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Abstract

Due to their computational efficiency and generality, low-order finite elements are
ideally used in engineering practice. However, standard displacement-based finite el-
ements fail in the analysis of problems when near incompressible elasticity or bending-
dominated behaviors are encountered. Various mixed interpolation procedures have
been proposed and are extensively used to solve such problems. The purpose of this
research is to survey and evaluate successful attempts in formulating reliable low-
order mixed-interpolated finite elements. Surprisingly, most of the elements proposed
in the literature have not yet been subjected to rigorous mathematical analysis. In
particular, the authors did not evaluate whether the inf-sup condition is satisfied.
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Chapter 1

Introduction

The pure displacement-based finite element method is widely used in practical engi-

neering analysis. However, it is well known that displacement-based finite elements

do not perform well in the analysis of certain problems, such as in the analysis of

plates/shells and in near incompressible elasticity, exhibiting a too stiff response char-

acterized in the literature as locking [1].
Shear locking occurs due to the inability of the discrete numerical model to prop-

erly represent a zero shear strain state for pure bending problems; hence, adding an

erroneous shear strain energy contribution to the overall analysis. Membrane locking

appears when artificial membrane strains are generated. These phenomena typically

occur in beam and thin plate/shell analysis when the thickness of the element ap-

proaches zero. In near incompressible media analysis volumetric locking occurs due

to the fact that the discrete numerical model does not have a sufficiently rich dis-

placement field that satisfies the zero volumetric strains as the Poisson's ratio v

approaches the limit 1/2.

To overcome such (numerical) difficulties various techniques have been proposed.

The main idea is to interpolate the strain and stress fields in addition to the displace-

ment field, giving rise to the so called mixed methods.

The common basis of all mixed methods proposed in the literature is the general

functional of Hu-Washizu [1], in which displacements, stresses and strains are used as

independent variables (mixed fields). The finite element interpolations of these fields
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can be chosen independently of each other. From the Hu-Washizu functional we

can derive the Hellinger-Reissner (H-R) functional, in which case the displacements

and stresses are the variables. Based on the H-R functional, Pian and Sumihara [2]

developed a 4-node quadrilateral element, which has been reported in the literature

to exhibit good convergence. See [3] and references therein.

In another approach, elements are derived using the Hu-Washizu functional, with

displacement and strain fields as independent variables. The stresses are evaluated

from the stress-strain material constitutive law. This class of mixed methods has

been given considerable attention due to its intrinsic strain-driven nature, i.e., fitting

effortless into the existing numerical algorithms used in nonlinear analysis. Some

representative variants within this class of mixed methods are briefly summarized in

the following:

The method of incompatible modes: in addition to the usual displacement interpo-

lation functions, Wilson et al [4] proposed the use of incompatible displacement modes

attempting to improve the predictive capability of the classical 4-node isoparametric

element for plane stress/strain analysis. However, this element does not satisfy the

patch test, limiting its application to meshes of parallelogram-type elements. Further

work by Taylor et al [5] improved the performance of Wilson's element for distorted

meshes and offered an alternative formulation for the element to satisfy the patch

test.

The method of assumed strains: in the classical displacement-based finite element

method the strains are derived from kinematic relations of the interpolated displace-

ment field. A closer look at Wilson's element leads one to think of the incompatible

displacements to make an additional contribution to the strain (displacement-based)

field. The incompatible displacements pertain only to the element considered and are

statically condensed out at the element level. Thus, one might be able to identify

a "reasonable" correction or enhancement to the (displacement interpolated) strain

field, provided this alternative element satisfies the minimum conditions to assure

the consistency and stability of the numerical solution. Specifically we need that the

element (i.) should be able to represent a constant strain state (the patch test), (ii.)

9



displays all natural rigid body mode displacements and, (iii.) does not contain any

spurious energy modes (equivalent to say that the stiffness matrix contains no more

zero eigenvalues than those related to the element's rigid body displacements).

Among the different options for designing an enhanced strain mixed-type element,

the Mixed Interpolation of Tensorial Components (MITC) and the Enhanced As-

sumed Strain (EAS) are well established schemes researched and used in practice.

In the MITC scheme, a well-chosen interpolated strain field is tied to the inter-

polated displacement field at certain sampling points; thus, no additional modes are

included in the analysis. The successful developments of Bathe and Dvorkin [6] in

the context of plate/shell analysis have coined the concept of Mixed Interpolation of

T ensorial Components (MITC) in the finite element literature. Some examples of

the successful use of the MITC scheme for linear and nonlinear stress analysis are

described in [7, 8].

Simo and Rifai [9] have proposed a general variational-based framework for devel-

oping Enhanced Assumed Strain type elements. Starting from a three-field variational

formulation, a rationale is proposed for designing mixed interpolated elements and at

the same time satisfying the patch test. From this development, various new mixed

finite elements for a broad range of analysis were proposed in the literature [10, 11].

In a related approach combinations of the above schemes are used. In the par-

ticular case of (almost) incompressible elasticity analysis, the pressure field (related

to the volumetric strains) is interpolated separately, and the deviatoric strain field

is calculated from the interpolated displacement field. If the pressure field is inter-

polated at the element level, termed u/p formulation, a discontinuous pressure field

between elements is obtained [1]. In contrast to the u/p formulation, the u/p-c for-

mulation renders a continuous pressure distribution over the element's boundaries,

in which case the pressure is an additional nodal variable included in the analysis.

Pantuso and Bathe [12] have proposed a mixed interpolated 4-node quadrilateral fi-

nite element for solid and fluid analysis using the u/p-c formulation and including an

enhanced strain field. The element does not lock when either (almost) incompressible

conditions or bending dominated problems are considered and passes the numerical
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inf-sup test [13].

Due to their computational efficiency, generality and simple geometry, low-order

finite elements exhibiting a locking-free response are ideal for practical engineering

analysis. Nevertheless, all developments cited above focused on improving 4-node

quadrilateral and 8-node hexaedron type of elements. Yet, an enhanced low-order

3-node triangular element (and corresponding 4-node tetrahedron for 3D analysis)

is very desirable. Triangular elements are useful in modeling complex geometries, in

which case quadrilateral elements are necessarily distorted, consequently deteriorating

the element's performance.

