E{vkv

(3.26)

(3.27)

-(t -'r) is the Dirac delta function meaning that we are sampling the spectral density matrix

Q(t) when t =,r.

As with the Discrete Linear Kalman filter, we first propagate an initial estimate of the state vector

X and the error covariance matrix P. This is stated in continuous form [6]:
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X = f((t) (3.28)

P(t) = F(X(t))P(t) + P(t)F(X(t))' + Q(t)

The rest of the algorithm: the residual calculation, 'Update Step' and Kalman gain calculation are

identical to the standard linear implementation.

The discrete approximation of the propagation equations (3.28) are found by first defining the

transition matrix associated with f (X):

Xk = 0 kX, (3.29)

Where OkIr represents the transition matrix between time r and tk. With these intermediate

definitions, (3.28) and (3.26) can be written alternatively as [6][8]:

tk
XkIkI_1 = X- +f f(Z(r))d-r (3.30)

tk-1

PkIk-1 =kIk-1 k-1Ik-IkIk-1 + Qk-1 (3.31)

Qk k = J kjQ(t)OT dr (3.32)k- tk-1 ~ ~

Where OkIk-1 represents the transition matrix between tkl_ and tk . These equations are an

intermediate step toward discretization of the extended Kalman filter.

Next we linearize by calculating the partial derivative matrix of f(X):

af (X)
F(t) = (3.33)

F(t) is a linearization of f(X) evaluated at the state vector X (t). For a time invariant F(t)

the transition matrix is:

PkIr = e F[tk-r] (3.34)

Notice that for a linear system F(t) is constant, OkIr becomes calculable, and the above

integrations become straight forward. In the case when F(r) is changing over the time step

interval neither GkIk-1 or Okir is easily calculated by exact analytical methods. Novel

approximations can be made for OkIk-1 and OkI by substituting F(r) with F(tk-1 ) for the
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entire time interval. This is a satisfactory approximation for a special class of nonlinear models

used in this system where:

Discrete Extended Kalman Filter Approximation Criterion
f(X(t)) = F(t)X(t) (3.35)

The calculation of F(t) for those models will be shown Section 3.4.

This linearization, as required by the Kalman filter's P propagation formula, has the bonus of an

exact matrix representation F(t) of the nonlinear model although it changes with the state.

Because this matrix representation is exact for the evaluation point X (t), it is a good

approximation for small deviations from the evaluation point. Thus it is a useful approximation

to use a discretized version of F(t) as the transition matrix Ok-1 for a judiciously small time step

ahead of the evaluation point.

k-1 kIk-1 = e F(tk-l)[tk -tk-1 (3.36)

Once this approximation has been made, the other equations become:

^ ^ tk
Xkk.1 - X _ + F(r)X(r)dr = klXkl_ (3.37)

tk-1

kIk-1 k-1 k-1 k1 k-1 (3 .38)

Qk_1 ft -1 _ k-1dr (3.39)

In this approximation we have lost the terms associated with F, P etc as follows. Returning to

the Taylor series expansion of the state vector, we approximate Fk._ as being appropriate for the

whole time step. This means we approximate F to be zero for that step. Returning to the Taylor

series expansion (3.6), the terms are given as:

X = FX

X= X + FX = F 2X (3.40)

This takes us to the same state propagation approximation as the previous argument:
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Xk =(I+AtFk-l + _At2 F_+ 2 At3 F 3 +...)Xk _2! k_I 3! k-i -

_-e Fk-At = I + AtFl +At2 F2_ +LAt3 F'_I +...

Xk = Ok lXk_1

(3.41)

This special approximation makes the extended Kalman filter algorithm very close to the standard

linear 'Propagation Step' with the addition of iterative calculation of O 1 .kl* The extended

Kalman filter equations are summarized in Table 3.2

Discrete -Continuous

Propagation Equations Update Equations

X (t) = f (X(t)) Kk = Pklk,.H [[HkPkk,_H[ + Rk ]

P(t) = F(5(t))P(t) + + Q(t) rk = Zk - Hk XkIk

F( af (X) XkIk = XkIk-1 + Kk * r

(0) $ a (t) PkIk = kIk-1 - Kk Hk PkIk-I

Discrete Approximation for: f (X (t)) = F(t)X(t)

Propagation Equations Update Equations

kk-1 Ok-1k-1k- Kk = Pklk_-Hk [HkPkI,1.H[ + Rk]

PkIk-1 = k-1k-Ik-1 k-1 + Qk-1 rk = Zk - H XkIk _

af (X) XkIk = Xkk-1 + Kk * rk
F( (t )) =

aX PkIk = PkIk-1 - Kk H PkIk_1

Ok-1 = e F(tk-j1tk -tk-13

Table 3.2: Extended Kalman Filter Equations

3.3 State Space Models for Ground Vehicle Dynamics

The models are based on two classic linear-Gaussian target-tracking models [2][10] and two new

nonlinear-Gaussian target-tracking models. Note that four models are used instead of one

definitive model that incorporates the full set of expected behaviors. This is done because the

unknown driver actions are obscured by noise from the sensor. In the absence of noise, a

42



definitive model would return a good estimate of a simple maneuver [2]. In the presence of

noise, however, the more complex models are sensitive to the sensor noise and states that should

be zero are estimated as non-zero values simply because of their inclusion in the model. For

example, if the vehicle is going straight, the model that just includes enough states to describe

straight-line travel will perform the best. The models are expressed in the forms shown by (3.4)

and (3.5):

General-Gaussian Model

X = f (X (t)) + w(t)

Linear-Gaussian Models
f(X)= F(t)X(t)

X = F(t)X(t)+w(t)

The following model expressions and state vectors will use the state variable notations: P for

position, V for velocity, A for acceleration and J for jerk. The following subscripts define the

direction of the state variable Cartesian components: subscripts x and y specify the components

in a North-East-Down (NED) earth fixed coordinate frame. Subscripts T and L define the

components in a rotating velocity fixed coordinate frame and stand for 'Tangential' and 'Lateral'

respectively [3].

N

x 'lX>

E

Vy S

V

T

L

y

North-East-Down Velocity Fixed

Figure 3.2: Coordinate Frames
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The NED coordinate frame has the origin fixed at some local point and the orientation fixed to

the compass rose as shown in Figure 3.2 with the z-axis pointing down toward the center of the

earth. The velocity fixed coordinate frame has the origin fixed on the vehicle and the orientation

defined with the T -axis fixed on the vehicle's velocity vector. Following the right hand rule: T

is the "x-axis", L is the "y-axis" and the z-axis is pointing down toward the center of the earth.

3.3.1 Random Walk Velocity Model

Here the Vehicle is modeled as traveling at an approximately constant velocity in magnitude and

direction. The random walk portion models the uncertainty of deviations from the constant

velocity by unknown driver maneuvering. These maneuvers are analogous to using the

accelerator/ brake pedal and the steering wheel, but are expected to be within a Gaussian

envelope of zero mean.

The Random Walk Velocity Model or (RWV) is:

rp 0 0 1 0-r X 0

# 0 0 0 1 Py 0
Z + (3.42)

V, 0 0 0 0 V, w,

Y 0 0 0 0 -V, Y) wY

3.3.2 Random Walk Acceleration Model

Here the Vehicle is modeled as traveling at an approximately constant acceleration in magnitude

and direction. This builds on (3.42). The random walk portion models the uncertainty of

deviations from the constant acceleration by unknown driver maneuvering. These are changes in

the acceleration rate (jerk) which are analogous to changes in the rate of acceleration/ braking

combined with steering acceleration changes. Again, these are expected to be within a Gaussian

envelope of zero mean.
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The Random Walk Acceleration Model or (RWA) is:

P -0 0 1 0 0 0r P 0'
iY 0 0 0 1 0 0 P, 0

V 00 00 0 1 0 V 0
+ (3.43)

VY 0 0 0 0 0 1 V, 0
AX 0 0 0 0 0 0 AX w
A 0 0 0 0 0 0 AY WY

3.3.3 Random Walk Velocity and Lateral Acceleration Model

Here the Vehicle is modeled as traveling approximately in a circle prescribed by a constant lateral

acceleration and constant speed or velocity magnitude. The lateral acceleration A L that a vehicle

experiences is also equivalent to instantaneous centripetal acceleration, which can be expressed as

a function of speed ||V| and turn radius R .

AL = Centripetal Acceleration = VI (3.44)
R

For a standard wheeled vehicle the lateral acceleration R is a function of vehicle speed, the angle

of the front wheels 0, and wheel base length WB, see Figure 3.3.

