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Abstract

This thesis presents a new method for mathematically modeling and reducing variation in
manufacturing systems. While this domain has traditionally been the focus of statistical
analysis methods, this work outlines the development of a physics-based Integrated
System Model (ISM), which predicts the nominal values and variation of each output
quality characteristic in a manufacturing system. Analytical expressions for the
evaluation of variation propagation through systems are developed and used to construct
the ISM. Techniques are presented that use the ISM to identify the major sources of
variation in a system, and to evaluate the need for process control. One such method is a
system-level parameter design formulation, to select input parameter settings that render
the system insensitive to input variation. This approach is shown to be more effective
than traditional methods in reducing end-of-line variation. A second technique involves
back-propagating end-of-line tolerances through a system, in order to determine process
limits on each operation. The output variation of an operation must fall within these
limits to ensure that the workpiece is capable of meeting final specifications. A third
method is presented for using process limits to evaluate the need for measurement or
process control in a system. The effects of both feedback and feed-forward process
control on variation are discussed, and analytical expressions are developed to predict
variation from an operation utilizing feed-forward control. Finally, these variation
modeling and reduction techniques are demonstrated on a sheet stretch-forming system
used to manufacture aircraft skin components. An ISM of this system is developed,
incorporating two operations: heat treatment and stretch-forming. This ISM is validated
against production data, and is used to identify major sources of variation in the system.
Various process control strategies are then compared in simulation. A feed-forward
strategy is chosen for demonstration, and is implemented on the shop floor. Data are
presented showing that the feed-forward approach leads to a 30% reduction in end-of-line
strain variation, and an 18% reduction in thickness variation on production parts. The
methods presented in this work can be applied to other manufacturing systems as well.

Thesis Committee: Prof. Kevin N. Otto, Chairman
Prof. David Gossard
Prof. David Hardt
Prof. Warren Seering



Dedication

To my parents, for all of their love and support



Acknowledgements

First and foremost, I would like to thank my parents, without whose support and
encouragement this thesis would not exist.

My advisor, Kevin Otto, made many contributions to both my thesis and my academic
development. Kevin gave me the freedom to explore my interests, and has taught me a
great deal about research and academia.

My committee members, Warren Seering, David Hardt, and David Gossard, were
extremely generous with their time and advice. Their assistance has been invaluable.

This project would not have been possible without the support of Northrop-Grumman
Corporation. In particular, I would like to thank Wes Burrowes, for countless hours of
time and energy, as well as many early morning breakfasts at the plant. I would also like
to thank Joe Boivan for seeing potential in this project, and both Doug Wolfe and Gary
Kuhn for providing resources and making it possible.

My officemates have been a constant source of feedback and friendship. In particular, I
would like to thank Dan Frey, who motivated me through the qualifiers and interested me
in variation reduction; Bill Singhose, who provided many hours of discussion; and Javier
Gonzalez-Zugasti, who let me bother him on a frequent basis. Thanks go as well to Brian
Welker and Kan Ota for making the lab a fun place (well, as much as possible).

I also owe a great deal to Marko Valjavec, my local expert on stretch forming. Simona
Socrates provided me with her Abaqus drape forming code, and cheerfully gave me much
advice on how to adapt it to my needs. Andrew Parris was kind enough to provide me
with his data for leading edges; his thesis was my most useful single source of
information.

Finally, I want to thank my wife-to-be, Bindu Nair, and my friends, Jeffrey Stovall.
Lucksman Parameswaran, and Jill Jowers for helping to make my non-thesis time
pleasurable and relaxing.

Financial support for this research was provided by the United States Department of
Energy, through an Integrated Manufacturing Pre-Doctoral Fellowship, and by the
Leaders for Manufacturing Program, a collaboration between MIT and U.S. Industry.



Chapter 1: Introduction

Chapter 3: Variation in Systems

Table of Contents

1.1 Systems Approach

1.2 Manufacturing Process Variation

1.3 Thesis Goal

10

1.4 Variation Reduction Method

11

1.5 Example System

11

1.6 Thesis Overview

13

Chapter 2: Traditional Approaches To Variation

2.1 Diagnostic Techniques

14
14

2.1.1 Process Capability Indices

2.1.2 Statistical Process Control (SPC)

2.2 Parameter Design

14
16

17

2.2.1 Evolutionary Operation

2.2.2 Quality Loss and Taguchi

2.2.3 Response Surface Methodology (RSM)

2.2.3 Other Work

2.3 Engineering Design Research Laboratory

17
17
19
20

21

2.4 Variation Modeling

21

2.5 Robust Design Approaches

22

2.6 Controls

22

3.1 Variation in a Single Operation

23
23

3.2 Linearization

3.3 Root-Sum Squares Approach

25
26

3.4 Modeling Error

3.5 Manufacturing Process Tolerance Threshold
3.5.1 Worst Case Tolerance Threshold Determination
3.5.2 RSS Tolerance Threshold Determination

3.6 Serial Systems

26
29
30
30
31

3.7 Parallel Operations

32

3.8 Integrated System Model

33

3.8.1 Predictive Models

3.8.2 Variational Models

3.8.3. Linking the ISM

34
35
37



3.9 System-Level Parameter Design

37

3.9.1 Variation in the Presence of Adjustments

38

3.9.2 System-Level Variation Reduction

40

3.9.3 Approximating Sensitivities

42

3.9.4 Discussion of Related Work

42

3.10 Selective Biasing

43

3.11 Chapter Summary

45

Chapter 4: Process Limits and Control

4.1. Process Limits

47
47

4.1.1 Bounding the Process Limits

49

4,1.2. Paralle! Operations

52

4.1.3 Application of Process Limits

52

4.2 Process Control

54

4.2.1 Feed-Forward Control

54

4.2.2 Feedback Control

59

4.2.3 Controllability

60

4.3 Chapter Summary

61

Chapter 5: Sheet Stretch-Forming Example
5.1 Target Part

62
62

5.2 System Overview

63

5.2.1 Process Description

63

5.2.2 Modeling Considerations

65

5.3 Integrated System Model

65

5.3.1 Heat Treatment

65

5.3.2 Stretch-Forming

72

5.3.3 Assembling the ISM

82

5.4 Modeling Validation

83

5.4.1 Measured Parameters

83

5.4.2 Measured Values

85

5.4.3 System Model Predictions

89

5.5 Major Sources of Variation

93

5.6 System-Level Robustness

94

5.7 Tolerance Threshold

98

5.8 Process Limits

5.8.1 Stretch-Forming Process Limits

5.8.2 Heat Treatment Process Limits

5.9 Process Control Strategies

5.9.1 Analytic Approach to Feed-Forward

5.9.2 Numerical Simulation of Variation Propagation

5.10 Feed-Forward Control Experiment

5.10.1 Experiment Overview

5.10.2 Experimental Procedure

5.10.3 Experimental Results

5.10.4 Discussion

100
100
104

106
108
116

123
124
124
128
128



5.11 Chapter Summary

129

Chapter 6: Summary and Conclusions

6.1 Major Contributions

130
130

6.1.1 Variation Reduction Method

6.1.2 Integrated System Model

6.1.3 Tolerance Threshold

6.1.4 System-Level Parameter Design
6.1.5 Process Limits

6.1.6 Analytical Treatment of Feed-Forward Control

6.1.7 Stretch-Forming ISM

6.1.8 Feed-Forward Control Validation

6.2 Generalizing These Methods

130
131
131
131
131
131
132
132

132

6.3 Opportunities for Further Research

132

6.4 Conclusions

133

References

Appendix A: Abaqus Input Deck for Drape Forming

Appendix B: Stretch Forming Sensitivity Matrices

134
138
157



Chapter 1: Introduction

Over the past twenty years, American industry has steadily increased its focus on
manufacturing quality. Following the second World War, American manufacturers were
the world leaders in production. Their comfortable reliance on a captive world market
was shattered in the 1970’s by the Japanese, who had learned how to produce higher
quality products at lower costs from the likes of Demming, Juran, and Taguchi. Japanese
products quickly became identified with both quality and value, while American
manufacturers found themselves unable to compete.

Today, quality improvement is a major concern at every level of American industry. The
concepts of quality and variation reduction are marketed through programs such as “6
Sigma Production” and “ISO 9000 certification,” while numerous consultants and
researchers seek to understand and implement Japanese production practices.

The main tools for variation analysis and reduction in a production environment are
based on process measurement and experiment. Diagnostic methods, such as Statistical
Process Control (SPC) and process capability indices, rely on the measurement and
statistical analysis of process output quality characteristics (DeVor, Chang et al. 1992).
Parameter design techniques, such as Evolutionary Operation (Box and Draper 1969) or
Taguchi’s robust design philosophies (Phadke 1989), rely on designed experiments
conducted on the process.

This thesis presents a new method for variation reduction, based on the mathematical
modeling of manufacturing systems. While this domain has traditionally been limited to
statistical analysis methods, this work outlines the development of a physics-based
Integrated System Model (ISM), which maps the nominal value and variation of each
input parameter to each output parameter in a manufacturing system. This model can be
used to determine the major sources of variation in a system, and to evaluate different
variation reduction strategies. The approach is demonstrated through the development of
an ISM of an actual sheet stretch-forming system from the aerospace industry.

1.1 Systems Approach

A manufacturing operation can be defined as a transformation of material from one state
to another, through directed interaction with a machine (Hardt 1998). The material being
acted upon is often called the workpiece, and descriptions of its geometry and material
properties are considered inputs to the operation. Additional inputs are settings of the
process parameters, which are variables determining the energy flow between the
workpiece and the machine. The operation also has a set of outputs, containing
information about the geometry and material properties of the workpiece after the
operation. The dimensions and properties that are most important to the performance of
the workpiece are also called quality characteristics.



A manufacturing system is a network of manufacturing operations with shared inputs and
outputs. A system can have serial operations, in which the output of a single operation
becomes the input to a single successive operation, or parallel operations, where multiple
operations feed into a single operation. A transfer line is an example of a serial system,
while a parallel system might consist of piece part processes feeding an assembly
operation where multiple parts and subassemblies are joined.

Most quality control philosophies focus on a single operation in isolation. This implies
that by minimizing the output variation of each operation within a system, the output
variation of the entire system is also minimized. This is not always true. The sensitivity
of an operation to input variation is a function of its nominal operating point. As most
manufacturing operations are part of a larger manufacturing system, the operating point
of an operation cannot be changed without simultaneously making changes to other
operations as well. As this thesis will show, it is often possible to find a more robust
operating point for the entire system by making a coordinated change in the operating
points of several operations. This cannot be done without considering the system as a
whole. It is also sometimes cost-effective to have an operation with non-minimized
output variation. This situation can occur when a downstream operation reduces
variation (perhaps through in-process control), thereby allowing a more expensive
upstream operation to have larger variation.

It is also possible to reduce variation through inter-operation process control strategics.
An understanding of the relationship between process variables in different operations
can lead to feed-forward and feedback control strategies, in which variables in one
operation are measured and used to determine variable settings in another operation. This
systems approach can be used to determine the most efficient or lowest cost adjustments
to compensate for input or process variation.

For both of these reasons, it is important to consider the effect of each operation on work-
in-process (WIP), understand the impact of each operation on end-of-line product
variation, and to then set target outputs for each operation in the system to ensure that the
final product will meet specifications. This approach requires an understanding of
variation propagation through multiple operations and a method for determining in-
process tolerances on work-in-process moving through a system.

1.2 Manufacturing Process Variation

Process variation can be described qualitatively as a measure of the amount that each
produced part differs from some “ideal” part. Variation is usually expressed as a
statistical quantity such standard deviation, which measures the amount that a quality
characteristic of a set of parts varies from some “target” specification. Mathematical
definitions of variation will be presented in Chapter 3.

The concept of variation is often confused with the idea of tolerance. The tolerance on a
part dimension is the allowable deviation from some target value. Tolerance 1s
determined by a designer, based on some set of product performance specifications.



Process variation, on the other hand, is a statistical measure of the deviation of a group of
parts from some target values, caused by natural events occurring during the
manufacturing process. These effects could be purely random, or may be the result of
identifiable special events. In short, process variation is a natural phenomenon, inherent
in a manufacturing system, while tolerances are performance-based specifications
imposed by a designer.

Manufacturing variation is costly for two main reasons: low yield, and quality loss. Yield
is a measure of the number of parts that meet tolerance specifications. The schematic in
Figure 1.1 shows that for each toleranced output quality characteristic, the number of
parts which meet specification is a function of both the bias (deviation of the process
mean from the target value) and the variation. In general, larger variation leads to a
smaller percentage of parts that meet the tolerance specifications. Those parts that do not
meet tolerances are subject to either rework or scrap. Process yield is thus directly
related to production cost.

Process
Mean

Parts Meeting
Specifications

ey

Lower  Target _ Upper
Tolerance Value Tolerance
Limit & Limit

Figure 1.1 Process Variation and Tolerance Limits

Quality loss is a concept introduced by Taguchi (Phadke 1989). He suggested that while
a product might meet its design tolerances, deviation from target values is a measure of
product quality, and in turn, of customer satisfaction. Taguchi argued mathematically
that a product’s value increases as its variation from target values decreases. According
to Taguchi’s philosophy, all process variation is associated with a cost to the
manufacturer.

1.3 Thesis Goal

The goal of this thesis is to develop and demonstrate a new method for mathematically
modeling and reducing variation in manufacturing systems. This approach is based on
the development of physics-based process models, which are used to predict both the
nominal values and variation of product quality characteristics. Techniques are
developed to find the most robust operating point for the system, and to set limits on the
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output variation from each operation, based on end-of-line tolerances. The method is
demonstrated through the development of a model of a sheet stretch-forming system from
the aerospace industry. This example model is used to explore several variation
reduction strategies, and is validated through comparison with production data. The
methods presented in this thesis can be generalized to apply to other manufacturing
systems as well.

1.4 Variation Reduction Method

The techniques outlined in this thesis can be combined into a comprehensive variation-
reduction method for manufacturing systems. The method can be outlined as follows:

1) Develop an Integrated System Model of the manufacturing system
2) Identify major sources of variation in the system

3) Conduct system-level parameter design

4) Evaluate the need for measurement or control in a system

5) Formulate several variation reduction strategies

6) Evaluate strategies in simulation using the [SM

7) Implement the most promising strategy

The mathematical tools for implementing each of these steps are developed throughout
this thesis. The method is then demonstrated, step by step, on a manufacturing system
used to produce aircraft skin components. Data is presented from a shop-floor
experiment, showing that the process control strategy developed using this approach was
successful in reducing end-of-line variation.

1.5 Example System

The variation reduction strategy outlined in the previous section will be demonstrated in
detail on a sheet stretch-forming manufacturing system. Stretch-forming is a widely used
process for forming aircraft skins, in which a flat sheet of metal is stretched over a die in
order to produce some desired curvature (Figure 1.2). The sheet metal is often heat
treated before or after forming in order to alter its material properties, specifically yield
strength.

11



Figure 1.2: Stretch Forming of Aircraft Skins

The system model developed in this thesis consists of two operations: heat treatment and
stretch-forming. Photographs of each of these operations are shown in Figure 1.3. The
specific part manufactured by this system is a nacelle doubler, shown before and after
trimming in Figure 1.4. A detailed description of the manufacturing process used to
make this part is presented in Chapter 5, along with system model development and
validation. Chapter 5 also contains a discussion of the use of the system model to
formulate a process control strategy which has been shown to reduce both strain and
thickness variation on production parts.

Figure 1.3: Heat Treatment and Stretch Forming Operations.
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Figure 1.4: Modeled Part Before and After Trim.

1.6 Thesis Overview

The second chapter of this thesis contains a discussion of quality improvement methods
and philosophies. Diagnostic techniques are considered first, including Statistical
Process Control (SPC) and Process Capability Indices. This is followed by an overview
of parameter design, ranging from Evolutionary Operation (EVOP) to Taguchi’s
methods. We then focus on the direct precursors to this thesis, most notably the work of
Frey and Otto. Finally we touch upon the work of a number of other researchers in the
fields of variational modeling and process control.

Chapter 3 outlines the theoretical underpinnings of this work. We derive analytical
expressions for variation propagation through operations and through systems. These
expressions become the basis for the Integrated System Model (ISM): a mapping between
the nominal values and variations of system inputs and outputs. We discuss using the
ISM to identify the major sources of variation within a manufacturing system, and to
implement system-level parameter design.

Some further applications of the ISM are presented in Chapter 4. We develop a method
for setting process limits on each operation within a system, to ensure that the final
product meets specifications. This method is then extended to determine where process
control is needed in a system. We discuss both feed-forward and feedback process
control, in regard to their effects on variation. Analytical expressions are derived to
predict variation reduction in the presence of feed-forward control.

The fifth chapter is a demonstration of the methods developed in Chapters 3 and 4. We
first generate an ISM of a sheet stretch-forming manufacturing system, and validate it
against production data. We then use this model to analyze the sources of variation in the
system, and develop a process control strategy. We present the results of an
implementation of this strategy, showing that it is successful in reducing variation in a
production environment.

In Chapter 6 we summarize the contents of this thesis. The major contributions are
highlighted, and we draw conclusions about the methods that we have developed.

13



Chapter 2: Traditional Approaches To Variation

A number of tools and methods exist in both the design and manufacturing communities
to identify and reduce sources of variation in systems. Diagnostic techniques, such as
SPC and Process Capability Indices, have long been popular in the manufacturing
community as methods for detecting problematic systems. These techniques are capable
of identifying a problem, but do not aid the engineer in determining its root cause.
Parameter design originated as a class of techniques to actually identify problems and to
reduce their impact in practice. Box and Draper’s Evolutionary Operation (Box and
Draper 1969) and Montgomery’s Response Surface Methods (Montgomery 1984) are
means of identifying process parameter settings which reduce the sensitivity of an
operation to input variation. Lead by Taguchi (Phadke 1989), the design community has
followed these methods with a number of robust design strategies. More recently,
advances in computational process modeling have supported the development of
mathematical models of process variation, for use in the identification and reduction of
quality problems.

The techniques outlined in this thesis are related to all of the areas discussed in this
section. The diagnostic techniques serve as a basis for a statistical approach to
manufacturing variation. We extend the parameter design techniques of Taguchi and
Box and Draper by implementing a system-level parameter design through the use of
mathematical models. We also extend the previous work done in variational modeling by
applying it to systems rather than single operations. The rest of this chapter discusses
each of these methods in more detail.

2.1 Diagnostic Techniques

There are several methods commonly used for detecting the presence of excessive
variation within a manufacturing operation. These diagnostic techniques can identify the
existence of a problem, but are incapable of identifying the cause. The two most popular
diagnostic methods are Process Capability Indices and Statistical Process Control (SPC).
Process Capability Indices are dimensionless ratios reflecting the amount of variation
and/or bias (deviation from a target nominal value) in a system. They provide the
engineer with a single number reflecting the performance of the system relative to
required tolerances, indicating any need for improvement. SPC is a method of
continuously monitoring the output of a process to detect changes in the process mean or
range. SPC can be used to detect problems on-line and to determine whether a process is
“in control.” Each of these methods is discussed in more detail below.

2.1.1 Process Capability Indices

The variation in a manufacturing system is often gauged by a measure of process
capability. Kalpakjian (1995) defines process capability as “the limits within which
individual measurement values resulting from a particular manufacturing process would
normally be expected to fall when only random variation is present.” Process capability

14



is commonly combined with tolerances to produce a dimensionless number representing
the operation’s ability to meet the desired specifications for a single output quality
characteristic. One such index is the Process Capability Index (C,), a dimensionless ratio
of the amount of acceptable variation to the amount of variation in the operation. C, is
defined as:

_ U-=L)/2
B 3o

C

) (2.1
where U and L are the upper and lower specification limits (tolerances) on the quality
characteristic and o is the standard deviation. While C, provides an adequate evaluation

of process variation, it does not take into account any deviation of the mean value of the

quality characteristic from its target value. This deficiency was discussed by Kane

(1986), who added bias effects to create a new index, Cp:

C,=C,-(1-k) (2.2)

where k is a dimensionless ratio of the absolute value of bias to tolerance width:

L2
(U-1)/2

U-L
,Ll_

2.3)

and g is the mean value of the quality characteristic. These indices are commonly used
in industry to evaluate the variational state of an operation. Processes with €, >1 are

generally considered “capable,” while processes for which C,, <1 are candidates for

improvement. The process capability index can be applied to determine the process “first
time yield” (Ygr). This quantity is the probability that a single quality characteristic
meets its tolerances. Six sigma analysis suggests multiplying all of the first time yields
together to determine yield for a product with multiple quality characteristics (Harry and
Lawson 1992). As Frey (1997) points out, this assumes statistical independence among
quality characteristics, something that is rarely true. As such, the yield estimate formed
in this way can be off by several orders of magnitude. This problem has been addressed
by Frey and Otto (1998), who propose use of the “Process Capability Matrix,” C:

oq
ij

Cp=—rr—
U, -L)/2 (2.4)

where o is the standard deviation of the 7" noise variable, and U, and L; are upper and

lower bounds on the i quality characteristic (Frey 1997). This matrix, which accounts
for multiple quality characteristics, can be used in conjunction with “Rolled Throughput
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Yield” to accurately assess the yield of a product with multiple, correlated quality
characteristics. Rolled Throughput Yield refers to the probability that every quality
characteristic of an individual process is simultanously met (Frey 1997). Frey and Otto
also present methods for determining rolled-throughput yield based on a vector of
specifications and process capabilities.

2.1.2 Statistical Process Control (SPC)

Statistical Process Control was developed in the 1950’s by Shewhart, working at Bell
Labs. Shewhart identified two main causes of variation in manufacturing processes:
chance causes, and assignable causes. Assignable causes are unpredictable incidents
which alter the mean or variation of the operation. They can usually be fixed through
some change in the machine or process. DeVor and his colleagues list some examples of
assignable causes as broken tools, a jammed machine, and machine-setting drift (DeVor,
Chang et al. 1992). Chance causes, on the other hand, describe the baseline causes of
variation in the system. These are due to poor methods, operator inconsistency or error,
and variation in the material or machine. Shewhart states that processes under szatistical
control are driven solely by common causes of variation. A system showing instability
or a lack of control is afflicted with assignable causes. He goes on to say that any process
which is not operating under statistical control is not economic; it costs more to run than
a process under control, even if the product meets design specifications (DeVor, Chang et
al. 1992). This is similar to Taguchi’s concept of quality loss, which suggests that the
economics of a process is not tied to the percentage of acceptable product, but to the
quality of the product produced (Phadke 1989).

It should be noted that Shewhart places total emphasis on the process, with no mention of
the product. The state of being in statistical control is a function of the process, without
consideration of the design specifications. A process could, therefore, produce 100%
acceptable parts while out of statistical control. Conversely, a process completely in
statistical control could produce very few acceptable parts, suggesting that the process
capability does not meet the desired specifications.

The Statistical Process Control method involves creating time-varying control charts
which plot the process mean and range over time (DeVor, Chang et al. 1992). Each of
these charts has an upper and lower control limit, representing the expected 3¢ variation
of the mean and range. The chart is observed during production, and can be used to
quickly detect mean shifts and the presence of assignable causes of variation. An
operator can use the charts to determine whether a process is in statistical control, or
whether corrective action is necessary. The SPC charts allow easy on-line detection of
mean shifts and the presence of assignable causes.

The control chart method is a diagnostic technique, as it identifies the presence of a
problem, but does not aid in determining the cause. Shewhart suggests using statistical
data to detect correlations between input and output variables to help trace the sources of
problems (DeVor, Chang et al. 1992). The variation reduction methods we outline in this
thesis are complementary to control chart methods. While Shewhart primarily addresses

16



the identification and elimination of assignable causes, our modeling approach seeks to
identify the sources and contributions of all of the chance causes. Once our methods
have been used to reduce the base level of variation in a system, SPC can be used to
ensure that the process remains in statistical control during operation.

2.2 Parameter Design

Parameter design is the process of selecting input variable settings that minimize an
operation’s sensitivity to input variation. The technique is based around a designed
experiment or perturbation study, which assesses the sensitivity of each process output to
each process input. This information is then used to identify the combination of
parameter settings which result in the lowest output to input sensitivities. One of the first
parameter design methods was the Evolutionary Operation (EVOP) technique, introduced
by Box and Draper in the 1960°s (Box and Draper 1969). EVOP involves performing a
continuous designed experiment on a factory, in which process parameter settings are
evaluated and adjusted on a daily basis to optimize some output quantity. Taguchi
presented a more sophisticated parameter design scheme in the 1980’s, involving the use
of orthogonal designed experiments to determine sensitivities in conjunction with an
objective function (the Signal-To-Noise ratio) that accounts for variation (Phadke 1989).
In this section, we discuss both of these methods, as well as some relevant extensions.

2.2.1 Evolutionary Operation

Evolutionary Operation is a plant-scale process for parameter selection. The premise is
to introduce “controlled variation” into a manufacturing plant, observe the effects on
output, and use this information to guide a gradient search towards a “preferred”
operating point (Box and Draper 1969). A 22 or 2° factorial design is used to determine
which parameter settings to test, and several “variants” of the nominal operating point are
determined. The EVOP process involves cycling through these variant several times, and
then using the accumulated data to determine a new base operating point and new set of
variants. The process is then repeated.

Box and Draper intend that EVOP should be considered “a basic operating method” to be
used continuously through the life of the plant and product (Box and Draper 1969).
While EVOP does not directly address the issue of variation, it can be easily modified
into a variation reduction technique.

2.2.2 Quality Loss and Taguchi

A number of important ideas in the field of manufacturing quality have been advanced by
Genichi Taguchi. His work, which has been advocated in America by Phadke, Kackar,
and Clausing, has been instrumental in shifting industry’s focus from meeting tolerances
to improving quality (Kackar 1985; Clausing 1988; Phadke 1989). Taguchi’s
contributions center around two fundamental concepts: quality loss and robust design.
Quality loss is a measure of the cost to society of a product’s deviation from target
specifications. Robust design is a methodology developed to minimize quality loss in

-
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manufacturing systems. We will briefly describe these concepts in this section; an
excellent presentation of the subject matter is given in (Phadke 1989).

2.2.2.1 Quality Loss

Taguchi’s work has prompted a re-evaluation of the significance of product tolerances.
Traditional bilateral tolerances imply that a product is acceptable if its quality
characteristic values fall within the toleranced limits. Thus for a product with a quality

characteristic target value m and acceptable tolerance A4y, the bilateral tolerance would
be:

m=A, (2.5)

The traditional acceptability standards imply that a product with a quality characteristic
value exactly corresponding to the target value m is no better than a product with quality

characteristic value m + A ; both meet the specification, and thus both are acceptable.

Taguchi postulates that, in fact, there is a cost associated with any deviation from the
target specification. If the deviation causes the product quality characteristic to fall
outside the acceptable tolerance band, the associated cost will come from scrap or
rework. Even if the quality characteristic value is within the toleranced limits, however,
Taguchi suggests that any deviation from the target value will result in costs related to
customer satisfaction, repair, and miscellaneous costs to society (Phadke 1989). These
costs are the “quality loss” of a product. Taguchi formaly defines quality loss using a
quadratic function:

O(y)=c-(y—m)’ (2.6)

in which Q is the quality loss associated with a product with quality characteristic value
y and target value m (Phadke 1989). The variable c is a quality loss coeffient, related to
the dollar cost of the product. For a series of manufactured parts, Taguchi defines the

average quality loss O as:

0 =clu—my +57] 2.7)

where p and o are the mean and standard deviation of the quality characterstics,
respectively (Phadke 1989).

2.2.2.2 Robust Design

By relating the deviation of a product’s quality characteristic value to cost, Taguchi
implicitly associated product variation with cost. Taguchi defines causes of variation as
noise factors (Phadke 1989). These can be external (due to environmental conditions and
loading), process non-uniformity (due to manufacturing variations), and deterioration
(aging and wear). The manufacturing variations can be further subdivided into external
causes (environmental variables, raw material, operator effects), process non-uniformity,
and process drift. Taguchi presents a methodology called “Robust Design™ to reduce the
effects of process variation. Robust Design involves the use of a designed experiment to
determine the optimum settings of process parameters to minimize sensitivity to input
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noise. Process insensitivity is commonly termed “robustness.” Phadke outlines the
major steps in robust design as:

1) Planning the experiment — identifying noise factors and levels, and designing an
experiment to test them

2) Performing the experiment

3) Analyzing the experiment — determine optimum levels for the control factors

The control factors are optimized to maximize what Taguchi calls the “Signal to Noise
Ratio (S/N ratio),” defined as:

2
7= 10-1og,0(f‘—2) 2.8)
g

where 77 is the signal-to-noise ratio in decibels, u is the mean value of the system
response, and o is the standard deviation of the system response. Several case studies are
presented in (Phadke 1989) illustrating successful industrial implementations of the
Robust Design philosophies. A number of authors have extended Taguchi’s work,
including (Chang, Ward et al. 1994), (Chen, Allen et al. 1996), and (Kackar 1985).

2.2.3 Response Surface Methodology (RSM)

Response Surface Methodology (RSM) is described by Montgomery (1984) as a
collection of mathematical and statistical techniques for optimizing a response controlled
by several independent variables. RSM involves the use of a polynomial surface to
approximate the relationship between multiple input variables and a single output
variable. The parameters of this polynomial are determined through least-squares fitting
of input and output data, obtained through a designed experiment over the parameter
space. The output response is then optimized by first using a linear approximation and
“hill-climbing” technique to reach the optimal region, and then using a localized higher-
order surface in combination with “canonical analysis” to find the optimum
(Montgomery 1984).

Guo and Sachs (1993) present an interesting modification of the RSM. Their method
involves using “Multiple Response Surfaces (MRS),” each modeling the response
characteristics at a different location within a product or batch of products. These
multiple surfaces, which can often be of lower-order than a single response surface, are
then combined into a single output variable. As Guo and Sachs demonstrate, the use of
MRS requires less data, can be more accurate, and is less computationally intensive than
using single response surfaces.

Sachs, Prueger, and Guerrieri (1992) have developed a “semi-empirical model” of the
Polysilicon Low Pressure Chemical Vapor Deposition (LPCVD) process used in the
semiconductor manufacturing industry. Their modeling approach involved the
generation of a “smart response surface,” consisting of a physics-based finite-element
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model with 4 adjustable coefficients, determined through designed experiments on the
actual system. The designed experiments were used both to fit the response surface and
to aid in parameter selection for process optimization. Sachs and his colleagues present
data showing that the model correctly predicts actual system response and can be used to
aid in parameter design as well.

2.2.3 Other Work

A number of other researchers have approached the problem of parameter design. For the
most part, this work is an extension of either the work of Box and Draper, or the work of
Taguchi. In this section we highlight several of these extensions.

2.2.3.1. Chinnam and Kolarik

Chinnam and Kolarik (1997) have developed a method for parameter design involving
the use of neural net models of the manufacturing process. They suggest that optimizing
the controllable variables in a process requires:

1) A detailed parametric model of the plant

2) An emperical model accounting for errors in the parametric model
3) An optimization routine

4) The ability to adjust controllable variables on-line

They address the second of these points, by introducing the “Intelligent Quality
Controller,” which can track changes in process response characteristics over time,
monitor uncontrollable variables, and conduct real-time process parameter design. To do
this, they first develop a neural net of the system response, possibly from the actual
system, or possibly from the parametric model. They then take a vector of target output
characteristic values, and back-propagate through the neural net using a gradient search
technique, for the set of input values which best produces the desired output values.
These input values are then the optimized parameters. Finally, they present a software
tool they have developed to implement these steps (Chinnam and Kolarik 1997).

