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Abstract

Accurate disturbance models are necessary to predict the effects of vibrations on the perfor-
mance of precision space-based telescopes, such as the Space Interferometry Mission (SIM)
and the Next-Generation Space Telescope (NGST). There are many possible disturbance
sources on such a spacecraft, but the reaction wheel assembly (RWA) is anticipated to be
the largest. This thesis presents three types of reaction wheel disturbance models. The first
is a steady-state empirical model that was originally created based on RWA vibration data
from the Hubble Space Telescope (HST) wheels. The model assumes that the disturbances
consist of discrete harmonics of the wheel speed with amplitudes proportional to the wheel
speed squared. The empirical model is extended for application to any wheel through the
development of a MATLAB toolbox that extracts the model parameters from steady-state
RWA data. Experimental data obtained from wheels manufactured by Ithaco Space Sys-
tems are used to illustrate the empirical modeling process and provide model validation.
The model captures the harmonic disturbances of the wheel quite well, but does not include
interactions between the harmonics and the structural modes of the wheel which result in
large disturbance amplifications at some wheel speeds. Therefore the second model, an ana-
lytical model, is created using principles from rotor dynamics to model the structural wheel
modes. The model is developed with energy methods and captures the internal flexibili-
ties and fundamental harmonic of an imbalanced wheel. A parameter fitting methodology
is developed to extract the analytical model parameters from steady-state RWA vibration
data. Data from an Ithaco E type wheel are used to illustrate the parameter matching pro-
cess and validate the analytical model. It is shown that this model provides a much closer
prediction to the true nature of RWA disturbances than the empirical model. Finally, an
extended model, which combines features of both the empirical and analytical models, is
introduced. This model captures all the wheel harmonics as well as the disturbance am-
plifications that occur due to excitation of the structural wheel modes by the harmonics.
In addition, preliminary analyses that explore the dynamic coupling between RWA and
spacecraft are presented and a plan for laboratory testing to gain insight into the effects of
coupling and provide disturbance model validation is outlined.

Thesis Supervisor: David W. Miller
Title: Associate Professor
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constants
amplitude coefficient
amplitude coefficient (with modal effects)
data set
expected value
force
harmonic number identification matrics
Fourier transform operator
transfer function
inertia
Lagrangian
mass
radius
autocorrelation
power spectral density
torque, kinetic energy
position in inertial frame
static imbalance
dynamic imbalance
potential energy, voltage
work
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X(t) stochastic process
XYZ ground-fixed reference frame
a acceleration
d distance
c damping coefficent
cO torsional damping coefficient

f frequency variable (Hz)
h harmonic number
i harmonic index, V~T

j wheel speed index
k stiffness
ko torsional stiffness
n number of harmonics in model
s Laplace variable
t, T time variables

u position in body-fixed frame
v translational velocity
x, y translational displacement
xyz body-fixed reference frame

transformation matrix
Q wheel speed
a phase angle
o variation

damping ratio
0, #, , Euler angles for analytical model

y mean
generalized coordinate

o7 2 variance

a root mean square
W frequency variable (rad/s), natural frequency, angular velocity
CD RWA disturbance frequency

Subscripts and Superscripts

(.) unit vector

()* normalized quantity
(.)H Hermitian (complex-conjugate tanspose)
(.)T transpose

()axi indicates axial force disturbance

()h homogeneous solution
(-)ij (i,j) entry of a matrix
(.), particular solution

()rad indicates radial force disturbance

()tor indicates radial torque disturbance
matrices and vectors are denoted with bold type, i.e f and 4
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Chapter 1

Introduction

1.1 Motivation

NASA's Origins program is a series of missions planned for launch in the early part of

the 2 1st century that is designed to search for Earth-like planets capable of sustaining life

and to answer questions regarding the origin of the universe. The first generation missions

include the Space Interferometry Mission (SIM), which is a space-based interferometer with

astrometry and imaging capabilities [1], and the Next-Generation Space Telescope (NGST),

a near-infrared telescope 1. These telescopes will employ new technologies to achieve large

improvements in angular resolution and image quality and to meet the goals of high res-

olution and high sensitivity imaging and astrometry [2]. The ability of the missions to

accomplish their objectives will depend heavily on their structural dynamic behavior.

SIM and NGST pose challenging problems in the areas of structural dynamics and

control since both instruments are large flexible, deployed structures with tight pointing

stability requirements. The optical elements on SIM must meet positional tolerances on

the order of 1 nanometer across the entire 10 meter baseline of the structure to meet

astrometry requirements [3], and those on NGST must be aligned within a fraction of

a wavelength to meet optimal observation requirements [4]. Disturbances from both the

orbital environment (atmospheric drag, gravity gradient, thermal "snap" [5], solar pressure),

and on-board mechanical systems and sensors (reaction wheels, optical delay lines, cryo-

coolers, mirror drive motors, tape recorders) are expected to impinge on the structure

1see Origins website: http://origins.jpl.nasa.gov
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causing vibrations which can introduce jitter in the optical train exceeding the performance

requirements. It is expected that the largest disturbances will be generated on-board and

will be dominated by vibrations from the reaction wheel assembly (RWA) [3].

1.2 Reaction Wheel Assembly

When maneuvering on orbit, spacecraft generally require an external force, or torque, which

is sometimes provided by thrusters. As an alternative, RWA can counteract zero-mean

torques on the spacecraft without the consumption of precious fuel and can store momentum

induced by very low frequency or DC torques. [6]. They are often used for both spacecraft

attitude control [7] and performing large angle slewing maneuvers [8]. Other applications

include vibration compensation and orientation control of solar arrays [9]. A typical RWA

consists of a rotating flywheel suspended on ball bearings encased in a housing and driven

by an internal brushless DC motor. Ithaco type B and E Wheels are shown in Figures 1-1

and 1-22. The Ithaco B Wheel is the larger of the two wheels pictured in Figure 1-1(a).

The smaller wheel is the Ithaco type A wheel and is not discussed in this thesis. The cross-

sectional views show that the flywheel is designed such that its mass is concentrated on

the outer edges to provide maximum inertia for minimum mass. Alternative RWA designs

include the use of magnetic bearings to replace traditional ball bearings [10, 11].

During the manufacturing process, RWAs are balanced to minimize the vibrations that

occur during operation. However, it has been found that the vibration forces and torques

emitted by the RWA can still degrade the performance of precision instruments in space

[8, 12, 13, 14, 15]. These vibrations generally result from four main sources: flywheel

imbalance, bearing disturbances, motor disturbances and motor driver errors [16]. Flywheel

imbalance is generally the largest disturbance source in the RWA and causes a disturbance

force and torque at the wheel's spin rate, that is referred to as the fundamental harmonic.

There are two types of flywheel imbalances, static and dynamic. Static imbalance results

from the offset of the center of mass of the wheel from its spin axis, and dynamic imbalance

is caused by the misalignment of the wheel's principle axis and the rotation axis. Bearing

disturbances, which are caused by irregularities in the balls, races, and/or cage [17], produce

disturbances at both sub- and super-harmonics of the wheel's spin rate. Low frequency

2 obtained from Ithaco web site: www.ithaco.com
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(a) External View

Aluminum Aluminum Access Panel Bearing CoverHousing Flywheel /
I / Ball Bearing Suspension

Ironless Armature
Brushless DC Motor

(b) Cross-Section

Figure 1-1: Ithaco Type B Reaction Wheel
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(a) External View

Floating Bearing
Pair Ironless Armature

Brushless DC Motor

(b) Cross-Section

Figure 1-2: Ithaco Type E Reaction Wheel
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disturbances are generally a result of lubricant dynamics, while high frequency disturbances

are caused by the bearing irregularities. The torque motor in a RWA is another possible

disturbance source. Brushless DC motors exhibit both torque ripple and cogging which

generate very high frequency disturbances [16].

1.3 Disturbance Modeling

In general, isolation systems are used to reduce the effects of RWA disturbances on the

spacecraft [8, 12, 14, 18]. Models of the disturbances are created for use in disturbance

analysis to predict the effects of the vibrations on the spacecraft and allow the development

of suitable control and isolation techniques. The most commonly used RWA disturbance

model was created to predict the effects of RWA induced vibrations on the Hubble Space

Telescope (HST) [15]. The model is based on induced vibration testing performed on the

HST flight wheels and assumes that the disturbances are a series of harmonics at discrete

frequencies with amplitudes proportional to the wheel speed squared. The model is fit to

the vibration data and provides a prediction of the disturbances at a given wheel speed.

However, during operation it is often necessary to run the RWAs at a range of speeds.

Therefore the discrete frequency model was used to create a stochastic broad-band model

that predicts the power spectral density (PSD) of RWA disturbances over a given range

of wheel speeds [18]. The model assumes that the wheel speed is a random variable with

a given probability density function. Both the discrete frequency and stochastic models

capture the disturbances of a single RWA. However, in application, multiple RWAs are used

to provide multi-axis torques to the spacecraft and for redundancy. Therefore a model was

developed which predicts the disturbance PSDs of multiple RWAs in a specified orientation

based on a frequency domain disturbance model of a single wheel [4, 19]. The multiple

wheel model transforms the RWA disturbances from a frame attached to the RWA to the

general spacecraft frame allowing a disturbance analysis.

A performance assessment and enhancement methodology was developed to incorporate

disturbance, sensitivity and uncertainty analyses into a common framework [19]. The ap-

proach is presented in block diagram form in Figure 1-3. A disturbance model, generally

created from experimental data, d, is used to drive a model of the spacecraft, or plant.

Then performance outputs, z, are compared against the requirements, Zreq, to assess the
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Figure 1-3: Performance Assessment and Enhancement Framework

spacecraft/controller design. The accuracy of the results obtained from this methodology

depends heavily on the quality of the disturbance model. If the disturbances are modeled

incorrectly the performance output, z, will not correctly predict the performance of the

spacecraft when exposed to the disturbance environment. Therefore, in order to meet the

stringent performance requirements on next generation telescopes, such as SIM and NGST,

accurate disturbance models are necessary. Thus, the focus of this thesis is the development

of RWA disturbance models for incorporation into the overall performance assessment and

enhancement framework and is represented by the shaded block in Figure 1-3.

1.4 Thesis Overview

Figure 1-4 provides a detailed view of the disturbance model block in Figure 1-3. The input,

d, represents RWA vibration data that is used to develop a model, w, for a given wheel.

The five blocks within the dashed line represent the RWA disturbance models that can be

used for disturbance analysis. The first block, labeled "Empirical", is based on the discrete

frequency HST model. The empirical model extends the HST model for application to any

RWA through the development of a MATLAB toolbox that extracts the model parameters

from steady-state RWA disturbance data. The empirical model can be represented in either

the time or the frequency domain, and can be directly input to the multi-wheel model to

predict the disturbances of multiple wheels or can be combined with other models as shown

in Figure 1-4. The empirical model alone only captures the disturbances at discrete wheel

speeds. In order to predict the broadband behavior of the wheels over a range of speeds
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the empirical model parameters are input to the stochastic model (block (e)) to produce a

disturbance PSD that can be input to the multi-wheel model. The form of the broadband

model also allows easy transformation from PSDs (frequency domain) to state space models

[19].

A second drawback of the empirical model is that it does not capture the internal

flexibility of the RWA. Therefore, it can be combined with an analytical model (block (d))

to produce a more complete extended model (block (f)). The analytical model is the second

model discussed in this thesis and captures the physical behavior of an unbalanced rotating

flywheel. The model is developed using principles from rotor dynamics and accounts for the

structural modes of the RWA which cause disturbance amplification in the vibration data

that are not captured by the empirical model.

Although the analytical model captures the internal flexibility of the wheel it is not a

complete disturbance model because only the fundamental harmonic is included. Therefore,

the analytical and empirical model are combined to create the third model, the extended

model. Both the analytical and extended model can be represented in either time or fre-

quency domain. Although the models are nonlinear, they can be linearized to obtain time-

variant state-space models at discrete wheel speeds. When left in their nonlinear form, the

models can be used to explore the transient disturbance behavior of the RWA as it sweeps

through wheel speeds.

Both models can be input to the multi-wheel model to produce a disturbance model that

can be used in a disturbance analysis. The extended model is the most complete RWA model

available, but it is also the most costly to create. Parameter extraction from disturbance

data must be performed to obtain both the empirical and analytical model parameters.

Therefore, during early stages of design, the use of either the empirical or analytical model

may provide a good approximation to the disturbance behavior of the RWA.

The flexibilities of the spacecraft and RWA result in dynamic coupling between the two

systems that is not captured in the models discussed above. Therefore it may be necessary

to include a final coupling block in Figure 1-4 before the multi-wheel model or between the

multi-wheel model and the disturbance, w. This additional block would incorporate the

effects of dynamic coupling between the RWA and the spacecraft increasing the accuracy

of the disturbance models.

The organization of the thesis is included in Figure 1-4. RWA vibration testing is the
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subject of Chapter 2. Methods of processing the time domain data are discussed and the

details of vibration tests performed on wheels manufactured by Ithaco Space Systems are

presented. The empirical model is presented in Chapter 3. The toolbox functions that

were developed to extract the model parameters from the steady-state data are discussed

in detail, and the vibration data from the Ithaco wheels is used to validate the model. The

subjects of Chapter 4 are the analytical and extended models. The development of the

models are presented and a parameter matching methodology that fits the analytical model

parameters to RWA disturbance data is developed. The Ithaco E Wheel is used to validate

the analytical model through comparison with data and the empirical model. Chapter 5

discusses the coupling of a RWA disturbance model to a spacecraft model. Preliminary

analyses of the coupling effects and a testing plan for development and validation of a

coupling model are presented. In the final chapter of the thesis, Chapter 6, the work is

summarized and recommendations are made for future work.
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Figure 1-4: RWA Disturbance Models
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Chapter 2

RWA Vibration Testing

RWA vibration data are used throughout this thesis to illustrate modeling and parameter

matching methodologies and to validate the disturbance models. Both the form and param-

eters of the empirical model are based solely on vibration data, and the analytical model

parameters are determined using such data. The data are obtained from isolated tests in

which the RWA is hardmounted to a fairly rigid test fixture and either spun at discrete

speeds or allowed to spin through a range of speeds. Time histories of the disturbances

that result are obtain through load cells mounted at the interface of the wheel and the test

fixture. Spectral analysis techniques are used to process the time histories into frequency

domain data and gain insight into the nature of RWA disturbances through examination of

their frequency content.

The data that will be used for model validation were obtained from wheels manufac-

tured by Ithaco Space Systems and tested at Orbital Sciences Corp. and NASA Goddard

Space Flight Center (GSFC). This chapter begins with a discussion of the spectral analysis

techniques used to process the data. Then, the details of the RWA vibration tests performed

by Orbital and GSFC, and the data that were obtained, are presented. It will be shown

that the data contain disturbance amplifications resulting from flexibility within the wheel.

The chapter concludes with a discussion of the structural dynamics of the wheel and its

dominant vibration modes.
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2.1 Spectral Analysis

In general, a signal can be characterized as either purely deterministic or stochastic (ran-

dom). A deterministic signal is one that is exactly predictable over the time period of

interest, such as x(t) = 10sin(27rt). A stochastic signal, on the other hand, is one that

has some random element associated with it. One example of a stochastic process is a sine

wave with random phase: X(t) = 10 sin(27rt + a) where a is evenly distributed between 0

and 27r [201. In addition, a stochastic signal can be further characterized as deterministic

or non-deterministic. The example, X(t), given above is a deterministic stochastic process

because it is deterministic in form, but has some random element. Pure white noise, on

the other hand, is a nondeterministic stochastic process, since it is purely determined by

chance and has no particular structure at all.

RWA disturbances are generally modeled as deterministic random processes similar to

the second example given above. Such a process can be characterized by its autocorrelation

function, which describes how well the process is correlated with itself at two different times

and is defined as:

Rx(r) = Rx (t, t + r) = E[X(t)X(t + r)] (2.1)

where X(t) is a stationary random process and E[-] is the expectation operator. A random

process is described as stationary if its probability density functions are time invariant. The

autocorrelation function contains information about the frequency content of the process.

If Rx(r) decreases rapidly with time, then the process changes rapidly with time, and

conversely if Rx(T) decreases slowly with time, the process is changing slowly [20]. Taking

the Fourier transform of Equation 2.1 produces the power spectral density function, Sx (w)

and transforms the time domain signal to the frequency domain:

Sx(w) = [Rx(T)]

= Rx()ei-idr (2.2)

where F[.] indicates Fourier transform. Conversely, the autocorrelation can be recovered

from the spectral density:

Rx(T) = F- [Sx (W)]
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1 +Co
1 -- Sx(w)ewrdw (2.3)

Note that the factor - appears in the definition of the inverse Fourier transform. There

is an alternative definition that includes this factor in the Fourier transform [21]. Both

definitions are correct and will yield the same results if used consistently. The power

spectral density (PSD) provides information about the frequency content of the random

signal, and is generally plotted versus frequency.

Another useful frequency domain representation of a stochastic process is the amplitude

spectrum. It provides an estimate of the signal amplitude as a function of frequency and is

defined as:
1T

Ax(w) =27rT J X(t)eiwtdt (2.4)

where T is the length of the time history. The units of Ax(w) are the same as those of

X(t). If the random signal is X(t) = Ai sin(wot + a) the value of the amplitude spectrum

at the frequency of the sinusoid is equal to the amplitude of the sinusoid: Ax(wo) = A 1 .

In engineering practice both the power spectral density and the amplitude spectrum are

generally plotted against a frequency axis in units of hertz (Hz). Therefore the following

transformations are made:

Sx(f) 27rSx(w) (2.5)

Ax(f) 27rAx (w) (2.6)

where Sx (f) and Ax (f) are the power spectral density and amplitude spectra in hertz and

have units of X(t) 2 /Hz and x(t), respectively.

2.1.1 Root Mean Square

The mean, px(t), and variance, ux(t) of a random process, X(t), are defined as

PX(t)= E [X(t)] (2.7)

(t)= E [{X(t) -- Lx(t)}2 (2.8)
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The mean square, ri is defined as the expected value of the square of the random process

and can be expressed in terms of the mean and variance through Equation 2.8:

r2= E [X(t)2]

= 2 + pX (2.9)

The square root of the mean square is referred to as the root mean square (RMS) and is a

useful metric for validating the disturbance models through data comparison. It is easy to

see from Equation 2.9 that for a zero-mean process the RMS is simply equal to the square

root of the variance. For simplicity, the assumption is made that all stochastic disturbances

presented in this thesis are zero-mean.

The mean square can also be obtained from the autocorrelation function. Evaluating

Equation 2.1 at -r = 0 and using the relationship in Equation 2.9 results in:

Rx(O) = E [X(t)2] = (2.10)

An alternative definition for Rx (0) can be obtained by substituting r = 0 into Equation 2.3

and transforming Sx(w) to Sx(f):

Rx(0) J Sx(f)df (2.11)

Equations 2.10 and 2.11 suggest a relationship between the variance of a random process

and its PSD:
+oo

i J Sx(f)df (2.12)

Therefore, the RMS of a zero-mean, stationary process is simply the square root of the area

under the PSD over the frequency band of interest. Equation 2.12 is a powerful result and

is used extensively throughout the RWA disturbance modeling and validation processes.

Another metric that is useful in the model validation process is the cumulative RMS,

0xc(fo). It is defined as:

(+fO 2

0-xc (fo) (2f Sx(f)df (2.13)
frmin)

where fo E [fmin, fmax] and fmin and fma are the upper and lower limits of the frequency

band of interest [19]. These limits are generally set by the frequency range of the measured
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Table 2.1: Frequencies and Amplitudes of X(t)

Harmonic Frequency (Hz) Amplitude (N)
1 10 1
2 25 1.5
3 40 4

PSD. In practice, the cumulative RMS of a signal is calculated by dividing its PSD into

smaller segments. The RMS of each of these PSD segments is calculated by integrating over

the frequency bandwidth of each segment to obtain the variance of the segment. A running

total of the segment variances is computed, and the cumulative RMS is the square root of

this total. The cumulative RMS curve is most useful when plotted with the corresponding

PSD or amplitude spectra of the signal. It allows identification of the frequencies at which

significant contributions to the total RMS occur.

2.1.2 Example

A simple example is used to illustrate the concepts presented above and demonstrate their

application. Consider a random process, X(t), that consists of three harmonics:

3

X(t) = Ai sin(wit + ai) (2.14)
i=1

where Ai is the amplitude of the ith harmonic in Newtons (N), wi is the frequency in rad/s,

and ai is a random phase uniformly distributed between 0 and 27r. The signal frequencies

and amplitudes used for this example are listed in Table 2.1. The time history of the signal

is created in MATLAB using a time vector of length 2048 with a resolution of .01 seconds.

This time spacing corresponds to a sampling rate of 100 Hz. A portion of the resulting

signal is shown in Figure 2-1(a). It is difficult to determine the frequencies and amplitudes

of the sinusoids that generated this signal from the time history. Therefore the signal is

transformed to the frequency domain using Equations 2.2 and 2.4.

The resulting amplitude spectra and PSD are plotted in Figure 2-1(b). In this form

the frequency content of the signal is obvious. Both functions consist of peaks at the

frequencies listed in Table 2.1. Note that the magnitudes of the peaks in Ax correspond

to the magnitudes of the sinusoids at each of the frequencies. The magnitudes of the peaks

in the PSD, Sx, on the other hand, do not directly present any information about the
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Figure 2-1: Time and Frequency Domain Representations of Stochastic Process, X(t)

amplitudes of X(t). The PSD does however, allow calculation of the RMS of the signal

through integration. The bottom plot in Figure 2-1(b) is the cumulative RMS of the signal.

Note that the curve is a series of "steps" and that each step occurs at one of the frequencies

listed in Table 2.1. Also note that the largest step is at 40 Hz, which is the frequency of

the sinusoid with the greatest amplitude. The cumulative RMS can be used in this manner

to identify the dominant frequencies in a signal. The final value of the cumulative RMS in

this example is 3.1024 N. This value also results from taking the square root of the area

under the PSD and is the total RMS of the signal.

2.2 Ithaco RWA Disturbance Data

RWA vibration data from two types of wheels manufactured by Ithaco Space Systems

are used in this thesis to illustrate the parameter extraction methodologies for both the

empirical and analytical model and to validate the models through data comparison. The

wheels that were tested are type B and E Ithaco TORQWHEELs, with model numbers

TW-16B32 and TW-50E300. In both cases the wheels were off-the shelf standard catalog

products that had not yet been balanced for minimum vibration operation. Pictures of

typical Ithaco B and E wheels are shown in Figures 1-1 and 1-2 and the design specifications

for the models that were tested are listed in Table 2.2. Notice that the Ithaco E Wheel can
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Table 2.2: Ithaco TORQWHEEL Design Specifications

Model Number
TW-16B32 TW-50E300

Speed Range (rpm) ±5100 +3850
Momentum Capacity (N-m-s) > 16.6 > 50
Reaction Torque (mN-m) > 32.0 > 300
Tachometer (Pulses/Rev) 72 72
Static Imbalance (g.cm) < 1.5 < 1.8
Dynamic Imbalance (g.cm2 ) < 40 < 60
Peak Power (W) < 50.0 < 280
Mass Reaction Wheel (kg) < 5.9 < 10.6
Mass Motor Driver (kg) included < 3.3
Wheel Diameter (cm) < 25.5 < 39.3
Wheel Height (cm) < 9.3 < 16.6
Motor Driver (cm) included < 21x18x9

provide a significantly greater reaction torque than the Ithaco B Wheel. However, it is also

a much larger and much heavier wheel. Both the pictures and the information listed in the

table were obtained from the Ithaco Space Systems website (www.ithaco.com).

2.2.1 B Wheel

An Ithaco B Wheel, model TW-16B32, was tested at Orbital Sciences Corp. in German-

town, MD in February and April of 1997. Vibration tests were run on two wheels, an

engineering and a flight unit for the FUSE mission. Only the data from the flight unit will

be presented in this thesis. Vibration data were obtained from a Kistler 9253A force/torque

table, which is a steel plate containing four 3-axis load cells. The table was mounted directly

to a large granite block that sat upon foam rubber pads. The reaction wheel was mounted

to the Kistler table such that the z-axis of the table corresponded to the spin axis of the

wheel. The output signals of the load cells were combined to derive the six disturbance

forces and torques at the mounting interface between the wheel and the table. Data were

taken for approximately 8 seconds once the wheel had reached steady-state spin at every

100 rpm from 500 to 3400. A sampling rate of 1kHz was used, and anti-aliasing filters were

set at 480 Hz. In addition, data was taken with the wheel actively controlled to 0 rpm to

provide a measure of sensor and electrical noise.

The data were processed using MATLAB to obtain PSDs and amplitude spectra of

the time histories of the wheel disturbances at each speed and the noise data. Figure 2-
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Figure 2-2: Comparison of Noise and Disturbance Data (at 500 rpm) for Ithaco B Wheel

(FUSE Flight Unit)

2 compares the noise data to the disturbance data taken at the lowest wheel speed (500

rpm). The three forces, F2, Fy and Fz are shown in Figure 2-2(a) and the three torques,

T, T. and Tz are shown in Figure 2-2(b) Note that in general, the noise data is well

below the disturbance data at frequencies greater than 10 Hz. The only case for which this

observation is not true is the Tz data. This torque is the axial disturbance torque and is

negligible. Therefore, the Tz disturbance lies very close to the noise floor. Since the wheel

disturbances increase as the wheel speed increases, it can be concluded that the noise floor

has a negligible effect on the five significant disturbances, F, Fy, Fz, Tz, and Ty.

Frequency domain data can be plotted side-by-side in a 3-dimensional plot called a

waterfall plot. Plotting the data in this form allows the identification of disturbance trends

across both frequency and wheel speed. An example of a waterfall plot is shown in Figure 2-

3(a). The data shown are the Ithaco B Wheel F2, or radial force, disturbances. Note that the

dominant disturbances appear as ridges at around 300 Hz and 460 Hz. These disturbances

are independent of wheel speed and occur at frequencies corresponding to the resonances

of the test fixture. Since these effects are caused by amplification of wheel harmonics by

the test fixture dynamics they should not be included in a disturbance model. The second

plot, Figure 2-3(b), shows the same data plotted to 200 Hz. Note that now diagonal ridges

of disturbances are visible in the data. The frequencies of these disturbances are linearly
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Figure 2-3: Waterfall Plot of Ithaco B Wheel F Disturbance Data

dependent on the wheel speed. As the speed of the wheel increases the disturbances slide

along the frequency axis. These disturbances are the wheel harmonics that were introduced

in Section 1.2. The largest ridge visible in this plot is the fundamental harmonic. Recall

that the fundamental harmonic corresponds to disturbances that occur once per revolution

and is caused by static and dynamic imbalance of the flywheel. Also note that smaller

diagonal ridges are visible. These are super-harmonics caused by bearing imperfections and

other disturbance sources within the wheel.