WVB
R = (3.45)

tan 0

The equation for a model for lateral acceleration for an idealized-wheeled vehicle without tire

slippage is shown.

V||2 tanG (3.46)

LA

A is chosen as the state variable over R or s, because of its simplicity, consistency with (3.43)

and because it is divorces the model from vehicle specifics.
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WB

R

Figure 3.3: Ground Vehicle Lateral Acceleration

The nonlinearities introduced into this model arise from the transformation of AL, expressed in

the non-inertial velocity fixed coordinate frame, to the NED coordinate frame expressed as the

vector V . The velocity fixed component T is always perpendicular to the component L . Thus

the coordinate transformation occurs by multiplying AL times a unit vector that is perpendicular

to V since in fixed to the T -axis, see Figure 3.2. This is summarized by the equation:

V, 1 - V,
. - v JAL 

(3.47)

The sign convention for the Velocity Fixed coordinate frame makes a constant positive velocity

combined with a constant positive lateral acceleration describes a clockwise circle, see Figure 3.2

and Figure 3.3.

For this state space representation the random walk process models the uncertainty of deviations

from constant lateral acceleration and constant speed. The uncertainty in speed is not expressed

46



in a tangential direction although the intent of its inclusion is to allow the tangential velocity

component room to breath.

Applying (3.47) to (3.42) results in the Random Walk

or (RWVLA):

I Px

Y

V,VY

AL

Vx

V
LY

V
SAL

0

+

Velocity and Lateral Acceleration Model

( 0

0

w

WY

WL)

(3.48)

The model constrains the unknown maneuvering jerk to be in terms of steering changes only.

This is a good way to constrain the random walk process to something more realistic than

expecting jerk in any random direction, as discussed in Section 3.1. This model constraint is

useful since much driving is done at a constant speed but with steering adjustments. The

complexity of mixing coordinate frames in this model is justified by the fact that a constant

turning trajectory can now be estimated. This is a useful expression since the lateral acceleration

can be a constant value even though it is rotating smoothly with respect to the earth.

As an alternative to the form in (3.48), the RWVLA model may be expressed with the velocity

vector in a polar coordinate NED form'. However, the model approach presented above has an

advantage in its linearized form. This will be discussed further in Section 3.4.

1 A polar coordinate expression replaces VX and V, with states for velocity magnitude ||Vll and

orientation angle f. Polar form allows speed uncertainty to be expressed correctly in the tangential
direction. It is also straightforward to express the effect of the lateral acceleration, pure rotation of the

velocity vector, as the differential equation: # = AL /V|l |.
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3.3.4 Random Walk Lateral Jerk and Tangential Acceleration Model

This model is an extension of (3.48). Here the vehicle is modeled as traveling with approximately

a constant lateral jerk and a constant tangential acceleration. Again, nonlinearities are introduced

into this model from the transformation of states expressed in velocity fixed coordinates to NED

coordinates. In this case AL and AT are the states being transformed. The transformation is

similar to that in Section 3.3.3. It occurs by multiplying AL by a unit vector perpendicular to the

velocity vector, and multiplying AT by a unit vector parallel to the velocity vector. This is

summarized by the equation:

! =I - Y AL + Ar (3.49)

The random walk process now models the uncertainties of deviations from constant lateral jerk

and constant tangential acceleration. Again the lateral and tangential terms are components of a

vehicle fixed coordinate frame, see Figure 3.2. The maneuvering uncertainties are analogous to

changes in the rate of acceleration/braking or changes in steering acceleration.

Applying (3.49) to (3.42) results in the Random Walk Lateral Jerk and Tangential Acceleration

Model or (RWLJTA):

' vy 0 P

P, V, O P
Py

V V
Y AL +-AT 0

Z= Y V + AL + AT + 0 X= V, (3.50)

AL JL AL

L 0L L

AT 0 WT AT
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This model, however, is inadequate to describe a constant radius turn R with a constant

tangential acceleration AT.

Given (3.44):

AL 
=

R

The time derivative of lateral acceleration for a constant radius turn is:

R =0

A L 2||VH y (3.51)
AL =L - R

Tangential acceleration is defined as:

AT =V (3.52)

By substituting (3.52) into (3.51).

2f ATdt AT
J= = (3.53)

R

This shows that the two states AT and JL are coupled when R = 0. Thus, for a constant

tangential acceleration and constant radius turn, there is a linearly changing lateral jerk. This

model is not adequate to propagate such a scenario. It is an improvement for such a scenario over

previously discussed models, but it is not complete. This is a considerable drawback of using this

model since accelerating through a constant radius turn is a scenario that is likely to occur.

3.4 Model Discretization and Linearization

The F(t) part of the linear models and the f (X (t)) part of the nonlinear models derived in

Section 3.3 form the basis for the Kalman filter algorithm. In order to be implemented in the

Kalman filter algorithms, these parts must be discretized and the nonlinear models must also be

linearized. That is accomplished in the following sections.
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It is also important that the w(t) vector be discretized and its discrete covariance description

Qk-, be found for the Kalman filter algorithm. This can be generalized for all models as follows.

The continuous input noise covariance matrix Q(t)3(t - r) is related to Qk-, as in (3.32):

Qk-1 = f k TQ(0 Mkr

Referring to [6] and [2], for a sufficiently small time step At an approximation for Qk-, is given

by:

At=t -t k (354)

Qk-1 =Q(z')At

Thus Qk-, has corresponding nonzero entries with Q(t) and we know which entries of Qk-1 to

calculate. Also since Qk-_ is defined in (3.13) as:

Qk-1 = E1wkwl _

We know that the vector wk, has corresponding nonzero entries with vector w(t). Since we

now know the form of wk, and Qk-1 we can concentrate on calculating their values in lieu of a

discretization from w(t) and Q(t) values. This is done by the Singer method [3]. The

following sections detail the formulation of an analytical starting point for the covariance

matrices Qk-1.

3.4.1 Discrete Random Walk Velocity Model

The random walk velocity model is very simple to discretize by evaluating (3.9). It is an exact

discretization since the terms F 2 and higher are zero matrices. This results in the state transition

matrix:

1 0 At 0

0 1 0 At
ok-1 0 0 1 0 (3.55)

0 0 0 1

Qk-1 values are chosen for the RWV model by the following analytical means. The state vector

X represents a decoupled velocity pair driven by uncorrelated noises wX and wy,. Since in this
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model the vehicle is equally likely to maneuver in any direction in the NED coordinate frame, we

will say that their Qkl_ values are equivalent for the pair. So from the discussion at the

beginning of Section 3.4:

0 0 0 0

0 0 0 0
Qk-1 = 0 0 Q 0 (3.56)

L0 0 0 Qy

The general discrete equation for the velocity random walk is:

VkIl = Vk + WVk (3.57)

The meaning of wVk comes from a truncated Taylor expansion:

Vk+1 =Vk + AtAk (3.58)

WVk =AtAk (3.59)

The noise term is a model for the change in velocity due to an unknown constant maneuvering

acceleration over the time step At. The value Q, represents the variance for velocity change

due unknown vehicle acceleration. All the state space models were constructed with this end in

mind [2] and [10].

E[w ] = At2 E[A] (3.60)

We shall take for this expected variance of Ak , the maximum value that a ground vehicle's tires

can likely achieve.

Av = A2l (3.61)

This is the Singer method [3]. Since wV is unbiased, this is equivalent to saying that AtAM is

equal to one standard deviation of the Gaussian distribution function that describes wV , see

Figure 3.4.
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-AtAMAX AtAMAX

Figure 3.4: Gausisan Noise Modeling - Singer Method

This is a rough guideline and is very conservative since much of the area under the Gaussian

curve is beyond the capability of ground vehicle limits. The final value for Qy may be perturbed

from this analytic starting point to tune the performance of the total filter.

3.4.2 Discrete Random Walk Acceleration Model

The random walk acceleration model discretization by evaluating (3.9) is also very simple since

the terms F 3 and higher are similarly zero matrices. This results in the state transition matrix:

1 0 At 0 { At 2  0

0 1 0 At 0 { At 2

o o 1 0 At 0
<0 0 0 1 0 A (3.62)

0 0 0 1 0 At

0 0 0 0 1 0

0 0 0 0 0 1

For the calculation of Qk-, we will again consider the w., w, noise pair to have equivalent

variances QA in the NED coordinate frame.
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
Qk-1 = 0 0 0 0 0 0 (3.63)

0 0 0 0 QA 0

_0 0 0 0 0 QA

As discussed in Section 3.1, the modeling intent for the random walk process is to cover

uncertainties in the derivative of the random walk variable. For this model we see the general

discrete equation for the acceleration random walk is:

A k+ =Ak +WVk (3.64)

The noise variable wA is:

WAk = AtJk (3.65)

So the noise term is a model for the change in acceleration due to an unknown constant

maneuvering jerk of the vehicle over the time period At. The value QA equals the variance of

vehicle jerk we might approximate to be experienced.

