Kerr Electro-Optic Measurements and Nonuniform Electric Field Reconstructions

by

Tza-Jing Gung

B.S. Electrical Engineering, National Taiwan University (1992)
M.S. Electrical Engineering, Massachusetts Institute of Technology (1995)

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Electrical Engineering

at the
Massachusetts Institute of Technology
May 1999

© 1999 Massachusetts Institute of Technology
All rights reserved

Signature of Author

Department of Electrical Engineering and Computer Science
May 11, 1999

Certified by

Markus Zahn
Professor of Electrical Engineering
Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Committee on Graduate Students
Department of Electrical Engineering and Computer Science

JUL 5 1999
To my parents and brother
KERR ELECTRO-OPTIC MEASUREMENTS AND
NONUNIFORM ELECTRIC FIELD RECONSTRUCTIONS

by

TZA-JING GUNG

Submitted to the Department of Electrical Engineering and Computer Science
on May 15, 1999 in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy in
Electrical Engineering

Abstract

This thesis uses Kerr electro-optical tomography as a new method to measure electric
field and space charge distributions in insulating liquids when the applied electric
field magnitude and direction are not constant along the light path. This technology
can be used to experimentally verify the electrical design of high voltage devices, to
monitor and diagnose the electrical health of high voltage devices and systems, to
provide information on the remaining life, and to prevent failure caused by dielectric
breakdown.

The Kerr electro-optic method passes low power laser light through a high voltage
region filled with an insulating liquid, such as transformer oil. Because the insulating
liquid becomes slightly birefringent under high electric field stress, incident linearly or
circularly polarized light propagating through the high field stressed medium becomes
elliptically polarized. By using a polariscope to analyze the elliptically polarized light
due to electric field induced birefringence (Kerr effect), we can measure the electric
field distribution in the insulating liquid so that the space charge distribution can be
calculated from Gauss’ law, $\rho = \nabla \cdot \epsilon \mathbf{E}$. Making use of the measured data, together
with insulating liquid properties, such as dielectric constant, breakdown field strength,
resistivity, dissipation factor, thermal conductivity, thermal stability limit, etc., optical
measurements can help evaluate the electrical design and health of high voltage
systems.

Because the Kerr effect in most liquids is very weak, the detected optical signal is very
sensitive to electrical noise and small disturbances. In this thesis we studied meth-
ods to increase the optical signal level and to suppress electrical noise so that the
measurement results can accurately recover the electric field using the "onion peeling"
method of radial discretization in axisymmetric geometries. Measurements were performed using low Kerr constant transformer oil \(B \approx 2.3 \times 10^{-15} \text{m/V}^2 \) and high Kerr constant propylene carbonate \(B \approx 1 \times 10^{-12} \text{m/V}^2 \) with parallel-plate, point-plane, and point-ring-plane electrode geometries. We also examine some measurements with non-axisymmetric electrode geometry. We compare experimentally determined electric field distributions with theoretical or computer simulated results under space charge free conditions to provide a comparison for nonzero space charge distributions. Theoretical analyses of significant space charge effects are presented for parallel-plate and coaxial cylindrical electrodes.

Thesis Supervisor: Markus Zahn

Title: Professor of Electrical Engineering
Acknowledgments

I wish to thank Prof. Markus Zahn, supervisor of my thesis, for helping and guiding me throughout my thesis research. It was my pleasure to work under his guidance during my four years at MIT. His enthusiasm for research helped me continue to make progress no matter what kind of problems I encountered.

I would like to express my gratitude to our technician Wayne Ryan who helped me design my experimental setup and shared his experience with me, and to Rocky Albano for his expertise in machining the high voltage electrode assemblies.

I am very fortunate to have the opportunity to work with the other Ph.D. students in the High Voltage Research Laboratory. They are Darrell Schlicker, Afsin Ustundag, Yanqing Du, and Alexander Mamishev. I especially thank Afsin for being my research partner in developing the Kerr electro-optic tomography technology.

I also want to thank Ansoft Corp. for providing their computer software Maxwell which was used for many of the computer simulations performed in this thesis, and to thank the MIT Department of Electrical Engineering and Computer Science for awarding me the Winton Hayes, Edwin S. Webster and Grass Instrument Co. Fellowship.

In addition, I also want to acknowledge the support by the National Science Foundation under Grant No. ECS922038 which funded the early part of this research program.