2.2.3.2 Chen and Mistree

Chen and Mistree have combined Taguchi’s approach with Response-Surface
Methodology in formulating their Robust Concept Exploration Method (RCEM) (Chen,
Allen et al. 1996; Chen, Allen et al. 1997). There are four steps in applying the RCEM to
a design problem. First the problem is analyzed from a robust design standpoint, in order
to classify design variables into control factors and noise factors. Next, screening
experiments are conducted, to fit a low-order response surface to the problem. This
response surface is used to identify which variables are important to the problem.
Additional experiments are then conducted to fit a higher-order response surface to the
reduced problem. RSM methods are used to express output parameter values and
variances as a function of the inputs. These functions are then used within the non-linear
Decision Support Problem (DSP) solver, to optimize the output by selecting desired
values or ranges of the inputs. Another application of the RCEM approach is discussed
in (Peplinski, Allen et al. 1996).
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2.3 Engineering Design Research Laboratory

The research presented in this thesis follows directly upon work in variational modeling
conducted by Professor Kevin Otto and Professor Daniel Frey in the Engineering
Research Design Laboratory (EDRL) at MIT. A brief outline of this work is presented
here.

Otto and Antonsson (1994) first discussed the use of manufacturing adjustment selection
for variation reduction during the development process. The idea of representing
manufacturing operations as matrix transforms for the purpose of variational modeling
was developed by Frey and Otto, who defined the Process Capability Matrix, C (Frey,
Otto et al. 1998). The capability matrix is effectively a sensitivity matrix, which has been
normalized with the product tolerances. Frey and Otto also developed a set of block-
diagram reduction rules, allowing the capability matrices for multiple operations to be
combined into a matrix representation of a manufacturing system (Frey, Otto et al. 1997).
This representation allowed for numerical simulation of variation propagation through a
system with feed-forward control. There are two fundamental differences between Frey’s
work and the research presented in this thesis. The ISM is intended as a tool for
designers; we do not presuppose the existence of tolerances. As such, we use non-
normalized sensitivity matrices rather than process capability matrices. In addition, we
seek to present analytical expressions for the propagation of variation. Frey’s work relied
on numerical simulation.

Soyucayli and Otto (1998) developed a simple variational model of a manufacturing
system. Suri and Otto (1999) then presented the concept of an Integrated System Model,
and developed a sheet-stretch forming system model. Process limits, one application of

the ISM methodology, were demonstrated on an automotive frame welding system in
(Suri and Otto 1998).

2.4 Variation Modeling

The use of physics-based models of manufacturing processes to reduce variation is an
active area of research. Kazmer and his colleagues use finite-element based process
models to analyze the variation within a single operation (Kazmer, Barkan et al. 1996).
Their technique involves the use of Monte Carlo simulation to predict yield for several
different designs of a net-shape part. Design robustness is then evaluated based on the
theoretical yield.

S.J. Hu (1997)has developed a “Stream of Variation” theory to examine variation
propagation in the assembly of flexible components. He uses finite-element models to
evaluate deflection (but not deformation) due to spot welding, and then uses Monte Carlo
simulation to predict final variation. Hu focuses only on variation in product geometry,
and does not consider the effects of in process adjustment or control.
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Mantripragada and Whitney (1997) have explored the idea of using assembly sequencing
and datum logic to make in-process adjustments to reduce final variation. As they only
consider geometric stack-up in each assembly operation, there is no need for actual
process models, which are effectively replaced with transformation matrices.
Mantipragada and Whitney use a classical controls state-space representation for their
assembly system, allowing the use of block-diagram formulations and the application of
traditional controls techniques.

2.5 Robust Design Approaches

Taguchi’s concept of robust design has received much attention within the design
community, where it has been applied to the selection of design variables. Ford and
Barkan (1995) have proposed a methodology for incorporating robust design concepts
into the early concept stage of design. Chang and his colleagues (1994) have adapted
Taguchi’s methods to product design by introducing the idea of “virtual noise,” which
accounts for uncertainty due to the presence of multiple decision-making agents during
simultaneous design. Garcia and Sriram (1997) have investigated a framework for
evaluating trade-offs between competing designs which evolve with additional
information. Chen and colleagues (1997) have extended Taguchi’s methods in
developing their Robust Concept Exploration Method (RCEM) which assists designers in
identifying robust and flexible designs. While modifying design variable values can aid
in making the product quality characteristics insensitive to the manufacturing process
variation, there are limits to independently optimizing the design without also considering
optimizing the manufacturing system. Process variation may still be too high or the cost
of the modified design may be too expensive

2.6 Controls

The final area of related work is within the controls community. Boning’s work in Run-
by-Run control is an example of a related approach (Boning, Moyne et al. 1996). They
use designed experiments to determine a response surface, which is then linearized
around an operating point and used to determine control for the system. Gershwin and
his colleagues have also considered the implementation of new controls strategies on
systems (Gershwin, Hildebrant et al. 1984; Bonvik 1996). They focus primarily on time
and information, considering the effects of variation on throughput, rather than quality.
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Chapter 3: Variation in Systems

As discussed in Chapter 1, variation is inherent in any manufacturing operation or
system. In order to reduce end-of-line variation and improve product quality, we must
first identify the major sources of variation and then understand how it propagates
through a system. In this chapter we will develop analytical expressions that predict the
output variation of operations and systems. These expressions are based in statistics; we
consider the inputs and outputs of a manufacturing operation to be random variables, with
some nominal values and associated probability distribution functions. We then predict
output means and variances based on the inputs and process sensitivities. Variance will
be used as a quantitative measure of product variation throughout this thesis.

In this chapter, we first derive analytical expressions for the output variation of a single
operation, and then extend the analysis to systems composed of multiple operations. We
present the concept of the Integrated System Model (ISM), a framework for modeling
variation propagation in manufacturing systems. Finally we develop a method for
system-level parameter selection to reduce end-of-line variation.

3.1 Variation in a Single Operation

A manufacturing operation can be abstracted as a mapping between vectors. The
schematic in Figure 3.1 depicts a generalized operation, where F'is the functional

mapping between input vectors ¥ and ¢, and output vector ¢, . In this representation,

the inputs are separated into two categories. Vector g, represents either raw material or
the output of a previous operation (work-in-process). This vector will generally contain
information about geometry and material properties. The vector X contains values of
process parameters unique to this operation. These might be settings on a machine or

characteristic times or temperatures. The vector of output quality characteristics, q,,
contains information describing important geometric characteristics or material properties
of the processed part. This vector may then act as the input to a successive operation.

For the purposes of this derivation, the nominal values of the process parameters are
considered fixed. In a later section we will consider making changes to nominal
operating conditions for increased robustness.

X—» L g
_ 2
q—> F

Figure 3.1: Schematic Representation of Operation.
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We can represent the generalized operation of Figure 3.1 analytically as:

4, = F(%.q)
This equation describes the output of the operation for any nominal values of the

incoming material characteristics and process parameters. In order to use (3.1) to
understand how manufacturing variations affect the product, we must consider not just a
single trial (X,§,), but a number of input and output trials over time. We consider the
inputs to be random variables, each with a mean and an associated probability density
function (pdf). The outputs are then also random variables, whose expected values and
probability density functions can be determined from the means and probability density
functions of the inputs.

Making these assumptions, we can determine the expected values of the output quality
characteristics ¢, of a series of N parts produced by the operation (3.1) as:

E(g,)= [F(%,4,) pdf () pdf(q,)d% g,

In (3.2), pdf(X) is the probability density function of the process parameter vector ¥, and

pdf(q,) is the probability density function of the input material vector g,. We can also
determine the variance of the output quality characteristics as:

c’(q,) = f(F(f,él )=¥)’ pdf (%) pdf (§,) d% dg,

where ¥ is the expected value of each output variable as defined by (3.2).

These analytical expressions are difficult to calculate in many real situations. They can
be solved numerically using Monte Carlo simulation, a technique in which a series of
random numbers following a given input distribution is generated and used as a stream of
inputs to equation (3.1). This results in a series of output quality characteristic values,
allowing statistical determination of the output mean and distribution.

It is useful in some cases, however, to develop a closed-form analytical expression for
output variation. We can derive such an expression by making two assumptions. First,
we assume that the inputs to a manufacturing operation are independent random
variables, with normal distributions. Second, we assume that the operation is linear in the
vicinity of a given operating point. The latter assumption is also useful for Monte Carlo
simulation, as it can significantly reduce computational time. The details of linearization
are discussed in the following section.
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3.2 Linearization

Although manufacturing systems are rarely linear over their full operating range, they do
generally exhibit linear behavior in a small region around a given operating point. For
the purposes of examining small variations, it is common practice to utilize a linear
approximation around an operating point (Sachs, Prueger et al. 1992; Soons 1993, Frey
and Otto 1996). The generalized operation of (3.1) can be linearized around the

operating point (¥ ,§; ) using a Taylor series expansion:

G, =F(3*,§,%)+ (%F—) (x—x%)+ {ﬂ’_} (G, -G,*)+ HOLT. (3.4)
ot G *

1

This can also be written as:

G, = +[F ) oAt +[F, | Ag 4 b 3.5)

g+ 3+

where [F

W L*j* and [F} ]{7*’}* are sensitivity matrices (Jacobians) composed of partial

derivatives of F, and §, is the output vector containing values of ¢, evaluated at the
operating point (¥ ,g, ). The vectors A%, and Ag, are deviations in the values of ¥ and

g, from their values evaluated at the operating point ( X * and g, * respectively), and b
is bias error caused by neglecting higher-order terms ( H.0.T'.), simplification in
modeling, and random events. Error will be discussed in detail in section 3.4. The
process sensitivities can be derived from the partial derivatives of the function F if it is
available as a closed-form expression. Otherwise, the sensitivities can be obtained
through numerical methods or designed experiments using function evaluation. Note that
the sensitivity matrix components are themselves functions of the nominal operating

point, (X¥',g,). A more detailed discussion of the sensitivity terms follows in a later
section.

Returning to (3.5), we can represent the deviation of the values of g, from their nominal
values as:

AG, =[F ). wax+|F, ], AG+5 (3.6)

G* X+

where Ag, is the deviation vector:

AG, = q, —q, (3.7)

25



3.3 Root-Sum Squares Approach

Having now linearized the generalized operation of (3.1), we can develop a closed-form
analytical expression for output quality characteristic variation. By assuming that the
input random variables are independent and normally distributed, we can propagate the
variances of the distributions, rather than the distributions themselves. Making these

assumptions and using the linearized representation (3.6), it can be shown that (Drake
1967):

0” 2
ol .= — ox + ol +e, (3.8)
1 Z[UF}C,] - Z[&]]kj Nk

where ¢, is the variance error, defined below in Section 4.3. Equation (3.8) can be
written in matrix form as:

62 =[P, 07 4|72, 0l 42, (3.9)

This equation, known as the Root-Sum Squares (RSS) formula, calculates the variance of
the output quality characteristics with respect to the input variances and process
sensitivities. Output variance is an indicator of process capability, as discussed below.
Through the rest of this thesis, the term variation will be synonymous with output
standard deviation.

3.4 Modeling Error

In this section we will define the bias and variance error terms, b and ¢ , in equations
(3.5) and (3.9). We previously represented a generalized manufacturing operation as:

7, = F(x,q)) (3.1
Suppose now that g, is a measured value of an output quality characteristic, and F(X,§,)

is a model prediction. The actual measured value will deviate from the prediction due to
the presence of unmodeled effects and random events. This can be represented as:

q,=F(x,q,)+¢, +e¢, (3.10)

where g, is a term representing unmodeled error and ¢, is a term accounting for random
events. We can linearize this model around a given operating point, giving:

2:F(x*,ql*)+(%?j (f—f*)+[é’—F] G -g*+HOT.+&,+5,  (3.11)
PR l"*‘ll
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The higher order terms can be represented as an error, &, such that:

N J’F ¥ —5*) PF G o_ 7 *)? IF v n ) IF 5o *)3 (3.12)
LH .—[éx._z jx‘*vql*(x ¥ ) +{dj]2 j;*,ql*(q] q] ) " &3 i*ﬁl*(x ¥ ) ! @!3 i*m*(ql q] ) "

Therefore:

9, =F(x*,c71*)+(ﬁ—F] ()z~x*)+[a—F] (G, —G,*)+e, +¢, +&, (3.13)
de ¢ @l F*

i *

Sty

for a given measurement. If we express the predicted value of the model as ¢, , we can
write:

qZ :ql’ + 81[ +g14 + gr (314)

Over a series of measurements, the mean measured quality characteristic value, ¢, , can
be represented in terms of the predicted quality characteristic value and the mean value of
each of the errors. Error due to unmodeled effects and error due to higher-order terms

will have mean values b,and b, , respectively. The error due to random effects will be

represented by a standard deviation; the mean value of this error is zero. We can thus
calculate the mean value of the measurements as:

g, =4, +b, +0b, (3.15)
The errors in mean can be grouped into a single mean bias term: b :
7, =4, +b (3.16)

We can then define mean bias as the difference between the mean measured value of a
quality characteristic and its predicted value:

b=q,-q, (3.17)

Having derived the bias term, &, we now turn to variance error, &, . To determine this
error, we must return to equation (3.13):

_ i i
q, =F(x*,ql*)+(5—j (x-x*)+(ﬁ—Fj (G, -g,*+e, +&, +e, (3.13)
& g*,ql* (’171 /\:*‘(1‘1*

Using the root-sum square approach, we can represent the measured quality characteristic
variance in terms of the variance of the inputs and the variance of the errors:
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I =2 @2 =2 2 2 2
O = [FX ]q]*,},‘o-}7 +[Fq[ }61*3*0:71 +0. +0. +0, +&,

£

Here o, is the standard deviation of the higher-order term error, o, is the standard
deviation of the error due to unmodeled terms, and o, is the standard deviation of the

error due to random events. A new error term, &_, is introduced, representing the error in

the prediction due to approximation of the sensitivities. If we write the predicted quality
characteristic variance as:

2 _|p2 =2, |@ 2 =2
gp = [F‘ ]x Ts “'[Fq‘l ]q[*.i*am

X

then the measured value of quality characteristic variance 0';2 will be a function of the

predicted variance, the variance of the errors, and the error due to sensitivity
approximation:

2 2 2 2 2
c,n,=0,+0, +0; +0, +&,
. . . 2
We can group the error variance terms into a single term, o, such that:
2 2 2 2
c,=0, +t0. +0,
allowing us to re-write (3.20) as:
22 2
Cp=0,+t0,+¢&

We can now see that the deviation of the predicted variance from the measured value of
variance is the sum of the variance due to error terms and the error due to approximation
of the sensitivities:

2 2

2
c.,~0, =0, +¢

K3

Both of these error terms can then be grouped into total variance error, ¢, such that:

2

2 _ 22
&, =0,+&, =0, -0,

The definitions of bias (3.17) and variance error (3.24) apply throughout this text.
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3.5 Manufacturing Process Tolerance Threshold

As discussed in Chapter 1, there is an important distinction between tolerance and
variation. Tolerance represents the amount of allowable variation on a given quality
characteristic and is set by the designer, usually with regards to performance
specifications. Variation, on the other hand, is a function of the process inputs and the
process itself. As was shown in Figure 1.1, the probability that a produced part will meet
its tolerance specifications is a function of both the process variation and the bias. In this
section we will focus on the process variation alone, implicitly assuming that the process
1s on target.

Ideally, designers should take process variation into account when determining product
tolerances, in order to ensure their feasibility. We have found that this is rarely the case,
tolerances are usually based entirely on performance requirements or on in-house
guidelines. For example, part design engineers at one major aerospace manufacturer
tolerance all sheet metal parts to either 10 thousandths or 30 thousandths of an inch,
depending on their judgement of the part’s “importance.” The manufacturing engineers
at this company are then forced to develop processes capable of meeting these largely
arbitrary tolerances, often resulting in long development times and high cost. A more
cost-effective approach would involve determining the minimum variation inherent in a
process, and incorporating this information into the tolerance design process. Tolerances
which are set without consideration of minimal process variation can lead to high costs
due to more complex process development, longer processing times, and higher scrap and
rework rates.

In this section we present the concept of the Tolerance Threshold, a lower bound on the
process variation inherent in a manufacturing operation with no process control. This
quantity has been termed “process capability” by Kalpakjian (1995), but will be renamed
here to differentiate it from the tolerance-based Process Capability Indices such as ¢, cpk,
and C. As discussed in Chapter 2, tolerance-based indices are commonly used in
industry to numerically evaluate the ability of a process to meet a given set of tolerances.
The use of these indices presumes that part tolerances are pre-existing, and independent
of the process. The indices themselves indicate process capability, which implies that the
process must be adjusted to produce parts that meet some pre-determined tolerances.

The Tolerance Threshold, on the other hand, is the predicted output variation of a given
operation, based on input variation and process sensitivities. It is evaluated at a given
operating point. The Tolerance Threshold value can be used to either guide tolerancing
or to evaluate the feasibility of existing tolerances. Unlike the indices discussed
previously, the Tolerance Threshold value is predicted through modeling, rather than
being predicated upon measurements of variation in an existing system. As such, it can
be used to guide the tolerancing of parts during design, prior to any actual production.

To dctermine the Tolerance Threshold of an operation, we propagate variances with

ranges rather than distributions. These ranges are bilateral limits around a nominal value,
each specified according to a 3o yield criterion (99.7%). If the proposed or actual
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tolerances on a quality characteristic are smaller than the Threshold value for that
characteristic, more than 0.3% of parts will fail to meet specifications. If, on the other
hand, the tolerances are larger than the Threshold value, the process is capable of
producing 99.7% acceptable parts.

When calculating the Tolerance Threshold value, variation inherent to the operation is
shown as a standard deviation of the random variable vector ¥, which contains nominal
values of process parameters. Variation on the incoming material or work-in-process is

considered to be within some known tolerance band qu . The range of output variation
for the given operation can be determined through one of two methods: worst-case stack
up or root-sum squares (RSS). The former is a very conservative estimate, assuming that
all random variables are at their 3o limits, and add together. The RSS approach is based

upon the statistical combination of distributions, and provides a more accurate estimate.
Both methods are developed below.

3.5.1 Worst Case Tolerance Threshold Determination

The worst case stack-up approach is based on equation (3.5), the linearized representation
of a generalized operation. To determine the Tolerance Threshold, the distributions in
(3.5) are bounded with bilateral tolerance limits at £3c¢. This gives:

T, . ,
&ZZaF 30, +Z—§F' 430, +E, (3.25)
2 K dC k d?l,k I
which can be written more compactly as:
f{jl = 6HF§ 1,‘*’;\}*5-}’ + UE] L X*Y_i]] + 65—5 + g‘.\‘ (326)

where H F.

X

q

]/‘* , and UF ] _are the matrices of absolute values of each sensitivity
g+ X i B*

coefficient, as in equation (3.9), Tq are the tolerances on the work-in-progress entering

the operation, and z, is the vector of Tolerance Threshold values for the final product.

The worst-case approach quickly becomes unreasonable for operations with more than
two output variables. A more accurate approach is the root-sum squares determination,
discussed in the next section.

3.5.2 RSS Tolerance Threshold Determination

A more accurate method is the root-sum squares approach. This method requires
bounding the distributions in (3.9) with tolerance limits at #3o: In this case:

AT | BN I Y (3.27)
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This method works well with normal independent data and reasonably linear systems. In
other cases, the integral in equation (3.3) can be used with normal distributions on ¢, and

with £3 o limits on T(h .

3.6 Serial Systems

Having outlined two methods for determining the output quality characteristic variance of
a single operation, we now examine variation propagation through a system composed of
multiple operations. Figure 3.2 illustrates a simple system, comprised of two operations
in series.

. q, .
o= Fl — F2 — 4

X, X

Figure 3.2: A two operation serial system.

As with single operations, F, and F; represent the mapping between input and output
vectors, such that:

‘72 =Fz(‘71’fz)’ (3.28)

g, = F1(X,,4,) - (3.29)

From the preceding section, we know that the variation of the end-of-line quality

characteristics, &, , will be a function of both the input variation to each operation and

0

the process sensitivities. End-of-line variance is then:

o, = [lezl *jz*&qﬁ + [le ve Oy +E (3.30)

y

where

) 2 ~ 2 [ 21 DT,
G‘il —[Eﬁ(, L()*,?]*O-q“ + F;? 7()*~}1*O—}I +5"l (331)

as before. Substituting (3.31) into (3.30) gives an expression for the end-of-line variance
in terms of the variance of all system inputs:

2 21 — [ 21 [ 21 > [ 21 [ 21 2 [ 2]’ _ _
0.‘72 - I:F‘zf 71*vf*o-x2 + F‘2‘7| G*%, * E‘lu 70*5(,*0"70 + 1?2‘71 G, * ¥y * E? 7()*.\7]*0}1 + Féﬁl 7]*;?2*8"[ +g"2
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It is useful to generalize (3.32) to describe the output variance of the i operation of a
series system:

2 2 —~ 2 2 —~ 2 -
O'lii _[F;Ji,-l ]’7;71*,3,‘*0—(_”'" _f_l:}?"Y L,,l*,.i’,*o-fi +8": . (333)

Similarly, we can derive generalized iterative relationships for the Tolerance Threshold
of the /" operation in a series, similar to (3.26) and (3.27). For the worst-case stack-up
approach:

1’_ &, +|Fq. [L Tves, v, (3.34)

and for the RSS analysis,

22 =36[r2] . .60 +[F]

72 ~2 | =
Gk TN3657 + 2 (3.35)
These equations can be used to determine the accumulated variation or Tolerance

Threshold value at any stage of a transfer line.

3.7 Parallel Operations

While many common manufacturing systems are transfer lines composed of operations
linked in series, there are also a number of systems where the outputs of several
independent processes become inputs to a single process. We term these parallel
operations. One example is assembly, in which multiple parts and sub-assemblies are
brought together in a single operation. Figure 3.3 depicts the simple case of two
operations which feed into a single, third operation.

c7:'72,2 > F qi—],l
i-1,1

Xiop 1 — \

qi—2,2—> F /
X5 i-1,2 i1

Figure 3.3: Parallel Operations.
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The framework we have outlined for serial operations is directly applicable to parallel
operations by simply adding inputs to the i operation. Thus if there are » parallel
operations feeding into operation i, the output variance of operation i will be:
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Similarly one can calculate the Tolerance Threshold value for a parallel system using a
worst case analysis as:
g =|F] .. 66, 466, +E, + Z(UF, ], T j (3.37)
And by the RSS method as,
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3.8 Integrated System Model

The Integrated System Model (ISM) is a framework for evaluating variation propagation
through a manufacturing system. Composed of linked mathematical models of each
operation, the ISM allows easy identification of the major sources of variation in the
system, and serves as a platform for evaluating variation reduction strategies.

Traditional approaches to the analysis of manufacturing operations have involved the
development of mathematical models that predict nominal output values based on
nominal input values. We call these predictive models; they can be either physics-based
or statistical. Predictive models alone are not sufficient for evaluating the effects of
variation in manufacturing systems. Also necessary are models linking input variations
and noise to output quality characteristic variations. These variational models are
derived from the predictive models through sensitivity analysis or Jacobians. They
contain matrices of local sensitivities (linearized partial derivatives) relating input and
output variations.

To evaluate the effects of variation within manufacturing systems, we couple predictive
and variational models of each operation within the system. When linked together with
any feedback or feed-forward control loops existing in or between the actual processes,
the resulting large-system model is called an “Integrated System Model.” The ISM is
shown in schematic form in Figure 3.4, and discussed in detail through the rest of this
section. An example ISM is developed in Chapter 5.
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Figure 3.4: Integrated System Model.

3.8.1 Predictive Models

A predictive model is defined as a mathematical mapping between nominal input values
and nominal output values. This type of model can range in complexity from a closed-
form analytical expression to a complex numerical simulation. As indicated by its name,
the predictive model must be able to predict the values of desired output quantities, given
the relevant input parameters. For the purposes of this discussion, we will consider
models of a generalized manufacturing operation in which two classes of input variable
are mapped to one class of output variable, as shown in Figure 3.4.

Material ——P
q, > Output Quality
F Characteristics
Process Parameters —p q‘z

X

Figure 3.4: Generalized Manufacturing Operation.

As outlined previously, there are two input vectors to this operation. The vector g,
represents either raw material or the output of a previous operation (work-in-process),
while the vector X accounts for process parameters unique to this operation. The vector
of output quality characteristics, 7, , contains information about material properties or

geometric characteristics describing the processed part. This vector may act as an input
to a successive operation, giving rise to serial and parallel systems.
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It is important to validate each predictive model. Output predictions must be compared
to measured output values in order to ensure that the model is an adequate representation
of the physical process. While many manufacturing processes are non-linear through
their process space, it is often reasonable to assume linearity in a small region around a
given operating point. To ensure validity, the predictive model must be evaluated at
every operating point of interest.

3.8.2 Variational Models

The second major component of the ISM is the variational model. Just as the predictive
model maps nominal input values to predicted nominal output values, the variational
model serves as a mapping between the variances of the inputs and predicted variances of
the outputs. The variances are related through sensitivity matrices, composed of partial
derivatives. A variational model for a generalized operation is shown in schematic form
in Figure 3.5. The rest of this section discusses the variational model in detail.

%,

X oxX

Figure 3.5: Variational Model.

3.8.2.1 Derivation of Sensitivity Matrices

As mentioned previously, the sensitivity matrices are derived from predictive models.
The type of predictive model determines the best method for deriving the sensitivity
matrices. Methods associated with several types of predictive model are discussed in this
section.

Closed-Form Analytic Expressions

A closed form predictive model is ideal. The sensitivity matrices can be directly derived
from this model by taking partial derivatives of each output with respect to each input.
The most advantageous feature of closed-form predictive models is the fact that the
partial derivatives will be valid over the entire model space, not just in a localized region
around the operating point.

Numerical Simulation

When the predictive model is a numerical process simulation that runs quickly with little
computational effort, one method for deriving the sensitivity matrices is through Monte
Carlo analysis. A Monte Carlo simulation package such as Crystal Ball can numerically
determine the effect of each input variable on each output variable. Accuracy depends on
the number of trials, which is in turn a function of the speed of the process simulation.
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Complex Numerical Simulation

Some predictive models consist of numerical simulations that are both complex and
computationally intensive. Many finite-element based models fit into this category. In
these situations it is often impossible to run many simulations, necessitating some
approximation technique. We suggest the use of a localized response surface, centered
on the operating point of interest. In situations where a number of operating points must
be considered, we implement an approximate response surface of the entire parameter
space, supplemented by more accurate localized response surfaces where necessary. This
is similar to the method described by Guo and Sachs (1993), except that we use both the
localized and generalized surfaces in conjunction. We now briefly discuss Response
Surface Methods and their development through designed experiments.

Response Surface Methods

According to Montgomery, “Response surface methodology, or RSM, is a collection of
mathematical and statistical techniques that are useful for the modeling and analysis of
problems in which a response of interest is influenced by several variables and the
objective is to optimize this response” (Montgomery, 1984). In essence, a response
surface is a multi-dimensional contour map of the output of a function, plotted over the
possible values of its inputs. The response surface usually approximates the actual
function through a low-order polynomial, in the region of interest.

The parameters required to fit the response surface can be obtained from the actual
system (in this case the numerical model) in several ways. The most common method is
through a designed experiment over the model space. Design of Experiments is
discussed in the following section.

Design of Experiments

Design of Experiments (DoE) is an efficient method for determining the effects of several
input parameters on a single output parameter. It involves constructing and running an
experiment composed of a series of trials, each with a different pre-determined
combination of parameter settings. The results of each trial are analyzed together in
order to determine the effect of each parameter and parameter combination on the output
parameter. The use of designed experiments can significantly reduce the number of trials
necessary to determine parameter effects and interactions.

In DoE terminology, the input parameters of interest are known as factors. Each factor is
tested at several different settings, or levels. It is common to use either two levels (high
and low), or three levels (high, medium, low). The levels are chosen such that they span
the region of interest of each input parameter. A designed experiment can be designated
by an exponential, in which the number of levels is raised to the number of factors. For
example, consider an experiment with 3 factors and 2 levels (a 2° experiment).
Evaluating every combination of factors and levels (called a full-factorial experiment)
would require a total of 8 different trials. Using designed experiment techniques,
however, we can run a 2 partial-factorial experiment, requiring only 4 trials. This
partial-factorial experiment can then be analyzed to determine all parameter effects and
two-parameter interaction effects. More detailed treatments of the Design of
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Experiments methodology can be found in (DeVor, Chang et al. 1992) and (Phadke
1989).

3.8.3. Linking the ISM

As discussed previously, the ISM is composed of linked predictive and variational
models for each operation within a system. Having discussed the form of predictive
models and the successive derivation of variational models for individual operations, we
now describe the linking process.

Models for each operation must be linked within some overarching environment. For our
implementation, we have chosen to use a spreadsheet software package. The spreadsheet
contains a number of separate “process sheets,” one for each operation within the system,
and a “control sheet” listing the values and variations of the initial system inputs
(characteristics of the stock material) and end-of-line outputs. Each process sheet
contains a table of sensitivities for a given operation. These sensitivities are linked in two
ways: as a linearized model of the operation around a given operating point (using
equation 3.5) and as an RSS variational model of the operation (using equation 3.9).
Implementation of a worst-case variational model is straightforward, requiring only that
each sensitivity term be multiplied by the corresponding input variation and then summed
with all others.

The process sheets are then linked together by setting the values of the input variables
d,on the process sheet for operation i, equal to the values in the output cells g, from the

process sheet for operation i-/. As such, the output of one operation is effectively passed
to another operation as if it were work-in-process. Inputs to the first operation in the
system are contained on the control sheet, and end-of-line nominal values and variations
are reported there as well. This spreadsheet implementation can be used to propagate
variation analytically through a system, to evaluate the effect of parameter changes on
end-of-line variation, and as a system model for Monte Carlo simulation.

3.9 System-Level Parameter Design

One important use of the ISM is system-level parameter design. Most traditional
parameter design methods aim to increase robustness on an operational level. They make
the implicit assumption that if each operation is optimized for minimum output variation,
the entire system will then also be optimized for minimum output variation. What is
often overlooked is the fact that the output variation, and by default, the sensitivity
matrices as well, are localized values, contingent on the nominal operating point of an
operation. This operating point is, in turn, determined by the target values of the end-of-
line quality characteristics and by the operating points of other operations in the system.
Not only will the sensitivity of each operation to input variation likely change between
operating points, but each system has the potential for a number of operating point
combinations that will result in the target end-of-line characteristic values. As such, a
system-level parameter design method is needed to evaluate each of these combinations
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and choose the one that allows the product to meet end-of-line specifications while also
resulting in the lowest variation.

The advantage of a system model incorporating both nominal values and variation is that
we can quickly search through all of the possible operating point combinations, to find
the one with both the desired output values and the lowest end-of-line variation. This
state may require that a given operation be set at a non-optimal point if this setting then
allows an upstream or downstream operation to operate under conditions which are much
more robust.

In this section, we develop an approach to system-level robustness. Strictly speaking this
is not “optimization,” since we are obtaining a localized minimum through a simple
gradient search on an approximate response surface modeling the actual system. The
same problem formulation could be used with other search methods to guarantee a global
minimum over the model space, if desired.