QA =At 2E[J2]= At 2 J (3.66)

One approach in determining JMA is to approximate a derivative by dividing 2 Amg by how

long T it would take to move from one AMAX extreme to the other using only the steering wheel.

JMAX = TM^X (3.67)
T

3.4.3 Discrete Random Walk Lateral Acceleration Model

Finding the discrete version of this model is much more involved because the basis model is both

continuous and nonlinear. Linearization is a simple process of taking the partial derivative matrix

of the f (X (t)) vector. The is from (3.33):

af(X)F(t)= DX Xt
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For each of the functions we find the partial derivatives. For the difficult partial derivatives of

Y, and Y, this is most easily done by finding a general expression for the intermediary partial

derivative for ||Vll:

V = V I+V2

S 1 -V (3.68)

We use this to find the first partial derivative of Yx with respect to Vx:

af =-V AL a 1
a VI(3.69)

af (Yx ) VxVYAL

Next we find the partial derivative with respect to V, using the product rule:

af(Y ) =-1AL=f-AL VY +

a v - a v IVI) II I- (3.70)
af (Y ) -V AL

leading to a partial derivative matrix:

0 0 1 0 0

0 0 0 1 0

VxVAL - x L - YF(t)= 0 0 (3.71)

0 0 V2AL VxVYAL

0 0 0 0 0
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It is important to note that when multiplied by the current state vector there is cancellation in

terms that results in the original nonlinear model f(X (t)) . This allows us to use the special

discrete version of the extended Kalman filter developed in Section 3.2.2.

F V, |

F(t)X(t) =

V,

-V
--LAL

VX
AL

0

= f(X(t)) (3.72)

The discretization by evaluating (3.41) is carried to the F 3 term. The discretization has no series

truncation error since the term F 4 and higher are zero matrices. This results in the state transition

matrix:

(3.73)

1 0 At+_Ait2 VxVyAL

0 1 A2 VI1L
V2 A

k = 0 0 1+ At 2 y Lk-1 = I3

V 2

0 0 AtYoI I1 ot

0 0 0

2AL 1 y1 (VV +VX )AL-- At 2  -- t AtIIV|I3 2 At 6At III4

_V A 3V +2V,3 )AL
Az V||l2  2 6 A+

-2 V u (VV + V AL

SAtAL At ALt
hlvhl 2 IlVI14

V1VI VI lI (V V V,)AL
1 AtAL At AlII 2 II I1

0 1

For the calculation of discretized noise covariance matrix Qk-1 , as with the RWV model, we

consider the NED coordinate frame velocity pair to be driven by noise wx and w,. Unlike the

RWV model, this input noise is included to model only the tangential uncertainties. However,

since velocity is still expressed in NED coordinates; the model can't discriminate tangential
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direction and so wX and w, are represented as equivalent variances Qy. These covariance

matrix values Qv are assumed to be the same as in the RWV model.

0 0 0 0 0

0 0 0 0 0

Qk-I = 0  0 Qy 0 0 (3.74)
0 0 0 QV 0

0 0 0 0 QAL

New to this model is the concept of the velocity fixed coordinate frame. Now the noise wL is

constrained to the lateral direction with respect to the vehicle. The discrete equation for this

lateral acceleration random walk is:

ALk+1 =ALk +WLk (3.75)

in comparison to a truncated Taylor series:

ALk+1 = ALk + AJ Lk (3.76)

it is seen that wLk is :

WLk = AdJLk (3.77)

The discrete noise is a model for the change in lateral acceleration due to an unknown constant

lateral maneuvering jerk. QAL is equal to the expected value of the noise.

E[wL ]-At2 E[Jik] (3.78)

By the Singer method, we will take the variance for the lateral jerk to be the maximum lateral jerk

squared.

QAL 2 12M (3.79)

The value for J LMAX is subject to approximation.
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3.4.4 Discrete Random Walk Lateral Jerk and Tangetial Acceleration Model

As shown for the previous continuous nonlinear model, the partial derivative matrix must first be

calculated to linearize the model before a discrete approximation can be calculated. Again using

(3.68) we find that the partial derivative of V, with respect to V

af (V)
= -VA

DVyL
A Vx

af (Y) _ VY(Vx AL +VyAT)

avX lIVII'

Next we find the partial derivative with respect to V, using the product rule:

*f =V-AL VY + + Vx a

af (Y ) -V(VxAL +VYAT)

aV- 11vl|3

Leading to a partial derivative matrix:

0 1

0 0

0 VY(Vx AL + VyAT)

0 -VY(-V AL +V, AT)

0 0
0 0

0 0

0
1

-Vx (Vx AL +VyAT)

Vx (-VY AL +V AT)

0

0

0

0 0 0

0

y
Vi

0

0

0
Vx

iIVI
0 V,-V- 0 Ly

lvii II vii
0 1 0

0 0 0
0 0 0

As with the previous continuous nonlinear model, this partial derivative matrix exactly represents

the original nonlinear form:

F(t)X(t) = f (X(t)) (3.83)

From here we make the same argument that the matrix representation F(t) is approximate for

small deviation from the evaluation point and so the transition matrix <k-_ corresponding to

Fk._ is a valid approximation of the transition matrix for a small time step ahead of the
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(3.81)

0

0

0

F(t) = 10

0

0

0

(3.82)
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evaluation point. This allows us to use the special discrete version of the extended Kalman filter

developed in Section 3.2.2.

Referring to (3.41):

(3.84)=eFk-1At ~ I k+ AtF-+ At 3Fk 3_2 3  7~k-1 e lA .+AF 2 2 3! k-I

In this case the series expression for Pk-1 has an infinite number of nonzero terms. It is

necessary to truncate the series for calculation of a reasonable estimate. The powers of F above

F 3 involve the same 4 x 4 nonzero entities, as seen in (3.85) and (3.86).

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

F

F
0

0

0

0

1

F

F
0

0

0

F3

F3

F3

F3

0

0

0

0

0

F

F
0

0

0

F3

F 3

F 3

F3

0

0

0

0

0

0

0

1

0

0

F3

F3

F3

F3

0

0

0

0

0

F

F
0

0

0

F3

F3

F3

F3

0

0

0

0

0

0

0

0

0

0_

0

0

0

0

0

0

0

F4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

F 2

F 2

F, 2

F,2

0

0

0

0

0

0

0

0

0

0

F;2

F 2

F 2

F;2

0

0

0

Fj4
F;'
F 4

F 4

F 4

0

0

0

F 2

F 2

F 2

F;2

0

0

0

F4

F 4

F4

F 4

0

0

0

0

0

F 2

F 2

0

0

0

F 4

F 4

F 4

F 4

0

0

0

F;2

F 2

0

0

0

0

0

F4

F4

F
4

0

0

0

(3.85)

0

0

0

0

0

0

0

(3.86)

We will truncate the series at the F 3 term in this case. This is the same number of Taylor series

terms as the RWVLA model. Although the series is truncated, all the matrix entries that will ever

be filled are filled with at least one term. Beyond this approximations terms consistently decrease

on the order of an exponential rate due to the At " portion of the term. Refer to the appendix to

see the full algebraic expression of k-1.

The discretization of the noise covariance matrix Qkl_ leaves us with a sparse matrix describing

the expected variance of the discrete expression of noises wL and wT -
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0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

Qk-I1= 0  0 0 0 0 0 0 (3.87)
0 0 0 0 0 0 0

0 0 0 0 0 QJL 0
0 0 0 0 0 0 QAT

The equations for the random walk part of this model are:

JLk+1 Lk Lk (3.88)

ATk+1 A Tk +Wrk (3.89)

We compare these equations to a truncated Taylor series for the propagated state as seen for the

discretization of previous models:

J 1 Lk +ALk (3.90)

ATk+ = ATk + AJTk (3.91)

We can equate these equations to find the expression for the noise terms:

W Lk = AdJLk (3.92)

WTk = AtJTk (3.93)

The noise terms describe the state change over the time interval. This state change is due to an

unknown constant rate applied over that interval. The entries in the covariance matrix Q are

defined as the expected values of the square of the noise vector. This results in:

E[w2 = At 2E[ 2] (3.94)

E[w ]=At2E[J] (3.95)

The Singer method is applied to relate the expected values to a maximum value for that

parameter. The final forms of the analytic expressions for the entries of the Q matrix are:

QJL =At2JMAX (3.96)

QAT =At 2 J2AX (3.97)

The values for these covariance entries are subject to approximation. For example, the maximum

value for tangential jerk is very large. The time that it takes for a driver and vehicle to change
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from zero acceleration to full braking in very small. We may approximate that such an action

could be completed on the order of one time step of the algorithm or .2 seconds. Thus the value

for JruAX would be very large. The maximum value for the time rate of lateral acceleration is

also potentially large. We may approximate that a driver using a steering wheel may able to go

from a fixed wheel position to a constant hand-over-hand rate on the order of one time step. This

action maps approximately to a step change in lateral jerk. This demonstrates the very high value

that JLMAX may be.

