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ABSTRACT

Full software AC servo controllers have been developed with special real time software
in the Windows NT operating system. The full software AC servo controllers are able to
control multiple AC servomotors with the CPU of a personal computer. The controller
handles 1 00s commutation and current feedback, 200s velocity feedback, and 1 ms
position feedback. The full software AC servo controllers provide the ultimate
flexibility, low cost, and powerful graphic user interface in Windows NT. They can also
take advantage of all the Windows NT features, such as networking.

The software alone performs all the calculations in the CPU of the host computer in the
full software AC servo controller. The software control makes the implementation of any
algorithm much easier. Advanced control algorithms, such as d-q axis control and
decoupling control, are implemented utilizing the flexibility of the controllers. These
control algorithms generate accurate torque current and less iron loss in the AC
servomotors. They also cancel the nonlinear terms of the motor equations to make the
motor dynamics steady with changing angular velocity by feed forward control.

A new renovated pulse width modulation (PWM) method, called "Dynamic PWM" has
been designed and formulated. The Dynamic PWM eliminates most of the delay
problems associated with the current PWM. The effectiveness of the dynamic PWM was
verified through simulation in the Matlab software. High frequency and instability
analyses were done in the simulation. The dynamic PWM showed about one PWM
period less phase lag than the regular PWM. It was also able to handle a much higher
gain in the current feedback than the regular PWM. The future implementation algorithm
and procedures using the full software AC servo controllers were also developed.

Thesis Supervisor: Haruhiko Harry Asada
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

There is a great need for intelligent and flexible numerical controllers, which

could replace the traditional controllers exclusively provided by only a few NC controller

manufacturers. The conventional controllers do not provide flexibility and open

architecture because they use the proprietary logic circuits with microprocessors or DSP

chips. The users must follow the strict procedures and the control methods provided by

the controller manufacturers. The dedicated chips are neither flexible nor as powerful as

the central processing unit (CPU) of personal computers. They also require their own

graphic user interfaces (GUI), which vary from one manufacturer to another unlike the

personal computer (PC) industry where users can benefit from familiar GUI regardless of

the PC manufacturer. However, the NC machine and the robotic industries still depend

on the few manufacturers because the controllers must be able to perform in real time

with many specifications. On the other hand, there are many advantages to replacing

those exclusive traditional controllers with PC's. In order to use a PC as a controller, it

must be able to handle all the controls in real time fulfilling all the specifications of the

industries. The use of PC's would bring a new era to the NC machine and robotics

industries.

The advantages to replacing those exclusive traditional controllers with PC's are

manifold. The PC based controllers could provide the open architecture and flexibility.

Users could have the flexibility to use their own control methods and specific

implementation technology. Many new technologies in the NC machine and robotics

industries could result from the flexible and open architecture controllers.

There will be vast opportunities for the motion control industry to grow. PC based

controllers will also provide a user friendly GUI. However, the PC based controllers

should not be a mere user interface for the traditional controllers, which still have to use

some intelligent chips for actual control. Using those chips are not cost effective and

limit the flexibility. Therefore, those chips should be replaced completely by software

alone. Full software servo controllers give the ultimate flexibility because all the controls
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and interfaces are done by the software alone. They make use of the advanced PC

operating systems such as Windows NT and allow users to easily incorporate isolated

machines into a network based system. Moreover, a variety of application software and

other hardware peripherals for PC's could be used as well. However, the problem is that

the real-time control and the time-critical operations are not supported under the

advanced GUI operating systems. The current practice is to use dedicated motion control

cards with DSP chips to off-load the burden of real-time computation and interrupt

handling. The dedicated motion control cards not only limit the flexibility of the system

but also increase the cost.

The rapid progress of CPU's computing power may eliminate the need for

dedicated motion control cards and replace them by software alone. Real-time operating

systems play more important roles for the complex real-time control applications. A real-

time operating system in the feedback loop of such a control system must respond to

periodic external interrupts consistently within a certain time limit called "hard deadline."

[6]. If the delay in the operating system exceeds the hard deadline, the system behaves

unexpectedly and may cause instability. A similar phenomenon also can be observed if

the interrupt sampling in the feedback loop is fluctuated. To meet the deadline and the

temporal consistency requirements for time-critical applications, the real-time operating

system must have a microscopic, consistent interrupt latency.

In the past years, many algorithms have been developed to handle the external

interrupts and the computation under the above timing-related constraints. To name a

few, the worst case execution time estimate approach [7,8,9], the queuing spin lock

algorithm [10, 11] and the integrated inter-process communication and scheduling

scheme[12] are recent results. These approaches have already been implemented and

tested on the high-end platforms such as UNIX workstations. However, in spite of the

recent explosive improvement of performance and reliability of PC's, the available

operating systems for PC's are not real time operating systems by themselves. If the

high-performance real-time functionality is appended to general-purpose operating

systems (OS) such as Windows NT, PC's will be the power motion controllers in the next

century.
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In chapter 2, the development of such full software real time controllers in the

Windows NT operating system is presented. Windows NT has the capability to provide

fast response time with powerful networking and graphic user interface capabilities.

However, it is not deterministic under the preemptive multi-tasking architecture.

Therefore, it is thought to be not suitable for the time-critical real-time operations such as

the current feedback of AC servomotors with 50is to 100ps sampling rates. However,

by adding the real-time OS feature to Windows NT, it turns into the foundation for the

deterministic and powerful real time controller. The goal of this thesis is to present the

development of the software for handling interrupts and performing time-critical

computations under the Windows NT operating system and issues involved.

One major issue in the full software servo controller is the time budget because

the controller uses the CPU from the host computer. The number of controllable axes is

determined by the CPU usage at the current sampling rates. The controller should be able

to control multiple axes at the high current sampling frequency in order for it to be used

in the robotics or NC machine industries. In chapter 4, the time budget and the new

interface board are presented. The new board improves the time budget by decreasing

the number of I/O accesses. The estimation and the actual time budget with the new

board are also presented to show that the full software servo controllers are adequate for

the robotics and the NC machine industries.

The objective of AC servo control is to have fast bandwidths of the system. In

order to have fast bandwidths in velocity or position, the current controller must provide

the desired torque current accurately. In order to determine the best algorithm to obtain

the desired torque with fast bandwidth, various control algorithms can be implemented

easily with the software AC servo controller because of the flexible architecture. The

algorithms can be implemented just by compiling different programming source codes.

Three different control algorithms are discussed and the experimental data using those

control algorithms are presented. First, the three phase local feedback control, the

conventional algorithm used by industry, is compared to the d-q axis feedback control.

The d-q axis algorithm [2 3], derived from the Clarke and Park transformation, actually

controls the torque current and the iron loss directly to provide the accurate torque

current. The decoupling control with Back EMF compensation is also implemented. The
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decoupling control eliminates the nonlinear terms due to the mutual inductance of the AC

servomotors. It also maintains the torque current at the desired value regardless of the

angular velocity of the motor.

The full software servo controllers enable the control architecture to change

easily. The flexibility of the controller prompts the search for technological

breakthroughs in fundamental issues such as pulse width modulation (PWM), which is a

method of powering the AC servomotors. Chapter 6 of this thesis discusses a new pulse

width modulation (PWM) algorithm designed by the author. The new PWM algorithm is

called "Dynamic PWM." The problems with the current PWM algorithms are discussed.

The dynamic PWM is presented with the simulation data to prove the effectiveness of the

algorithm.

13



Chapter 2

Full Software AC Servo Control

2.1 Overview

Full software AC servo real time controllers in the Windows NT platform using personal

computers have been developed. Full software AC servo control systems provide flexible open

architecture, powerful graphic user interface, low cost, and offers the availability of using other

peripheral devices. The Windows NT operating system also provides an easy networking feature

for factory automation and other robotics and machine tool applications. In this chapter, the

architecture of the full software AC servo controllers is presented.

2.2 Overall Architecture

In traditional PC-based motion controllers, it has been the standard to use DSP chips for

intense real time control tasks. The CPU's task, in this kind of controller, is to give out trajectory

command and to monitor the overall operation. The reason that most motion controllers cannot

get away from this kind of structure is the inadequate speed of the CPU. If the CPU were to

carry out the motion control tasks in detail, for example, the computation for all the feedback, it

would be almost impossible for the CPU to do even the most basic tasks such as monitoring or

displaying. But with the introduction of Intel's fast Pentium Processors and Windows NT

operating system with a new user-friendly interface, real time motion control without any

dedicated hardware became possible. Figure 2.2.1 shows the overall structure diagram of the

motion control system with Windows NT.

The periodic interrupts are generated by a counter/timer board plugged in the slots of the

PC. It generates two periodic interrupts for the faster and the slower sampling rates. With the

faster interval interrupt, the current feedback of the AC servomotor is carried out. Other

feedback for position control and velocity control is done in the slower interrupt routine. Also

the trajectory data update and networking is done on the application program level which lies on

the lowest priority. The position and velocity feedback are done based on the position

information read from the encoder board. Approximately half the CPU capacity is used for

14



interrupt service routines, which carry out multiple feedback, and the rest is used for application

programs including trajectory data update and networking, or other non-control related tasks.

System diagram of Windows NT based motion control system

I LRQ's

Figure 2.2.1: Structure Diagram of Windows NT based Motion Control System
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2.3 Windows NT-based full Software AC Servo System

In this section, the recent development of the Windows NT-based full software AC servo

system is presented. To emphasize the advantages of the system, the conventional industrial

practice of AC servo motor control is reviewed. Also, the previous development of the PC-based

AC control system is briefly reviewed. The new Windows NT-based AC servo control system

provides a competitive control performance with great flexibility at a minimum cost.

2.3.1 Structure of an Industrial AC Servo System - Traditional Method

In order to control an AC servomotor with optimal efficiency, the control device has to

generate a magnetic flux perpendicular to the current at all times. Designated hardware has been

used to regulate the current. To control the current that flows into the motor, the PWM signal

(Pulse Width Modulation) is generated by the electronic circuit. This circuit generates

three-phase analog sine waves for commutation of the AC servomotor. These three sine wave

signals have a phase difference of 120 degrees to each other. These analog signals go into the

PWM generation circuit and are converted into corresponding digital signals, which are pulse

width modulated. These TTL signals turn on and off the switching devices. The power inputs to

motor are also turned on and off concurrently. The functions of these circuits are explained in

detail in the following sections.

Sine Wave Generation Circuit

This circuit generates sine waves according to the rotor position. It is composed of ROM

with sine value data written in it. When the position information enters the ROM as a form of

address, the ROM gives out the corresponding sine value according to the position of the rotor.

There are three sine waves with a phase difference of 120 degrees because the AC servomotor is

a three-phase motor. In practice, phase V can be estimated by a simple analog operation through

the equation V = - (U + W). Therefore, only phases U and W have to be generated by ROM.
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DC-SIN Conversion Circuit

The sine wave circuit generates two-phase sine waves synchronized with rotor position.

In the DC-SIN conversion circuit, these values are multiplied by the reference input to increase

or decrease the amplitude. This is how the current input to motor is controlled.

Figure 2.3.1: Traditional Pulse Width Modulation Method

PWM Generation Circuit

The sine wave current flows into the motor. To accomplish this, we can directly give

continuously varying current using the analog feature of the switching devices. However, this

will cause an enormous power loss and will eventually result in overheating the motor.

Therefore, we have to cause the current flow by pulse to reduce the power loss. This method is

called PWM (Pulse Width Modulation).

In the PWM method, the generated sine waves are compared with triangular waves with a

fixed frequency. Figure 2.3.1 shows the procedure to generate the PWM with the triangular and

the sine waves. The frequency of a triangular wave is around 10 ~ 20 kHz when FETs are used

as switching devices. The switching device is turned off when the triangular waves have higher

values than the sine-shaped current signal values. On the contrary, during the duration that the
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current signal values are larger than the triangular wave, the switching device is turned on, so that

the current flows into the motor. By changing the duty ratio, the overall current that flows into

the motor can be controlled.

Figure 2.3.2: Block Diagram of Traditional AC Servomotor Control System
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2.3.2 Windows NT-Based Software AC Servo Control

Digital AC Servo - PWM Generation by Software

The traditional method uses electrical circuits including comparators to generate the

PWM signal as shown in Figure 2.3.2. Analog input signals are needed for the comparators. The

electronic circuit generates analog signals. Therefore, DA conversion is needed to send out the

reference value to the circuit when a digital computer is used as a controller. The converted

analog signal goes through the PWM circuit. After going through the PWM circuit, the analog

signal is converted back into the digital PWM signal. It is not a very efficient process.

PC / Windows NT

Reference

Input

Cc

AIg

+ 
T H

ontrol

orithm

-T H

CP1a

Power

Amplifier
r - - - - - -

n ML
Current Monitor Signal

Motor

Encoder Y
Position Data

Figure 2.3.3: Diagram of AC Servomotor Control System with PWM by Counter
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This tedious process is the needed for the PWM signal generation due to use of the

comparator. The efficiency would improve if the PWM signals are generated directly from the

digital reference input. The current industrial practice uses dedicated hardware for the system

shown in Figure 2.3.3, besides the transistor bridge which is also called the power block. This

report explains how we could replace most of the above electronic circuits by software. We can

dramatically reduce the cost and obtain unlimited flexibility in motor control even at the current

feedback level when we use the software based control system.