In view of the above considerations and foreseeing the development of an improved

3-node triangular (and its 3D 4-node counterpart) finite element for solid analysis,

the purpose of this work is to survey and evaluate successful attempts to develop

low-order elements.

To guide this work, we have established some criteria attempting to reach our goal

to have a reliable element, i.e, the element should, ideally, satisfy all the conditions

below [6]:

" be continuum mechanics based

" satisfy the patch test

" be invariant and insensitive to geometric distortions

" have a minimum of stress/strain parameters

" provide accurate displacement and stress calculations irrespective of material

conditions

* use full numerical integration

* use no artificial parameters

" satisfy the inf-sup condition (locking-free response and no spurious zero energy

modes)
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* work well in small and large strain conditions

Hence, we shall concentrate on formulations that can be cast into this framework.

The thesis outline is as follows. In Chapter 2 we introduce the notation used

throughout the text and review the displacement and mixed finite element formula-

tions. With these theoretical tools at hand, in Chapter 3 we summarize the develop-

ments published in the literature. In Chapter 4 we then compare the performance of

finite elements in the solution of well known benchmark problems in linear static anal-

ysis. Finally, in Chapter 5 we close the presentation by mentioning general conditions

to assure stability and convergence of mixed interpolation procedures.
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Chapter 2

Formulation of the Finite Element

Method: Review

2.1 Preliminary Remarks

Let B denote a solid body with volume Q and surface area F with Q n r = 0 such that

n = Q U F is a closed domain in R3 . Adopting the Cartesian coordinate system as

our (inertial) reference frame (X 1, X 2, X 3), the physical location of any point U c R3

is given by the components {X1 , X2, X3 } of the vector x

x = x1ei + X2e 2 + x 3 e 3 = xzei (2.1)

where ei is the ith unit base vector of the rectangular Cartesian coordinate system.

In Eq. (2.1) the summation convention over i (i = 1, 2, 3) is implied1 .

Consider now the analysis of a solid body. We denote by F, that part of F which

contains the prescribed displacements u, applied on F, and by Ff that part of F to

which surface forces fs and concentrated forces ff (at a generic point k) are applied.

The body is also subjected to body forces f0 on Q.

'We also use comma to denote differentiation.
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The general governing differential equations of this problem are given by [14]

'rigj + f = 0 on Q (2.2)

Tijnj = Af on Q (2.3)

Ui Ir = UP(i) on Iu (2.4)

where ri are the components of the stress tensor -r, nj is the Jth component of the

outward unit normal vector to the surface F. The above equations form a "boundary

value problem", and (2.2) is a statement of equilibrium at any point x G Q, whereas

equations (2.3) and (2.4) are, respectively, the force (or natural) boundary conditions

on 14, and displacement (or essential) boundary conditions on Iu. To perform the

analysis, it is necessary to supplement Eqs. (2.2-2.4) with assumptions on the material

properties, stress-strain relationships, and kinematic conditions, such that all three

fundamental requirements of mechanics are fulfilled 2 . We will restrict our attention

to general linear elastic continuum problems, by assuming the following:

" the material properties do not depend on the stress state;

" quasi-static loading conditions apply;

* the displacements are infinitesimally small; thus, the unloaded configuration of

the body is used to solve for the displacements and corresponding strains

Endowed with these assumptions, we have a constant stress-strain matrix C and

use the following relations:

Tij = Cijrsers (2.5)

eij = j (ui,, + , (2.6)

where eij are the components of the small strain tensor E measured in the rectangular

Cartesian coordinate system [15].

2 Namely, (i.) equilibrium conditions; (ii.) compatibility; and (iii.) stress-strain law.
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2.2 Principle of Virtual Work

An equivalent and general statement of equilibrium of our solid body is given by

the "principle of virtual work" (2.7). In words, it requires that, for any admissible

virtual displacement U (and corresponding virtual strains i) imposed on a body at

equilibrium,

"the internal virtual work equals the external virtual work."

By admissible virtual displacement an independent "imaginary" continuous displace-

ment field is meant, which is zero at and corresponding to the actually prescribed

displacements. The principle is expressed in the following equation:

j d (2.7)

n J n rf k

Observe that we use vector notation in Eq. (2.7). We also note that the small strain

tensor can be thought of as obtained by the application of a linear differential operator

8, on the displacement field u. Thus,

E = DEu (2.8)

Writing Eq. (2.8) in vector notation gives:

En & 0 0

622 0 0 -
X2 ui(Xi, X 2 , X 3 )

E33 0 0 a
E(Xi, X 2 , X 3 ) 2a 122(ziX2,X3) (2.9)

2 E12 a a . U 3 (z i , z 2 , 3)
2E23 0 ax9 ax2

2E31 _ a 0 a
LLax 3  ax,

Furthermore, since the virtual displacement is arbitrary, we can replace UT in Eq. (2.7)

by an arbitrary continuous function vilr = 0. Then, for the specific case of linear

elasticity Eq. (2.7) can be rewritten (in vector notation) as

/J TCEdQ = Iv TfB dQ + J rTfs &F (2.10)

where we have used the fact that -r = CE and that all surface loads are contained in

fS = {fs, f9.
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2.3 Displacement-Based Finite Element

Clearly, a closed-form solution of the above general boundary value problem is only

possible for simple applications. Thus, in practical engineering situations, approx-

imated solutions (of a well defined and carefully chosen mathematical model) are

obtained by using classical approximation techniques such as the weighted residual

methods, the finite difference method, or the Ritz method. The common basis of

these techniques is that the solution u of a general boundary value problem

A(u) = f on Q (2.11)

B(u)i = gi, on l i = 1,2, ... ,n (2.12)

is approximated in the form

p

U ~ = (2.13)
j=1

R =A(n) - f (2.14)

where the @j are assumed functions satisfying Eqs. (2.12) and the iy are calculated

such that the residual R in (2.14) is minimized. Therefore, using different criteria for

choosing a particular set of functions ph = { 4 1,...,Op} as well as to evaluate the

respective unknowns nP = {61,... , t,}, result in different approximation techniques.

However, a detailed discussion about this subject is lengthy and beyond our purpose.

See for instance [1, 16}.