3.9.1 Variation in the Presence of Adjustments

In this section we first re-work the variation propagation cquations derived previously, in
order to isolate adjustable variables: process parameters whose values can be changed
between parts or batches. We then develop a method for choosing the values of these
parameters, in order to both meet end-of-line quality characteristic tolerances while
reducing end-of-line variation. In Chapter 4 we will discuss the use of real-time changes
to the adjustable variables to implement feed-forward or feedback process control.

3.9.1.1 Propagation Equations With Adjustable Variables

In Figure 3.6, we present a schematic representation of a generalized manufacturing
operation with adjustable input variables. This diagram is similar to Figure 3.1, but with
an additional input vector p. This vector contains the nominal values of adjustable
process parameters; these are inputs that can easily be changed between parts or batches.
Examples of adjustable parameters include machine settings and critical times. The
vector X still represents process parameters unique to this operation, with fixed nominal
values. Vectors g, and g, contain material properties and geometry of the incoming and
outgoing material as before.

q,—

X, —~

F — 4
|

p

Figure 3.6: Operation with Adjustable Variables.
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Like the other input parameters, the adjustable variables have both a nominal set-point
value, and some variation about this nominal, which contributes to the end-of-line
product variation. The variation due to adjustable variables can easily be incorporated
into the previously derived propagation equations through the addition of an extra term.
For a single operation, the Taylor series expansion of equation (3.4) becomes:
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which can be written compactly as:

Note that the sensitivity matrices [F ] are now dependent on an operating point defined by
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Similarly, we can extend the variation propagation equations to account for systems with
adjustable parameters. A serial system with adjustable variables is shown in schematic

form in Figure 3.7:
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Figure 3.7: System with Adjustable Variables.

For a serial system with i operations, the end-of-line variation will be:
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while for a system with » parallel operations which feed into a single operation i, end-of-

line variation will be :
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Equations (3.41) and (3.42) are similar to the equations derived previously for non-
adjustable systems. The segregation of adjustable variables, however, allows for the
evaluation of system performance at different operating points. In the following sections
we develop a method for selecting the values of adjustable variables in order to decrease
end-of-line variation and to determine allowable in-process tolerances.

3.9.2 System-Level Variation Reduction

In this section, we develop methods for selecting the values of adjustable variables p in
order to reduce end-of-line variation in a manufacturing system. We first determine the
system operating point resulting in lowest end-of-line variation, assuming that
adjustments are free. We then associate adjustment costs with each variable in order to
find a system operating point that is both economical and robust. The problem
formulations presented below can be implemented in practice with any standard
optimization algorithm.

3.9.2.1 Variation Reduction With No Adjustment Cost
Given a serial system with i operations, in which all adjustments are assumed equally

costly, we restrict the adjustment variables p. to ranges P. where:

1

b= [ﬁhmm "pi,max]
such that:
Dimin = P; S D

The system operating point that produces parts both meeting specifications and having
lowest end-of-line variation can be found through:

(3.43)

where )?,,6')-(I .0, ,&, are constant over P,

pi?
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where 7, is a vector of end-of-line quality characteristic target values, and &, is a vector
containing allowable deviation from target. For each output quality characteristic,
0, should be chosen such that:

8, +30, <T. (3.44)

l’l

where Tq is the designer-set tolerance on that quality characteristic. In effect, (3.44)

constrains the optimization in (3.43) to find the set of process parameter values that will
produce parts with the least variation and a 99.7% chance of meeting tolerances. This is
a precise restatement of the robust process design problem originally posed by Taguchi,
and in fact, (3.43) reduces to Taguchi’s method when examining one method with one
quality characteristic.

Until now, we have assumed that all variables in p, can be adjusted freely within their

ranges, and that all adjustments are equally costly. In reality, however, some adjustable
variables are easier to change than others. We account for this in the next section.

3.9.2.2 Variation Reduction With Adjustment Costs

In this section, we develop a variation reduction method for a system in which process
parameter adjustments have associated costs. This situation can occur when a
manufacturing system is functioning at some operating point, and the operators choose to
tune the system by adjusting various process parameters. The changes are likely to have
different costs. Adjustments to machine settings, for instance, tend to be inexpensive or
free, while changes to the process equipment or the process itself are likely to be costly.
To evaluate the cost-savings of a process parameter change, we associate a cost savings
with reduction in end-of-line variation, representing the increased quality of the final
product. This savings will come from a decrease in the number of scrapped or reworked
parts, or from a decrease in total quality loss. To determine an efficient operating point
for the system, we seek to find process parameter settings such that the cost savings
associated with improvement of the final product outweighs the cost of making necessary
adjustments to the system. This problem can be stated as:
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where f,,&xl ,O I.,I_,E‘, are constant over P,

Here the cost matrices /C/ are diagonal, containing relative weightings of each
adjustment factor in cost per unit change, and the cost savings due to reduced variation in
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cost per percent of the target nominal value. This optimization problem can be solved
using standard techniques. Extension of the problem statements in (3.43) and (3.45) to
serial or parallel systems with more than 2 operations is straightforward.

Note that in both equations (3.43) and (3.45) above, the sensitivity matrices [F ! ]. are
functions of a given operating point. As the adjustable parameters p, change, the terms

in the sensitivity matrices will likely change as well. If the range P, is large, this change

7

can be both significant and non-linear. As discussed previously, if the underlying
predictive model is in closed form, the sensitivities will be based on partial derivatives
that are valid over the entire space. If, on the other hand, the sensitivities have been
derived through designed experiments or perturbation analysis on a computationally
intensive predictive model, the terms will only be valid in a small region around the
operating point. There are several methods for working around this problem. If the
inputs are independent, one method is to conduct a designed experiment or perturbation

analysis on the predictive model over the full range of possible P values, and then
approximate each input/output relationship with an interpolated function. The derivative
of this function can be used as a continuous approximation for the actual sensitivity
function. When a new “optimum” system operating point is located, a designed
experiment, centered on this point, can be used to obtain more accurate localized
sensitivities. The new sensitivity terms can then be used in the minimization to better
determine the most robust operating point.

3.9.3 Approximating Sensitivities

Note that in both of the formulations above, the sensitivity matrices [F 2 ]. are functions of
a given operating point. As the adjustable parameters p, change, the values in the

sensitivity matrices will likely change as well. If the range P is large, this change can be

both significant and non-linear. As discussed in the section on deriving variational
models, if the underlying predictive model is computationally intensive, this problem can
be addressed in several ways. One method is to do a designed experiment over the range

of possible P and interpolate a function through the points. The derivative of this

H

function can then be used as a continuous approximation for the actual sensitivity
function. When a new “optimum” system operating point is reached, a new localized
designed experiment can be run at this point, to obtain a more accurate sensitivity. This
localized sensitivity can then be used in the minimization to obtain a more accurate
determination of the robust operating point.

3.9.4 Discussion of Related Work
The parameter design methods discussed in this section are related to the Evolutionary

Operation (EVOP) method of (Box and Draper 1969). EVOP is essentially an ongoing
series of designed experiments, in which plant process parameters are perturbed slightly
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from their nominal values in order to determine the effect on a single output variable.
The best input variable settings from one experiment are then used as nominal values for
the next experiment. While the designed experiments in EVOP are conducted on the
actual plant, our methods determine parameter settings oft-line, through simulation. As
with EVOP, we suggest using sequential designed experiments to refine set-point
selection. The EVOP approach has one main advantage over our methods in that it tunes
the actual system, thus eliminating the effect of modeling errors. EVOP can also account
for changes in the system over time, which would require additional modeling in our
approach. EVOP’s main disadvantage is logistics; it is difficult or impossible to
continuously change the settings of multiple input parameters for operations separated by
time and space in a coordinated manner. In addition, EVOP is most effective on
manufacturing systems with either continuous or high-volume production. Systems
producing a small number of parts may not be able to furnish enough experiments to
guide process changes.

Our parameter design methods are also similar to Taguchi’s robust design methodology
(Phadke 1989). Taguchi’s P Diagram representation of a generic product/process, shown
in Figure 3.8, is very similar to our schematic representation of a generalized
manufacturing system (Figure 3.6).
X l Noisc
Factors

M y
Product/Process —>
Signal Response

Factor

z T Control

Factors

Figure 3.8: Taguchi P Diagram.

Our representation makes a clear distinction between incoming material characteristics
and process parameters, but is similar to Taguchi’s in that each input has both a signal
component and a noise component. By seeking to minimize process variation while
keeping nominal values on target, we are implicitly trying to maximize the S/N ratio. In
effect, our parameter design approach is a multi-operation extension of Taguchi’s. This
extension requires new techniques; it is not generally possible, for instance, to conduct a
designed experiment over an entire system due to logistical difficulties. We avoid this
problem through the use of system models, which allow us to conduct matrix experiments
and system-level parameter design with relative ease.

3.10 Selective Biasing

In the previous section we outlined a method for using the ISM to find the combination of
operating points which allow the system to produce parts meeting specifications with
minimum end-of-line variation. In this section we briefly outline another system-level
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application of the ISM: using a process parameter in one operation to change the nominal
output value of a downstream operation. This procedure is known as selective biasing.

To understand why we might need selective biasing, consider the simple two-operation
system composed of stretch forming and chemical milling, shown in Figure 3.9. The two
important end-of-line quality characteristics are final part radius and final part thickness.
Suppose that we are producing parts with some target radius and thickness, and then for
design reasons, wish to change the target radius value. There is no way to make a
parameter change within the chemical milling operation that will change final part radius
without also changing final part thickness.

This type of process parameter coupling is common in manufacturing operations. We
can circumvent this problem by considering the system as a whole. The part radius after
chemical milling is dependent on the stress state of the part after stretch forming, since
chemical milling will relieve residual stresses, thus changing part contour. By altering a
stretch forming process parameter such as pre-stretch, to change the stress state of the
part, we can change the final radius without having any effect on thickness. This must be
done, however, with some knowledge of the effects of the chemical milling operation, in
order to determine the correct amount to change the process parameter setting.

Heat Treated Blank Stretch Formed Chem Milled Part
Stretch Part Chemical
<> — > Foming [~ —> Miling [ @
L_Operation | Operation

T Contour

Pre-stretch 4—‘ﬁlBiased Adjustmen(

Figure 3.9: Selective Biasing.

Effectively we can use the system model to find a decoupled input parameter to change a
given output parameter. Without detailed knowledge of the system, we might have tried
to make the change solely in the chemical milling operation, which has only coupled
parameters.

To determine whether a system can be selectively biased, we must examine the coupling
between inputs and outputs. This can be done by taking the sensitivity matrices for each
operation in the system, and assembling them into an “adjustment matrix” as shown in
Figure 3.10.
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Figure 3.10: Adjustment Matrix.

The subscripts on each entry of the matrix represent respectively the operation number
and the parameter number associated with each term. Thus each column in the matrix is
associated with a specific process parameter, and each row in the matrix with a specific
quality characteristic. The system represented by the matrix in Figure 3.9 has
operations, a total of r output quality characteristics, and s adjustable variables. The first
operation has only v adjustable variables, resulting in the zero entries in the upper right
hand side of the matrix.

To determine the coupling state within a given operation, we examine the columns of the
sub-matrix associated with that operation. Any column with only one non-zero entry
implies that the process parameter associated with that column only affects a single
output for the given operation. This parameter is a candidate for selective biasing. Note
that although the parameter is decoupled with respect to one operation, it may affect
outputs in other operations. The entire system must be adjusted in a coordinated manner
in order to ensure that any induced bias is corrected, and that the final product meets
target specifications.

3.11 Chapter Summary

In this chapter, we showed how a generalized manufacturing operation could be
‘represented as a transformation between input and output vectors. By linearizing this
transformation, we were able to derive equations predicting output quality characteristic
variation based on two methods, Root-Sum Squares and Worst-Case. We extended each
method to predict end-of-line quality characteristic variation in a manufacturing system
composed of multiple operations. We then used this analytical formulation as the basis
of the Integrated System Model, a framework for understanding variation propagation in
a system. We discussed two applications of the ISM: system-level parameter design, and
selective biasing. System-level parameter design is a method for determining the set of
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operating points which results in lowest end-of-line variation while still producing parts
which meet specifications. Selective biasing is a means for adjusting a nominal output
value in one operation by changing a process parameter in a previous operation. In the
next chapter we will discuss additional applications of the ISM, including the formulation
and evaluation of process control strategies.
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Chapter 4: Process Limits and Control

In the previous chapter, we derived equations for predicting process variation in
operations and systems, and presented the concept of the Integrated System Model. In
this chapter, we explore several applications of the ISM framework. We first use the
ISM as a means for back-propagating end-of-line tolerances through a system, in order to
determine the necessary limits on the output of each operation. We then discuss the use
of these process limits in determining where control and measurement are required in a
system. Finally we consider both feedback and feed-forward control strategies, and their
impact on variation.

4.1. Process Limits

The variation propagation equations developed in Chapter 3 are process based, and
independent of any product tolerances. As discussed in that chapter, we believe that
process variation should be an important consideration during product tolerance design.
In industry today, however, designers usually base tolerances completely on product
specifications, with no consideration of the processes required to manufacture the
product. This creates two major problems for the process engineers responsible for
designing manufacturing systems. First, the processes required to manufacture a given
part may not be capable of producing parts that meet a given set of tolerances. Second,
although many parts are produced by multi-operation manufacturing systems, design
tolerances only specify the characteristics and quality of the output of the final operation.
As such, the process engineer must determine target values and allowable variation for
cach intermediary operation in a system. Until now, there has been no mathematical
method to ensure that a manufacturing system is capable of producing a desired product.
In this section we introduce the concept of process limits, the maximum allowable
variation on each operation within a system that will guarantee that the final product
meets design specifications. We first explain how to determine the process limits within a
system, and then discuss the use of process limits in determining where control and
measurement are required in a system.

In the previous chapter, we developed the concept of a “Tolerance Threshold,” which
represents the minimum level of process variation in a manufacturing system. The
Tolerance Threshold is a function of the variation of process inputs and the sensitivity of
the process itself. A viable product tolerance must be larger than the Tolerance
Threshold of the system used to manufacture the product. Since many designers
determine tolerances without regard to process variation, it is not unlikely that a tolerance
will be smaller than the Threshold value. In this situation, there are several options:

1) Produce some large number of parts that do not meet end-of-line specifications, and
either scrap or rework these parts.

2) Identify those parts which will not meet end-of-line specifications at an early stage of
the system, thus eliminating the wasted time and cost of processing them through
other operations.
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3) Remove variation from some step of the operation by adding process control to
reduce the Threshold value.

It is common in industry to implicitly select the first option, and only evaluate quality
against end-of-line specifications. It is much more cost-effective, however, to use
options 2 or 3. We can use the concept of process limits to screen parts at intermediary
operations or to determine where process control is needed in a system.

Process limits can be considered “intermediary tolerances” on a part. Based on process
capability, they prescribe the maximum allowable output variation for each operation in a
system, to ensure that produced parts will meet end-of-line specifications. One method
for determining these limits is through back-propagation of the desired end-of-line
tolerances through the system. In this section we develop this technique.

We will first determine the process limits in a simple serial system, using the Worst-Case
method for calculating variation propagation. We begin with the expression for the
Tolerance Threshold of the system, as derived in Chapter 3:
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In equation (3.34), 7, is the Tolerance Threshold and 7_, is the tolerance on the

incoming material or work-in-process. In order to determine the process limits on the (i-
Dt operation, we must solve a modified version of equation (3.34) for the allowable

incoming variation 7, , that will allow the process to meet the desired output

specifications. We can rewrite (3.34) by first changing the Tolerance Threshold value to
a specified tolerance on operation i, and then changing the equality to an inequality in
order to capture the fact that any quality characteristic values less than or equal to the
target tolerance are acceptable. This gives:

| e +lm ]l . 7ves, 42 @.1)
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To avoid confusion, we will designate the process limits, 7, ,, for operation i as A, . The
process limits /T,. thus represent the maximum level of input variation allowable for the i

operation in order to ensure that output variation is smaller than 7,. They simultaneously

prescribe the maximum allowable output variation for operation i-/. With this new
notation, equation (4.1) becomes:

li, ]*,.\;: *O-,?,- + HEJ?,?] l]q:] .5 *ﬂj + 60-;5‘ + g":
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We solve this for the process limits by first grouping the process-specific variations
(o, and &) into a vector of constants, K:

We can now write:
ﬂF,, |] L AsT-K. (4.2)

Equation (4.2) defines the feasible space of process limits A, guaranteeing that the final

product variation will fall within specifications 7. The boundaries of this space enclose
an n-dimensional convex polytope. This is represented for the two-dimensional case in
Figure 4.1, which shows a polygonal feasible space bounded by two active constraints.
In n-space, the feasible polytope could be bounded by up to » active constraints, not
including the axes.

Feasible
Space

TTTTTTTTTTTT7 /(<<<<< M\{ i

Figure 4.1: Feasible Limit Space in 2 Dimensions.

The process limits will be the maximum acceptable set of A,. With bilateral tolerances, it
is not practical to use the space bounded by the polytope itself, since this may be non-
rectangular, such as that shown in Figure 4.1. A non-rectangular limit region would
require a multivariate approach to tolerancing (the tolerance on dimension A is a function
of the variation on dimension B), which generally adds excessive complexity to the
manufacturing process. We can instead determine a rectangular subset of the acceptable
space, which ensures that any process limit within its boundary is acceptable.

4.1.1 Bounding the Process Limits

To determine conservative process limits, we can identify the largest hyper-rectangle
completely contained within the feasible space. This rectangular “limit space” will
contain only feasible solutions, but will exclude some feasible values. There are an

infinite number of such hyper-rectangles, based on the relative magnitudes of the 1,
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components. In the 2 dimensional case, one vertex of the hyper-rectangle must lie
somewhere along the boundary of the feasible region, shown in Figure 4.2.

X/ Acceptable Tolerances

Figure 4.2: Conservative Bound Acceptable Limits.

One approach to selecting a single process limit 4. from the infinite set is to first

determine the relative costs of holding limits on the variation of each input. We can then
maximize a norm of the relative cost weighted limits:

miaxHW):,
subject to the output tolerances being satisfied:

ﬂFfﬁ,-,. |]'?,-.*«=,-'z* =T -k,

The W matrix in (4.3) is a diagonal matrix where each w, coefficient is the reciprocal of
relative cost, and one reference w, term has a value of 1. Any vector norm such as the
one-norm (addition) can be used. We restrict the space to positive values:

A, =6

where each & is a reasonable minimum tolerance given the process capability. We can
reduce (4.5) to a single dimension by requiring that all of the input tolerances on an
operation be the same. This is often useful for assembly operations, which involve a
number of identical fasteners or welds. In this case:

j’i,] = )il'i.Z == A‘i_u #

The constraints of (4.6) can be thought of as a ray emanating from the origin at a 45°
hyper-angle, and intersecting each constraint hyperplane of (4.4). This is illustrated for
the two-dimensional case by Figure 4.3, which shows the new constraint (4.6) and the
boundaries of the square that becomes the limit region.

50

(4.3)

(4.4)

(4.5)

(4.6)



Limit i &, ooy <

-

/17 //{/ 77 >
Limit : 4, M{((* \kL{ Ay

Figure 4.3: Determination of Limit Region.

Again, there is no reason that the tolerance region need be a hypercube. It is very likely,
in fact, that the different quality characteristics on a product will require different
tolerances. We can choose a different bounding polytope by replacing the constraint
(4.6) with a weighted version:

Wy Ay =Wl = =W A (4.7)

mn TN

in which wy, is a component of a diagonal relative cost matrix as before. The
maximization itself can be done using one of the standard optimization techniques, or
simply by solving for the intersection of (4.7) with each hyperplane contained in the
constraint system:

"'31

HF, H, ,1 <T -K
The first plane intersected will be the active constraint. Note that in general, one active
constraint will limit the size of the hyper-rectangle. The output tolerance associated with
this constraint is a “key characteristic” of the system, since it restricts the magnitude of
all other quality characteristic values. If this one tolerance is satisfied, all others will be
as well. If this constraint is relaxed sufficiently, a different output tolerance constraint
will become active. In this way, we can rank the importance of various output

dimensions.
The back-propagation method outlined in this section can also be used with the RSS

formulation by simply changing (3.35) to the form of (4.2). In this case, we use the
constraint system:

72 ] . 2<T*-K (4.8)

Ji-1" X
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where;

1,X

R=36[F.] . &2+365% +5, (4.9)

4.1.2. Parallel Operations

Back propagation of tolerances in systems containing parallel operations is quite similar
to that for serial operations, with the extension that the tolerances must be weighted not
only within each operation, but among the parallel operations as well. To develop this
method, we begin with a variant of (3.38):

7_:2236[12%?1[ O' +360' + &, +Z([ F I,,L’]*’EI_*T‘,EI,,,)

Rather than using the Tolerance Threshold, 7,, we now have some desired final tolerance

T,, and wish to determine input tolerances T, ,, through T This expression can first

-l

be re-written as;

Z([FZ,L /T’,) <T7-36[%) | 6743662 + 2, (4.10)

"
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One method for solving this equation is to append the n matrices [F 2 L . together,

and also append the »n vectors /12,, . This will give us a single new sensitivity matrix

] . . Py
[F; g 1 _, and process limit vector A”:
Aot dg,_ * %% d

[ R 1 | LGl 4365] 48, @.11)

Lo kg 2 5,07 i Xl

This relation can now be reduced to the form of (4.4)

F2 ] <7k (4.12)

By g+ 7

and then solved in a similar way. The only difference will be in determining the
constraints (4.7)

wy A =wpd, = =w, 4

nnt T h

where the weighting factors w,, will contain relative weightings among the parallel
operations as well as within them.

4.1.3 Application of Process Limits

Once process limits have been determined for each operation within a system, they can
be used to guide system improvement. Process limits have two main applications:
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e To allow early identification of those parts which will not meet end-of-line
specifications. This eliminates the wasted time and cost of leaving them in the
manufacturing system.

e To identify points in the system requiring measurement and control

The first of these applications is straightforward. Process limits are effectively
“intermediary tolerance” specifications on the output of each operation within a system.
By inspecting the output of a given operation and evaluating it against the process limits
for that operation, those parts with quality characteristic values exceeding the process
limits can be removed from the system. Since it is impossible for these parts to meet end-
of-line tolerances, leaving them in the system is a waste of resources.

Process limits can also be used in conjunction with the Tolerance Threshold values of
each operation in a system, to determine where measurement and control are needed. As
discussed in the previous section, process limits are back-propagated through the system
from end-of-line specifications. We can simultaneously forward-propagate the Tolerance
Threshold values for each operation, based on the known variations of process
parameters and incoming material quality characteristics. The output of each operation
will then be associated with both a Tolerance Threshold value and a process limit.
Beginning with the next-to-last operation in a system and moving towards the first
operation in the system, we can compare the process limit values with the Tolerance
Threshold values. This situation is depicted in Figure 4.4.

[ 2/1:4 yARN F . F : b T
- — q;

Figurc 4.4: Comparison of Tolerance Threshold with process limits.

If the process limit is greater than the Tolerance Threshold value:

A, 27,
then every part produced by that operation is capable of meeting the end-of-line
tolerances. If, however, the Tolerance Threshold is larger than the process limit, then
some parts are being produced that cannot meet end-of-line tolerances. In other words,
when:

A <,

T 1
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either the output of operation i needs to be screened in order to remove those parts from
the system that cannot meet final specifications, or some form of process control is
needed in the system. If the latter approach is chosen, the Tolerance Threshold values of
each operation can be recalculated accounting for the effects of control, to ensure that all
process limits are satisfied. We discuss the use of process control to reduce variation in
the next section. An example of the use of process limits in a manufacturing system is
presented in Chapter 5.

4.2 Process Control

In Chapter 3, we discussed one method for reducing end-of-line variation: system-level
parameter design. A second approach is to reduce the actual source variation of key input
parameters. If neither of these methods is cost-effective or sufficient, we can apply
process control to our system.

Process control can take many forms within manufacturing systems. Many machine
parameters incorporate feedback loops, to ensure that they reach and maintain a desired
setting. Some processes utilize feed-forward control, in which a material parameter is
measured as it enters an operation, and this value it used to determine the value of a
process parameter in that operation. Part-to-part feedback can also be found in the
manufacturing domain. This method involves measuring the product of an operation and
using the measurement to change process parameter settings that govern production of
the next part. These control strategies are not necessarily planned; in some cases they
may be incidental, due to operator intervention.

In this section we will discuss methods for using adjustable process parameters to
decrease end-of-line variation. We will develop analytical expressions predicting the
cffect of feed-forward control, and discuss the use of feedback control. In Chapter 5, we
evaluate both methods through numerical simulation, and present experimental validation
of a feed-forward control strategy.

4.2.1 Feed-Forward Control

Feed-forward process control can be a useful manufacturing strategy for systems with
good measurement capability and/or a low production rate. This approach involves first
measuring the geometry or material properties of a workpiece as it enters an operation,
and then using the measurement to set the value of some adjustable process parameter in
that operation. The output variation in an operation controlled in this way is directly
related to the accuracy of the measurements, controller, and actuators. In this section we
derive equations predicting the output variation of operations involving feed-forward
control.

54



4.2.1.1 Feed-Forward and Variation
Figure 4.5 depicts a single operation with a feed-forward loop measuring some subset of

the inputs g, and X, and changing some subset of the adjustable variables p .

X, F

]

L =3
e

ﬁi,ref

Figure 4.5: Feed-Forward Control Loop.

We can write the generalized equation for this operation as:
4, = F(q,,%.p) (4.13)
where:
Di =Dy — AP = Py =G40, %)) (4.14)

In equation (4.14), G is the controller model that links the measured values of input
variations to changes in the values of the adjustable variables. We can find the function

G by using a Taylor series to linearize the system around an operating point (g, ,, )_c,f D)

. s OF, OF, OF
G, ~F (g% m{;] A% +[ ] 5, +(*j A7, + HOT.(4.15)
G, 4p X a0 %

i i -]

This can be rewritten as:

G, =a +|F, L ap, +[F.]a% +[F ] aG, , +5, (4.16)

r

Cezk o

where the symbol indicates evaluation at a given nominal operating point. Now, to

determine the adjustable variable change Ap, required to offset variations A%, and Ag,

in the input variables, we can divide through by [F , ], and re-arrange to get:

*

ap, =F 1m, - F, ) g -7 171D A%, - [F )7, ] A, 4.17)
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where m;, is the vector of target output values for operation i. If we assume that the feed-
forward control loop is without bias, the nominal output values §, will be equal to the

target output values m,, allowing both of these terms to drop out of (4.17).

The inverse matrices in (4.17) must be generalized inverses, since the sensitivity matrices
are not likely to be square. We have chosen to use the weighted generalized inverse F~/
of a matrix F, given by:

F*=w ' F(Fw-FY' 4.18)

where ¥ is a diagonal matrix, containing the relative weights of each column of F. This
means that wy, is a measure of the relative cost of adjustment for each process

parameter p,. These costs represent the difficulty involved in making a unit change to
each variable.

If the weighting matrix W is set to identity, (4.18) will seek to minimize the norm of the
vector originally paired with matrix F. In other words, the method will seek input
tolerances that are equally minimized in bandwidth relative to their sensitivity. For a
square non-singular matrix, equation (4.18) reduces to the standard matrix inverse:

F*]* — F—]

All inverse matrices in this thesis are assumed to be generalized inverses according to
(4.18).

The controller derived in equation (4.17) presumes perfect measurement and system
modeling, and provides a theoretically correct adjustment to the operation. In reality,
there are several sources of error, most notably measurement error, modeling error, and
actuation error. We can incorporate these errors into (4.17) by writing:

85, =k -[F IR ox +20-[F ) IF LA, +5)-5, -2, @19

r IZ

In equation (4.19), £, represents error in measuring the values of %,, £, 1s error in

measuring ¢,, £, represents modeling error, and &, accounts for actuation error (the

limits of accuracy on the setting of the adjustments themselves). The error terms & are
all random variables. Depending on the situation, they may follow a normal distribution

with a mean of zero, or a uniform distribution. Since the process matrices [F ] are

functions of p,, they must be evaluated at some operating point (g,,,%, p,) for use in

the controller. The error term £, incorporates differences between [F] and [F] .

Naturally not all input variables will be measured; in these cases, the value of & or
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&, associated with the unmeasured variable will simply be the input standard deviation
associated with that variable.

If we substitute (4.19) into (4.16) we can predict the actual output values §,in terms of

the target output values 7, and the measurement, modeling, and actuation errors:

g, =m-r]e-|F ] e -|F ]z, -]

x i“m pli©a

The variation of g, can be determined from (4.20) through a Monte Carlo simulation for

errors with either normal or uniform distributions. If the errors are independent, we can
calculate the output variance by the RSS method as:

~2 _|p2|* =2 2|* =2 21* =2 2% =2
o; —[F)r ],agx +[Fq ],afq +[Fp],.crgm +[Fp],.05u

We can also obtain a worst-case estimate of the range of the output values g, by

;35 )

substituting the 3¢ values of the random variable error terms in (4.21):

rangelg|=m, + -|F] 36, -|5[]:35, -[F]:36, -]F,

4.2.1.2 Feed-Forward With Adjustment Limits
Equations (4.20) through (4.22) are based on the assumption that the adjustable variables

P, can take on any values, and thus control any amount of work-in-process variation. In
practice, however, there will be some interval of adjustment:

P; = [pi,min "pi,max]

such that:

pi,min S pi S pi,max
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which will limit the amount of correction possible through feed-forward control. In a
system with adjustment limits, we can determine the maximum controllable work-in-
process input variation as:

s.t. [ ] [ I,],Ap, F, ,6'X

over p, eP

max } o5

- - - . —_ — ]_ji,max - ﬁi,min
where Apr = (pi,min - p/) {f (]7i,min - p:) < ___2—
Aﬁi = (pi,max - p/) OtheFWise

&, 1s constant over F,

The formulation (4.23) is derived from (4.16) by replacing A%X, and Ag, , with their
maximum or minimum possible values, based on +3¢ limits. The conditional definition
of Ap,accommodates the possibility that the parameters p, are not centered in their
adjustment ranges.

We can also determine a new probability density function for the “controlled” variable.
As shown in (Soyucayli and Otto 1998), if we are controlling some variable g, , witha

. ) . . 2
variance &, , we can estimate the controlled variance & as:

2 2
o, =N +0) -2.|=c.A
g 7 di-1 T xyq

where A is the range of output quality characteristic values based on the range A , of the

controllable input parameters p,:

Y
ot

A A

q = P

Equation (4.24) can be used as another method for evaluating the effect of feed-forward
control on end-of-line variation. The controlled output variation calculated through this
equation can be substituted into a system model, replacing the original variance
associated with the incoming material quality characteristic ¢, , in the controlled

operation. This will simulate the effect of the control loop, and show the impact of
control on end-of-line variation.

4.2.1.3 Modeling Error in the Controller
As mentioned previously, modeling error in the feed-forward controller can introduce
significant variation into the controlled system. We can use equation (4.21) to evaluate
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the impact of modeling error in a given system. If the magnitude of measurement and
actuation errors are known (this is likely since they are both hardware dependent), we can

calculate the upper limit on modeling error &

"

that will still ensure that the output
variation of a controlled operation is smaller than the process limit.