Waterfall plots of all six Ithaco B Wheel disturbance PSDs are presented in Figure 2-

4. The signals are truncated at 200 Hz to remove the effects of the test stand resonance

and the z-axis on all the plots is kept at the same scale to allow comparison among the

directions. The F, and F, data are both radial force disturbances and differ only by 90'

of phase. The PSD contains no phase information so, since the RWA is axi-symmetric, the

data from these two disturbance directions are nearly identical. Figures 2-4(c) and 2-4(d)

are the radial torque disturbances, T and T.. These disturbances are also identical due

to the symmetry of the wheel. The final two sub-figures, Figure 2-4(e) and 2-4(f) are the

axial force and torque disturbances, respectively. Note that all of the disturbances in the

Fz data are amplified around 70 Hz. The source of these amplifications will be discussed

in Section 2.3. Also it is clear from Figure 2-4(f) that the axial torques are insignificant in

comparison to the other disturbances. The waterfall plot supports the earlier claim that

disturbance torques in this direction can be neglected.
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Figure 2-4: RWA Disturbance Data - Ithaco B Wheel
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2.2.2 E Wheel

An Ithaco E Wheel, model TW-50E300 was tested at the NASA Goddard Space Flight

Center (GSFC). The wheel was integrated into a stiff cylindrical test fixture and hard-

mounted to a 6-axis Kistler force/torque table. In this test, the wheel was started at 0

rpm and full torque voltage was applied to the motor until the wheel saturated around

2400 rpm. The data was sampled at 3840 Hz for 390 seconds and 8 channels of load cell

data were obtained. These channels were combined to derive the disturbance forces and

torques at the mounting interface between the wheel and the table. Note that this vibration

test was not conducted at steady-state speeds like the Ithaco B Wheel test performed at

Orbital. Therefore, in order to use the data to obtain a steady-state empirical model, a

technique was developed to obtain steady-state frequency domain data from the continuous

time histories.

The spin-up of the wheel occurred at a relatively slow rate, so the resulting time history

can be subdivided into time slices that are considered to be quasi-steady state. Each time

slice has a sample length of 2.133 seconds and contains 8192 points. These time histories are

then transformed to the frequency domain through the PSD and amplitude spectra. The

frequency content of the signal is used to determine the average wheel speed of each time

slice by assuming that the fundamental harmonic causes the most significant disturbance.

Based on this assumption, the frequency at which the maximum disturbance occurs in a

given time slice is also the average speed of the wheel. In Figure 2-5 the average wheel

speeds are plotted versus the time slice number. The data were processed into 120 time

slices, and the curve indicates that the assumption used to identify the wheel speeds is a

valid one. As the time slice index increases the wheel speed also increases until the wheel

saturates around 2400 rpm [22].

When processed as described above, the Ithaco E Wheel data can be treated as steady-

state data similar to the Ithaco B Wheel data. The waterfall plots of the six disturbance

PSDs are shown in Figure 2-6. The test fixture that the Ithaco E Wheel was mounted to is

stiffer than that used for the Ithaco B Wheel. Therefore, the data are not corrupted by test

stand resonances and can be plotted up to 300 Hz. The orientation of the wheel was such

that F, and F are the radial forces, T and T. are the radial torques, and Fz and Tz are the

axial forces and torques, respectively. The fundamental harmonic is clearly visible in the

37



0 20 40 60 80 100 120
Time Slice Index

Figure 2-5: Wheel Speeds Corresponding to Quasi-Steady State Time Slices

radial forces and torques and the axial force. The two radial force plots, Figures 2-6(a) and 2-

6(b), show that the number and shape of the harmonics visible in these disturbances are

similar. The same observation can be made with regard to the radial torques, Figures 2-6(c)

and 2-6(d). Also note that, like the Ithaco B Wheel data, the axial torque (Figure 2-6(f)) is

negligible when compared to the other disturbances. Finally, similar to the Ithaco B Wheel

Fz data, there are regions of disturbance amplification visible at low frequencies in all five

of the Ithaco E Wheel disturbances. Since the test stand resonance was greater than 300

Hz for this test, another explanation for the amplifications must be found. These resonant

effects are the subject of the following section.

2.3 Structural Wheel Modes

The RWA can be modeled as having five degrees of freedom, translation in the axial direc-

tion, translation in the two radial directions and rotation about the two radial axes. This

model results in three dominant vibration modes: axial translation, radial translation and

radial rocking. These modes are depicted schematically in Figure 2-7. The natural frequen-

cies of the three modes reported by Ithaco for type B and E TORQWHEELS are listed

in Table 2.3 [16]. The radial rocking mode consists of two whirl modes, the positive whirl

and the negative whirl, which have natural frequencies that are dependent on the speed of
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Figure 2-7: Structural Wheel Modes

Table 2.3: Frequencies of Ithaco Structural Wheel Modes

Frequency (Hz)
Mode Type B Type E

Rocking (Nominal) 85 60
Axial Translation 65 70

Radial Translation 200 250

the wheel. The natural frequency listed for the rocking mode in Table 2.3 is the natural

frequency at zero wheel speed and is the same for both the positive and negative whirls.

The rocking mode and its whirl will be discussed in more detail when the analytical model

is presented in Section 4.1.1.

The structural wheel modes provide an explanation for the disturbance amplifications

seen in the Ithaco B and E Wheel data. Recall that a ridge of disturbance amplification

was observed in the Ithaco B Wheel Fz data at approximately 70 Hz across all wheel

speeds. This frequency is close to the reported natural frequency of the axial translation

mode of the Ithaco B Wheel listed in Table 2.3. Therefore, it can be concluded that the

disturbance amplification is caused by the excitation of the axial translation mode by the

wheel harmonics. Figure 2-8(a) is the waterfall plot of the Ithaco B Wheel Fz data with

the location of this mode highlighted with a heavy solid line. Note that at 1600 rpm, when

a harmonic crosses the mode, there is large amplification in the disturbance magnitude.

Similar amplifications can be observed at this frequency when other harmonics pass through
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Figure 2-8: Disturbance Amplification from Structural Wheel Modes

the solid line.

Disturbance amplifications are also visible in the Ithaco E Wheel data as shown in

Figure 2-8(b). Note that disturbance amplifications occur at approximately 230 Hz. This

frequency is highlighted with a solid black line and is very close to the reported value of

the Ithaco E Wheel radial translation mode listed in Table 2.3. In addition, there are

disturbance amplifications that form a V-shaped ridge across wheel speeds in the lower

frequencies. The V-shape is also marked with a solid black line and represents the positive

and negative whirls of the rocking mode. Note that the point of the "V" is at 60 Hz, which

is the frequency listed as the nominal natural frequency of the rocking mode in Table 2.3.

Therefore, it can be concluded that the amplification of the harmonics at 230 Hz are a

result of excitation of the radial translation mode, and that the amplifications at lower

frequencies are due to excitation of the two whirls of the rocking mode. The effects of the

radial translation mode are most clearly seen in the higher wheel speeds while the effects

of the rocking mode are most visible between 1500 and 2000 rpm.

2.4 Summary

This chapter began with an overview of spectral analysis. Information about the frequency

content of a random process can be obtained through transformation from the time domain

to the frequency domain into power or amplitude spectra. Power spectral densities (PSDs)
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are a measure of the energy in a signal as a function of frequency and provide a simple

method of obtaining the signal RMS. Amplitude spectra are another type of frequency

domain representation which give an estimate of the signal amplitude with respect to its

frequency. These frequency domain representations were used to process RWA disturbance

data. The vibration data were obtained from isolated RWA tests conducted on Ithaco B and

E type Wheels at Orbital Sciences Corp. and NASA GSFC. In both tests, the wheels were

hardmounted to a fairly rigid test stand and the disturbance forces and torques induced by

the spinning of the wheel at the interface of the wheel and the test fixture were measured

with load cells. The resulting disturbance data for both wheels were presented. It was

shown that wheel harmonics occur in the data at frequencies that are linearly dependent

on wheel speed. In addition, amplifications of the wheel harmonics due to excitation of the

three structural wheel modes: the radial translation mode, the axial translation mode and

the radial rocking mode are, also visible in the data. In the following chapter, an empirical

model is introduced, and the vibration data is used to extract the model parameters to fit

the experimentally measured results.
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Chapter 3

Empirical Model

The first type of disturbance model that will be presented is an empirical model. The

model was initially created to assess the effects of RWA vibrations on the performance of

the Hubble Space Telescope (HST). HST had very tight requirements for target pointing

accuracy and mechanical stability when acquiring science data. Therefore, characterization

of RWA vibrations was important in the early stages of spacecraft design to allow prediction

of performance degradation due to the operation of the wheels. To accomplish this goal,

the HST RWA flight units were subject to a series of induced vibration tests. The results

of these tests indicated that RWA disturbances are tonal in nature; i.e. waterfall plots of

the frequency domain data show distinct ridges of disturbances occurring at frequencies

that are a linear function of wheel speed [15]. The empirical model captures this feature by

assuming that the disturbances consist of discrete harmonics of the reaction wheel speed

with amplitudes proportional to the square of the wheel speed:

n

m(t) = C4q 2 sin(27rhiQt + ai) (3.1)
i=1

where m(t) is the disturbance force or torque in Newtons (N) or Newton-meters (Nm), n

is the number of harmonics included in the model, Ci is the amplitude of the ith harmonic

in N 2 /Hz (or (Nm) 2 /Hz), Q is the wheel speed in Hz, hi is the ith harmonic number and

as is a random phase (assumed to be uniform over [0, 27r]) [23]. The harmonic numbers are

non-dimensional frequency ratios that describe the relationship between the 4th disturbance

43



frequency, wi and the wheel's spin rate, 9:

hi= (3.2)

Note that the empirical model (Equation 3.1) yields disturbance forces and torques as a

function of the wheel speed. It is a steady-state model only; transient effects induced from

changing wheel speeds are not considered.

The model parameters, hi, Ci and n, are wheel dependent. As discussed in Chapter 1, the

two largest sources of RWA disturbances are flywheel imbalance and bearing imperfections.

RWAs made by different manufacturers will not have the same designs and specifications.

As a result, each wheel will induce a unique set of disturbances. For example, a large wheel,

which can provide high reaction torque, may produce larger amplitude disturbances than a

RWA with a small flywheel. Also, flywheel imbalance and bearing imperfections are clearly

not part of the RWA design. These anomalies occur during the manufacturing process and

cannot be controlled during operation. Therefore, each RWA has its own characteristic set

of harmonic numbers and amplitude coefficients. As a result, in order to properly model a

given wheel, a vibration test, such as those described in Section 2.2, should be performed

and the empirical model parameters determined from the test data. To facilitate this

modeling process, a MATLAB toolbox which analyzes steady-state RWA disturbance data

and extracts the harmonic numbers and amplitude coefficients for the empirical model has

been developed. This chapter describes the formulation of an empirical RWA model by first

describing the process in terms of the MATLAB functions in the toolbox (Section 3.1.1)

and then illustrating each step through a series of examples. In addition empirical models

created with the RWA DADM from the Ithaco RWA vibration data are presented and used

to validate the modeling process.

3.1 RWA Data Analysis and Disturbance Modeling Toolbox

The RWA Data Analysis and Disturbance Modeling (DADM) toolbox creates steady-state

disturbance models of the form show in Equation 3.1 from steady-state reaction wheel dis-

turbance data. The analysis tools extract the model parameters, hi and Ci, from frequency

domain data using the following functions:
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1. idenharm.m - identifies harmonics, hi.

2. f indcoeff .m - calculates amplitude coefficients, Ci.

3. removemode .m - removes effects of structural wheel modes and recalculates amplitude

coefficients.

4. comp-model.m - compares model to experimental data.

The following section will discuss the disturbance modeling process. Each of the func-

tions in the toolbox will be explored in detail. First, the algorithm used to identify the

harmonic numbers is explained. Then, the calculation of the amplitude coefficients and the

effects of the structural wheel modes on the disturbance amplitudes is discussed. Finally,

methods of model validation are presented and compared. The development of a radial force

disturbance model from the Ithaco B Wheel F2 and F. data will be used as an example

throughout the section.

3.1.1 Overview

Typical test results from one wheel include data for six disturbances: x-axis force, F2, y-

axis force, F, z-axis force, Fz, x-axis torque, T2, y-axis torque, T., and z-axis torque, Tz.

Assuming the z-axis is the spin axis of the wheel, the F, and F. data are both radial force

disturbances and should be nearly identical. They are used in combination to create the

radial force disturbance model. Similarly, T, and Ty are both radial torque data, and are

used to create the radial torque model. The axial force disturbance model is created from

the Fz, or axial force data. The Tz data is the disturbance torque about the spin axis. This

disturbance is very small and can be neglected.

The RWA DADM toolbox requires that experimental data from a given wheel be pro-

cessed and stored in five data sets, one for each of the relevant disturbances, which include

the following information:

S: A row vector of disturbance PSDs arranged such that S = [S ... Sm]. The discretized

version used for implementation in MATLAB is an nfxm matrix, where nf is the

number of frequency points and m is the number of wheel speeds at which data was

taken. The matrix is arranged such that the jth column corresponds to the PSD of

the disturbance taken at the jth wheel speed, Sj.
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A: A row vector of disturbance amplitude spectra arranged such that A = [A1 ... Am]. The

discretized version used for implementation in MATLAB is an nfxm matrix arranged

such that the jth column corresponds to the amplitude spectrum of the disturbance

taken at the jth wheel speed, Aj.

n: A vector of wheel speeds (in rpm) at which data was taken.

f: frequency vector (in Hz) corresponding to the frequency domain data.

fLim: Upper frequency limit of good disturbance data (Hz).

In general, the vectors f and f and the frequency fLim are identical across the disturbance

directions for a given wheel. However, S and A are direction dependent. In this thesis,

subscripts will be used to differentiate between the five disturbance directions. Individual

PSDs (or amplitude spectra) within the matrices will be subscripted to indicate both the

wheel speed at which the data was taken and, if necessary, the disturbance direction. For

example, the vector of F PSDs is SF2, and the F2 disturbance PSD taken at the first wheel

speed in 0 is (S1)F.-

The methodologies used to create the three disturbance models, radial force, radial

torque and axial force, are quite similar. Figure 3-1 summarizes the axial force modeling

procedure. The method used to model the radial forces and torques is simply an extension

of this process, as shown in Figure 3-2. The radial force model will be used in the following

discussion to illustrate the end-to-end analysis and modeling procedure.

In the initial stages of the analysis process, the F, and Fy data sets are run through

the toolbox separately. The following discussion will refer only to the F, data set, but

in application the same procedure is followed with the Fy data set (see Figure 3-2). The

first step in the analysis is running the function idenharm.m using AF, f, f and fLim.

This function outputs two matrices, a list of harmonic numbers, (hFj)1 and a matrix of

normalized peak frequencies , (Mpeak)F, which will both be discussed in greater detail in

Section 3.1.2. These outputs then become inputs to the function find.coeff .m, and the

amplitude coefficients, (CF2)1 are calculated (see Section 3.1.3).

(hF3)1 and (CFj)1 are the first generation of model parameters and are input into the

function comp.model.m for comparison with the experimental data. The plots generated

by comp-model.m allow refinement of the first generation harmonics, (hFj)1. A second
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Figure 3-1: RWA Data Analysis Process for Axial Force Disturbance

generation of harmonic numbers, (hFx)2 is created by removing the "bad" harmonic num-

bers from (hF.)1 and adding any that may have been missed in the first iteration. Then,

f indcoef f .m is run again to obtain the corresponding second generation of amplitude

coefficients, (CF )2. The second generation of model parameters are then run through

comp-model.m for validation. Additional iterations are performed until the final generation

of harmonic numbers, hFx, which match the experimental data to the user's satisfaction,

are obtained.

At this point in the analysis process there are two separate sets of model parameters,

hF, and CF, and hFy and CFy. The harmonic numbers, hF. and hFy, are combined to

create a set of radial harmonic numbers, hrad. If a number is found in both lists (or if two

numbers are close to each other) their average is included in hrad. Otherwise, hrad is simply

the union of hFx and hFy. Once hrad has been determined it is input into findcoeff .m

along with both the F, and Fy data sets to calculate the amplitude coefficients for the radial

disturbance model, Crad-

The radial amplitude coefficients are validated with curve fit plots that are generated
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Table 3.1: Ithaco B Wheel F, Data Set

Name Description Size/Value

m # of wheel speeds 30

nf # of frequency points 1025
f Frequency vector 1025 x 1

fLim Upper frequency limit 200 (Hz)
f Wheel speed vector 1 x 30

AF, amplitude spectra 1025 x 30

SF PSDs 1025 x 30

by findcoeff .m. If interactions between the structural wheel modes and harmonics are

visible in the curve fits, the coefficients are run through the final function, remove-modes .m.

In addition, if the curve fit for a particular amplitude coefficient shows that it was calculated

from a small number of data points, the associated harmonic is removed from the model.

This part of the modeling process will be discussed in detail in Section 3.1.3. Finally,

comp-model.m is run once more as a final check between the radial model parameters and

both the F and Fy experimental data. The final radial model parameters should fit both

data sets well.

The radial force disturbance modeling procedure is described in detail in the following

sections using the Ithaco B Wheel F, data set as an example. The data set consists of

30 time histories, one taken every 100 rpm from 500-3400 rpm, that were each sampled at

1000 Hz for approximately eight seconds. The time data was then processed into amplitude

spectra, A, and PSDs, S, using a hanning window with 2048 FFT points. The windows

were overlapped by 1024 points so that eight averages were obtained per time history. A

waterfall plot of this data set is shown in Figure 2-4(a), and the components of the data set

are listed in Table 3.1.

3.1.2 Identifying Harmonic Numbers

The first step in the empirical modeling process is the extraction of the harmonic numbers,

hi, from the experimental data. The MATLAB function, idenharm. m and its sub-functions

individually examine all the amplitude spectra in a data set and locate peaks which are due

to the wheel harmonics. Figure 3-3 presents a graphical representation of the harmonic

number identification process and will be referred to throughout the following discussion.

In order to identify the harmonic numbers from the data, the frequency vector, f, must
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Figure 3-3: RWA DADM Toolbox Function idenharm.m and Sub-functions

be normalized. m vectors of non-dimensional frequency ratios, f are obtained by dividing

the frequency vector by the speeds (in Hz) in the wheel speed vector. Figure 3-4 shows an

example for Q30 = 3400 rpm. In the upper plot, the amplitude spectrum, A30, is plotted

versus. frequency. In the lower plot the same data is plotted as a function of the non-

dimensional, normalized frequency, f3*o. Note that the largest peak in the amplitude spectra

occurs at f3* = 1.0. This peak is caused by the fundamental harmonic disturbance (hie = 1).

The amplitude spectra, A, and normalized frequencies, f are input to a MATLAB

sub-function called f indpeaks.m that identifies the normalized frequencies of disturbance

peaks in the data. A detail of this sub-function is shown in Figure 3-3(b). The figure

shows the flow of the function for one set of amplitude spectra and normalized frequencies.

However, within iden-harm.m, f indpeaks .m is called m times as shown in Figure 3-3(a).

The first block in Figure 3-3(b) represents another sub-function called loc-spikes.m

that identifies peaks by differencing Aj and searching for sign changes in the differenced

data. The outputs are a vector of normalized peak frequencies, f and a vector of peak
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Figure 3-4: Frequency Normalization of Ithaco B Wheel F, Data (3400 rpm)

amplitudes, Ajp.ak The peaks identified by loc-spikes.m in A 3 0 are shown in Figure 3-

5(a) with stars, "*". Note that all of the peaks in the data are marked. It is highly unlikely

that all of these peaks are a result of harmonic disturbances. Some may be due to noise or

may be a result of performing an FFT on the time history data. Therefore, a method was

developed to discriminate between disturbance peaks and "noisy" peaks.

Noise is isolated from the disturbance harmonics in the block labeled "Noise Analysis."

The MATLAB function hist .m is used to bin the elements of Aj,,,,k according to ampli-

tude. Assuming that the "noisy" spikes all have roughly the same amplitude and therefore

account for the largest bin in the histogram allows a disturbance amplitude threshold, DT,

to be determined. All spike amplitudes that fall in or below the largest histogram bin are

considered noise. The remaining spikes are considered possible harmonic disturbances. See

Figure 3-5(b) for an example. The disturbance amplitude threshold is then defined as:

DT inoise + NoCynoise (3.3)

where pnoise and O-noise are the mean and standard deviation of the spike amplitudes iden-

tified with the histogram. The parameter N, is a user-defined tolerance level. Its default

value is 3, but should be adjusted according to the signal to noise ratio of the data. All

peaks with an amplitude below the disturbance amplitude threshold are not included in the
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Figure 3-5: Disturbance Peak Identification in Ithaco B Wheel F, Data (3400 rpm)

final vector of disturbance peaks. This part of the function is represented in the diagram

by the block labeled "Disturbance Peak Isolation." The final outputs of f indpeaks .m are

a vector of normalized disturbance peak frequencies, fd and a vector of disturbance peak

amplitudes, Ajdjs * The results of running the Ithaco B Wheel data through the function is

shown in Figure 3-5(a). The disturbance threshold is indicated by the horizontal line, and

the dark circles indicate peaks that were identified as disturbances. Note that the majority

of the the smaller "noisy" peaks lie below the disturbance threshold and were not selected in

the final iteration. Once all m sets of amplitude spectra and normalized frequencies vectors

have been run through findpeaks.m a matrix of normalized peak frequencies, Fpeak, with

each column corresponding to a different wheel speed, is built. This matrix is then used to

identify the harmonic numbers.

A true harmonic disturbance should occur at the same normalized frequency over all

wheel speeds. Therefore, a binning algorithm, bin.m, is used to search Fpeak for matching

frequencies across wheel speeds. Initially, the first column of the matrix is used as the

baseline case, fba*. The first entry in the baseline column is denoted the "test entry", f',*

and placed into a bin. All of the other columns are then searched for normalized frequencies,

f*, that are within te of the test entry (where c is a user-defined tolerance):

f* - 6 < f* < f* + E (3.4)
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All f* satisfying Equation 3.4 are placed into the bin with f,* and their locations in Fpeak are

set to zero. If two or more normalized frequencies in the same column satisfy Equation 3.4

their average is placed in the bin, and both entries are set to zero. Averaging ensures that

a possible harmonic will only be accounted for once in each wheel speed. When the entire

matrix has been searched, the second element of f*ase becomes the test entry and a new bin

is created. The process continues until all elements of f!as*, have been considered. At this

point, the second column becomes f'as*, and the search is repeated. The algorithm continues

in this manner until all non-zero elements of Fpeak are binned.

The outputs of bin. m are a matrix of the binned normalized frequencies, Fbin (with the

kth column corresponding to the kth bin) and a second matrix containing the statistics for

each bin, F tat. The first row of Fstat is the average, or center, of the bins, f*l,, and the

second row contains the number of elements in the bins, Nbin, -

The final block in Figure 3-3(a) represents the choosing of the harmonic numbers from

Fstat. A metric, Pk, is defined as the percentage of possible wheel speeds in which a given

normalized peak frequency was found:

p= Nbink 100% (3.5)

where Npossk is the total possible number of elements in the kth bin. In general, Npossk

should be equal to the number of wheel speeds in the data set. However, this assump-

tion does not always hold depending on the frequency range of the data set. Recall from

Section 2.2 that a test stand resonance may corrupt the data above a given frequency. If

such a resonance is visible, only the data in the frequency range [0, fLim] should be used

in the model parameter extraction (wherefLim is the upper frequency limit of uncorrupted

data). The value of fLim may limit the number of wheel speeds in which a given normalized

peak frequency is visible. For example, as shown in Figure 2-3(a), a test stand resonance

corrupts the Ithaco B Wheel data above 200 Hz. The normalized frequency 1.0 corresponds

to 8.3 Hz when the wheel is spinning at 500 rpm and to 56.7 Hz at 3400 rpm. Since both

frequencies lie within the frequency range [0, 200] a disturbance at f* = 1.0 can be observed

at all wheel speeds and Np,,, = 30. The normalized frequency 5.98, on the other hand,

corresponds to 49.8 Hz at 500 rpm and 339 Hz at 3400 rpm. In this case, f* lies within the

specified frequency range for only a subset of the wheel speeds and Ny,,, = 16. Table 3.2
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Table 3.2: Bin Statistics for Ithaco B Wheel Radial Harmonics(fLim = 200 Hz)

fn*ink Frequency (Hz) Wheel Speed Nposs, Pk
500 rpm 3400 rpm Limit (rpm) %

0.99 8.25 56.10 3400 30 93.3
1.99 16.58 112.8 3400 30 56.7
2.46 20.50 139.4 3400 30 50.0
3.16 26.33 179.1 3400 30 53.3
3.87 32.25 219.3 3100 27 34.6
4.56 38.00 258.4 2600 22 36.4
5.28 44.00 299.2 2200 18 44.4
5.98 49.83 338.9 2000 16 31.2
8.09 67.42 458.4 1500 11 40.0
8.83 73.58 500.4 1300 9 55.6
9.54 79.50 540.6 1200 8 37.5
10.25 85.42 580.8 1100 7 28.6

lists the bin statistics, Npossk and Pk for selected bins that resulted from analysis of the

Ithaco B Wheel Fx data.

The metric Pk can be considered a measure of the strength of a disturbance across wheel

speeds, and is used to identify wheel harmonics from the list of bin centers, fb*ink in Mstat.

If Pk is greater than a user defined threshold, P, then fj*ik is defined to be a harmonic

number and placed into a new vector, h. The outputs of idenharm.m are this vector of

harmonic numbers, h, and the matrix of normalized disturbance peak frequencies, Fpeak

that was returned by findpeaks.m. Both outputs are necessary for the next step of the

modeling process.

To create a complete wheel model, the harmonic number identification process described

above is performed on the three force and two torque disturbances. Then, the radial force

and radial torque model harmonic numbers, hrad and htor, are determined by comparing

and combining the harmonic numbers extracted from the F_ and F data and the T, and

T. data, respectively. The axial force harmonic numbers, haxi are the harmonic numbers

extracted from the Fz data.

3.1.3 Calculating Amplitude Coefficients

The next step in the empirical modeling process is the extraction of the amplitude coeffi-

cients, Ci, from the experimental data. Figure 3-6 presents a graphical representation of the

MATLAB code, find-coeff .m, that calculates the amplitude coefficients given a steady-
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Figure 3-6: RWA DADM Toolbox Function find-coeff.m

state RWA data set, and the harmonic numbers and matrix of normalized disturbance peak

frequencies, Mpek returned by idenharm.m. The block diagram details the process for

one harmonic number and its corresponding amplitude coefficient, but the function can

accept a vector of harmonic numbers and will calculate a vector of corresponding amplitude

coefficients by repeating the algorithm for each harmonic.