In the finite element method (FEM) the displacement field u is approximated

using a form similar to (2.13), and the principle of virtual work (2.7) is the crite-

rion used to obtain the unknowns nyj. The essence of the FEM is that the body is

idealized as a collection of ne non-overlapping discrete finite elements Qe which are

connected at nodal points lying on the element boundaries3 . The great advantage

of this approach is that, as opposed to using "global" (trial) functions Oj E Q as is

the case of (2.13), the FEM uses a set of (trial) functions he = {hi(Ge), ... , h,(Qe)},

which are polynomials specified at each node and correspond to the nodal unknowns

3 Note that we may have nodal point(s) defined inside of each element.
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in the finite element Qe. In our specific case, the multipliers iy are the unknown

(global) nodal displacements, which are calculated by invoking the principle of the

virtual work (PVW).

Note that the virtual displacements can be thought of as a set of test functions

which, along with the PVW form the basis of the finite element approximation.

2.4 Properties of the FEM

In this section we assume that the prescribed displacements are zero. In order to

understand some important properties of the FEM, it is expedient to adopt a compact

notation. We rewrite Eq. (2.10) in the form A(u, v) = F(v) such that

A(u, v) = f (Bev)T C (dEu) dQ (2.15)

F(v) = j V TfB dQ + J v ffs dl (2.16)

Note that, since C is a symmetric tensor,

A(u,v) = A(v,u); A(u,u) > 0 if u# 0

Thus, Eq. (2.15) gives a measure of the internal energy of our elasticity problem.

Hence, if we had chosen v = u, we would have obtained A(u, u) = 2 U(u). We

also note that although v is an arbitrary function with the constraint that vIr = 0,

our elasticity problem requires that v and 49v be continuous in ( and, since we are

looking for solutions resulting in finite strain energy, we need to require that v and

49v be square-integrable, i.e., be members of L2(Q), which is defined as:

L2 (Q) = w |w :QC 3 and wi)2 dQ = ||W|1qa2 < +oo (2.17)

where |1 - |L2 is the 2-norm defined in the space L2 (Q).

With these observations in mind, we can proceed in defining the space V in which

the exact solution u lies 4, namely:

V = {v | (vi, vi,j) E L2(Q); vilr. = 0; i, j = 1, 2,3 } (2.18)

4 Note that, since we require that both vi and its first general derivatives (vij) be members of
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To complete the definition of V it is necessary to specify a norm. Recalling that we

are looking for solutions which correspond to finite strain energy and based on the

fact that A(v, v) is itself a inner-product in V, we define the energy norm:

||v||E = VA(v, V) (2.19)

and we can regard V as a normed linear vector space [18]. Thus, our general elasticity

problem reads [1]:

Find u E V such that A(u, v) = F(v), V v E V (2.20)

where A(-,-) : V x V -+ R is called bilinear operator and F(-) : V -+ R is linear

operator. In addition, the bilinear operator A(-, -) has the following two properties,

namely:

Continuity

3 M > 0 such that Vv 1 , v 2 E V, IA(vi,v 2)| < M IlviII IIv 2Il (2.21)

Ellipticity

E a > 0 such that V v E V, A(v, v) > a IIv|| (2.22)

where || 1 stands for the 1-Sobolev norm, M, a E R are constants independent of v;

thus, depending only on the specific elasticity problem being considered, and specially

the material properties and length scales. Furthermore, by letting vi = V2= v and

combining Eqs. (2.19) to (2.22) results into:

cIIvI| 1  IIvIE < c2 1vI 1  ci, C2 E R Vv E Vh (2.23)

which leads to the following remarks:

L 2 (Q), we could have referred to the Hilbert space H'(a). Additionally, since we require that

vilr = 0 we can refer to Hd(Q). Clearly, HJ(Q) C H'(Q). Therefore, we could alternatively have

written V = {v I v E [Hd(Q)] 3 }. See [17, 18].

18



Remark 1: The energy norm (2.19) defined in V is equivalent to the 1-Sobolev norm,

which means that our "energy space" V inherits all properties of the Sobolev

space H1 (Q); Furthermore, it states that the range of A(u, v) is bounded from

below by (2.22) and above by (2.21).

Remark 2: Provided A(u, v) represents a "well posed" problem, it is assured u is

unique and corresponds to finite strain energy;

Remark 3: By a well posed problem we mean: (i.) the structure is properly sup-

ported, hence no rigid body displacements must be possible; (ii.) the boundary

is sufficiently regular such that the applied surface loads are well defined, i.e.,

fS G L 2(Q).

Consider now the finite element interpolation. We denote by Vh the vector space

spanned by all finite element interpolation functions of a particular discretization

scheme (h = typical the element size). In other words, Vh is a finite dimensional

subspace of V. Clearly, Vh C V, and vh, uh E Vh, where vh is a typical element

of Vh and U" the finite element solution we are after. Therefore, the finite element

problem statement corresponding to (2.20) reads:

Find uh E Vh such that A(uhvh) = Fv Vv), VVhEVh (2.24)

with Vh defined as:

Vh - h I (VhVh ) E L2 (Q); VhPrI = 0; ij = 1,2,3 } (2.25)

Endowed with Eqs. (2.15) to (2.22), which correspond to the continuous case, the

following properties of the displacement-based finite element interpolation hold:

Property 1

A(eh vh) = 0 Vvh E Vh (2.26)

Let eh = u - uh be the error between the continuous and discrete solutions

of (2.20). Recall that Vh is a normed linear vector space. Therefore, the vectors

19



eh and vh can be regarded as being "A" orthogonal. Since u is unique, it follows

from (2.22) that, among all vh E Vh, uh is that particular set of "admissible"

functions rendering the minimum strain energy corresponding to u - uh.

Property 2

A(uh, uh) < A(u, u) (2.27)

From property 1, it follows that

A(u, u) = A(u h, uh) + A(e h, e h)

Recall the ellipticity condition A(v, v) > 0 V v # 0. Therefore, A(eh, eh) -* 0

iff lieh HE -| 0, which implies

|u - uh||1 -+ 0 as h -> 0

In words, as Vh is made continuously closer to V, the error in strain energy

becomes smaller, and the finite element solution uh converges from below to

the strain energy corresponding to the exact solution u. 5

Property 3

A(eh, eh) < A(u - Vh, U _ vh) Vvh E Vh (2.28)

Using (2.19), we can regard IIu - v h2 as the "distance" between members of

the finite dimensional space Vh and V in which the solution u lies.