3.5 Measurement Model

The measurement model is common for all of the Kalman filters. All of the filters receive the

same input, target position, and they all use the same coordinate frame expression of position in

their state vector. Further, we carry out coordinate transformations from a global 3-dimensional

form to a local 2-dimensional form before it enters the Kalman filter algorithm, see Section 2.3.

This rids the measurement vector Zk of the extraneous altitude component and allows the

expectation for sensor noise vk to be specified in an intuitive 2-dimentional form. This gives a

very straightforward linear model of the form specified by (3.12)

Linear-Measurement Model

Zk= HkXk+vk

Xk

.. - P
1 0 0 0 ... Ak vk0.. +k~ V (3.98)

Zk 0 1 0 0 ... Xk vk.. . VYk

The Hk matrix varies in dimension for each filter. The number of terminal zero columns must

change to match the dimension required by the vector multiplication of each state vector.

Essentially, the model is identical for each filter.
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3.6 Statistical Performance Scoring

An important part of the system operation is that of selecting the model that best represents the

dynamics of the ground target. This is accomplished by comparing the statistics of the residual

vector rk of each Kalman filter as given by (3.17)

j^ = H $XYk Hk k

r4 = zk - Yk

The residual vector represents the difference between the estimated output vector Yk and the

actual measurement vector Zk . This is apart from the estimate error Jk , which compares the

estimated output vector to the true output vector.

YkHkXk (3.99)
Yk = Yk - Yk

The measurement vector can be described by:

Zk =HkXk +Vk = Yk +Vk (3.100)

Thus, perfect estimation would result in jk equal to zero and residuals that are identical to the

sensor noise and no smaller.

r4 = Z, -HkXk =Vk - Yk (3.101)

Individual residual values that are less than or greater than sensor noise values are so because of

estimation error and chance.

3.6.1 Statistical Measures

The filter with the 'best behaved' residual vector has the best model of the ground target. 'Best

behaved' in a statistical sense can involve different measures. Analyzing the residual magnitude

mean gives an approximation of how the residual vector is biased from a desired zero value.

Analyzing the residual magnitude variance approximates how precise the measurement may be.

Analyzing the Root-Mean-Square (RMS) of the magnitude of the residual vector approximates

both bias and precision and gives a good indication of overall accuracy within a single number.

E[rk2 ] = E[v]- 2E[vk ]+ E[ ] (3.102)
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Since vk is white noise:

E[vkyk] =0

RMS 2E[r] (3.103)
RMS~ =kJr

RMS, = E[vk ]+ E[ij

Since the filters all experience the same sensor noise, the filter with the smallest estimation error

will also have the smallest RMS value. Smallest estimation error does not automatically mean

'best behaved'. A system that has a relatively constant bias error of +1 will have the same RMS

value as one that alternates between -1 and +1, but the former would seem to be better behaved.

Since the derivation of the Kalman filter assumes the estimation error is unbiased, we claim that

RMS analysis is adequate under the assumption.

3.6.2 Scoring System

The RMS scoring approach is used in the scoring system. For implementation purposes it is

implemented in a fixed window recursive form. Using a fixed window idea removes the effect of

the oldest residual term out of the computation at each iteration resulting in the RMS calculation

of a fixed number of most recent terms. Additionally a recursive approach does not require the

actual storage of previous residual values but updates the previous RMS value with respect to the

new residual term.

The recursive RMS algorithm is derived as follows from the definition of RMS:

RMS E[r]=

RMSk k1 k+1r2+l+ r (3.104)kk
R k 2 12RMS RMS + r_ + r (.14kkl +1 RMrk + + rk++1k + 1 *k + 1k

This residual algorithm is used to calculate the RMS from all the residual samples. This

algorithm is also useful in calculating RMS initially until the sample size reaches the window size

when a switch is made to the fixed window recursive form. This is done so that early poor initial

RMS values aren't exaggerated in the recursive propagation.
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The fixed window recursive RMS algorithm substitutes the window size 'N' for the sample count

'k'.

'+ IN 1 2 1
RMS ~ RMS+ rA (3.105)rksi N+1 N+1

The choice of 'N' is a design decision finding an acceptable tradeoff between accuracy of RMS

value and agility in registering changes in statistical trends. Since this application has a

dimensional residual vector, we will find the RMS value of the magnitude of the residual vector

II = 2 2Ir = r+ (3.106)

S = RMS,. (3.107)
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4 System Simulation

This chapter describes the implementation of the ADTR in a targeting system simulation as

shown in Figure 4.1.

Ok Ground Vehicle k Seso k ADR X

Ak Dynamics I II IModel

Figure 4.1: ADTR Simulation Implementation

Section 4.1 describes the equations for dynamics of the ground vehicle target. It receives inputs

of steering angle 6
k and tangential acceleration ATk and outputs position Pk to the sensors.

Section 4.2 describes the software simulating the sensor system. The software generates the

measurement Zk from the position input Pk . Section 4.3 describes the ADTR software

containing the algorithms discussed in the previous chapter. It takes input measurements from

the sensor Zk and outputs the identification of the best trajectory model and the associated state

vector estimate Xk.

4.1 Ground Vehicle Simulation

4.1.1 Ground Vehicle Dynami cs Simulation Model

The ground vehicle simulation software is responsible for the generation of the dynamics data

that is measured by the sensors and fed to the ADTR system as shown in Figure 4.1. The

software propagates the position of the vehicle Pk according to the driver inputs of front wheel

angle 6
k and acceleration from the accelerator / brake pedals ATk . The simulation calculates the

following vehicle states relative to an NED coordinate frame as shown in Figure 4.2: position Pk,

and speed ||Vll,, heading #k , yaw velocity Wk , and yaw acceleration a) .
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Figure 4.2: Ground Vehicle Simulations Model

Equation (3.45) shows that from the single input 6
k and the wheel base parameter WB we can

specify what the instantaneous radius of a turn Rk as shown in Figure 3.3.

WB
tan(Gk)

In the case of straight-line travel, Rk is infinite. In that case the position Pk is easily propagated

by the equations:

Pxk xk-1 k- 2 Tk )COS k

Yk k-1 (A 1 + -At 2 ATk )sink

For the arced line travel case when Rk is not infinite, the angular rate is given by:

WkI = IIII(4.2)
Rk

Further, the angular acceleration is given by:
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ATk 
(4.3)

Rk

In order to propagate the position, the instantaneous center is found as an intermediate vehicle

state. The instantaneous center ICk is expressed in NED coordinates and is constant throughout

the time step At. ICk can be calculated with current state values as a function of the radius Rk,

the current position Pk_ also expressed in NED coordinates, and the vehicle's heading pk- .

ICk = P_ -R sinpk1
Yk k-1 +Rk (4.4)

IC = P, + R

We now propagate the heading state according to the inputs given

= k-I + AtWk_ + _At 2 kl (4.5)

Once the final heading p, is found, we can relate it back to the sought after position Pk

P = IC, + R sin pkXk +R Sk (4.6)
P, =ICk -R cosqp,

We must also propagate the speed state

Vlk = |V|| 1 +ATk At (4.7)

4.1.2 Vehicle Parameters and Limitations

Values for vehicle states spoken of in the previous chapter are bounded for any real vehicle.

Mechanical limitations have been derived according to some data for a Hummer vehicle as

published on the Internet at www.hummer.com and www.consumerreports.org. The published

performance specifications are summarized in Table 4.1.
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Parameter English Metric

Wheel Base 130 in 3.302 m

Minimum Turning Radius 26.5 ft 8.1 m

Max Speed 83 mph 38.0 m/s

0-30 mph / 4.6 sec 0-13.4 m/s / 4.6 s
Maximum Acceleration

0-60 mph / 17.0 sec 0-26.8 m/s / 17.0 s

Cold 60-0 mph in 176 ft. 26.8 - 0 m/s in 53.6 m

Maximum Braking Warm 60-0 mph in 165 ft. 26.8 - 0 m/s in 50.3 m

Hot 60-0 mph in 237 ft. 26.8 - 0 m/s in 72.2 m

Table 4.1: P ublished Hummer Specifications

We calculate the maximum deceleration AMAX the tires would allow for this vehicle from the

maximum braking specification. In order to develop a relation for average velocity for a

braking scenario we will assume a constant acceleration over the entire distance. This

assumption allows us to make the following relations

N=A- (4.8)

By integrating this relation we can derive the following equations that contain the specification

start position PO , end position P(t), start velocity VO and end velocity V(t).