Least squares approximation methods were used to calculate the amplitude coefficients

for the HST RWA disturbance model [15]. The magnitude of the disturbance force (or

torque) is assumed to be related to the wheel speed as follows:

dj = KQ? (3.6)

where djj is the expected disturbance force (or torque) at the frequency corresponding to

the ith harmonic at the jth wheel speed and K is a constant. The error between the actual

disturbance and the expected disturbance at the ith harmonic and the jth wheel speed, eij

is then:

eij = dij - KQ? (3.7)

where dij is the experimentally measured disturbance force at the ith harmonic and jth

wheel speed. The amplitude coefficient, Ci, is defined as the value of K which minimizes

this error. An expression for Ci is obtained by first squaring Equation 3.7 and summing

over the wheel speeds:

m m m m

ei =E d. - 2KZ di +K 2 EQ4 (3.8)
j=1 j=1 j=1 j=1
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The squared error, e, is minimized at values of K for which its derivative equals zero. The

partial derivative of Equation 3.8 with respect to K is:

Ke2 = 2 E dig + 2Kj Z Q4 (3.9)
j=1 j=1

Then, an expression for Ci is obtained by setting Equation 3.9 equal to zero and solving for

K:

C = 1 mi (3.10)

The MATLAB function f indcoef f .m calculates the amplitude coefficients using Equa-

tion 3.10. The function can determine the amplitude coefficients based on a single data set

or multiple data sets as shown in Figure 3-6. Single data set calculations are necessary for

the axial force model and during the initial modeling stages of the radial forces and torques.

When run in this mode, the quantities {A1 ... Am} 2 and {Fpeak} 2 are zero. However, cal-

culation of the final radial force and torque amplitude coefficients requires two data sets

(see Figures 3-2 and 3-1). The algorithm used in both cases is similar. The only differences

are in the size and number of the inputs. In the following discussion, multiple data set

extraction of radial force amplitude coefficients from the Ithaco B Wheel F_ and F, data

will be used to describe the function algorithm.

The first block in Figure 3-6 represents the normalization of the frequency vector, f.

The resulting non-dimensional frequency vectors, {f* ... f*} are used along with A, Fpeak,

f2 and h to determine the disturbance forces, dig, at each harmonic number over all wheel

speeds. It is important to note that a disturbance at the ith harmonic may not be visible

in all of the amplitude spectra in the dataset. A disturbance peak can be undetectable

for one of two reasons. If the frequency corresponding to hi for a given wheel speed, Qj

is not within the frequency range of good data, [0, fLim], the disturbance amplitude at

this frequency may be corrupted and is not included in the calculation of the amplitude

coefficient. In addition, not all disturbances that fall within the frequency range are visible

at all wheel speeds. For example, disturbances are often more difficult to identify in data

taken at low wheel speeds due to a low signal to noise ratio. Therefore, the data must meet

certain peak detection conditions to be included in the calculation of Ci.

Recall that both the matrix of amplitude spectra, A, and Fpeak contain m columns, each

corresponding to one wheel speed. Defining the quantity D', which contains the amplitude
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spectra, wheel speed, normalized frequency vector, normalized peak locations, and upper

frequency limit of good data associated with one wheel speed, D3 (Aj, f, Fpeakj Qj, fLim)

allows the peak detection conditions to be written as follows:

Dj = {O < hinQ < fLim}F {f* E Fpeakjlhi - e f* < hi + (3.11)

The first condition in Equation 3.11 ensures that the frequency corresponding to the har-

monic for Gj is within the frequency range of good data. The second condition uses the

matrix of detected normalized peak frequencies, Fpeak, obtained from idenharm.m to en-

sure that a disturbance peak at f* = hi is detectable in the amplitude spectra.

The extraction of disturbance amplitudes for use in the amplitude coefficient calculation

is done one wheel speed at a time. Recall from Section 2.1 that the amplitude spectrum

provides an estimation of the signal amplitude over frequency. Therefore, if D3 satisfies

both of the above conditions the magnitude of the disturbance force/torque at the frequency

corresponding to the ith harmonic is simply the value of Aj at the normalized frequency

f* = hi. The disturbance magnitude is assigned to dig, and the wheel speed is assigned

to nij. However, if one or both of the conditions are not satisfied, the data for that wheel

speed is not included in the calculation and both dig and n3i are set to zero. This process is

continued for all wheel speeds, and two vectors of length m, one of disturbance amplitudes,

Di and one of corresponding wheel speeds, ij, are created. In general, ni would be equal to

the input vector f, but since all of the wheel speeds may not be included in the amplitude

coefficient calculation for a given harmonic due to lack of disturbance peak visibility, each

Ci is computed using a distinct subset of wheel speeds, ni. The vectors Di and ni are

manipulated and summed as shown in Equation 3.10 to obtain Ci.

The function f indcoef f .m also generates plots that show the quality of the fit between

the data and the disturbance force predicted by Cl. The plots for the 1.0 and 3.87 harmonics

of the Ithaco B Wheel data (F2 and F.) are shown in Figure 3-7. The circles represent the

force amplitudes of the experimental data over the different wheel speeds. Note that some

of the circles lie on the x-axis. These points are from wheel speeds which did not meet the

conditions in Equation 3.11 . The solid line is the curve generated using the calculated Ci

and Equation 3.6.

These coefficient curve fit plots are useful for a number of reasons. First, they allow
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Figure 3-7: Amplitude Coefficient Curve Fits for Ithaco B Wheel Radial Force Data

assessment of the assumption in Equation 3.6. In Figure 3-7(a) the data points lay right

along the theoretical curve. This result suggests that the assumption of Equation 3.6 is a

good one for the fundamental harmonic. In contrast, the curve fit for h5 = 3.87, Figure 3-

7(b), is not quite as good. This curve follows the general trend of the data at higher wheel

speeds, but at low speeds the disturbance amplitude is under-predicted by at least a factor

of 2. It is possible that Equation 3.6 may not hold for the higher harmonics or that some

other disturbance source is dominating at low wheel speeds.

The curve fit plots can also be used to eliminate harmonics from the model. If a curve

fit is not based on enough data points there cannot be a high degree of confidence in the

resulting amplitude coefficient, and the harmonics are removed from the model. An example

from the Ithaco B Wheel radial force model is shown in Figure 3-8. The plot shows that

the amplitude coefficient was only calculated based on three data points from low wheel

speeds. The data from the high wheel speeds could not be included in the curve fit because

the frequencies corresponding to this harmonic are not within the frequency range of good

data. It is often difficult to predict the amplitude coefficients for the higher harmonics for

this reason.

In some cases, the effects of the structural modes of the wheel on the harmonic distur-

bances can be observed in the coefficient curve fit plots. Figure 3-9 shows the coefficient

curve fit for the second radial torque harmonic, h2 = 1.99 of the Ithaco B Wheel. The
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lighter circles and dashed curve are the initial results of the amplitude coefficient calcula-

tion. Note that there is a large increase in force amplitude in the data between 1300 and

1900 rpm. This amplitude increase occurs when the frequency of the harmonic approaches

the frequency of one of the structural wheel modes. The form of the empirical model does

not present a convenient method of accounting for these modal excitations. Therefore the.

empirical model will be used to model only the wheel harmonics, and the disturbance am-

plifications will be incorporated into a new model which is the subject of Chapter 4. As a

result, the modal interactions seen in the figure should not be included in the calculation

of the amplitude coefficient.

Another MATLAB function, remove-mode.m, was created to isolate the effects of the

structural mode from the harmonic disturbances. Figure 3-10 shows a block diagram rep-

resentation of this function. The original outputs from f indcoef f .m are denoted Ci and

D to differentiate between coefficients calculated with and without modal effects. These

quantities are input to removemode. m along with f, the harmonic index, i, and the wheel

speed range affected by the structural mode, [Q1, Qh]. For example, considering the second

harmonic of the Ithaco B Wheel radial force model shown in Figure 3-9, i = 2 and the

affected wheel speed range is [1300,1900]. Data points associated with speeds in this range

are removed from Di and a new disturbance magnitude vector, Di, and corresponding wheel
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Figure 3-10: RWA DADM Toolbox Function removemode.m

speed vector, ni are created and used to calculate the corrected amplitude coefficient, Ci.

The results of running removemode.m on the second harmonic of the Ithaco B Wheel

radial torque data is shown along with the original coefficient calculation results (Ci, D)

in Figure 3-9. The dark x's and the solid curve correspond to D 2 and C 2 and do not

include the resonance points, while the lighter circles and dashed curve correspond to the

original coefficient calculation based on all points, D 2 and C2 . Note that including data

with the resonance behavior causes an over-estimation of the disturbance force at higher

wheel speeds (dashed curve). When the resonant data are removed from the coefficient

calculation (solid curve) the amplitude coefficient is decreased and there is a much better

fit between the theoretical curve and the data above 2000 rpm. These interactions between

the harmonics and the internal wheel modes will be explored in more detail in Chapter 4.
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3.1.4 Model Validation: Comparing to Data

The model parameters should be validated through comparison of the empirical model to

the experimental data. The final function in the RWA DADM toolbox, comp-model.m,

performs this task. A block diagram representation of the function is shown in Figure 3-11.

The inputs to the function include the vectors of model parameters, h and C, and the

data set components, S, A, f, f and fLim. The function outputs are a series of plots, the

number and type of which depend on the value of a plotting flag, and vectors of length m

containing the RMS of the model, cmod, and the data, udata, at each of the wheel speeds.

The empirical model is created using the model parameters extracted by idenharm. m,

find-coeff .m and remove-mode.m and f. Recall from Equation 3.1 that the forces and

torques are modeled as discrete harmonic disturbances at frequencies dependent upon hi

and with amplitudes proportional to the wheel speed squared. The disturbance frequencies

for a given wheel speed, &D are determined by:

Dj= h~j (3.12)

The vector g is a vector of discrete disturbance frequencies for the jth wheel speed and is
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the same length as h. Similarly, vectors of disturbance amplitudes, Amod,, corresponding

to Og are created based on the assumption that the disturbance amplitude from the ith

harmonic at the J'th wheel speed is:

Amodi = CiQ (3.13)

The matrices Amod and D, which are analogous to the experimental quantities A and f, are

used to generate model/data comparison plots.

In addition, the PSD of the model, Smodj, is calculated for comparison to the experi-

mental data. An expression for the model PSD as a function of frequency and wheel speed

was derived by first finding the autocorrelation, Rm(r) of Equation 3.1. Substituting m(t)

(Equation 3.1) for X(t) in the definition of the autocorrelation (Equation 2.1) and assuming

that ai is a random variable uniformly distributed between 0 and 27r and that aC and a3

are statistically independent, the expression for the autocorrelation of the empirical model

is:
" C?Q 4

Rm(r) = 2 1 cos(Qyhi-r) (3.14)
i=1

See Appendix B for the full derivation of Rm(r). Recall from Section 2.1.1 that the mean

square of a random process is equal to its autocorrelation evaluated at r = 0. Then,

assuming that m(t) is both stationary and zero mean, the variance of the empirical model

is:

2 (0) nCiQ4
od, = Rm() 2 (3.15)

i=1

Equations 3.14 and 3.15 are then be used to derive the spectral density function of

the empirical model. The autocorrelation function of a single harmonic process and its

corresponding spectral density are given in [21] as:

Rx(r) = oicos(wor) (3.16)

Sx = X = 6o [(w + wo) + -6(w - wo) (3.17)

Substituting Equation 3.15 into Equation 2.1 and setting hinQ = wO results in an autocorre-

lation of the same form as that in Equation 3.16. Therefore, the PSD of the empirical model

is of the same from as that in Equation 3.17. After making the necessary substitutions the
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one-sided PSD of the empirical model, Smodj (w), is:

n Cq4
Smod (W)= 2 6(w o) (3.18)

Note that the empirical model PSD consists of a series of discrete impulses occurring at

frequencies, hing, with amplitudes equal to the variances of the harmonics, omodij . The

vectors [nod1 . .. Iodm], which are outputs of the "model PSD" block in Figure 3-11,

consist of the PSD amplitudes for the discrete harmonics at all m wheel speeds. The

matrix of these vectors, a o is analogous to S and is used for model/data comparison.

The RMS values of the model and data are calculated for each wheel speed. It was

shown in Section 2.1.1 that the area under the PSD of a random process is equal to the

mean square. Therefore, the data RMS for a given wheel speed, adata,, is simply the square

root of the area under the PSD, Sj. The MATLAB function intrms.m is used to perform

the integration across frequency and obtain this value for each wheel speed. The RMS of

the model is calculated using the assumption that the random process m(t) is stationary

and zero mean. Recall from Section 2.1 that the RMS of a zero mean process is simply the

square root of its variance:

n CQ4

O7
modj Z 2 - (3.19)

The vectors of RMS values, Omod and udata are used to compare the model and the data

and assess model validity.

Two different types of plots are generated by the function comp-model.m. The first is

a waterfall plot overlaying the model PSDs and the data PSDs as shown in Figure 3-12.

In this figure, the Ithaco B Wheel F, data PSDs are plotted as continuous lines and the

radial force empirical model PSDs are represented with circles. It is important to note that

the units of amplitude (z-axis) for the data and model are not equivalent. The data PSDs

are continuous over frequency and have amplitudes with units of N2 /Hz, but the model

PSDs consist of series of discrete impulses with amplitudes which have units of N 2 and are

equal to the variance, or the area under the corresponding peak in the continuous PSD, of

the harmonic disturbance. Therefore this type of plot should not be used to validate the

amplitude coefficients of the model. Instead, the waterfall plot is useful for validating the

harmonic numbers. Note in Figure 3-12 that the diagonal lines of circles lie on top of the
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Figure 3-12: Waterfall Plot Comparison of Radial Force Model to Fx Data (Ithaco B Wheel)

diagonal ridges seen in the data. The plot indicates that the location of the harmonics have

been identified correctly. During the first iterations of the modeling process such plots are

extremely useful for finding harmonics which may have been either missed by iden-harm. m

or erroneously identified. In general, it is more practical to view the PSD comparison when

validating the harmonic numbers with waterfall plots. The square operation involved in

computing the power spectral density tends to make the noise floor appear smaller which

results in better defined ridges of harmonics in the waterfall plot.

The second type of plot generated by comp-model.m is shown in Figure 3-13. The lower

plot compares the amplitude spectra of the data and model for one wheel speed (3000 rpm

in this example). The continuous curve is the data amplitude spectrum, and the discrete

impulses, marked with circles, are the radial force model amplitudes. In this form, both

data and model amplitudes have the same units and can be compared directly allowing

validation of the amplitude coefficients. Note that the amplitude of the first harmonic,

which is the fundamental, matches the amplitude of the data quite well. The comparison of

the higher harmonics, on the other hand, is not as good. This discrepancy is most likely due

to the assumption that the disturbance force is proportional to the wheel speed squared

(Equation 3.6). As mentioned earlier, this assumption seems valid for the fundamental

harmonic but begins to break down with the higher harmonics.

The cumulative RMS curves, which represent the RMS as a function of frequency (see
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Figure 3-13: PSD Comparison of Radial Force Model to F Data (Ithaco B Wheel) with

Cumulative RMS at 3000 rpm

Section 2.1.1), for both the model and the data, are plotted above the amplitude spectra.

These curves offer another way to check the amplitude coefficients. Ideally the model RMS

will be close to the data RMS and the contributions to the RMS from the harmonics will

be comparable. For this example, the contribution of the fundamental harmonic accounts

for a large portion of the RMS in both the data and the model. However, the model under-

predicts the RMS over all frequencies. The data shows energy at frequencies below the wheel

speed which are not captured in the model. The RMS curves at frequencies greater than

the wheel speed both exhibit a "staircase" behavior resulting from the addition of energy

by the higher harmonics, but the cumulative RMS of the data is as much as a factor of 2

greater than that of the model. Such discrepancies between the model and the data may

indicate errors in the amplitude coefficient calculation. However, the lower plot shows that

although the amplitudes of the higher harmonics are not predicted exactly, a reasonable

estimate has been obtained. Therefore other possible explanations for the poor data/model

comparison are considered and will be discussed in Section 3.2.3.

3.2 Examples

The RWA vibration data discussed in Section 2.2 was run through the RWA DADM toolbox

to create disturbance models for the Ithaco type B and E wheels. Five sets of data for each
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Table 3.3: Empirical Model Parameters for Ithaco B Wheel

Radial Force, nrad = 13 Radial Torque, ntor = 11 Axial Force, naxi = 4
Harmonic Amplitude Harmonic Amplitude Harmonic Amplitude

Number, hi Coefficient, Ci Number, hi Coefficient, Ci Number, hi Coefficient, Ci
N/rpm2 x10e- 7  N/rpm 2 x10e- 7  N/rpm2 x10e- 7

0.99 0.2134 0.99 0.0630 0.99 0.0727
1.99 0.0510 1.99 0.0314 1.41 0.0497
2.46 0.0609 3.16 0.0089 2.82 0.0975
3.16 0.0783 4.56 0.0119 5.95 0.1989
3.87 0.0528 5.28 0.0261
4.56 0.0905 5.97 0.0372
5.28 0.1752 6.23 0.0237
5.98 0.3040 6.68 0.0276
6.71 0.2053 7.38 0.0335
8.09 0.3246 8.09 0.0477
8.83 0.3517 8.80 0.0400
9.54 0.2991
10.25 0.3183

wheel, F2, Fy, Fz, T2, and T., were used to obtain three disturbance models per wheel:

radial force, radial torque and axial force. The results of the data analysis, the model

parameters and comparisons between the models and data are presented in the following

sections.

3.2.1 Ithaco B Wheel Empirical Model

The model parameters extracted from the Ithaco B Wheel data are listed in Table 3.3. The

number of harmonics included in each model are indicated in the column heading by the

parameter n. The creation of the three models will be discussed separately and in detail in

this section.

Radial Forces

The harmonic numbers for the Ithaco B Wheel radial force model were identified using the

function iden.harm.m and then refined through data comparison. The function was run

twice, once with AF, and once with AFy. The wheel speed and frequency vectors for both

cases are identical, and the upper frequency limit, fLim was set at 200 Hz due to the effects

of the test stand resonance on the data. The noise isolation, binning and bin percentage

tolerances, N., E, and Po, were set to 3, .02 and 25, respectively. In addition, the data
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Figure 3-14: Waterfall Comparison of Radial Force Model and Ithaco B Wheel Fy Data

splicing option was turned on due to the poor quality of the data.

Both waterfall plots and amplitude coefficient curve fit plots aided in choosing harmonic

numbers. The waterfall plots were used to find extraneous harmonics that were incorrectly

identified by idenharm. m or harmonics that were visible in the data but were missed by the

function. Then the coefficient curve fit plots, created with the combination of the F2 and

F data sets, provided a filter for harmonics with low confidence amplitude coefficients.

Harmonics with numbers greater than 10.25 were removed from the model for this reason.

No structural wheel mode resonances could be clearly identified in the radial force data

so the function removemode.m was not necessary. The resulting radial model consists of

13 harmonics. Their numbers and amplitude coefficients are listed in Table 3.3 and the

coefficient curve fits are presented in Appendix A.1.1.

Waterfall comparisons of the final radial force model and the F, and Fy data are shown

in Figures 3-12 and 3-14, respectively. Both plots indicate that the disturbance frequencies

have been captured by the model quite well. The first four harmonics are clearly visible in

the data and the model frequencies lie right along the data peaks. The higher harmonics

are difficult to see in the data at low frequencies (probably because of a low signal to noise

ratio), but at higher frequencies a good correlation between model and data can be observed.

A second type of model/data comparison is shown in Figure 3-15. Here, the RMS values

of the data and the model are plotted as a function of wheel speed. In effect, this plot is
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simply an integration of the waterfall plot across frequency. The solid curves, marked with

"+" and "" are the RMS values for the F, and F. data, respectively, and are quite similar,

as is expected. The dotted curves are the RMS values for the F, and F data minus the

RMS of the noise floor obtained from the Ithaco B Wheel noise data (see Section 2.2.1).

Note that the measured noise contributes very little to the energy of the signal. The solid

line marked with circles is the RMS of the radial force model. The plot clearly shows that

the radial force model under-predicts the actual disturbance across all wheel speeds. One

thing to note is that there is quite a bit of energy at low wheel speeds that is not captured

by the model. In fact, the model RMS is lower by more than a factor of 2 at 500 rpm. The

model gets closer to the data as the wheel speed increases, but is consistently lower. This

discrepancy will be addressed in detail in Section 3.2.3, after both the complete Ithaco B

and E Wheel models have been presented.

Radial Torques

The procedure for developing the radial torque model closely parallels that of the radial

forces. The wheel speed vector, frequency vector, fLim and tolerances are unchanged, but

the data sets used are AT, and AT,. The waterfall plots provided a check on the early

generations of harmonic numbers, and higher harmonics (above 10.25) were eliminated due
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Figure 3-16: Elimination of Rocking Mode Disturbance Amplification from Calculation of
C3 (h3 = 3.16)

to low confidence amplitude coefficient curve fits.

The initial coefficient curve fits for the final harmonic numbers are presented in Ap-

pendix A.1.2. Note that the curve fits for 02 (h 2 = 1.99) and 03 (h 3 = 3.16) show distinct

disturbance amplifications in the ranges 1200 - 1900 rpm and 2000 - 2300 rpm, respec-

tively. These amplifications are due to the excitation of the positive and negative whirls of

the rocking mode (see Section 2.3). The function removemode .m was used to remove the

modal effects from the amplitude coefficient calculation for these harmonics. The results

are plotted in Figures 3-9 and 3-16. Note that removing the modal disturbance amplifica-

tion lowered the value of the amplitude coefficient for both harmonics. The final harmonic

numbers and amplitude coefficients for the radial torque model are listed in Table 3.3.

Waterfall comparisons of the Ithaco B Wheel radial torque model are shown in Figure 3-

17. The first three harmonics are clearly visible in the data and occur at frequencies which

are accurately captured by the model. The higher harmonics are more difficult to identify,

but the high frequencies show a relatively good correlation between the model and the data.

The RMS comparison for the radial torque model is shown in Figure 3-18. The solid

curves, marked with "+" and "*" are the RMS values for the T, and T. data, respectively,

and are quite similar, as is expected. The dotted curves are the RMS values for the T, and

Ty data minus the RMS of the noise floor. Note that the noise floor contributes very little
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Figure 3-17: Waterfall Comparisons of Radial Torque Model and Ithaco B Wheel Data

to the energy of these signals as was the case with the radial force data. The radial torque

model RMS is plotted as a solid line with data points marked by circles.

The RMS comparison indicates that the radial torque model, like the radial force model,

severely under predicts the disturbances. Note the peaks in the data RMS around 1600 rpm

and 2100 rpm. Recall that these wheel speeds correspond to the middle of the wheel speed

ranges over which disturbance amplifications from the rocking modes were visible in some

of the coefficient curve fits. It can be concluded then that these large RMS values are due to

the effects of the structural modes on the wheel disturbance and are not expected to be seen

in the empirical model. However, all the additional energy in the data cannot be attributed

to interactions with the structural wheel modes since the model RMS is consistently much

lower than the data RMS over all wheel speeds, not only those speeds at which disturbance

amplification occurs. Therefore other possible sources of error must be considered, as is

the case with the radial forces, and will be discussed after the presentation of the Ithaco E

Wheel model in Section 3.2.3.

Axial Forces

The axial force model was created from AFz and the same O, f, fuim and tolerances used

for the radial force and torque models. Notice from Figure 2-4 that the waterfall plot of

the Fz data looks much different from the radial force and torque data. Distinct ridges of
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Figure 3-18: RMS Comparison of Empirical Model and Ithaco B Wheel Data: Radial
Torque (with and without noise floor)

harmonic disturbances are very difficult to see and there is a constant frequency ridge at

about 75 Hz. Note from Table 2.3 that this frequency is close to the reported frequency

of the axial mode of the Ithaco B Wheel [16]. Therefore it appears that the dominant

disturbances in the Fz data are a result of excitation of the axial translation mode. In

addition, there are quite a few dynamics visible in the waterfall plot below 50 Hz. These

disturbances do not seem to be wheel speed dependent and their source is unknown.

The axial mode resonances and low frequency disturbances dominate the F, data and

cause difficulties in the identification of the harmonic numbers. The function idenharm.m

is unable to effectively isolate harmonic disturbances from the data. Therefore, the result-

ing axial model is of poor quality. Most of the harmonics identified with idenharm.m

had to be removed from the model due to low confidence amplitude coefficient curve fits.

The coefficient curve fit plots for the remaining four harmonics, which are presented in

Appendix A.1.3, show that none of the coefficient curves fit the data very well. Even the

fit for the fundamental harmonic, hi = 0.99, is not particularly good. The second and

third harmonics, h2 = 1.41 and h3 = 2.82, both contain disturbance amplification from the

axial mode between 1500 and 1900 rpm and 2800 and 3000 rpm, respectively. The function

removemode.m was used to eliminate the modal effects from the coefficient calculation as

shown in Figure 3-19.
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Figure 3-19: Elimination of Axial Mode Disturbance Amplification from Amplitude Coeffi-

cient Calculations: Ithaco B Wheel Axial Force

The waterfall plot comparison of the axial force model and the Fz data is shown in

Figure 3-20. As was discussed earlier, harmonic disturbances are not clearly visible in the

data and can only be observed when the disturbance frequency equals that of the axial

mode. Even the fundamental harmonic, which was the most significant harmonic in the

radial forces and torques, is not clearly defined in the axial force data. Therefore, the

correlation between the model and the data is not very good. It is possible that the axial

force disturbances are not a series of discrete harmonics like the radial forces and torques.

The correlation between the Ithaco E Wheel data and model can be used to test this

hypothesis and the model/data fit discussion will be continued in Section 3.2.3.

The final plot is the RMS comparison between the axial force model and the data. The

solid line marked with "+" represents the RMS values of the Fz data and the dashed line

is the data RMS minus the noise RMS. Note that the noise RMS does not contribute very

much to the data RMS. This result is consistent with those seen for the radial forces and

torques. The axial force model RMS is plotted with a solid line with data points marked by

circles. The dominant feature in this plot is the peak in RMS between 1500 and 1700 rpm.

This wheel speed range corresponds to the range over which disturbance amplifications from

the axial mode were present in the coefficient curve fit for the third harmonic (Figure 3-

19(b)). In the waterfall plot of the Fz data (Figure 3-20) a very large peak is visible at

about 65 Hz and 1600 rpm. This amplified disturbance adds a large amount of energy to
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Figure 3-20: Waterfall Comparison of Axial force Model and Ithaco B Wheel Fz Data

the RMS at this wheel speed resulting in the large peak RMS value in Figure 3-21. It should

also be noted that the axial force model lies consistently below the data over all speeds. As

discussed earlier, this result is only expected at wheel speeds in which the disturbances are

amplified by the internal wheel modes. This discrepancy will be discussed in more detail in

Section 3.2.3 after the Ithaco E Wheel model is presented.

3.2.2 Ithaco E Wheel Empirical Model

The model parameters extracted from the Ithaco E Wheel data are listed in Table 3.4. The

number of harmonics included in each model are indicated in the column heading by the

parameter n. The creation of the three models will be discussed separately and in detail in

this section.

Radial Forces

The radial force model parameters were extracted using the inputs listed in Table 3.5.