Convergence This equation assures convergence in the energy norm. Following

properties (2.26) to (2.28) and by using the continuity (2.21) and ellipticity

(2.22) conditions, it can be shown that the finite element solution of our general

elasticity problem converges monotonically to the exact solution u with the error

given by Cea's lemma:

||u - uh I i <; c d(u, Vh) (2.29)

5 Note that, ||u - uh||i -+ 0 does not necessarily mean that uh -+ u. Actually, it says that u- uh

and their first general derivatives have measure zero in L2 (Q).
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where c = VM/a and d(u, Vh) = jnf I u - vhlj can be regarded as a mea-
vhEVh

sure of the "distance" between the vectors u and uh[1]. In other words, provided

that the succeeding subspace V2h E V and contains its predecessor such that

{ V C V2h C ... C V}, it can be demonstrated that the rate of convergence is

given by

||u-uhi < hk (2.30)

where the constant 2 > 0 is independent of V, k the order of the complete

polynomials used and h a typical parameter related to the element size.

2.5 Mixed Interpolation

The displacement-based finite element method has been successfully used in engineer-

ing practice. There are, however, two particular problem-areas, namely, plate/shell

and near incompressible media analysis, in which the displacement-based finite ele-

ment is not effective, exhibiting a too stiff response characterized in the literature as

locking [1].

Shear locking occurs due to the inability of the discrete numerical model to prop-

erly represent a zero shear strain state for pure bending problems. Membrane locking

appears when artificial membrane strains are generated. These phenomena typically

occur in beam and thin plate/shell analysis when the thickness t of the element ap-

proaches zero. In near incompressible media analysis volumetric locking occurs due to

the fact that the discrete numerical model does not have a sufficiently rich displace-

ment field satisfying zero volumetric strain constraint (E, = V- u) as the Poisson's

ratio v approaches the limit 1/2.

To overcome such (numerical) difficulties, various techniques have been proposed.

The main idea is to interpolate the strain and stress fields in addition to the displace-

ment field, giving rise to the so called mixed methods.

The common basis of all mixed methods proposed in the literature is the general

functional of Hu-Washizu [1], in which displacements, stresses and strains are used as
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independent variables (mixed fields). The finite element interpolations of these fields

can be chosen independently of each other. From the Hu-Washizu functional we can

derive the Hellinger-Reissner (H-R) functional (UHR), in which case the displacements

and stresses are the variables.

2.6 Variational Formulation

An alternative approach to obtain the equilibrium governing equations of our elasticity

problem is followed by using the calculus of variations. In words, it can be summarized

as follows: given a functional 11(#) (a function H of the functions #1, . . . , #,) find a

particular set Oh = {#O,... ,#O} which makes the functional H stationary [19]. In

other words, for any arbitrary "variation" 6 in the functions #i, denoted 60i, the

corresponding variation 611 in the functional is zero

6fl = -6 1 + -+ 60n=O Vi E < i=1,...,n
D#01 570n

Since the variations 64i are arbitrary, each must vanish.
00i

In our case, the principle of minimum potential energy is the equivalent "varia-

tional" statement of our elasticity problem. Let 11(u) denote the total potential

U(u) = { j Tr dQ - uTfB dQ - f ruI/S dF (2.31)

subjected to

r = CE (2.32)

E = B9u (2.33)

Ur. = Up (2.34)

In the case of linear analysis, the displacement field u is the independent variable.

After introducing (2.32) to (2.34) into (2.31), we invoke stationarity of H and obtain:

611= {J CEdQ -UTfBdQ J uJTfsd} 0
Jn Ja r
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This results into:

6UI = j 6ETCe dQ - 6u TfB dQ - 6urTffs d = 0 (2.35)

which is equivalent to the principle of virtual work (2.7) when we regard the variations

Su and 6E, respectively, as the virtual displacements U and corresponding virtual

strains E. Note that conditions (2.33) and (2.34) can be regarded as "constraints"

which can be incorporated into (2.31) via Lagrange multipliers, in the form

If = i - AT(E - Eu) d - A (uru - up) d1F
Ja 

Jr U (

It can be demonstrated that by invoking stationarity of II considering u, E, A, and

Au as independent variables, A, corresponds to the stresses r and Au corresponds to

the surface tractions fru on Q, resulting into the celebrated Hu-Washizu functional

UIHW(u, E, T, f)14:

U HW = { T Ce d - Ir (IE - o9u) dQ
fn jid (2.36)

-juTfB dQ-JuTfs dl j f(Uu _ U)T lu d?

The flexibility and generality of the Hu-Washizu functional gives more latitude in

formulating a variety of finite element discretizations, of which a few are described in

the next chapter.
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Chapter 3

Some Mixed Interpolation

Procedures

Our goal in writing this chapter is to summarize some mixed interpolation proce-

dures published in the literature. We start by recalling the displacement-based fi-

nite element formulation derived from the Hu-Washizu functional. Using this frame-

work we then describe the method of incompatible modes, enhanced assumed strain,

displacement-pressure interpolation and mixed interpolation of tensorial components.

We conclude the presentation by mentioning general conditions to assure stability and

convergence of mixed interpolation procedures.

3.1 Introduction

We recall that in the finite element method the volume of the body or domain Q is

partitioned into subdomains Qe or finite elements in the form

ne

Q , Qh U Q
e=1

Provided each Qe is a proper subset of Qh we can use the fact that

i ( j)d= () 1 d1 +-- + (-)nedQne
ngh jo 1 fne
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to write the Hu-Washizu functional (2.31) as

ne

e=1

For each element Qe we have

U = E ETCE dQ -e 2J
17:( - a9u) dQ

e (3.1)

- UTfB dQ JfuIfs dF -
JU.