V(t) = A-AX t+VO

P(t ) = j Au t 2 +V 0 t+P0
(4.9)

These equations are substituted into each other to get the final expression:

V(t) 2 _V 2

2(P(t)- PO)
(4.10)

For the single deceleration limiting value A,Ijx we take the worst case scenario of braking while

hot. For the maximum tangential acceleration Am, possible we simply used an average of the
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published maximum acceleration values. To calculate the maximum wheel angle O6 m the

vehicle is mechanically capable of, we can use the following relation from (3.45):

WB
OMAX = arctan (4.11)

RMIN)

Parameter Name Symbol Value

Max Speed ||V11MAX 38.0 m/s

Max Braking A7j 4.98 m/ S2

Max Acceleration A+ 2.2 m/s 2

Max steering angle M 22.10

Wheel Base WB 3.3 m

Table 4.2: Derived Ground Vehicle Simulation Parameters

Additionally, 6 should be limited to the angle that would cause a skid from an excessive lateral

acceleration requirement. This is developed from (3.44) and (3.45) as follows:

SKIDk =arctanl *W (4.12)
III1

4.1.3 Implementation in C

The ground vehicle simulation software is written in C for use in the CSIM simulation

framework. The ground vehicle simulation is accessed from the function 'gdVehiclemain'.

This simulation function calls subfunctions: 'gdVehicleinit', 'drivermodel' and

'propogate-state'. 'gdVehicleinit' performs all required variable initialization. 'drivermodel'

gets input for driver controls 6
k and A T. There is a branch point in this function to get inputs

either from a stochastic model or a joystick. 'propogate.state' uses the equations in Section 4.1.1

to propagate the position of the ground vehicle according to driver inputs 6
k and AT which is

made available to the sensor simulation software. The function structure is summarized in a

Parent-child hierarchy in Table 4.3.
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> gdVehiclemain ( ) -- main interface for the ground vehicle model

> gdVehicleinit ( ) -- initialize state variables

> drivermodel ( ) -- driver model for vehicle dynamics input

> stochasticdriver ( ) -- generates stochastic driver commands for vehicle mode

> livedriver ( ) -- this mode is for joystick input

> propogate-state ( ) -- propogates vehicle state according driver inputs

Table 4.3: Ground Vehicle Simulation Code Function Hierarchy

4.2 Sensor Simulation

The sensor simulation software is very simplistic based on the assumptions made in Section 2.4.

Based on that discussion the simulation of the sensor follows the exact formulation of the

analytical model given by (3.98):

Zk xk Vxk

Zk is the sensor measurement, Pk is the position in NED coordinates and Vk is the noise vector

that corrupt the signal. The noise vector vk is evaluated using a Gaussian generator. The sensor

simulation is accessed through 'sensormain'. This function performs a function call to a CSIM

library to generate the Gaussian noise with a 10-meter standard deviation for both components.

Table 4.4: Sensor Simulation Code Function
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4.3 ADTR Simulation

The Automatic Dynamic Trajectory Recognition System simulation software takes measurement

inputs Zk from the sensor simulation software and identifies the trajectory model that best fits the

it. The outputs of the simulation are the model identification number and the state vector Xk

associated with it. The software functions follow the development described in Chapter 3.

4.3.1 U-D Covariance Factorization Kalman filter formulation

The Kalman filters for the ADTR are implemented in the U-D covariance factorization form. The

primary reason for this is the existence of a well-tested U-D Kalman filter library. In this method

the covariance matrix P is factored into D, a diagonal matrix, and U , an upper triangular

matrix with ones on the diagonal. This factored form is shown here:

1 U U -- U D1

1 U .-- U D U 1

P = UDU T = 1 U D U U 1 (4.13)

1 D U U U -- 1

The U-D covariance factorization filter is a method developed to improve the numerical

conditioning of the standard Kalman filter algorithm. The U-D filter guarantees positive

definiteness for covariance matrix P and increases numerical accuracy and stability as is

comparable to square root filtering methods2 [7]. The upper triangular and diagonal matrices of

the U-D filter require less storage memory than the standard matrix form. The U-D filter,

however, requires more computations than the standard filter. This application uses relatively

small matrices and consequently requires little memory or computations. The U-D filter

implementation is justified on the basis of good numerical conditioning and the convenience of

availability.

The form stated in (4.13) does not define a unique set of matrices U and D . The entries for the

matrices will be defined explicitly here [7] in algorithmic form for a matrix P of dimensions

n X n. The subscripts denote the row and column for each U or D matrix entry. It is expressed

2 Square root filter methods propagate and use P for Kalman gain calculation where _FP =
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in pseudo code to show the iteration sequence. The definition algorithms start with the entry at

the lower right corner given by j = n... 1. For the first iteration, nonexistent entries (i.e. Dm)

are set to zero.

for (j=ntol) {
n

Dm=jj - $DmU,
m=j+1

0 i > j (4.14)

Uj= 1 i=j

P. - DmmU, jm, j-1..
m=j+1

This definition is useful for defining an initial condition of the factored matrices UO and Do

given the initial condition PO, see Section 4.3.4.

As an intermediate step to U and D propagation, we build two new matrices Ykik_ and Dkbkl.

Ykk-1 includes the state transition matrix _k-1 and identity sub-matrix I that is of size n X n .

The columns of Ykk_1 are also expressed as a series of vectors named a,.

Ykk-1 = [a, a 2  ''' an ] - k-1Uk-1_k_1 I] (4.15)

bkl_= IDk-k Qk- 1 (4.16)

The propagation for each entry of the decomposition matrices U and D is given in algorithmic

form [7]. It is expressed in pseudo code to express the nested iterations required.
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for (j=ntol) {

D;;,,,_, = T~,,1,
ajl I =ikIklI

for (i=ltoj-1) I

- a bkIkai (4.17)

U = ,, _, U= . D i kik-1

ai i kIk-1

}
}

As an intermediate step to updating U and D, we build two new vectors. The definition for f

includes the measurement model matrix Hk.

f = UkikHk (4.18)

g = DkIkf (4.19)

The update for the decomposition matrices U and D is also expressed in pseudo code to express

the nested iterations required.

for (j=lton) {
a1 = af_1 + f g

a .
D k= D 3

aj-1

bj = gj
c=

_ fi

a j-1

(4.20)

for (i=1 to j-1) {
U jkk =U klk-1 +bic

bi =bi-U jk1 1gj

The Kalman gain is calculated at this point
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b
Kk = b (4.21)

an

Note the special equivalences attached to an and b [9].

a = H [I _lHk + R (4.22)

b = PkIk-_ H [ (4.23)

This shows how the algorithms for U , D and Kk replace the equations for P and Kk seen in

Table 3.1 and Table 3.2. All other equations remain the same for the U-D covariance

factorization filter.

The implementation of this algorithm uses a matrix data structure. The matrices are passed into

Kalman filter library functions: 'KFprpcov', 'KF_prpest', 'KFinnov', 'KFupdcov',

'KFupd_est'. These functions were developed previous to this thesis [9]. They are described

briefly in Table 4.6 as a key parts of the simulation implementation.

4.3.2 A Priori Covariance Mat rices

The covariance matrices Q and R describe the probabilistic behavior of the input disturbance

and sensor noise respectively. In order to achieve an optimal filter, these must be rigorously

defined to match the phenomena they describe. This would require the disturbance and noise to

be have statistics of a Gaussian function. Under the assumptions made in Section 2.4, the sensor

noise will be close to a Gaussian model and the covariance matrix R is analytically chosen.

Admittedly, the behavior of the driver is not modeled very closely by a Gaussian random walk

variable. Driver behavior are highly correlated in time and are not characterized by random

Gaussian white noise. Additionally, the behavior of the driver most likely has distinct periods of

different statistical behavior. Regardless, the Gaussian model attempts to envelop the actual

behavior with a conservative description in Q. This is a method proposed by Singer that was

discussed in Section 3.4.1. The result is a sub-optimal estimator that is useful in this application.