Note that there are two wheel speed vectors, one corresponding to each of the radial force

data sets. The vibration tests conducted on the Ithaco E Wheel were actually wheel speed

sweeps, and the data for each disturbance direction had to be pre-processed, as described

in Section 2.2.2, into "steady-state" data sets. As a result of the pre-processing, there is

a distinct wheel speed vector for each data set. The Ithaco E Wheel data was sampled at
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Table 3.4: Empirical Model Parameters for Ithaco E Wheel

Radial Force, nrad = 7 Radial Torque, nto = 6 Axial Force, naxi = 5
Harmonic Amplitude Harmonic Amplitude Harmonic Amplitude

Number, hi Coefficient, Ci Number, hi Coefficient, Ci Number, hi Coefficient, Ci
N/rpm2 x10e- 7  N/rpm 2 x10e- 7  N/rpm2 x10e-7

1.00 0.4155 1.00 0.2205 1.00 0.3038
2.00 0.0832 2.00 0.0609 1.98 0.2818
3.00 0.0543 3.00 0.0242 2.96 0.0719
4.00 0.0621 4.00 0.0243 4.00 0.0685
4.42 0.1097 4.42 0.0485 4.33 0.1011
5.37 0.0542 5.58 0.0498
5.57 0.0690
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Table 3.5: Inputs for Ithaco E Wheel Radial Force Modeling

Name Description Size/Value
m # of wheel speeds 120

nf # of frequency points 640
f Frequency vector 640 x 1

fLim Upper frequency limit 300 (Hz)

fFx Wheel speeds 1 x 120

0Fy Wheel speeds 1 x 120
AFx Amplitude spectra 640 x 120
AFy Amplitude spectra 640 x 120

SF, PSDs 640 x 120
SFy PSDs 640 x 120
N, Noise isolation tolerance 2
E Binning tolerance 0.02

P0  Bin percentage threshold 25%

a relatively high frequency (3840 Hz) and for a long time. Therefore, a small frequency

resolution and good signal to noise ratio were obtained, which allows the use of a low noise

isolation tolerance, N, = 2 for the identification of the harmonic numbers.

The harmonic numbers were identified with idenharm. m and refined through waterfall

comparisons and amplitude coefficient curve fits. A harmonic at hi = 5.00 and those greater

than 5.57 were eliminated from the model due to low confidence amplitude coefficient curve

fits. In most of these cases the only significant peaks were a result of disturbance ampli-

fication by structural modes. Once the affected points were removed from the calculation

there were not enough data left to accurately predict the amplitude coefficient. The fact

that these harmonics could not be observed at low wheel speeds indicates that the dis-

turbances at these frequencies are most likely small relative to the identified harmonics.

Therefore, their omission from the model should not have a large effect on the degree of

correlation between the model and the data. The harmonic numbers corresponding to the

seven harmonics that are included in the radial force model are listed in Table 3.4.

The curve fit for the first harmonic, hi = 1.0, is shown in Figure 3-22. Notice that the

data points are not distributed evenly across wheel speeds, but are clustered at high wheel

speeds. Recall from Section 2.2.2 that when the vibration tests were conducted, full torque

was applied to the wheel and it was allowed to spin up until it reached saturation around

2300 rpm. As a result, a large portion of the data was taken while the wheel was saturated

at its maximum speed. Therefore, when the data was processed into quasi-steady state data
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Figure 3-22: Amplitude Coefficient Curve Fit for Radial Force Harmonic, hi = 1.0

sets, the highest wheel speed was represented multiple times in the wheel speed vector and

frequency domain data matrices. The algorithm used in find.coeff .m ensures that the

uneven wheel speed distribution does not result in an unequal weighting of the data points

when the amplitude coefficient is calculated. If a data point from a given wheel speed is

included more than once in the vector Di, it is also included an equal number of times in

The coefficient curve fits for the other six harmonics are presented in Appendix A.2.1.

Note that disturbance amplifications are clearly visible in all of the curve fits. Some of

the curves show amplifications over multiple wheel speed ranges. For example, disturbance

amplifications occur in the fit for h5 = 4.42 (Figure A-8(d)) between 900 and 1100 rpm and

then again between 1800 and 2150 rpm. The function remove-mode.m was used to isolate

the amplifications and recalculate the amplitude coefficients. The results of this analyses

are presented both in graphical, Figures 3-24 and 3-25, and tabular, Table 3.6, form.

Table 3.6 lists the affected speed ranges, probable amplification sources and amplitude

coefficients (with and without amplification) for each of the affected harmonics. The am-

plification source was determined by examining the waterfall plot comparison of the radial

force data and model, Figure 3-23. In this plot, the frequencies of the radial translation

and rocking modes are labeled and highlighted with solid dark lines. The modal frequencies

were determined using the values in Table 2.3 as a guide. The coefficient curve fit plot for
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Table 3.6: Disturbance Amplification in Radial Force Harmonics

hi Wheel Speed Amplification Ci Ci
Range (rpm) Source N/rpm2 x10e- 7  N/rpm2 x10e-7

1.0 1900-2000 radial rocking (negative whirl) 0.4200 0.4155

2.0 800-1300 radial rocking (negative whirl) 0.0846 0.0832
2200+ unknown

3.0 1800-2000 radial rocking (positive whirl) 0.0734 0.0543

4.0 1150-1400 radial rocking (positive whirl) 0.0629 0.0621
2100+ unknown

4.42 900-1100 radial rocking (positive whirl) 0.1188 0.1100
1800-2150 unknown

5.37 2200+ radial translation 0.0780 0.0524

5.57 2200+ radial translation 0.1729 0.0690

the first harmonic shows a disturbance amplification around 2000 rpm. This amplification

is also visible in the waterfall plot at the same wheel speed. Note that the amplification

occurs at the point where the harmonic crosses the negative whirl of the rocking mode. This

observation suggests that the disturbance amplification is due to the excitation of the radial

rocking mode by the first harmonic. The sources of the other amplifications are determined

in this manner and listed in Table 3.6. In some cases the amplification source is listed as

"unknown." These harmonics show disturbance amplifications at high wheel speeds and

frequencies that do not correspond to either of the radial modes; one example is the fifth

harmonic (h 5 = 4.42). The source of disturbance amplification is unclear in these cases.

The data/model waterfall and RMS comparison plots are shown in Figures 3-26 and 3-

27, respectively. Both the F, and Fy waterfall plots show a very good correlation between

the disturbance frequencies of the data and the model indicating that the harmonic numbers

were identified accurately. It does appear that there may be some higher harmonics which

were not included in the model (due to large uncertainty in the amplitude coefficients),

but the most significant disturbances were captured. Figure 3-27 shows that there is a

relatively good correlation between the RMS of the model and data at a majority of the

wheel speeds. The RMS of the F data is represented by the "+" symbol, that of the
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Figure 3-23: Waterfall Comparison of Radial Force Model and Ithaco E Wheel F, Data

Showing Modal Excitation

Fy data by the "*" and that of the model by circles. There was no noise data available for

the Ithaco E Wheel data so the RMS of the data minus the noise could not be calculated.

For most wheel speeds the model under-predicts the data slightly, but not by a significant

amount. However, there is also a large amount of energy in the data between 1800 and

2000 rpm which was not captured in the model. Referring to Table 3.6, it is clear that both

the first and third harmonic excite the positive whirl of the rocking mode in this wheel

speed range. Therefore, a discrepancy between the data and the model in this range exists

because the empirical model does not account for the structural modes of the wheel. The

smaller peaks in the data RMS between 800 and 1200 rpm can also be attributed to the

structural wheel modes by the same reasoning.

Radial Torques

The radial torque model parameters were extracted using inputs similar to those listed in

Table 3.5, with T substituted for F, and T. substituted for Fy in the subscripts. The radial

torque data are similar to the radial force data so identical tolerance parameters could be

used for both models. Harmonic numbers were identified with idenharm.m and validated

with waterfall comparisons and coefficient curve plots. A harmonic at hi = 5.4 and those

above 5.8 were removed from the model due to low confidence curve fits. The amplitude
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coefficient calculations for these harmonics are only based on a limited number of points,

all of which are at high wheel speeds, as is the case with the higher radial force harmonics.

The harmonic numbers for the six harmonics that are included in the radial torque model

are listed in Table 3.4.

The coefficient curve fits for the initial amplitude coefficients, Ci, are presented in Ap-

pendix A.2.2. As was the case with the radial force curve fits there is an uneven distribution

of data points across wheel speeds due to the conditions of the vibration test and the pre-

processing of the time histories. Also, disturbance amplification is visible in all of the

harmonics, and the fifth harmonic, h5 = 4.42 shows amplification over two distinct wheel

speed ranges. The function removemode.m was used to isolate these disturbance amplifi-

cations and calculate new amplitude coefficients that do not include the effects of modal

excitation. The results are presented in both tabular, Table 3.7, and graphical, Figure 3-

29, form. Figure 3-28 is the waterfall comparison plot used to determine the sources of

disturbance amplification listed in Table 3.7. It is clear from the figure that disturbance

amplifications at low wheel speeds are due to excitation of the rocking mode, and that the

amplification of the sixth harmonic at high wheel speeds can be attributed to excitation of

the radial translation mode. There are also some unidentified dynamics occurring at high

wheel speeds in the fourth and fifth harmonics. These results parallel those obtained for

the radial force model.

The data/model waterfall and RMS comparison plots are shown in Figures 3-30 and 3-

31. The correlation between the model and the data for the radial torques is quite similar

to that observed for the radial forces. The waterfall plots show that the model harmonics

lie directly on the disturbance ridges in the data indicating that the harmonic numbers were

identified accurately. A few unidentified higher harmonics are visible in the data, but do

not appear to be significant. In addition, Figure 3-31 shows a good correlation between the

data and model RMS values across most wheel speeds. As was the case with the radial

force, there are discrete wheel speed ranges over which the data RMS is much greater than

the model. However, Table 3.7 confirms that these speed ranges correspond to excitations

of the radial wheel modes by one or more harmonics. For example, the large peak in data

RMS around 1800 rpm can be attributed the the excitation of the negative and positive

whirls of the radial rocking mode by the first and third harmonics, respectively.
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Table 3.7:

hi Wheel Speed
Range (rpm)

1.0 1750-2000

2.0 1150-1350

3.0 1800-2000

4.0 2100-2375

4.42 900-1100
1750-2250

5.58 2150+

Disturbance Amplification in Radial Torque Harmonics

Amplification Ci
Source Nm/rpm 2 x10e- 7 Nm/i

radial rocking (negative whirl) 0.2716

radial rocking (negative whirl) 0.0624

radial rocking (positive whirl) 0.0411

unknown 0.0348

rocking mode (positive whirl) 0.0624
unknown

radial translation 0.0902

Ci
pm 2 x10e--7
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Figure 3-28: Waterfall Comparison of Radial Torque Model and Ithaco E Wheel T, Data

Showing Modal Excitation
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lations: Ithaco E Wheel Radial Torque
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Table 3.8: Inputs for Ithaco E Wheel Axial Force Modeling

Name Description Size/Value
m # of wheel speeds 120
nf # of frequency points 640
f Frequency vector 640 x 1

fLim Upper frequency limit 300 (Hz)
f2Fz Wheel speeds 1 x 120
AFz Amplitude spectra 640 x 120

SFz PSDs 640 x 120
N, Noise isolation tolerance 2
e Binning tolerance 0.02

PO Bin percentage threshold 20%

Axial Forces

The analysis of the axial force data and parameter extraction for the model closely parallels

those for the radial forces and torques. The only major difference is that only one set of

data is used as an input as shown in Table 3.8. Also, the bin percentage threshold, Po,

had to be lowered to 20% in order to capture all of the harmonics. Waterfall plots and

coefficient curve fits were used to choose the harmonic numbers from the list of normalized

frequencies generated by idenharm.m. Harmonics with numbers greater than 4.33 were

eliminated from the model due to low confidence curve fits. Many of the higher harmonics

only became visible when their amplitude was increased due to excitation of the radial

translation mode. As a result only five harmonic numbers could be positively identified.

These harmonic numbers are listed in Table 3.4.

The coefficient curve fits for the amplitude coefficients, Ci are presented in Appendix A.2.3.

Disturbance amplification is visible in four of the five harmonics: 1.0, 2.0, 2.96 and 4.33.

The function removemode.m was used to isolate the disturbance amplifications and recal-

culate the amplitude coefficients. Both the original coefficients and those resulting from

remove-mode . m are listed in Table 3.9 along with the speed range of the amplification and

its probable source. The amplification source was determined using a waterfall comparison

plot such as the one in Figure 3-32. This figure is similar to those used in the modeling of

the radial forces and torques (Figures 3-23 and 3-28 however now all three structural wheel

modes, including the axial translation, are labeled in the figure and highlighted with heavy,

solid lines. The frequencies of the axial translation mode was determined from Table 2.3.

Disturbance amplifications due to excitation of the radial rocking and axial translation
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Table 3.9: Disturbance Amplification in Axial Force Harmonics

hi Wheel Speed Amplification Ci Ci
Range (rpm) Source N/rpm2 x10e- 7 N/rpm2 x10e-7

1.0 1850-2050 radial rocking (negative whirl) 0.3335 0.3038

2.0 2100-2350 axial translation 0.3497 0.2818

2.96 1900-2000 radial rocking (positive whirl) 0.0839 0.0719

4.33 2300+ unknown 0.0218 0.0101
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Figure 3-32: Waterfall Comparison of
Showing Modal Excitation

Frequency (Hz)

Axial Force Model and Ithaco E Wheel Fz Data

modes are clearly visible in the waterfall plot. In addition, unidentified amplifications at

high speeds in the fifth harmonic h5 = 4.33 are also present. These "extra" dynamics were

also observed in the radial forces and torques at a similar wheel speed/frequency combina-

tion. The results listed in Table 3.9 are also presented graphically in Figure 3-33.

The data/model waterfall and RMS comparison plots are shown in Figures 3-34 and 3-

35. The waterfall plots show good correlation between the data and model disturbance

frequencies indicating that the harmonic numbers were identified accurately. As was true

for both the radial forces and torques as well, there are some unidentified higher harmonics

visible in the data. One difference between the axial force and the radial force/torque

models is that there seems to be a very significant disturbance amplification resulting from
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the excitation of the radial translation mode an unmodeled harmonics. This discrepancy

should result in a model which under-predicts the data. These results are supported by the

RMS comparison, Figure 3-35. The data RMS, plotted with "*" symbols, is significantly

larger than the model RMS, plotted with circles, across all wheel speeds. Note that at

speeds higher than 1700 rpm this discrepancy increases. The peak in the data RMS at 1800

rpm is expected to be unmatched by the model since it is a direct result of excitation of

the positive and negative whirls of the rocking mode (see Table 3.9). The additional energy

after this peak is most likely due to the excitation of the radial translation mode by the

unmodeled harmonics discussed earlier. The consistent discrepancy in RMS values cannot

be attributed to the wheel flexibility, however, and will be examined in more detail in the

next section.

3.2.3 Observations

Recall from section 3.2.1 that the RMS comparisons of the Ithaco B Wheel data and em-

pirical model show a large discrepancy across all wheel speeds for all three disturbance

directions (Figures 3-15, 3-18 and 3-21). One possible explanation for this discrepancy is

disturbance amplification from interaction with the structural wheel modes, as was the case

for the Ithaco E Wheel (Section 3.2.2). Since the wheel modes are not accounted for in

the empirical model, it is expected that the data RMS would be higher than the model at
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wheel speeds at which disturbance amplification occurs. However, that does not seem to be

the case for the Ithaco B Wheel models because no significant disturbance amplification is

visible in the data (besides the test stand resonance) and there is a significant difference in

RMS at all wheel speeds, not just within a specific range.

A second likely source of the error is the presence of unmodeled dynamics in the data.

The poor frequency resolution of the Ithaco B Wheel data makes identifying harmonics

with the RWA DADM toolbox difficult in general, and disturbance harmonics that are

not accounted for in the model can cause a discrepancy between the data and the model

RMS values. The coefficient curve fit plots in Appendix A.1 show that for some harmonics

the model curve resulting from the least squares approximation does indeed lie below the

data. For an example, consider the radial force model plots in Appendix A.1.1. The fit

for C4 (h4 =3.16) is particularly bad, especially at high wheel speeds, while the curve fit

for C5 (h5 = 3.87) severely under-predicts the data at low wheel speeds. These curve fits

support the poor results shown in the RMS comparison, indicating that there are unmodeled

disturbances present in the data. However, since the amplitude of the dominant harmonic,

the fundamental, has been captured quite accurately (as shown in Figure 3-7(a)), it is

unlikely that the omission of a few less significant harmonics would cause an error as large

as those seen in the RMS plots.

The model/data correlation obtained for the Ithaco E Wheel empirical model should be
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considered to determine if the unmodeled disturbances are characteristic of reaction wheels,

and should be incorporated into the model, or are simply the result of the conditions of the

Ithaco B Wheel vibration test. If the RMS discrepancy is indeed due to a modeling over-

sight, a similar trend should be observable in the Ithaco E Wheel data/model comparisons.

However recall from Section 3.2.2 and Figures 3-27, 3-31 and 3-35 that the model/data cor-

relation for the Ithaco E Wheel RMS values was actually quite good over most wheel speeds.

The only large discrepancies occur over speeds at which the wheel harmonics excited the

structural modes. This result is a good indication that the poor model/data correlation

seen in the B Wheel model is vibration test related and not due to the empirical model.

Model/data comparisons at about 1800 rpm for both the B and E wheels are shown in

Figure 3-36. The cumulative RMS curves in the upper plots allow a good comparison of

the data correlation for the two different wheels. Note that although the amplitude spectra

for the Ithaco B Wheel model and data, Figure 3-36(a), show a reasonable matching of

the harmonic disturbances, the cumulative RMS curves are widely different. The large

amount of energy present in the data at low frequencies could be the result of load cell drift

that may have occurred during data acquisition. However, it should also be noted that

the difference between the two curves increases with frequency indicating that a broadband

noise or disturbance component may be contributing to the data RMS. The source of this

additional energy and its relationship to the wheel speed (if any) is unknown. In contrast

both the amplitude spectra comparison and cumulative RMS curves for the Ithaco E Wheel,
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Figure 3-36(b), match well. The first harmonic is the largest contributor to the RMS in both

the data and the model and its amplitude has been captured in the model quite accurately.

There is a slight discrepancy in the RMS values at high frequencies which is most likely due

to harmonics which could not be included in the model due to low confidence amplitude

coefficient curve fits. These results indicate that the empirical model captures the harmonic

RWA disturbances reasonably well.

3.3 Summary

An empirical RWA disturbance model that was developed for the HST RWA and assumes

that RWA disturbances are a series of discrete harmonics with amplitudes proportional

to the wheel speed squared has been reviewed. A MATLAB tool for extracting the model

parameters, harmonic numbers and amplitude coefficients, from steady-state RWA vibration

data has been developed and presented in detail. The toolbox consists of four main functions

and allows the creation of an empirical model for any reaction wheel for which vibration

data exists. The toolbox was used to create empirical models for two different Ithaco wheels:

a B type and an E type. The model/data correlation for the Ithaco B Wheel shows the

presence of broadband dynamics in the disturbance data which were not captured by the

empirical model, but are believed to be specific to this data set and possibly due to the

conditions under which the vibration test was conducted. The Ithaco E Wheel model, on

the other hand, correlates well with the data over all frequencies except those at which

disturbance amplifications are caused by excitation of the structural wheel modes. In some

cases, these amplifications can be quite large causing the empirical model to severely under-

predict the disturbance. Therefore, in order to obtain an accurate disturbance model the

internal flexibility of the RWA must be taken into account. In the next chapter a second,

physical model is developed to capture the interactions between the harmonic disturbances

and the structural wheel modes.
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Chapter 4

Analytical Model

It has been shown that the empirical model captures the harmonic quality of reaction wheel

disturbances and a MATLAB toolbox has been developed which accurately identifies the

disturbance frequencies and provides an estimate for the amplitudes. The Ithaco E Wheel

data was used to validate the model, and it was shown that the empirical model correlated

well to the data over most wheel speeds. However, large discrepancies were seen between

the model and data at particular wheel speeds. It was found that the model severely under-

predicts the data for speeds at which interactions occur between the harmonics and the

structural wheel modes. This discrepancy occurs because the empirical model does not

account for the internal flexibility in the wheel. Therefore, a non-linear, analytical RWA

disturbance model which captures the structural modes of the wheel and the effects of the

fundamental harmonic has been developed. This model is then extended to include all the

wheel harmonics using the amplitude coefficients and harmonic numbers from the empirical

model.

The development of the analytical model is presented in the following sections. First

the modeling methodology is discussed in detail and the equations of motion are derived

and solved to obtain the steady state solutions for the spinning wheel. Then the model is

extended to include the higher harmonics obtained with the RWA DADM. Finally prelimi-

nary simulation results are presented and methods of choosing the model parameters to fit

the data are discussed. Further development is needed to complete the analytical model.

At the end of the chapter modeling issues are presented and recommendations are made for

future work.
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4.1 Model Development

The RWA is modeled as a balanced flywheel rotating on a rigid shaft. Linear springs and

dampers are added to model shaft and bearing flexibility. The most significant disturbance

source, flywheel imbalance, is modeled with lumped masses that are positioned strategically

on the wheel. The equations of motion of the full system are solved using energy methods

in a series of stages. First, the problem of a balanced, rotating flywheel on flexible supports

is solved. Then, the static and dynamic imbalance masses are added to the flywheel to

complete the model.

4.1.1 Balanced Wheel: Rocking and Radial Modes

The problem of a balanced flywheel on flexible supports, shown in Figure 4-1, is considered

first to capture the radial modes (translation and rocking) and gyroscopic stiffening of the

wheel. The flywheel of mass, M, and radius, R, is centered axially on a shaft of length, 2d.

Flexibility in the shaft and bearings is modeled with four linear springs of stiffness j located

at a distance dk from the center of the wheel. Damping is added by linear dashpots, with

damping coefficient L placed in parallel with the springs at a distance de from the center of

the wheel. This model is also used in rotor dynamics and is discussed in detail in [24].

Euler angles are used to define the rigid body rotations of the wheel and relate one

coordinate frame to another. The wheel is free to rotate about three different axes as

shown in Figure 4-2. The first rotation, 4, is about the Y-axis of the ground-fixed, inertial

frame, XYZ and defines the intermediate reference frame, abc. The next rotation, 6, which

is about the a-axis, defines the rocking frame, x'y'z', which is rotating in both # and 0 with

respect to ground. The final rotation ,0, is about the z'-axis. This rotation represents the

spinning of the wheel and defines the final, body-fixed frame, xyz. These coordinate frames

and the transformations between them are presented in tabular form as well in Figure 4-2

Energy methods require that expressions for the kinetic and potential energies of the

system and the external work done on the system be obtained in terms of the generalized

coordinates, 6. Kinetic energy is defined as:

T = -WTw+ -MVTV (4.1)
2 2

where I is the inertia tensor and w and v are angular and translational velocities, respec-
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Figure 4-1: Model of Balanced Flywheel on Flexible Supports

tively. As discussed above, the wheel has three rotational degrees of freedom, 0, # and b.

However, it is assumed that the wheel is spinning about its spin axis, z', with a constant

angular velocity, 2p = Q. Therefore, there are only two generalized rotations, 0 and #. The

angular velocity of the wheel in terms of the generalized rotations and the constant spin

rate is obtained by inspection from the Euler angle rotations shown in Figure 4-2:

W = #6a + qny + 6'a2i (4.2)

Note that Equation 4.2 contains components from multiple coordinate frames. In order

to properly find the kinetic energy of the system, the angular velocity must be written in

terms of only one coordinate frame. Since the balanced flywheel is axisymmetric, the kinetic

energy can be written in the rocking frame, x'y'z'. The transformations listed in Figure 4-2
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Reference Transformation
Frame Description x y z

XYZ Ground-fixed, inertial frame nx ny az
abc Intermediate frame cofix - sqniz fy sofx + coflz

x'y' z' Rocking frame Ua COfb + SOfc COfc - SO6b
xyz Body-fixed frame clb2' + sony, cony, - SOX, nz'

U = unit vector, c = cos, s = sin

Figure 4-2: Euler Angle Rotations and Coordinate Frame Transformations for Balanced
Wheel
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are substituted into Equation 4.2 to obtain, in vector form:

xy'z = { 9

cos 9

- 4 sin 9I (4.3)

The inertia tensor of the flywheel in the rocking frame can be written in terms of the

principle moments of inertial of the wheel:

Ix'y'z' =

Irr

0

0

0

Irr

0

0

0

Izz I (4.4)

where Irr and Iz are the radial and polar moments of inertia, and for a uniform disc:

Irr = -MR 2 Iz = -MR 2
2r4 (4.5)

The flywheel also has two translational degrees of freedom, x and y, which describe the

motion of the center of mass of the wheel in the X and Y directions as shown in Figure 4-1.

The translational velocity in terms of the generalized translations is:

vx'y z {
0I (4.6)

Finally, the kinetic energy of the flywheel is

Equation 4.1:

obtained by substituting Equations 4.3-4.6 into

TW = 1$12 + 2 cos 2o) Ir + (Q - sin2 Izz + M ix2 + 2J
2 K//I (4.7)

The potential energy of the flywheel is stored in the springs and can be written by

inspection:

V = (x + d sin #)2 + (x - d sin #) 2 + (y + dsin 0) 2 + (y - dk sd6in)2] (4.8)
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However, since the wheel is centered axially on the shaft, Equation 4.8 reduces to:

V k [d2 (sin2 0 + sin2 g) + x 2 + y21 (4.9)

The external work done on the wheel by the dashpots must also be taken into account.

It can be written in terms of the generalized coordinates and their variations:

c [(p + decos0)(6y + 60decos0) + -6decos0)(6y - 60decos0)

+ (5 + /de cos #)(6x + 6S de cos #) + ( - decos #)(6x - 6#de cos )] (4.10)

which, due to symmetry reduces to:

6W = -c [py + i6x + d2 (6cos2069 + 4cos206q)] (4.11)

The equations of motion are derived using Equations 4.7, 4.9, 4.11 and Lagrangian

methods. First the Lagrangian:

L (1 ... -ni -.- , t) = T - V (4.12)

is formed:

= +2 2cos2 o Ir + (Q - sin 0) IZ + 7 MC(s22 ) 2)

- k di (sin2 0 + sin2 ) x2 + y 2] (4.13)

where the subscript w indicates that this is the Lagrangian for the balanced wheel only. The

equations of motion are then obtained by differentiating tw with respect to the generalized

coordinates and their derivatives and accounting for the external work.

OtW
Ox

OL,

0
aodL,

= -cx

= -cd 2 cos 2 0

= -cd # cos 2 o$

(4.14)

(4.15)

(4.16)

(4.17)
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The equations of motion resulting from Equations 4.14-4.17 can be linearized assuming

small motion about x, y, 0 and #. The translational and rotational degrees of freedom are

decoupled (due to the assumed symmetry in the model) and can be considered separately.

The equations of motion for the generalized translations are:

M 0 i2 C 0 k 0 x
+ + ] =0 (4.18)

L0 M A # L 0 C jL 0 k AIy

and those for the generalized rotations are:

Irr 0 + co QIzz + kd 2 0 2 6 (.9
[. + =0 (4.19)

0 Irr 4 -IZZ #: 0 kd2] 4

where ko and co are the torsional stiffness and damping, respectively:

ko = kd2 co = cd2 (4.20)

The natural frequencies of the balanced wheel can be determined from the homogeneous

solutions of the equations of motion. The natural frequency of the radial translation mode,

WT = ,I is obtained by setting c = 0 and solving for the eigenvalues in Equation 4.18.