Previous Digital AC Servo System

In our previous system, we were already using a counter/timer board to initiate interrupt

request signal generation as shown in Figure 2.3.3. This Am9513 timer/counter chip was good

for our purpose in that it had a mode that could be used for generating a PWM signal by setting

the high duration and low duration on the chip. By adopting this method, we were able to replace

many electronic circuits by software. However, only one PWM signal was generated in the

previous experimental setup. The PWM signal was manipulated in the logic circuit in the

amplifier to generate all three PWM signals. The block diagram for the previous setup is shown

in Figure 2.3.3.

2.3.3 PWM Inverter

In the AC servo motor control, it is required that the amplitude and the phase of each of

the three phase sinusoidal currents must be precisely controlled at high speed. To satisfy the

requirement, a method called PWM has been widely used. In this method, the current of a motor

is converted into a controlled pulse of width proportional to the amplitude of the sine wave.

As shown in Figure 2.3.4, a three-phase PWM inverter consists of two transistors and

diodes for each phase. The two transistors cannot be turned on simultaneously to avoid a short

circuit. However, since the switching latency of the transistor is longer when it is off than when it

is on, a short circuit might occur when both transistors are turned off simultaneously. To avoid

20



the problem, a dead time is introduced in the inverter, as shown in Figure 2.3.4.

IIt
!1I

on

(

O

Q2

td
I I

!I

)ff
td td

off

Figure 2.3.4: PWM pulse waves with a dead time td

In an ideal PWM inverter, output voltage V of a phase is -Ed/2 when the current is

negative and Ed/2 when the current is positive. However, the output is perturbed due to the dead

time. The output error can be approximated as a sinusoidal voltage and its amplitude AV is

expressed as:

AV=Ed tdfe

where td is the dead time andfe is the carrier frequency of the PWM inverter. The phase of AV is

opposite to the output current. When the motor operates at a high speed, AV is negligible

compared with the sinusoidal output of each phase. However, when it is operating at a low speed,
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the current waves of the motor are distorted and torque ripples appear. Consequently, the servo

control performance is deteriorated.

In this project, we first implement a dead-time compensating algorithm as shown in

Figure x. In the algorithm, the direction of the motor current is detected, and AV is added to the

voltage command when the direction is positive and -AV is added when the direction is negative.

With this algorithm, the actual output of the PWM inverter becomes equal to the ideal output and

the control performance can be maintained.

2.3.4 Advanced Full Software AC Servo

Figure 2.3.5: Structure diagram of full digital AC servo control setup
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As it was shown before in Figure 2.3.3, three-phase inputs should be generated to run an

AC servomotor. Each of these three signal is generated by the separate PWM circuit, in the

shape of sine waves shifted 120 degrees to each other. In addition, to improve the motor

performance, a current feedback circuit is also necessary, with fast periodical feedback.

Advanced Full-Digital AC Servo

Software
(PC with Windows NT)

Counter/Timer
A/D Converter

Encoder Counter
(Add-in Boards in PC)

- 0 -- - 0

Sine Wave
PWM

Generation

To Velocity(Position)
Feedback Algorithm

O Encoder
Encoder
Counter

Figure 2.3.6: Block diagram of software AC servo motor control with three phase PWM generations
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In the industry, the dedicated control board with DSP is used to offload the burden on

those kinds of jobs, including commutation and current feedback. If the computer CPU could do

commutation and current feedback with the software, there is no need for the expensive

dedicated boards. In addition, there is no analog signal involved in the entire control process.

Therefore, it is more immune to noise even in the harsh field environment.

In this chapter, the full software AC servo controllers that have been developed based on

the Windows NT real-time operating system are discussed. Figure 2.3.6 shows the architecture

of the system, while Figure 2.3.5 shows the hardware components and the connection of the

servo system. As shown in Figure 2.3.6, a simple standard counter/timer board in this current

setup generates the PWM signals. The logic circuit in the previous setup is no longer used

because all three PWM signals are generated simultaneously by the software. The A/D converters

are used for monitoring two phase currents. The sine table in the software replaces sine wave

generation circuits. The software also operates the current feedback control. After the current

feedback, the computed values are sent out directly to the counter to generate proper PWM

signals to drive the motor. Consequently, all hardware can be replaced by software except the

high voltage power amplifier.
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Chapter 3

Reconfiguring Windows NT to a Real Time Operating
System

3.1 Overview

As the real time control system based on Windows NT is developed, it is necessary to

investigate Windows NT from the viewpoint of the internal system characteristics. In this

chapter, the characteristics of Windows NT as a real time operating system are rigorously

evaluated with the overall system description. One important aspect of the real time control

system is to guarantee the periodic sampling without fail. It is important to find out the kinds of

situations that must be avoided to guarantee real time performance. For example, there is a

situation where the system control might fail if the interrupt requests are ignored because of other

peripheral devices, such as a CD-Rom driver. The full software must guarantee the robustness of

interrupt performance when a large amount of data is transferred from the hard disk or other data

storage drivers. Some systems may not be as robust, depending on the different interface bus.

In this chapter, problems that might occur with the software real time controller during

heavy data transfer are investigated and the solution is suggested. It is shown that the robustness

of the system highly depends on the bus system of the PC, EIDE or SCSI drivers. An

investigation and experiment was done to find out the conditions that would guarantee real time

performance. It was concluded that the SCSI drive does not contribute to the interrupt

disappearance while the EIDE drive does. However, a recent development of a new EIDE disk

controller with a bus-mastering DMA chipset like the SCSI controller enables the interrupts to go

through without disturbance from the hard disk controller. Therefore, any disk controllers with

DMA compatibility could be used for the software AC servo controller. The feasibility test of

using the EIDE disk controller with bus-mastering capability was performed, and the results were

compared with that of the SCSI controller.
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3.2 Interrupt Handling on Windows NT

In Windows NT and any other Windows systems, device drivers handle the interactions

with peripheral devices. The objective of this chapter is to develop a special device driver to be

involved in the "Kernel" of the Windows NT operating system so that a group of I/O devices

necessary for motion control can be accessed and run in real time. Figure 3.2.1 shows the

procedure for handling interrupts under the Windows NT environment. When an interrupt

request comes in, the CPU jumps to special routines, called Interrupt Service Routine (ISR) and

Deferred Procedure Call (DPC). In ISR, all interrupt requests coming from other devices having

lower priority levels are masked off, whereas in DPC no interrupt is masked off. Namely, any

other interrupt can be accepted during the DPC execution, even though the interrupt requested

has a lower priority level than that of the one currently processed. The preemptive multitasking

policy of Windows NT requests that only the time-critical tasks must be performed in ISR so that

a particular device does not occupy the CPU for a long time. After leaving the ISR soon, most of

the tasks that are not time-critical are performed in DPC.

InteuptISR (Interrut DPC (Deferred

Ierupst o Service Routine) -- + roedure Call)
Requestroutine

Runs at DIRQL Runs at
(Device Intemipt ReQuest Level) IRQL Dispatch Level

The most time-critical Relatively non-time-critical
parts of the control algorithm parts of the control algorithm

Figure 3.2.1: Basic process of interrupt handling on Windows NT
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Interrupt Priority Level Device Name
0 (highest) System Timer
1 Keyboard
2 cascaded from slave PIC
3 COM2*
4 COM 1*
5 LPT2*
6 Floppy Disk Controller
7 LPT1*
8 Real Time Clock
9 Redirection to IRQ 2
10 Reserved *
11 Reserved *
12 PS/2 Mouse
13 Reserved (Co-processor) *

14 Hard Disk Controller
15 (lowest) Hard Disk Controller

Table 3.2.1: Interrupt priority levels of Windows NT

*: IRQ lines that are used by non-critical devices for basic operation of PC. Thus, these lines are

usually open to the users.

Table 3.2.1 shows the interrupt priority levels assigned to each device in the Windows

NT system. Levels 3 and 4 are assigned to a user's devices. Note that a keyboard and a certain

type of mouse have higher priority levels than the user devices.

To guarantee the exact sampling interval for the real time control, a counter/timer board is

used to request interrupts to the CPU. We generate two square waves with different intervals for

two separate interrupt procedures. The ISRs in the device driver are programmed to carry out the

feedback loops according to the specified control algorithm.
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3.3 Real Time Performance with Different Types of Buses

A computer is composed of many components. These include a hard disk, memory,

CD-ROM driver and other peripherals. Data exchanges between these components are done

through a bus system. In other words, the bus plays a similar role to that of a bridge between

islands on the sea. If the bridge is narrow, the overall traffic between islands will be crowded

and slowed down. In the same way, the better the performance of the bus system becomes, the

faster the overall computer speed will be. When the CPU reads information from the hard disk

or CD-ROM driver, the data travels through the bus and sometimes it may be the bottleneck of

the whole PC performance if the bus does not catch up with the speed of the CPU.

As mentioned before, the real time control system uses the interrupt of the CPU.

Therefore, during the time a heavy data access occurs, there is a possibility that the performance

of the real time control system might be deteriorated because the CPU could be totally occupied

by the data transfer job. It is certain that the interrupt priority used for the real time control is

higher than that of the hard disk and CD-ROM data transfer. So at first glance, the real time job

should not be influenced or disturbed by the mass storage access and seems to work perfectly

without any problems. However, the experiment shows that there are certain cases when the

interrupt response of the CPU just disappears (which means that the interrupt request from the

external timer is not accepted by the CPU) during heavy data transfer such as when reading or

writing a huge file. This problem is shown in Figure 3.3.1.
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Interrunt Reauest Signal From

Normal Response of CPU

Response of CPU with Heavy Data

Figure 3.3.1: Disappearance of Interrupt

This problem was observed when the PC was equipped with the EIDE (Enhanced IDE)

interface card and EIDE mass storage devices. The intensive experiment was done and the

interrupt disappearance time sometimes lasted up to 5 ~ 10 milliseconds. If the control system

relied on the this kind of operating system, the machines would go unstable. The interrupt

disappearance phenomena are not to be neglected in the precise motion control system. This

problem was solved by adopting a SCSI interface card with bus-mastering DMA and mass

storage devices based on SCSI. The characteristics of SCSI and also the EIDE interface

controller cards are presented in the following sections.

3.3.1 EIDE (Enhanced Integrated Disk Electronics) and SCSI (Small Computer Systems
Interface) Drivers

The EDIE interface and the SCSI bus were the two most popular interfaces for computer

peripherals recently. The EIDE interface can be found almost only in the PC industry. In

contrast, the SCSI bus was designed not only for PCs, but for use in a wide variety of computers

ranging from PCs to workstations and even mainframes. As the real time operation of our

system shows different behaviors with heavy data access depending on the bus type, it is

important to know the basic differences of these two.
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EIDE Interface

The EIDE interface is an extension of IDE (Integrated Disk Electronics) interface. This

interface was originally developed for the connection between the hard disk and the CPU. As it

was expanded to EIDE, access of removable mass storage including the CD-ROM driver was

made possible. The IDE Controller is physically embedded in the peripheral unit itself. The only

components left on the PC side is an IDE bus adapter, which is composed of simple buffers and a

few decoders. As there is no complicated structure on the bus adapter side, the IDE

architecture-based system is generally cheaper than that of the SCSI architecture.

It is possible to connect two hard disk drives to one adapter with the IDE interface. If the

host bus is an ISA bus, the bus adapter is the IDE adapter, which is composed of simple

components. On the contrary, if the host bus is EISA or PCI, the bus adapter must have a

relatively complicated architecture. In this case, the main advantage of the IDE interface, which

is low cost, is lost. For the same cost, an equally effective SCSI host adapter can be used, which

makes it possible to connect a variety of mass storage devices.

The current PCs are composed of a CPU and many integrated chipsets. A chipset consists

of several customized VLSIs that integrate many small chips that used to exist in the early age of

PCs. For example, the 8259A interrupt controller and 8253 counter chips are all embedded in a

customized VLSI. Many of the recent chipsets include the EIDE adapter by default, so that no

extra EIDE adapter is needed for the hard disk or the CD-ROM driver. Also, many of the popular

chipsets are based on PCI architecture these days. This means that a PCI-EIDE adapter is

generally included in the chipsets and no extra cost is needed for it. Although PCI-EIDE

architecture is not as powerful as PCI-SCSI architecture, it still provides us with enough

capability of hard disk and CD-ROM driver for general purpose use.

Although the embedded PCI-EIDE architecture is quite enough for office environment use, we

still need SCSI architecture for stable and robust operation of Windows NT real time control

system. There are five classes of commands for the IDE interface. These commands are listed

below.

The commands used for data transfer are 1, 2, and 4. In PIO read and write commands,

data transfer is managed by the CPU itself. An interrupt occurs whenever a sector of hard disk

(usually 512 bytes in the case of a typical PC) is read or written. This means that 2000 interrupts
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must occur for the data transfer of a 1Mbyte file. This way of data transfer puts heavy load to the

CPU during hard disk access. On the contrary, the CPU can be completely free if we use DMA

commands for data transfer. Interrupts occur only twice (at the beginning and the end of data

transfer) no matter how large the amount of data is. But unfortunately, most of today's IDE or

EIDE controllers use PIO read and write commands for data transfer because the overall transfer

rate is still faster than using the slow DMA chip (commands 4 of above table) which is

embedded in the motherboard. This is due to the high speed clock of the recent CPUs. (For

example, the Pentium Pro that was used marks 200 MHz.) But from the standpoint of efficiency,

the PIO transfer method is far behind the DMA method.