U- _ U)T Fu d

Assuming linear conditions, the displacement field u is the independent variable

and we substitute e = 49u and r = CE into He (3.1) to obtain:

He = l eT CE dQ - U TfB dQ

where we used the fact that u = up on IF. Invoking stationarity of H with respect

to u results

6ET C E dQ = F(6u) (3.2)
lie

with E being determined from u. Assuming

u = Hn e = Bu (3.3)

where u is the nodal displacements vector, the corresponding finite element equations

are thus

Ken = Re (3.4)

where

Ke =

Re=

BT CBdQ

HTfB dQ +

(3.5)

(3.6)H Ifs dr
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3.2 Incompatible Modes

Recognizing that the classical 4-node isoparametric element (Q1) yields a shear re-

sponse under pure bending, Wilson et al [4] proposed the use of incompatible dis-

placement modes 6i of quadratic distribution in addition to the usual isoparametric

displacement interpolation functions in the form

6, = @edak k = 1,2,3 (3.7)

where 3 is the unit second order tensor, and the vector aT = {ai, a2 , aa}k contains

typical incompatible mode parameters or generalized incompatible displacements cor-

responding to the incompatible function W4(() = 1 - 62, and ( = {1, 2, 63} are the

isoparametric coordinates of a typical element Qe. With this assumption we can write

the displacement and strain vectors in the following form:

u = Hi + Wa 6 = Bftn+ Baa

where Bu = 49H is the discrete differential operator corresponding to the compatible

displacements u and similarly B, = Bi9 corresponds to the strains associated with

a. By using the following matrix partitioning

UH i Bu B . (3.9)

the finite element equations read:

[Kuu

Kau

K0 a

Ka I UR

a0
(3.10)

where

K= BCB dQ

Ja

a= BC B, dQ

K0 0 = B CB, dQ
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and the incompatible modes can be statically condensed out at element level as

Ke= K,, - Ka K- KQ (3.13)

with the final stiffness matrix K being obtained as usual.

However, the so called Q6 element does not satisfy the patch test, limiting its

application to meshes of parallelogram-type elements. Further work by Taylor et

al [5] altered the Q6 formulation by evaluating the derivatives '/k,i at the centre of

the element such that for an arbitrarily distorted element BC will always represent a

constant strain state, therefore satisfying the patch test.

Remark 1: The use of incompatible modes violates the fundamental requirement

of continuity of the assumed displacement field within each element and across

element boundaries. In such circumstances one-sided asymptotic convergence

to the mathematical model is not guaranteed.

Remark 2: For the specific case of displacement-based interpolation procedures em-

ploying non-conforming elements, passing the patch test' assures that, as the

mesh is gradually refined, convergence to the correct solution of the mathemat-

ical model is obtained. However, it should also be noted that, even though the

element assemblage passes the patch test, the element itself ought to pass the

patch test as well. A classical example of the situation depicted here is the 8-

node quadrilateral "reduced" integrated (2x2 Gauss quadrature) element, which

is claimed to be useful in the analysis of certain problems. It turned out later

that, after passing the patch test, the element's spurious energy mode is some-

times activated during certain analyses spoiling the overall solution. Therefore,

to avoid this instability behavior, known as hourglassing, an additional require-

ment is the use of full numerical integration.

'After elimination of all rigid body displacements, any patch of elements must (i.) accurately

represent all constant strain states; (ii.) display all natural rigid body mode displacements belonging

to the mathematical model being considered; (iii.) do not contain any spurious energy modes

(equivalent to say that the stiffness matrix contains no more zero eigenvalues than those related to

the element's rigid body displacements).
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Remark 3: Considering the case of mixed-interpolated finite element procedures,

passing the patch test is a necessary condition to assert the consistency of the

formulation, but it is not a sufficient condition that guarantees stability of any

mixed-interpolated discretization procedure. For any mixed interpolated proce-

dure, the ellipticity (2.22) and the inf-sup conditions are the rigorous mathemat-

ical criteria that should be satisfied in order to have a stable mixed-interpolated

formulation. See [1, 20].

3.3 Displacement-Pressure Interpolation

As pointed out earlier, when almost incompressible conditions arise in the analysis

of solids, for instance, rubber-like materials are employed or inelastic response is

considered, the displacement-based finite element shows poor performance, even when

higher-order finite elements are used. It is well known that, as the Poisson's ratio

approaches v -+ 1/2 the volumetric strain approaches zero (Ey -+ 0). In the limit

case of total incompressibility we have V u = 0, which corresponds to look for a

solution in a subspace K C V whose members satisfy the incompressibility constraint.

Considering the standard displacement-based finite element space Vh, this is a difficult

constraint to be satisfied. As a result, the space Kh is usually not rich enough.

The practical consequence is the so called locking. Being this the case, alternative

interpolation procedures need to be used.

Many finite elements have been proposed in the literature which, to a large extent,

are formulated based upon reduced selective integration or penalty type procedures.

However, elements based on these approaches have been reported to exhibit spurious

energy modes in some analysis cases [1]. Therefore, it is advantageous to use mixed

interpolation procedures.

The displacement-pressure formulation is a well established mixed interpolation

procedure resulting into reliable and accurate results, and is briefly describe next.

Assuming linear conditions and by substituting r = Cc into the Hu-Washizu
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functional (2.36) the Hellinger-Reissner functional is obtained:

HR= - ET CE dQ +
2a i E TCaeu d -Y(u)

where Y(u) is given in (2.16) and we have used the fact that uIru = up. By splitting

the strain tensor into its deviatoric ED and volumetric (or spherical) Ey parts as given

in (3.15)

ED = E - yE where Ev = tr(e) (3.15)

it can be demonstrated that the following modified Hellinger-Reissner functional holds

[1]:

1HR 2 ]fnDCD Q 2 ]
J (v+P) Q-Fu (3.16)

where C, is the stress-strain matrix corresponding to the deviatoric stress and strain

components, p is the pressure and r, is the bulk modulus. Invoking stationarity of

UHR with respect to variations of the independent variables u and p yields:

4 eCo ED dQ -
j4

/jp(cv + P) d 2 = 0

with ED and Ey being determined from u. Assuming

the corresponding finite element equations are thus

Kuu K., n
KP Kp

R

0
(3.21)

C= B CDBD dQ

KPU = K T

,= 4 H, dQ

K, = H THp dQ
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Eevp dQ = F(6u) (3.17)

(3.18)

u = HGu ED = BD f

Ey = Byfn

(3.19)

(3.20)

[
where

(3.22)

(3.23)



To arrive at an effective formulation, the degree of the interpolating polynomials

should be judiciously chosen. A reasonable way to proceed is that, for the pressure,

the maximum complete interpolating polynomial degree used is k - 1, where k is the

complete polynomial degree used to interpolate the displacement field. On the other

hand, the minimum polynomial degree is zero, or a constant pressure. Therefore, the

key for obtaining an effective element is to finding the best combination of discrete

finite element spaces (displacement and pressure) that, together, result in a locking

free element depicting the maximum possible order of convergence.