The frequencies of the rotational modes are found by assuming that the solutions to

Equation 4.19 are of the form, 0 = Aeiwt and # = Bewi. Substituting into Equation 4.19,

setting co = 0, and solving for w gives two rotational natural frequencies:

Izz 2 kd
W1,2 = - + +Ir (4.21)

21rr F(2Jrr +r

Note that wi,2 are dependent on the spin rate of the wheel, Q. The gyroscopic precession

of the flywheel and the flexibility of the shaft creates a rocking mode which splits into the

two frequencies shown in Equation 4.21. When the precession of the wheel is opposed to

its rotation, this mode will destiffen as the wheel speed increases (wi). This branch of

the rocking mode is called the counter-rotating, or negative whirl mode. However, if the

precession is in the same direction as the spin, the mode stiffens with increasing wheel speed,

(W2 ) creating the co-rotating, or positive whirl, mode [24]. This effect, called gyroscopic

stiffening, is responsible for the V-shaped mode that is visible in the low frequency Ithaco
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Figure 4-3: Model of Static Wheel Imbalance

E Wheel data (Figure 2-8(b)).

4.1.2 Static Imbalance

The balanced wheel and flexible shaft model (Figure 4-1) captures the radial translation

and rocking modes of the wheel. The static imbalance must be added to model the radial

force disturbances of the rotating wheel. Static imbalance is caused by the offset of the

center of mass of the wheel from the axis of rotation. It is most easily modeled as a small

mass, me, placed at a radius, re, on the wheel as shown in Figure 4-3 [16].

Assuming that the mass, m, is a point mass, its kinetic energy, Tms, is defined only

in terms of its translational velocity, vm, with respect to ground (see Equation 4.1). An

expression for vm, is obtained by first determining the position of the mass on the wheel

in the XYZ frame. The mass is located on the y-axis of the body-fixed frame as shown in

Figure 4-3, and its position in this frame can be written as:

Ums = 0 r8  0 (4.22)

The direction cosine matrix that transforms a point from the wheel-fixed frame to the

inertial, ground-fixed frame is derived using the Euler angle rotation transformations listed
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in Figure 4-2:

sOsOs(Qt) + cOc(2t) sOs6c(Qt) - cOs(Qt) cOs#

cOs(Qt) cOc(Qt) -so (4.23)

-sOc(Qt) + sOcOs(Qt) sOs(Qt) + sOcOc(Ot) cOcO

where c = cos, and s = sin. Recall that the center of the wheel is also free to translate in

the X and Y directions, as described by the vector A:

T

S= y 0 (4.24)

Since the static imbalance mass is attached to the wheel, it also undergoes these translations,

and its position in the inertial reference frame, Um.,, can be fully described by:

UmS = 4Um, + A (4.25)

Substituting Equations 4.22, 4.23 and 4.24 into Equation 4.25, results in the following

expression for Um, in terms of the generalized coordinates:

r.(sin # sin 0 cos(Qt) - cos # sin(Qt)) + x

UmS = rs cos 6 cos(Qt) + y (4.26)

rs(sin #sin(Qt) + cos # sin 0 cos(Qt))

Then, the velocity of the static imbalance mass in the inertial reference frame, Vm,' is

obtained by differentiating Um,.. Substitution of the resulting vector into Equation 4.1

gives the following expression for the kinetic energy:

Tmn = {.2+ 2+ r 2 [2 (-cos 2 0 cos2(Qt)) + $2 cos 2 (ft) + Q2]

- 2rp sin 0 cos(Qt) + Q cos 0 sin(Qt)) + 2r, (-Q sin 0 + $ cos 0 cos(Qt) sin(Qt))

+ 2r 3 ± [ $sin # cos 0 cos(Qt) - Q (cos # cos(-Qt) + sin # sinG sin(Qt))

+ 4 (cos # sin 0 cos(Qt) + sin # sin(Qt))1 (4.27)

The kinetic energy of the static imbalance mass, Equation 4.27, is combined with that

of the wheel, Equation 4.7, to obtain the kinetic energy of the complete system. The
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Lagrangian of the system, m,, is found using Equation 4.12:

LmS = I {(M + M) (.2 + y2) + 62 (r2 cos 2 (Qt) + Irr) + q 2 (r2 (I - cos 2 (Qt) cos 2 o)
+ Iz sin 2 9) + (r + Iz) Q2 - 2rjy (6 sin 9 cos(Qt) + Q cos 0 sin(Qt))

+ 2rs5 (± sin p cos 0 cos(Qt) - Q (cos # cos(Qt) + sin # sin 0 sin(Qt)) +

+ 4 (cos # sin 9 cos(Qt) + sin # sin(Qt))) + 2 (r ($ cos 9 cos(Ot) sin(Qt)

- Q sin 0) - IzzQ sin 0) - k [d2 (sin2 9 + sin2 0) + 2 + y2] (4.28)

where the subscript m, indicates that the Lagrangian corresponds to the model of the wheel

and static imbalance mass. The equations of motion for the statically imbalanced flywheel

are derived by substituting Lm, for L, in Equations 4.14-4.17 and linearizing about small

translations and rotations. The generalized translations are described by:

[ 0 ] c 0 ]{ + k 0 x2 -si(t)

0 M # 0 C y 0 k y cos(Ot)

(4.29)

where M = M + m, and the static imbalance is defined as:

Us = mSr5  (4.30)

The addition of the static imbalance to the model results in a driving term in the transla-

tional equations of motion which is proportional to the wheel speed squared , q2. Recall

that the rotational and translational degrees of freedom are decoupled for this model. As

a result, the addition of the static imbalance mass does not affect the generalized rotations

since the the inertia of the flywheel is not changed significantly and the principle axis of

maximum inertia remains aligned with the spin axis of the flywheel.

4.1.3 Dynamic Imbalance

Recall from Chapter 1 that a flywheel can be both statically and dynamically imbalanced.

To complete the analytical model, dynamic imbalance must be added to the wheel to cap-

ture the radial torque disturbances. Physically, dynamic imbalance is caused by angular

misalignment of the principle axis of the wheel and the spin axis. It is modeled as two equal
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Figure 4-4: Model Dynamic Wheel Imbalance

masses, md, placed 1800 apart at a radial distance, rd, and an axial distance, h from the

center of the flywheel as shown in Figure 4-4 [16]. The dynamic imbalance is incorporated

into the model with the same methods used for the static imbalance.

The dynamic imbalance masses are point masses, and their kinetic energy can be fully

described by their translational velocities, Vmd1 and Vmd2 . Expressions for the velocities

are obtained from the positions of the two masses in XYZ. As shown in Figure 4-4 the

dynamic imbalance masses are located on the y-axis of the wheel, and their positions in the

body-fixed frame are:

( }TUmdj = { rd -h (4.31)

( }TUmd2 0 -rd h (4.32)

The transformation matrix, <I (Equation 4.23), and the translational motion of the center

of mass of the wheel, A (Equation 4.24), is used to determine the positions of the imbalance

masses in the ground-fixed reference frame:

Umdj = IUmdj + A (4.33)

Umd2 = 4'umd + A (4.34)
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Substituting Equations 4.31-4.32 and 4.24 into Equations 4.33-4.34 results in expressions

for Umd and Umd2 in terms of the generalized coordinates:

rd (sin # sin 0 cos(Qt) - cos # sin(Qt)) - h cos 0 sin # + x

Umd = rd cos 6 cos(Qt) + h sin 0 + y (4.35)

rd (sin # sin(Qt) + cos # sin 0 cos(Qt)) - h cos # cos J
'-rd(sin # sin 0 cos(Qt) - cos # sin(Qt)) + h cos 0 sin # + x

Umd2  -r COS 0 COSn(rt) - h sin 0 + y (4.36)

-rd(sin #sin(Qt) + cos $sin 0 cos(Ot)) + h cos # cos 0

Then, the velocity of the dynamic imbalance masses, Vmd1 and Vmd2 , are obtained by

differentiating Equations 4.35 and 4.36. The kinetic energy added to the system by the

dynamic imbalance masses is:

1 T 1 T
Tmd = Mdvmdl Vmd + m vmdVmd (4.37)

Differentiating Umd, and Umd2 and substituting the results into Equation 4.37 gives:

Tmd = md { 2 [h2 cos2 6 + ri (1 - cos2 cos2(Qt)) - rdh sin(20) cos(Qt)]

+ $2 (r! cos2 (Qt) + h2) - 2rAe sin(Mt) [hQ - 4 (rd cos 0 cos(Qt) + h sin 0)

- 2rd Q (rd sin0 - h cos 0 cos(Qt)) + 2 + 2 + r } (4.38)

The modeling of the dynamic imbalance mass completes the analytical model which is

shown in Figure 4-5. The kinetic energy of the dynamic imbalance masses, Tmd is combined

with the kinetic energies of the balanced wheel, T., and the static imbalance masses, Tm.,

to obtain the total kinetic energy of the system.

T = Tw + Tm, + Td (4.39)

The Lagrangian of the full model, £mod is formed by substituting Equations 4.7, 4.27 and

4.38 into Equation 4.39 and then substituting the resulting kinetic energy and the potential

energy, Equation 4.9 into Equation 4.12. The result is a complex expression in terms of the

generalized coordinates and their derivatives.
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Figure 4-5: Analytical RWA Model

The EOM for the analytical model are derived by substituting Emod for L, in Equa-

tions 4.14-4.17 and linearizing about small translations and rotations. Again, the transla-

tions and rotations are perfectly decoupled and can be considered separately. The equations

of motion for the generalized translations, x and y, are:

Mt 0 c

0 Mt 0

0 k
+ 0c y 0 I L

0 x 2 - sin(Qt)
= U J 2J

k y ICos (Qt)
(4.40)

where Mt = M + m, + 2 md. The EOM for the generalized rotations, 9 and #, are much

more complex than those for the translations:

IE ! Is(2Qt) 5

{Is(2Qt) I4 J
c - Is(20t)

-Izz - 2Is 2 (Qt)

Ud2 C{(t)

Is(Qt)

I,, + 2Ic2 (Qt) 1 ko 0 0

a +iQ + hzs(2Qt)J 0~ J ko] ~

(4.41)
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where c = cos, s = sin, the inertia terms are:

Io = rr + 2mdh 2 + I cos 2( )t) (4.42)

Io = Irr + 2mdh 2 + Isin2(Qt) (4.43)

I = 2mdr2 + msr 2 (4.44)

and the dynamic imbalance is defined as:

LUd = 2mdrdh. (4.45)

Equations 4.40-4.41 fully describe the motion of the analytical model. Note that the driving

terms of the right-hand side of the equations corresponding to both the translations and

rotations, are harmonic functions with a frequency equal to the wheel spin rate. The

translations and rotations resulting from these forcing functions generate the fundamental

wheel harmonic in the radial force and torque data.

4.1.4 Extended Model: Additional Harmonics

The analytical model shown in Figure 4-5 captures the radial modes of the RWA and

flywheel imbalance, which causes disturbance forces and torques at the frequency of the

wheel's spin, as seen in the right sides of Equations 4.40 and 4.41. However, it has been

shown that additional disturbances occur at frequencies corresponding to many different

ratios of the wheel's spin rate (see Figure 3-12 for an example). These disturbances are

captured in the empirical model and a MATLAB toolbox has been developed that facilitates

the extraction of the model parameters from data (Chapter 3). Therefore, the analytical

model, as it stands now, does not fully capture the dynamics of RWA disturbances. The

additional harmonic disturbances must be incorporated into the analytical model. The

empirical model parameters are used to create an extended analytical model, as shown

in Figure 4-6, which includes the radial wheel modes, and all the harmonic disturbances

identified by the RWA DADM toolbox.

Recall from Chapter 1 that disturbances occurring at frequencies other than the wheel's

spin rate are generally attributed to components of the RWA other than the flywheel such as,

bearing imperfections, motor disturbances, and dynamic lubricant behavior. Capturing the
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Figure 4-6: Incorporation of Harmonic Disturbances into Analytical Model

dynamic behavior of all of the RWA components would require a very complex, high-fidelity

model. Therefore, for simplicity the parameters of the empirical model are used to capture

the frequencies and amplitudes of the additional harmonic disturbances without modeling

their sources physically . The equations of motion of the extended model are obtained by

adding the additional disturbances as harmonic forcing functions at frequencies, hjQ, and

with amplitudes of CiG2, to the right hand side of Equations 4.40 and 4.41. The resulting

generalized translations and rotations are described by:

E

0

0 c
t+ 0

0

c

+ k
y~ [0

0 x 2 -sin(hradiQt)
=CradiQ

k y = cos(hradi Qt)

(4.46)

and:

+ -Is(2f2t) Izz + 2Ic2 (fpt)

-I[ , - 2Is2 (Qt) %+ Is(2Qt)

n c(htorjit)
= Cori 2

i=1 s(htor, Qt)

[ko 0 0

0 ko 14J

(4.47)

where 1, I4, I, c and s are defined in the previous section. The parameter pairs, hradi and

Cradi, and htori and Ctori correspond to the harmonics numbers and amplitude coefficients

of the radial force and torque disturbances, respectively. Since the fundamental harmonic

is physically accounted for in the model by the static and dynamic imbalance masses, the

amplitude coefficients, Crad, and Ctir corresponding to this harmonic, hradi = htori = 1,

are equal to the static imbalance, Us, and the dynamic imbalance, Ud, respectively:

Cradi = U. when hradi = 1.0

Ctor = Ud when htori = 1.0

(4.48)

(4.49)
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All other harmonic numbers and amplitude coefficients are equal to those obtained through

the empirical modeling process (see Chapter 3).

4.2 Model Simulation

The disturbance forces and torques predicted by the extended analytical model are obtained

by simulating the equations of motion presented in Equations 4.46 and 4.47 with MATLAB.

In this section, the methods used to obtain the time histories of the disturbances are pre-

sented, and the results of a preliminary simulation are discussed. It will be shown that the

extended analytical model captures interactions between the harmonics and the internal

wheel mode. However, problems are encountered modeling both the positive and negative

whirls of the rocking mode. This modeling issue is explored in detail and a preliminary

solution is proposed.

4.2.1 Analytical Solutions of EOM

In order to simulate the extended analytical model, the solutions of the second order dif-

ferential equations governing the motion of the system (Equations 4.46-4.47) are obtained

using the method of undetermined coefficients [25]. In general, an nth order linear equation:

anwf() + an-1w(n- + ... + aiw'+ a0 w = f (t) (4.50)

has a general solution of the form:

w(t) = Wh(t) + wp(t) (4.51)

where wh(t) is the solution of the homogeneous equations associated with Equation 4.50

and wp(t) is a single particular solution of Equation 4.50. Therefore, in order to find the

complete analytical solutions for the generalized translations x(t) and y(t), and generalized

rotations, 6(t) and 0>(t), both the homogeneous and particular solutions of Equations 4.46-

4.47 must be obtained.
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Generalized Translations

Homogeneous Solutions The generalized translations will be considered first. The

solutions of the homogeneous equations:

Mtz + cz + kx =

Mt# + cy + ky =

0

0

(4.52)

(4.53)

are found by assuming solutions of the form:

Xh(t) = Aert

yh(t) = Bert

(4.54)

(4.55)

and substituting into Equations 4.53 to obtain the characteristic equation:

Mtr 2 + cr + k = 0 (4.56)

Dividing Equation 4.56 by Mt and using:

WT =

C
(T 2WTMt

(4.57)

(4.58)

results in the following general form:

r + 2 (TWTr + wT = 0 (4.59)

where WT is the natural frequency of the radial translation mode and (T is the damping

ratio. Then, solving for r:

r=-(TW ± iwT 1(-T (4.60)

substituting Equation 4.60 into Equation 4.55, and assuming that the system is under-

damped (0 < (T < 1), expressions for Xh(t) and yh(t) are obtained:

Xh(t) = eTwTt (A1 cos(wdt) + A2 sin(wdt)) (4.61)
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yh(t) = e--T t (51 cos(Wdt) + B 2 sin(wdt))

where the damped natural frequency is defined as Wd = WT 1 -T

Particular Solutions The particular solutions of Equations 4.46, xp(t) and yp(t), are

found using the method of undetermined coefficients and the principle of superposition.

Note that the forcing function on the right-hand side of Equation 4.46 is a linear combination

of sines and cosines. Therefore, the particular solution can be found by considering each

forcing function separately and then combining the solutions.

The particular solutions corresponding to the ith harmonic are obtained by assuming

that xzy(t) and yp(t) are of the form:

Xp(t) = A sin(hjnt) + 54 cos(hj~t)

ypi(t) = O sin(hjft) + De cos(hjft) (4.63)

Substituting Equations 4.63 into Equations 4.46, and collecting

following:

like terms results in the

k - (hiQ)2 Mt -hiQc 0 AC1
hiQc k - (hiQ)2 Mt Ji 0

0 k - (hiQ)2 Mt -hiQc o 0

hiQc k - (hin)2Mt DiJ C2
(4.64)

Then, solving for the coefficients, Ai, B, C and Di, and substituting into Equation 4.63,

the particular solutions corresponding to the ith harmonic are:

xy(t)

yp(t)

C12
= M(hiQ)2Mt - k) sin(hi~t) + hiQccos(hint)
(k - (hiQ)2Mt)2 + (hiQc)2

=)M 2  hiQcsin(hiQt) - ((hiQ)2Mt - k) cos(hiQt)(k - (hi-)2Mt)2 +-(.6c5)

(4.65)

Note that xzy and ypi have the same amplitude, but are 90' out of phase, as is expected

for the two radial translations. The solutions can be put into a more convenient form using
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Equations 4.57 and 4.58:

(p( - W2 )2 + (2i Tw - wT) sin(c2it) + 2 WWT(T cos(Cit)
(Qil~ -

_y) 
+W2T(w )

ypi(t) = 2-C2|MT [2c&iwT(T sin(i2it) - c- wT) cos(QDt)l (4.66)

where LDj is the disturbance frequency corresponding to the ith harmonic: (Di = hj . The

denominator of the solution has two roots, or poles, at which resonance occurs:

-2 22(i = W(1- 2(T) i 2(TW - 1 (4.67)

For a lightly damped system, the right-hand side of Equation 4.67 reduces to simply the

natural frequency of the radial translation mode, WT. Therefore disturbance amplification

occurs at wheel speeds in which a disturbance frequency is approximately equal to the radial

translation frequency.

Complete Solutions Finally, the complete solutions for the generalized translations are

defined by:

n

x(t) = Xh(t)+ZXpy(t)
i=1
n

y(t) = yh(t) + yp (t) (4.68)

where the coefficients, A1 , A 2 ,51 , andB 2 , are determined by the initial conditions.

Generalized Rotations

The complete solutions for the generalized rotations are found with the same methods used

for the generalized translations. The mass of the flywheel, M, is much larger than the

imbalance masses, which are generally on the order of .01 grams (g). Therefore, it can be

concluded that:

Irr, Izz (4.69)

This relationship can be used to simplify some of the terms in Equation 4.47:

I0 = Irr + 2mdh 2 + jcos 2 (Qt) ~ Irr
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I0 = Irr + 2mdh 2 + Isin2( 7Qt) Irr

Izz + 21cos 2(O2) (4.70)

The analytical solutions of the full EOM of the generalized rotations were derived, and the

results obtained are equivalent to those presented here for the simplified EOM. Therefore,

for simplicity of presentation, the following simplified EOM for the generalized rotations

are used in the remained of this chapter:

Irr lIsin(2Mt) i
I sin(20t ) Irr

!sin(2Qt)
+

Homogeneous Solutions The homogeneous equations for the generalized rotations us-

ing the simplified equations of motion are:

Ir,, + I sin(27t)o + (cO - QIsin(2Qt) # + QIzze + kO9

s + IrrE - + (co + QIsin(2Qt)) / + ko#
2 1sn2tO+Ir ~z

=0

0 (4.72)

Assuming solutions, Oh(t) and #h(t), of the form:

Oh(t) = Cert

Oh(t) = Der (4.73)

substituting into Equation 4.72, and collecting like terms results in the following system of

equations:

Irrr2 + (co - QIsin(2Qt)) r + ko

lIr2 sin(2ft) - QIzzr

}Ir 2 sin(20t) + GIzzr

Irrr 2 + (co + QIsin(2Qt)) r + ko
(0

(4.74)
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I {4ko 0 0

0 ke 1p
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Setting the determinant of this matrix equal to zero and using Equation 4.69 to simplify

the terms, the characteristic equation is obtained:

I?rr4 + 2Ircorr 3 + (2Irrko + Q2I, + C2 ) r 2 + 2cokor + k = 0 (4.75)

The polynomial in Equation 4.75 has four roots of the form:

ri,2 = -a i ib r3,4 = -c i id (4.76)

where ri,2 correspond to the negative whirl of the rocking mode and r 3 ,4 to the positive

whirl. The parameters a, b, c and d are difficult to obtain symbolically, but can easily

be found numerically when the simulation is run. The general form of the homogeneous

solutions assuming an underdamped system are then:

Oh(t) = e-at (Oi cos(bt) + 02 sin(bt)) + eci (Oi cos(dt) + 02 sin(dt))

h(t) = e-at (f 1 cos(bt) + f)2 sin(bt)) + e-ct (f 1 cos(dt) + D2 sin(dt)) (4.77)

Particular Solutions The particular solutions, O,(t) and #p(t) are found using the

method of undetermined coefficients and the principle of superposition, as in the case of the

generalized translations. Note that both the original and the simplified equations of motion,

Equations 4.47 and 4.71, contain sin(2Qt) terms. The presence of these terms suggests that

the solutions corresponding to the ith disturbance harmonic, 6Op and #pi, may themselves

be combinations of multiple integer harmonics. Therefore, it was initially assumed that the

solutions of the rotations are Fourier series expansions:

00

Op,(t) = Ai. sin(khiQt) + bik cos(khi t)
k=1

#p(t) = E C sin(khj)t) + ik cos(khi~t) (4.78)
k=1

The derivation of the analytical solution assuming this form is shown in Appendix C. The

results show that coefficients for k > 1 are negligible. Therefore, for simplicity the solutions

corresponding to the ith harmonic disturbance, 6Op and #,,, can be assumed to be of the
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form:

op,(t) = A sin(ht) + Bi cos(hjQt)

#p(t) = O sin(hjnt) + bD cos(hjnt) (4.79)

Substituting Equation 4.79 into the two equations in Equation 4.71 and setting like

terms equal results in the following system of equations:

ko - (hiQ)2 Irr -hjnco 0 -hi2Izz 0

hinc9  ko - (hiQ)2 Irr hi2Izz 0 J5 J C 2

0 hiQ 2Izz ko - (hiQ)2Irr -hJCcO 6 CI0 2

hiG21zz 0 hjO ko - (hiQ)2 Irr _DJ 0
(4.80)

Then, solving for the coefficients, Ai, Si, O and DA and substituting the results into Equa-

tion 4.79, the particular solutions of the generalized rotations for the ith disturbance har-

monic are obtained:

G(t ) (h hi Qco sin(hi Qt) - (hiQ 2 Ieff - ko) cos(hiQt)]
Opi M (h-G25 ,e _ ko )2 + (hi Qco)2II

#(t ( f 2) ( [hQ2Ieff - ko) sin(hi nt) + hi co cos(hi t)]
Op W (hAQ2Ief f - ko)2 + (hiQco)2

(4.81)

where:

leff = hiIrr - Izz (4.82)

Note that the solutions are of equal amplitude but are 900 out of phase from each other.

Since 0 and # are both angles about the radial axes, this result is expected.

Recall from Section 4.1.1 that the natural frequencies of the rocking mode are a function

of the wheel speed. Therefore, the frequencies at which the ith harmonic excites the two

whirls of the rocking mode are dependent upon the harmonic number hi. Since the static

and dynamic imbalances are very small compared to the mass of the wheel, the rocking

mode frequencies of the imbalanced wheel are about the same as those of the balanced

wheel (Equation 4.21). The natural rocking frequencies for the ith disturbance can be
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found by solving for the frequency at which UDj satisfies Equation 4.21:

(hi = -F + + (4.83)
2Irr (21rr ) Irr

After some algebraic manipulation the following two frequencies are obtained:

-- 2 hiko
hiIrr + Izz

( -)2 hi ko (4.84)
hiIrr - Izz

where the minus superscript indicates the interaction frequency of the ith harmonic and the

negative whirl and the plus superscript indicates that of the ith harmonic and the positive

whirl. In addition, damping ratios for the ith disturbance and the two whirls can be defined:

_ _ hico
2wri (hiIrr + Izz)

(+ hico (4.85)
( 2wr (hiIrr + Izz)

The quantities in Equations 4.84-4.85 can be used to put the particular solutions in

Equation 4.81 into a more convenient form:

hi CiQ 2 /(hilrr - Izz)
,~()=22 [2 w+r~cr.W sin( Djt) - Co-Cjt

(~~ - ~+)) + (2w(rCo)

~()= hi CQ 2 / (hilrr - Izz) CD2 (W+)2) sin(c, jt) + 2w+(ri7uj cos(Cvit)]
Opi CV?- (W+)2) + r(i2 i

(4.86)

Note that the only frequency which appears in the particular solutions other than the dis-

turbance frequency is of , which is the natural frequency of the positive whirl of the rocking

mode for the ith disturbance. However, it has been shown that the rocking mode has two

natural frequencies, one for each whirl and that, in general, the disturbance harmonics ex-

cite both of them (see Figure 2-8(b) for an example in the Ithaco E Wheel data). Therefore,

the extended analytical model is not capturing the full rocking behavior of the wheel. An

entire mode is lost. This discrepancy between the model and the data must be investigated

before the complete solution of the generalized rotations can be obtained.
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Pole-Zero Cancellation The particular solution obtained for the generalized rotations

can be explored using a simplified version of the analytical model. Consider the equations

of motion for a balanced flywheel (Equation 4.19) with no damping, driven by only one

harmonic excitation at the wheel's spin rate that is of the same form as that resulting from

the dynamic imbalance (Equation 4.41):

Irr 0 + 0 Izz 0 ko 0 0 F cos (Qt)
I 1 ..i!+~ 1 . + = -F (4.87)

0  Irr # LIzz 0 # 0 ko # sin(Qt)

The solutions of these equations are found by assuming that 6 and # are of the form shown

in Equation 4.79 (assuming that hi = 1) and substituting into Equation 4.87. Then, after

collecting like terms, the following set of equations is obtained:

ko - 2Irr 0 0 Q21zz 0

0 ko - Q2 Irr Q2 1zz 0 b F
(4.88)

0 21 zz ko - Q2 Irr 0 C F

L 2Izz 0 0 ko - Q2Irr b 0

It is easy to see from Equation 4.88 that the coefficients, A and D, are zero. Solving for

the remaining two coefficients, the following result is obtained:

F)2 _ 2
B = C = r - (4.89)

Irr - Izz +(o )2 _ Q2)(r )2 _ P2)

It is clear from these coefficients that two distinct poles exist at which resonant behavior

occurs, w and wo, which are the interaction frequencies of the negative and positive

rocking mode whirls and the fundamental harmonic. However, also note that the numerator

of Equation 4.89 contains a pair of zeros at w-, which cancels a pair of poles, effectively

eliminating the resonant behavior due to the negative whirl and results in the following

solutions for the generalized rotations:

0(t) = c Q 2 }Cos(Qt) (4.90)
Irr - Izz {W _ 2

#(M = 1Q sin(Qt) (4.91)
Irr - Izz Wri _
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These final solutions, like those obtained for the extended model (Equation 4.86), only

contain one pole, w,. Only the disturbance amplification due to the positive whirl mode

remains in the model.