SCSI Bus

The SCSI bus is not dedicated for the PC, rather, it is an universal definition of a bus for

all kinds of computers. It is also different from IDE or EIDE in that it can be used for any kind

of peripherals such as a CD-ROM driver or a tape driver, i.e., it is a device independent 1/0 bus.

The original SCSI bus can address up to eight devices. The devices are discriminated by the

numbers called SCSI ID. In PC architecture, the host adapter connected to the PC itself is treated

as a SCSI device. With this independent architecture, SCSI provides much more flexibility and

functionality than IDE. For example, data can be transferred between SCSI devices without any

help from the CPU. In this sense, file copy operation between a SCSI hard disk and CD-ROM

can be done without any help from the CPU. This is extremely useful in multitasking

environments such as Windows NT or OS/2.

If a PC had a SCSI bridge controller and assigned it a SCSI ID, each of the bridge

controllers can have eight logical units. In this case each LUN (Logical Unit Number) can

represent a separate peripheral device.

3.3.2 Bus Mastering DMA

The problem with the interrupt disappearance occurs when heavy data is accessed from

the EIDE hard disk or CD-ROM driver. This is basically due to the fact that the EIDE mass

storage device controller uses PIO mode for data transfer, which takes up significant CPU time in
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the interrupt service level. This problem could be solved by using the peripherals based on the

bus mastering concept.

The hard disk drive or the CD-ROM drive must move data between the physical data

storage and the computer's RAM. There are several methods for moving data, and the overall

performance of the system is significantly affected by which method is adopted for moving data.

(This is especially true in the case that other tasks use interrupt capability as its main core

resource, as is the case in the full software control system.) .

The most general and least complex method is called Programmed Input / Output (PIO).

This has been used since the early generation of the IBM PC. In the PIO method, the CPU itself

moves data between the mass storage devices and system memory using interrupt capability. The

primary drawback to PIO data transfer is that the CPU must be utilized for each sector of data to

be moved. I/O operation is relatively slower than other CPU operations such as computation or

data transfer between memory blocks. In this protocol, the CPU transfers a 512-byte sector when

the disk controller generates an interrupt request. As a result, to move a data of 1 MB, 20

interrupts are needed to be generated, and the CPU has to repeat going through the same interrupt

service routine 20 times. This gives the CPU a significant load so that the CPU sometimes skips

the real time control task during heavy data transfer.

One way to overcome this kind of drawback is using the Direct Memory Access (DMA)

function. The basic concept is that data transfer is not done by the CPU, but by a dedicated chip

that is designed only for data transfer. In this case, what the CPU has to do is to give out a

command to the DMA chip to start data transfer between certain areas. After that, the DMA chip

takes care of all the data transfer and the CPU does not have to be involved in the transfer job at

all, which otherwise lowers the overhead of the CPU.

DMA is not a new concept at all in the computer industry. Rather, it has been used in

floppy disk data transfer since the first appearance of IBM-PC. In floppy disk data transfer, a

DMA chip, which is typically mounted in the motherboard of the computer is used. (This built-in

chip is called "Third Party DMA.") Even the hard disk data transfer was done by this DMA in the

very early days when IBM-XT was popular. But from the IBM-AT days the hard disk data

transfer began to be done by the CPU itself because the built-in DMA chip was too slow relative

to the speed of the CPU. The speed of the built-in DMA chip (originally named 8237A from
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Intel) was only 4.77 MHz (7.16 MHz at most) and the data was transferred by 8 bits. This is

significantly slower than the speed of Pentium or Pentium Pro today, which goes up to 200 or

300 MHz and has 32 bit of data transfer width. This is why the PIO method has been used for

hard disk data transfer from the IBM-AT. The DMA in the PC was almost "forgotten" as a relic

of ancient times except that it is used for floppy drive data transfer, and it became a standard to

use the CPU itself for data transfer for the hard disk or the CD-ROM driver.

But as the PC world entered into the multitasking environment, the situation changed

dramatically. Multiple application programs ran at the same time in a PC, and more and more

CPU bandwidth was necessary to satisfy the many programs running simultaneously in one

machine. Naturally, programmers and PC manufacturers desperately looked for the ways to

off-load the CPU, and the DMA concept became spotlighted again. However, the traditional

DMA chip is too slow to be used. Thus, came the concept of "Bus Mastering DMA" or "First

Party DMA."

The disk drive controllers that support bus mastering DMA have the ability to move data

to and from the system RAM without the help of the CPU or a third party DMA chip. In bus

mastering DMA, the data transfer is taken care of mostly by the first party DMA chip which is

generally embedded in the peripheral controller itself. The CPU does only the triggering of the

data transfer; it does not have to perform any part of the data transfer itself. The bus mastering

DMA chip will do everything concerned with data transfer. This is also the same in the case of

third party DMA which has existed as far back as the time when the floppy controllers were used.

But the DMA chip for the bus mastering operation embedded in the host controllers are generally

much faster than the old-fashioned third party DMA chip, because it is developed relatively new.

Another reason, which makes first party DMA more favorable for the real time control system, is

the relation with the bus cycle in data transfer. In PIO protocol-based data access and first party

DMA-based data transfer, two bus cycles are needed for moving a word between peripheral

device and the system memory - one for reading and the other for writing. But in the case of the

bus mastering DMA, reading or writing associated with peripheral device side is done without

any relation to the bus cycle, rather, it is done by the host adapter itself. Consequently the bus

cycle needed for moving a word is only one for accessing the system memory in the case of bus
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mastering DMA. In addition, the system RAM can be accessed using high speed methods like

page mode access.

PIO, Third Party DMA, and First Party DMA
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Figure 3.3.2: PIO and DMA
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Because of this, mass storage devices with bus mastering DMA can move data much faster than

those with PIO or third party DMA. The bus mastering DMA is especially better compared to the

PIO method in that the data transfer business is done almost without spending the precious CPU

interrupt time. As our real time control system uses interrupt capability significantly, we may

encounter a situation in which the control performance may be deteriorated or interfered with

during heavy data transfer if we use the PIO based hard disk or CD-ROM driver. By adopting bus

mastering DMA, we can efficiently avoid this kind of potential problem. The comparison of

three data transfer methods - PIO, third party DMA, and first party DMA - is shown on Figure

3.3.2.

The bus mastering concept can be implemented with both EIDE and SCSI devices. The

problem is that current commercial PCs mainly use the PIO mode for data transfer with EIDE

devices. Of course, there are a few newly developed main board chipsets that support the bus

mastering mass storage device controller (such as Intel's 430FX, 430HX, 430VX, and 440FX

chipsets). But main stream chipsets do not support the bus mastering EIDE yet. So even though

the chipsets support it, it is of no use because major multitasking operating systems such as

Windows NT do not currently support bus mastering for the compatibility with non-bus

mastering chipsets. (Though the device drivers for mass storage devices with bus mastering

DMA-based chipsets are available for Windows 95 these days, it is hard to say that they are

reliable enough yet.) So even though we use a computer with the above chipsets, the data transfer

is still done by the PIO protocol under Windows NT.

On the contrary, many of the recent SCSI adapters (for example, Adaptec

AHA-2940UW) are equipped with the bus mastering DMA chip in itself. This chip lets the CPU

be free during data transfer between a SCSI device and the memory of the PC. This means that

the CPU does not have to be tied up with a data transfer job and can do something else. With this

kind of host adapter, the interrupt occurs only at the start and at the end of data transfer. (This is

similar to the DMA command mode of the IDE interface, which is almost forgotten in the current

industry.) At the start of data transfer, the CPU sends the SCSI adapter the commands of the data

transfer, the beginning address and the amount of data to transfer. After that, everything is done

by the host adapter itself and the CPU is completely free during that time. At the end of data

transfer the host adapter generates another interrupt and lets the CPU know that it is finished.
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For this real time control system, we certainly need bus mastering capability for the reason stated

above. As current EIDE devices seldom support bus mastering, adopting SCSI devices with bus

mastering is the best solution for our real time control system. In summary, the SCSI bus adapter,

equipped with bus mastering DMA functionality, could be used in the real time software AC

servo system. In the next section, this point is proved experimentally.

3.3.3 Counting the Number of Interrupts during Heavy Data Access

To show that using the SCSI bus solves the problem of the interrupt response

disappearance problem, the following experiments were carried out. The number of interrupts

was counted along with the system clock timing to determine whether there are any interrupts

missing. To count the number of interrupt responses of the CPU in a specific time, a program for

counting the interrupt responses was developed. This program was run on two PCs with

different bus architecture, one with EIDE and the other with SCSI. The first experiment shows

the result with the EIDE interface when accessing a file of 40 MB from hard disk. It took about

61 seconds to access the 40 MB data from the EIDE hard disk, and 538444 of first interrupts and

56551 of second interrupts occurred. If no interrupt is to be missing, the first interrupts should be

counted to be around 610000 and the second interrupts around 61000. This experiment shows

that more than 10 % of the first interrupts are missing and about 8 % of second interrupts are also

missing with the EIDE hard disk. The second experiment shows the result with the EIDE

CD-ROM driver. This shows that it took about 72.6 seconds for the 40 MB data access and the

first interrupts were counted 643637 and the second 70288. These numbers should be 726000

and 72600 respectively if no interrupt was missing, which also shows that around 10 % of the

first interrupts and around 4 % of second interrupts were missing during data transfer from the

EIDE CD-ROM driver.

The third experiment shows the result of the access of the same amount of data from the

SCSI hard disk with bus mastering DMA functionality. It took about 13 seconds for data access

and the first interrupts were counted 129253 showing that almost no interrupt request was

skipped. The second interrupts were counted 12994 which also shows similar result as the first

interrupts. The SCSI CD-ROM driver had a similarly good result.
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The performance monitor of the Windows NT explains the advantage of the bus master

DMA of the SCSI bus. It is shown that both the interrupt time and the processor time suddenly

increases when data access begins in the case of EIDE devices. For the SCSI devices there is very

little change (or almost none!) of interrupt time and processor time during data access. This is

due to the bus mastering DMA fumctionality used in the SCSI host adapter. In EIDE devices, the

interrupt time jumps up because it uses the PIO reading and writing mode for data access.

Consequently, a stable digital control by interrupt operation of Windows NT can be guaranteed

even during heavy data access as long as the SCSI adapter with bus mastering DMA is used. This

means that our real time control system works with good stability as long as the SCSI

architecture is used.

3.3.4 Feasibility Test of Using the Super-DMA Hard Drive

In previous sections of this chapter, it was concluded that a SCSI (Small Computer

Systems Interface) hard disk drive is needed for the software AC motor servo system to prevent

the interrupts from disappearing. The SCSI drives have a Bus Mastering DMA (Direct Memory

Allocation) feature embedded in the system. DMA is a method of allowing data to be moved

from one location to another in a computer without intervention from the central processor

(CPU). Without the Bus Mastering DMA feature, an interrupt is called while the hard disk drive

is being accessed. Therefore, other interrupts do not get processed while the hard disk drive is

being accessed. However, the Bus Mastering DMA has the ability to transfer data from the hard

disk to the RAM and from the RAM to the hard disk. The CPU only triggers the data transfer

and the Bus Mastering DMA chip takes care of the actual data transfer. This is the reason the

interrupts do not disappear in the computer with the SCSI drive controller even during a huge file

transfer from the hard disk to the RAM or from the RAM to the hard disk.

Bus Mastering DMA is available for another disk controller besides the SCSI. The new

chipset from Intel supports Bus Mastering DMA even for EIDE as long as the hard disk drive is

compatible with DMA. It is called Super-DMA. Most recently manufactured EIDE hard drives

are compatible with Super-DMA. The Super-DMA chipset enables the software servo system to

not be restricted to SCSI. The system can have an EIDE hard drive with DMA compatibility at a

lower cost.
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System Clock Current Interrupt Velocity Interrupt % Interrupt % Interrupt

(1OOus) Count (100us) Count (250us) Loss (100us) Loss (250us)

202391 174021 71093 14.0% 12.2%

109681 168051 68511 14.3% 12.6%

122175 106928 43551 12.5% 10.9%

110759 95872 38997 13.4% 12.0%

Table 3.3.1: Data Transfer from EIDE Hard Drive without DMA Compatibility

System Clock Current Interrupt Velocity Interrupt % Interrupt % Interrupt

Duration Count (100us) Count (250us) Loss (100us) Loss (250us)

182963 182946 73181 0.0% 0.0%

120172 120130 48055 0.0% 0.0%

101445 101450 40586 0.0% 0.0%

91631 91182 36483 0.0% 0.0%

Table 3.3.2: Data Transfer from EIDE Hard Drive with DMA Compatibility

System Clock Current Interrupt Velocity Interrupt % Interrupt % Interrupt

Duration Count (100us) Count (250us) Loss (100us) Loss (250us)

257169 257108 102843 0.0% 0.0%

163134 163073 65229 0.0% 0.0%

128284 128290 51316 0.0% 0.0%

146210 146268 58507 0.0% 0.0%

Table 3.3.3: Data Transfer from SCSI Hard Drive
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To test the feasibility of the Super-DMA, a series of tests were done. The computer used

for the experiment was the Dell Dimensions XPS P133MHz with a 32Mb RAM. The exact same

setup as the current software servo system was implemented in that computer. An ordinary

device driver with an interrupt counting feature was compiled and executed. The device driver

program counted both interrupts for the current (100us) and velocity (250us) feedback. The

interrupts were counted with respect to the time intervals calculated from the system clock. For

example, if the test was executed for 10 seconds, there should be 100,000 current feedback

interrupt counts and 25,000 velocity feedback interrupt counts. The actual measurements from

the feasibility test are shown in Tables 3.3.1 to 3.3.3.