Finally, special warm appreciation is expressed to Wendy Wan-Chun Wang. Her support and encouragement helped me to finish this thesis.
Contents

Abstract 5
Acknowledgments 7
Contents 9
List of Figures 16

1 Introduction 29
1.1 Dielectric Liquids ... 29
1.2 Scope of Thesis ... 30
1.3 Outline of Thesis ... 31

2 Kerr Electro-Optic Theory 33
2.1 Kerr Effect in Dielectric Liquids .. 33
2.1.1 Electric Field Induced Birefringence 33
2.1.2 Linear And Circular Polariscopes 34
2.2 Characteristic Parameters ... 37
2.2.1 Theoretical Derivation from Maxwell Equations 37
2.2.2 Relation Between Kerr Effect and Permittivity Elements 39
2.2.3 Approximate Governing Equations 40
2.2.4 Expressions with Characteristic Parameters 42
2.2.5 Relation between Characteristic Parameters and Electric Field . 44
2.3 Onion Peeling Method ... 44
2.3.1 General Algorithm ... 45
2.3.2 Two Layer Problem ... 48
3.1.4 Lens ... 117
3.1.5 Photo-Detector 118
3.2 Instrumentation 118
 3.2.1 Vacuum System 118
 3.2.2 Circulation System 119
 3.2.3 Electronic Instruments 120
 High Voltage Amplifier 120
 Function Generator 122
 Lock-In Amplifier 122
 3.2.4 Positioning System 123
 Linear Stepper Motors 123
 Rotational Stepper Motors 123
 Micrometer 124
 3.2.5 Calibration of Laser Position 124
3.3 AC High Voltage Modulation 125
3.4 Effects of Applied Voltage Fluctuations 128
3.5 Experimental Procedures 129
3.6 Experimental Errors Due to Polarizer and Quarter Wave Plate 130
 3.6.1 Effects of Nonuniform Polarizer Attenuation 130
 3.6.2 Effects of Imperfect Incident Circularly Polarized Light 130
3.7 Electrical Interfaces 132
 3.7.1 GPIB Interface 132
 3.7.2 Digital Interface 132
3.8 Software 133
 3.8.1 Automation Program 133
 3.8.2 Ansoft Maxwell 2D/3D Electrostatic Simulations 133
3.9 Summary .. 140

4 Electrode Geometries 141
 4.1 Parallel Plate Electrodes 141
 4.2 Axisymmetric Geometry 142
 4.2.1 Point-Plane Geometry 142
 4.2.2 Point-Plane-Ring Geometry 146
 Multiple Layer Ring Electrodes 146
 Single-Layer Ring Electrodes 146
 4.3 Non-axisymmetric Geometry 165
 4.4 Summary 167

5 Demonstration of Onion Peeling Method 169
 5.1 Point-Plane Electrodes 170
 5.2 Point-Ring-Plane Electrodes 171
6 Measurements in Transformer Oil ... 189
 6.1 Properties of Transformer Oil ... 189
 6.2 Kerr Constant Measurements with Parallel Plate Electrodes 189
 6.3 Measurements with Point-Plane Electrodes ... 190
 6.3.1 Normalization of Characteristic Parameters and Recovered Electric Field ... 190
 6.3.2 Spatial Averaging of the Optical Signal ... 191
 6.3.3 Stainless Steel Point Electrodes ... 196
 Large Ground Plane ... 196
 Sensitivity Check ... 202
 Small Ground Plane ... 215
 6.3.4 With Teflon Film on the Ground Plane: Surface Charge Effects 223
 6.4 Measurements with Point-Ring-Plane Electrodes ... 225
 6.4.1 No Dielectric Breakdown Spot on the Ground Plane 225
 6.4.2 Numerical Calculation of Characteristic Parameters Near the Sharp Needle tip ... 228
 6.4.3 Dielectric Breakdown Spot on the Ground Plane: Space Charge Effects ... 228
 6.5 Summary ... 232

7 Measurements in Propylene Carbonate ... 233
 7.1 Propylene Carbonate ... 233
 7.2 Conduction Current Interference and Frequency Dependence 234
 7.3 Axisymmetric Measurements ... 238
 7.4 The Difficulties of Doing Experiments in Propylene Carbonate 238
 7.5 Sensitivity Check ... 239
 7.6 Non-Axisymmetric Measurements ... 264
 7.7 NMR Spectrum ... 270
 7.8 Summary ... 279

8 Summary and Conclusions ... 281
 8.1 Summary of Thesis ... 281
 8.2 Accuracy ... 283
 8.3 Suggestions for Future Work ... 284
 8.3.1 Better Algorithm for Electric Field Reconstruction 284
 In Axisymmetric Geometries with High Electric Field Outside Measurement Range ... 284
 In Non-axisymmetric Geometries ... 284
 8.3.2 Additives in Transformer Oil to Increase Space Charge Effects 284
Acknowledgments
List of Figures

2.1 The transverse component E_T of applied electric field in the $x - y$ plane, where φ is the angle between the x axis and E_T. .. 33

2.2 Optical component arrangement for linear and circular polariscopes. ... 36

2.3 An n-layer discretization of an axisymmetric electric field region to be used with the onion peeling method. 45

2.4 Relation of electric field components E_x, E_y within the same ring j but different angle θ. 47

2.5 A two-layer discretization of an axisymmetric electric field region to be used as a simple case study for the onion peeling method. 50