It can be concluded from the results of this simple analysis that only the natural fre-

quency of the positive whirl mode is present in the partial solutions for the generalized

rotations because a pole-zero cancellation occurs which eliminates the effects of the nega-

tive whirl of the rocking mode. One possible explanation for these results may be found

in the rotations defined at the beginning of the modeling process. Recall from Section 2.3

that the positive whirl mode, also called the co-rotating precessional mode, results when the

wheel's spin and precession are in the same direction. Note that in Figure 4-2 the positive

directions of Q and the two radial angles, 0 and #, are defined as positive rotations about

the axes. Also, note that the precession of the wheel (about the Z-axis) is a combination

of 0 and #. Therefore, for this model, the precession and spin of the wheel are defined in

the same directions, and the co-rotating (positive) whirl mode is captured.

The counter-rotating, or negative, whirl results when the wheel's precession and spin

are in opposing directions. Therefore, one way to capture the negative whirl in the mode is

to reverse the directions of 0 and #, so that the precession is defined opposite its spin. The

equations of motion for this version of the model are:

[_Irr

I sin (20t)

±I sin(2Qt) - 1z, 0 ko 0 0

Izz f+isin(2Qt) # 0 k #

n Q2 cos(htor Qt) (- ZCtorQ2  
(4.92)

i sin(hto,t)

Solving this set of equations using

particular solutions are:

67(t)
hiCz 2 /(hi Irr -

=W 
2) rr2

i (y)) + (2w

hiCi 2 /(hiIrr -
- ) 

+2 2

the same methods detailed in the preceding section, the

2 [2w7 7& sin(Q t) - (cz - (w-)2) cos (Cit)

2 Gi - (W)2 ) sin(jit) + 2w7-(r- w cos(pit)

(4.93)
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The negative superscript on Op (t) and 4p (t) indicate that the solutions are for the counter-

rotating case.

Recall from Section 2.3 that amplification of harmonic disturbances by both the positive

and negative whirl modes are visible in the Ithaco E Wheel data shown (Figure 2-8(b)).

Therefore the effects of both whirls of the rocking mode must be captured by the analytical

model. One way to do accomplish this goal is through superposition of the particular

solutions obtained assuming both co-rotating and counter-rotating conditions:

6pi = CiQ(2 (- +P

#pi = CiQ 2 (- + #,+ (4.94)

where (O,,)+ and (#,i)+ are the particular solutions for the co-rotating mode (Equa-

tions 4.86) and (6pi)_ and (#pi)_ are the particular solutions for the counter-rotating mode

(Equations 4.93).

Complete Solutions The complete solutions for the generalized rotations are slightly

more complex than those for the generalized translations since both the co-rotating and

counter-rotating solutions must be included for each harmonic disturbance:

9(t) = (t) - ,(t) + 0+ (t)

#(ht) = #(t) + (#(t) + #+ (t)) (4.95)
i=1

The coefficients C1, 02, D1 and 52 are determined by the initial conditions. These solu-

tions, together with those for the generalized translations are used to simulate the extended

analytical model with MATLAB.

4.2.2 Preliminary Simulation Results

Preliminary simulations were run using the equations for the generalized translations and

rotations derived in the previous sections. The homogeneous parts of the complete solutions

account for the transient behavior of the wheel as it changes wheel speed. Since this

thesis deals exclusively with steady-state RWA disturbances, only the particular solutions

are considered at this time. MATLAB is used to simulate the spinning reaction wheel
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and obtain the time histories of the translations and rotations. The disturbance forces

and torques are calculated from the translational and angular displacements through the

following relationships:

F(t) = kx(t) Fy(t) = ky(t) (4.96)

Tx(t) = ko0(t) Ty(t) = kop(t)

Figure 4-7(a) is a waterfall plot of the simulated radial force disturbance. The steady-

state solutions were found at wheel speeds ranging from 0 to 3000 rpm and the PSDs of

the time histories were calculated. Twelve radial harmonics in addition to the fundamental

were included in the model and all are visible in the simulation results. Also, note that

interaction between the higher harmonics and the radial translational mode (which was

set at 200Hz) is captured. The amount of disturbance amplification can be controlled by

changing the damping coefficient, c, as will be discussed in the following sections.

The simulated radial torque disturbance is shown in Figure 4-7(b). Ten higher harmonics

and the fundamental were included in the model. All harmonics are visible in the waterfall

plot and the interactions between both the positive and negative whirl modes are captured.

The heavy dark lines in the wheel speed/frequency plane represent the natural frequencies

of the rocking modes as a function of wheel speed. Note that whenever the harmonics,

which appear as diagonal ridges across wheel speed and frequency, cross these black lines

the mode is excited, and an amplification in the disturbance results.

Figure 4-7, also demonstrates the decoupling of the rotations and translations that was

discussed during the modeling process. Note that the radial translation mode only appears

in the radial forces and the rocking mode only appears in the radial torques. Such perfect

decoupling does not match the experimental data. Recall from Figures 3-23 and 3-28 that

both the radial translation and rocking modes were observed in the radial force and radial

torque data for the Ithaco E Wheel. The coupling between translations and rotations in the

data may be due to the location of the load cell with respect to the center of the wheel. The

translations and rotations in the model are all measured from the center of the wheel, but

the data was taken at the interface of the wheel and the mounting point. It is possible that

a decoupling matrix based on the geometry of the test setup can be used to obtain the pure

translations and rotations of the wheel. Further investigation into this issue is necessary.

These preliminary simulation results indicate that the analytical model does indeed cap-
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Figure 4-7: Extended Analytical Model Simulation

ture the effects of the structural wheel modes on the harmonic disturbances. The empirical

and analytical modeling techniques have been combined to produce a model which includes

the trends visible in RWA disturbance data. However, these results are not correlated to

RWA data. In the following section a methodology is developed which uses steady-state

RWA data to set the model parameters such that the resulting simulation captures the

disturbance behavior of a particular RWA.

4.3 Choosing Model Parameters

The schematic of the analytical model shown in Figure 4-5 contains many model parameters,

including: M, R, md, rd, h, k, and dk which control different features of the model. For

example, the frequency of the structural wheel modes depend on k and dk, and the amplitude

of the fundamental harmonic is governed by md, M, rd, rs, and h. A complete list of

parameters and their descriptions can be found in Table 4.1. Choosing specific values for

these parameters allows the analytical model to be fit to steady-state RWA disturbance

data from any given wheel. A methodology to facilitate the parameter fitting process is

in the preliminary stages of development and is presented in this section. The Ithaco

E Wheel data is used to illustrate the methodology and provides preliminary validation

of the analytical model. The methodology is still under development, and the following

discussion will refer to the analytical model, not the extended analytical model. Only the
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Table 4.1: Model Parameters and Fitting Methodologies

Par ameter Description

Mt Total mass of RWA

R Radial of RWA

Izz Polar moment of inertia

Irr Radial moment of inertia

Ts Radial position of
static imbalance mass

rd Radial position of

dynamic imbalance mass

h Axial position of
dynamic imbalance mass

k Spring Stiffness

dk Distance from wheel
c.g. to springs

m8 Static imbalance mass

md Dynamic
imbalance mass

c Damping coefficient

dc Distance from wheel
c.g. to dashpots

hi Harmonic number

Ci Amplitude coefficient
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Manufacturer

Manufacturer

Calculated

Calculated

Calculated

Calculated

Manufacturer
(thickness of RWA, tm)

Frequency of radial translation
mode: radial force data

Nominal radial rocking
frequency: radial torque data

Amplitude of fundamental harmonic:
empirical model, radial force data

Amplitude of fundamental harmonic:
empirical model, radial torque data

Amplification of harmonics by radial
translation mode: radial force data

Amplification of harmonics by radial
rocking mode: radial torque data

Empirical model

Empirical model
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Figure 4-8: Frequency of Rocking Mode Whirls and Fundamental Harmonic as Function of

Wheel Speed, wr=70 Hz

effects of the fundamental harmonic are considered. Recall that this harmonic is the most

significant in the Ithaco E Wheel data. Therefore, accurately capturing the disturbances

due to this harmonic provides a good approximation to the complete wheel disturbance.

The methodology presented in the following sections can easily be extended and applied to

the extended analytical model.

It was shown in the previous section that a pole-zero cancellation occurs when obtaining

the solution for the generalized rotations which results in the elimination of the effects of

the negative whirl of the rocking mode from the model. One possible solution for this

issue, which uses superposition to capture both whirls, has been presented. However, this

solution affects the amplitude of the disturbance torques and makes the parameter fitting

process more difficult. Therefore, in the following discussion only the solution that captures

the negative whirl of the rocking mode is considered. The negative whirl is chosen since,

as shown in Figure 4-8, no interaction occurs between the fundamental harmonic and the

positive whirl. In the figure, the positive and negative whirl frequencies are represented

with dashed lines, and the fundamental harmonic is shown with a solid line. It is easy to

see that the fundamental harmonic only interacts with the negative whirl. The slope of

the positive whirl frequency curve is such that its frequency is always greater than the spin

rate.
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Table 4.1 lists the sources used to fit each parameter. Note that the first seven param-

eters are all either obtained from the manufacturer or calculated. The mass and radius of

the wheel are easily obtained from the manufacturer of the wheel and do not need to be fit

to the data. These parameters for the Ithaco E Wheel are available on the Ithaco web page

(www.ithaco.com). The mass of the wheel is listed as 10.6 kg and its radius as 19.68 cm.

The next two parameters, Iz and I, are calculated from the mass and radius of the wheel

using the equations shown in the table. The radial and axial positions of the static and

dynamic imbalances masses on the wheel, r,, rd, and h, can not be obtained directly from

the wheel manufacturer, but can be set by other given wheel properties. Since the inertia

of the imbalance masses does not contribute significantly to the inertia of the flywheel,

these quantities only appear in the model along with m, and md as part of the static and

dynamic imbalances, U, and Ud. Therefore these parameters can be set arbitrarily, reducing

the number of parameters that must be fit to data and allowing m8 and md to govern the

static and dynamic imbalance fits. To ensure that practical values for the parameters are

chosen, the radii are set to the radius of the wheel, r, = rd = R, and the axial offset is as-

sumed to be equal to half of the wheel's thickness, h = t,/2. The thickness, te, is generally

provided by the manufacturer. The remaining parameters in Table 4.1 must all be fit using

RWA data (with the exception of Ci and hi, which are empirical model parameters and

correspond to higher harmonics that are not considered in this discussion). The following

sections will discuss the methods used to choose values for the stiffness parameters, k and

dk, the imbalance masses, ms and ma, and the damping parameters, c and dc.

4.3.1 Stiffness Parameters

The stiffness parameters control the natural frequencies of the radial translation and rocking

modes. It is clear from Equation 4.57 that the natural frequency of the radial translation is a

function of only k, and Equation 4.21 shows that the natural frequencies of the rocking mode

are a function of k0 , which is a combination of both k and d. Therefore, the parameter k

can by set by the frequency of the radial translation mode and then dk can be set by the

frequencies of the rocking mode and the value obtained for k.

Rearranging Equation 4.57 results in the following expression for k:

k = Mt (4.97)
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The natural frequency, WT, is extracted from the steady-state radial force disturbance data

with MATLAB. Recall that when the disturbance harmonics are at the same frequency as

that of the radial translation mode, disturbance amplification occurs. These amplifications

are used to determine WT. An initial guess for WT provided, and the frequencies at which

maximum disturbance occurs in the neighborhood of this guess are identified and binned

in a histogram. The mean frequency of the maximum disturbances is identified as the

natural frequency of the radial translation mode. This process is illustrated with the E

Wheel data in Figure 4-9(a). The lower plot shows the maximum disturbance frequencies

for each wheel speed. User interaction is required to chose an upper and lower bound of

clustered points as indicated by the dashed lines. The mean of the points that fall within this

range is calculated and returned as WT. In the upper plot, the histogram of the maximum

disturbance frequencies is presented as a check. Note that there is a cluster of maximum

points around 227 Hz. This frequency is the natural frequency of the radial translation

mode. Figure 4-9(b) shows the identified value of WT plotted on the Ithaco E Wheel radial

force data for comparison. Note that disturbance amplifications are indeed visible when the

harmonics cross the solid line marking the natural frequency of the mode.

The parameter dk is set using the natural frequencies of the rocking mode. Recall that

the rocking mode contains two branches, a positive and negative whirl, that have natural

frequencies which are a function of wheel speed. The frequencies of the positive and negative

whirl are the same when the wheel is at rest, Q = 0:

Wro = (4.98)
Irr

This frequency will be referred to as the nominal rocking mode frequency. Substituting the

expression for ko into Equation 4.98 and rearranging, an expression for dk in terms of k is

obtained:

dk Wro(4.99)
k

The nominal rocking mode frequency is extracted from the radial torque data by finding

the frequencies at which disturbance amplifications occur. Figure 4-10(a) illustrates the

extraction procedure using the Ithaco E Wheel. Given an initial guess for wro, a MATLAB

function is used to plot the frequencies of maximum disturbance amplitude at each wheel

speed. These points are represented by "*" in the figure. The frequencies corresponding
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to the fundamental harmonic are also plotted on the figure and labeled along with the

rocking mode frequencies corresponding to the initial guess (dashed lines). Note that all

of the maximum frequency points lie along the fundamental harmonic line or in a "v"

shape similar to that generated by the initial guess, but translated a bit on the frequency

axis. It can be assumed that any maximum amplification points that do not lie along the

fundamental harmonic line are due to the radial rocking mode. The user is asked if the

initial guess fit is sufficient. If it is not, a new nominal rocking mode frequency is picked off

the plot using the mouse until a good match, like the one shown with the solid V-shaped

curve, is obtained. The nominal rocking mode frequency associated with the final match

is returned as wrO. Figure 4-10(b) shows the rocking mode frequencies extracted from the

Ithaco E Wheel radial torque data plotted against the data for comparison. The rocking

mode frequencies are represented with heavy black lines. The plot confirms that the value

of wro extracted with the method described above is correct. Disturbance amplifications

are visible in the data whenever a harmonic crossed the heavy black lines, as is expected.

4.3.2 Static and Dynamic Imbalance Parameters

The static and dynamic imbalance mass parameters, ms and md, are set using the amplitude

coefficients corresponding to the fundamental harmonic (hi = 1.0) obtained with the RWA

DADM. The equations of motion for the analytical model, Equations 4.40 and 4.41, show

that the radial forces are a result of the static imbalance and that the radial torques are

due to the dynamic imbalance. Then, the expressions for the imbalance masses, obtained

by rearranging Equations 4.30 and 4.45, are:

SUs (60 ) 2 Crad1  (4.100)
rs 27r rs

Ud = 60 2 Ctor(
2rdh \27r 2rdh

where rad1 and Ctor, are the amplitude coefficients corresponding to the fundamental

harmonic for the radial force and torque disturbances, respectively. It is assumed that the

coefficients are provided in units of N/rpm2 and that hi = 1.0, as is the case for the Ithaco

E Wheel.

Figure 4-11 shows the disturbance amplitudes of the fundamental harmonic plotted as

a function of wheel speed from both the simulated model and the data. The simulation was
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run with the imbalance masses calculated with Equations 4.100 and 4.101, the stiffness

parameters obtained through the methods presented in the preceding section and zero

damping. The left plot, Figure 4-11(a), is from the radial force model and data and is used

to check the value of m,. Note that the model amplitudes, marked with "*" lie directly

along the data ("o"). The right plot, Figure 4-11(b), is from the radial torque model and

data and is used to check the value of md. In this plot, the data is only shown up to

1100 rpm because interactions between the fundamental harmonic and the negative whirl

mode affects the disturbance amplitudes at the higher wheel speeds. Since the damping

parameters are not being considered at this point in the parameter fitting process, the

affected data should not be used to validate the imbalance mass, md. The figure shows

that, for the low wheel speeds, the data and model correlate quite well.

4.3.3 Damping Parameters

The final model parameters which must be set are the damping parameters, c and dc. A

good methodology for choosing these parameters is still under development. In general, the

disturbance amplification of the harmonics by the radial translation could be used to set c,

and the disturbance amplification of the harmonics by the radial rocking modes can then be

used to set the value of dc (co = cd'). However, for the example case being considered here,
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the fundamental harmonic of the Ithaco E Wheel, no interaction between the harmonic and

the radial translation mode occurs within the wheel speed range of the data. Therefore, de

is set equal to dk and the interaction between the fundamental harmonic and the negative

whirl of the rocking mode is used to fit c.

The disturbance magnitude of the fundamental harmonic for the radial torque data

and model are compared and c is set through trial and error. A reasonable initial guess

is obtained using (- from Equation 4.85 to set the negative rocking whirl damping ratio

between 0 and 1. Figure 4-12 shows the resulting model/data correlation for the interaction

between the fundamental harmonic and the negative rocking whirl for the Ithaco E Wheel.

Note that although the wheel frequencies at which amplification occurs have been captured

quite well, there is some discrepancy in the damping effects. The model overbounds the data

in the neighborhood of the amplification. It was not possible, given the model parameters,

to capture both the width and height of the disturbance peak in the data. As the c is

reduced to capture the width of the peak, the maximum amplitude gets larger, severely

over predicting the data. One possible explanation for the discrepancy may be the fact that

linear damping was assumed in the model. The use of non-linear damping functions may

improve the quality of the fit. It is also possible that there are unmodeled dynamics in the

data that are causing the mismatch or that other model parameters, besides those associated

129



Table 4.2: Parameters for Analytical Model of Ithaco E Wheel

Value
Parameter Model Ithaco Units

Mt 10.6 10.6 kg
R 19.65 19.65 cm
r. 19.65 - cm
rd 19.65 - cm
h 8.30 - cm
k 21.7 - N/pIn

dk 2.37 - cm
ms 0.019 - g
md 0.062 - g

c 5067 - kg/s
de 2.37 - cm

WT 227.7 250 Hz
Wr 54.9 60 Hz
us 0.38 < 1.8 g-cm
Ud 24.77 < 60 g-cm 2

with damping, affect the disturbance amplification. Therefore, it may be necessary to use

additional model parameters to capture the disturbance amplification correctly.

4.3.4 Preliminary Results: Ithaco E Wheel

The resulting parameters for the analytical model of the Ithaco E Wheel (including only the

fundamental harmonic) obtained through the methodologies described above are listed in

Table 4.2. The second column contains the parameter values fit from the data, and the third

column contains the values reported by Ithaco (when available). The first two parameters,

Mt and R were taken straight from the Ithaco web site is indicated by the identical values in

columns two and three. The final four values, the two modal frequencies and the imbalances,

were calculated from model parameters obtained through data fitting. Comparison of these

values (column 2) with those in column three shows that the model parameters which were

extracted from the data seem to be on the correct order of magnitude.

The parameter values listed in the table were used to simulate the analytical model

of the Ithaco E Wheel at 30 wheel speeds ranging from 100 to 3000 rpm. The RMS

values of the modeled radial torque disturbance at each wheel speed were obtained and

compared to the RMS values from the data and the empirical model. Recall that only

the fundamental harmonic was accounted for in the analytical model considered for this
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example. Therefore, the RMS values of the data and the empirical model were calculated

over the frequency bandwidth [0, 1.30]. Since the second harmonic of the Ithaco E Wheel

is at 2.OQ (Table 3.4) this frequency band only contains the fundamental harmonic and

provides a good comparison between the data and the two models.

The result of this RMS comparison is plotted in Figure 4-13. The radial torque data

(T, and Ty) is marked with "*" and the empirical and analytical models are marked with

circles and diamonds, respectively. The empirical model captures the disturbance behavior

of the Ithaco E Wheel at low frequencies, but severely under-predicts the data at for wheel

speeds at which interaction occurs between the fundamental harmonic and the radial rocking

mode, as was discussed in Section 3.2.2. The analytical model, on the other hand, does

well at low wheel speeds, but also captures the disturbance amplification due to the rocking

mode. In this particular example, the rocking mode over-predicts the data by as much as

a factor of two around the amplified disturbances. This discrepancy is due to the problems

that were encountered when fitting the damping parameters. The correlation between

the analytical model and the data should improve with the development of more accurate

techniques to model and fit the disturbance amplifications.
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4.4 Summary

An analytical RWA model that captures the fundamental harmonic disturbance and the

radial rocking and translation modes of the RWA has been developed. The model is based

on the physical behavior of the wheel and was derived using Lagrangian energy methods. It

consists of a balanced flywheel on flexible supports with small masses strategically placed

on it to model imbalances. The system has five degrees of freedom, two generalized rota-

tions, which capture the radial rocking mode and the dynamic imbalance, two generalized

translations, which capture the radial translation mode and the static imbalance, and the

rotation of the wheel, which is assumed to be constant. Only the flywheel imbalance, which

is the source of the fundamental harmonic, is physically included in the model, so the ana-

lytical model is extended to capture the additional harmonic disturbances that are visible

in steady-state RWA data. These disturbances are incorporated into the model as harmonic

forcing functions with frequencies and amplitudes based on the parameters of the empiri-

cal model that are extracted from steady-state data with the RWA DADM toolbox. The

complete solutions of the generalized translations and rotations are obtained and simulated

with MATLAB.

The extended analytical model is still under development. Modeling problems were en-

countered in the generalized rotations. A pole-zero cancellation occurs when solving for the

particular solutions which eliminates the effects of one of the rocking mode whirls. This

issue has been investigated in some detail and a temporary solution was proposed. In ad-

dition, a parameter fitting methodology which sets the analytical model parameters based

on steady-state reaction wheel data in order to accurately capture the disturbance behavior

of any given wheel is being developed. The preliminary framework for such a parameter

fitting process has been presented along with an analytical model of the Ithaco E Wheel.

The model presented contains only the fundamental harmonic and the interactions with the

negative whirl of the rocking mode. The results show that the analytical model correlates

to the disturbance data much better than the empirical. The interactions between the har-

monics and the structural wheel mode are captured and an over-bound of the disturbances

across all wheel speeds results. There are some discrepancies between the disturbance am-

plification that results in the model and that observed in the data which may be due to

non-linear damping in the RWA or an error in the parameter matching methodology. A
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closer model/data correlation should be obtained through investigation of the disturbance

amplification and determination of the model parameters which control it.
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Chapter 5

Model Coupling

The two types of disturbance models presented in this thesis, empirical and analytical,

rely heavily on experimental disturbance data (forces and torques) obtained from isolated

RWA vibration tests to determine model parameters. The vibration tests are conducted by

mounting the RWA on a "rigid" test stand and using load cells to measure the disturbance

forces that result from the motion of the wheel. Therefore, the disturbance models are based

on a fixed boundary condition assumption. In effect, the disturbances captured are those

induced by the wheels when attached to a fairly rigid structure. However, this boundary

condition is not the same as that under which the wheels will actually be operated, since

in application, the wheels are mounted on a flexible spacecraft, such as SIM. In addition,

it has been shown that the RWA contains a significant degree of internal flexibility (see

Sections 2.3, 3.2.1, and 3.2.2). It is highly likely that the flexibility of the RWA and the

spacecraft will produce some degree of dynamic coupling between the two structures during

operation. The wheel disturbances will induce vibrations in the spacecraft, exciting its flex-

ible modes. The spacecraft vibrations will then drive the wheel, creating more disturbances.

Since the models will be used to assess the performance of SIM in the presence of distur-

bances, it is necessary to accurately capture the nature of these disturbances, including any

such coupling effects.

The following sections address the issue of dynamic coupling between the RWA and the

spacecraft. First a simple example is used to demonstrate the effects of dynamic coupling

on flexible systems. Then, a modeling technique is presented that was developed by Carl

Blaurock and is based on the concept of acceleration feedback [26). The technique is applied
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to the problem of coupling a RWA disturbance model to a model of a flexible spacecraft

and capturing the dynamics of the fully coupled system. The results of a simple analysis

are presented for two different RWA compliance conditions and recommendations are made

for future work. In addition, a laboratory experiment is designed to assess the degree of

coupling between a representative RWA and a flexible structure and to explore and validate

modeling and testing techniques that will allow accurate prediction of the fully coupled

dynamics.

5.1 Motivating Example

A simple example with spring mass models is considered to illustrate the effects of dynamic

coupling on flexible systems. Figure 5-1(b) represents the RWA mounted to a rigid structure,

as it is during the isolated vibration tests. The forces, F and f", are the disturbance force

on the wheel due to its motion and the force measured by the load cells at the interface of

the wheel and the test fixture, respectively. Figure 5-1(a) represents a spacecraft subjected

to a disturbance force, F,. Both components are assumed to have internal compliance, k"

and k8, and the fixture used to test the reaction wheel is assumed to be completely rigid.

The effects of coupling on the dynamics of a coupled spacecraft/RWA system, such as

that shown in Figure 5-2(a), can be assessed by solving for the equations of motion of the

coupled system in two ways. First, the two components are considered separately as shown

in Figure 5-1. The measured RWA disturbance force, f 2, is determined from the EOM of

the RWA model and applied to the spacecraft model as F, allowing the displacement of

the spacecraft, x8 , to be obtained in terms of F. Then this same metric, x,, is obtained
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Figure 5-2: Coupled spacecraft and RWA system

by directly solving the EOM of the fully coupled system (Figure 5-2(a)). Comparing the

results of the two models demonstrates the degree of coupling in the system. If the coupling

of the two models has no effect on the dynamics of the system the two results should be

equivalent.

It is clear from Figure 5-1(b) that the measured RWA disturbance force, fe, is:

f, = kmx, (5.1)

The EOM of the RWA is obtained by summing the forces on the wheel:

mwi, = F - kwxw (5.2)

Then, the measured disturbance force is found by taking the Laplace transform of Equa-

tion 5.2, solving for xz and substituting the result into Equation 5.1:

kmF
fw= kw (5.3)

ms2 + kw
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Similarly, the EOM of the spacecraft is:

ms. s= Fs - ksxs (5.4)

The measured RWA disturbance force, f, is applied to the spacecraft and the resulting

displacement, x, is obtained by substituting Equation 5.3 for F, in Equation 5.4, taking

the Laplace transform and solving for x.:

kmF
xS = 4+ kF(5.5)

mwmss +(maks + m skw) s 2 + k(ks

For comparison, Newton's method is used to obtain the equations of motion of the

coupled system (Figure 5-2(a)). Summing the forces acting on each mass (see Figure 5-

2(b)) gives the following:

mszs = -(kw+ks)xs+kwxw

muz, = kwxs - kwxw + F (5.6)

Then, the equations of motion are, in matrix form:

ms 0 ]{ s [ ks+kw -kw ]xs 0

0 m" zW -kw kw xW F

An expression for the displacement, xs, is obtained by solving the second equation for xw,

substituting the result into the first equation, and taking the Laplace transform:

kmF
xS = MWS4+kF(5.8)

s mem~ss + (meks + mwkw + mskw) s2 + kwks

Note that Equation 5.8 is not equivalent to Equation 5.5. The denominator of Equa-

tion 5.8 contains an extra s2 term, mwkw. Note, however, that if:

m. >> mw; ks > kw (5.9)

the additional term becomes negligible and Equation 5.8 becomes equivalent to Equa-

tion 5.5. This result suggests that there are coupling effects on the dynamics of a system
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consisting of flexible components, such as a RWA and spacecraft, which can be neglected

under certain stiffness and mass conditions. However, the spring-mass models are greatly

simplified versions of the RWA and spacecraft models, and there is no guarantee that meet-

ing the condition of Equation 5.9 will ensure that the coupling effects are negligible for

higher fidelity models. Therefore, it is necessary to find a way to account for dynamic cou-

pling effects in the RWA disturbance model and/or the disturbance analysis process. One

technique that may offer a solution, is component modeling, an acceleration feedback tech-

nique used for robotics, which allows the assembly of isolated components into the coupled

system and fully captures the dynamic coupling of any system.