If 7, is the set of process limits for the controlled operation, the maximum allowable
modeling error will be:

max ]6'3

22
st. [F2];52 S%—[Ff]fffé -lelie -[r]ie (4.26)
over g. 20

where |F, HFq ],[FX ],/T,.,&?l , 0, ,0 ; are constant
Once again, errors are assumed to be random variables with normal distributions, and
process limits define the width of the acceptable tolerance band (6c). Equation (4.26)
can be used to determine the necessary accuracy of a control model for a given operation.

4.2.1.4 Application of feed-forward

Use of the analytical expressions derived in this chapter for feed-forward control are
demonstrated on an example system model in Chapter 5. In that chapter we also present
the results of a feed-forward experiment conducted on the factory floor. The
experimental data shows that feed-forward control can be effective in reducing end-of-
line variation in a production environment.

4.2.2 Feedback Control

Many manufacturing processes utilize some form of feedback control. In the context of
manufacturing, feedback can take one of two forms: machine feedback and part-to-part
feedback. In machine feedback, a control loop regulates the value of an input parameter
to improve accuracy and reduce variation. Some examples of controlled parameters
include injection pressure and polymer temperature on injection molding machines, and
spindle speed and feed rate on CNC lathes. Part-to-part feedback, on the other hand,
involves producing and measuring a single part, and then using the measurement data to
adjust process parameter settings prior to production of the next part. Part-to-part
feedback is often a consequence of operator practice, rather than a deliberate control
strategy. This situation can occur when an operator makes frequent adjustments to
process parameter settings based on visual inspection of the parts being produced. Part-
to-part feedback has many variant forms, with differing numbers of parts being produced
and measured before any adjustments are made. One such approach is run-by-run control
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(Boning, Moyne et al. 1996), in which data gathered from one batch of parts is used to
make parameter changes for the next batch of parts.

While machine feedback reduces the variation of the controlled parameters, part-to-part
feedback can actually increase variation in manufacturing systems. This situation occurs
when the system is not allowed to equilibrate, or when the time constant of the variation
is much smaller than the time constant of the feedback loop. The first condition is
prevalent in large systems, in which there is a time delay in reaching equilibrium after
process parameter changes. Jaikumar (1996) relates a situation he encountered at a
manufacturing plant, where the operators were making constant process parameter
adjustments with no improvement in product quality. He found that the plant was not
allowed to reach equilibrium after each change, and that the operators were effectively
making random changes to the process parameter settings. When the operators were told
to stop making “improvements,” end-of-line variation actually decreased (Jaikumar
1996).

Operator adjustment can also lead to an increase in variation when the time constant of
workpiece variation is smaller than the time constant of the feedback loop. An example
of this situation is part-to-part control of an operation in which variation is primarily the
result of chance causes. Since the quality characteristics of each part vary randomly
around their nominal values, any changes made to the system based on the characteristics
of a single produced part will have no correlation with the quality characteristic values of
the next workpiece. Making parameter adjustments after producing single or multiple
parts thus actually adds a source of random variation to the system. This increases end-
of-line variation over the uncontrolled value.

Despite causing an increase in variation in some situations, part-to-part control is useful
for correcting mean shifts and reducing the effects of variation due to assignable causes.
Since it is quite complicated to derive general analytical expressions for the effects of
feedback control on variation, we will limit ourselves to numerical simulation. In
Chapter 5, we compare various forms of machine feedback and part-to-part feedback
through Monte Carlo simulation on an example system model.

4.2.3 Controellability

In classical control engineering, the term controllability refers to the ability of an
unconstrained control vector to transfer a system from its initial state to any other state in
a finite amount of time (Ogata 1990). Mantipragada and Whitney (1997) discuss the
controllability of assembly systems, represented by “State Transition Models.” They seck
to understand the impact of different assembly sequences on variation. Their transition
model representation is similar to the concept of variation propagation presented in
Chapter 3; in our notation, the state transition equation for a system with adjustable
variables is exactly (3.27).

Following the example set by Mantipragada (1997), we can view (3.27) as a state
equation, in which the work-in-process variations change with each operation, rather than
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with time. We can then apply Kalman’s controllability criteria (Ogata 1990), to show
that the system will be output controllable if:

rank [YF, |YIF, |YI*F, || ¥I'" F, | = M 4.27)

where / is the identity matrix, [F ,_,] is the sensitivity matrix relating output quality

characteristics to adjustable variables, [Y] is a vector of 0’s and 1°s determining the
measured outputs, g, , from the total set of outputs, § as:

g, =Yg (4.28)

and M is the number of measured output variables. This means that the system is

controllable if the rows of the sensitivity matrix [F 5

], linking the outputs to the adjustable
variables, are linearly independent.

4.3 Chapter Summary

In this chapter, we explored several applications of the Integrated System Model
framework. We first presented the concept of process limits, which act as intermediary
tolerances within a system. Derived from end-of-line specifications, the limits guide
process engineers in determining the maximum allowable output variation for each
operation in a system. They can also be used to identify the need for measurement or
control of an operation. In cases where process control is needed, we suggested the use
of either feed-forward or feedback process control. We derived a number of analytical
expressions predicting the effects of feed-forward control on output variation, and
discussed several forms of feedback control. Finally we presented an expression for
determining the controllability of a manufacturing operation. The concepts developed
within this chapter are demonstrated on an example system model in Chapter 5.
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Chapter 5: Sheet Stretch-Forming Example

In Chapters 3 and 4 of this thesis, we presented a number of tools for the prediction and
reduction of variation in manufacturing systems. In this chapter we demonstrate the use
of these techniques on an actual sheet stretch-forming manufacturing system. We follow
the variation reduction method presented in Chapter 1. This approach consists of the
following procedure:

1) Develop an Integrated System Model of the manufacturing system
- Build predictive models of each operation
- Derive variational models of each operation
- Link the models into an ISM
- Validate system predictions against measured data
2) Identify major sources of variation in the system
3) Conduct system-level parameter design
4) Evaluate the need for measurement or control in a system
5) Formulate several variation reduction strategies
- Source reduction
- Feed-forward control
- Feedback control
6) Evaluate strategies in simulation using the ISM
7) Implement the most promising strategy

We begin by presenting the example system, a sheet stretch-forming system used to form
aircraft skin components for a major aerospace manufacturer. We construct predictive
and variational models of the two operations in this system: heat treatment and stretch-
forming. The models are linked into an ISM, validated against production data, and used
to 1dentify major sources of variation in the system. This information is used to
formulate several variation reduction strategies that are then compared in simulation.
One promising strategy, inter-operation feed-forward, is selected for evaluation. We
present data from a shop floor test of this method, showing that it was successful in
reducing end-of-line variation.

The manufacturing system modeled in this chapter is located at Northrop-Grumman
Corporation’s Commercial Aircraft facility, near Dallas, Texas. For this example, we
focus on a specific part modeled through two operations: heat treatment and stretch
forming. The target part and each of these operations are described in more detail in the
following sections.

5.1 Target Part

The sheet stretch-forming manufacturing system outlined in this chapter is used to
produce aircraft skin components with complex curvatures. The specific part we will
model for this example is a double-curvature nacelle doubler, shown in Figure 5.1. This
component fits on the inside of an assembly consisting of two similar pieces, bonded
together for strength. The assembly itself forms the top half of a nacelle (engine housing)
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on a large cargo aircraft. The nacelle doubler, known hereafter as the “target part,” is
formed from 0.05” thickness stock aluminum 2024-O.

Figure 5.1: Nacelle Doubler.

5.2 System Overview

The target part is formed through a series of operations, which transform incoming sheet
stock into products with the desired shape and material properties. In this section we will
describe the process used to manufacture the target part, and discuss some important
modeling considerations.

5.2.1 Process Description

The target part is formed through a series of three major operations: heat treatment,
stretch forming, and trimming. Stock material arrives at the shop floor as flat sheet, and
is rolled into coils by the heat treatment operators. Ten to twelve coils are lined up next
to one another on a carrier for heat treatment (Figure 5.2). Batch sizes larger than twelve
are subdivided into two smaller batches for heat treatment.

LU

i
i
!

Figure 5.2: Coils Stacked on Carrier.

The heat treatment process for the target part consists of solution heating followed by a
rapid quench. During solution heating, the carrier containing the coils is loaded into salt
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bath heated to approximately 920°F, and allowed to “soak” for at least 25 minutes. Both
temperature of the salt bath and time in the oven are constantly monitored. When the
desired soak time is reached, the salt bath doors are opened and the carrier is quickly
transferred to a tank containing quenchant at room temperature. The coils remain in the
tank for 2 minutes, and are then removed and transferred by hand to a freezer. Freezer
temperature is kept at approximately -10°F to retard natural aging. The amount of time
the coils remain in the freezer varies based on the forming schedule; this can be as short
as a few minutes or as long as 24 hours. Just prior to forming, a batch of 3-5 coils is
removed from the freezer and the coils are straightened between a set of rollers (see
Figure 5.3).

Figure 5.3 Sheet Being Uncoiled.

The flattened sheets are then carried to the stretch forming press, where they are formed
one after another (Figure 5.4)

Figure 5.4: Sheet Mounted on Stretch Press.

Once all of the parts have been formed, they are degreased with hot water and a solvent,
and are then carried to a trimming station. Each part is placed on a trimming fixture and
is hand routed to shape (Figure 5.5). The trimmed parts are then sent to a bonding
facility, where they each become part of a doubler assembly.

64



Figure 5.5: Part Being Trimmed.

5.2.2 Modeling Considerations

The Integrated System Model developed in this chapter is composed of two operations:
heat treatment and stretch forming. We omit two of the actual processing steps—
uncoiling of the sheet, and trimming. The amount of plastic deformation added to the
sheet during coiling and uncoiling is very small, and we assume that the effects of work-
hardening are insignificant in comparison with the effects of natural aging. The model
validation, discussed later in this chapter, supports this assumption. Trimming is an
important operation for some parts; leading edges, for example, exhibit significant post-
trim springback (Parris 1996). As such, we took detailed measurements of the parts after
trim, and implemented a finite-element based model of the trimming operation. Our
measurements revealed that the amount of material removed from the target part during
trim is sufficient to virtually eliminate post-trim springback. Since the trimming
operation does not affect either of the two output variables of interest in this example
(thickness and strain), we omit the trimming operation from the ISM, and from this
discussion.

5.3 Integrated System Model

This section outlines development of the stretch-forming system model. We discuss each
constituent operation in turn, first describing the operation and its process parameters,
and then detailing the predictive and variational models. We then link the operational
models together into a system model, which is validated against production data.

5.3.1 Heat Treatment

5.3.1.1 Process Overview

Heat treatment is an important part of the stretch-forming manufacturing system. This
operation is used to increase the strength of the stock material, stabilize mechanical or
physical properties, and relieve residual stresses (Van Horn 1967). Through controlled
heat treatment, the resistance to deformation of some alloys can be varied by a factor of 5
or 6. Although heat treatment is often thought of as a single operation, it is really
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composed of three separate steps: solution heat treatment, quenching, and age hardening.
Of these three steps, quenching is usually considered the most important in determining
the material’s final properties. Since alloys are softer and more ductile immediately after
quenching than after aging, many forming operations are conducted between these two
steps. A typical process plan will involve solution heating and quenching stock material,
forming it into a desired shape, and then aging the formed part. Each step of the heat
treatment process is discussed in more detail below.

Solution Heat Treating

The first step in heat treatment is solution heat treat, which involves “soaking” the blank
at an elevated temperature for a given time. This procedure forces the soluble hardening
elements in the alloy (such as Cu, Mg, Si, and Zn) into solution (Davis 1993). The solute
atoms form coherent clusters surrounded by strain fields, due to the size mismatch
between solvent and solute atoms. The particles and strain fields obstruct the movement
of dislocations through the material, thus increasing its strength.

The soak temperature must be below the melting point of the material, but above the
temperature at which complete solution occurs. The material is heated to the soak
temperature in an air furnace or salt bath. Soak time depends on the material
microstructure before heat treat. For a part in a salt bath, the soak time is the time that
the part is immersed in the batch. For a part in an air furnace, soak time begins when all
instruments have returned to their original set temperature.

There are several sources of variation in solution heating. Most notably, the furnace
temperature can vary by £10°F from nominal soak temperature during heating (Davis
1993). Uniform heating of the part is also a concern; this is generally controlled by
means of racking spacing. Commercial rule of thumb is that parts should be spaced 27
apart to allow for air flow and even heating.

Quenching

Quenching is often considered to be the most critical step in heat treatment (Davis 1993).
Through rapid cooling, the quench creates a supersaturated solution which preserves the
solid solution formed during solution heating. Quenching retains solute atoms in
solution, and maintains a minimum number of vacant lattice sites, which can support low
temperature diffusion. The rate of cooling during quench is important, since any solute
atoms which diffuse to grain boundaries or any vacancies which migrate to disordered
regions during cooling will not be able to contribute towards material hardening (Van
Horn 1967). Rapid quench rates are thus proportional to high strength, toughness, and
corrosion-resistance. Cooling rate effects are most significant in the range 530-750°F.
For 7075 aluminum, for instance, cooling rates on the order of 540°F/s are necessary to
obtain maximum strength.

Modeling Considerations

The heat transfer coefficient during quench is affected by the part geometry and local
process factors (Tiryakioglu and Menguc 1996). This leads to variations in cooling
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patterns between different parts and between different sections of the same part. Heat
transfer to the quenchant is characterized by a surface heat transfer coefficient and an
associated surface heat flux. This heat transfer coefficient is not constant during
quenching, which complicates attempts to model the quenching process.

There are 4 different stages of cooling during quench:

1) Initial liquid contact

The initial liquid contact stage is very short (~0.25 s) and is characterized by intense
boiling and a very high cooling rate at the part surface (Fletcher 1989). This stage lasts
only until sufficient vapor has been generated to coat the part.

2) Vapor Blanket Stage

Vapor from the previous step forms a “blanket” between the part and the quenchant,
which exists as long as the supply of heat from the metal surface exceeds the amount of
heat needed to maintain maximum vapor per unit area. During vapor blanket stage, heat
is transferred at a slow rate through the high thermal resistance of the vapor layer. This is
primarily a conduction process. Heat that reaches the surface of the liquid is then
removed by convection. The vapor blanket is stable for AT (temperature differential
between the part and the quenchant) in the range 400-1000°F. When AT>1000°F,
radiation effects become significant (Rohsenow and Choi 1961).

3) Nucleate Boiling

When the vapor blanket collapses, there is contact between the part and quenchant, and
some violent boiling. This is the nucleate boiling stage, which has the fastest rate of heat
removal from the part. Nucleate boiling involves 2 separate processes: bubble formation
and growth and motion of the bubbles.

4) Convective Cooling

When the temperature of the part-quenchant interface approaches the liquid boiling point,
the surface heat transfer coefficient decreases significantly (Tiryakioglu and Menguc
1996). Laminar convection becomes the primary mode of heat transfer

The cooling rate in each stage of quench is dependent on a number of parameters,
including the temperatures of the material and bath, the quench medium, and the part
geometry. We briefly discuss each of these factors below.

Quench Delay

In order to ensure that the part does not cool too much before being quenched, limits are
placed on the amount of time allowed for transporting the material from furnace or salt
bath to quench tank. This time is called the quench delay, and is measured from the
moment when the furnace door is opened or the first corner of the workpiece emerges
from the salt bath, until the moment when the last corner of the workpiece is immersed in
the quench tank. Increasing the quench delay is similar to reducing the cooling rate.
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Quench Media

The choice of quench medium is dependent on the desired rate of cooling. Water and a
variety of polymer solutions are the most commonly used quenchants. Water is a very
effective medium, producing a faster quench rate than most polymers. This can lead to
distortion in the final part; the cooling rate can thus be reduced by adding glycol to the
water bath or by using a coating on the material. The vapor blanket stage in water is very
short and sometimes non-existent (Fletcher 1989). The nucleate boiling stage, on the
other hand, is prolonged.

Part Characteristics

Quench rate is also dependent on part characteristics. Since heat transfer during quench
is limited by the thermal resistance at the surface in contact with the quenchant, the
cooling rate is a function of the ratio of surface area to volume. Cooling rate is also very
sensitive to the surface condition of the part. It has been shown empirically that the
lowest cooling rate is on parts with freshly machined, clean surfaces (Davis 1993). Oxide
films and coatings tend to increase the cooling rate.

Residual Stress

The temperature of the cooling bath naturally has an effect on the cooling rate: the higher
the bath temperature, the lower the cooling rate. The effects of this parameter are mixed
however, since the greater the temperature differential between the part and the bath, the
more chance of residual stresses in the part. These stresses are caused by differential
thermal expansion. Sudden cooling and contraction of the workpiece surface generates
tensile stresses at the surface and compressive stresses near the part center. The
magnitude of these stresses is proportional to the temperature difference between the
surface and the interior of the part. During cooling, as the temperature of the surface
approaches that of the quenchant, the rate of cooling at the surface is slower than that at
the part center. This results in a stress reversal, in which the residual stresses become
compressive at the surface and tensile at the center (Tiryakioglu and Menguc 1996). This
stress field can cause problems in post-processing, since material removal operations can
expose the tensioned material or create an asymmetric residual stress field. Warpage
during quench is a significant problem in sheet material. Warpage is very dependent on
racking conditions, symmetry during cooling, and on the amount of impact when the
material enters the bath.

Additional Factors

There are several additional parameters influencing quench behavior. Agitation during
quench is an important factor, as it decreases vapor blanket stability. The immersion
conditions of the part are also significant; these include part orientation, direction and
velocity of quenchant flow, and immersion velocity of the part (Tiryakioglu and Menguc
1996). Finally, initial part temperature is directly proportional to the stability of the
vapor blanket.
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Age Hardening

The final step in the heat treatment process is age hardening. This procedure allows
additional strengthening of the material, through the formation of precipitate zones and
vacancy migration. There are two types of aging: natural, in which the material is
allowed to strengthen at room temperature, and artificial, in which aging occurs at some
elevated temperature. In many cases, it is desirable to suspend natural aging after
quench, until the part can be formed. Aging can be slowed significantly by freezing the
material at a temperature below 0°F.

Natural Aging

There are no microstructural changes during natural aging; hardening effects are due to
the formation of zone structures in the material (Van Horn 1967). In 2024 aluminum,
most natural aging occurs in the space of 24 hours. 7075 aluminum, on the other hand,
hardens indefinitely at room temperature (although the hardening rate eventually
decreases to the point of being negligible). While material strength increases during
natural aging, electrical and thermal conductivities decrease.

Artificial Aging
Heating the quenched material to 200-400°F accelerates precipitation effects. Artificial
aging does not just increase the reaction rate however, there are structural changes in the

material as well (Van Horn 1967). This process relaxes some quenching stresses by 10-
35%.

5.3.1.2 Modeling Strategy

At the Northrop-Grumman Commercial Aircraft facility, it is common practice to
solution heat treat and quench stock material in batches. The variation between parts
prior to age hardening is thus comparatively minimal, even across batches. After quench,
the material is moved to a freezer until forming. Although this transfer occurs quickly for
the material used to form our target part (approximately 6 minutes), the process
specifications used by the heat treatment operators prescribe a window of 30 minutes to
move material from quench to freezer. This large process window is necessary for some
parts, which are carried to freezers in other buildings.

As mentioned previously, it is standard procedure for the operators to remove 3-5
aluminum sheets from the freezer at one time, and to then form them sequentially. The
time each part is out of the freezer (and naturally aging) can vary by up to 45 minutes.
The operators report that in the winter they will remove up to 5 parts from the freezer at a
time, while in the summer they can usually only remove and form 3 parts at a time before
too much hardening sets in.

Our process models indicate that natural aging begins after a part has been out of the
freezer for approximately 15 minutes. The time required in practice to transport the
coiled material from quench to freezer is approximately 6 minutes, and the time to
straighten 4 coils of material is also approximately 6 minutes. It is likely, therefore, that
each workpiece begins to strengthen prior to forming, and that material yield strength at
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the time of forming varies significantly within each group of parts removed together from
the freezer. While freezer temperature is set at —10°F, the freezer door is often left open
for long periods of time, allowing the internal temperature to climb as high as 32°F. Itis
not known what effect these temperature spikes will have on aging.

In developing a model of the heat treatment process, we first assumed that all parts were
solution heated to saturation. This decision was supported by measurements of the salt
bath temperature and saturation time. We then used one model to simulate the effects of
quench, and a second model to evaluate the impact of aging time. These models are
described in detail in the next section.

5.3.1.3 Heat Treatment Models

To determine the effects of quench, we used a model that relates material yield strength
to quench parameters, developed at ALCOA (Kinnear 1998). Model inputs and outputs
are shown in schematic form in Figure 5.6. The quench model predicts final yield
strength of the quenched material, based on initial material geometry and properties and
quenching process parameters. We then derived a second model, to predict the effects of
aging time from the empirical data shown in Figure 5.7. The input and output parameters
of this model are also shown in schematic form in Figure 5.6. The natural aging model
first determines the part aging time: the amount of time each part spends out of the
freezer between quench and forming. Calculation of aging time is based on the number
of parts removed from the freezer at the same time, the time required to form the first
part, and the time required to form each successive part. The model then uses the aging
time to predict material yield strength.
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Figure 5.6: Heat Treatment Model Parameters.
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Figure 5.7: Yield Strength vs. Aging Time (Van Horn 1967).

In order to derive the natural aging model, we first fit a polynomial to the room-
temperature aging curve in Figure 5.7, over the region of interest (15 minutes to 60
minutes). We then calibrated this polynomial, using a measured value of material yield
strength at a typical aging time. The calibration point was obtained from tensile tests
conducted on heat treated specimens of 2024 aluminum. These specimens were found to
have a mean yield strength value of 131.6 MPa at a mean time out of freezer of 24
minutes. The calibrated aging time curve is:

Ys =0.3469¢ + (¥s, — 6.25) (5.1

where ¢ is time out of freezer in minutes, and Vs, is the yield strength immediately after
quench, which was found to be 129.52 MPa. Ambient temperature is a potential source
of error in this model. Temperature on the factory floor varies between 50° and 100°F
from winter to summer, and also changes depending on the time of day. The ambient
temperature may affect both the time required for the onset of aging and the aging rate.
Some additional calibration of this curve may thus be necessary to make the model more
robust to plant conditions.

5.3.1.4 Variational Models

To derive a variational model for quench, we first perturbed the predictive model inputs
through their +3c ranges, based on in-plant measurements of input variations. Within the
tested ranges, the model predicted no variation in output yield strength. We then spoke to
an expert at ALCOA who explained that due to the fast quench in this case, noticeable
yield strength variation from batch to batch is unlikely (Kinnear 1998). We thus focused
on natural aging as the primary source of yield strength variation. The variational model
for natural aging was derived by simply taking partial derivatives of equation (5.1) such
that:

ors =0.3469 (5.2)
ot
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and

oYs

=] 53
oYs (3:3)

5.3.2 Stretch-Forming

5.3.2.1 Process Overview

Stretch-forming is a manufacturing process commonly used in the aerospace industry to
transform flat sheet metal into curved shapes. There are two basic types of stretch
forming: stretch-wrap forming and drape forming. In stretch-wrap forming, a sheet is
first stretched until it just becomes plastic, and is then wrapped over a die. The pre-
stretch significantly reduces the amount of post-forming springback. In drape forming, a
sheet is clamped around its edges, and is then simultaneously bent and stretched over a
die. Usually the jaws are held fixed during drape forming, and the die moves to impart
the stretch (Parris 1996). When the die is removed, the sheet springs back slightly,
relieving internal stresses.

Our target part is formed using the drape forming process on a Cyril-Bath hydraulic press
(Figure 5.8). Two operators are generally required during forming; one runs the machine
while the other stands on top of the die table and watches the part and machine to spot
problems.

Figure 5.8: Stretch-Forming Press.

The first step in drape forming a part is to secure a flat blank in the jaws. The carriages
(on which the jaws are mounted) are adjusted somewhat, and the die table is moved up
until it contacts the sheet. The press operator continues to manipulate both table and
carriages until the sheet is “snugged.” In the snug condition, the sheet is wrapped around
the die, but without enough force to induce plastic strain. After the operator is satisfied
with the snug, he moves the table up into the sheet. Displays on the machine report both
table force (in tons) and die table height. The operator uses one of several possible
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control strategies to determine when the part is formed. When we first visited the plant,
the operator would stop forming at his discretion, based on visual inspection of the part.
On the second trip, the operators were using a form of displacement control, in which
they raised the die table to a specific table height (read off the display), based on prior
experience. This change in control strategy was due to the work of (Parris 1996), who
showed that displacement control can significantly reduce variation over visual
inspection. The target part can also be formed using either force control or strain control,
both of which will be discussed in more detail later in this chapter. Forming can be
halted at any time, if the operator who is standing on top of the die table detects a
problem. Potential problems include imminent tearing of the part and slippage in the
jaws.

5.3.2.2 Modeling

The stretch-forming simulation is based on a Finite-Element Analysis (FEA) model of
drape forming, developed by Socrates and Boyce within the commercial package Abagus
(Socrates and Boyce 1996). Their original model simulated the forming of a thin strip of
material over a cylindrical die. We modified this model, to simulate the actual forming
conditions of the target part. We describe the finite-element model in detail in this
section; a full listing of the Abaqus input deck is provided in Appendix A.

Aluminum Sheet

The FEA simulation models one-half of the blank, with a line of symmetry running
through the axis of the die. The full sheet measures 36” (w) by 136 (1), and is 0.05”
thick. The material is 2024-W aluminum. The sheet is modeled in Abaqus using 4 node
shell elements, which are commonly used in sheet forming simulations. The FEA sheet
representation is meshed variably, with fine meshing near the point of initial contact with
the die, and coarser mesh towards the side. A schematic of the sheet layout is shown in
Figure 5.9 below. The diagram shows the node numbers at the corners of the sheet, the
labeling of the axes, and the different mesh sizes.
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Figure 5.9: Layout of Sheet.
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Die Geometry

The die geometry used in the FEA model is derived from a CAD file of the actual die.
Northrop-Grumman provided us with an IGES surface representation of the die
geometry, converted from the Catia solid-modeler (Figure 5.10). We initially attempted
to import the IGES file directly into Abaqus, using the Houdini software package
developed by Algor Inc. We were unable to mesh the geometry correctly with Houdini;
the software could interpret some surfaces, but not others. We then used the package
Abagqus Pre, which was able to both read and mesh all surfaces. We imported the mesh
generated by Pre into Abaqus as a rigid body. This seemed to work successfully, and
Abaqus was able to display and utilize the rigid body die. We discovered, however, that
forming invariably failed to converge, at a point roughly 20% of the way through the
forming step. This problem was somehow related to the rigid body representation, and
the only successful solution proved to be a different geometric representation. We were
able to use the node points along the top edge of the meshed die representation to form
the profile of a surface of revolution. This surface was then generated internally within
Abaqus. After this modification, the FEA simulation successfully completed the forming
step. The support engineers at HKS, the developers of Abaqus, were unable to explain
this geometric discrepancy.

Figure 5.10: Die Geometry.

Material Properties

The blank material is 2024-W aluminum, an unstable form due to heat treatment. As
discussed previously, this material begins to naturally age when removed from the
freezer, and thus the actual yield strength and stress strain curve change during forming.
We initially used a stress-strain curve from Al 2024-O, with the yield strength scaled to
agree with the output of the ALCOA quench model. This characterization allowed us to
get the FEA model working, and provided a reasonable approximation of the production
data. During our second trip to Northrop-Grumman, we conducted tensile tests on
several specimens of 2024-W, which had been heat treated, quenched, and then placed in
the freezer. The mean time out of the freezer was 24 minutes, and the mean yield
strength was 131.6 MPa. We used this yield strength to calibrate the material model.
The strain hardening coefficient we derived from the tensile tests was much larger than
that found for 2024-0, and caused the simulation to diverge. We thus used the yield
strength from the tensile tests in conjunction with the strain hardening coefficient for
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2024-0. As will be shown in the validation section later in this chapter, this hybrid
material model was sufficient to generate good predictions.

Coefficient of Friction

The frictional coefficient, i, between the die and the sheet was set to a value of 0.1 based
on previous research and best fit. Studies done by other authors have shown that the
value of the frictional coefficient in stretch forming varies from 0.1 to 0.3 (Azushima
1995; Parris 1996). Within that range, the trends predicted by the model were closest to
the trends found in the measurements at a value of p=0.1.

Jaws

The jaws are simulated by constraining the set of nodes forming a 2.5” wide strip along
the edge of the sheet (see Figure 5.9). The degrees of freedom of these nodes are linked
by a user subroutine so that the entire strip moves as one unit during forming. While this
approach simulates the clamping effects of the jaw, it fails to account for the slippage in
the transverse and lateral directions found in the actual machine. Without this slippage,
the simulated sheet begins to neck at a lower value of forming force than the actual sheet.

Wrap Angle

The wrap angle parameter is an artifact of the Abaqus implementation. In reality, the die
table moves up into the sheet, until the table reaches a given height. In the model, the
edge of the sheet is being pulled down while the die remains stationary. To determine
how far down the edge needs to move, we calculate a “wrap angle” based on the table
height, carriage positions, and die radius. A simple schematic outlining the geometry of
this situation is shown in Figure 5.11.

Figure 5.11: Wrap Angle Geometry.

75



To calculate the wrap angle, &, we can perform a series of simple calculations:

o= arctan(

H-g)
S

Y= arctan[

JS?+(H-D,)* - R’
R

H:E—y—a

2

The actual measured values for each of these variables are listed in Table 5.1.

Table 5.1: Forming Geometry.

Variable Measured Value
Table Height at Max. Force (Dy) 36.0625”

Jaw Height (H) 38.375”
Distance from Table Centerline to Jaw (S) | 33.375”

Die Radius at Widest Point (R) 33.588”

Substituting these values into equations (5.4) through (5.6) results in a wrap angle of 86°
when the sheet is completely formed. It was not possible to accurately determine the
wrap at snug, but from visual inspection this angle was between 50° and 70°. Having
calculated the final wrap angle, we can determine the Z-displacement of the edge of the
sheet that is necessary to bend the sheet sufficiently. We use a simple algorithm to
determine Z-displacement, based on sheet and die geometry. This algorithm is composed

of the following calculations:

¢ =R-Rcosl
s=R6O
A=A-ys

Z=Asind+¢
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In these equations, ¢ is the vertical distance shown in Figure 5.12, Z is the displacement
of the edge of the sheet from its original height, R is die radius, &1s the wrap angle, and A
is the total initial length of the sheet. These quantities are all depicted graphically in
Figure 5.12. Equations (5.7) through (5.10) first determine the length of sheet wrapped
around the die at the given wrap angle &, and then derive the location of the end of the
sheet assuming that it will be tangent to the die at the last point of contact.
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Figure 5.12: Additional Wrap Angle Geometry.

Forming Force

The maximum force during forming was recorded from the display on the forming press.
This value is the measured force on the die table as the die is pushed into the sheet. A
simple geometric relation can be used to adjust this value to the modeling framework,
where the jaws pull down on the sheet. As shown in Figure 5.13, force on the sheet from
the jaws will be:

Fo Die Table Force
2-sin@

(5.11)

where the factor of 2 is used to account for the fact that the simulation only models 'z of
the sheet. Application of equation (5.11) gives a forming force of 238,412.8 N for the
model, based on a measured average forming force of 53.3 tons. The same formula can
be applied to determine the force at snug. We used a wrap angle at snug of 53°, which
provided the best fit to measured data of all angles within the acceptable range. Based on
a measured mean snug force of 18 tons, the snug force used in the model was 100,249 N.