The interrupt counts were measured while large files were being copied from one

directory to another to detect possible interrupt conflicts during the test. The exact same files

were used for all the tests to maintain consistency. The test was taken for a long enough period

of time, about 10 seconds, that the measurement error is minimized. The tables show that there

is up to a 14% interrupt loss in the regular EIDE controller without the DMA compatibility.

However, there is virtually no interrupt loss for the EIDE controller with the DMA compatibility

(Super-DMA) and the SCSI controller. Therefore, both the EIDE controller with the DMA

compatibility and the SCSI controller are adequate for the software AC motor servo system.

3.4 Evaluation of Windows NT as a real time operating system

There are five important points that should be observed in any real time operating system.

These points are briefly explained in the following sections and are used to evaluate the full

software AC servo system.

3.4.1 Determinism

An operating system is deterministic to the extent that it performs operations at fixed,

predetermined times or within predetermined time intervals. When multiple processes are

competing for resources and processor time, no system will be fully deterministic. In a real-time

operating system, process requests for service are dictated by external events and timings. The
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extent to which an operating system can deterministically satisfy requests depends, first, on the

speed with which it can respond to interrupts and, second, on whether the system has sufficient

capacity to handle all requests within the required time. One useful measurement of the ability of

an operating system to function deterministically is the maximum delay from the point of the

arrival of a high-priority device interrupt request to when servicing begins. In non-real time

operating systems, this delay may be in the range of tens to hundreds of milliseconds, whereas in

real time operating systems that delay may be a few microseconds or milliseconds.

The Windows NT is basically not a real time operating system. Naturally it is not so

deterministic under the preemptive multitasking environment on which most of the user level

application programs run. Therefore it is obvious that application programs cannot be used for

real time purpose. But as we are running real time tasks with the help of the interrupt, the

deterministic character of Windows NT is not that bad, though it cannot be said to be excellent.

This is demonstrated in the experiment described in the following section, as it shows good

responsiveness of the Windows NT operating system.

3.4.2 Responsiveness (Interrupt latency measurement)

Type of CPU \ OS DOS Windows NT

386DX - 33 MHz 30 ps ±15 s N/A

Pentium 133 MHz 6 ps ±1 Is 9 ps

Pentium Pro 200 MHz 5 gs 6 ps

Pentium II 400 MHz N/A 3.5 ps

Table 3.4.1: Interrupt Latency Measurement Results

Interrupt latency can be one of the most reliable criteria in determining the responsiveness

of an operating system. (As was stated above, it is also a good criteria to see whether an

operating system is deterministic or not.) The evaluation of interrupt latency of Windows NT

gives us satisfactorily good result as shown in Table 3.4.1.
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In the DOS environment, there are quite many fluctuations on interrupt latency, which

doesn't seem to be good for periodical sampling. But in Windows NT, fluctuation almost

disappears. It seems that it is because Windows NT is scheduling all the threads already, so that

the CPU is always ready to accept interrupt requests without any confusion.

Interrupt latency in Windows NT is longer than that in DOS, as expected. But it is not as

high as 10 or 20 times which we have been worried about. As the fastest sampling rate which

will be used in current feedback is expected to be around 10 pLs, interrupt latency of 6 is in

Windows NT with Pentium Pro 200 MHz will not be a significant problem. So, it is verified that

using Windows NT as an operating system for real time control seems to be adequate in terms of

the interrupt latency problem.

3.4.3 User Control

User control is generally much broader in a real time operating system than in ordinary

operating systems. In a typical non-real time operating system, the user either has no control over

the scheduling function of the operating system or can only provide broad guidance such as

grouping users into more than one priority class. In a real time operating system, however, it is

essential to allow the user fine-grained control over task priority. The user should be able to

distinguish between hard and soft tasks and to specify relative priorities within each class. A real

time system will also allow the user to specify such characteristics as the use of paging or process

swapping, what processes must always be resident in main memory, what disk transfer

algorithms are to be used, what rights the processes in various priority bands have, and so on.

Windows NT basically does not allow the user to specify the priorities of individual user

level application tasks. Even if there are several tricky ways for the programmers to do this

Windows NT strongly defends itself from any efforts users make to get into its scheduling jobs.

So if we only think about the user level applications, the user controllability of Windows NT is

far behind the need for real time performance. But as our system carries out most of its

time-critical work in the interrupt service routines, we can specify the priorities of the tasks

according to the predefined interrupt request priority levels of the CPU. In addition, Windows

NT supports multitasking with inter-process communication tools such as semaphores and
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events. But it is still impossible for the user to specify use of paging, process swapping, and so

on. As a consequence, the user controllability of Windows NT cannot be said to be satisfactory,

but still enough for general real time tasks if we use the interrupt capacity.

3.4.4 Reliability

As real time operating system usually control heavy and dangerous machines, reliability

is typically far more important for real time operating systems than non-real time operating

systems. The Windows NT was designed to run each application in its own processes and cannot

read or write outside of its own address space. The operating system data is isolated from

applications. Applications interact with the kernel indirectly using well-defined user-mode APIs.

Thus it is almost impossible for Windows NT to stop due to the errors caused by user level

applications, showing the reliability of this operating system. But still, kernel mode drivers might

cause Windows NT to stop during critical operations. So any machine that is controlled by the

Windows NT operating system should be equipped with some emergency shutdown devices to

prevent any disastrous accidents. In addotopm, Windows NT has a good functionality for failure

analysis, which will eventually reduce the unexpected shutdown of the operating system.

3.4.5 Fail-Soft Operation

Fail-soft operation is a characteristic that refers to the ability of a system to fail in such a

way as to preserve as much capability and data as possible. For example, a typical UNIX system,

when it detects a corruption of data within a kernel, issues a failure message on the system

console, dumps the memory contents to the disk for later failure analysis, and terminates

execution of the system. In contrast, a real time system will attempt to either correct the problem

or minimize its effects while continuing to run. Typically, the system will notify a user or user

process that it should attempt corrective action and then continue operation perhaps at a reduced

level of service. In the event that shutdown is necessary, an attempt is made to maintain file and

data consistency.
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Windows NT is basically a kind of UNIX in its architecture. As a result, it behaves

similar to UNIX when it detects any problems or corruption - dumping the memory into a file in

hard disk, and terminating the system or restarting the whole system. From the viewpoint of later

failure analysis, this feature is good for system maintenance, even if it doesn't have such

functionality as continuing the process in spite of error detection of kernel, which is one of the

necessary functions of a real time operating system. (Windows NT never stops with any failure of

user level application. Only kernel level failure can stop Windows NT.) For recovery options,

Windows NT performs four jobs before shutdown in emergency. Writing an event to the system

log, sending an administrative alert, writing a debugging information to a file, and automatic

rebooting. The user can enable or disable these functions selectively.

43



Chapter 4

Time Budget and I/O Speed Issues

4.1 Overview

In the previous chapter, the Windows NT-based software AC servo control

system was presented. The main feature of the system is that all the computations and

operations including multi-layered feedback controls, the three phase commutation, d-q

axis control algorithm with decoupling control, and digital PWM generation are

performed only by the PC's host CPU. One critical question is how much CPU time is

occupied by the real-time controller, embedded in the kernel of the Windows NT

operating system, and whether the CPU still has enough time for other operations such as

disk drive access and GUI operations.

Therefore, one of the most important issues in the full software AC servo

controller is the time budget. The full software controller uses the CPU of a PC for the

logic and the calculation instead of using some DSP chips or electronic circuits. In order

to guarantee the real time control characteristic, hard interrupts are called in every

sampling period. The hard interrupts take away the computing power of the CPU

entirely. The PC may crash when the CPU load is too great for it to handle. Therefore,

determining the right maximum load for a specific CPU is essential in the full software

controller. Knowing the time budget could help in determining the current sampling rates

or the number of axes a specific PC could control.

Another reason for determining the time budget of a system is to obtain the

required CPU load for each process such as 1/0 reading, logic, and calculations. From

the time budget, the bottleneck of the system could be identified. The system uses ISA

bus for I/O, which is shown to be the bottleneck in the system.

In this chapter, the time budget of the system with a commercial board is

determined. The time budget shows that the old system is not capable of controlling

multiple axes at the high current sampling rates, which is often required in the robotics

and NC machine industries. In the later sections, the development of a new interface

board is presented with its time budget to control multiple axes at the high sampling rates.
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4.2 Time Budget Formulation

In the previous section, we proposed the Windows NT-based software AC servo

control system. The main feature of the system is that all the computations and operations

including multi-layered feedback controls, the three phase commutation and digital PWM

generation are performed only by the PC's host CPU. One critical question is how much

CPU time is occupied by the real-time controller, embedded in the kernel of the Windows

NT operating system, and whether the CPU still has enough time for other operations

such as disk drive access and GUI operations. The objective of this section is to show that

the Windows NT-based software AC servo can be implemented on a Pentium PC for

multi-axis control applications such as robot control. Since the current feedback and

PWM computations are the most time consuming, we will focus on the time budget for

these computation at the highest sampling rate.

Let us first define the following parameters:

t, Time required for one writing to I/O address

t,: Time required for one reading from I/O address

t,n: Time required for one multiplication

td : Time required for one division

torher: Time required for other algebraic computation in Control Computation (addition,

subtraction, jumping, etc)

R : Reading and Writing speed ratio between USHORT type and UCHAR type

N: Number of Axes

One complete cycle of current feedback and PWM computations includes many

operations; time budget for each operation is described as follows.

Current Feedback

[1] Total Interrupt Latency: Ti
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Latency for getting into interrupt routine + ending the interrupt routine

[2] A/D Conversion: TADC

(i) Initialization (N axes) : N*(2 writes + 2 reads)

(ii) Conversion of current feedback (N axes) : N*(2 reads)

TADC = 2 *R *N*tr + N*(2t, + 2t,) = 2 *R *N*(t, + 2tr)

[3] PWM signal generation: Tp

4 writes for each phase for each axis (3 phases and N axes)

Tp = 4t,*3*N = 12N*tw

[4] Control Computation (PI Control for N axes) : T,

Tc = N*(8td + 9tm +26tother )

[5] Time required for other commands (General assignments, jumping, etc.): Tetc

Tetc = N*(5td + t m + 4 0tother) + td + tm + 7 tother

Total time required for one current feedback for N axes : Tcurrent

Tcurrent = Ti + TADC + Tp + Tc + Tetc

Tcurrent = (]2t + 2R*tw + 4R*tr + ]3 td + 1Otm + 66tother)*N + td+ tm + 7tother + Ti

Position and Velocity Feedback

[1] Total Interrupt Latency: Ti

Latency for getting into interrupt routine + ending the interrupt routine

[2] Encoder Reading: Tencoder

(i) Initialization (N axes) : N*(1 writes)

(ii) Encoder Reading (N axes) : N*(3 reads)

Tencoder = R*N*(tw + 3(r)
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[3] Commutation (N axes): T,

Te = N*(J3td + 17tm + 54tother)

[4] Time required for other commands (General assignments, jumping, etc.) : Tete

Tetc = N*tother + 2 tother

Total time required for one current feedback for N axes : Tpos/vel

Tpos/vel = Ti + Tencoder + Tc + Tetc

Tpos/vel = (R *tw + 3 *R *tr + 13 td + 1 7tm + 55tother) *N + 2 tother + Ti

In the case of the Pentium Pro 200 MHz CPU, with 64MB RAM, 2GB Hard Disk, 256K

Cache, the corresponding values are as follows:

* T = 12.0 ps

* tv = 1.2 ps

* tr 0.5 ps

* tm 0.09 ps

Std .1 S

Storher= 0.01ps

SR= 1.7

Note that these values are approximate values. The total amount of time for each of the

current control and position/velocity feedback control is

Tcurrent = (12t, + 2R *t + 4R *tr + I 3td + 1 Otm + 6 6 tother) *N + td + tm + 7tother + T,

= 24.75N + 12.26 (psec)

Tposivei = (R *tw + 3 *R *tr + l 3 td + 1 7tm + 55tother) *N + 2 tother + T

= 7.97N + 12.02 (psec)
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The equations indicate that the interrupt time increases linearly with the number of axis

for both the current feedback and the position/velocity feedback.
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Figure 4.2.1: CPU Load for Pentium Pro 200MHz

There are a number of variables that can be adjusted to meet the goal depending

on the desired performance, configuration of the computer, and number of axes. In this

time budget, the configuration of the computer was fixed to that of the Pentium Pro 200

MHz. The interrupt times for the current and the position/velocity feedback are also

fixed. The actual values are shown in the above equations. However, the sampling

frequency and the number of axes being controlled can be varied.