In the specific case of almost incompressible conditions for solid (and fluid) anal-

ysis, both theoretical and numerical studies of the u/p formulation are available in

the literature. See [1]. The main findings are that high-order quadrilateral elements

Q, - P,_ 1 and triangular elements P - P,_ 1 , n > 2 are effective. However, the 9/4

element was found to lock when v -± 1/2.

3.4 u/p/e Formulation

In a related approach Pantuso and Bathe [12] have proposed a mixed interpolated 4-

node quadrilateral finite element for solid and fluid analysis using the u/p-c formulation 2

which includes a 6-parameter enhanced strain field. The element does not lock when

either (almost) incompressible conditions or bending dominated problems are consid-

ered. The element passes the patch test and the numerical inf-sup test, and shows

very good convergence behavior even for distorted meshes. The originality of this for-

mulation lies in taking advantage of the u/p formulation combined with an enhanced

strain field, thus rendering a locking free low-order finite element for general use in

solid and fluid linear analysis.

2In the u/p formulation the pressure degrees of freedom are internal to each element, thus a

discontinuous pressure distribution is obtained, whereas in the u/p-c formulation the pressure is a

nodal variable and pressure continuity is imposed.
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3.5 Mixed Interpolation of Tensorial Components

In order to develop general and effective locking free finite elements for analysis of

plates/shells, Bathe and Dvorkin [6] proposed to interpolate the transverse shear

strains in addition to interpolating the transverse displacement and section rotations.

A well-chosen interpolated strain field is tied to the interpolated displacement field at

certain sampling points; thus, no additional modes are included in the analysis. The

successful performance of this formulation coined the concept of Mixed Interpolation

of Tensorial Components. The main advantages of interpolating the tensorial shear

strain components are: (i.) the formulation is very general thus can be extended

straightforwardly to general shell elements for linear and nonlinear analysis; (ii.)

geometric distortion is naturally taken into account; (iii.) the interpolation procedure

is frame invariant.

In plate analysis when the thickness t becomes smaller, the transverse shear strains

-y approach zero and shear locking occurs. This constraint is analogous to the case of

almost incompressible analysis, which prompted Bathe and Brezzi [21, 22] to extend

the underlying mathematical analysis of the u/p formulation to the case of the MITC

plate elements. They have established strong mathematical criteria for the stability

and optimality of mixed interpolation procedures.

The shear locking phenomenon has been successfully addressed using the MITC

formulation, and in the case of plate analysis convergence studies have been published

[1]. However, in the case of general shell analysis the situation is more complex, i.e.,

depending on geometry and support conditions bending-dominated or membrane-

dominated behaviors occur, as pointed out by Chapelle and Bathe [23].

The important point to stress is that an effective shell finite element discretization

would give the same rate of convergence whenever a bending-dominated or membrane-

dominated behavior is encountered. While a complete mathematical analysis of the

existing shell finite elements is not available, a numerical inf-sup test was proposed

(Bathe, losilevich, Chapelle ) [24, 25] and should be used to assess the reliability of

new mixed-interpolated shell elements.

31



3.6 Enhanced Assumed Strains

Simo and Rifai [9] proposed a general framework for formulating mixed assumed

strain elements. The strain field is given in the form

E = eu + i (3.24)

with Z the enhanced strain field. In the formulation, the Hu-Washizu variational

indicator is modified by using the assumed strain field as given by Eq.(3.24). The re-

sulting 3-field functional has stress, displacement and the "enhanced" assumed strain

fields as independent variables. The equivalent discrete variational problem is then

derived based upon three basic assumptions which, together, the authors claim assures

stability of the formulation. Those conditions are:

" (i) The enhanced strain interpolation field and the displacement-interpolated

strain field have to be independent of each other. A non mathematical rea-

soning is that, as the enhanced strain field is being conceived to improve upon

the performance of the standard strain field this is a rather natural choice.

Mathematically, the violation of this condition leads to a singular system of

equations.

" (ii) The (independent) stress field is also assumed discontinuous across element

boundaries and must contain at least piece-wise constant functions.

e (iii) In order to simplify the formulation, the independent enhanced strain field

is chosen such that it is L2-orthogonal to the assumed stress field. As a result,

the stress field term drops out from the finite element equations, collapsing the

3-field formulation to a 2-field one.

With these assumptions, the discrete form of Eq. (3.24) is given by

E = Bn + Ga (3.25)

where B = 0,H is the discrete differential operator corresponding to the displace-

ments u, G = TG corresponds to the enhanced assumed strain interpolation func-

tions in the physical space, T is a tensor transformation which maps Gg from the
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isoparametric space ( into the physical space, and a contains the internal element

parameters. Specific issues on the stability of the formulation are addressed in [9],

but the inf-sup condition was not mentioned.

Within this framework, the elements of Wilson [4] and Taylor [5] can be considered

as particular cases.

Andelfinger and Ramm [10] based on Simo and Rifai's [9] work discussed the

use of incompatible strains such that all strain fields are complete bilinear (trilinear

for 3D analysis) polynomials in the isoparametric space. For a 3D 8-node element,

30 additional incompatible modes are needed, whereas for a 2D 4-node element 7

additional modes are necessary, as shown in Table 3.1. They pointed out that to

U 1~7 7

v 1 7 incompatible strain modes

av
8?al7777

17 a7 7 7

Table 3.1: Polynomial expansion of compatible strains in the 2D isoparametric space.

obtain a volumetric-locking free 3D 8-node element (EAS30) one should add at least

9 incompatible-type modes in order to have the same linear polynomial field for all

normal strain components. They also have shown that by using "Wilson's bubble

functions" [4], the element is not volumetric-locking free for certain distorted meshes,

since the enhanced strain space spanned by those functions does not contain all

necessary 9 incompatible-type modes as cited above (which are analogous to the

modes shown in Table 3.1 for the 2D case).