The values gained from the Singer method are a starting point. The targeting filter requires

heuristic tuning of the Q and R matrices. There is a performance trade-off with the selection of

the relative weighting of the Q and R matrices. With R held fixed a Q matrix with large
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values will result in a noisy estimate in steady state, but will be very quick to accommodate

maneuvers into the estimate.

The approach for tuning multiple filters used in this system is to keep the R matrix constant and

common for all while the Q matrices are tuned for each filter individually. The approach for

each Q is to increase the values uniformly for each filter until the position estimate error due

steady state is comparable to the position estimate error due to sudden maneuvers.

In addition to finding the values for the nonzero diagonal entries of Q, it was found useful to

give nominally small nonzero values to the normally zero diagonal entries. This effects the filter

by adding uncertainty to the model where there was none previously. This added uncertainty is

known as pseudo-noise [8]. The nominal value of .01 in Q represents the variance for the

pseudo-noise. The pseudo-noise reduces the oscillations of the filter at the sacrifice of a noisier

estimate

4.3.2.1 'Q' Values for Filter #1
The covariance matrix Q for the RWV model is calculated by using (3.61):

Qy = At 2 A 2

The value for AmAx comes from the maximum acceleration a tire can transmit. This is

approximated to be around one half that of gravity or 4.90 m/s 2 . This value is close to the value

shown for a Hummer in ideal conditions shown in Table 4.2. The value for Q, is rounded off to

one significant digit because the AM value is a conservative number representative of any

vehicle the system may encounter.

Qy =1 (4.24)

4.3.2.2 'Q' Values for Filter #2
The covariance matrix Q for the RWA model is calculated by using (3.66) and (3.67):

4At 2A 2

QA = 2 MAX (4.25)

The value for AMAX is the same as in the RWV case just described. The value T is the least

amount of time it takes for a human to change from full steering acceleration in one direction to
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the full steering acceleration in the other. This value is estimated at 2 seconds. The covariance

value is calculated as:

QA =1 (4.26)

4.3.2.3 'Q' Values for Filter #3
The covariance matrix Q for the RWVLA model is calculated by using the values calculated

already for Qy and QA:

Qv=1
QAV (4.27)

4.3.2.4 'Q' Values for Filter #4
The covariance matrix Q for the RWLJTA model is calculated by using (3.96) and (3.97):

QJL =At2JMA

QAT =At 2j2

The values for JLMM and JTMAX are potentially very large. These values do not fit the well

into the method employed by the Singer method. These values are scaled back and arbitrarily set

to equal the nonzero Q values calculated thus far.

QJL = 1(4.28)
QAT =1

4.3.2.5 'R' Values
The value for the noise covariance matrix R is common for all four filters. The diagonal

elements are the only nonzero elements based on the assumption that there is no correlation

between the noise sources. The two diagonal terms are equivalent because the LADAR is

rotating with respect to the NED coordinate frame giving either component equal chance to have

error. It is representative of the expected variance of the sensor noise, which has a good

analytical basis value of 12 as related to a priori knowledge of the constant noise statistics given

in Section 4.2. In practice, this changing this value is an easy way to tune all the filters in

uniform manner. By heuristic methods the value are as given in Table 4.5.
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RWV (Filter #3) 
RWA (Filter #2)

.01 0 0 0 0 0
.01 0 0 0 0 .01 0 0 0 0

0 .01 0 0 0 0 .01 0 0 0

Qj0 0 1 0 0 0 0 .01 0 0

_0 0 0 1_ 0 0 0 0 1 0

_0 0 0 0 0 1_

RWVLA(Filter #3) RWLJTA (Filter #4)

.01 0 0 0 0 0 0

.01 00 0 0 0 .01 0 0 0 0 0

0 .01 0 0 0 0 0 .01 0 0 0 0

Q= 0 0 1 0 0 Q= 0 0 0 .01 0 0 0

0 0 0 1 0 000 0 .01 0 0

0 0 0 0 1_ 0 0 0 0 0 1 0

0 0 0 0 0 0 1

RWV, RWA, RWVLA and RWLJTA Filters

10 0
R =

0 10

Table 4.5: Final Q and R Covariance Matrix Values

77

RWV (Filter #3) RWA (Filter #2)



4.3.3 Scoring System

The scoring system is implemented exactly as given by equations (3.105) and (3.107)

S = RMS1111

RMSN m 1 21 rJ2
RMSj,. ~ RMS. + N ||ir||k+J~1k+1 NT +1 IrIlk +N +1 k*1

The final value for the window parameter is set at :

N=10 (4.29)

This value equals a 2 second RMS window period. A longer window period results in a sluggish

reaction to new maneuvers. A smaller window period results in a jumpy selection process.

4.3.4 Initialization

The method for state vector initialization is to set all states to zero except for the position state

P , which is set to the first sensor measurement received. The initialization in the simulation sets

the position to zero since the origin of the NED coordinate frame is defined at the initial

measurement position. The initialization method for the covariance matrix P is to set all the

diagonal elements to one. This is equivalent to setting the decomposition matrix D entries to one

and the decomposition matrix U entries to zero. The states and covariance matrix P must

converge on an estimate without a calculated initial condition. For this reason, a ten-second start-

up period is given to the system to let the state estimates and the covariance matrix P converge

on appropriate values.

After ten seconds, the scoring algorithm begins. The RMS function begins in a non-windowed

mode as given in (3.104), which replaces the window parameter N with the current iteration

count k . This continues until one window interval of data has been collected and then it

switches to windowed RMS operation as given in Section 4.3.3.

4.3.5 Implementation in C

The ADTR simulation software is written in C for use in the CSIM simulation framework. The

software implements the algorithm described in Chapter 3. The ADTR simulation is accessed

from the 'ADTRmain' function. This function calls subfunctions: 'ADTRinit', 'sensor_main',
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'getZ', 'PHImodel_3', 'PHImodel_4', 'ADTRfilters', 'ADTRscoring' and 'ADTR-predict'.

The purpose of each sub-function and the Parent-Child hierarchy is summarized in Table 4.6.

The sub-functions that build the state transition matrices are called from several places. This is

due to the constant need to update the state transition matrices for filters three and four. Thus the

sub-functions are called in 'ADTRmain' and in the prediction function 'ADTRpredict'. The

prediction function runs like a Kalman filter with no update information. It propagates over a

foursecond interval and stores the state vector in memory. The purpose of this prediction is to

collect results for the performance of the system as described in Chapter 5.
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ADTR-main ( ) - main interface for the ADTR targeting system emulation

> ADTR-init( ) - initializes all necessary variables in ADTR module

> KalmanInit - initialize matrices and vectors for Kalman filters

> PHImodel_ ( ) - builds state transition matrix for filter #1

> PHImodel_2( ) - builds state transition matrix for filter #2

> PHImodel_3( ) - builds dynamic state transition matrix for filter #3

> PHImodel4( ) - builds dynamic state transition matrix for filter #4

> sensormain( ) - main interface for the sensor model

> getZ( ) - get sensor measurement in NED coordinates

> PHImodel_3( ) - builds dynamic state transition matrix for filter #3

> PHImodel_4( ) - builds dynamic state transition matrix for filter #4

> ADTRfilters( ) - Executes Kalman filter propagation and update

> KF-prp-cov () - propagates the covariance matrices U and D

> KF-prp-est ( ) - propagates the state vector estimate

> KFinnov ()- calculates the filter residual

> KFjupd_cov ( ) - updates the covariance matrices U and D according to the filter

residual

> KFjupd-est (- updates the state vector estimate according to the filter residual

> ADTRscoring( ) - Calculates the RMS value for each filter and selects the lowest value

> rms ( ) - Calculates the combined recursive RMS value

> ADTR-predict( ) -Makes a prediction based on current state estimate

> KF-prp-est ( ) - propagates the state vector estimate

> PHImodel_3( ) - builds dynamic state transition matrix for filter #3

> PHImodel_4( ) - builds dynamic state transition matrix for filter #4

Table 4.6: ADTR System Simulation Code Function Hierarchy
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5 Demonstration and Results

This chapter describes the results of a demonstration of the ADTR system implemented as

described in the previous chapter. Section 5.1 describes the objective of the demonstration and

the approach used. Section 5.2 presents the results of the demonstration for several simple

maneuvers.

5.1 Demonstration Meth od

The results in this chapter are prepared to demonstrate the operation of the ADTR system. The

results will show the effects of three simple maneuvers on the real-time model identification

process. The filter identification number returned by the system is corresponds to the

identification number of the selected model. The random walk velocity model is filter #1, the

random walk acceleration model is filter #2, the random walk velocity and lateral acceleration

model is filter #3 and the random walk lateral jerk and tangential acceleration model is filter #4.