Let us consider the relationship between the number of axes to control and the

required sampling period. Since the industrial convention is that the current feedback

requires ten times more frequent feedback than the position/velocity feedback, the total

equivalent interrupt operation time Tota lis formulated as:
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Tiotal = Tcurrent + Tposivei/ 0

For example, if the number of axes is six, the total time required to operate the

multi-layered AC servo control will be

Tcurrent(N=6) = 191ps

Therefore, the current sampling time must be at least 250 microsecond or slower.

Figure 4.2.1 shows the CPU load in terms of percentage. Each curve represents the

number of axes given the current sampling rates. In order to control multiple axes, the

current feedback sampling rates must be low. If only one axis is to be controlled, then

the current feedback could be set to a high frequency.

This result shows that the six axis control application could not be implemented

with a PC with the Windows NT-based AC servo control system if the current sampling

rate is set to 100 psec. In order to control six axes, the current sampling rate must be set

to 250 microseconds or higher. However, the current sampling rate of 250 microseconds

is too slow for a high performance controller. The sampling should be about 100

microseconds or faster. For this system, two axes could be controlled simultaneously at

100 microseconds current sampling rate. However, most robots or NC machines have

more than two axes. Therefore, the controller must be able to control more axes

simultaneously without giving too much load to the CPU. In the next section, possible

improvement methods are discussed.

4.3 Time Budget Improvement

In the previous section, the time budget showed that the current controller is able

to control only up to two axes simultaneously. The performance in the time budget must

improve much more in order to control the NC machines or the robots, which have at

least four axes. In this section, the possible improvement method is discussed and the

new time budget is presented with the improvement.

There are two possible ways to improve the time budget. The easier and the

general way is to use a faster CPU available. The calculation and the logic would be

handled much faster when the CPU is upgraded. Although it is an easier way to improve

the time budget, a more fundamental issue must be addressed. The computing power of
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the current CPUs are not the bottleneck in the time budget. The computing power of the

CPU is so much faster than the conventional microprocessors used in the industry. The

bottleneck is in the I/O access. The current system has an ISA bus for the interface and

each access in the ISA bus takes more than one microsecond. Therefore, the time budget

could be improved significantly when there are less ISA bus accesses.

There are a number of readings and writings in the AC servo motor controls. The

encoder and the current feedback signals and the duration on the PWM are needed to be

written and read for each axis. Many readings and writings for the channel selections and

the triggering are also needed. In order to minimize the I/O readings and writings, any

I/O access other than actual reading and writing of data must be eliminated.

Although minimum I/O access is desired for the improvement in the time budget,

the commercial boards require the channel selection and the triggering because they have

to be general. Therefore, a new board that could bypass all the channel selection and the

triggering is developed. The architecture of the new board is shown in Figure 4.3.1.

Im Analog A/D Digital
itor Line Converter Line From
rrent Receiver Sample & Receiver Encoder
isor Hold

Xiinx
FPGA y To Power

---- Y 1 PWM Signal Outputs Stage

Figure 4.3.1: Block diagram of FPGA-based interface board

50



The board has a reconfigurable interface architecture by using a field

programmable gate array (FPGA) chip. This board is closely linked with the full

software servo controller. It is dynamically programmed by the software in the controller

and provides much flexibility along with the full software servo controller. The board is

also programmed with the auto selection logic to minimize the I/O readings and writings.

The software controller knows the order of its readings and writings, therefore, it

programs the board accordingly to auto-select and trigger at the right time.
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Figure 4.3.2: Time Budget Improvement with the FPGA board in Pentium Pro 200MHz
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The FPGA board's auto-selection logic eliminates all the unnecessary readings

and writings, thus, improving the time budget of the system. Figure 4.3.2 shows the time

budget improvement with the FPGA board in the Pentium Pro 200MHz. The time budget

is broken into different parts in terms of the functionality in the controller. The time it

takes to control one axis at a 100 microsecond current sampling rate was reduced to 17.5

microseconds from 37.4 microsecond, which is about a 53% reduction. It clearly shows

that the 1/0 access in ISA bus is the true bottleneck in the system and optimizing the

board saves much time in the time budget.

U Calculation and
Logic

E PWM
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U&V
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E Interrupt
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MHz(Optimized 1/O board)

Pentium II 400
MHz(ServoToGo board)

Figure 4.3.3: Time Budget Improvement with the FPGA board in Pentium II 400MHz
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The system with a faster CPU has even greater improvement when the FPGA

board is used instead of the ordinary commercial board. Figure 4.3.3 shows the time

budget improvement with the FPGA board in Pentium 11 400MHz. The time it takes to

control one axis was reduced from 31.5 microseconds to 12.5 microseconds, which is

about a 60% reduction in the time budget. It is larger than the reduction rate of the

Pentium Pro 200MHz by 7%. The I/O access is greater bottleneck for the fast CPU than

the slower CPU, because the slower CPU has a bigger portion of the time budget for the

logic and the calculations. Therefore, reducing number of I/O access would give a higher

improvement rate in the faster CPU.
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Figure 4.3.4: Comparison between the actual and the calculated CPU usage at 100

microsecond current sampling with a Pentium II 400 MHz computer
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The time budget and its improvement are the calculated value. The conservative

estimations were used for the calculations in order to any crashing of the PC. In Figure

4.3.4, the actual and the calculated CPU usage at 100 microsecond current sampling rate

with Pentium II 400 MHz were compared. The conservative estimation calculation were

lower than the actual CPU usage than the calculations.

Figure 4.3.4 shows that four axes could be controlled simultaneously in less than

40 microseconds allowing plenty of CPU time for other use. Each axis takes less than 10

microseconds except the first axis due to the interrupt latency in Windows NT. At a 100

microsecond sampling rate, four axis NC machines or six axis robots could be controlled

without too much load on the CPU. In section 4.4, a six axis robot is controlled at a 100

microsecond sampling rate and the monitored CPU load was discussed.

4.4 Six Axis Robot Control

Figure 4.4.1 : Denso Six Axis Robot
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Figure 4.4.2: CPU Load Monitoring

Six axis robot control is feasible at fast sampling rates due to the improvement in

the interface board design, thus, resulting in a more efficient time budget. The new full

software controller was implemented on a Denso six axis robot, Figure 4.4.1, which has

an AC servo motor in each joint. The robot was controlled in joint space to reduce the

control effort because the goal of the implementation was to show the feasibility of using

the CPU for a six axis control. Two FPGA boards were used because each FPGA board

55



interfaces only up to four axes. The base clocks were synchronized. Kollmorgen power

supply and power amplifiers were used.

The CPU load was monitored and plotted in Figure 4.4.2, while all six axes were

controlled. It used about 55% with a 100 microsecond Current sampling rate. For five

axis control, the CPU load was 46%.

4.5 Conclusions and Recommendations
The time budget and its improvement are presented in this chapter. The time

budget is one of the most critical issues in the full software AC servo controllers. The

host CPU must be able to handle all the logic and calculations as well as other application

programs with the Windows graphic user interface. The old system with the ordinary

commercial ISA bus board is not suitable for the high performance robot or NC machine

controllers. The time budget shows that the current sampling frequency must be low in

order to control multiple axes despite the need for high current sampling frequency in the

high performance controllers.

The problem with the time budget is analyzed and the solutions are presented.

The bottleneck of the time budget in the system is the I/O access in the ISA bus. The ISA

bus has a very slow data transfer rate compare to the speed of the recent CPUs. A new

board with a field programmable gate array (FPGA) chip is developed with the intention

of optimizing the time budget. The new board minimizes the number of I/O readings and

writings by eliminating all the unnecessary channel selections and triggering. The new

system with the FPGA board showed a 53% CPU load reduction in Pentium Pro 200MHz

and a 60% reduction in Pentium 11 400MHz. The actual time budget is also presented in

this chapter. The time budget shows that the four axis control at a 100 microsecond

current sampling rate used less than 40% of the host CPU processing time. Therefore, a

four axis NC machine could be controlled with a single PC at the desired current

sampling rate. A six axis robot controller, at a 100 microsecond current sampling rate,

took about 55% of the processing time of the host CPU, which leaves plenty of time for

other applications and the graphic user interface.
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The time budget could be optimized even further if a PCI board is used. The

current system has minimized the number of I/O readings and writings. However, the I/O

readings and writings still take up the majority of the time budget. If the PCI bus is used

instead of the ISA bus the I/O would be much faster and the time budget could be

improved up to 300% compared to the currently optimized ISA bus system. In that case,

slower PCs could be used or more axes could be controlled by a single PC. The

advantage in the time budget could also be used to increase the sampling frequency and

implementation of the advanced control algorithms utilizing the flexibility of the full

software AC servo system.
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Chapter 5

AC Servo Motor Control

5.1 Overview

This chapter begins with the basic structure of the AC servomotor and the local

feedback algorithm which is most widely used in the AC servo industry. Local feedback

is the easiest feedback algorithm, especially for the regular analog AC servo amplifier.

Therefore, local feedback is used, although there are many drawbacks in using the local

feedback control algorithm.

This chapter develops mathematical models for other control algorithms such as

d-q transformation and decoupling control, utilizing the flexibility and the openness of

the software servo controller developed by the author. First, the Clarke transformation

and the Park transformation of the equation of the AC motor were derived. Using the

transformed equation of the motor, the direct and quadrature axis control (d-q control)

algorithm was developed. The d-q control directly regulates the torque and the iron

losses in the AC servo motor rather than regulating each phase current in local phase

feedback control. Therefore, d-q control provides more accurate torque for the higher

level control algorithms, such as velocity and position control.

In addition to d-q control, the decoupling control is derived and implemented.

The decoupling control compensates for the non-linearity of the AC servo motor caused

by mutual inductance of the motor. It also compensates for the back EMF of the AC

servo motor allowing a faster bandwidth for the current controller. The data from all the

different algorithms are presented in this chapter and the performance of each control is

compared and discussed.

5.2 Review of Control Algorithms

5.2.1 Basic structure of AC servo motor

Most servo motor industries use the three phase local feedback control for the AC

servo controller because they use electronic circuits or digital signal processing chips as a
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controller. The conventional controllers do not provide flexibility. However, the

software AC servo controller can change the entire control algorithm just by compiling

different source codes. Therefore, many control algorithms can be implemented easily.

In this chapter, three different AC servo motor control algorithms will be

introduced. The first one is the three phase control algorithm. The second one is the

direct-quadrature axis control algorithm and the d-q transformation. The last one is the

Back EMF compensation control. In section 5.3, the experimental data from each control

algorithm will be presented and discussed.

5.2.2 Three Phase Current Control Algorithm

The three phase current control is the most widely used algorithm in the servo

motor industry. The corresponding model and the relationship between voltage and

current of a brushless servomotor is as follows:

Uu 2 2 in eu
I I

U = -- pMa R+pLa -- pMa iv + ev
2 2

- -- pMa -- pMa R+pLa - -~

_ 2 2

p = derivative = d
dt

In this equation, U,,U,, and U,, are the voltages of each phase coil, ia, i, and i. are the

currents flowing through each phase coil, and ea, e, and e, are the Back EMF voltages

induced by the rotation of the rotor. R, La, and Ma are the resistance, inductance, and

mutual inductance of the coils respectively. The diagram of the model is shown in Figure

5.2.1.
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Figure 5.2.1: Three phase model of AC servomotor

Figure 5.2.2 shows the block diagram of the direct three-phase control method. In this

control algorithm the current in the U phase and Vphase are directly controlled. Phase W

is usually not directly controlled because iu + iv + i, = 0, therefore, the W phase can be

indirectly controlled when the other two phases are controlled. The reference current iud

and ivd are inverse d-q transformed from iqd, which is the torque command. The

formulation of the d-q transformation will be discussed in the next section. The

iss=0

Velcomman4 d-q + position
PI d sensor
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algorithm for PI control is as follows:

Vu = Kp * (iud -iu) + Ki * (ius -u)*s

In the equation, Ts is the sampling time and K, and K are the proportional and integral

gains. PI control is chosen here to eliminate the steady state error of the system.

However, the most significant drawback of the direct three phase control is phase error.

Phase error is inevitable even with the PI control due to the nature of the alternating

current feedback control.

5.2.3 Direct - Quadrature (d-q) Axis Control

Alternating current flows inside a motor. The alternating current (sine wave),

however, can be regarded as direct current by having axes (d and q) that rotate

synchronously with the alternating current. The relative velocity then becomes zero,

making the mathematical model simpler. This is called d-q transformation.
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Figure 5.2.3: Transformation between ap8 and U,V,W Axes

Figure 5.2.3 shows the relationship between the ap and the U,V,W axes. The a and pl
axes are used as the intermediate step to the d-q axis transformation. Figure 5.2.4 shows
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the relationship between the a, p and d-q axes. These two relationships are combined to

make the d-q transformation. The formulation is derived below. From the dq to U, V, W

relationship, the dq to U,V relationship can be obtained because iu + i + i, = 0.

ah

0

Do >

[id] [cos 0 sin0 ][ia~

iq - sin 9cos OJip]

fi

Figure 5.2.4: Transformation between a,p3 and d-q Axes

id coSO9

iq] =3 [sin6

cos(9 +120)

sin(O + 120)

-lu
cos(O + 240) .v
sin(O + 240) .