5.2 Component Modeling

Acceleration feedback, which is developed and described in detail in [26], allows the separa-

tion of a multi-body system into multiple subsystems. This modeling technique was initially

developed for modeling robotic manipulators explicitly for control. An input/output de-

scription of the interconnection of components at each joint is used, and the attachment

of two components is described as a feedback interconnection between the two subsystems.

This technique is shown schematically in Figure 5-3. At the connection interface, the force

on the right of the first component, F, is equal and opposite to the force on the left of

the second component, F1, and the acceleration on the left of the second component, al, is

equal to the acceleration on the right of the first component, ar.

The modeling algorithm consists of five steps:

(i) Determine the number, type and arrangement of components.

(ii) Model each component as a free-free body, with force inputs and acceleration outputs
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at each attachment location.

(iii) Invert the force input and acceleration output of one attachment point per component.

(iv) Define the boundary conditions between attached components.

(v) Assemble the system model.

The first step simply involves defining how many components there are in the system,

determining which components are attached and locating the attachment points. Once this

information is known, the components are modeled in free-free form and the forces at each

end are specified. The transfer function matrix of a single component from boundary forces

to boundary accelerations is of the form:

al Hu(s) Hir(s) F1  (5.10)

ar Hri(s) Hrr(s) Fr

where Hi1(s), Hir(s), Hri(s), and Hrr(s) are transfer functions from F to al, Fr to al, F

to ar and Fr to ar, respectively. In the third step, the component model is obtained by

inverting the force input and acceleration output of the left attachment:

F _ H -Hi[ 1 Hir al

ar HriH Hrr - Hri HijHIr Fr

In this form, the outputs of one component can be fed to an attached component and the

inputs driven by the attached component. In the next step, boundary conditions are used

to equate forces and moments, and linear and angular accelerations across the joint. If both

components contain only translational degrees of freedom (as is the case for the spring-mass

models), the boundary conditions reduce to:

Fri = -RtFi,

ai = Riari_1 (5.12)

where Ri is the rotation matrix for the ith component. The final step in the modeling

process is the assembly of the system model which is accomplished by using the boundary

conditions to append the two individual models producing the EOM for the coupled system.
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Figure 5-4: Example system containing two subsystems

fi f2 X
k,

fl % M1 2 M2

F F2

(a) Component #1 (b) Component #2

Figure 5-5: Isolated components in free-free form

5.2.1 Example

The coupled system shown in Figure 5-4 is used as an example to clearly illustrate the

modeling process.

Step (i): Determine the number, type and arrangement of components.

As illustrated in Figure 5-4, there are two components, and the left side of the second

component is attached to the right side of the first.

Step (ii): Model each component as a free-free body, with force inputs and acceleration

outputs at each attachment location.

Figure 5-5 shows the two component models in free-free form. The mathematical model

of component #1 is obtained by direct application of Newton's laws of motion. The com-

ponent has two translational degrees of freedom, xz1 and x, and its equations of motion

are:

miz1= F1 - ki(xi -x 1 ) (5.13)
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f = -ki(x1 - x 1 )

Then, through inspection:

Fri = F ari =.i 1  (5.14)

Fi = fi = -ki(xi - x 1i) all = zz,

Finally, by substituting Equations 5.14 into Equation 5.13 and transforming to the Laplace

domain, the transfer function matrix from boundary forces to boundary accelerations is

obtained:

miki Mi 1  (5.15)
ari M Fri J

The same modeling process is applied to component #2 (Figure 5-5(b)) which only has

one translational degree of freedom, x2 . Summing the forces on this component gives:

m 2x 2 = F2 + f2 (5.16)

The boundary forces and accelerations are:

Fr2 = F2 ar= 22xar 2 =x2=SX2 (5.17)
F12 = f2 a12 = ar 2

The transfer function matrix is obtained by substituting Equations 5.17 into Equation 5.16

and solving for the boundary accelerations:

a12 F2
1 M 2 M 2( 5 .1 8 )

ar2 1 1 Fra

Step (iii): Invert the force input and acceleration output of one attachment point per com-

ponent.

Inversion of the left attachment point of each component is accomplished using Equa-
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tion 5.11. The resulting models for components #1 and #2 are, respectively:

F1  k- [ ki - all_ misk ms 2 +ki (5.19)
ari L+k1 m1s2+k1 Fri

F1 2 m 2 -1 12 (5.20)

ar 2  1 0 1 Fr 2

Step (iv): Define the boundary conditions between attached components.

Since both components contain only translational degrees of freedom and are defined in

the same coordinate system (i.e. Rj = 1) the boundary conditions are:

Fri = -F2

a12 = ari (5.21)

Step (v): Assemble the system model.

The component models, Equations 5.19 and 5.20, are used along with the boundary

conditions, Equation 5.21, to obtain a model of the coupled system, Figure 5-4. First, the

two component models are inverted resulting in the following matrices for components #1

and #2, respectively:

all 2 1 F=111 1 (5.22)
Fr1 - 1 mi ar1

als 0a1 1FJ

{ 2 0 I{ F12 }(5.23)
Fr2 -1 m2 ar2

It is clear from Figure 5-4 that the force and acceleration on the right side of the coupled

system are equal to those on the right side of component #2 and the force and acceleration

of the left side of the coupled system are equal to those on the left side of component #1:

Fr., = Fr 2  arsy = ar 2  (5.24)

FI, = F 1l al,. = ali
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Therefore, to obtain the equations for the coupled model, the forces and accelerations on

the left side of component #2 and the right side of component #1 must be eliminated.

Expressions for these boundary forces and accelerations are obtained from the component

model matrices and their inverses given in Equations 5.19-5.20 and 5.22-5.23:

ki 2
ari = + k mal + k Fri (5.25)

Fri =-Fi + miari (5.26)

a2= ar2  (5.27)

F 2 = m2al2 -Fr 2  (5.28)

Substituting Equation 5.25 into Equation 5.26 results in a relationship for Fri in terms of

only the left attachment of component #1:

Fri = 2 + ki Fi + miail (5.29)

Similarly, substituting Equation 5.29 into Equation 5.25 gives the following relationship for

arl in terms of the left attachment of component #1:

s 2
ari = kFi +all (5.30)

Now the boundary conditions in Equation 5.21 are introduced to eliminate the acceleration

on the left of component #2 and the force on the right of component #1:

s 2
ar 2 = iF + ali (5.31)

mkimkii

F1 = k ali + ar2 - Fr2 (5.32)
Mis2 + 

k i +mis
2 + ki mis2 + ki

Finally, the force on the left of component #1 is found in terms of the acceleration on the

left of #1 and the force on right of #2 by substituting Equation 5.31 into Equation 5.32.

ki(mi + m 2 ) k1
FlI = ail Fr2 (5.33)

(Mi + M2)S 2 + ki 1  (Mi + M 2 )s 2 + ki 2

Similarly, the acceleration on the right of component #2 is obtained by substituting Equa-
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tion 5.33 into Equation 5.31.

ki s 2

ar = (n +al + ( + )S2 + ki Fr2
12 (mni +Tnm2)82 + ki ' (mni + M2)2+k

(5.34)

The model of the coupled system, in matrix form, is then:

Fi 1 ki(mi + m2) -ki

ars,, (mi + m 2 )s 2 + ki L s2 } (5.35)

In this simplified case, the modeling process can be validated by obtaining the coupled

system model directly and comparing the result to that obtained through the acceleration

feedback technique. Summing the forces on the system shown in Figure 5-4 gives:

(mi + m2)z-i = F - ki(x 2 - X11 ) (5.36)

The boundary forces and accelerations are, by inspection:

FI,, = -k 1 (X2 - Xi 1 )

al.,, = zzlj

Fr,,,

(5.37)

(5.38)

(5.39)

(5.40)

= F

arss = i 2

After making the appropriate substitutions

ulations the the system model is:

and performing the necessary algebraic manip-

F 5 y8  1 ki(i + M2)

frys (min + M2)S 2 + ki ki

-ki a S/

s2 Fry } (5.41)

Note that this result is identical to the system model obtained through the component

modeling algorithm (Equation 5.35).
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Table 5.1: Plant Models

Plant Included in Model
Model Spacecraft RWA mass RWA compliance

ii

iiV

Table 5.2: Compliance conditions for RWA Disturbance Models

Disturbance Wheel Test Stand
Model Compliance Compliance
1
2 V
3V
4 VV

5.3 RWA Coupling Analyses

The acceleration feedback technique and simple spring-mass models described above allow

the exploration of RWA disturbance modeling and testing methods. First, the acceleration

feedback modeling algorithm is used to obtain a model of the coupled spacecraft/RWA

system. This coupled model is used to determine the spectral density matrix for the coupled

system response to a disturbance from the RWA. Then, a second analysis is performed with

isolated RWA disturbance and spacecraft models. A PSD from a RWA disturbance model

based on the measured disturbance force obtained from a hard-mounted RWA vibration test

is applied to three different "spacecraft," or plant, models, each containing the spacecraft

and some features of the RWA. The features included in each of the three models are listed

in Table 5.1. The resulting output spectral density matrix of the plant is compared to that

obtained from the coupled system to determine which, if any, of the modeling methods

accurately capture the dynamics of the coupled system.

The analysis is performed for four types of RWA disturbance models, each assuming

different compliance conditions in the RWA and the test fixture it is mounted to during the

vibration tests (see Table 5.2). As a result, the complete analysis will consist of 12 sub-

analyses, one for each of the plant/disturbance model combinations. At this time, half of

the analyses are completed as shown in Table 5.3. Each row in this table can be considered

a separate case. The results presented in the following sections consider disturbance models

146



Table 5.3: RWA/Spacecraft Coupling Analysis

Plant Model

(i (ii) (iii)
RWAI
RWA2

RWA 3

RWA4

1 and 2 with each of the three plants (rows one and two), or cases #1 and #2.

Throughout this discussion subscripts on model parameters (k,m,a,Fx,y,H) are used

to indicate the component number, and superscripts in parentheses denote the case, or

disturbance model, number. A superscript (c) on a model parameter or a PSD indicates

that the corresponding model has been constrained. All other PSDs and parameters refer

to the free-free component models.

5.3.1 Case #1: No Compliance in RWA or Test Fixture

In the first case, both the wheel and the test fixture that supports the wheel during the

isolated test are assumed to be rigid. The only compliance in the system is that of the

spacecraft. Figure 5-5 shows the spacecraft and wheel models in free-free form. For the

remainder of the discussion the spacecraft will be referred to as component #1 and the

RWA as component #2.

First, the two component models are obtained with Newton's method:

F11  i miki -ki all
jar 1 J ms 2+i [k s2~ }(5.42)

ari M1H2 1  32 FrI

F2 M2 -1 a12(543

ar2 1 0 Fr2

y2 H2
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X2

k,

I in F

Figure 5-6: Coupled system for Case #1

and acceleration feedback is applied to create a model of the coupled system (Figure 5-6):

F 1 } =) ki (mi + m 2 ) -ki all (544)

a.2 (mi + mn2)2+k ki s 2 Fr2
(1) (1)M

YsYS s XSYS

The models in Equations 5.42 and 5.43 are then used to test the three plants. Con-

straining component #2 at the left end (al2 = 0) ensures that the PSD of the force on the

left of the component, S 'c) is analogous to the PSD of the disturbance force measuredF12 F 2

during the isolated RWA test. Then, the analysis of the first plant model, (i), is performed

by applying S ' to the right side of component #1 as SFr1 Frl. This analysis is analogous

to applying a frequency domain disturbance model based on the fixed isolated test data to

a model of the spacecraft alone.

The measured PSD, S(,c) can be written in terms of SFr2 Fr Recall from Section 2.1Themesurd SD,1712 1 1 f F1 2 F1 2

that the PSD of a random process is defined as the Fourier transform of the autocorrelation

function. Then the measured PSD is:

S" = J E [F 12 (t)F12 (t + )] e "dr (5.45)

It is clear from Equation 5.43 that the force on the left of component #2 is related to the

force on the right as follows:

Fl 2 = m 2als - Fr2  (5.46)

Substituting Equation 5.46 into Equation 5.45, expanding and taking advantage of the
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linearity of the expected value gives:

SF" = m2 SaI a2 - m2SFr2a'2 - m2SaFr2 + SF2 Fr2 (5.47)

Then, using the fact that component #2 is constrained on the left (al2 = 0) and assuming

that Fr2 and a1 2 are uncorrelated, reduces the expression for the PSD of the measured

disturbance:

S(1,C) = SF2 Fr2 (5.48)
F12 F12  r2 2

The RWA disturbance model is applied to the plant by setting the PSD of the force

input to component #1, SFr1 Fr1 , equal to that of the measured disturbance:

SF Fr 1 = S(c) =SF2 Fr2  (5.49)
F12 F12  r

The left end of the component is constrained such that all = 0, reducing the component

model (Equation 5.42):

{ a } m + [ Fr 1  (5.50)
ari M132 + ki g2

y() H(-)

The spectral density matrices of the inputs and outputs of a system are related as follows

[21]:

SYY = H(w)S 2 HH(w) (5.51)

where H(w) is the transfer function matrix from inputs, x, to outputs, y, S'; is the input

spectral density matrix, Syy is the output spectral density matrix and the notation (-)H

indicates the Hermitian, or complex-conjugate transpose. Since Equation 5.50 is the plant

model for this analysis, the output spectral density matrix is S("'', but for simplicity of

notation, the plant model numbers will be used to identify the output spectral density

matrices, i.e. : Sy'' = S 'c) (see Table 5.1). The output PSD matrix of plant model (i)

resulting from disturbance model 1 (see Table 5.2) is obtained by substituting H(c) from

Equation 5.50 and SFrFri (Equation 5.49) into Equation 5.51 and transforming from the
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Laplace to the frequency domain by substituting s = iw, where i = v E:

'(1,c) SF F1~ SFl ar1 1 k kF2Sa- - + kl) 2 L 2SFk2 F 2 (5.52)
Sar, Fj Sarar nw (-i2 2W

The exact solution can be obtained for comparison with Equation 5.52 by assuming that

SFr2 Fr 2 is known and applying it to the coupled system model obtained through acceleration

feedback. First Equation 5.44 is simplified by setting al, = 0, effectively constraining

component #1:

F1, 1 -ki (-3
ar2 = (mi+m 2)s 2 + ki [ S2 5.52

(ic) H ( Y'c)

Note that the outputs of the coupled system, yS'S, are not the same as the outputs of

component #1, y 4c. The second output of the coupled system is ar 2 , while the second

output of component #1 is an . This discrepancy in the outputs does not allow comparison

between the exact solution and the three plant models (all of which include the component

#1 model) . Therefore, a new system model that has the same outputs as component #1

is derived. The RWA component model (Equation 5.43) provides an expression for ar 2 in

terms of a12 , which is related to ar2 through the boundary conditions (Equation 5.12) at

the connection point of the two components :

ar2 = a12 = an (5.54)

Then the modified system model is obtained by substituting Equation 5.54 into the original

system model (Equation 5.53). For disturbance model 1, the modified system transfer

function, H(',c) is equivalent to the original, H('c)

Fr2  (5.55)
arl (mi + m 2 )s 2 +ki 2

Tx(1,c)
sys' Sys/

Then, the exact output PSD of the coupled system is obtained by substituting H()
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into Equation 5.51 and transforming from the Laplace to the frequency domain (s = iw):

SU'') - SF11F 5 Fia 1 (in+ 1
2 1 F

Ys Usys' [ Sar F S ar ar (-(Mi + m 2 )W2 + k1) 2  klw2  W4 JFr2 Fr2

(5.56)

The output, SR' ,y,,, correctly captures the coupled dynamics of component #1 and

component #2 since it is obtained by applying F directly to the coupled system. Note

that the output obtained with plant model (i) (Equation 5.52) does not equal the exact

result (Equation 5.56).

The second plant model (ii) includes both component #1 and the mass of component

#2, M 2 . When a disturbance model of type 1 is used, this plant model is equivalent to

the modified model of the coupled system (Equation 5.55). The output PSD resulting from

applying S "c to this plant model is obtained by substituting H ,) and the expression

for S F 2 (Equation 5.48) into Equation 5.51:

(1j,c) SFrIFI, SFIgar, 12 k1w2S - 1 a,~ - 1S k rw 1 F (5.57)

SaSlFl SaSEr a (-(mi +m 2 )W2 + k )2  k 2  4 Fr2  r2

Comparison of Equation 5.57 and Equation 5.56 shows that, for a disturbance model of

type 1, plant model (ii) captures the coupled system behavior correctly. Plant model (iii)

is not applicable for this disturbance model because the assumption is made that there is

no internal wheel compliance. The results of this analysis suggest that if neither the RWA

nor the test fixture has internal compliance, a disturbance model created from the results of

an isolated, hard-mounted RWA vibration test can be applied to a model of the spacecraft

through frequency analysis techniques to accurately predict the dynamics of the coupled

system if the mass of the RWA is included in the spacecraft model.

5.3.2 Case #2: Internal Compliance in RWA Only

In the second case, a disturbance model based on vibration data obtained from a flexible

RWA hard-mounted to a rigid test fixture is considered. Schematics of the two free-free

components are presented in Figure 5-7.

The component model of component #1 is the same as in case #1 (Equation 5.42), but
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Figure 5-7: Component Models for Case #2

xi 
X 2

k k2

F2

Figure 5-8: System Model for Case #2

the model of component #2 has changed with the addition of internal wheel compliance:

F2 m2k2 -k2 a12 }(558)
ar2 M28 2 + k2 k2 s 2 Fr2

(H ( x )
Y2 ~ 22

Using acceleration feedback methods, the coupled system model (Figure 5-8) is:

ki(mim 2s 2 + k 2 (mi + m2)) -kik2

F 1  L kik 2  s 2 (mis2 + ki + k2 ) al1

ar2  (mis2 + k)(m2s 2 + k 2 ) + m 2k 2s
2  Fr2  (559)

H(2
(2) Sys (2)

Ysys xsys

The measured force PSD, S(2 ,c) is written in terms of SFr2 Fr2 using the methods

described in the previous section. In this case, the relationship between the forces on the

left and right of component #2 includes the RWA compliance:

F1 = (m2k 2 al2 - k2Fr2 ) (5.60)
m 2s 2 + k2 ( 2
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Then, by substituting this relationship into Equation 5.45, expanding, and substituting

s = iw an expression for the measured force PSD is obtained:

S -= [ m2 Saia 2 -m2SFr 2 ai - m2SajFr + SFr 2 ] (5.61)
2 (-m 2w2 + k2 )2

This expression can be simplified using the boundary conditions on the left side of the

component, ai2 = 0, and the assumption that a 2 and Fr2 are uncorrelated:

S = k2 k2 SF F (5.62)
F12 F1 2  (-m 2 W2 + k2 )

2  r2 Fr2

Plant model (i) is tested by transforming H c) (Equation 5.50) to the frequency domain

and substituting the result and Equation 5.62 into Equation 5.51 to obtain the output PSD

matrix:

1 k 2k 2 kik 22
S(2 ,c) = 1Fr F (5.63)

(-miW2 + k1) 2 (-m 2w
2 + k2)2 kik w 2  k2W4 J 2

Applying a known force PSD, SFr2 Fr2 , to the coupled system for comparison with the

isolated component analyses is more involved for case #2 than for case #1. As noted earlier

the outputs from the coupled system and component #1 are not the same. The elimination

of this discrepancy did not change the coupled system model much in case #1 due to the

rigidity of both the wheel and test stand. However, since case #2 includes internal wheel

compliance the relationship between an, and ar 2 is more complex and results in the following

modified constrained system model:

F11  k2__2_ (5.64)
arf (mis 2 + k 1)(m 2 s 2 + k 2 ) + m 2 k2 s2 [2 Fr 2

(2,c) H (2 ,c
Sys/ sys'

The exact solution is obtained by transforming H ,) to the frequency domain and substi-

tuting the resulting transfer function matrix and the input PSD, SFr2 Fr2 , into Equation 5.51:

1 k2 k 2  kik2w 2

:S(2,c) W2]2 F (5.65)vSYS'ysYS' [(-mW2 + k1)(-mn2W2+ k2)- m2k222 kik 2W2 k 2W4 F2 F12
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Note that although the numerator of S(2,c) is equivalent to that of the exact solution,

Sy,y,, the denominators are quite different. Equation 5.65 contains extra terms that

account for the coupling between the two components. Therefore, it can be concluded that

the combination of plant model (i) and disturbance model 2 does not accurately capture

the dynamics of the coupled system.

The mass of the RWA component is added to the spacecraft component to create plant

model (ii). As mentioned earlier, this model for this plant is equivalent to the coupled

system model of case #1 (Equation 5.53). The result of applying S(2 C) (Equation 5.62)

to this model is:

( 2,c) 1 k kij2
S;; = (-(mi + m 2 )w 2 + k1)2(-m2W2 + k 2) 2  ki k2w 2  ko 24 SFr2 Fr2  (5.66)

Again, the numerator matrix of this result is equivalent to that of the exact solution,

Equation 5.65, but there are discrepancies in the denominators. Each output spectral

density matrix, S 2,c) and S' ,c) contains terms that are not present in the other.

The third plant model, (iii), includes both component #1, the spacecraft, and compo-

nent #2, the RWA, and is, in effect, the coupled system shown in Figure 5-8. The model

for this system is given in Equation 5.64, and the output PSD is obtained by substituting

S( 2  (2 ,c) (with s = iw) into Equation 5.51:
F12 12 SYS

S 2 c) Fr 2 Fr2  [ k2 k kOw2

[(-miW2 + ki)(-m 2w
2 + k2) - m 2 k2w2] 2 (-m 2w

2 + k2 )2  kik4w2 kjw4

(5.67)

Multiplying Equation 5.65 by k2/k2 simplifies the comparison of S.) and S y(2,.) After

the output PSDs are manipulated in this manner the matrix numerators are equivalent, but

the denominators are not. Equation 5.67 contains extra terms that arise from the fact that

the internal compliance of the wheel is accounted for twice in this case: once in S(2 ,c) (see
F12 F12 se

Equation 5.62) and again in the model of the RWA disturbance. It has already been shown

that simply applying the PSD of the measured force, S? c) which includes the effects

of the internal compliance of the wheel, to the spacecraft (plant (i)) does not accurately

capture the dynamic coupling between the two subsystems. Therefore, it appears that the

best way to predict the behavior of the coupled system exactly is to apply SF 2Fr2 to a
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model of the coupled system.

Current disturbance modeling efforts fit a model to data measured from the base of

the test stand during an isolated RWA vibration test. This model is then input to a finite

element model of the spacecraft that includes the mass of the RWA. If the internal wheel

compliance is accounted for in the disturbance model, the disturbance analysis is analogous

to using plant model (ii) and disturbance model 2. However, it has been shown through

comparison of S 'c) and S (2 ,,,, that this model combination does not accurately capture

the dynamics of the coupled system.

Recall from the example in Section 5.1 that if the model parameters, mass and stiffness,

satisfy a particular condition, the dynamic coupling effects in the system became negligible.

Comparison of one of the output PSDs from the exact output spectral density matrix,

S (2 , c to the corresponding PSD from S ,c), shows that the same is true for plant

model (ii) and disturbance model 2. Assuming that the RWA disturbance force is white

noise (SFr2 Fr2 = 1), Equations 5.65 and 5.66 give the following:

k2 W4

S(2 ,c) k2 (5.68)
ar, ar e [-mi2 + ki)(-m 2w

2 + k2 ) - m 2 k 2W2] 2

S(2,c) (5.69)arar [-(Mi + m 2 )W2 + ki]2 (-m 2w2 + k2 )2

where Slarl is an element ofSy,, and Sar'r is an element of S(',. The upper

plot of Figure 5-9 compares the two PSDs for equal model parameters, mi1 = M 2 = ki =

k2 = 1. Note that PSD obtained from the isolated model analysis is quite different from

the exact solution. In the lower plot, the PSDs were obtained using model parameters that

satisfy the condition in Equation 5.9 and are representative of the actual spacecraft and

RWA. The masses, mi = 1800 and m 2 = 6, and the stiffnesses, ki = 7x10 6 and k2 = 1x10 6 ,

correspond to natural frequencies of 10 and 65 Hz, which are roughly the frequencies of

the first modes for SIM and the RWA, respectively. The plot shows that the two solutions

are virtually indistinguishable. In this case, the result from the isolated modeling technique

approximates the exact solution quite well. This comparison suggests that although isolated

component modeling with plant model (ii) doesn't accurately predict the coupled system

dynamics in general, it does produce a very close approximation under specific conditions.

In addition, the results shown in the lower plot of Figure 5-9 indicate that these conditions
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Figure 5-9: Comparison of Exact Solution and Current Methods Using Varying Model

Parameters.

may hold for the spacecraft/RWA system and therefore, applying a disturbance model based

on force data measured during an isolated RWA test that accounts for the flexibility of the

RWA to a model of the spacecraft and RWA mass will capture the dynamics of the coupled

system quite accurately. However, it is not clear that the approximation will hold when

using more complicated, higher fidelity models in place of the simple spring mass models

used to perform this analysis. Therefore it is still necessary to explore other modeling and

analysis techniques to predict the behavior of the fully coupled system.

5.3.3 Capturing the Coupled Dynamics

The results of the coupling analyses for disturbance models 1 and 2 indicate that further

effort must be devoted to developing a modeling technique that captures the dynamic

coupling between the RWA and spacecraft. In the previous section it was shown that

applying a model of the wheel disturbances without the effects of the structural wheel

modes, SFr2 Fr2 , to a model of the fully coupled system, which includes the compliance

of both the spacecraft and the RWA, accurately predicts the coupled system dynamics.

However this approach requires:

1. a method for modeling the disturbance force, SFr2 Fr2 from practical measurements

taken during isolated tests.
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2. an accurate finite element model of the RWA capturing the internal dynamics of the

wheel.

Preliminary work on the first item will be presented in this section.

Due to the internal compliance of the wheel it is not possible to directly measure Fr2 .