77



Die Table Force

Figure 5.13: Force Adjustment Geometry.

Forming Steps

The complete FEA simulation has 13 steps, including forming and relaxation. Figure
5.14 shows the main steps in graphical form. In this section, we provide a detailed
explanation of each step. The full Abaqus input deck is listed in Appendix A.

Bring sheet in contact
with the die

Wrap the sheet around
die to snug

Simulate die table
movement by pulling
and wrapping

Allow sheet to relax
and spring back in a
series of steps

Figure 5.14: Basic Steps of Forming Model.

Step 1

The model contains two rows of dashpot elements, attached at one end to nodes in the
clamped region, and at the other end to ground. One row of dashpots is attached to nodes
at the very edge of the sheet (node numbers 2054 to 6054), while the other row is
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attached to nodes along the edge of the clamped region (a line parallel to the Y axis,
composed of nodes numbered 2049 to 6049). The dashpot elements are used to aid in
stress relaxation after forming. Although they must be included in the model definition,
they are removed immediately in this step, and are then replaced in step 8, after forming.

Step 2

The blank is subject to tension by a force producing a stress across the entire sheet,
equivalent to 0.5% of the material yield strength. Sheet boundaries are constrained to be
symmetric about both the X and Y axes, and the entire sheet is constrained in the Z
direction so that it remains flat during pre-stretch. During this step, the sheet is located
slightly above the die in space.

Step 3

The edge of the sheet, constrained to simulate clamping conditions, is lowered by an
amount equal to the sheet thickness. This brings the sheet into contact with the die. The
sheet edges are kept constrained by symmetry conditions, and the sheet is still in tension.

Step 4

This step simulates snug. During actual forming, the die 1s raised into the sheet during
snug, inducing a wrap angle between 50° and 70°. Later, during stretch, the die is raised
an additional amount, bringing the wrap angle to its final value of 86°. In this model, the
sheet is fully wrapped around the die during the snug step, while the stretch step only
applies a tangential force to the sheet. This change was a modeling necessity; when
stretch and wrap were combined into a single step, the finite-element code failed to apply
the full load to the sheet. Instead, the step terminated at full wrap with only partial
loading. We thus separate stretch and wrap into two different steps. Although this is an
abstraction, it serves to accurately reproduce the strain field across the formed sheet.

During the snug step, the sheet is only restricted by symmetry about the Z axis, leaving
its free edges unconstrained. The clamped edge is displaced in the Z direction by a value
determined from equation (5.10), resulting in the desired wrap angle. Force on the sheet
is increased to the mean value measured from the forming press at snug, translated to the
model geometry through equation (5.11).

Step 5

The grips are rotated to allow force transmission at the proper angle. This is an artifact of
the modeling geometry; during actual forming, this angle changes dynamically as the
table height is increased. In the model, grip rotation is simulated by rotating the clamped
edge (designated by the “PULL” node set) about the Y axis, by the wrap angle. The
sheet is still constrained to be symmetric about the X axis, and an additional boundary
condition is added to constrain it in the Y direction. This keeps the sheet from slipping
off the die.

Step 6

This is the forming step. While maintaining the boundary conditions established in step
5, a force is applied to the clamped node set in the local (rotated) X direction. This force
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is based on the measured maximum forming force, transformed to the model geometry
through equation (5.11). During this step the sheet experiences significant plastic
deformation. As discussed previously, in actual forming there is slippage between the
sheet and jaws. Lack of slippage in the model results in increased edge wrinkling and an
earlier onset of necking than is found in practice.

Step 7
In this step, the sheet is rigidly constrained in space while the die is removed from the
model.

Step 8

Here the dashpot elements are reintroduced into the model. Forming of the target part is
severe enough to induce significant wrinking of the clamped edges. As the boundary
constraints are removed, Abaqus must determine the final configuration of the relaxed
wrinkled edge. The dynamics of unloading make it difficult for the program to identify
the correct final edge geometry, resulting in convergence problems. Through experiment,
we found that the addition of dashpot elements to the edge nodes allows convergence.
These elements effectively “slow” relaxation, making it easier for Abaqus to determine
the final geometry.

Step 9

This is the first relaxation step. The clamped region is kept constrained, and is prevented
from rotating about the Y axis. Membrane stress in the sheet is allowed to relax over a
time step of 1 second.

Step 10

Here the constraints on the PULL node set are relaxed, allowing for independent motion
of the edge, excepting rotation about the Y axis. Membrane stress in the sheet is allowed
to relax over a time step of 2220 seconds. This value was empirically determined to be
long enough to allow all dashpot forces to decrease to negligible values. We found that
two relaxation steps (9 and 10) are necessary for convergence. In the case of a single,
longer, time step, Abaqus quickly increased the allowable time increment during bulk
movement of the sheet, and was then unable to reduce it sufficiently to deal with edge
wrinkling. The addition of a second relaxation step forces the program to restart with a
much smaller time increment, avoiding this problem.

Step 11
In this step, the sheet is constrained rigidly in space and the dashpots are removed for the
last time.

Step 12

The sheet is constrained to be symmetric about the X axis, and a single point is fixed in
both the X and Y directions. This point, the site of initial contact with the die, is
effectively “grounded,” which provides the sheet with a reference point fixed in space.
The PULL node set is still constrained from rotation about the Y axis. The “Amplitude”
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command, which controls the rate that the loads are removed, is essential for convergence
of this step.

Step 13

The constraint prohibiting rotation of the PULL node set around the Y axis is removed,
allowing the sheet to unload to its final shape. The “Amplitude” command is necessary
for convergence of this step as well.

5.3.2.3 Modeling Notes

The Abaqus drape-forming model, listed in full in Appendix A, simulates forming of the
target part shape under a range of process parameters. The model should work with other
die shapes as well, although this was not tested. The two major assumptions in the model
involve the frictional coefficient value and clamping at the edge of the sheet.

The results of our FEA model are quite sensitive to the value ot the frictional coefficient
governing contact between the sheet and die. From the forming literature, it seems likely
that the frictional coefficient is not constant during forming (Azushima 1995). We were
unable, however, to implement a dynamic frictional coefficient in the model, and thus
assume that the value of this parameter is constant. In addition, the actual value, or range
of values, for the frictional coefficient is unknown. As mentioned previously, studies
done by other authors have shown that the value of the frictional coefficient in stretch
forming varies from 0.1 to 0.3 (Azushima 1995; Parris 1996). Within that range, the
trends predicted by the model were closest to the trends found in the measurements at a
value of pu=0.1.

We also assumed that there is no slippage between the sheet and the jaws. As described
above, edge clamping was simulated by constraining the movement of nodes along the
edge of the sheet. This clamping model does not allow for the slippage in both the lateral
and transverse directions found in the actual system. Slippage between the sheet and the
jaws would both reduce the edge wrinkling seen in the model results, and delay the onset
of necking. Since the measurement locations for both outputs of interest (strain and
thickness) were far from the clamped region, this assumption does not significantly affect
the results.

5.3.2.4 Variational Model

The first step in deriving the variational model from the Abaqus predictive model was to
identify those process parameters most likely to contribute to output variation. Based on
discussions with stretch-forming engineers and the work of Parris (1996), we determined
that the most significant parameters contributing to variation in this operation were
maximum force, material yield strength, sheet thickness, carriage position, and table
height. Carriage position and table height do not appear explicitly in the model; they are
instead combined into the “wrap angle” parameter. This leaves 4 input parameters for
study.
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The second step in developing the variational model was a designed experiment to
determine parameter sensitivities. We considered only first-order effects, and ran a
simple sensitivity analysis in which each input parameter was perturbed individually to
values of +1.5¢ and +3o, where ¢ is the measured standard deviation of the value of the
input variable. The output variables of interest (strains at three locations and thickness at
9 locations) were predicted at each input variable setting, and we interpolated a
polynomial through each output/input combination. The derivative of this polynomial
was then used to approximate the partial derivative of the output variable with respect to
the input variable, in a region around the operating point. The set of partial derivatives
serves as the variational model for stretch-forming. This method of calculating the
sensitivities assumes that there are no second order interactions between the variables.
This assumption was reasonable, since statistical analysis of the production data showed
no significant correlation between input variables.

5.3.3 Assembling the ISM

The variational models for heat treatment and stretch-forming were linked together
within a Microsoft Excel spreadsheet. The model was composed of four linked
worksheets, one listing all system inputs and outputs, and three containing process
sensitivities. On each worksheet, the sensitivities were used to form both linearized
predictive models as in equation (3.5), and to predict output sensitivities through
equations (3.33) and (3.34). The top-level worksheet, titled “Control,” listed all system
inputs and outputs. Input values entered on this worksheet were simultaneously entered
on the process worksheets. The first process worksheet was called “Heat Treatment,”
and contained both the localized aging model from equation (5.1) and process
sensitivities, derived from (5.2) and (5.3). Inputs to this worksheet were linked to the
listing on the “Control” worksheet, and the process output, yield strength, became an
input to the next two worksheets. The second process worksheet was titled “Thickness.”
This sheet contained all of the thickness sensitivities derived from the stretch-forming
predictive model. These sensitivities were linked together into a linearized predictive
model of thickness at 9 locations on the part, and into both RSS and Worst-Case
variational models of thickness variation. Outputs from this worksheet were reported on
the “Control” sheet. The third process sheet was titled “Strain.” This worksheet
contained all of the strain sensitivities derived from the stretch-forming model. Again, all
process inputs except yield strength were obtained from the Control worksheet. Yield
strength came from the Heat Treatment sheet. The Strain worksheet calculated output
strain nominal values and variations at three locations on each part. These values were
then reported on the Control worksheet.

By linking the inputs and outputs of each worksheet, the entire system model could be
evaluated from the top-level Control worksheet. Changes to any input parameter were
immediately propagated through the system, resulting in changes to the end-of-line
nominal values and variations reported on the Control sheet. This spreadsheet
implementation of the ISM allowed for easy implementation of system-level robustness
and simulation of process control strategies. These applications will be discussed
through the rest of this chapter.
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5.4 Modeling Validation

The ISM predictions were validated by comparison with measured production data.
Measurements were taken on a batch of 12 parts, produced at the Northrop-Grumman
facility in October 1997. During production of these parts, the stretch-press was run in
manual control, with forming being stopped based on operator discretion. In this section
we discuss our measurement techniques, and list the measured values used as inputs to
the system model. We then compare the model predictions to measured values of part
strains and thickness.

5.4.1 Measured Parameters

Thickness

We measured sheet thickness before and after forming with a “Mighty-Mike™ Hall-effect
thickness gauge. This device consisted of a magnetic probe placed on one side of the
sheet, and a ball bearing placed on the other. The distance between the tip of the probe
and the bearing was displayed on a portable unit. Prior to forming, each sheet was
measured in four locations, 1”” in from each corner, in order to determine mean batch
thickness and variation. After forming, sheet thickness was measured at nine locations
on the part, as shown in Figure 5.15.

Figure 5.15: Thickness Measurement Locations.

Note that the part is axially symmetric, and thus locations 3, 6 and 9 are symmetrically
opposite locations 1, 4, and 7, respectively. The thickness gauge measurements tended to
drift, forcing frequent recalibration of the device. For this reason, we estimate
measurement error to be 0.0005”.

Force

Both snug force and maximum force during forming were read off the machine display
during operation. Previous calculations by (Parris 1996) suggest that the force readings
on this machine can be inaccurate by up to £10% of the actual force. Our own
experience has shown that bias in the force reading can be much higher—up to 100% of
the actual force at times. Based on the stress-strain curve of the material, operator
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model predictions, we estimate that our measured force values were within 5% of the
actual force.

Table Height

Table height is displayed on the machine control panel. To determine the wrap angle,
this table height reading was correlated with an absolute measurement of table height
above ground. The table height reading appears to be quite accurate.

Carriage Location
Carriage location is also displayed on the control panel, and was also correlated to an

absolute measurement of distance between the center of the die table and the edge of the
jaw.

Sheet Strain

Strain on the sheet was measured through the separation of “strain marks,” inscribed on
the sheet prior to forming. While this is not the most accurate means of determining
strain, it proved to be the most reliable on the shop floor. Use of strain gauges was
limited since we could not attach them in any way that might damage the surface finish of
the sheet. We tested several methods, but were unable to find a dependable means of
keeping gauges attached to the sheet during forming. We inscribed strain marks along
both the X and Y axes of the sheet (as defined in Figure 5.9) at three measurement
locations, shown in Figure 5.16.

Figure 5.16: Strain Measurement Locations.

The marks were applied with a pencil and were exactly 10” apart, with the center points
at the locations shown in Figure 5.16. A calibrated rule, with slots cut for marking, was
used to place the marks accurately. Strain measurement error can come from two
sources: inaccuracy in reading the separation between strain marks from the ruler, and
misalignment of the strain marks themselves. The error on measuring stretch from the
ruler is estimated to be £0.03125”. The maximum skew of any of the strain marks is
estimated to be 2.87°. Over the total separation length of 10” this leads to a potential
measurement error of +0.00627. The total strain measurement error is thus £0.00219.

Contour

Following the work of Parris (1996), we measured the springback of the part from the die
after forming. Unlike the leading edges measured in that work, the nacelle doubler has
little springback after forming, and virtually none after trim. To measure springback at
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the front of the part (the left side of the part shown in Figures 5.15 and 5.16), we
measured the distance from one corner to the other corner at the base of the die with a
measuring tape. We then subtracted the diameter of the die from this reading. At the
back of the part, the die protruded from the sheet. In this case we used a small scale to
measure separation of the sheet from the die at each side. Due to the small amount of
springback and the large measurement error, the springback measurements are not
discussed further in this thesis.

5.4.2 Measured Values

The tables below list the measured values of inputs and outputs for the batch of 12 parts
measured during the first trip. The operator made adjustments to the carriage
displacement and table height settings after each of the first two parts. Because of these
changes, and the fact that the first part tore during forming, we only present data for the
last 10 parts in the batch. In the table, these are renumbered as parts 1-10. Table 5.2 lists
the measured values of thickness for each part prior to forming. As discussed previously,
these measurements were taken at each corner of the blank. Table 5.3 lists the values of
machine parameters, read from the press display, at snug and at stop.
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Table 5.2: Sheet Thicknesses Before Forming.

Part Number:

Thickness

Part Averages

1

0.0499

0.0502

0.0497

0.0496

0.04985

0.0509

0.0506

0.0499

0.0505

0.050475

0.05

0.0502

0.0501

0.0504

0.050175

0.05

0.0497

0.0502

0.0503

0.05005

0.0508

0.0509

0.0503

0.05044

0.05061

0.0504

0.0505

0.0507

0.0502

0.05045

0.0503

0.0504

0.0498

0.0497

0.05005

0.05

0.0503

0.0503

0.0503

0.050225

0.05

0.0499

0.0502

0.05

0.050025

10

0.0497

0.0498

0.0502

0.0506

0.050075

Average:

0.0502

0.0502

Standard Dev:

0.00034

% Std. Dev

0.6757
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Table 5.3 Machine Parameters During Forming

Part # Table Height | Force at Snug Table Height at Stop | Force at Stop
at Snug (in) | (tons) (in) (tons)

1 52.6 18 57.53 53

2 52.46 18 57.6 55

3 52.15 17 57.71 53

4 52.41 17 57.01 54

5 52.91 20 57.69 54

6 52.84 17 57.76 52

7 52.86 20 57.66 54

8 52.66 18 57.51 50

9 52.76 17 57.72 55

10 52.0 17 57.72 53

Average | 52.6 18 57.58 53.18

Standard | 0.59 1.18 0.194 1.47

Deviation

Carriage position is not listed in Table 5.3, as its value remained constant for these 10
parts. The position of the left carriage was set at 31.53”, and the position of the right
carriage was set at 31.55”. Left and right are defined according to an operator standing at
the control panel and looking at the stretch press. The next two tables list the value of
output measurements. Table 5.4 lists sheet thickness at the 9 measurement points on each
part after forming. Table 5.5 reports stretches (separation between two strain marks
originally 10” apart) and strains at the three strain measurement locations on each part.
The notation XX refers to measurements in the circumferential direction, and YY to
measurements in the axial direction. These are based on the definitions of the sheet X and
Y axes, from Figure 5.9.
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Table 5.4 Sheet Thickness After Forming.

Part # 1 2 3 4 5 6 7 8 9
1 0.0479 0.048 0.0478] 0.0469| 0.0472 0.0465 0.0487 0.0481 0.0486
2 0.0478 0.0474 0.0477( 0.0467| 0.0472| 0.0465 0.0487 0.0482| 0.0485
3 0.0473 0.0481 0.0476| 0.0466| 0.0473 0.047 0.0482 0.0485 0.0478
4 0.0474 0.0483 0.0481 0.0474 0.0471 0.0471 0.0487 0.0493 0.0483
5 0.048 0.0482| 0.0479| 0.0465 0.0476 0.047 0.0481 0.0482 0.0479
6 0.0483 0.0482 0.048 0.0474 0.0479|  0.0468 0.0488 0.0492 0.0488
7 0.0476 0.0474(  0.0475 0.0467 0.0471 0.0464 0.048 0.0483 0.0476
8 0.0475 0.0483 0.0476| 0.0473 0.0471 0.0465 0.0481 0.0485 0.0484
9 0.0474 0.0483 0.0477 0.047 0.0474f  0.0467 0.0481 0.0492 0.049
10 0.0484 0.0485 0.0479|  0.0479 0.048 0.047 0.0495 0.0481 0.0475
Average 0.04776] 0.04807| 0.04778[ 0.04704| 0.04739| 0.04675] 0.04849| 0.04856| 0.04824
Std. Dev. 0.00039| 0.00038[ 0.00019| 0.00045] 0.00033] 0.00026] 0.00047| 0.00049( 0.00051
Table 5.5 Sheet Stretches and Strains at Each Location.
Stretches: Measurement Pt. 2 Measurement Pt. 3 Measurement Pt. 1
(in inches)
Part # Top XX Top YY Left XX Left YY Right XX Right YY
3 10.906 9.750 11.156 9.750 11.063 9.719
4 11.047 9.656 11.0469 9.75 11.047 9.750
5 11.000 9.813 11.172 9.813 11.094 9.813
6 11.047 9.719 11.156 9.750 11.063 9.688
7 11.047 9.688 11.031 9.688 11.125 9.719
8 11.032 9.719 11.031 9.688 11.063 9.719
9 11.063 9.719 11.031 9.750 11.125 9.719
10 11.000 9.734 11.000 9.750 11.125 9.750
11 11.000 9.719 11.094 9.719 11.078 9.641
12 11.031 9.688 11.094 9.719 11.188 9.688
Strains: Measurement Pt. 2 Measurement Pt. 3 Measurement Pt. 1
Part # Top XX TopYY Left XX Left YY | Right XX Right YY
3 0.091 -0.025 0.116 -0.025 0.106 -0.028
4 0.105 -0.034 0.105 -0.025 0.105 -0.025
5 0.1 -0.019 0.117 -0.019 0.109 -0.019
6 0.105 -0.028 0.116 -0.025 0.106 -0.031
7 0.105 -0.031 0.103 -0.031 0.113 -0.028
8 0.103 -0.028 0.103 -0.031 0.106 -0.028
9 0.106 -0.028 0.103 -0.025 0.113 -0.028
10 0.1 -0.027 0.1 -0.025 0.113 -0.025
11 0.1 -0.028 0.109 -0.028 0.108 -0.036
12 0.103 -0.031] 0.109 -0.028 0.119 -0.031
AVG 0.102 -0.028 0.108 -0.026 0.110 -0.028
STDEV 0.0045 0.0042 0.0062 0.0037 0.0043 0.0046
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5.4.3 System Model Predictions

5.4.3.1 Nominal Values

The system model was used to predict output strains and sheet thickness. Strains were
predicted at 3 locations on each of the 10 parts, and thickness was predicted at 9 locations
on each part. The predicted strains are shown in comparison with measured strain values
in Figure 5.17. Each of the measurement points on the graph is the average of ten
measurements, one for each part.

Predicted vs. Measured Strains

Circumferential Strain

o | —— Predicted
T dl

Measurement Location

Figure 5.17: Predicted and Measured Strain Values.

The model is clearly a good predictor of the trend of the data, with predicted values offset
from the measured values by less than 6%. The bias differs from location 1 to location 3
by just over 1%. The measured and predicted values at each point are listed in Table 5.6.

Table 5.6: Measured and Predicted Strain Values.

Strain Measured Predicted Error
Location 1 0.1097 0.1034 5.74%
Location 2 0.1017 0.0957 5.9%
Location 3 0.1081 0.1006 6.94%

While the error is quite reasonable for a finite-element forming simulation, it may be due
in part to uncertainty in the input parameter values. As discussed previously, the value of
forming force read from the machine display could differ from the actual forming force
by as much as 10%. An increase in forming force of less than 5% in the system model
results in predicted values within 1% of measured values. Similarly, a decrease in the
initial material yield strength of less than 3% gives predictions that match the
measurements within 1%. It seems quite possible that the actual value of one or both of

these input parameters differed slightly from the measured value.
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Figure 5.18 shows the measured and predicted values of thickness at each of the nine
measurement locations on each part. Again, each of the predicted values on the graph is
the average of ten measurements, one per part.

0.00126
0.00124
0.00122 1=
0.0012 =
0.00118

0.00116 =
0.00114 =
0.00112

Thickness

1 2 3 4 5 6 7 8 9
Measurement Location

Figure 5.18: Predicted and Measured Thickness Values.

Figure 5.18 shows that the model follows thickness trends well from points 1 through 6;
the model under-predicts thickness at points 7, 8, and 9. Maximum error between the
predicted and measured values is just over 2%. Referring back to Figure 5.15, locations
7-9 are near the initial contact point with the die, and in the region of greatest plastic
strain. Any bias in the model will have its greatest effects in this area. The ISM predicts
greater thinning at these points than is seen in the measured data. This could be due to
the effects of slippage at the jaws or to a frictional coefficient lower than that used in the
simulation. In either case, the error at this point is less than 2%. Actual and predicted
values for thickness at each of the nine measurement points are listed in Table 5.7.

Table 5.7: Measured and Predicted Average Thickness Values.

Thickness Measured Value (m) | Predicted Value (m) %0 Error
Location 1 0.001213 0.001202 1.8
Location 2 0.001221 0.001198 22
Location 3 0.001214 0.001202 1.8
Location 4 0.001195 0.001209 0.9
Location 5 0.001204 0.001231 2.0
Location 6 0.00119 0.001209 1.5
Location 7 0.001232 0.001255 1.0
Location 8 0.001233 0.001265 1.9
Location 9 0.001225 0.001255 0.5
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5.4.3.2 Variations

As discussed in Chapter 3, a system can have multiple operating points that produce parts
with identical nominal quality characteristic values, but with different amounts of
variation. It is therefore insufficient to validate the predicted nominal output values of
the ISM; we must also establish the accuracy of the predicted variations. We can predict
end-of-line variance of a two-operation system using equation (3.32):

o 21 ~2 [ 21 [ 2]’ ~2 [ 21 [ 21 o [ 21 -
0_{72 B [F;f 71*'?*0—'?2 + F‘Zi]‘ g*%y* F;Z’“ 7(1*X|*O—(7“ * }724' G *x, % EX 7()*f|*6"71 * F;ﬁl i[*.frz*bv' * 8"3
(3.32)

For the sheet stretch-forming system, end-of-line variance can be calculated as:
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where:

g, Strain at measurement location 1

&, : Strain at measurement location 2

&, : Strain at measurement location 3

h,: Average thickness after forming (across all 9 points)
h;: Average thickness of the incoming material

Ys,: Yield strength of the incoming material

Ys: Yield strength after heat treatment and aging
f : Maximum forming force

0 : Wrap angle

¢ : Natural aging time

Equation (5.12) is a reduced version of the actual variational model used to determine the
tolerance threshold of the system. The full model contains very large sensitivity matrices
linking each input with each of the nine output thicknesses, and with 10 different strain
measurements that combine into the average output strain at each measurement location.
The values of each sensitivity term were derived from the Abagqus model through
perturbation analysis, as discussed in Chapter 3. The full sensitivity matrices are
presented in Appendix B. In order to reduce the complexity of the examples in this
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chapter, we will write equations as if there is a single thickness sensitivity term, and 3
sensitivity terms for strain (one at each measurement location). For the purposes of
example, we also neglect the error terms in each equation.

The predicted end-of-line variation predictions, obtained through use of the full
sensitivity matrices, are compared with measured output variations in Table 5.8.

Table 5.8: Measured and Predicted End-of-Line Standard Deviation.

Output Standard | Measured | Predicted Predicted Value % Error Between
Deviations Value (RSS) (Worst Case) Measured and RSS
Strain (mark 1) | .004345 006304 .009325 45.1

Strain (mark 2) | .004507 004731 .008107 4.97

Strain (mark 3) | .006241 .006614 009428 5.98

Thickness 9.82:10°m | 9.3810%m 1.29-10° m 4.48

Table 5.8 shows that the predicted values of end-of-line variation are very close to the
measured values for three of the four output variables. Only strain variation at
measurement location 1 shows significant error. Measurement locations 1 and 3 are
symmetric reflections of one another; the slightly different values of the predictions come
from machine asymmetries captured in the model. Due to this relationship, the measured
value at location 1 should be nearly identical to the measured value at location 3. Were
the measured value at location 1 equal to that at location 3, for instance, the error between
measurement and prediction would be under 1%. The discrepancy between
measurements at locations 1 and 3 indicates that the error at location 1 is likely the result
of either measurement error or some asymmetry in the machine that is not reflected in the
model.

Having generated and validated the stretch-forming ISM, we now demonstrate the
formulations developed in Chapters 3 and 4. In the following sections, we determine the
major sources of variation in the stretch forming system, develop several variation
reduction strategies, and compare these strategies in simulation. We also conduct
system-level parameter design, and calculate process limits for each operation.
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3.5 Major Sources of Variation

The second step of the variation reduction method outlined at the beginning of this
chapter is to determine the major sources of variation in the system. We can do this for
each input parameter by first measuring its variation, multiplying this value by each
relevant process sensitivity, and then dividing by the total end-of-line variation,
calculated using the Worst-Case method. For example, the percentage contribution of
forming force to strain at measurement location 1 is calculated as:

% .
oo o)
% Contribution = ~——+—— (5.13)
o

£

where o, is the measured input force variation, and o, 1s the total strain variation at
location 1, calculated using the worst-case method as follows:

dg, 0Og | |0, oe, 0s, orYs og, | | OYS
o, =\— — || ' |+t|=—]|0o, +—| Oy || o, (5.14)
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For the sheet stretch-forming system, the percentage contributions of each input to each
output are listed in Table 5.9.

Table 5.9: Major Sources of Variation in the Stretch-Forming System.

Percent Process Variables
Contribution of Heat Treatment Stretch Forming
Inputs to End-of- | Intitial Aging Forming Wrap Initial
line Variation Yield Time Force Angle Thickness
Strength
.| Strain (1) | 16 233 49.7 7 10.6
=
-Z[ Strain (2) | 183 26.3 35.7 35 16.2
Q
g 2 *g Strain (3) | 12.1 17.5 58.2 9 11.3
= 3| Thickness | 6.2 88 187 4 65.9
oNOA®

Table 5.9 clearly shows that process parameters are the major sources of strain variation.
Forming force variation has the largest effect, followed by variation in aging time. The
third process parameter, wrap angle, has a very small effect. Variations in the incoming
material are responsible for 20-30% of end-of-line variation. This implies that the most
effective means of reducing strain variation are process changes, rather than
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improvements in the stock material. Each operation has a significant impact on end-of-
line variation. Thickness variation is just the opposite. The major source of end-of-line
thickness variation is the thickness variation of the incoming material. This is followed
by variation in the forming force. The heat treatment operation only causes about 15% of
final thickness variation, and the effect of wrap angle variation is very small. These
results indicate that the best way to decrease end-of-line thickness variation is to specify
and purchase stock material with tighter thickness tolerances.

5.6 System-Level Robustness

Now that we have identified the major sources of variation in the system, we seek to
reduce output sensitivity to these input variations. As discussed in section 3.9, the ISM
can be used to conduct system-level parameter design, in order to find the operating point
producing lowest end-of-line variation. In Chapter 3, we presented the following
formulation for system-level parameter design:

min H‘ﬁ = [F:,c‘-,lz]* 5, * [Ff,iz]*&iz + [Fi,irz]*a'ﬁ T+E,
s.t. m—8<qG, <m+6,q, =F(%,§,,,
~ CII ( q/ 1 p) (343)
over p,eP
where X,,6; .6, £, are constant over P
where m is the vector of end-of-line targets, and & is some acceptable deviation from
that target such that:
s<l
3
This ensures that the quality characteristic values of the produced parts will be within
their toleranced values. The formulation of (3.43) can be executed within the Microsoft
FExcel spreadsheet environment containing the ISM. We seek to minimize a vector norm
of output variables:
2
\/ ‘0 +o 4o, (5.15)

For this example, we consider 4 output variables: strain variation at the three
measurement locations (o, .0, ,0, ), and average thickness variation, g, - The system

has a total of 5 input variables: initial yield strength, Vs, , aging time, ¢, forming force,

S, wrap angle, €, and initial thickness, %,. Three of these inputs are adjustable
parameters: aging time, forming force, and wrap angle.
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These adjustable variables are limited to the following ranges:

15 min <¢ <45 min

200 KN < f <275 KN

80° <0 <90°

The lower bound on aging time is 15 minutes, which is the minimum practical time out of
freezer required to form a part. The upper limit is set at 45 minutes, which is the
maximum usually seen in practice, although it is feasible that the parts could be allowed
to age even longer. Force is bounded over a range of values slightly larger than the 3¢
range seen in practice. All parts formed with force values within this range in the plant
were judged acceptable. Similarly, the bounds on the wrap angle contain the range of
values used to manufacture acceptable parts in practice.

We also need output target values and tolerances, in order to limit the number of possible
operating points. Actual specifications were not available for this part, and would not
have been prescribed for strains in practice. For the purposes of this example, we dictate
an end-of-line nominal target strain value of 0.1, with a tolerance of +0.02. These values
are based upon the range of strains measured on acceptable production parts. We also
prescribe the minimum allowable output thickness to be 0.045”, which is 90% of the
stock thickness. This value is based on standard aerospace tolerances.

We define the system operating point by the values of the three adjustable variables:
aging time, forming force, and wrap angle. The original operating point is:

t =24 min
S =2384128 N
0 =86
which results in an output norm value of:
|5, || =0.0103
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In this example, we use the Microsoft Excel solver (a Generalized Reduced Gradient
search algorithm) to minimize this norm, subject to the constraints outlined above. We
first assume that:

o0=0

which constrains the predicted nominal output values to be identical to the target output
values. Using the formulation in (3.43), the solver suggests a slightly more robust
operating point with an output norm value:

=0.00992

|

9,
This operating point is defined by:

t =15 min
f=2361469 N

6 =83°

At this point, end-of-line variation is reduced by 4%, with no change in the target output
values. The new operating point requires nominal aging time to decrease by 9 minutes.
For this to be feasible, the operators must remove and form each part from the freezer
individually. This requires additional effort on their part, but is relatively easy to
implement. In addition, forming force must decrease by 1% (about 0.5 tons), and wrap
angle must decrease by 3%. Both of these changes are minor, and can be implemented
by the operator controlling the stretch press with no additional effort.