The correct performance of the ADTR is scrutinized by performing a position prediction four

seconds into the future for each filter's state estimate. If a filter is selected as the best fit then the

predicted position should be the closest to the actual future value. This method is used because

position prediction is a component of the full targeting system shown in Figure 2.1. The position

prediction is performed at every filter iteration and is compared to the real-time output after run-

time.

The prediction error is defined as the difference between the predicted position and the true

position value four seconds later. Knowledge of the true position value is a valuable feature

readily available in a simulation environment. Good correlation between the position prediction

error and the residual magnitude supports the residual analysis approach for model identification

used in the system.

Three maneuvers were chosen to highlight the particular maneuver scenario each model is best

suited for. The demonstration of these maneuvers is not intended to verify optimal filter design

nor to target any predetermined performance specifications.
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5.2 Results

The first maneuver demonstrates a period of constant tangential acceleration bracketed by

straight-line travel. This maneuver is intended to highlight the RWV model (filter #1) and the

RWA model (filter #2), by creating a trajectory with constant velocity and constant acceleration

respectively. Figure 5.1 through Figure 5.4 show the results for this maneuver.

Figure 5.1 shows the inputs made to the vehicle dynamics model and the output of the ADTR

algorithm. The first ten seconds are set aside to let the filter state estimates and state covariance

matrix converge to a steady state. After the ten-second initialization period, the driver continues

in straight line constant velocity travel until the twenty second mark. The ADTR system selects

the RWV model (filter #1) as the best model during this time. At the twenty second mark, the

driver inputs a constant tangential acceleration of 3 mph/sec (1.34 m/s 2 ). After a brief period, the

RMS value of the residual change enough that the RWA model (filter #2) is selected. At the

thirty second mark, the acceleration goes to zero once again and the vehicle continues in straight

line constant velocity travel.

Figure 5.2 shows the predictions and estimates made by each filter overlaid on the actual vehicle

path. Small lines connect the position estimate point at which the prediction was made to the

predicted position. They are primarily overlapping in this maneuver. Filters three and four show

some fringing evident of a noisy prediction. Filter one has a large magnitude error not visible in

this prediction plot, but revealed in Figure 5.4.

Figure 5.3 shows the time history of the combined residual magnitudes for each filter. The

differences caught by the RMS algorithm and expressed in the selected filter value are not visibly

evident in the residual histories. There is evidence of agreement between the selected filter and

the smallest RMS of the prediction errors shown in Figure 5.4. Both filter one and filter three

have pronounced 'humps' during the period that filter two is selected. Filter four is very noisy,

due to its sensitivity to and assimilation of sensor noise, to ever be selected. During the periods

that filter was selected, the prediction from filter one was clearly the least in error. This would

suggest a strong correlation between the statistics of the residuals and that of the predictions.
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Figure 5.1: Selection Output and Driver Input for Constant Tangential Acceleration
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The second maneuver demonstrates a period of constant lateral acceleration bracketed by straight-

line travel. This maneuver is intended to highlight the RWVLA model. Figure 5.5 shows the

driver suddenly turning his steering wheels to an angle of 1* (.017 radians) between the twenty

second and fifty second time points. It also shows a switch to select filter three with a slight time

lag behind the driver. Filter four is selected briefly near the sudden maneuver change when there

is a high value of lateral jerk.

Figure 5.6 shows predictions made by each filter. Small line segments connect the predicted point

and the estimated point from which the prediction was extrapolated. Filter one has a bias

consistent with predicting a tangent constant velocity during the constant turn. Filter two and

three produce predictions that lie closer to the actual curve. Filter four is very sensitive to the

sensor noise but has predictions that straddle the true path.

Figure 5.7 illustrates more clearly how well each filter is predicting. Each plot shows the actual

path the vehicle took with small line segments connecting the predicted points to the point the

vehicle actually reached. The same trends are evident with better clarity.

Figure 5.8 shows the time history of the combined residual magnitudes for each filter. The bias

shown in the prediction from filter one is also evident in the residuals. The other three filters are

close enough to merit the RMS scoring algorithm to distinguish their performance.

Figure 5.9 clearly shows the trends that correlate with the residual time history. The bias in the

prediction error attributed to filter one is approximately forty meters in magnitude. It is also

evident that the prediction of filter three is the smallest over the period that the filter was selected.
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The third maneuver demonstrates a period of constant lateral and tangential acceleration

bracketed by straight-line travel. This maneuver is intended to highlight the RWLJTA model.

Figure 5.10 shows the driver suddenly turning to a steering angle of 200 (.35 radians) and goes to

a tangential acceleration of 5 mph/sec (2.24 m/s 2 ). Shortly after accelerating, the maximum

acceleration for the tires is reached. At this point the steering angle decays as the velocity

increases keeping the vehicle at a constant lateral acceleration as it accelerates tangentially. This

happens between the twenty to thirty second time points.

Figure 5.11 shows the predictions made by each filter. Small line segments connect the predicted

point and the estimated point from which the prediction was extrapolated. Filter one and appear

to have a bias. When the trajectory changes to straight-line travel, filter two still predicts an

acceleration component that causes the prediction fan to cross to the other side of the true

trajectory path. Filter three predicts an ever expanding arc biased to the inside of the expanding

spiral trajectory. Filter four appears noisy as in the other maneuver with the exception of a small

section of tightly packed relatively accurate estimates. Figure 5.12 shows the filter prediction

errors more clearly. Filter four appears to make a very short interval of small error predictions

near the transition point to straight-line travel.

Figure 5.13 shows the time history of the combined residual magnitudes for each filter. Filter one

has an obvious hump during the maneuver time when filter four is selected. What is not obvious

is the difference in the RMS values for the remaining three filters that was picked up by the

scoring algorithm. The correlation between the residual trends and prediction error is shown in

Figure 5.14. The correlation for filter one is very strong. The hump evident in the residual plot is

evident in the prediction error plot and the good performance during the straight-line travel

portions is clear. Filter two has clearly large prediction errors during the maneuver as well. The

correlation between the residuals and prediction errors in filters three and four is not clear. Filter

three seems consistently high. Filter four, however, seems to peak higher but also drop to a lower

error in the middle of the maneuver. This corresponds to the low error spot in Figure 5.12

discussed earlier.
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6 Conclusions and Future Work

Section 6.1 summarizes the significant developments and results connected with the development

and demonstration of the ADTR system. Section 6.2 describes recommendations for future work

in development of this approach to real-time model identification.

6.1 Summary

This thesis describes research work pertaining to real-time model identification for ground

vehicle trajectory estimation by means of the Automatic Dynamic Trajectory Recognition

System. Theoretical development of the ADTR system and supporting simulation results give

insight into problems and solutions surrounding the objective.

This thesis develops a theoretical approach to model identification for the ADTR system using

Kalman filter residual analysis. This approach selects the best trajectory model from an array of

candidates by comparing residual vectors generated by a bank of Kalman filters built upon the

candidate models. The filter with the lowest RMS residual magnitude value is identified as

containing the best trajectory model.

Significant theoretical developments include the formulation of two nonlinear target models and a

new discrete version of the extended Kalman filter algorithm used in processing them. The new

nonlinear models represent a refinement to the random walk velocity (RWV) and random walk

acceleration (RWA) models found in the literature. The RWV model implies a constant velocity

trajectory and the RWA model implies a constant acceleration or parabolic trajectory. The two

new nonlinear models imply circular and spiral trajectory associated with turning maneuvers.

Circular trajectories are implied by the random walk velocity and lateral acceleration model

(RWVLA). Spiral trajectories are implied by the random walk lateral jerk and tangential

acceleration model (RWLJTA).

This thesis develops a unique discrete formulation for the extended Kalman filter algorithm. This

discrete formulation is applicable to a special class of nonlinear models to which the RWVLA

and RWLJTA belong. The discrete formulation makes the nonlinear Kalman filter and the

standard Kalman filter nearly identical algorithmically.
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The results from the ADTR system simulation support the model identification approach. There

is a reasonable correlation between the RMS value of the filter residual magnitude and the RMS

magnitude of the position error of predicting four seconds into the future. In the case of the

RWLJTA model, the correlation is not as good. Perhaps this is a result of the high order of the

model.

6.2 Future work

There are many areas in which future work could build upon the material presented in this thesis.

Much work is needed in testing the performance of the system in a less ideal environment. A

higher fidelity simulation could be built to test the ADTR system. A more realistic vehicle

simulation might include terrain, roads and changes of elevation. A more realistic sensor

simulation might include a UAV dynamics simulation flying on a spherical earth with sensor

noise specified in terms of GPS satellite signal transmission noise and LADAR gimbal noise and

range noise. A simulation for the UAV LADAR and GUI are in development for the TOPART

program.