Korelc and Wriggers [11] have proposed a modified enhanced strain methodology

which employs Taylor expansions of the derivatives of the isoparametric and enhanced

shape functions. The assumed strain field is considered of the form:

E = 0,U + i + ESU (3.26)
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where the new term ES" couples the compatible strain field with the enhanced one. The

Hu-Washizu principle is also used. The proposed formulation follows the guidelines

set forth by Simo and Rifai [9] and uses the incompatible modes suggested by Taylor

et al [5]. The resulting enhanced strain matrix is sparse since the incompatible modes

are uncoupled. The 3D 8-node element proposed in this formulation (QS/E9) uses

only 9 incompatible-type modes, whereas the 3D element proposed by Simo, Armero

and Taylor [26] (Q1/E9) uses 9 incompatible-type modes, but was found to lock and

to present spurious energy modes when severely distorted when used in the context

of geometrically nonlinear analysis. Further work by Simo, Armero and Taylor [27]

presented an improved formulation (QM1/E12) of the original element, including 12

incompatible-type modes and employing a special quadrature rule. The 3D 8-node

element proposed by Korelc and Wriggers [11] presented good results when used in

severely distorted meshes. However, since the QS/E9 element uses Taylor expansions

defined in the physical space, this renders the element not frame invariant.

There is no report indicating whether the above mentioned elements satisfy the

numerical inf-sup test, whereas the u/p/e element proposed by Pantuso and Bathe

[12] passes the numerical inf-sup test in 2D linear analysis. Table 3.3 summarizes the

main characteristics of the aforementioned elements.

Andelfinger and Ramm [10] stated that the EAS7 element (and its 3D counterpart,

EAS30) is equivalent to the 5# (18#) quadrilateral element due to Pian and Sumihara

[2], after inspecting the numerically integrated stiffness matrices of these elements.

Later work by Yeo and Lee [28] formally proves the findings of Andelfinger and Ramm

and also provides the conditions under which the equivalence of the assumed enhanced

strain and the assumed stress methodologies holds.
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(0 0 0

0 0 0 (3.27)

0 0 
( 3.9

0 0 0 1r/
[ 0 r0 0 0 -6r/ (3.28)

0 0 77 6;2 _,q2

6 0 0 0 (r/ 0

G 0 q/ 0 0 0 677 (3.29)

0 0 T 0 0

(0 0 0 (71 0 0

G7 = 0 rq 0 0 0 6r/ 0 (3.30)

0 0 6 q 0 0 (7,

Table 3.2: Basis functions used in some EAS elements for the case of plane stress and

plane strain conditions.
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Table 3.3: Comparison of elements properties.

36

No. Locking free Pass

Element Ref. Class Eq. modes shear vol. inf-sup

QM6 [5] u/c (3.27) 4 Y Y N/A

2D EAS5 [9] u/e (3.28) 5 Y Y N/A

EAS7 [10] u/E (3.30) 7 Y Y N/A

4/4/6 [12] u/p/E (3.29) 6 Y Y Y

Q1/E9 [26] u/E 9 N N N/A

QM1/E12 [27] u/E 12 Y Y N/A

3D EAS30 [10] u/E 30 Y Y N/A

QS/E9 [11] u/e 9 Y Y N/A

8/8/15 [12] u/p/E 15 Y Y N/A



3.7 Other Procedures

3.7.1 Assumed Stress Methods

From the Hu-Washizu functional we can derive the Hellinger-Reissner (H-R) func-

tional (HHR), in which the displacements and stresses are the variables. Based on the

H-R functional, Pian and Sumihara [2] developed a 4-node quadrilateral element (and

corresponding 8-node hexahedra element), which has been reported in the literature

to exhibit good convergence. See [3] and references therein. However, in this approach

the assumed stresses have to satisfy the equilibrium equations a priori making use

of inverse constitutive relations. Thus, extension of this development to nonlinear

analysis is not straightforward because standard algorithms in nonlinear analysis are

based on strain measures with stresses being evaluated a posteriori.

3.7.2 Use of Bubbles

The use of "bubble" functions in the form

= (1 - )(1- (1j _) 2 = (123 (1 = 1 - (2 - 3 (3.31)

#3 = (- )1 - 3? (1-( 0 3 = (1(2(3(4 (i = 1 - (2 - (3 - (4 (3-2

(i E [-1, 1] E [0, 1] ( = (3.33)

have an attractive property of vanishing along the element boundaries, thus rendering

compatible finite elements for which internal degrees of freedom can be statically

condensed out. Here #i refers to quadrilateral 2D and 3D elements, and 4'i refers to

triangular 2D and 3D elements.

However, when attempting to enrich a finite element subspace by using these

functions one can demonstrate that [29], in the case of elliptic problems, there is no

advantage, since the internal degrees of freedom do not change the vertex unknowns,

unless body forces are present.
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Chapter 4

Benchmarking

In this chapter we assess the performance of some quadrilateral elements employed in

the analysis of classical problems. The elements considered are labeled as: Q1 which

corresponds to the displacement-based element, the PS or 5#-I element of Pian and

Sumihara [2], the u/p/e (UPE) element proposed by Pantuso and Bathe [12] and the

EASn family of enhanced assumed strain elements. Here, we use the EASn elements,

with n = 4, 5, 6, 7 denoting the number of enhanced strain parameters such that:

EAS4 corresponds to the incompatible element QM6 of Taylor [5], EAS5 is the 5

parameter-element of Simo and Rifai [9], EAS7 corresponds to the element proposed

by Andelfinger and Ramm [10]. The author has implemented the EAS elements using

the user-supplied option available in ADINA@, which is gratefully acknowledged.

4.1 Cantilever Beam

Consider a cantilever beam subjected to pure bending as depicted in Fig. 4-1. To

model this problem plane stress conditions are assumed. The exact solution is ob-

tained by using a mesh of 2 non-distorted assumed stress or assumed strain finite

elements. However, this degree of accuracy is not shared by all "enhanced" finite el-

ements when used in distorted meshes. The calculated vertical displacement v of the

free tip is compared against the analytical solution as the mesh is gradually distorted

by rotating the common edge of the elements. The chart in Fig. 4-2 summarizes these
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Figure 4-1: Beam bending E = 1, 500 and v = 0.0

results.
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Figure 4-2: Sensitivity to geometric distortion A.