By allowing some deviation from the original target specifications, we can reduce end-of-

line variation even more. If we constrain the nominal output values to remain within 3o
of the original tolerance limits:

0= —g’— =0.0067

the solver finds an improved norm value of:

=0.00784

0-17,‘
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at the operating point defined by:

t =15 min

f=225210.6 N

6 =83

At this operating point, end-of-line variation is reduced by 24% of its original value.
This operating point differs from the previous one only in that forming force has now
been reduced to 95% of its original value. This change is easy to implement in practice
and requires no additional effort from the operator. Although the nominal values of the
output quality characteristics have shifted from the original target values, they will still
meet tolerances with a 99.7% probability. The nominal values of strain and thickness at
these settings are shown in Table 5.10.

k3

Table 5.10: Predicted Strain and Thickness After Parameter Design

Variable Nominal Value Variation
Strain at Location 1 0.1035 0.0042
Strain at Location 2 0.0933 0.0053
Strain at Location 3 0.0984 0.0040
Thickness 0.001224 m 9.34-10° m

The nominal strain values shown in Figure 5.10 are reasonable, based on our
measurements of acceptable production parts. Note that in this example, we
simultaneously changed the operating points of two different operations in order to get
the lowest end-of-line variation. This can be more effective than considering each
operation separately. Had we followed the latter approach, aging time in the heat
treatment operation would have remained fixed since aging time sensitivity is a constant.
As such, we would have attempted to optimize the stretch forming operation based on an
input nominal aging time of 24 minutes. Using this value, the Excel solver suggests a
new operating point defined by:

f=2322308 N
and
6 =80°
The output norm value at this operating point is:

=0.00884
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This is a 14% reduction in variation over the original settings, significantly less than the
24% improvement gained by considering the entire system. As shown by this example,
system-level parameter design can be a highly effective variation reduction technique. In
some situations, however, additional improvement is desired. In the following sections
we consider the use of measurement and process control to reduce end-of-line variation.
To prevent confusion, we will evaluate the system at the original operating point, not the
more robust point found in this section.

5.7 Tolerance Threshold

The next step in our variation reduction method is to evaluate whether there is a need for
measurement or process control in a system. To do this, we compare the Tolerance
Threshold values of each operation with the process limits. In this section we determine
the Threshold of the heat treatment operation.

As discussed in section 3.5, the Tolerance Threshold of an operation represents the
minimum process variation inherent in that operation. Table 5.8 lists the predicted
Threshold values for the example system, along with measured values of process
variation. We can also calculate the Tolerance Threshold of the heat treatment operation
alone, using either the Worst-Case stackup method:

7, =6[E].,

or the RSS method:

72 —36[ 1 [q[ 171*.* I, +365) + &,

‘1 2

The output for this operation is material yield strength after aging, a quantity that cannot
be measured in-process. Our model of heat treatment involves a single input process
parameter, aging time, and one input material property, initial yield strength. Since the
heat treatment operation is modeled as a closed-form equation in the region of interest,
the heat treatment sensitivities can be represented analytically as:

% =0.3469
ot
and
0Ys _1
OYs
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Equations (3.14) and (3.15) can then be re-written as:

oYs OYs
T, =0|—| o, +|—| T.. +60. 5.16
" {at } ’ Ham } e (160
and
ovs T ovs |
rf‘.:36{—s ol +| =2 17 + 3602 (5.17)
' ot | oYs, |,

Substituting the measured variations for both &, and for Ty, (which properly speaking is a

tolerance on the incoming material, but for our purposes will be identical to the known
input variation of the incoming material) into equations (5.16) and (5.17) gives:

7, =6-(0.3469) (5)+(1.2) + 60, (5.18)
and
7, =360.3469)" - (5)° +(1.2)* + 360 (5.19)

If we neglect the error terms, the Tolerance Threshold value calculated by the Worst-case
method 1s:

7y, =11.61 MPa
And the Threshold value using the RSS method is:

7y, =10.48 MPa

These values are the minimum levels of 66 process variation inherent in the heat
treatment operation. Any feasible tolerance on output yield strength must be larger than
these values. In the following section we calculate process limits for the heat treatment
operation and compare them with these Threshold values.
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5.8 Process Limits

As discussed in Chapter 4, process limits can be used to identify the need for
measurement or process control within a system. We now derive process limits for the
heat treatment and stretch forming operations, based upon a set of end-of-line tolerances.
The problem of determining process limits can be formulated as:

max HWZ,“
st |Fall . A<T-K
SRR (5.20)
over A, z6
where K :6”Fuf L? . 2 +66. +§“

Equation (5.20) is a straightforward Linear Programming (LP) problem, and can be
solved using traditional LP techniques. In this section, we first determine the process
limits of the stretch-forming operation by back-propagating end-of-line tolerances. We
then use the stretch-forming process limits to generate process limits for the heat
treatment operation.

5.8.1 Stretch-Forming Process Limits
Process limit analysis begins with the last operation in the manufacturing system. In our

two-operation example system, this is the stretch-forming operation. The inputs and
outputs of this operation are shown in schematic form in Figure 5.19.

Stretch Output Quality ¢,
Formin 54 Characteristics

«Strains

«Thickness
Process Parameters X
*Forming Force
*Wrap Angle

Material (?1 —Pp

*Yield Strength
*Thickness

Figure 5.19: Stretch Forming Inputs and Outputs

The output quality characteristics of the stretch-forming operation are also the end-of-line
quality characteristics of the system. End-of-line tolerances are thus constraints on
strains and final thickness. In practice, it is unlikely that strains would be toleranced;
some other criterion would be used to evaluate contour. FFor the purpose of this example,
however, we will dictate specifications on strain based on measurements of production
parts.
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As shown in Figure 5.19, the vector of process parameters, X, is composed of two
variables: forming force and wrap angle. The vector of incoming material characteristics,
g, , also includes two variables: yield strength, and thickness. The output vector g,

contains four variables: strain at three measurement locations, and average output
thickness. These vectors can be written as:

&
| F B Ys g
x:{ﬁ} qlz[h’} %—83
h

Using these input and output vectors, the LP formulation of (5.20) can be re-written for
this example. The process vector K (defined in section 4.1) will be:

of 00
oe, Os,
v_c O 00|10
K—6-% o5 |lo, (5.21)
of 06
oh,  Oh
of 00
and the constraint on allowable input tolerances (4.2) is:
08 08 % 08
0Ys oh of 06
or, 05| (L) oe o
oYs  oh,| | |, of 80| o,
LN A N P = (22
dYs oh , of 06
oh, ©oh, ' oh, ©oh,
o0Ys oh of 06
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The full LP problem can then be restated as:

max 1, +1,

dg, Og de,  0Og

aYs  oh, of 06

de, 0e, T, ds, 0e,
ot ors on| A _T|_lof 00|,
; Oc, 08y A, Iz, 9g, 94| o 0

oYs oh T of 00

oh, o, ' oh, oh,

oYs oh of 00

over T1,.,7, 26

In order to solve this problem, we must consider two issues of dimension. The first
involves the dimensions of the sensitivity matrices themselves. While the sensitivity
terms in equation (5.23) represent the required relationships between outputs and inputs,
the full sensitivity matrices contained in the ISM include 10 different strain terms at each
of the three strain measurement locations, and 9 different thickness terms, one for each
thickness measurement location. The full sensitivity matrices are thus significantly larger
than the 4x2 matrices above. For the purposes of clarity, we will simplify this example
by using average sensitivities for both strain and thickness in the matrices of (5.23). The
value of the sensitivity term:

oh,
0Ys

in equation (5.23) will thus be the average of 9 different values, each of which relates one
thickness measurement location to the incoming yield strength. The strain sensitivities
will be handled in the same way.

The second dimensional issue involves the fact that the two input variables, yield strength
and thickness, have values that are different orders of magnitude. This generates a
feasible tolerance space that is very wide along one axis, and very narrow along another.
This situation is represented in Figure 5.20.
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Figure 5.20: Feasible Space (not to scale).

In a case like this, the choice of & , the minimum allowable input tolerances, is very
important, since one component of the vector will be an active constraint, determining the
size of the tolerancing polytope in the feasible region. In this example, the minimum
tolerance on thickness will be active, and will determine the allowable tolerance on yield
strength. The minimum allowable tolerance constraint could be replaced in the problem
formulation by a constraint linking the two input variables as follows:

Wy - 4,

1,

| =WnAd, ==, A

In the case of the stretch-forming system, these weightings would be arbitrary, so we use
a minimum allowable input tolerance instead. According to (Parris 1996) the standard
material acquisition tolerance for sheet metal in the aerospace industry allows for a
variation of up to £ 5% of the mean value. He states further that a variation of 2% of
the mean value is common in practice. Both of these cases will be considered in this
example.

We also need output target values and to determine process limits. As discussed
previously, actual specifications were not available for this part. Based on measurements
of acceptable production parts, we prescribe an end-of-line nominal target strain value of
0.1, with a tolerance of £0.02. We also dictate the minimum allowable output thickness
tolerance to be +10% of the mean value of stock material thickness.

We used the commercial software package LINDO, to evaluate the LP problem

formulated above. The results show that the tolerance on input thickness was the active
constraint. Process limits for the two cases evaluated are shown in Table 5.11.
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Table 5.11: Process Limit Values for the Stretch-Forming Operation.

Minimum Input Thickness Maximum Allowable Input
Tolerance (%) Yield Strength Variation (o)
+2 3.04 MPa

+5 1.46 MPa

The second column of Table 5.11 lists process limits for the stretch forming operation.
These values prescribe the maximum allowable variation on the yield strength of
workpieces entering the stretch forming operation, in order to ensure that 99.7% of these
parts are capable of meeting end-of-line specifications. We can compare these values to
the Tolerance Threshold values of the heat treatment operation, calculated in the previous
section. If we assume an input thickness tolerance of +2%, the Tolerance Threshold
value is smaller than the process limit, indicating that the process needs no additional
variation reduction. If, however, we assume an input thickness tolerance of +5%, the
Tolerance Threshold value is larger than the process limit. The implications of this result
will become apparent in the next section.

5.8.2 Heat Treatment Process Limits

Once process limits have been calculated for one operation in a system, they can be used
to determine limits values for the preceding operation. Having determined the process
limits for the stretch forming operation, we can now apply the same methods to the heat
treatment operation, in order to determine the maximum acceptable input variations for
the stretch-forming system. As shown in Figure 5.21, the heat treatment operation has
two input parameters, initial yield strength and aging time, and one output parameter,
final yield strength.

~ Heat -
Material ¢, —p > Output Quality ¢,

-Yield Strength T?‘@lement Characteristics

*Yicld Strength

Process Parameters X
*Aging Time

Figure 5.21: Heat Treatment Inputs and Outputs.
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Since there is only one output parameter in this operation, we do not need to solve a
linear programming problem. We can write the process limit constraint as:

OYs

oFs 61285
0Ys,

, Jo| (5.24)

V| < (1]

This equation can be solved using the known value of the aging time variation, o,, and

the maximum allowable tolerance on output yield strength, 7, . The latter quantity is

also the allowable input tolerance for stretch forming, calculated in the previous section.
For each of the two cases of allowable thickness variation, the maximum allowable input
yield strength to the heat treatment operation is listed in Table 5.12.

Table 5.12: Process Limits for the Heat Treatment Operation.

Maximum Allowable Maximum Allowable Input
Material Thickness Yield Strength Variation (o)
Variation

0.002” 1.31 MPa

0.005” Not Feasible

As shown by the results in Table 5.12, it is impossible to ensure that at least 99.7% of the
final parts will meet end-of-line specifications when incoming material thickness varies
by up to + 5% of the specified nominal value. If, on the other hand, stock thickness
variation is restricted to & 2 % of its nominal value and the standard deviation of stock
yield strength is less than 1.31 Mpa, it is feasible for 99.7% of parts to meet end-of-line
specifications. Note that meeting both of these conditions does not guarantee that 99.7%
of parts will meet end-of-line specifications, because the inputs to successive processes
could exceed their process limits. To ensure that 99.7% of final parts do meet end-of-line
tolerances, input variation must fall within process limit values for every operation within
the system.

In addition to prescribing the maximum acceptable input tolerances for an operation,
process limit analysis is a means of determining where the use of process control is
needed in a system. In the preceding example, process limit analysis for the case in
which thickness varied by + 5% of nominal showed that there is no feasible input yield
strength value that enables 99.7% of parts to meet end-of-line specifications. This
implies that the manufacturer should specify and purchase material with a tighter
thickness tolerance, to reduce rework and scrap. In some situations, however, it may be
infeasible to acquire different material due to cost or availability. In this situation, the
process limit analysis shows that some form of process control is necessary on this
operation, to guarantee end-of-line quality.

The back propagation of process limits through systems with multiple operations
highlights those operations that require some form of process control. The effects of
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control can be incorporated into the system model, allowing calculation of process limit
values for the controlled system. In this way, we can determine whether the proposed
change is sufficient to ensure end-of-line quality, or whether an alternate control strategy
is more effective. The effects of process control on system variation are discussed in the
following section.

5.9 Process Control Strategies

In this section, we discuss the use of process control to reduce end-of-line variation in
manufacturing systems. We previously illustrated the use of process limit analysis in
determining which operations in a system need control, to ensure that final products meet
end-of-line specifications. Process control can also be used in systems where the final
product is within specifications. As discussed in Chapter 2, Taguchi claims that even if
every part produced meets target specifications, there is still the potential for quality loss
in the system (Phadke 1989). Within this framework, any reduction in product variation
also reduces quality loss. In accordance with the variation reduction methodology
outlined at the beginning of this chapter, we now formulate and evaluate several variation
reduction strategies for the sheet stretch-forming system.

The first step in developing a variation reduction strategy is to identify the major sources
of variation in the system. In Section 5.5, we used the ISM to generate a table (5.9)
listing the percentage contribution of each input to end-of-line strain and thickness
variation. This table is reproduced below.

Table 5.9: Major Sources of Variation in the Stretch-Forming System.

Percent Contribution | Process Variables
;)_f Inputs to End-of- " o Ty catment Stretch Forming
ine Variation Intitial Aging Maximum Wrap Initial
Yield Time Force Angle Thickness
Strength
.| Strain (1) |16 23.3 49.7 7 10.3
-
= = f‘é Strain (2) | 183 26.3 35.7 35 16.2
83 5/ Strain(3) |12.1 17.5 58.2 9 11.3
= D
& & C[ Thickness | 62 38 187 4 659

As discussed in Section 5.5, Table 5.9 clearly shows that process parameters are the
major sources of strain variation. Forming force variation has the largest effect, followed
by variation in aging time. The major source of end-of-line thickness variation, on the
other hand, is the thickness variation of the incoming material. This is followed by
variation in the forming force. For the purposes of example, we will only focus on
reducing end-of-line strain variation in this chapter. If desired, we could also consider
process control strategies that would reduce thickness variation.
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We consider three broad categories of process control: source reduction, feedback
control, and feed-forward control. Source reduction involves making a change to the
process, in order to directly reduce the variation of a given input parameter. This is a
passive form of control, involving no measurements or compensation. In feedback
control, the value of an input parameter is measured in real-time, to ensure that a desired
value is reached, and to limit variation around this value. Feed-forward control involves
measuring an input to an operation, and using this value to determine the setting for a
process parameter in that operation.

For the sheet stretch-forming system, we consider the following variants on these
strategies:

1) Source Control: One option is to utilize a form of Source Control by standardizing
aging time in heat treatment. Natural aging time is the second largest contributor to
end-of-line variation in this system. The variation in aging time is unnecessary; it is a
function of both shop-floor practice and a lack of knowledge about the effects of
aging time. This variation could be virtually eliminated by specifying that each part
be removed from the freezer and formed individually. This would eliminate the
varying waiting time between parts that have been removed from the freezer prior to
processing.

2) Feedback Control: Another possibility is to implement a form of feedback control on
this system, by forming each part to a preset maximum force. As variation in forming
force is such a large component of the end-of-line variation, it is likely that forming
each part to a given force value will reduce the final variation. This does not account
for the effects of material yield strength variations due to aging time, but should still
improve the process. This mode of operation is known as Force Control.

3) Feed-forward Control: We can also consider a system-level control strategy, which
involves feed-forward control across operations. This method involves measuring an
input parameter in one operation (aging time in heat treatment) and using it to set
another input parameter in a successive operation (force in stretch forming). Feed-
forward control removes the need to control aging time variation; the operators are
free to take as much time as they wish, provided the time is measured.

Although the numbers in Table 5.9 imply that force control will be the most effective
strategy for the stretch-forming system, the feed-forward implementation is more likely
to show significant results in practice. Although we have discussed the practice of
removing three or four parts from the freezer and forming them sequentially, the
production measurements and model predictions in this chapter are based on parts being
removed and formed individually. As such, the effects of aging time variation reflected
in Table 5.9 are limited. We can simulate standard practice by changing the nominal
aging time and variation in the model to reflect a batch of four parts. As each part takes
approximately 15 minutes to manufacture, we assume that the first part is out of the
freezer for 15 minutes, the second for 30 minutes, the third for 45 minutes, and the fourth
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for 60 minutes. Using the mean and standard deviation of these values, the new relative
contributions of each input parameter are as shown in Table 5.13.

Table 5.13: Major Sources of Variation During Standard Forming.

Percent Contribution
of Inputs to End-of-

Process Variables

Heat Treatment

Stretch Forming

line Vasiation Intiial | Aging | Maximum | Wrap Initial
Yield Time Force Angle Thickness
Strength

- Strain (1) | 11.4 424 37.7 S 8
_ 2[ Strain ) | 127 474 257 25 117
= 8
%‘Tg _E’ Strain (3) | 8.9 33.2 47.8 i 9.3
O &/ U| Thickness | 5.3 19.6 16.6 58.3

Table 5.13 shows that variation in aging time is more significant than variation in force,
in contributing to end-of-line strain variation under standard forming conditions. Feed-
forward control of the aging time is thus likely to be more effective than force control for
reducing strain variation. In this section, we use the ISM to compare both of these
strategies. We first use the analytical expressions developed for feed-forward process
control in Section 4.2.1, to predict end-of-line strain variation in a controlled system. We
then verify these results with numerical simulation on the ISM. We also simulate the
effect of several feedback control strategies on end-of-line variation for comparison.

5.9.1 Analytic Approach to Feed-Forward

In this section, we apply the analytical expressions derived for feed-forward process
control in Section 4.2.1 to the sheet stretch-forming system model. The feed-forward
loop in this example consists of a measurement of part aging time during heat treatment,
which is then used to set the maximum force during stretch-forming. This approach is

illustrated in schematic form in Figure 5.22.

—
Yield Strength Heat Treatment
Thickness . 5
Aging Time

Figure 5.22: Inter-operation Feed-forward Control.
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In Chapter 4, we presented a generalized schematic of a feed-forward process control
implementation for a “controlled operation”, as shown in Figure 4.5. In this
representation, the output of a previous operation and/or the fixed process parameters of
the controlled operation are measured and used to change the setting of an adjustable
process parameter in the controlled operation.

pi,ref
Figure 4.5: Feed-Forward Control Loop.

The example in this section is slightly different, in that we measure a process parameter
from a previous operation and use the measurement to estimate the value of one of the
outputs from that operation. The estimated value is then used to determine the value of
an adjustable process parameter in the controlled operation. This inter-operation feed-
forward implementation is shown in schematic form in Figure 5.23.

gl

Vs - Stretch | |g
Forming ,

4 | y

T
fref

Figure 5.23: Inter-Operation Feed-Forward Control.

In Figure 5.23, the feed-forward implementation has a single input variable, aging time ¢,
which is used as an estimator of the yield strength, Ys. There is also a single control
variable, force f.
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We can write a simple model of system response based on these two variables as:

g, |

g o o

é g]* [22) ¢,

& _1&| | of o
=| L+ -Af +

£ |eFoe |V 2

h Lo o

f h./ ah/ ah/

| Larl

%T

LAl (5.25)

Grouping terms and then dividing through will provide the required adjustable variable
change Af. If we assume that the operation is on target, this required adjustment is:

of
of

of
oh,

05, |
28,

92,
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%4, |
ot
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Of | Ar

ot
oh

(5.26)

As discussed previously, the inverse matrix in (5.26) is actually a generalized inverse:

Fr =W F(Fw )

(4.18)

Since there is only one process parameter in this example, the weighting matrix /¥ has a
single, unitary value. The second sensitivity matrix in (5.26), relating the output
variables of the stretch forming operation to the input variable of the heat treatment
operation, is obtained from the sensitivity matrices for each operation via the chain rule:

0a ] [ 0g | [8Ys]
ot 0Ys or
95| 195 || s
or |_|aYs| | a
2, |7| 0e, ||| o¥s
ot 0Ys ot
Gh_, 6h/ oYs
Lor | LoYs] L ot |
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As per the discussion in Section 5.8.1, we use averaged process sensitivity values in order
to simplify the example. A full listing of process sensitivity values is presented in
Appendix B. Substituting the averaged values into equation (5.26) gives:

Af =570752 . A (5.28)

min

Equation (5.28) is the simple feed-forward rule for this system. This does not account for
any errors in measurement or in actuation. If we include both errors and assume that they
behave as random variables with normal distributions, equation (4.21) allows
determination of the output variation of the controlled operation:

o2 =[F2); 62 +[F2]62 +[F2] 62 +[F2] 62 @21)

In this example, equation (4.21) can be written as:

oe. 2 e I ) oe I oe, e 5
it Yeor P g | g, Og
|2 o 3 oYs, on 00
0';. 0¢y 0¢, de, oe, de, Os,
O, _|of » | Of 2 ot » |0Ys, ) oh, 06 O’Z
O'Fi B 553 o, + in o, + 56‘3 ‘o, + o, Oy, t 683 583 . O—; (5.29)
gy, of of ot 0Ys, oh, 00
of of ot oYs, Y,

The powers of 2 on each sensitivity matrix in equation (5.29) indicate that each value
within the matrices should be squared. Note that o, is actuation error, o,,1s error in the

control model, and o, is error in the aging time measurement. The variance terms

a,fi and O'j represent random variation of thickness and wrap angle, since these variables
are not being controlled. For the purposes of this example, actuation error is estimated to
be + 0.1 tons, which is reasonable if the machine is being controlled manually. This
translates to a standard deviation of the actuation error of o,=1485 N. Measurement

error is estimated at = 30 seconds, to account for the fact that the operators will be
simultaneously moving the stock material, setting up the machine, and running the timer.

This results in a standard deviation for the measurement error of &, =10s.

Evaluating the effects of modeling error is complicated. For the purposes of this analysis,
we assume that modeling error is a random variable with a normal distribution. The
nominal value of this random variable is centered on the force correction value predicted
by equation (5.28), and the standard deviation of the distribution is a percentage of this
nominal value. This representation assumes no bias. The standard deviation of a model
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with 10% error will be 3.33% of the nominal value; this model is assumed to predict
values within +10% of the correct value, 99.7% of the time. A better estimator of
modeling error might be a uniform distribution. In this case, we assume that the model
prediction has an equal chance of being anywhere within £n% of the correct value. In
this chapter, we will use Monte Carlo simulation to compare use of the normal
distribution with use of the uniform distribution.

We use equation (5.29) to predict the controlled end-of-line variation for the example
system. From equation (5.28), the maximum force correction needed to account for
aging time variation (which has a standard deviation of 5 minutes) is 8,561 N. We
consider three cases of modeling error in the controlled system:

Case 1: No modeling error
Case 2: Modeling error of £10%
Case 3: Modeling error of +50%

The input values for each of the three cases are listed in Table 5.14.

Table 5.14: Input Values for Feed-Forward Control Analysis.

Error Type Range 1 o Value
Actuation Error + 0.1 tons 296.5 N
Measurement Error + 30 seconds 10 seconds
Modeling Error (case 1) 0 0
Modeling Error (case 2) + 10% 2854 N
Modeling Error (case 3) + 50% 14269 N
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Substituting the values from Table 5.14 back into equation (5.29) gives:

Where the value of modeling error, o
variations are shown in Table 5.15.

L

ol| [7.915267 79152E7[ — 00142/’
ol| | 5.05E77 5.05E7 —.00142
2= 09357 -(296.5)" + 0935 ol + 00107 -(1.2)°
o, . . -.
;| |-3.83E7" ~3.83E7" 7.05E” 530
— 0005 |* 130048 8.95E° |’
) —.0005 .(167)2;177.155 —423E7"| |(8.62E°)
—.00037 -139.205 1.18£* (78)°
245E7" 1.04 6.7E

differs for each case. The predicted end-of-line

Table 5.15: Predicted Variation in a System with Feed-Forward Control.

Standard Deviation | Case 1 (6,=0) Case 2 (6= £10% ) | Case 3 (om=£50% )
o, (Strain 1) 0.002056 0.002068 0.002346

o, (Strain 2) 0.002318 0.002322 0.002427

o, (Strain3) 0.001782 0.001801 0.002216

o, (Thickness) 9.007-10° m 9.007-10° m 9.023-10° m

The values in Table 5.15 are compared to the case of no control in Table 5.16.

Table 5.16: Predicted Improvement With Feed-Forward Control.

No Predicted Case 1 Predicted Case 2 Predicted Case 3
Control Improvement Improvement Improvement
Strain 1 0.006304 | 67% 67% 63%
Strain 2 0.004731 | 51% 51% 49%
Strain 3 0.006241 | 71% 71% 64%
Thickness | 9.38-10° | 4% 4% 3.8%

This analysis shows that feed-forward control has a significant effect in reducing strain
variation, even in the presence of modeling error. With a perfect model, the analysis
predicts that end-of-line strain variation is reduced by 51% at the center of the sheet, and
by 67%-71% towards the edges. With a modeling error of 50%, strain variation at the
center of the sheet is still reduced by almost 50%, and variation at the edges drops by
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64%. As we will show later in this chapter, use of the normal distribution to evaluate the
effects of modeling error is less conservative than use of a uniform distribution.

This process control strategy has a small effect on thickness variation. This makes sense
in light of the relatively small contribution of force variation to thickness variation in
Table 5.9. We would have to formulate a different strategy in order to improve this

quality characteristic as well.

Having demonstrated that feed-forward control is a viable strategy for reducing strain
variation, we can calculate the maximum process variation that can be controlled with

this method. In Chapter 4, this problem was formulated as:

max l

O-(ilfl H

q

se. [7 Lo, =3[ Lap -1n)s,

over p,eP,

~ ~ (4.23)
- - N . - — pl,max - pi‘min
Where Apl = (pi,min - p/) lj‘ (pi,min - pl) < 42“
Ap; = (P, nax — P;) Otherwise
&, 1s constant over P
For this example, the constraint in equation (4.23) can be re-written as:
9¢, o8, 9¢  0g
0Ys, of oh, 06
o€, os, dg, 0Og,
o¥s,| . 1 |of oh, 00| o,
de, O-Y.s‘—g. e, Af+§_‘5_ ai -, (5.31)
0Ys, of oh, 00
ot oh, oh,  oh,
0Ys, of oh, 06
Substituting the sensitivity values into this equation gives:
0.00142 7.92-107 —-130.05 8.95-107
0.00142 1 |5.05-107 ~177.16 -423-107" 8.62-10°°
Oy, =% LA - e (5.32)
0.00107 | & 3 19.23-10 —139.21 1.18-10° 0.78
7.05-107 -3.83-10"° 1.04 6.7-107°
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We now need to limit the range of acceptable values for the adjustable input parameter, /.
This variable is loosely bounded in practice, since the forming force on the stretch press
can be set to a very wide range of values. For this example, we limit the range of fto
125000 N (2.8 tons), a range of values known to produce acceptable parts in practice.
Solving (4.23) using this range and the constraint (5.32) leads to a controllable input
range of +4.37 MPa.

We can also determine both the probability density function of the controlled operation
and the new, controlled, output variation, by using equation (4.24) developed by
(Soyucayli and Otto 1998):

2 _ a2, |2
O-Y.\‘_m'w = Ay + O-)’.v_ultl -2 ;O-Y‘s'_uldAy (424)

The output range, A, in equation (4.24) can be written as:

05,
of
Ag | \og, 7.92E7 0.0396
Agy| |of| . | 5.05E7 0.0253
2| I pp = (50000 V) = (5.33)
Agy| [985 9.23E" 0.0462
Ah,| |9 ~3.83E7" 1.92:107
U lon,
of

In equation (5.33), we again use the +25000 N range for the controllable variable f. The
variation we wish to adjust out, o, ., is the result of fluctuations in aging time:

2

2,
3w s| om, 0.0005 | 0.0025
ayz i s _ aat o7 0.0005 (5" = 0.0025 534
Cre ot | |OF3 0.0004 0.002
Ty ot h 85}2 2.44E7 1.22E°

ot
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We can substitute the values of A and o, ,, into a multivariate form of equation
(4.24), as follows:

Oy, - ©10.0396] |0.0025[ 0.0025] [0.0396| [0.00142
Oy sy _[0.0253 . 0.0025| \E [0.0025| 10.0253| _10.00055 (5.35)
Oy .| |0.0462 0.002 7 | 0.002 | [0.0462| | 0.002
Oy n| [L92E7| [1.22E°° 1.22E°| 1.92E7 [B.33E7"°
Equation (5.35) can be reduced to:
Oy .| | 0.037
Oy , 0.023
e (5.36)
Oy .| | 0.044
oy 4| [1.82E7

Equation (5.36) lists the predicted values of yield strength variation in the heat treatment
operation caused by variation in the aging time. These values can now be used in the
system model along with a reduced value of force variation (since force is now being set
to a predetermined value based on aging time), in order to determine the controlled end-
of-line variation. If we assume that force variation will have a standard deviation of
6=1000 N (based on non-repeatability inherent in manual control of the stretch press) and
use the controlled yield strength variations from (5.36), the ISM predicts the end-of-line
variations listed in Table 5.17.

Table 5.17: Predicted Variation in a System with Feed-Forward Control.

Output Quality Characteristic Standard Deviation
Strain (Location 1) 0.002193
Strain (Location 2) 0.002345
Strain (Location 3) 0.001977
Thickness 8.91E° m

The values of controlled end-of-line variation predicted using equation (4.24) are
somewhat larger than those calculated from equation (5.30). This is due to the fact that
the method using (4.24) incorporates limits on the force adjustment.

5.9.2 Numerical Simulation of Variation Propagation
In this section, we use Monte Carlo simulation on the ISM to numerically evaluate the
effects of process control on end-of-line variation. Numerical simulation can be used to

model situations that are too complex for analytical methods. We first predict end-of-line
variation using feed-forward process control, assuming that modeling error follows either
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a normal or a uniform distribution. We then compare several different types of feedback
process control, including Force Control, Strain Control, and Part-to-Part Feedback.

Feed-Forward Control

The linearized spreadsheet-based system model discussed in section 5.3.3 can be used for
numerical simulation. A technique such as Monte Carlo analysis can be used to simulate
the production of hundreds of parts, and to predict quality characteristic nominal values
and variation. Use of the linearized models reduces computational intensity, allowing for
very rapid calculation of the outcome of each trial.