Since iu+i,+i,=0

idf= - sin( + 60) - sinO -iu

iqj [-cos(9+60) cosO Jiv

Using this transformation, the d-q axis control algorithm was implemented to improve the

control performance. Unlike in the three phase control, the current in the d and q axes is

not alternating because the d-q axis rotates relative to the rotor position. Therefore, PI

control with proper gains can eliminate the steady state errors. Also, a Back EMF
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compensator can be designed to generate the desired torque at a high angular velocity.

Figure 5.2.5 shows the model of the brushless servo motor in the d-q axis. The dynamic

equation of the brushless servo motor is also described.

d

Lb

R Vd [R+ph -dit id] + 0 1
[Vqj[ Lb R+ph iq [aib

R Lb. d
p = derivative = -

dt

Figure 5.2.5: D-Q axis model of brushless servo motor

In the dynamic equation, Vd and Vq are the voltages in the d and q axes, and id and iq are

the corresponding current in the d and q axes. Lb is the phase inductance, w> is the rotor

angular velocity, <Pb is the magnetic flux constant, and R is the armature resistance. In

this equation, Vq has a Back EMF term, which would prevent V from reaching the

desired voltage. Back EMF is a disturbance. However, it can be compensated if the

voltage drop by the Back EMF interference is estimated. The control block diagram is

shown in Figure 5.2.6. The control algorithm for PI control is shown below.

Vq = K * [(iqd - iq) + *7 qd - Zq)* s]

In this equation, K,, T, and T, represent the proportional gain, the integral time constant,

and the sampling rate respectively.
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(torque
command)

Figure 5.2.6: D-Q axis feedback control

5.2.4 Back EMF Compensation

As discussed in Section 5.2.3, Back EMF causes a voltage drop as the rotor

angular velocity increases. The voltage drop eventually causes difficulty generating the

desired torque. However, the current feedback must provide the desired torque at any

angular velocity. Superior performance of the velocity response can be expected when

the current feedback provides a good torque source. Therefore, the disturbance must be

compensated for by a better brushless servo motor control performance. In the dynamic

equation of the brushless AC servo motor shown below, each term is cross-coupled with

each other.

R

i~d I 2 is~ lvd~ iol
iq- [ - R iq_ L vqj L co#

Therefore, it is favorable to decouple each term by adding the decoupling terms to

eliminate the coupling terms. The decoupling control algorithms are shown below.
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Vd =Vs -dwLiq

Vq =v'q+m($+Lid)

Figure 5.2.7 shows the block diagram of the control algorithm of the Back EMF. This

control algorithm with the decoupling control algorithm should provide the desired

torque and any angular velocity.

position/
velocity
sensor

Figure 5.2.7: D-Q axis feedback control with Back EMF compensator
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5.3 Implementation of AC Motor Control Algorithms by Full
Software Servo

5.3.1 The Experimental Setup

Three control algorithms were implemented and the experimental data was

obtained. In this section, the results will be presented and discussed. The experiment

was done using Dell Dimension XPS Pro 200MHz with 64Mb of RAM. The sampling

rate for current and velocity were 100ps and 2501 respectively. Two general I/O boards

were used and one timer board was used. The inverter and buffer were used to amplify

the signals from the computer. The power block was used to run the motor. The encoder

signal and the current feedback signal were passed to the PC. The setup diagram is

shown in Figure 5.3.1.

Figure 5.3.1: Structure diagram of full digital AC servo control setup

66



Figure 5.3.2: Picture of the Windows NT-based AC servo system setup

Figure 5.3.2 shows a picture of the experimental setup. The brushless servomotor used

for the experiment is the model MPM662FRM-AM made by Custom Servo Motors Inc.

The specifications of the motor are in the table below.

Power Max Speed Peak Continuous Torque Back EMF

Current Current Sensitivity Constant

160 W 5000 RPM 7.2 A 2.4 A 0.23 Nm/A 18.2 Vrms/Krpm
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The power block is manufactured by Kollmorgen Motion Technologies Group. The

power block includes a power supply and an amplifier for this experiment. The model

numbers are PS28 for the power supply and RPO3 for the power amplifier. The

specifications of the power supply are shown below.

Main AC Input Phase Frequency Current Current RMS Current RMS

RMS (2sec) Peak (50ms)

190-260VAC 3 Phase 47-63Hz 28A 56A 100A

Output Power Volts Control AC Phase Frequency Current

Line Input RMS

8.4 KW 310 V 190 - 260 V I phase 47 - 63 Hz 1.5 A

The specifications of the power amplifier are shown in the table below.

Output Current
Continuous RMS

3.0 A

Output Current
Peak (8 sec)

6.0 A

Internal Heat
Dissipation

50 W

The I/O boards used for digital to analog converting and analog to digital converting are

manufactured by Servo To Go, Inc. The board also has the interval timer for the interrupt

service routine and encoder input. The board has a number of functionalities. There are

eight channels of encoder input, each with 24 bit counters. There are eight channels for

DAC and also for ADC. The ADC channels have a +10 volts to -10 volts span with 13

bit resolution and the DAC channels have +/-5 or +/-10 volts spans, which is

configurable, with 13 bit resolution. The interval timer is capable of interrupting the PC

and is programmable to 10 minutes in 25 microsecond increments. The board also has

the digital input and output function.
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The model name of the counter board is CIO-CTR20HD, which is manufactured by

Computer Boards, Inc. The CIO-CTR20HD has 20 channels of counter and contains four

AM9513 counter timer chips. Each AM9513 handles 5 channels of the counter. The

9513 chip is fully programmable and takes two addresses per chip, one of which is a data

path to the counter's load and hold registers. Each counter has an input source, a counter

register, a load register, a hold register, an output, and a gate. The CIO-CTR20HD

occupies eight I/O addresses. The base address is determined by setting a bank of

switches on the board. The source of the pulses supplied to the 9513 for timing

operations is programmable. The 9513 chip has its internal clock source at 1MHz and

5MHz. It also can be programmed to choose an external clock source. The current setup

uses an external clock source at 3MHz. The frequency of the PWM signal can be

calculated by the following:

- -- 1

Frequency PWM PWM -Range
LClock _ Source _ Frequency]

The PWMRange is the size of counter range in each channel. For the experiments, the

range was 256, which is 8 bits of information. The PWM signal must have a high enough

frequency to avoid the nonlinear effect but must also be low enough for the transistors in

the power amplifier to be able to handle. The reason the external clock source of 3MHz

is chosen is to meet the frequency qualification of the PWM signals. The frequency of the

PWM signal is about 12KHz using the external clock source. The internal clock source

at 1 MHz generates a 4KHz PWM frequency, which is too low to avoid the nonlinear

dynamics in the electrical domain. The internal clock source at 5MHz generates about a

20KHz PWM frequency, which is out of the range of the switching frequency of the

transistors in the power amplifier.
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5.3.2 Step Responses of the Three Phase Local Feedback and the d-q Axis
Feedback Control

The three phase local feedback control takes each phase, which is alternating

current for a rotating motor. If there is no disturbance and delay, the three phase

feedback will give the desired torque and zero internal power loss. However, there is

significant disturbance and delay and each phase cannot be perfectly controlled.

Therefore, the d-q axis controller was implemented. Both the d axis and q axis are

constant as long as the torque command is constant when the alternating phase currents

are transformed into the d and q axes. The d axis represents the internal power loss in the

system and the q axis represents the desired torque current.

The most significant difference between the three phase control and the d-q axis

control is the form of the current being controlled. For the current control, a PI controller

is used to eliminate the steady state error. However, there will always be steady state

error when the three phase control is implemented, even if the PI controller is used

because the current is alternating. The integral control is not fast enough for the changing

phase current and yields steady state error.

Figure 5.3.3 shows the step response of the d and q axis current for the three

phase control and the d-q axis control. Both responses were implemented with a

sampling rate, Ts, of 1 00ps. The values for the gains Kp and K were 42.4volt/amp and

18.2volt/(amp*ms) for the three phase control.

Vu = K * (iud -iu)+ Ki* (iud - iu) *Ts

K Kp
Ti

The values for the gains K, and the integral time constant T were 40volt/amp and 2.6ms

for the d-q axis control. If the integral gain is represented in terms of K then the K is K

divided by Ti, which is 15.4volt/(amp*ms). Therefore, the gains of the d-q axis control

are similar to those of the three phase control.
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Vq= Kp* [(iqd-iq)-+ * (iqd -iq)*Ts]

Three Phase Local Feedback Control

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time(sec)

d-q Axis Feed back Control

-500 "
0 0.02 0.04 0.06 0.08 0.1

Time(sec)
0.12 0.14 0.16 0.18 0.2

Figure 5.3.3: Current step response of the three phase local feedback and the d-q
axis feedback control - Iq (torque command) and Iss (internal power
loss) are 1OOOmA
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The response of the phase control shows that both id and iq do not stay at the desired

value. However, the response of the d-q axis control shows that only iq does not stay at

the desired value. The steady state error of is is eliminated when the d-q controller is

implemented. The steady state error of is and i, is due to the Back EMF of the motor.

As the rotor turns faster, the Back EMF increases and drops the actual voltage applied to

the motor. More experimental data regarding Back EMF will be presented in the next

chapter.

5.3.3 Frequency Responses of the Three Phase Local Feedback and the d-q
Axis Feedback Control

The frequency responses of the three phase controller and the d-q axis controller

are shown in Figure 5.3.4 and Figure 5.3.5. For each frequency response, a sinusoidal

reference generated by the software is fed into the system. In this experiment, id was set

to zero. The black lines represent the reference and the gray lines represent the actual

current measurements in the q axis. The frequency responses were measured at 28Hz,

139Hz, 278Hz, and 417Hz. The gains of the responses show that the d-q control has a

higher break frequency. The two responses can be compared qualitatively. The gain is

one at the low frequency. When the frequency is higher the gain of the phase control

frequency response decreases. However, the response of the d-q axis shows that the gain

is approximately one even at 417Hz. The phase differences of the frequency response are

difficult to measure quantitatively because of discretization of the sampled data.

Nevertheless, the quantitative analysis will be available when the entire range of

frequency response is done. However, there was not any significant difference in phase

between the three phase control and the d-q control.
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Figure 5.3.4: Current frequency response with the three phase local feedback control

73

4-a
C
ci)
I-

0

E
4-a
C
U)

0

Frequency = 28Hz



Frequency = 139Hz
1500

1000

0

-500

-1000-

-1500,
0 0.05 0.1. 0.15 0.2

Tm e (sec) -N
Frequency = 278Hz

1000 at m it a A P,

500

0

-500

0.02 0.03

-100 11 V If

-100 0
-100 0.01

E

0 0.02 0.04
Time(sec)

Frequency = 417Hz

E4-

0 0.005 0.01 0.015 0.02

Time(sec) Time(sec)

Figure 5.3.5: Current frequency response with the d-q axis feedback control
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5.3.4 Velocity Step and Frequency Responses of the d-q Axis Control

Sections 5.3.1 and 5.3.2 show that the d-q axis control performs better than the

three phase feedback control in regulating the torque command. For the upper level

control, such as velocity or position, the purpose of the current control is to regulate the

torque to the desired level. Therefore, the d-q axis current control should be used as a

lower level feedback control. In this section, the velocity response using the d-q axis

current control is discussed. For the velocity feedback control, PI control has been used

with proportional gain of 900Hz and an integral gain of 40. The PI control algorithm is

as follows:

iqd =K* (a-c)+Ki*Z((od-co)

Figure 5.3.6 shows the velocity step response. The reference velocity was 780 rpm, the

velocity sampling rate was 250ps, and the current sampling rate was 100s. The rotor

was not attached to any external setup. The calculation of the parameters is shown

below:

MaxPeak - DesiredVal ue
Overshoot (%) = 100 x = 36%

DesiredVal ue

=10 0 e

(=0.31

Due to a small damping ratio, there is a large overshoot of 36%. The motor is freely

rotating without any external damping. The only damping is the damping of the rotor

bearing and electrical damping from the Back EMF
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Figure 5.3.6: Velocity step response using the d-q axis control.
Reference velocity = 780 RPM

Tr(Rising Time) = Duration Between 10% and 90% of the Desired Value)

= 0. 0025sec = 2.5ms

2.164 + 0.6

con= 81Hz
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Figure 5.3.7: velocity frequency response using the d-q axis control

The rising time was 2.5ms. The a) was found to be 81Hz. Using (and a, the settling

4
Ts(SettingTime) =-= 0.025s = 25ms

time was estimated to be 25ms, which could be verified from Figure 5.3.7.

The frequency responses are shown in Figure 5.3.7. The setup was the same as that of

the step response. The gain is approximately one for 28Hz and 69Hz. The gain starts
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decreasing after 69Hz. In the step response, a was found to be 81Hz, which is probably

where the gain begins to decrease.

5.4 Experimental Results and Discussions on the Effect of
Back EMF Compensation

The steady state error of iq due to Back EMF has been mentioned earlier in this

chapter. Back EMF is a predictable disturbance that affects the output value, which is iq

in this system. Figure 5.4.1 shows the error of the iq increasing with time in the current

step response. This error has an effect in the upper level control because the torque does

not reach the desired value. The lower level control should provide the desired torque.

In order to obtain the desired torque, Back EMF must be compensated.

1200

1000 BackEMF
Compensation

800

E

600

400

200

0 1I

-200

1400 L
0 0.05 0.1 0.15 0.2 0.25 0.3

Time(sec)

Figure 5.4.1: Current step response with and without BackEMF
Reference current = 800mA

compensation
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One method of determining the Back EMF constant is turning the rotor with an

external motor. When the rotor turns, Back EMF will be created and the value can be

measured with respect to the angular velocity. The Back EMF compensator can be

designed using the constant.