The Ithaco data presented earlier (see Section 2.2) show that the effect of the structural

wheel modes appears in the measured disturbance data. However, it may be possible to

construct Fr 2 from other measurements and transfer functions. Consider the general form

of the component #2 model:

F2 H1 1 H 12  a(5.70)

ar 2  H2 1 H 22  Fr 2

(gen) H(gen) (yen)

F2can be determined if all the entries of the transfer function matrix, Hjoen) are known.

It may be possible to populate this matrix experimentally by performing two isolated RWA

tests with different boundary conditions. The setup for the first test is identical to the one

described in the preceding sections. The RWA is mounted on a rigid test fixture effectively

constraining it so that a12 = 0. This boundary conditions reduces the model in Equation 5.70

to: {F1 2 ) _ H12 1
= H Fr2  (5.71)

ar2 H 2 2 ]

Then, by exciting Fr 2 and measuring F 2 and ar2 the following transfer functions can be

determined:

Hi -1 - = H12 (5.72)
Fr 2

H 2 = ar 2 = H 2 2  (5.73)
Fr 2

The second isolated test requires that the RWA be suspended in a free-free configuration.

Consider the inverse of the general component model, Equation 5.70:

a1 2  1 H 2 2  -H 1 2  F 12  (5.74)

Fr 2 H 1 1 H 2 2 - H 12 H 2 1 -H 2 1 H 1 1 I ar 2
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If only Fl2 is excited (ar2 is constrained to be 0) Equation 5.74 is reduced to:

a1 }H
2  F 12  (5.75)

Fr2 HnIH22 -H12 H21 -H12

and two more transfer functions can be determined by measuring a1 2 and Fr2 :

H 3  = _12 . H 2 2  (5.76)
F12  H 11 H 22 - H12H21
F -H 2 1
F12  H1 1 H 22 - H12H21(577)

Now the measured transfer functions, H 1 , H 2 , H3 , H 4 , can be used to solve for G11 , G12 , G21

and G2 2. Using Equations 5.72, 5.73, 5.76 and 5.77:

Hnl = 1-H H4  H 1 2 = H 1H3  (5.78)
H 21 = -H 2H4  H 2 2 = H 2

It should be possible to use the results in Equation 5.78 along with the inverse of Equa-

tion 5.51 to determine SFr 2 Fr2 . There are some issues, however, that need to be examined

in greater detail. The first is the feasibility of the inversion of Equation 5.51. It is unclear

whether the PSD of an input can be obtained from measured outputs. Other issues are

related to the practicality of the isolated tests described above. In the first test, F1 2 and

ar2 must be measured. This requires that a load cell be placed at the base of the test

stand and an accelerometer be placed on the wheel itself. The location of the accelerometer

may be impractical due to the spinning of the wheel. For the second isolated test, it is

necessary to hang the wheel in free-free configuration and input F1 2 , but keep ar2 at zero.

This method requires that F 2 and ar2 be uncorrelated. However, if the wheel is truly in

a free-free configuration, application of a force on the left side of the wheel will result in

an acceleration on the right. Closer examination of the test conditions and configuration

is necessary before any conclusions can be made. Sensor placement may be a problem in

this test as well. An accelerometer must be placed on the left side of the wheel and a load

cell on the right. Determining the true "left" and "right" sides of the wheel is difficult, and

placing any sensor directly on the wheel may not be practical.
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5.4 Coupling Experiments

In addition to the coupling analyses described in the preceding section, a series of laboratory

experiments are being developed to explore the effects of coupling between two flexible

structures, such as a RWA and a spacecraft. A representative reaction wheel and a flexible

truss structure will be used to provide the following:

1. Assessment of the degree of coupling between the two flexible components, especially

when the wheel is spun at a frequency that excites a structural mode of either the

wheel or the truss.

2. Validation of current disturbance modeling efforts.

3. Development and validation of more accurate modeling and RWA testing techniques.

5.4.1 Test Setup

The representative reaction wheel consists of a flywheel that is about 7 inches in diameter

and a DC motor with a built-in tachometer. The effects of dynamic coupling on RWA

disturbances can be assessed by performing two isolated RWA vibration tests with different

boundary conditions, (a) hard-mounted to a rigid structure and (b) hard-mounted to a

flexible structure, and comparing the differences in the resulting disturbance data. The

setup for test (a) is shown in Figure 5-10. The wheel is mounted to a six-axis load cell

through an interface that consists of two metal plates. The load cell is then bolted to

an optical isolation table. A signal generator is used to apply a voltage to the motor,

spinning the wheel. A data acquisition system samples the disturbance forces measured at

the interface of the wheel and the load cell.

In order to collect steady-state disturbance data, the speed of the wheel must be con-

trolled through the tachometer. A simple controller was built to allow the speed of the

wheel to be set through the signal generator and maintained at a steady state. The details

of the controller design are in Appendix C. Once the loop is closed around the tachometer

the voltage corresponding to the desired wheel spin rate can be entered into the signal gen-

erator. This voltage is compared to the tachometer output and the control signal is adjusted

and drives the wheel until the tachometer output and the desired voltage are equivalent.

When the wheel has reached the desired speed the disturbances measured by the load cell
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Figure 5-10: Representative Reaction Wheel Hard-mounted to Load Cell

load cell anti-aliasing
in controller conditioner filters K data acquisition

and plant , system F

wheel (and filter) Iaeh

Tz

Figure 5-11: Block Diagram Representation Data Acquisition Configuration for Wheel

are sampled at 1 kHz and time histories of the 3 forces and 3 moments are obtained. Low

pass filters with corner frequencies of about 480 Hz are used to ensure that aliasing of

the data does not occur. A block diagram representation of the testing setup is shown in

Figure 5-11.

In the second test, (b), the wheel must be hard-mounted to a flexible structure. A

laboratory testbed that was originally designed and constructed to validate a sensitivity

analysis methodology will be used for this purpose [19]. A full view of the testbed is shown

in Figure 5-12. It is a cantilevered truss-like structure with one appendage bending mode

and two truss bending modes, all below 50 Hz. The frequency range of these modes ensures

that a wheel spinning up to maximum rate of 3000 rpm will be able to excite the testbed.

The wheel and load cell are mounted to a metal plate on top of the truss as shown in Figure 5-
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Figure 5-12: Full View of Flexible Truss Testbed

13. Disturbance data from the interface between the wheel and the load cell will be taken in

this configuration at the same speeds used in the rigid configuration (a). Comparison of the

results from these two tests will provide some insight into the effect that dynamic coupling

may have on the RWA and spacecraft. In addition, a FEM model of the testbed can be

used to validate current disturbance models by comparing the predicted displacements of

the testbed obtained through a disturbance analysis to the actual displacements that occur

when the wheel is mounted to the testbed.

5.5 Summary

In this chapter the preliminary efforts of an investigation into the effects that dynamic

coupling has on RWA disturbance modeling has been presented. A series of simple analyses

using acceleration feedback and spring mass-models have been performed and a summary

of the results is presented in Table 5.4. It is clear from comparing the results of the

PSD analyses , Si, Sij, andSigi, to the exact solution that, for disturbance model 1, only

the analysis with plant model (ii) accurately captures the coupled dynamics of the two

components and, for disturbance model 2, none of the plant models accurately capture the

coupled system dynamics. It was shown, however, that if the model parameters satisfy

specific conditions, the combination of disturbance model 2 and plant model (ii) results in
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Table 5.4: Summary of Results

Disturbance Model 1

M2

SFr2 Fr 2

1 -ki
(mI+m 2 )s2 +ki [ 2
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kiw 2  U4
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(-miw2+k)- SF 2Fr2
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kiw 2  W 4

(-(ml+m2)W2 +ki)2 SFr2F
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Figure 5-13: Representative Reaction Wheel Mounted to Flexible Testbed

a close approximation to the exact solution. This case is analogous to fitting a disturbance

model to the data obtained from an isolated RWA test and using this disturbance model to

drive a FEM of the spacecraft and RWA mass. The compliance conditions of disturbance

model 2 are similar to the conditions of the low-frequency (< 200 Hz) Ithaco reaction wheel

test data. Therefore, the results of this analysis suggests that fitting a model to the low-

frequency Ithaco data and using this model to perform a disturbance analysis on a model

of the spacecraft (that includes the mass of the RWA) should predict the dynamics of the

coupled spacecraft/RWA system. This conclusion is not necessarily correct, however; the

above analyses were performed on simple spring mass systems while the RWA and spacecraft

are both multi-mode systems that require'high-fidelity models to accurately capture their

dynamic behavior. It is not clear that the approximation obtained from spring-mass models

will hold for more complex models.

Therefore, alternative disturbance modeling and analysis techniques should be investi-

gated. One approach which involves combining data from multiple types of RWA tests to

create the disturbance model was briefly outlined, but requires further attention before its

feasibility can be assessed and an implementation scheme developed. In addition, a plan

for laboratory experiments that can provide insight into the coupling problem and validate
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disturbance modeling and analysis techniques was presented.
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Chapter 6

Conclusions and Recommendations

6.1 Thesis Summary

Next generation precision space-based telescopes, such as SIM and NGST, require high

levels of pointing stability. Small levels of vibration can introduce jitter in the optical train

and cause a significant reduction in image quality. Therefore, the success of these missions

is highly dependent on the ability of optical control and isolation techniques to keep the

large flexible structures stable and the optical elements properly aligned when exposed

to a disturbance environment. Vibrations may be induced during operation by orbital

environment disturbances such as solar pressure, thermal snap and atmospheric drag, and

on-board disturbances from mechanical systems and sensors located on the spacecraft, such

as cryo-coolers, optical delay lines, and mirrors. On-board disturbances are expected to

dominate the disturbance environment, and the largest anticipated vibration source is the

reaction wheel assembly (RWA), a momentum exchange device used to control spacecraft

attitude and perform large angle slewing maneuvers.

Due to the large scale of these next generation telescopes, early design decisions must

rely on analysis conducted with high fidelity models. A performance assessment and en-

hancement methodology was developed in [19] to predict the effects of disturbances on these

high-performance systems. This methodology depends heavily on the development of an

accurate disturbance model. In this thesis, two RWA disturbance models were developed

and validated and a third was presented. These models improve on existing RWA distur-

bance modeling efforts by extending a discrete frequency model to allow the modeling of

any RWA given vibration test data and developing a physical model which captures the
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flexible modes of the wheel.

Chapter 2 discussed vibration isolation tests that are generally used to characterize

RWA disturbances. Two particular experiments performed on Ithaco type B and E RWAs

at Orbital Space Systems and the NASA Goddard Space Flight Center were described

in detail. In both tests a RWA was hardmounted to a rigid test fixture and load cells

were used to measure the six disturbances (three forces and three torques) induced by

the spinning of the wheel. The time history data was processed into frequency domain

data using the techniques described in Section 2.1. PSDs and amplitude spectra of the

disturbances were then plotted in waterfall plots to determine the frequency content of the

RWA disturbances across wheel speed. It was found that the disturbance data consists

of both wheel harmonics, disturbances occurring at discrete frequency ratios of the wheel

speed, and resonant disturbances which occur at the same frequencies across all wheel

speeds. These resonances are due to excitation of the test stand fixture and the structural

wheel modes by the wheel harmonics. It was concluded that the test stand resonance should

not be included in the RWA model and any data corrupted by these resonances could not

be used to generate an accurate model. The internal wheel flexibility, on the other hand,

must be accounted for in the model, since it will be present when the wheel is mounted on

the spacecraft for operation. These structural modes were discussed in detail in Section 2.3.

The first type of disturbance model that was developed is presented in Chapter 3. It

is an empirical model that is based solely on system-ID methods. The general form of the

model was originally developed to capture the disturbance behavior of the Hubble Space

Telescope (HST) RWA [15]. The model assumes that the wheel disturbances are a series of

harmonics at discrete frequencies with amplitudes proportional to the wheel speed squared.

A set of MATLAB functions has been created to extend the HST model and facilitate the

empirical modeling process. These functions, called the Reaction Wheel Assembly Data

Analysis and Disturbance Modeling (RWA DADM) toolbox, extract the empirical model

parameters from steady-state RWA vibration data allowing the creation of an empirical

disturbance model for any given RWA. The toolbox consists of four main functions all of

which were described in detail in Section 3.1.

The Ithaco data described in Chapter 2 were used to provide validation for the empir-

ical model. Both the B and E Wheel data were run through the RWA DADM toolbox to

create empirical models of the disturbances from the two wheels. Waterfall plots and RMS
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comparison plots were used to compare the data and the model to assess the accuracy of the

empirical model and the performance of the toolbox. The data correlation for the B Wheel

empirical model was rather poor. The frequencies of the harmonics were accurately iden-

tified, but their amplitudes were severely under-predicted. The RMS comparison showed

a large discrepancy between the model and the data over all wheel speeds. The E Wheel

model, on the other hand, had good correlation with the data over most wheel speeds. The

waterfall plot comparison indicated that the disturbance frequencies were identified accu-

rately, and the RMS values of the data and model were very close over most wheel speeds.

The improved quality in correlation between the data and the E Wheel empirical model

suggests that the B Wheel data anomalies are data set specific. The poor B Wheel model

correlation is, therefore, most likely due to the conditions under which the vibration data

was acquired and not errors in the empirical model.

The Ithaco E wheel model correlation was not exact, however. There were discrete

ranges of speeds over which the data RMS was significantly higher than the model. These

peaks in RMS were caused by disturbance amplification of the harmonics by the structural

wheel modes. Since internal wheel flexibility is not captured in the empirical model, a large

discrepancy exists between the data and the model at these speeds. It was concluded that

although the empirical model captures the wheel harmonics and identifies the disturbance

frequencies well, it is not an accurate RWA disturbance model. Excitation of the structural

wheel modes by the harmonics can cause large disturbance amplifications which must be

included in the model to accurately predict the effects of the disturbances on the spacecraft

during operation. Therefore, a second disturbance model was developed to take the resonant

effects into account.

The second model is an analytical model based on the physical behavior of an unbal-

anced rotating flywheel and was the subject of Chapter 4. The model is developed using

Lagrangian energy methods to derive the equations of motion (EOM) of the system. Two

of the structural modes of the wheel, radial rocking and translation, were captured by

modeling shaft and bearing flexibility with linear springs and dashpots. A balanced fly-

wheel captured the inertia properties of the wheel and gyroscopic stiffening effects. Finally

static and dynamic imbalance were added to the model with concentrated masses placed

strategically on the flywheel. Although the equations of motion obtained for this model

show that the flexible modes of the wheel are captured, the model was not complete. Since
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only the flywheel imbalance was physically captured, the fundamental harmonic was the

only disturbance in the model. Therefore an extended model was created by combining

the analytical model with the empirical. The additional harmonics were incorporated by

adding harmonic forcing functions with frequencies and amplitudes defined by the empirical

model parameters to the EOM of the analytical model. The EOM of the extended model

were solved analytically and preliminary simulations showed that the model captured the

wheel harmonics as well as the interactions between the harmonics and the structural wheel

modes.

Although the analytical and extended models are physically based, RWA vibration data

must be used in combination with manufacturer specifications to choose model parameters

for a given wheel. A preliminary methodology was developed to extract these parameters

from the vibration data. The stiffness parameters were set based on the natural frequencies

of the radial rocking and translation modes. The static and dynamic mass parameters were

set using both manufacturer specification of the wheel geometry and the amplitude of the

fundamental harmonic in the radial force and torque data. The damping parameters were

the final parameters to be set and proved to be the most challenging. The amplification

observed in the data at the wheel resonances was used to set these parameters.

The Ithaco E Wheel data was used to validate the analytical model and parameter

matching methodology. The frequencies of the radial modes and the amplitude of the

fundamental harmonic were captured quite well by the stiffness parameters and imbalance

masses. The disturbance amplification was also captured in the model, but an accurate

match could not be achieved by adjusting only the damping parameters. However, RMS

comparisons of the data (up to the first harmonic), the first harmonic of the empirical model

and the analytical model indicated that a good estimate of the modal amplification, and

RWA disturbance in general, was obtained. The analytical model matches the data well over

most wheel speeds and overbounds the data at speeds in which disturbance amplification

occurs. Modeling of damping and the parameter fitting methods are still under development

and will be discussed in Section 6.2 as future work.

The final subject of the thesis is an investigation into the dynamic coupling that occurs

between the RWA and a spacecraft during operation. Through the empirical modeling

process it was discovered that the internal wheel flexibility had a large effect on the RWA

disturbances. Therefore, the analytical model was developed to incorporate this effect.
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However, the models discussed in this thesis are all based on data taken from RWAs that

were hardmounted to a rigid surface. In application, the RWA will be hardmounted to the

spacecraft which is quite flexible. Therefore, a series of analyses were performed, using a

component modeling technique called acceleration feedback developed in [26] to capture the

dynamic coupling between two flexible systems. The results presented in this thesis are from

a preliminary study and require further exploration. It was shown, however, that it is highly

likely that dynamic coupling will have an effect on the RWA disturbances and the spacecraft

performance. Methods of incorporating these effects into the models presented in this thesis

should be explored and developed. In addition, a plan for a set of laboratory experiments

which could provide insight into the dynamic coupling issue and allow validation of current

and future disturbance modeling and analysis techniques was presented.

6.2 Recommendations for Future Work

The recommendations for future work can be grouped into three main areas: empirical

model, analytical/extended model, and general RWA disturbance modeling.

Empirical Model

e It was shown in Chapter 3 that the data for the higher harmonics do not generally

follow the coefficient curve fits generated using the assumption that the disturbance

magnitudes are proportional to the wheel speed squared. Therefore, other possible

relationships between the disturbance amplitude and the wheel speed should be con-

sidered for these harmonics.

" Further investigation should be made into the large discrepancy observed between the

Ithaco B Wheel empirical model and the data. Data from a different vibration test

on an Ithaco B Wheel could be used to validate the hypothesis that the discrepancy

arises from a source specific to this particular vibration test and not from the Ithaco

B Wheel in general.

Analytical/Extended Model

e The investigation of the pole/zero cancellation that occurs when the particular so-

lutions for the generalized rotations in the analytical model are obtained should be
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continued. The current technique used to capture both whirls of the rocking mode

changes the amplitude of the fundamental harmonic in the radial torque data. A scale

factor can be used to compensate for this side effect, but a better solution would be

to find a physical explanation for the pole-zero cancellation and develop an alternate

method for including both whirls of the rocking mode in the model.

9 The current analytical model only contains two of the three structural modes of the

wheel. The axial mode must still be accounted for in the model. Preliminary at-

tempts to model the axial mode by adding a translational degree of freedom in the

z-direction with linear springs failed to capture a driving term in the equations of

motion. One possible solution is to use the empirical model parameters to drive the

equation obtained for the z translation.

9 The coupling observed among the disturbance data sets (Ithaco E Wheel) must be

investigated. Both the radial rocking and translational modes are observed in that

radial forces, radial torques and axial forces. It is currently unclear if the coupling

is due to the location of the load cells with respect to the center of the wheel and

therefore can be removed through a decoupling matrix or if it is a characteristic of

the disturbances which should be included in the analytical/extended model.

* The results of the model comparison in Chapter 4 show some discrepancies between

the analytical model and data. The current parameter fitting methodology must

be examined to find ways of improving this fit. In particular, the methods used to

model damping and choose parameters to fit the disturbance amplifications should be

investigated.

9 Once a good parameter fitting methodology is developed for the analytical model it

should be refined as necessary for application to the extended model.

e The RWA DADM toolbox should be extended to include the parameter matching

methodology for the analytical/extended model. The result would be a complete

set of MATLAB functions that allow a user to chose which type of model to create

(empirical, analytical or extended) and return the parameters for that model, given

RWA vibration data and user input at key decision-making steps in the modeling

processes.
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* The extended model should be used to perform a disturbance analysis with the SIM

and NGST models. The results can be compared to those obtained with the stochastic

broadband model which is the RWA disturbance model that is currently used for these

types of analyses.

General RWA Disturbance Modeling

" Some measure of uncertainty should be included in the disturbance models. For

example, the amplitude coefficients in the empirical model could be provided with

error bars to give some idea of the scatter in the data and the quality of the coefficient

curve fit. Other possible areas of uncertainty in the analytical/extended model should

be identified and quantified.

" All models presented in this thesis assume that the RWA is spinning at a constant

speed. However, during operation the wheels must often spin through a range of

speeds. Therefore the transient behavior of the RWAs should be investigated. If a

significant difference is found between the steady-state and the transient disturbances,

the using analytical/extended models can be used to incorporate transient behavior

into the model by removing the constant wheel speed constraint and obtaining new

equations of motion.

" The coupling analysis presented in Chapter 5 must be continued. A metric to measure

the degree of coupling between RWA and spacecraft should be derived, and the anal-

yses for disturbance models 3 and 4 (including test stand flexibility in the vibration

data) should be completed.

" Laboratory experiments exploring RWA to spacecraft coupling issues and validating

current disturbance models should be performed. Multiple boundary condition testing

should be considered as a method of capturing the coupling dynamics between the

RWA and the flexible spacecraft.
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Appendix A

Coefficient Curve Fit Plots
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(a) h5 = 3.87 (b) h6 = 4.56
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A.1.2 Radial Torque
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Appendix B

Derivation of Empirical Model

Autocorrelation

Begin with the empirical model in the time domain:

n
m(t) = Z f,2.f, sin (2-7rhi frwat + aj) (B.1)

The definition of the autocorrelation of m(t) is [21]: Substituting Equation B.1 into Equation

gives:

RmQ (-r) = E S Ci~fi'.wa sin(2i7rhifrwat + qOj) sin(2ihfat+ )+
i=I lj=1

Equation B.2 can be simplified with the following trigonometric identity:

sin a sin b = 1[cos(a - b) - cos(a + b)]

The expression for the autocorrelation is now:

Rm (r) = En CiC frwa cos(2rfrwa(hit - hj(t + r)) + ai - a3 )
i=1 j=1

-cos(27rfrwa(hit + hj(t + -r)) + ai + aj)
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Using the definition of the expected value of a random process, X(t), with marginal density

function fx(t)(x) [21]:

E[X(t)] = J xfx(t) (x)dx (B.5)

the autocorrelation becomes:

Rm(T) = 2 fra cos(27rfrwa(hit - hj(t + r)) + ai - aj)
0 0o1

- cos(27rfrwa(hit + hj(t + T)) + ai + aj) faia, (ai, aj)daida (B.6)

where fa,, (aiaj) is the joint probability density function of the random variables as and

aj. If it is assumed that ai and a3 are both distributed uniformly over the interval [0, 27r]

and are stochastically independent, their probability density functions, fa, (ai) and fa (aj),

are:

fai(ai) = fa1(aj)

1
faiay(aiaj) = fai(ai)fa,(aj) = 42 (B.7)

For simplicity, let:

A = 27rfrwa(hit-hj(t+r))

B = 27r frwa(hit + hj (t + r)) (B.8)

Then, substituting Equations B.7 and B.8 into Equation B.4 further simplifies the autocor-

relation:

R ( ) = C f wa 2 2 cos(A + ai - a)dadaj
i=1 j=1

I 
2 7r 21r1

- 10 cos(B + ai + aj)daidaJ (B.9)

Now, consider the two integrals in Equation B.9 separately for the case i -A j,:

2 2cos(A + ai - aj)dadaj = 00 0

0cos(B + ai + aj)daidaj = 0 (B. 10)
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and for the case i = j:

/27r 
27r

0 10 cos A dada = 41r2 cos A

1 27r 
27r

00 f cos(B + 2a)dada = 0 (B.11)

Since both integrals equal 0 when i 0 j one of the summation signs can be eliminated. Using

the results in Equation B.11 and substituting back the expression for A (Equation B.8), the

final form for the autocorrelation of the empirical model is obtained:

n C? f aRm() = 2 cos(27rfrwahir) (B.12)
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Appendix C

Tachometer Controller Design

The first step in the design of the controller is obtaining a model of the open loop plant.

The tachometer signal is passed through a low pass filter before being compared to the

input voltage to attenuate any high frequency noise. Therefore, the plant dynamics are a

combination of the wheel and filter dynamics. The filter is a simple RC circuit with the

transfer function:

Hflts)-Vout 1/ RC (.1Hya(s) = --- = (C.1)
V - s + 1/ RC

where R is the resistance, C is the capacitance, VQ is the tachometer voltage and Vout is

the output voltage of the filter. The corner frequency of the filter can be expressed as,

wO = 1/RC [27]. For this application, a corner frequency of 6 Hz was chosen because it

is out of the bandwidth of the controller but still a decade below 60 Hz, the frequency of

electrical noise. A 100 nF capacitor was used, setting the resistance, R, to 265 kQ.

The representative reaction wheel is modeled as a flywheel with inertia, I, and damping,

c, driven by a motor with resistance Ra and induced voltage, or back emf, eb as shown in

Figure C-1 [28]. The transfer function model of the mechanical system from applied torque,

i a

Figure C-1: Schematic Diagram of Representative Reaction Wheel Showing Flywheel and
Motor
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V, to angular velocity, VQ, is:

VQ (S) _ 1 (C.2)
V,(S) Is + c

Summing the voltages around the motor circuit results in an expression for applied voltage,

Vi n:

Vin = Raia + eb (C.3)

The relationships between the torque and the current, ia, and the back emf, eb, and the

angular velocity are:

V = Kia (C.4)

eb = KbVQ (C.5)

where K is a motor-torque constant and Kb is a back emf constant. Substituting Equa-

tion C.4 into Equation C.2 and Equation C.5 into Equation C.3 and solving both equations

for the current gives:

. Va(Is + c) _ Vin - KbVn (C.6)
K Ra

The transfer function of the wheel/motor is obtained through algebraic manipulation,:

Hwheel(S) = VQ(s) _ K/RaI (C.7)
H es =S+ Rac+KKb

Ral

and can be simplified by defining the constants, a = (Rac + KKb)/RaJ and b = K/RaJ:

Hwheel(S) = b (C.8)
s + a

The transfer function of the open loop system is obtained from Equations C.1 and C.8:

Vout b/ RC
Hpiant = = HwheelHfilt = R (C-9)

Vin (s + a)(s + 1/RC)

The values of a and b are determined by taking the transfer function of the open loop system

and comparing it to the model as shown in Figure C-2. Setting a = 0.22 and b = 3.1 results

in the close model/data fit seen in the plot. The control loop is closed by feeding the control
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Figure C-2: Fitting Plant Transfer Function for Open Loop System

signal through an amplifier and into the wheel. The closed loop transfer function is:

HCL =

K~b
RC

s2+ a+ 1Qs + a+Kb
(C.10)

where K, is the controller gain and is set by the amplifier. A block diagram of the controller

is presented in Figure C-3.

The controller was built with a series of simple circuits as shown in Figure C-4. The

tachometer signal is input to a low-pass filter, and the filter output is passed through a

follower. Then a summer is used to compare the filtered tachometer signal to the input

from the signal generator. The output of the summer, Vst in the figure, is the control

signal and drives the motor until Vtach and V are equivalent indicating that the wheel is

+ b/RC VU
V ,fin (s + a)( s +1/RC)

wheel (and filter)

K,

amplifier

Figure C-3: Block Diagram of Tachometer Control Loop
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Figure C-4: Circuit Diagram of Tachometer Controller

spinning at the desired speed. The values of the resistors and capacitor used in the low-pass

filter and summer are shown in Figure C-4.
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