We used the Monte Carlo technique to both verify the analytical results derived in the
previous section, and to investigate control strategies that cannot be expressed in simple
analytic terms. Monte Carlo simulations of the system were conducted through the use of
the commercial software package Crystal Ball, which works within the Microsoft Excel
environment. Each input parameter to the system was assumed to be a random variable
with a normal distribution. The nominal values and standard deviations of these variables
were set to their measured values. We chose four output variables: strain at each
measurement location, and average thickness across the sheet. All Monte Carlo
simulations consisted of 1500 trials, except where specifically noted. Numerical
simulation allowed for two refinements over the analytical approach of the previous
sections: varying sensitivities, and non-normal distributions. The closed-form analytical
expressions outlined in Chapters 3 and 4 require a constant value for each sensitivity
term, and are only applicable to random variables with normal distributions. As
discussed previously, the sensitivity values are dependent on the system operating point,
and change with any changes in input parameter values. In addition, modeling error may
be more accurately represented as a uniform, rather than normal distribution. In this
section, we use Monte Carlo simulation to consider these various cases.

Table 5.18 lists the predicted end-of-line variations obtained through Monte Carlo
analysis, using constant sensitivity terms and a normal distribution of modeling error.
We present values for the uncontrolled system, as well as for the three cases of feed-
forward process control evaluated in Section 5.9.1.

Table 5.18: Output Standard Deviations With Constant Sensitivity Terms.

Output Variable | Analytical | No Control | Feed-Forward | Feed-Forward | Feed-Forward (50%
(no modeling | (10% modeling | modeling error)
€ITor) error)

Strain (Mark 1) | 0.006304 0.006120 0.00199 0.002001 0.002238

Strain (Mark 2) | 0.004731 0.004671 0.002443 0.002477 0.002544

Strain (Mark 3) | 0.006614 0.006515 0.001929 0.001977 0.00228

Thickness 9.3810°m |9.3510°m |8.67-10°m | 9.036:10°m | 9.04-10°m

As would be expected, the results of the Monte Carlo simulation are in close accord with
the analytical results calculated previously. The values obtained through numerical
simulation are 2-5% lower than the analytically derived values, but the effect of adding
various levels of modeling error remains the same.
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Table 5.19 lists the end-of-line variations calculated from the results of a Monte Carlo
simulation using process sensitivity terms that vary with changes in the input parameter
values. The values of these sensitivities are derived from quadratic polynomials, which
have been fit to the output of the full finite-element model, with a least squares fitting

coefficient R>0.99.

Table 5.19: Output Standard Deviations With Varying Sensitivities.

Output Analytical | No Control | Feed-Forward | Feed-Forward Feed-Forward

Variable (no modeling | (10% modeling | (50% modeling
€ITor) erTor) error)

Strain (Mark 1) | 0.06304 0.006287 0.00205 0.002144 0.002453

Strain (Mark 2) | 0.04731 0.004720 00269 002674 0.00276

Strain (Mark 3) | 0.006614 0.006687 0.002012 002078 0.002462

Thickness 9.38-10°m | 9.35-10°m | 8.65-10° m 8.83-10" m 8.83-10° m

The data in Table 5.19 shows that the effect of using varying sensitivities in the Monte
Carlo simulation is a slight increase in the values of the end-of-line standard deviations.
The relative effect of process control and modeling error remains the same. These results
indicate that the assumption of constant values for the sensitivity terms in the analytical
approach is reasonable, and does not introduce significant error into the analysis or
change the predicted impact of process control.

Table 5.20 lists the outcome of Monte Carlo simulation using both varying sensitivities
and a uniform distribution to represent modeling error. The upper and lower limits of this
distribution are set to the £ 3¢ values of the normal distribution used in Section 5.9.1.

Table 5.20: Output Standard Deviations with Error as a Uniform Distribution.

Output Variable o with No Control | 10% Modeling 50% Modeling
Error Error

Strain (Location 1) | 0.006287 0.002183 0.002989

Strain (Location 2) 0.004720 0.002720 0.003018

Strain (Location 3) 0.006687 0.002161 0.003146

Thickness 9.35E°m 8.8E°m 9.42E°m

As seen in Table 5.20, the difference in predicted end-of-line variation between use of the
normal distribution and use of the uniform distribution is very small for a model with
10% modeling error. The discrepancy between the two methods increases with the level
of modeling error, reaching 28% when the modeling error reaches 50%. The effects of
feed-forward control are still quite significant; the model predicts a 35% reduction in
end-of-line variation with a modeling error of 50%.

Both the closed-form analysis and numerical simulations indicate that use of feed-
forward control will reduce the variation significantly, even the in the presence of
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modeling error. [t thus appears to be the best strategy for use in this system. In the next
sections we will simulate several feedback control strategies for comparison.

Feedback Control

There are two broad classes of feedback control in manufacturing systems: machine
control, and part-to-part feedback. Machine control is a common feature on many
manufacturing machines, and involves an internal control loop, which regulates the value
of an input parameter. Some examples include the control of spindle speed on a lathe,
barrel or cavity temperature regulation on an injection molding machine, and force
control on a stretch forming press. Part-to-part feedback, on the other hand, involves the
production of a part or batch of parts, measurement of their deviation from target
specifications, and then a change in parameter settings before the manufacture of the next
part. This form of control is rarely used explicitly in aerospace manufacturing, but often
occurs in practice as a result of operator intervention. [t is not uncommon in stretch-
forming, for example, for an operator to produce a single part, examine its contour after
springback, and to then change the carriage positions before producing the next part.
While this form of control can correct for severe deviations from the target specifications,
it often increases variation. Both machine control and part-to-part feedback will be
explored through numerical simulation on the example system in this section.

Machine Feedback

While many stretch-forming presses have some regulatory feedback control on forming
force and/or table height, the machine in our example system had neither at the time the
measurements were taken. Each part was formed under manual control, in which the
operator raised the table until satisfied with the shape of the part. Machines that are
instrumented for automatic control have several options for stopping-criteria. Force
control is a method in which each part is formed to a certain target force, determined
from past experience. This method does not account for variation in material properties,
but does eliminate the effects of force variation. An internal feedback loop is used to
reach and maintain the desired force. Displacement control is a similar approach, in
which the die table is raised a given distance after snug for every part. Displacement
control is more sophisticated than force control, since it effectively requires that each part
be deformed the same amount. Force is allowed to vary from part to part as necessary, to
compensate for variation in material properties. Strain control is the best operational
strategy; this method involves using instrumentation on the part itself to measure the
strain, and stop forming when a target strain is reached. This method directly accounts for
all material and machine variations, ensuring that each part is pulled to the desired
amount. In this section we use Monte Carlo simulation on the system model to compare
the visual inspection stopping-criterion to both force control and strain control. Table
5.21 shows the results of a force control simulation, run with varying sensitivities. The
simulation incorporated a feedback loop on the value of force, which raised the force up
to, but not over, the target value. This target value was the mean value measured in
simulation: 238412.8 N.
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Table 5.21: Predicted Outputs of a System Under Force Control.

Output Variable | Predicted (no Control) | Predicted (Force Control) | % Change
Strain (mark 1) 11.14 11.13 0.1

Strain (mark 2) 8.82 8.82 0.0

Strain (mark 3) 11.15 11.13 0.1
Thickness 0.00125 m 0.00125 m 0.0
Variations

Strain (mark 1) 0.006287 0.003036 51.7
Strain (mark 2) 0.004720 0.003434 27.2
Strain (mark 3) 0.006687 0.002459 63.0
Thickness 9.35E°m 8.89E°m 4.9

The simulation results show that by simply forming each part to the same force, the target
part can be formed to the desired target values with a greater than 25% reduction in
variation from the uncontrolled levels.

While force control shows a significant quality improvement over the use of visual
inspection, a greater reduction in variation can be obtained through the use of strain
control. This method is discussed in some detail by Parris (1996), who conducted
experiments using strain control in the production environment. We implemented a
Monte Carlo simulation of strain control by first generating a set of random variations for
all input parameters, and then increasing the forming force until the target strain was
predicted for the part. As in the case of force control, a feedback loop was used to
increase the force until the target strain value was reached, without overshoot. Strain was
controlled at one point (measurement location 1) for simplicity. The predicted value of
strain with no control at measurement location 1 from Table 5.21 was used as the target
strain value. Results of the strain control simulation are listed in Table 5.22.

Table 5.22: Predicted Outputs of a System Under Strain Control.

Output Variable | Predicted (no Control) Predicted (Strain Control) | % Change
Strain (mark 1) 11.14 11.145 0.0

Strain (mark 2) 8.82 8.872 0.6

Strain (mark 3) 11.15 11.17 0.2
Thickness 0.00125m 0.00125 m 0.0
Variations

Strain (mark 1) 0.006287 0.000311 95

Strain (mark 2) 0.004720 0.002073 56

Strain (mark 3) 0.006687 0.000729 89
Thickness 9.35E° m 8.32E° m 11

Table 5.22 shows that the nominal strain values under Strain Control are within 1% of the
target values, while the variations drop significantly from their uncontrolled values. The
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improvement predicted for this system is of the same magnitude as that seen
experimentally by Parris (1996), who showed a 92% reduction in the variation of stretch
formed parts when using strain control as opposed to visual inspection.

Part to Part Feedback Control

As discussed previously, part-to-part feedback control usually increases variation,
although it can decrease bias. This method involves producing a part, or batch of parts,
and then measuring the deviation of some output quality characteristics from their target
values. This data is then used to change parameter settings in the system, prior to
producing additional parts. Some authors have explored these methods by using data
collected from one batch of parts to update and improve running process models for usc
on additional parts (Boning, Moyne et al. 1996). This technique only works if accurate
process models are available for the specific manufacturing system, and the system is
allowed to equilibrate after changes.

Table 5.23 shows the results of part-to-part feedback control, in which the operator forms
a part, measures the strain deviations from target values at three points on the part (the
three strain measurement locations shown in Figure 5.16), and then changes the input
force for the next part accordingly. All parameters other than force are allowed to vary as
usual.

Table 5.23: Predicted Outputs of a System Under Part-To-Part Feedback.

Output Variable | Predicted (no Predicted (Part-to- % Change
Control) part Feedback)
Strain (mark 1) 11.14 11.18 0.4
Strain (mark 2) 8.82 8.79 0.3
Strain (mark 3) 11.15 11.19 0.4
Thickness 0.00125 m 0.00125 m 0.0
Variations
Strain (mark 1) 0.006287 0.004591 27.0
Strain (mark 2) 0.004720 0.004184 11.4
Strain (mark 3) 0.006687 0.004576 31.6
Thickness 9.35E° m 9.11E%m 2.6

The results in Table 5.23 show that part-to-part feedback reduces end-of-line variation
over uncontrolled forming by more than 10%. These results are somewhat deceiving, as
can be seen through a comparison with the output of force control (see Table 5.21). The
end-of-line variation when using part-to-part feedback is roughly twice that when using
force control. The reduction in variation over the uncontrolled condition seen in Table
5.23 is due to a decrease in the force variation, as force is now being set to predetermined
values for each part. Although the force variation has decreased, the actual force settings
are just as random as they were under visual inspection, since each setting is determined
for a given set of material conditions on a previous part. The part being formed with the
predetermined force values has a new set of properties, which are unrelated to the set for
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the previous part. As such, both the force and material properties are again varying
randomly. The only difference between part-to-part feedback and the uncontrolled state
is that the force variation is restricted to a smaller range, based on the control algorithm.
This form of process control is highly inefficient, however, since force control will
provide greater variation reduction with less effort. Part-to-part feedback does have one
advantage not apparent in this example; it can prevent process mean shifts, if an input
parameter is subject to non-random variation.

The ability of part-to-part feedback to correct for mean shifts is an advantage over force
control that cannot be disregarded. As such, we can explore variants of the part-to-part
approach, which retain this ability while also providing a further reduction in variation.
One such alternative involves producing and measuring a batch of » parts, averaging the
deviations of their quality characteristic values from target values, and then determining a
new set of parameter settings to use for the next n parts. We call this form of process
control batch-to-batch feedback. Another related technique involves using the first
parts to determine a set of process parameter values that are then used for the remainder
of the run. This method effectively calibrates the system for each batch of parts, while
ignoring the variation between parts within that batch. This method is called one-time
batch feedback. We simulated both of these approaches for part runs totaling 25 parts
each. The simulations were conducted using spreadsheet macros in Crystal Ball. For
each run, the model was used to generate some number (n) of parts, and the deviation of
their quality characteristic values from target values were used to make a feedback
correction to the input force. Another n parts were then run through the model, and
another force correction was calculated and applied. This procedure was repeated until a
total of 25 parts were “manufactured.” The results of these simulations for batch-to-batch
feedback and onc-time batch feedback for batch sizes of 3 and 5 parts are listed in Table
5.24.

Table 5.24: Predicted Strain Values with Batch Feedback.

Strain (Mark 1) Mean Value Standard Deviation
No Control 11.14 0.006287
Batch-to-batch Feedback (n=3) 11.17 0.002937
Batch-to-batch Feedback (n=5) 11.15 0.002821
One-Time Batch Feedback (n=3) 11.18 0.002664
One-Time Batch Feedback (n=5) 11.16 0.002886

Comparing the results in Table 5.24 with those in Table 5.23 shows that batch-to-batch
feedback is significantly better than part-to-part feedback in reducing variation. The
batch-to-batch method can also correct for mean shifts after just a few parts. The use of
one-time batch feedback, which is effectively force control with the parameters set at the
beginning of each run, also reduces variation more than part-to-part feedback. While the
one-time batch method can correct for changes in material properties or process
parameters between runs, it is unable to correct for mean shifts during a run. For this
reason, batch-to-batch feedback is likely to be a better method in practice than either one-
time batch feedback of Force Control.
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There is one more implementation of feedback that can be used to correct for bias errors:
running-average feedback. In this method, each part is used to calculate a new mean
value, which is then used to adjust a parameter setting before production of the next part.
The mean value used for the correction is essentially a “running average” of all parts
produced. This technique is similar to the work of (Boning, Moyne et al. 1996). Table
5.25 lists the results of a Monte Carlo simulation of running-average feedback.
Simulations were run with varying numbers of trials, to simulate batches of significantly
different sizes.

Table 5.25: Output Strain Values with Running-Average Feedback Control.

Strain (Mark 1) Mean Value | Standard Deviation
No Control 11.14 0.006287
Running-average Feedback (10 pts) 11.23 0.004448
Running-average Feedback (100 pts) 11.14 0.003394
Running-average Feedback (500 pts) 11.14 0.003702
Running-average Feedback (1500 pts) | 11.14 0.003862

The data in Table 5.25 shows that running-average feedback can both produce parts
without bias error and reduce variation from its uncontrolled levels. Both mean
correction and end-of-line variation reduction improve up to a run size of 100 parts, after
which these quantities level out. Running-average feedback is not very effective for
production processes with small part runs, since there are insufticient parts for a
statistically significant mean value. For large batch sizes, however, this method can
reduce variation by approximately 50%, while also correcting for mean shifts. Running-
average feedback is not as effective as batch-to-batch feedback in reducing variation, but
it compensates better for any mean shifts during a run.

We have now demonstrated a number of process control strategies through Monte Carlo
simulation. Through the rest of this chapter, we will discuss the shop-floor
implementation of one promising strategy: feed-forward control. Details and results of
the process control experiment follow in the next section.

5.10 Feed-Forward Control Experiment

In the previous section, we presented simulation results for a number of process control
strategies. We evaluated each of these methods based on its ability to reduce end-of-line
variation. The simulations showed that strain control is the most effective strategy for
both reducing strain variation and meeting quality characteristic target output values.
This is because strain control is the only method that directly measures part strain during
forming, allowing the operator or a control algorithm to directly account for the specific
input variations experienced by each part. The efficacy of strain control has been
demonstrated on the shop floor by Parris (1996).
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The second most effective variation reduction strategy is an implementation of feed-
forward control, in which the aging time during heat treatment is measured and used to
set the force during stretch forming. This process control strategy, discussed in Section
5.5.4.1, is particularly interesting from a systems perspective, since it involves inter-
operation control. Feed-forward is a desirable form of process control from a variation
reduction standpoint because of the availability of closed-form equations that can be used
to predict the controlled output variation.

In this section we describe an experimental implementation of feed-forward control in the
production environment. We show that use of this strategy reduced strain variation by
30%, and thickness variation by 18%, on a batch of production parts.

5.10.1 Experiment Overview

The feed-forward control strategy used in this experiment was discussed in detail in
section 5.5.4.1. The approach involves measuring the aging time during heat treatment,
estimating its effects on material yield strength, and then adjusting the forming force to
compensate. When implementing this control strategy, we introduce two minor changes
to the process; the operators must measure aging time for each part, and forming force is
set to a prescribed value for each part.

The feed-forward analytical results and simulations in the previous sections show that
strain variation can be reduced by 50-67% through the use of a perfect model. As would
be expected, the addition of modeling error diminishes this value; a model with 50%
error (assuming a uniform distribution as discussed previously) is predicted to reduce
variation by 36-53%. In practice, the effects of modeling error are compounded by
uncertainties in input parameter values, varying ambient conditions, and calibration errors
in the forming press. For example, although the form of the function relating aging time
to material yield strength is known, the actual curve must be calibrated to both the mean
yield strength of the incoming material and ambient temperature. In addition, the
relationship between forming force and strain at each measurement location is a function
not only of the material properties, but of the press geometry and force transmission as
well. This relationship can only be determined with any accuracy through experiment.
In order to account for all of these factors, the ISM sensitivities were not used directly,
but were estimated through the forming of some “calibration parts.” Details of the
experiment procedure follow in the next section.

5.10.2 Experimental Procedure

The feed-forward control experiment involved a batch of ten target parts. Prior to
forming, we measured thickness at four points on each blank, and inscribed strain marks
at three measurement locations on each blank. We used the same thickness and strain
measurement locations as described in Section 5.4.1. Four parts were chosen for
calibration. Each “calibration part™ was formed according to standard operating practice,
which at the time of this experiment was displacement control. We measured the total
time each part was out of the freezer between quench and forming, and recorded the
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maximum forming force from the press display. After the four calibration parts were
formed, we measured the circumferential strain at measurement location 1 on each part.
We designated the mean value of these measured strains as the “target strain” for the six
remaining parts. We then used the measurement data from the calibration parts to
generate the following three graphs:

1) Aging Time vs. Force

This chart, shown in Figure 5.24, shows the relationship between material yield strength
just prior to forming and the maximum force required to form the part. As the required
force increases with increasing material yield strength, the data on this chart should lie
along a line with positive slope.

2) Force vs. Strain

This chart, depicted in Figure 5.25, reveals the actual relationship between measured
force and strain on the sheet. This line incorporates any errors in force measurement, the
effects of material slippage in the jaws, and the calibration state of the forming press.
Basic physical principles suggest that strain should increase with increasing force, and
thus the data on this chart should lie along a line with positive slope.

3) Strain Error vs. Aging Time

Strain error was defined as the difference between measured strain on a part and the
target strain value. This chart, shown in Figure 5.26, reveals any bias effects in forming,
relating strain error to material yield strength.

Force (tons)

Aging Time (minutes)

Figure 5.24: Aging Time vs. Force for Calibration Parts.
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Figure 5.26: Aging Time vs. Strain for Calibration Parts.

A cursory examination of the charts in Figures 5.24 through 5.26 reveals several
incongruities. In Figure 5.25, for example, the slope of the line that best fits the data is
negative, rather than positive. This trend is counter-intuitive, and implies that part strain
actually decreases as forming force increases. Also note that in Figures 5.24 and 5.25, th
forming force recorded from the stretch press display is on the order of 90 tons. On our
first trip, forming force for the target part was on the order of 50 tons (see Table 5.3).
The latter value is in accordance with both the predicted value of force required to form
this part, calculated based on material yield strength, and the results of the finite-element
simulation. As such, we concluded that the force transducer on the stretch press was
severely out of calibration at the time of this forming experiment. Although the force
transducer errors were evident immediately after forming the calibration parts, we
decided to proceed with the experiment, acting on the assumption that these errors were
repeatable. We assumed that the calibration curves in Figures 5.24 through 5.26 would
account for machine errors, and enable production of acceptable parts.
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After plotting the three calibration curves above, we generated a table linking input force
values to a series of different aging time values. This table was developed by applying
the following steps to each given value of aging time:

1) Use graph 1 (Figure 5.24) to determine the force value that would be used to form a
part with the measured aging time during normal operation

2) Use graph 3 (Figure 5.26) to determine the approximate strain error during normal
operation, based on the measured aging time

3) Use graph 2 (Figure 5.25) to determine a force adjustment value that will offset the
strain error from Step 2

4) Add the force adjustment value determined in Step 3 to the force value found in Step
1 in order to obtain the correct value of forming force for the given value of aging
time.

The table of force input values calculated for various aging times during the experiment

is shown in Table 5.26. The units of aging time in Table 5.26 are minutes, and the units
of force are tons.

Table 5.26: Force Correction Based on Aging Time.

Aging Time |Original Force |Strain Error [Force Correction |New Force
17 91.09 0.0046 -2.71 88.39
18 91.40 0.0041 -2.41 88.99
19 91.71 0.0036 212 89.59
20 92.02 0.0031 -1.82 90.19
21 92.33 0.0026 -1.53 90.80
22 92.63 0.0021 -1.24 91.40
23 92.94 0.0016 -0.94 92.00
24 93.25 0.0011 -0.65 92.60
25 93.56 0.0006 -0.35 93.21
26 93.87 1E-04 -0.06 93.81
27 94.18 -0.0004 0.24 94.41
28 94.49 -0.0009 0.53 95.01
29 94.79 -0.0014 0.82 95.62
30 95.10 -0.0019 1.12 96.22
31 95.41 -0.0024 1.41 96.82
32 95.72 -0.0029 1.71 97.42

After generating Table 5.26, the remaining six parts were formed using feed-forward
control. Each part was removed from the freezer, and allowed to naturally age between 8
and 28 minutes. This aging time, when combined with the 6 minutes required to move
parts from the quench batch to the freezer and the 6 minutes required to straighten the
coils, gave each part a total natural aging time of 20-30 minutes. The aging times were
staggered in order to improve experimental validity. After aging, each part was formed
to a force value determined from Table 5.26. The results of this experiment are presented
in the following section.
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5.10.3 Experimental Results

The nominal values and variations of strain and thickness after forming are listed in Table
5.27 for both the calibration parts and the controlled parts. Note that the standard
deviations of the calibration parts are much lower than the standard deviations of the
uncontrolled parts measured previously (see Table 5.8). This is because standard practice
in the plant changed from visual inspection to displacement control between our visits,
based on the recommendations of Parris (1996). The data in Table 5.27 is based on 4
calibration parts and 5 controlled parts. Initially there were 6 controlled parts, but the
operators suspected a problem during forming of one of these parts, and stopped the
press. The blank was removed from the jaws, and then re-loaded and re-formed to the
target force value after the press had been inspected. Data for this part differed
significantly different from that for the other 9 parts, most likely due to a different
deformation path and some inconsistency during re-loading. Data for this part has thus
been omitted from the results.

Table 5.27: Results of Feed-Forward Control

Calibration Parts Controlled Parts
Mean Standard Dev. Mean Standard Dev.
Strain (location 1) | 0.1094 0.00346 0.1091 0.00230
Strain (location 2) | 0.1082 0.00346 0.0997 0.00313
Strain (location 3) | 0.1105 0.00346 0.01073 0.00235
Thickness 0.001213 m | 0.001210 m 1.10E” m 9.01E®m

The data in Table 5.27 shows that use of feed-forward control resulted in a 30% reduction
of variation at locations 1 and 3, and a 9% reduction of variation at location 2. Thickness
variation was reduced by an average of 18% across the sheet. Although the amount of
variation reduction is lower than the improvement predicted in the previous sections,
these results are still quite impressive. The nominal value of strain at the controlled
location was within 3% of the target value. Nominal values at the other two
measurement locations show greater bias, which could be reduced by simultaneously
measuring and controlling strain at all three locations.

5.10.4 Discussion

There are several reasons why the variation reduction seen in the feed-forward
experiment is lower than that predicted through simulation. As discussed previously, the
force measurement system on the stretch press was severely out of calibration during this
experiment. The press display indicated that the force required to form the target part
was between 90 and 95 tons, whereas this value had historically been between 50 and 55
tons. The 90 ton value is also clearly infeasible based on the stress/strain curve of the
material. We did not ascertain whether this measurement error was merely an offset, or
whether the bias was non-linear. In addition, the algorithm used to calibrate the feed-
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forward adjustment was based on some amount of operator consistency during
uncontrolled forming. As was mentioned previously, at the time of these experiments,
the operators were forming parts using a form of displacement control, rather than by
visual inspection. The displacement control used to form these parts involved raising the
die table to the same pre-determined height for every part. This procedure differs from
proper displacement control as described by Parris (1996), in which the die table is raised
by the same amount after snug for each part. The procedure described by Parris accounts
for variations in material yield strength and thickness; the method used currently in the
plant does not. This means that “standard” forming press operation was not as consistent
as it should have been. Our feed-forward algorithm was thus forced to account for two
significant sources of error, as well as an undetermined amount of modeling error.
Despite this, the control strategy was successful in reducing variation by a sizeable
amount. Greater gains could be expected on a system with more reliable force
measurement.

In addition to its robustness, this feed-forward strategy requires no specialized equipment
and is easily implemented by the operators. Unlike strain control, which requires that the
both the sheet and stretch press be instrumented, feed-forward only requires measurement
of the time out of freezer, and the development of a force adjustment table. Once this
chart has been developed, the operators can determine the required forming force
directly, with no additional effort.

5.11 Chapter Summary

In this chapter, we presented an example of the variation reduction method outlined in the
introduction. We first developed an Integrated System Model for a sheet stretch-forming
system used to manufacture aircraft skin components. We derived predictive and
variational models for the heat treatment and stretch-forming operations, and then linked
linearized versions of these models in a spreadsheet environment. Next we validated the
ISM against production data, and used it to identify the major sources of variation in the
stretch-forming system. We then used system-level parameter design to reduce end-of-
line variation by 24% in simulation, with only minor process changes. We calculated
process limits for each operation in the system, and formulated several variation
reduction strategies. We explored the effects of various feedback and feed-forward
process control implementations analytically and numerically, and then selected feed-
forward control as the most promising strategy for this system. Finally, we presented the
results of a feed-forward experiment, evaluated on production parts, in which strain
variation was reduced by 30%, and thickness variation was reduced by 18% over
uncontrolled levels.
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Chapter 6: Summary and Conclusions

In this thesis, we presented a new method for reducing variation in manufacturing
systems, through the use of physics-based mathematical process models. This approach
involves the development of an Integrated System Model, which can predict end-of-line
quality characteristic nominal values and variation. In Chapters 3 and 4, we developed a
number of variation reduction techniques for use in conjunction with the ISM. With
these methods, we can identify the major sources of variation in a system, make the
system more robust to input variation, and evaluate the need for process control. We also
used the ISM to explore the effects of feedback and feed-forward process control, and
developed analytical expressions to predict output variation in a system with feed-
forward control. Finally, we demonstrated all of these techniques on a sheet stretch-
forming system used to manufacture aircraft skin components.

6.1 Major Contributions

The overarching contribution of this thesis is a model-based method to variation
reduction in manufacturing systems. This approach utilizes a number of mathematical
tools developed in this work. In this section, we summarize the major contributions of
our research.

6.1.1 Variation Reduction Method

The variation reduction techniques developed in this thesis are all components of an
integrated variation reduction method for manufacturing systems. This method consists
of the following steps:

2) Develop an Integrated System Model of the manufacturing system
- Build predictive models of each operation
- Derive variational models of each operation
- Link the models into an ISM
- Validate system predictions against measured data
1) Identify major sources of variation in the system
2) Conduct system-level parameter design
3) Evaluate the need for measurement or control in a system
4) Formulate several variation reduction strategies
- Source reduction
- Feed-forward control
- Feedback control
5) Evaluate strategies in simulation using the ISM
6) Implement the most promising strategy

In this thesis, we developed mathematical tools enabling each of these steps, and

demonstrated the entire method on an industrial example. Chapter 5 is a step by step
implementation of this approach on a sheet stretch-forming manufacturing system. Use
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of this method resulted in a process control implementation that reduced strain variation
by 30%, and thickness variation by 18% in production parts.

6.1.2 Integrated System Model

The Integrated System Model is a framework for analyzing variation propagation in
manufacturing systems. As such, it is the foundation for all the variation reduction
strategy described above. The ISM is based on analytical expressions for variation
propagation in systems, and on process sensitivities derived from mathematical process
models. Methods for developing an ISM were presented in Chapter 3, and demonstrated
on the sheet stretch-forming system in Chapter 5.

6.1.3 Tolerance Threshold

The Tolerance Threshold, presented in Chapter 3, is the predicted output variation of a
manufacturing operation or system. The Tolerance Threshold value can be used to guide
in tolerance design, or to evaluate existing tolerances. Unlike traditional measures of
process capability, determination of the Tolerance Threshold does not pre-suppose the
existence of either a physical manufacturing system or product tolerances.

6.1.4 System-Level Parameter Design

In Chapter 3, we developed a formulation for system-level parameter design. This
technique uses the ISM to identify the combination of process operating points that
produces parts meeting output specifications with minimum variation. System-level
parameter design differs from traditional parameter design methods, in that we
simultaneously select input parameter settings across the entire system. As demonstrated
in Chapter 5, this can result in lower end-of-line variation than applying traditional
parameter design methods to each operation individually. The system level approach was
shown to reduce end-of-line strain variation by 24% in simulation on the stretch-forming
system.

6.1.5 Process Limits

In Chapter 4, we developed a method for back-propagating end-of-line tolerances through
a system, in order to determine process limits for each operation. A process limit is the
maximum allowable output variation for an operation, which ensures that 99.7% of
produced parts can meet end-of-line tolerances. Process limit analysis also provides a
means for determining whether control is needed in s system. The use of process limits
was demonstrated on the example ISM, showing that the existing input specifications on
material thickness are insufficient to ensure that stretch-formed parts will meet end-of-
line tolerances.

6.1.6 Analytical Treatment of Feed-Forward Control

Also in Chapter 4, we discussed the use of feedback and feed-forward process control.
We developed analytical expressions to predict end-of-line variation in a feed-forward
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controlled system. These expressions incorporated the effects of modeling error,
actuation error, and measurement error. We also developed methods for determining the
maximum controllable input variation to an operation, and the maximum allowable
modeling error in the controller.

6.1.7 Stretch-Forming ISM

In addition to the contributions listed above, which apply to any manufacturing system,
this thesis presents several developments specific to stretch-forming. Foremost among
these is the sheet stretch-forming ISM, developed in Chapter 5. In order to generate the
ISM, we developed a robust finite-element simulation of drape forming and an analytical
model of natural aging, neither of which existed previously. We used the ISM to identify
the major sources of variation in the stretch-forming system; this information is also
unique to this thesis.

6.1.8 Feed-Forward Control Validation

Another contribution specific to stretch-forming is the feed-forward control experiment,
presented in Chapter 5. The experiment is an implementation of inter-operation control,
in which a process parameter measurement in one operation is used to determine a
process parameter setting for a successive operation. This process control strategy was
suggested by the results of the ISM analysis. Data presented in Chapter 5 showed that
this method reduced strain variation by 30%, and thickness variation by 18%, on a batch
of production parts. This form of process control has several advantages over other
methods; it requires little change to standard operating procedure, and adds no cost to the
operation. Based on the results of our experiment, Northrop-Grumman Corporation is
now considering implementing this process control technique during standard production.