Future work is also needed in developing useful models for ground vehicle prediction. One such

model is described in the following section.

6.2.1 Random Walk Sinusoidal Lateral Acceleration Model

One idea for future work is to create a model of a ground vehicle performing a serpentine

maneuver [10]. This maneuver is an evasive tactic described as weaving back and forth while

around a mean direction of travel. A vehicle with a sinusoidal lateral acceleration and a constant

tangential acceleration describes a similar trajectory. A model for a sinusoidal lateral acceleration

was developed for this thesis called the random walk sinusoidal lateral acceleration model

(RWSLA) as described below.

The model for a sinusoid was taken from the RWVLA model described in Section 3.3.3. For the

RWVLA model, a single velocity component describes a sinusoid if the lateral acceleration is

constant. This is applied to the RWSLA model by analogy. The difference being that two

orthogonal sinusoidal velocity components exist in the RWVLA model but only one sinusoidal

acceleration component exists in the RWSLA model. Thus we invent an imaginary sinusoidal

acceleration component AiL that is orthogonal to the real component of the lateral acceleration
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AL as represented in a complex plane. Further, we must also create a variable analogous to

lateral acceleration, which we will call Q. This variable, 92, is the product of the amplitude ||All
and frequency o of the sinusoid.

Q = jAj (6.1)

The amplitude of the sinusoid ||AII is equal to the magnitude of the complex vector defined by the

lateral acceleration AL and its imaginary orthogonal component AL . It is also the maximum

value of AL. The continuous time expression of the RWSLA model is:

p VY 0 P
V0

V ' AL 0 V

V
X =V = L AL + 0 X= V (6.2)

AL ALo 0 AL

ALO AL 0 ALO
AI

0 W

Again, this model is similar to the random walk lateral acceleration model. The partial derivative

matrix must be calculated before a discrete approximation can be made. The partial derivative

matrix is as follows:
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0 0 1

0 0 0

0

1

0 0 VxVYAL -VxAL

V2AL -VxVYAL

F(t)= 0 0 0 0

0 0 0 0

0 0 0

0 0 0

0

0

0

0

-v
y

V

ALALO

hAG
A 2Q

0

0

0

0

0

-A 2

-ALALOQ

A

0

0

0

0

0

-ALO

IA||
AL

A|

0
(6.3)

As stated for the previous linearized models, the partial derivative matrix multiplied times the

state vector at the evaluation point is equivalent to the original nonlinear equation. This allows us

to make an approximate discretization of the F(t) matrix and apply it to all points along a small

forward time step. This discretization is the approximate state transition matrix Ok1

corresponding to the partial derivative matrix at evaluation point Fk_ .

This particular model was abandoned before being refined as the previous models have been. For

this reason _k-1 was approximated at a crude level:

Ok- = e Fk-1At ~ I + AtF_1 (6.4)
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0

0

0
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0
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7 Appendix

Filter 4 Discretization

for phi = I + dt*F + 1/2!*dtA2*FA2 + 1/3!*dtA3*FA3

> phi[1, 1];

> phi[1,2];
1

0
> phi [1,3];

2
dt Vy (Vx Al + Vy At)

dt + 1/2 ---------------------- +
2 2 3/2

(Vx + Vy)

> phi[1,4];
2

dt Vx (Vx Al + Vy At)
- 1/2 ---------------------- -

2 2 3/2
(Vx + Vy)

> phi[1,5];
2

dt Vy
- 1/2 -------------- -

2 2 1/2
(Vx + Vy )

> phi[1,6];

> phi[1,7];

3
dt Vy (Vx Al + Vy At) At

- 1/6 -------------------------
2 2 2

(Vx + Vy)

3
dt (Vx Al + Vy At) Vx At

1/6 -------------------------
2 2 2

(Vx + Vy)

3
dt (Vx Al + Vy At)

1/6 -------------------
2 2

Vx + Vy

3
dt Vy

- 1/6 --------------
2 2 1/2

(Vx + Vy)

2
dt Vx

1/2 --------------
2 2 1/2

(Vx + Vy )

> phi[2,1];
0

> phi[2,2];
1

> phil2,3];
2

dt Vy (-Vy Al + Vx At)
- 1/2 ----------------------- -

2 2 3/2
(Vx + Vy )

3
dt (-Vy Al + Vx At) Vy At

1/6 --------------------------
2 2 2

(Vx + Vy )

> phi[2,4];
2 3

dt Vx (-Vy Al + Vx At) dt Vx (-Vy Al + Vx At) At
dt + 1/2 ----------------------- + 1/6 --------------------------

2 2 3/2 2 2 2
(Vx + Vy ) (Vx + Vy )
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> phi[2,5];

dt Vx dt (-Vy Al + Vx At)
1/2 -------------- + 1/6 --------------------

2 2 1/2 2 2
(Vx + Vy) Vx + Vy

3
dt Vx

1/6 --------------
2 2 1/2

(Vx + Vy )

> phi[2,7];
2

dt Vy
1/2 --------------

2 2 1/2
(Vx + Vy)

> phi[3,1];
0

> phi[3,2];
0

> phi[3,3];

dt Vy (Vx Al + Vy At)
2

dt Vy (Vx Al + Vy At) At
1 +---------------------- + 1/2 ------------------------- + 1/6

2 2 3/2 2 2 2
(Vx + Vy) (Vx + Vy)

> phi[3,4];

dt Vx (Vx Al + Vy At)
- --------------------- -

2 2 3/2
(Vx + Vy)

> phi[3,5];

dt Vy

2
dt (Vx Al + Vy At) Vx At

1/2 ------------------------- -
2 2 2

(Vx + Vy )

2
dt (Vx Al + Vy At)

3 2
dt Vy At (Vx Al + Vy At)
--------------------------

2 2 5/2
(Vx + Vy )

3 2
dt Vx At (Vx Al + Vy At)

1/6 --------------------------
2 2 5/2

(Vx + Vy)

3
dt At (Vx Al + Vy At)

- -------------- - 1/2 ------------------- - 1/6 ----------------------
2 2 1/2 2 2 2 2 3/2

(Vx + Vy) Vx + Vy (Vx + Vy)

> phi[3,6];
2

dt Vy
- 1/2 -------------- -

2 2 1/2
(Vx + Vy )

phi[3,7];

3
dt (Vx Al + Vy At)

1/6 -------------------
2 2

Vx + Vy

Vx

2 2 1/2
(Vx + Vy )

> phi[4,1];

> phi[4,2];

> phi[4,3];

0

0

2
dt Vy (-Vy Al + Vx At) dt (-Vy Al + Vx At) Vy At

- ---------------------- - 1/2 -------------------------- -
2 2 3/2 2 2 2

(Vx + Vy ) (Vx + Vy )

3 2
dt Vy At (-Vy Al + Vx At)

1/6 ---------------------------
2 2 5/2

(Vx + Vy )
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> phi [4,4]

dt Vx (-Vy Al + Vx At)
1 +-----------------------

2 2 3/2
(Vx + Vy)

> phi[4,5];

dt Vx
-------------- +

2 2 1/2
(Vx + Vy )

2
dt Vx (-Vy Al + Vx At) At

+ 1/2 -------------------------- +
2 2 2

(Vx + Vy )

2
dt (-Vy Al + Vx At)

1/2 --------------------
2 2

Vx + Vy

3 2
dt At Vx (-Vy A1 + Vx At)

1/6 ---------------------------
2 2 5/2

(Vx + Vy )

3
dt At (-Vy Al + Vx At)

+ 1/6 -----------------------
2 2 3/2

(Vx + Vy )

> phi[4,6];
2 3

dt Vx dt (-Vy Al + Vx At)
1/2 -------------- + 1/6 --------------------

2 2 1/2 2 2
(Vx + Vy) Vx + Vy

dt Vy

2 2 1/2
(Vx + Vy )

phi[4,7];

> phi [5,1];
0

> phi[5,2];
0

> phi[5,3];
0

> phi[5,4];
0

> phi[5,5];
1

> phi[5,6];
dt

> phi[5,7];
0

> phi[6,1];

> phi[6,2];

> phi[6,31;

> phi[6,4];

> phi[6,5];

> phi[6,6];

0

0

0

0

0

> phi[6,7];
0

> phi[7,1];
0

> phi[7,2];
0

> phi[7,3];
0

> phi[7,4];
0

> phi[7,5];
0

> phi[7,6];
0

> phi[7,7];
1
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