Figure 5.4.1 shows the step response of the currents, iq and id. The reference iq

was 800mA and the reference is was OmA. Two of the data sets represent the is and the iq

with the Back EMF compensation, and the other two represent the data sets without it.

The values for the is with and without the Back EMF compensation stay around zero.

However, the values for iq are different between the one with the compensation and the

one without it. The values of the iq data with compensation follow the line of the

reference iq, which is 800mA. However, the value of the iq without compensation

decreases with time due to Back EMF. The controller with Back EMF compensation is

clearly better torque source maintaining the desired torque when the angular velocity

varies.

The lower level control affects the performance of the upper level control such as

velocity control. In Figure 5.4.2, velocity step responses with no Back EMF

compensation and with compensation are plotted. Two different Back EMF constants are

used for the current responses, one higher than the other. The corresponding current

responses are plotted in Figure 5.4.3. In Figure 5.4.2, the response with the Back EMF

compensation is faster than the one without the compensation. When there is no

compensation, the Back EMF drops the actual voltage applied to the motor and prevents

the actual current from reaching the desired value. Therefore, the angular velocity of the

motor takes a longer time to get to the desired level as well. Figure 5.4.3 shows the

current without compensation dropping as the velocity increases, while the currents with

the compensation are maintained at the desired current level regardless of the angular

velocity.
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Figure 5.4.2: Velocity step response with the effect of BackEMF compensation
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Figure 5.4.3: Corresponding current for velocity step response of Figure 5.4.2
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One issue of concern with the Back EMF compensation is the loss of damping in

the system. The Back EMF serves the role as a natural damper giving stability to the

system. Therefore, eliminating the Back EMF might cause less damping in the system.

However, according to Figure 5.4.2, the overshoot of the velocity response with the

compensation is not much higher than the one without the compensation. The calculated

overshoot and damping ratio for the response without the compensation was 8% and 0.67

respectively. The calculated overshoot and damping ratio for the response with the

compensation was 6% and 0.63 respectively. The data shows that the loss of damping in

the system due to the lack of Back EMF compensation is not a significant amount.

5.5 Conclusions

In this chapter, three AC servo motor control algorithms were compared. The

mathematical models of the AC servomotors and the d-q transform were derived. The d-

q axis feedback control algorithm performed better than the three phase feedback control

algorithm. Although both controllers used PI control, the three phase feedback control

still had steady state error because it had to try to control alternating current. The

performance of the d-q control was also better in the frequency response, showing a

higher bandwidth than the local three phase control.

Both the d-q axis controller and the three phase controller had a huge drop of iq

due to Back EMF. Therefore, the Back EMF compensator was designed and

implemented. The decoupling control was also implement with the Back EMF

compensation in order to eliminate the nonlinear terms in the equation of motion. . The

results showed that this control algorithm maintains iq at the desired value. As a result,

the velocity feedback loop had a faster bandwidth because the current feedback was able

to provide the desired iq for the upper level control.
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Chapter 6

Dynamic Pulse Width Modulation (PWM)

6.1 Overview

Pulse Width Modulation (PWM) is a method of supplying variable voltage by

varying the width of each pulse. Figure 6.1 shows one sample center aligned PWM

period. The center aligned PWM consists of two different components-two low duration

parts and one high duration part. The high duration part occurs when the power transistor

turns on. The lower duration parts occur when it is off. The high duration part defines

the voltage that the PWM is representing. The percentage of the high duration indicates

the percentage of the high voltage flowing through the circuit, which powers the motor.

For example, if the high voltage were 300 VDC, then 60% high duration would mean

180V are supplied. If one PWM period were 1 00ps, which is 10kHz in terms of PWM

frequency, 60% high duration means that the transistor is turned on for 60pts.

High Duration (%)

L

One PWM Period

Figure 6.1: Sample PWM Period

PWM is the most widely used method to supply variable voltages to AC servo motors.

However, the current practice using PWM still has room for improvement. In this

chapter, the current practice and its problems are discussed, and a solution will be

provided. The solution uses intelligent PWM, which changes dynamically knowing the
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desired voltage and utilizing the information from the previous PWM. A new algorithm

for this intelligent PWM will be discussed later in this chapter. Variables will be defined

for mathematical analysis and different algorithms will be presented for different cases.

Matlab simulation and data will also be presented to show the effectiveness of the new

PWM algorithm. The physical constraints of the dynamic PWM are also discussed and

the solutions to those problems are addressed. Finally, the future implementation effort

using the full software servo will be discussed.

6.2 Conventional Techniques and Issues

6.2.1 Current Practice

Low
Duration

High
Duration

Feed back

Figure 6.2.1: Timing Diagram of PWM and Current Sampling
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PWM frequency and the current feedback sampling are usually independent of

each other. Figure 6.2.1 shows the timing diagram of PWM and the current feedback

sampling. The vertical arrows on the PWM time line indicate when the new PWM starts.

The vertical arrows on the current feedback line indicate when the new commands are

generated from commutation and the current feedback loop. The asynchronous nature of

each time line can be seen from the figure. The first new command, the first arrow on the

current feedback line, is generated just prior to the new PWM. Therefore, the

information from the current feedback could be implemented in the PWM right away.

However, the last command, the last arrow on the current feedback line, is generated

right after the PWM started. Therefore, the new information from the current feedback

needs to wait for almost one entire PWM period to be implemented. As shown in Figure

6.2.1, the new information could be implemented right away or with some delay

depending on the mutual timing of each process. PWM and the current feedback have

different frequencies; the frequency of the current feedback is usually lower than that of

the PWM. As discussed above, the maximum delay for the implementation of the new

information from the current feedback is one PWM period. Therefore, if the frequency of

the PWM is increased, the delay could be shortened. These problems are discussed in

detail in the next section.

6.2.2 Delay in PWM Generation

The current practice of the PWM method supplies varying voltage with high

frequency pulses. The period of the PWM is usually much smaller than that of the

electrical constant of AC servo motors. The high frequency pulses are filtered by the

motor, with a much slower response, and generate smooth current. If the frequency of

the PWM is not fast enough, the current will not be smooth. The PWM voltage is

defined to be the area of the PWM in one period, assuming the time constant is much

faster than that of AC servo motors.

However, it is not clear when the PWM voltage actually gives effective voltage to

the motor because the effective voltage is determined by averaging one PWM period. In

Figure 6.2.2, one PWM period is shown. The new information, or command, is
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generated from the current feedback and commutation loops just as the PWM starts.

Therefore, the PWM is executed right away with the new information. However, it is not

clear where the effective voltage is. It is intuitive though, that the effective voltage

would not occur in the beginning of the PWM. If the effective voltage does not occur in

the beginning of the PWM, there is a delay. Although the PWM started with the new

information, the effective voltage would not be in the beginning of the PWM, perhaps

more towards the center. Therefore, there is a natural delay embedded in the PWM

method due to the effective voltage, equal to approximately one half of the PWM period.

New Command

One PWM
Period

Delay I Time it takes for the PWM signal to
integrate and produce the EFFECTIVE VOLTAGE

Figure 6.2.2: Delay Due to Effective Voltage

There is another source of delay in the PWM method. The new command from

the current feedback and the commutation loops does not always arrive just prior to the

start of the PWM. The new command stays in the buffer until the generation of the next

PWM. As shown in figure 6.2.3, the delay could be up to one PWM period if the new

command arrives right after the PWM has already started. The average delay due to the

timing difference is one half the PWM period. One solution is to synchronize the PWM

and the current feedback. However, the frequencies are different and it is hard to

synchronize them without any mistiming.
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There are mainly two sources of delay in the current practice of PWM, as

discussed above. The first one is natural to the PWM method and the second comes from

the limitation of the current practice of PWM and the current feedback timing. The

combination of these two types of delay will be called "Effective Delay" from this point

on. The average effective delay is one PWM period and the maximum effective delay is

one and a half PWM periods. The new algorithm discussed in a later section could solve

the second delay issue completely and much or all of the first issues as well.

New Command

Delay

One PWM
Period

Delay 1 Time it takes for the new
command to be implemented
Maximum delay = one PWM Period

Figure 6.2.3: Delay Due to Asynchronous Current Feedback and PWM

6.3 Dynamic PWM

6.3.1 Introduction

A new method is developed and discussed in this section in order to solve those

delay problems mentioned above. The basic concept is to use the previous and current

PWM information to generate a compensated PWM to have a faster response without a
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minimum of delay. The algorithms for different cases are discussed in section 6.3.4.

These algorithms are derived using simple algebraic manipulation. The procedure is as

follows:

1) Determine the desired high duration, as usual.

2) Acquire the status of the current PWM implemented in the system.

3) Calculate the compensated high duration command to achieve the desired high

duration using the currently implemented PWM.

4) Implement the new high duration command and generate a new PWM right away by

interrupting the existing PWM. It is already compensated for in the previous step.

This new technique dynamically changes the existing PWM to compensate for the

new command from the current feedback and it is named "Dynamic PWM." The

dynamic PWM technique heavily depends on the averaging property of the PWM. The

goal of the dynamic PWM is to have the effective voltage, which represents the desired

voltage, to be as early as possible. The dynamic PWM method not only eliminates the

delay due to the nature of PWM but also generate the PWM as if the desired future values

were known. This should become clearer in the next section with different cases and

examples.

6.3.2 Definition of Variables

There are some variables that need to be defined in order to make the explanation

of the algorithm a little simpler. In Figure 6.3.1, Tp is defined to be one PWM period; the

inverse is the PWM frequency. T, is defined to be the time elapsed from the start of the

current PWM. H, is the high duration period command generated from the normal

procedure; Ha represents the desired voltage. H,.1 is the previous high duration period

command. The subscript n represents the current status and n- 1 represents the previous

one. Hn' is the compensated high duration period command that is actually executed to

generate the desired effective voltage represented by Hn. L represents the low duration

period of the current PWM, which is automatically determined to be half the difference

between the PWM period and the high duration period. It is half the difference because
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the low duration period is broken into two parts, before the high duration period and after

the high duration period, for the case of the center aligned PWM.

r-+ New Command

Tn

T, : One Period for One PWM=PWM Carrier freq 4.(us)
T. : Time Elapsed for the Current PWM (us)
H, : Actual High Duration of Current PWM (us)
H.- :Actual High Duration of Previous PWM (us)
H,,' Compensated High Duration Command of
Current PWM (us)
L. Low Duration of Current PWM
L= (Tp - Hn) / 2

Figure 6.3.1: Definition of Variables for Dynamic PWM Method

6.3.3 Introduction of Different Cases
The dynamic PMW method has four different algorithms for the different cases, as

shown in Figure 6.3.2, depending on the status of the current PWM when the new high

duration command is generated. The Cases are as follows:

1. The new command is at the first low duration. The current PWM just started and it is

on the first low duration; therefore, the compensated PWM could continue.

2. The new command is at the high duration. The new command needs to interrupt the

high duration and start a new compensated PWM.

3. The new command is at the second low duration. In this case, the new PWM needs to

compensate for almost the entire previous PWM.

4. The new command is at the transition from the first low duration to the high duration.

When it is too close to the transition period, special attention needs to be drawn. If
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the high duration was just starting, then the new PWM must wait before its execution

because it could give too much load to the transistors in the power amplifier.

Therefore, a minimum waiting period is required. This case is not considered in the

Matlab simulation.

In the next section, the algorithms for the different cases are presented.
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Case 1 : New command at
the first low duration (T, <

Ln)

Case 2: New command at
the high duration (Ta> L)

Case 3 : New command at
the second low duration (T,
-> (Hn+Ln))

Case 4: New command at
the transition from first low
duration to high duration
(Tn = Ln)

Figure 6.3.2: Different Cases for the Dynamic PWM Method

6.3.4 Dynamic PWM Algorithms for the Different Cases

Figure 6.3.3 shows the different algorithms for the different cases in the dynamic

PWM method. All the algorithms are derived from simple algebraic manipulation.

There are two equations for each case in Figure 6.3.3. The first one for Hn and the

second one for Ha' are the same equations. The first equation is more intuitive than the

second equation. Therefore, the second equation, the actual equation for the

implementation, is obtained from the first equation. The first equation is the product of

the PWM period and the ratio of the high duration and the time consumed. The ratio is

more specifically the sum of the high duration that would be implemented divided by the

total time from the beginning of the current PWM to the end of the compensated PWM.
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Figure 6.3.3: Algorithms for the Different Cases
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Case 1, where T, < La, occurs when the time elapsed from the start of the current PWM

cycle (T,) is shorter than the current low duration, meaning that it is at the first low

duration. Case 2, (L,+Hn)> T. > L,, occurs when T, is longer than the current low

duration but shorter than the first low and high duration combined, meaning that it is at

the high duration. The third case, T, > (La+H.), occurs when T. is longer than the low

and high duration combined, meaning that it is at the second low duration. The last case,

T, = L, occurs when T, is about as long as the low duration, meaning that it is at the first

transition period between the low duration and high duration and special attention is

required. In the fourth case, some delay is applied. The value of the delay should be

minimized to the minimum time required for the transistors to turn on and off.