6.2 Generalizing These Methods

Although the variation modeling and reduction methods outlined in this thesis are only
demonstrated on one manufacturing process, they can be applied to other systems as well.
For this reason, the mathematical techniques in Chapters 3 and 4 have been developed in
a generalized form. The only requirement of a candidate system is that it exhibit linear
behavior in a small region about a given operating point. As discussed in chapter 3, this
criterion encompasses a wide range of manufacturing systems, from machining to
injection molding. Mathematical modeling approaches similar to those outlined in this
work have been successfully demonstrated on the production of Multi-Chip Modules
(Frey and Otto 1996), low-temperature ceramic components for electronic assemblies
(Soyucayli and Otto 1998), welded aluminum automotive frames (Suri and Otto 1998),
and injection-molded parts (Kazmer, Barkan et al. 1996). Research is currently
underway to extend these methods to continuous processes, such as steel rolling.

6.3 Opportunities for Further Research

The research presented in this thesis introduces a number of areas deserving of further
exploration. As discussed in Chapter 3, we used designed experiments to derive
variational models from complex numerical simulations. While these variational models
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are accurate in the vicinity of a given operating point, any changes to input parameter
values require re-derivation of the process sensitivities. We are currently exploring the
use of neural nets to capture the information contained within complex predictive models.
While the neural nets are also complex non-linear models, once they have been trained
with data from the predictive model, they can be used to very quickly recalculate
sensitivities at varying operating points.

Another area for additional work is feedback control. While we presented a series of
analytical derivations in Chapter 4 that predict the effects of feed-forward control on
variation, we limited our involvement with feedback control to numerical simulation.
The effects on variation of part-to-part, batch-to-batch, and running-average feedback
could also be expressed analytically, in terms of the frequency of the input variation, and
the time constant of the feedback loop. Closed-form expressions predicting controlled
variation in the presence of feedback would be useful for both modeling and process
design.

6.4 Conclusions

In conclusion, this thesis presented a model-based method for variation reduction in
manufacturing systems. We developed a model of sheet stretch-forming, which was used
to reduce variation on production parts. Although the techniques outlined in this work
have only been demonstrated on one manufacturing system, related work and the
underlying theory indicate that they can be generalized to other systems as well. It is our
hope that model-based quality improvement will one day be standard practice in industry.
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Appendix A: Abaqus Input Deck for Drape Forming

*HEADING, UNSYMM

* ok

**Smooth Die MARK geometry,drape forming SR4 Element
**This is the input deck for the nacelle doubler

* &

**This section determines sheet meshing in the X direction
*NODE

2010, 0., 0, .0014351

2030,0.762,0, .0014351

2039, 1.21%2, 0, .0014351

2049, 1.67005, 0, .0014351

2054,1.7272,0, .0014351

*NGEN, NSET=YO

2010,2030, 1

2030,2039,1

2039,2049,1

2049,2054,1

* %

**This section meshes the sheet in the Y directicn

** finer mesh is used around the point of initial contact (3510)
* k

*NCOPY, CHANGE NUMBER=1100, OLDSET=Y0, NEWSET=YINT, SHIFT
0.,.2794,0.

0.,0.,0.,0.,0.,1.,0.

*NFILL, NSET=NSHEET]1

YINT,Y0,11,-100

*NCOPY, CHANGE NUMBER=800, OLDSET=YINT,NEWSET=YINT2, SHIFT
0.,.1016,0.

0.,0.,0.,0.,0.,1.,0.

*NFILL, NSET=NSHEETZ2

YINTZ, YINT,8,-100

*NCOPY, CHANGE NUMBER=2100, OLDSET=YINT2, NEWSET=Y1, SHIFT
0.,.5334,0.

0.,0.,0.,0.,0.,1.,0.

*NFILL, NSET=NSHEET

Y1l,YINT2,21,-100

*NSET, NSET=NALL

NSHEET1,NSHEETZ2, NSHEET,

*NSET, NSET=X0, GEN

2010,6010,100

* %

**Here we define a nodeset along the edge of the sheet
*NSET, NSET=CLAMP, GEN

2054,6054,100

*ELEMENT, TYPE=S4R, ELSET=SHEET
2010,2010,2011,2111,2110

*ELGEN, ELSET=SHEET

2010, 44, 1, 1,40,100,100,1

*NSET, NSET=NOUT

2049

* &
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**Here we define the PULL nodeset which is used to constrain
**edge nodes as 1f they were clamped in a jaw
*NSET, NSET=PULL

2049

*NSET, NSET=X0YO

2010

* *

**The nodeset PTFIXE is the initial contact point with the die
*NSET, NSET=PTFIXE

3510

*NSET, NSET=MID, GEN

3510,3549

*NODE, NSET=DREF

99999, 0,.4572,-.721106

*NODE, NSET=DUMMY

99998, 0,.4572,-.721106

*ELEMENT, ELSET=SPRING, TYPE=SPRING1
99998, 99998

*SPRING, ELSET=SPRING

1,

100.

* *

**This section introduces the dashpots which will be
**yged to ald in relaxation
*ELEMENT, ELSET=DASHPOT, TYPE=DASHPOT1
8001,2054

8002,2154

8003,2254

8004,2354

8005,2454

8006, 2554

8007,2654

8008,2754

8009, 2854

8010, 2954

8011,3054

8012,3154

8013,3254

8014,3354

8015,3454

8016, 3554

8017,3654

8018,3754

8019,3854

8020, 3954

8021,4054

8022,4154

8023,4254

8024,4354

8025,4454

8026,4554

8027, 4654

8028,4754

8029, 4854

8030,4954

8031, 5054

8032,5154
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8033,5254
8034,5354
8035,5454
8036, 5554
8037,5654
8038,5754
8039,5854
8040, 5954
8041,6054
8101,2049
8102,2149
8103,2249
8104,2349
8105,2449
8106,2549
8107,2649
8108,2749
8109,2849
8110,2949
8111,30459
8112,3149
8113,3249
8114,3349
8115,3449
8116,3549
8117,3649
8118,3749
8119,3849
8120,3949
8121,4049
8122,4149
8123,4249
8124,4349
8125,4449
8126,4549
8127,4649
8128,4749
8129,4849
8130,4949
8131,5049
8132,5149
8133,5249
8134,5349
8135,5449
8136,5549
8137,5649
8138,5749
8139,5849
8140,5949
8141,6049
*DASHPOT, ELSET=DASHPOT
3

196000

H ok

**This user MPC will constrain all edge nodes to the PULL nodeset
**to simulate the sheet being clamped in the jaws
*MPC, USER

140



1,2149,2049
1,2249,2049
1,2349,2049
1,2480,2049
1,2549,2049
1,2649,2049
1,2749,2049
1,2849,2049
1,2949,2049
1,3049,2049
1,3149,2049
1,3249,2049
1,3349,2049
1,3449,2049
1,3549,2049
1,3649,2049
1,3749,2049
1,3849,2049
1,3949,2049
1,4049,2049
1,4149,2049
1,4249,2049
1,4349,2049
1,4449,2049
1,4549,2049
1,4649,2049
1,4749,2049
1,4849,2049
1,4949,2049
1,5049,2049
1,5149,2049
1,5249,2049
1,5349,2049
1,5449,2049
1,5549,2049
1,5649,2049
1,5749,2049
1,5849,2049
1,5949,2049
1,6049,2049
2,2149,2049
2,2249,2049
2,2349,2049
2,2449,2049
2,2549,2049
2,2649,2049
2,2749,2049
2,2849,2049
2,2949,2049
2,3049,2049
2,3149,2049
2,3249,2049
2,3349,2049
2,3449,2049
2,3549,2049
2,3649,2049
2,3749,2049
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2,3849,2049
2,3949,2049
2,4049,2049
2,4149,2048
2,4249,2049
2,4349,2049
2,4449,2049
2,4549,2049
2,4649,2049
2,4749,2049
2,4849,2049
2,4949,2049
2,5049,2049
2,5149,2049
2,5249,2049
2,5349,2049
2,5449,2049
2,5549,2049
2,5649,2049
2,5749,2049
2,5849,2049
2,5949,2049
2,6049,2049
3,2149,2049
3,2249,2049
3,2349,2049
3,2449,2049
3,2549,2049
3,2649,2049
3,2749,2049
3,2849,2049
3,2949,2049
3,3049,2049
3,3149,2049
3,3249,2049
3,3349,2049
3,3449,2049
3,3549,2049
3,3649,2049
3,3749,2049
3,3849,2049
3,3949,2049
3,4049,2049
3,4149,2049
3,4249,2049
3,4349,2049
3,4449,2049
3,4549,2049
3,4649,2049
3,4749,2049
3,4849,2049
3,4949,2049
3,5049,2049
3,5149,2049
3,5249,2049
3,5349,2049
3,5449,2049
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3,5549,2049
3,5649,2049
3,5749,2049
3,5849,2049
3,5949,2049
3,6049,2049
** DUMMY MPC TO SIMULATE DRAPE
4,99998,2049

e i e e e i I o o 2

* *
**This first user subroutine constrains the clamped region through

**the first 10 steps of the simulation
**The second was used to calculate Z displacement of the sheet edge

**based on a gilven wrap angle. This did not work for large wrap angles
**and has been replaced by a hand-calculation detailed in Section
5.3.2.2

* %

*USER SUBROUTINES
subroutine mpc (ue,a,jdof,mdof,n,jtype, x,u,uinit, maxdof,
& lmpc, kstep, kinc, time, nt, nf, temp, field)
include 'ABA PARAM. INC'
common / keep / uxold,uyold,uxnew,uynew, kincold
common /kshare/ aa,bb,cc,dd,x0n,y0n, z0n, del0
dimension a{n),jdof(n),x(6,n),u(maxdof,n),uvinit (maxdof,n),
& time (2), temp(nt,n), field(nf,nt,n)

if (kstep.ge.l0.or. (kstep.ge.7.and.
& (JTYPE.EQ.1.0R.JTYPE.EQ.2.0R.JTYPE.EQ.4))) then
lmpc=0
return
endif

if(jtype.ne.l.and.jtype.ne.2.and.jtype.ne.3.and.
& Jjtype.ne.4) then
write{(*,*) 'mpc type = ',itype
stop
endif
if(jtype.eg.1l} then
jdof(l *1
Jdof (2

elseif ype eq.2) then

ype eq.3) then

jdof
elseif(jtype.eq.4) then
if(kinc.ne.kincold.and.kstep.gt.1l) then
uxold=uxnew
uyold=uynew

kincold=kinc
endif
uxnew= uinit (1,2)
uynew= uinit(2,2)

R=0.79
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pi=4*atan(l.
aa=sin(pi/4)
bb=0.0
cc=cos (pi/4)
dd=R* (1-cos (
x0n=x(1,2)
yOon=x(2,2)
z0n=x(3,2)
delO=aa*x0n+
if (kstep.
lmpc=0
return
endif
jdof (1)=1
jdof (2)=3
endif

return
end

)

pi/4))

bb*yOn+cc*z0n-dd
ne.3) then

C*****************************************

crrFxFAkxAxA disp subroutine for draping step *FrkkEkwsokkdkdk

C

subroutine d
include 'AB
common / kee
common /ksha
dimension u

1if (node.eq.
del=del0* (1~
if(kinc.eq.k
xn=x0n+uxold
yn=yOn+uyold
else
xn=x0ntuxnew
yn=yOn+uynew
endif

uzn= (del+dd-
u(l) = uzn
else

write (*,*)
stop

endif

return
end

isp (U, kstep, kinc, time, node, jdof)

A PARAM. INC'

p / uxold,uyold,uxnew, uynew, kincold
re/ aa,bb,cc,dd,x0n,y0n, z0n,del0
(3),time (2)

2049.and.jdof.eq.3) then
time (1)) **2
incold) then

aa*xn-bb*yn) /cc -z0n

error in disp',ncde, jdof

IR AR A SRS SRR SRS EREEEEEESEEEEEEEEEREEEEEEEEE R SRS

hokokok ok ok ok ok ok ok sk ke ko ok ok ok ok ok ok ko ke ke ki ki ke ok ke sk ok ok ok ke ok ok ok ok ok k h ok ok K

* *

E

* K

* K

Die Geometry:
actual die

this profile was determined from an IGES file

of the

*RIGID SURFACE,NAME=DIE, TYPE=REVOLUTION,REF NODE=999%999, SMOOTH=0.45
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0.,0 ,-.85234,0,-1.E-03,-.85234
START, 0,0

LINE, 0.79353392,0
LINE,0.80139776,-0.037338
LINE, 0.80926922,-0.0745744
LINE,0.817161,-0.1117092

LINE, 0.82506294,~-0.1486916
LINE, 0.83296488,-0.1855216
LINE, 0.84086682,-0.2222246
LINE, 0.84775784,-0.2587498
LINE,0.85186756,-0.2950972
LINE,0.8531401,-0.3302
LINE,0.85157292,-0.3672078
LINE, 0.84717364,-0.4031488
LINE, 0.83996258,-0.439801
LINE, 0.82998292,-0.4771136
LINE,0.81759026,-0.514858
LINE,0.80527634,-0.552831
LINE,0.79357456,-0.590804
LINE,0.78247984,-0.6285738
LINE,0.7719871,-0.6659372
LINE,0.76208618,-0.7030974
LINE,0.75276946,-0.740283
LINE,0.74402932,-0.7774686
LINE,0.7358556,-0.8146288
LINE,0.72823814,-0.8518144
LINE,0.72116932,-0.889
LINE,0,-0.889

*ELSET, ELSET=CDTE

SHEET,

*SURFACE DEFINITION, NAME=SDTE
CDIE, SNEG

*CONTACT PAIR, INTERACTTION=FRIC
SDIE, DIE

*SURFACE INTERACTION, NAME=FRIC
*SURFACE BEHAVIOR, SOFTENED
6.3755E-4, 10.E+6

*FRICTION

0.1

hhkhkkkhdkrkhkhhkrhkdhhhhkhkhbhkhhhdhhkkhkbdbhkhhbhkdkddddkddddsh
* *

** The following material is Al 2024

* Kx

*SHELL SECTION, ELSET=SHEET, MATERIAL=ALUMI
1.2751E-03, 5

*MATERIAL, NAME=ALUMI

*ELASTIC

68.9475E+9, 0.3

*PLASTIC

118372469,0

122926469,0.000230211
127353831.2,0.00142422
131815543,0.00258756
136183913.5,0.00373271
140934609.8,0.00529044
146266262,0.00712688

151037866.7,0.0087842

145



159833599.4,0.0131134
167145579.6,0.0179713
175803055.6,0.0228538
183138152.9,0.0277528
189546542,0.0326637
195258839.3,0.0375837
200426810.3,0.0425108
206506695.6,0.0474437
210831644.5,0.0524009
214851353.7,0.0573605
218611424.3,0.0623228
222147190,0.0672874
225487022.6,0.072254
228654089.3,0.0772224
231667525.2,0.0821924
234543330.8,0.0871638
237295086.3,0.0921365
239934381,0.0971104
242470990.6,0.102085
244913975.4,0.107061
247270732.2,0.112038
249547494.6,0.117015
251751084.5,0.121994
253885864.2,0.126973
255956558.7,0.131952
257968200.9,0.136933
259923765.7,0.141914
261826704.7,0.146895
263680516.2,0.151877
265487663.5,0.156859
267251098.9,0.161842
268973180,0.166826
270655404.8,0.171809
272300463.1,0.176793
273910191.9,0.181778
275485664.6,0.186762
277029106.9,0.191747
278541979.8,0.196733
292236795,0.246601
303926944.9,0.296489
314178411.4,0.346392
323341178,0.396306
331648002.8,0.446228
339262328,0.496157
346303348.1,0.546091
352861331.1,0.596031
359005676.6,0.645974
364791747.9,0.695921
370263833,0.74587
375458590.8,0.795823
3804060044.6,0.845778
385131587.3,0.895735
389656758.7,0,945694
394000000, 0.995655

dok ok ok hok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok Kk ok ok ok ok ok
*AMPLITUDE, NAME=AM1, DEFINITION=SMOOTH STEP
0.,0.,1.,1.

146



B i R L 0 g S g S i A

* Kk

** In this step, dashpots are removed prior to forming
% STEP 1
* K
*STEP, NLGEOM
*STATIC
*MODEL CHANGE, REMOVE
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8036
8037
8038
8039
8040
8041
8101
8102
8103
8104
8105
8106
8107

147



8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8136
8137
8138
8139
8140
8141
*END STEP

ok hkkhkhhkdhbhkkhdkhkdkbhhkhhkhdhhkhh kb dhdrkhhkdkhkkodhkok ok *x

* ok

** Here the sheet is pre-stretched to about .5% of yield stress
** STEP 2

* Kk

*STEP, INC=1000, NLGEOM
*STATIC

1.0,1.0

*RESTART, WRITE, FREQ = 10
*BOUNDARY, OP=NEW

YO, YSYMM

Y1,YSYMM

X0,XSYMM

X0, 3, 3

DREF, 1,6

DUMMY, 1,6

*CLOAD, OP=NEW, FOLLOWER
PULL, 11,1025

*EL PRINT, FREQ=0

5

*END STEP
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* Kk

** The sheet is lowered to touch the die: the ends are lowered
** by an amount equal to the sheet thickness= .05",
* k

x* STEP 3
* %

*STEP, INC=1000,NLGEOM
*STATTC
0.5,1.0,1.E-7,0.5
*RESTART, WRITE, FREQ=20
*BOUNDARY, OP=NEW

Y0, YSYMM

Y1, YSYMM

X0, XSYMM

DREF, 1,6

DUMMY, 1, 6

*BOUNDARY, OP=NEW

PULL, 3,3,-1.2751E~03
*CLOAD, FOLLOWER, OP=NEW
PULL, 1,1025

*EL, PRINT, FREQ=0

S

*END STEP

hkdkkkhdkdhhkhhhhhkhkhkdkkdk bbbk bhhkkdkhhrkkkdk hdkk ko k ok k ok Kk ¥

* *

** The sheet 1is draped around the die by the Z displacenment

** calculated in section 5.3.2.2 for a wrap angle of 86 degrees
** Force 1is increased to the measured snug force

* K

x% STEP 4
* K

*STEP, INC=1000, NLGEOM
*STATIC
0.001,1.0,1.E-6,0.1
*RESTART, WRITE, FREQ=50
*CONTROLS, ANALYSTS=DISCONTINUOUS
*CONTROLS, PARAMETER=FIELD
0.01, 0.01

*BOUNDARY, OP=NEW

X0, XSYMM

DREF, 1, 6

DUMMY, 2, 6

*BOUNDARY, OP=NEW

PULL, 3,3,-1.218

*BOUNDARY, FTXED, OP=NEW
PTFIXE, 2, 2

*CLOAD, FOLLOWER, OP=NEW
PULL, 1, 100249.024

*EL PRINT, FREQ=0

s

*END STEP

B i T 2 S S S SR P
* Kk

** Grips are rotated by 86 degrees
** STEP 5

*
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*STEP, INC=1000, NLGEOM
*STATIC
0.1,1.0,1.E-6,0.1
*RESTART, WRITE, FREQ=50
*CONTROLS, ANALYSIS=DISCONTINUQUS
*CONTROLS, PARAMETER=FIELD
0.01, 0.01

*BOUNDARY, OP=NEW

X0, XSYMM

DREF, 1,6

DUMMY, 2, 6

*BOUNDARY, FIXED, OP=NEW
PULL, 1, 3

DUMMY, 1, 1

PTFIXE, 2,2

*BOUNDARY, OP=NEW

PULL, 5, 5, 1.5

*CLOAD, FOLLOWER, OP=NEW
PULL, 1, 100249.024

*EL, PRINT, FREQ=0

s

*END STEP

R g e e I

* ok

** This is the forming step; force is increased to
** 238412.8 N which is the measured forming force
** for half the sheet

* *

** STEP 6

* *

*STEP, INC=1000, NLGEOM
*STATIC
0.01,1.0,1.E-6,0.04
*RESTART, WRITE, FREQ=60
*CONTROLS, ANALYSIS=DISCONTINUOUS
*CONTROLS, PARAMETER=FIELD
0.01, 0.01

*BOUNDARY, OP=NEW

X0, XSYMM

DREF, 1,6

DUMMY, 1, 6

*BOUNDARY, FIXED, OP=NEW
PULL, 5, 5

PTFIXE, 2,2

*CLOAD, FOLLOWER, OP=NEW
PULL, 1, 238412.8

*EL PRINT, FREQ=0

s

*END STEP

Fhdkdkkhkdhhhkhkhhhdhhbdbhbhbhhhbhhbhhhbhdddhhhdkhdkhddhd*
* *

** In this step the die is removed from the model
* ok

** STEP 7

* ok

*STEP, INC=100,NLGEOM, AMPLITUDE=STEP
*STATIC
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l.,1.,1.,1.,

*CLOAD, OP=NEW

*CONTROLS, ANALYSIS=DISCONTINUQUS
*CONTROLS, PARAMETER=FIELD
0.001,0.01,

*BOUNDARY, FIXED, OP=NEW

NALL, 1,6

DREF, 1,6

DUMMY, 1,6

*MODEL CHANGE, REMOVE, TYPE=CONTACT PAIR
SDIE, DIE

*END STEP

lIlIIIIIIIllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
*

** Here the dashpots are replaced to aid in relaxation
ek

** STEP 8
* %
*STEP, NLGEOM
*STATIC
*MODEL CHANGE, ADD
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
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8036
8037
8038
8039
8040
8041
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8136
8137
8138
8139
8140
8141
*END STEP

dhkkhkhkokhhhhkokdhkhkdkhkdkhhkhkhkhkhkokdhhhk bk hk kh gk khhkdkkh okt rk

* *

** Membrane stress is released while grip angle is held fixed
* *

** STEP 9
* %

*STEP, INC=1000, NLGEOM
*STATIC
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0.1,1.0

*RESTART, WRITE,FREQ = 20
*CONTROLS, ANALYSIS=DISCONTINUOQUS
*CONTROLS, PARAMETER=FIELD
0.001,0.01,

*BOUNDARY, OP=NEW
X0,XSYMM

DREF, 1, 6

DUMMY, 1,6

*BOUNDARY, FIXED, OP=NEW
PULL, 5,5

PTFIXE, 2,3

*CLOAD, OP=NEW

*EL PRINT, FREQ=0

S

*END STEP

hokok ke ke k hok kk ok ok ok ok ok Kk ok ok ok ok ok k ok ok ko ks ok ok ok k ko koo ok R ok ok ok ok ke ok Ak

* ok

** Membrane stress is released while grip angle is held fixed
** The constraints on the clamped region are released

** py the user subroutine

* k

xx STEP 10

* K

*STEP, INC=1000, NLGEOM
*STATIC

0.1,2220.0

*RESTART, WRITE,FREQ = 20
*CONTROLS, ANALYSIS=DISCONTINUOUS
*CONTROLS, PARAMETER=FIELD
0.001,0.01,

*BOUNDARY, OP=NEW

X0, XSYMM

DREF, 1,6

DUMMY, 1, 6

*BOUNDARY, FIXED, OP=NEW
PULL, 5,5

PTFIXE, 2, 3

*CLOAD, OP=NEW

*END STEP

hokkdkkhhkkdhhdhkhkhhkhhkdkhdkhddhhkdhdhkhkdhhkhkhkhkhokhhkkk kK hkkokx
* *

** Here the dashpots are removed for the last time
ok

** STEP 11

* *

*STEP, INC=100,NLGEOM,AMPLITUDE=STEP
*STATIC

1.,1.,1.,1.,

*CLOAD, OP=NEW

*CONTROLS, ANALYSIS=DISCONTINUOUS
*CONTROLS, PARAMETER=FIELD
0.001,0.01,

*BOUNDARY, FIXED, OP-NEW

NALL, 1,6

DREF, 1,6

DUMMY, 1, 6
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*MODEL CHANGE, REMOVE
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8036
8037
8038
8039
8040
8041
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
g8llz2
8113
8114

154



8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8136
8137
8138
8139
8140
8141
*END STEP

Sk kokokok sk ok ke ke ok ok ok ok ok ke ke ke ke ok ok ks ok sk ok ke sk ke sk ok ok ok ko ke Rk ok ke ok ok ok ok ok ok e

* K

** Membrane stress is released while grip angle is held fixed
** The dashpots are no longer present
*

*% STEP 12

+* Kk

*STEP, INC=1000, NLGEOM

*STATTIC

0.1,1.0

*RESTART, WRITE, FREQ = 20
*CONTROLS, ANALYSIS=DISCONTINUOUS
*CONTROLS, PARAMETER=FTELD
0.001,0.01,

*BOUNDARY, OP=NEW, AMPLITUDE=AM1
X0, XSYMM

DREF, 1, 6

DUMMY, 1, 6

*BOUNDARY, FIXED, OP=NEW

PULL, 5,5

PTFIXE, 2, 4

*CLOAD, OP=NEW, AMPLITUDE=AM1
*EL PRINT, FREQ=0

S

*END STEP

hdkkdkkkkhkhkh bk hdkhkhkhdkhhdhhkhhkhkkdhk ok dok ok k ok ko k& ok ok ok ok ok ok ok
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* *

**The grip angle is released, and the sheet is
**allowed to spring back :
* *

** STEP 13

* &

*STEP, INC=1000, NLGEOM
*STATIC

0.1,1.0

*RESTART, WRITE, FREQ = 20
*BOUNDARY, OP=NEW, AMPLITUDE=AMI
X0, XSYMM

DREF, 1, 6

*BOUNDARY, FIXED, OP=NEW
PTFIXE, 2,4

*CLOAD, OP=NEW, AMPLITUDE=AM1
*EL PRINT, FREQ=0

S

*END STEP
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Appendix B: Stretch Forming Sensitivity Matrices

Sensitivity of Thicknesses to Stretch Forming Inputs

THICKNESS SENSITIVITIES |[FORCE YIELD STREWNTHICKNESS |ANGLE
Location Element Number
2 3310| -4.82698E-10| 1.1391E-06| 1.1192400| 3.544E-07
3410| -2.89523E-10| 6.7669E-07| 1.0560200| 2.188E-07
5 4210 -2.03174E-10| 4.0682E-07| 1.0206300| 9.68E-08
8 5110] -3.67079E-10| 7.2434E-07| 1.0664400 0
5210 -3.62798E-10| 6.9686E-07| 1.0689400 0
3 3327| -3.98256E-10| 7.1017E-07| 0.9955100 0
3427| -4.38256E-10| 6.9913E-07| 0.9930600 0
6 4207| -4.54605E-10]  6.53E-07| 1.0007700 0
9 5127| -4.13524E-10| 6.6291E-07| 1.0461700 0
5227| -4.24381E-10| 6.8201E-07| 1.0526500 0
Average -3.83429E-10 7.0511E-07 1.041943  6.7E-08
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Sensitivity of Strains to Stretch Forming Inputs

Location 1

Part Element Number |[Yield Strength Angle Force Thickness l
1 3532 -0.0010143 0.00010044| 1.12651E-06 -156.1279155
3632 -0.0007943 0.0001026| 7.39686E-07 -151.362661

2 3629 -0.0014362 0.00007| 6.96035E-07 -115.6835844
3729 -0.0010762 0.00008| 8.56035E-07 -107.9149588

3 3932 -0.0006543 0.00014348| 1.09969E-06 -149.786121
4 3631 -0.0024362 9.884E-05| 6.42861E-07 -134.7054382
3731 -0.0020962 0.0001084| 6.92861E-07 -127.4260796|

5 3428 -0.0009862 6.26E-05| 6.5921E-07 -109.4958684
-0.0007862 8.348E-05| 7.5921E-07 -104.884755

6 -0.0009862 6.26E-05 6.5921E-07 -109.4958684
7 -0.0021562 0.0000700]| 6.92861E-07 -129.6302622
-0.0017862 0.0000900| 8.52861E-07 -121.9378786,

8 -0.0024362 9.884E-05| 6.42861E-07 -134.7054382
-0.0020962 0.0001084| 6.92861E-07 -127.4260796|

9 -0.0023762 7.26E-05| 1.06969E-06 -135.3122418
-0.0021562 0.0000700| 6.92861E-07 -129.6302622

10 -0.0007943 0.0000900| 7.39686E-07 -151.362661
-0.0004543 0.00010348| 9.09686E-07 -144.1924154

11 -0.0004543 0.00010348| 9.09686E-07 -144.1924154
12 -0.0014362 0.00007| 6.96035E-07 -115.6835844
Averages -0.001420602 0.000089462  7.9152E-07 -130.0478244

Location 2

1 4310 -0.0008740 -0.00084| 4.27206E-07 -124.463258
2 3910 -0.0012981 -0.00058| 5.1038E-07 -184.2235434
-0.0010960 -0.00038| 4.83428E-07 -168.9446674

) -0.0008740 -0.00084| 4.27206E-07 -124.463258
4 -0.0012981 -0.00058] 5.1038E-07 -184.2235434
5 -0.0024481 -0.00014 5.9965E-07 -227.0017964
-0.0021081 -0.00024| 5.38063E-07 -204.9846978

6 -0.0009255 -0.00065| 4.01841E-07 -1 36.2473462}
-0.0008740 -0.00084| 4.27206E-07 -124.463258

7 -0.0013881 -0.00032| 5.42698E-07 -190.2339788
-0.0012981 -0.00058 5.1038E-07 -184.2235434

8 -0.0015681 -0.00016| 4.93428E-07 -187.6758326
-0.0013881 -0.00037| 6.0038E-07 -189.8140874

9 -0.0013881 -0.00037| 6.0038E-07 -189.8140874 |
10 -0.0021081 -0.00024| 5.38063E-07 -204.9846978
-0.0015681 -0.00016| 4.93428E-07 -187.6758326

11 -0.0015681 -0.00016] 4.93428E-07 -187.6758326)
12 . 10 -0.0015681 -0.00016| 4.93428E-07 -187.6758326
Average -0.001424371 -0.000422778 5.05054E-07 -177.1549497

Location 3

1 4332 -0.0002162 0.00017012| 7.8921E-07 -85.7643664
2 3833 -0.0016762 0.00009956| 8.82861E-07 -119.3604484
3933 -0.0020362 0.00013| 7.12861E-07 -122.0382544

3 4336 -0.0009462 0.00018072| 9.66035E-07 -103.8955882
4 3636 -0.0007943 0.0001026| 7.39686E-07 -151.362661|
5 3534 -0.0003743 1E-05| 7.49686E-07 -146.8535684
3634 -0.0001543 0.0001035| 8.49686E-07 -141.3575996

6 3938 -0.0012943 0.00014392| 9.39686E-07 -163.0318384
7 3538 -0.0021543 0.00012348| 1.08651E-06 -172.5197262
3638 -0.0006543 0.00011324| 1.16969E-06 -145.0517652|

8 3836 -0.0007743 0.00012| 9.73338E-07 -150.6484493
9 3539 -0.0026943 0.00016044| 1.09334E-06 -179.234433
3639 -0.0012243 0.00013368| 1.14651E-06 -153.6085248|

10 3635 -0.0010743 0.0000985| 1.17651E-06 -155.2193202
3735 -0.0006943 0.0001104| 9.09686E-07 -148.3255504

11 3836 -0.0007943 0.0001026| 7.39686E-07 -151.362661
3736 -0.0006943 0.00011044| 9.09686E-07|  -148.3255504

12 4230 -0.0009344 0.00011824| 7.78733E-07 -67.7296242
Averages -0.00106581 0.000118413 9.22967E-07 -139.2049961
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