As can be seen, the EAS elements have almost the same sensitivity to geometric

distortion, with a slight advantage to the EAS7 element. Also note that the EAS7

and PS elements give same results, as pointed out in [10, 28]. The u/p/e element of

Pantuso and Bathe [12] seems to be the least sensitive to geometric distortions.

39



4.2 Cook's Membrane

A tapered beam clamped on its left edge and subjected to an uniformly distributed

shearing load F applied on the opposite edge is shown in Fig. 4.2. Plane stress con-

ditions are assumed and quadrilateral elements are used. We consider a sequence of

y4 48

IIF 16

44

- X

Figure 4-3: Cook's membrane. Plane stress, unit thickness, E = 1, V = 1/3

uniform meshes of {2, 4, 8, 16, 32} elements (per side) to calculate the vertical dis-

placement at the mid-side of the free edge. It can be readily seen from Fig. 4.2 that

the assumed strain elements depict very good coarse-mesh accuracy as opposed to

the displacement-based element. Figure 4.2 shows a smoothed plotting of the ryy for

the case of 32x32 mesh of EAS7 elements.
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Figure 4-4: Uniform shearing load.

free-edge is considered.

Vertical displacement of the mid-point of the

Figure 4-5: Element EAS7: Smoothed ryy.
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Figure 4-6: Element EAS7: Non-smoothed ryy.

Figure 4-7: Element Q1: Smoothed ryy.
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Figure 4-8: Element Q1: Non-smoothed -r,.
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4.3 Driven Cavity

In order to evaluate the performance of the enhanced strain-based elements in almost

incompressible elasticity situations, we consider the Stokes flow problem which is gov-

erned by the same differential equations as isotropic incompressible elasticity. In the

problem solution we take the velocity field u of the flow problem to correspond to the

displacement field, and the dynamic viscosity p to correspond to the shearing modulus

G used in elasticity. The problem considered is to calculate the pressure distribution

inside a square cavity which has zero velocities u (displacements) prescribed at all

edges except at the top edge, which has u = 1 and v = 0, as shown in Fig. 4-9. Plane

y

u=1

x

1

Figure 4-9: Driven cavity. Boundary condition for all edges u = v = 0, except top

edge where u = 1, v = 0.

strain conditions are assumed, and the analysis was carried out by using 1Ox1O and

20x20 meshes. As expected, the pure displacement-based element spoils the analysis

as Poisson's ratio approaches 1/2, whereas the assumed strain elements retain a good

accuracy as the mesh is refined. The "velocity" field is shown in Figs. 4-10 and 4-11

for the 10x10 mesh of Q1 and EAS7 elements.

Comparative plots of the pressure results are shown in Figs. 4-12-4-14. Note that

pressure values shown are smoothed nodal results evaluated from the stress field.

For the case of the 20x20 mesh, depicted in Figs. 4-15- 4-16, similar results are

obtained.
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Figure 4-10: Q1 element. Velocity field 10x1O mesh.
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Figure 4-11: EAS7 element. Velocity field 1Ox1O mesh.

Among the 2D elements we considered, the u/p/e element proposed by Pantuso

and Bathe [12] seems to be the least sensitive to geometric distortions. Considering

that it uses a 6-parameter assumed strain field, passes the numerical inf-sup test and

performs equally well in almost incompressible situations, its general use in linear

analysis is recommended.
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Driven Cavity Q1 (mesh 1Ox10)
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Figure 4-12: Q1 Element: Pressure distribution at y = 0.2 mesh 10x1O.
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Figure 4-13: EAS7 Element: Pressure distribution at y = 0.2 mesh 1xI1.
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Driven Cavity mesh 10x1O (nu=0.4999)
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Figure 4-14: Comparison of elements: Pressure distribution at y = 0.2 mesh 1Ox1O.
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Figure 4-16: EAS7 element. Velocity field 20x20 mesh.

Driven Cavity Q1 (mesh 20x20)
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Figure 4-17: Q1 Element: Pressure distribution at y = 0.2 mesh 20x20.
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Driven Cavity EAS7 (mesh 20x20)
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Figure 4-18: EAS7 Element: Pressure distribution at y = 0.2 mesh 20x20.
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Figure 4-19: Comparison of elements: Pressure distribution at y = 0.2 mesh 20x20.
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Figure 4-20: 9/4-c Element: Pressure contours mesh 20x20.
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Figure 4-21: EAS7 Element: Pressure contours mesh 20x20.
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Chapter 5

Closure

We close this presentation by summarizing some fundamental aspects of using mixed

interpolation procedures. First, let us recall our main objective: to identify efficient

mixed interpolation procedures proposed in the literature envisioning to develop re-

liable low-order triangular and tetrahedral elements for solid and fluid analysis.

Based on what we learned in this research, we consider that a reliable finite ele-

ment, should ideally have the following properties:

" be continuum mechanics based,

" satisfy the patch test,

" be invariant and insensitive to geometric distortions,

" have a minimum of stress/strain parameters,

* provide accurate displacement and stress calculations irrespective of material

conditions,

* use full numerical integration,

* use no artificial parameters,

" satisfy the inf-sup condition (locking-free response and no spurious zero energy

modes),
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* work well in small and large strain conditions,

* have a consistent variational basis.

We noticed a strong trend in using the assumed strain framework as a means

for designing improved elements Although many procedures with variational basis

have been successfully applied to solve problems, only few of them represent reliable

mixed interpolation discretizations. Namely, we note the lack of studying whether the

elements satisfy the inf-sup condition. Namely, two conditions should be satisfied: (i.)

ellipticity condition of the bilinear forms associated with the mixed interpolation and

(ii.) the inf-sup condition. The former is usually satisfied if appropriate interpolation

functions are used and full numerical integration is employed. Satisfying the ellipticity

condition ensures solvability. The inf-sup is a general condition for stability and

optmality. It is difficult to evaluate analytically; however, numerical tests have been

proposed and should be used. Satisfying the inf-sup condition assures stability and

optimality of the mixed-interpolated procedure.

In engineering practice, elements lacking generality and failing to fulfill these basic

requirements should be ruled out if a serious engineering analysis is considered.
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