6.4 Simulation Experiments

6.4.1 Objective

The issues concerning the delay in the PWM method was discussed in section 6.2.

There are basically two types of delay. One from the averaging nature of the PWM and

the other from the timing difference between the PWM generation and the current

feedback command update. The dynamic PWM should eliminate all the delay from the

timing difference. It should also eliminate some of the delay from the averaging nature

of the PWM. It seems intuitive from the presentation of the dynamic PWM algorithms

that the delay should be minimized. In this section, the actual simulation results are

presented to show the effectiveness of the dynamic PWM. Two sets of data were taken:

the high frequency response and the instability analysis. The high frequency response

shows the difference in the phase lag and the difference in the gain due to the phase

delay. The difference in the phase lag should show clearly how much of the delay in the

PWM is eliminated by the dynamic PWM method. The instability analysis was also

done. Although the motor is usually not an unstable system, the delay in the PWM and

also the digital control sampling cause the system to go unstable at very high gains.

Therefore, the system with less delay would go unstable at higher gains than the system

with more delay. If the dynamic PWM truly eliminates the delay problems in PWM, the

data should be more favorable to the dynamic PWM.
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6.4.2 Simulation Setup

Matlab software is used to simulate the AC servo systems with different PWM

generators. The following were some issues concerning the simulations. First, the AC

servomotor is a complicated system. Each phase of the motor is coupled to one another.

In order to precisely model the motor, the angular velocity of the motors must be

predicted. In this simulation, the AC servomotor model was greatly simplified because

the point of the simulation was to show the relative difference in the two PWM methods,

not to predict any quantitative data. The Clarke and Park transforms were performed to

simplify the model to torque and iron loss axes. Then, the angular velocity was assumed

to be zero to eliminate the nonlinear terms in the equations. Figure 6.4.1 shows the

simulation model and the simplified equation of the AC servomotor.

Motor
Model

I-error V
Iref PI Control PWM

Algorithm

di At
V=Ri+L- in+= (V -Ri)+in

dt Lb

Figure 6.4.1: Simulation Model and Simplified Equation of the AC Servo Motor

The motor equation was numerically solved for increments of 100 nanoseconds using

Euler's explicit integration method. The parameter values of the custom AC servomotor
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were used for this experiment. The resistance, R, was 4 Ohms and the inductance, Lb,

was 13 mH. For the both PWM methods, the PI control gains and the motor models were

identical. The PWM frequency was 5 kHz, equivalent to a 200 microsecond PWM

period, which is the standard PWM frequency for the most respected company in the

industry. The current feedback was set to 4kHz to ensure completion of at least one

PWM in the current feedback cycle.

6.4.3 Results and Discussions

In section 6.2, the effective delay was analyzed to be about one PWM period.

Therefore, the response of the dynamic PWM should have about one PWM period less

phase lag at high frequency. Figure 6.4.2 shows the high frequency response of both

systems. The top one is the response of the ordinary PWM and the bottom one is the

response of the dynamic PWM. The vertical axis represents current input and output and

the horizontal axis represents the time in microseconds. Phase and gain differences are

shown clearly in this data. The phase lags of the ordinary PWM system and the dynamic

PWM system are about 160 degrees and 90 degrees respectively. Therefore, the dynamic

PWM has about 70 degrees less phase lag than the ordinary PWM. The phase lag of 70

degrees is about a 195 microsecond delay in a 1000 Hz frequency response. The

simulation result matches the prediction from the analysis, a delay of about 200

microseconds, which is the period of the PWM cycle. The gain of the dynamic PWM is

also better than that of the ordinary PWM.
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Figure 6.4.3: Instability Analysis

Another analysis from the simulation is the instability analysis. Since the system

goes unstable due to the delay embedded in the PWM methods and the digital control

sampling, the maximum gains could be compared between the ordinary and the dynamic

PWM. The maximum gains are obtained by increasing the gain until the system goes

unstable. There is some gray area when the systems are marginally stable. However,

there is such a distinctive difference between the two systems that this data is adequate

for comparing the two systems qualitatively. Figure 6.4.3 shows a graph of the

maximum gains for both systems. The vertical axis represents the maximum gain in

Volt/Amp and the horizontal axis represents the PWM period in microseconds. The

dynamic PWM has a longer stable region than the ordinary PWM. For example, the

maximum gain was about 640 Volt/Amp at a 150 microsecond PWM period in the
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ordinary PWM. However, the same gain could be obtained at a 270 microsecond PWM

period in the dynamic PWM. The dynamic PWM is able to increase the gain more than

the ordinary PWM because it minimizes the delay caused by PWM.

It is shown clearly from the simulation that the dynamic PWM provides a way to

power the motor with less delay. This algorithm could be implemented in the full

software AC servo controller utilizing the flexibility of the controller. In the next

chapter, the plan for future implementation is discussed.

6.5 Physical Constraint and Solution

The previous section shows the effectiveness of the dynamic PWM compared to

the ordinary PWM method. The Matlab simulation shows that much of the effective

delay is eliminated as estimated in the analysis in section 6.2. However, the simulation

and the actual experimental result could differ due to the physical constraints. In this

section, the possible problems for the implementation in the real system are considered.

One major physical constraint is the switching frequency of the power transistors. It is

already compensated in the dynamic PWM algorithm as "Case 4" shown in Figure 6.5.1.

However, this issue needs special attention.

It is widely known that faster switching frequency usually results in better

performance. Power transistor technology has improved much as well. However, there

is a limit to the switching frequency because these transistors need to handle high power.

The dynamic PWM gives an advantage in terms of the PWM frequency as discussed in

section 6.4.3. Therefore, the same performance could be expected with lower PWM

career frequency when the dynamic PWM algorithm is implemented compared to the

performance of the high PWM career frequency in the ordinary PWM algorithm.

However, the maximum switching frequency or the minimum switching time must be

considered carefully for the dynamic PWM due to "Case 2" and "Case 4" shown in

Figure 6.5.1. In these cases, the high duration is interrupted and the transistors are turned

off abruptly. These two cases may require transistors with very small minimum

switching capability. Although it is not the career frequency of the transistors, the

minimum switching frequency could be a major physical constraint for the
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implementation. Abrupt switching of the transistors should be avoided in order to use the

dynamic PWM without much change or concern in the hardware.

Case 2: (Ln+Hn) > Tn > Ln
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New Command
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Hn"

Delay

=n H,'+Delay *T
(Delay+T+T,) I

SH, (Delay+ T +T)
ST= Delay

P

Figure 6.5.1: Cases with possible physical constraint problem

The interruption of the high duration occurs when the new command starts at the

time of high duration in the dynamic PWM. The center aligned PWM always starts with

the low duration first, then the high duration causing the current high duration to be

interrupted. If the compensated PWM started with the high duration of this specific case

the existing high duration could just continue without any interruption. Therefore, using

the left aligned PWM for this case could be proposed. Figure 6.5.2 graphically shows the

compensation by the left aligned PWM. This one case can be substituted for both cases 2

and 4 discussed in section 6.3. Case 4 is not needed anymore when the left aligned PWM

is used because the transistors do not have to turn off and on quickly. In the case of the

left aligned PWM, the high duration starts first, then the rest of the PWM period is

completed during the low duration. This algorithm could be implemented utilizing the
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full software AC servo controller, especially with the dynamic link with the FPGA

interface board. This method should give similar results to the regular algorithms

discussed in section 6.3 because the average effective voltages of both algorithms are the

same. It should eliminate the physical constraint of the power transistor maximum

switching frequency.

Center Aligned Left Aligned

.Tn
New Command

Ln IH'

T,

Hn'+(T -Ln)
" (T 1+T,)

H (T+T)
Hn '= "nT " Tp - (T-Ln)

TP

Figure 6.5.2: Dynamic PWM compensation by left aligned PWM

Another issue of the physical constraint is the data transfer speed of the ISA bus.

The slow bus speed is a problem not only for the time budget but also for the flexibility in

the system. The problem occurs because the dynamic PWM requires exact status of the

existing PWM. The current status needs to be watched at the board level and the

information needs to be transferred to the software level because it is hard for the

software to keep track of time with very high accuracy. If the bus is slow then, the status

information sent by the board could be obsolete when it arrives to the algorithm in the

software.
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One solution is to compensate for the bus delay. In order to compensate for the

bus delay, the consistency of the bus delay must be carefully evaluated. In the case of the

significant fluctuation of the bus delay, the dynamic PWM algorithm could be entirely

performed by the FPGA board and it could be programmed dynamically by the software.

6.6 Future Implementation

One of the most significant advantages of the full software AC servo controllers is

its flexibility. Some advanced control algorithms have already been implemented

utilizing the controllers' flexibility. The dynamic PWM could be implemented as well.

Figure 6.6 shows the diagram for the implementation flowchart of the dynamic

PWM in the full software AC servo controller. The chart is composed of three types of

components, indicated in the key on the top left corner. The software and the FPGA need

to have some intelligence in order to implement the algorithm. The software needs to

calculate the compensated command given the time elapsed since the beginning of the

current PWM. The FPGA board needs to distinguish whether to terminate the existing

PWM and start a new one when the command from the PC arrives, or to store it in the

buffer for the next PWM. The only concern is the transferring of information on the time

elapsed since the beginning of the current PWM. The information may take about one

microsecond to be transferred from the FPGA board to the software as discussed in

section 6.5. The delay could be compensated in the software. However, if the delay is

not consistent, the width of the PWM may be distorted from the desired width. This

would require a careful assessment of the current system to determine whether there is

significant inconsistency in the transferring of the information. If that is the case, then

the FPGA board must contain all the logic to calculate the compensated high duration to

implement the dynamic PWM.
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Figure 6.6: Implementation Flowchart for Full Software Servo System
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Chapter 7

Conclusions and Recommendations

The full software AC servo controller is developed for multi-axis AC servo

control applications such as robotics and NC machines. The full software AC servo

controller uses the Windows NT operating system. The Windows NT operating system

provides a user-friendly interface and networking capability. In order to make Windows

NT a real time controller, a special kernel level program was developed. It consistently

handles external interrupts for the time critical real time operation. The reliable interrupt

handling architecture as well as the characteristics of the real time control system is

discussed. Issues concerning the disk controller are addressed and it was concluded that

the disk controllers with bus mastering DMA compatibility could be used to insure the

reliability of the interrupt generation in the controller. The experimental data showed that

the full software AC servo controller is capable of controlling multi-axis AC servomotors

simultaneously with reliable periodic interrupts. The overall description of the full

software AC servo controller was presented and compared with the traditional AC servo

controller. The networking capability of Windows NT was explored to present a concept

for a centralized intelligent factory automation.

The time budget of the full software AC servo system was carefully analyzed in

this thesis. The time budget of the old system with the ordinary commercial board

showed that multiple axes could be controlled only at slow current sampling frequency.

The bottleneck of the time budget was determined to be the ISA bus data transfer speed

and the system was optimized with a new FPGA ISA bus board. The FPGA board

minimizes the number of I/O readings and writings by eliminating unnecessary channel

selection and triggering. In addition, the CPU loads were reduced by more than half.

The experimental time budget of the new system showed that the multiple axis machines

could be controlled with a single CPU. In order to improve the time budget even further,

development of the PCI bus is suggested because the ISA bus I/O access is still the

bottleneck of the new system.
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The robotics and NC machine industries require fast bandwidth motion

controllers. There are advanced algorithms that could improve the bandwidth of the

system. In this thesis, d-q axis control and decoupling controls, other than the ordinary

local three phase control, were implemented. The implementation is a rather simple task

with the full software AC servo controller because of flexible architecture. The d-q axis

control performed better than the local three phase feedback control. The local feedback

controller had increasing internal power loss in the motor with increasing angular

velocity. However, the d-q axis control kept the internal power loss at zero. The

bandwidth of the system was faster with d-q axis control. However, the torque current

was not maintained due to Back EMF for both controllers. Therefore, the decoupling

control with Back EMF compensation was implemented. The results showed that the

torque current was maintained at the desired torque, achieving the objective of an ideal

controller. The velocity response with the Back EMF compensation had a faster

bandwidth than that of other control algorithms.

A new PWM algorithm was designed and formulated by the author utilizing the

flexibility of the full software AC servo system. The ordinary PWM has an effective

delay which could result in up to one and half PWM periods. The Matlab simulation of

the dynamic PWM showed that it could eliminate all or most of the delay caused by the

PWM algorithm. It is also shown that the dynamic PWM could handle higher gains than

the ordinary PWM in the current feedback at the same sampling frequency. The possible

physical constraints of the dynamic PWM are also discussed and the solutions are

presented. The dynamic PWM solves the fundamental delay problem in the PWM

method. As a result, it could be a better foundation to build high performance robotics

and NC machine controllers.

The flexibility of the full software AC servo system, especially with the dynamic

link to the new FPGA interface board, provides the environment for the creation of new

intelligent algorithms. It also opens up the possible implementation of the existing

advanced control algorithms. It is cost effective and always readily available. The user

interface is greatly improved. The networking and other features of Windows NT

provide vast opportunities for the development of creative and intelligent motion

controllers. The advantage of the full software AC servo controller is tremendous. It
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brings in the highly developed PC industry into the motion control industry. It enables

the motion control industry to take advantage of the rapid development of PCs and its

peripherals. The full software AC servo controllers will open a new era in the motion

controller industry.
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