2.6 Representative measured characteristic parameters using point-plane electrodes under applied AC voltage ≈ 1 kVrms used to recover the electric field using the onion peeling method where $(\gamma_{ac})_N = \gamma_{ac}/V_{AC}^2$ with γ_{ac} and V_{AC} being rms values. 54

2.7 Comparison of electric field components from space charge free theory and reconstructed electric field using the onion peeling method with 20 discretized rings but without smoothing the data in Figure 2.6. 55

2.8 Comparison of electric field components from space charge free theory and reconstructed electric field using the onion peeling method with 160 discretized rings but without smoothing the data in Figure 2.6. 56

2.9 Comparison of electric field components from space charge free theory and reconstructed electric field using the onion peeling method with 20 discretized rings and smoothing the data in Figure 2.6. 57

2.10 Comparison of electric field components from space charge free theory and reconstructed electric field using the onion peeling method with 160 discretized rings and smoothing the data in Figure 2.6. 58

2.11 Comparison of electric field components from space charge free theory and reconstructed electric field using the onion peeling method with 160 ring layers whose outermost ring extended to 10 mm with smoothing of the data. ... 59

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.12</td>
<td>Comparison of electric field components from space charge free theory and reconstructed electric field using the onion peeling method under the semi-infinite line charge assumption to characterize the electric field outside the outermost ring [11].</td>
<td>60</td>
</tr>
<tr>
<td>2.13</td>
<td>Prolate spheroidal coordinate [14].</td>
<td>62</td>
</tr>
<tr>
<td>2.14</td>
<td>Hyperboloid of revolution electrode.</td>
<td>64</td>
</tr>
<tr>
<td>2.15</td>
<td>Comparison of the $h(x) = \frac{2\gamma}{\pi B A^2}$ function defined in eq. (2.145) between analytical solution and numerical calculation with $d = 5$ mm, $R_c = 550\mu$m, so that $a = \sqrt{d^2 + dR_c} \approx 5.27$ mm.</td>
<td>69</td>
</tr>
<tr>
<td>2.16</td>
<td>Local spherical coordinate system with origin at the particle center (x_0, y_0, z_0) in the reference coordinate system (x, y, z) showing the perturbation dipole field $\vec{e} = e_r \hat{r} + e_\theta \hat{\theta}$ due to the induced electric dipole in the particle from the imposed electric field E_0.</td>
<td>71</td>
</tr>
<tr>
<td>2.17</td>
<td>$\frac{\delta x}{y}$ is calculated for different heights of light paths 1, 2, 3, 4 passing through the center line $r = 0$ in the presence of a bubble near the electrode tip with center at $x_0 = 4.3$ mm, $y_0 = 0$ as a function of z_0. Paths 1, 2, 3, 4 are at $x = 4.7$ mm, 3.8 mm, 2.5 mm and 0 and $y = 0$.</td>
<td>75</td>
</tr>
<tr>
<td>2.18</td>
<td>$\frac{\delta x}{y}$ is calculated for different heights of light paths 1, 2, 3, 4 passing through the center line $r = 0$ in the presence of a bubble near the ground plane with center at $x_0 = 0.5$ mm, $y_0 = 0$ as a function of z_0. Paths 1, 2, 3, 4 are at $x = 4.7$ mm, 3.8 mm, 2.5 mm and 0 and $y = 0$.</td>
<td>76</td>
</tr>
<tr>
<td>2.19</td>
<td>$\frac{\delta x}{y}$ for light paths at $x = 4.7$ mm but different y coordinates with different bubble positions 1, 2, 3, 4, respectively. In these Figures, bubble center position 1 is at (4.3, 0.7, 0) mm, bubble center position 2 is at (4.3, 2.5, 0) mm, bubble center position 3 is at (4.3, 10, 0) and bubble center position 4 is at (4.3, 50, 0) mm. The horizontal axis is the light path y coordinate.</td>
<td>77</td>
</tr>
<tr>
<td>2.20</td>
<td>δa for the light paths at $x = 4.7$ mm but different y coordinates with different bubble positions 1, 2, 3, 4, respectively. Bubble center position 1 is at (4.3, 0.7, 0) mm, bubble center position 2 is at (4.3, 2.5, 0) mm, bubble center position 3 is at (4.3, 10, 0) and bubble center position 4 is at (4.3, 50, 0) mm. The horizontal axis is the light path y coordinate.</td>
<td>78</td>
</tr>
<tr>
<td>2.21</td>
<td>Hyperboloid of revolution approximation for point-plane electrodes with a Teflon film on the ground plane.</td>
<td>80</td>
</tr>
<tr>
<td>2.22</td>
<td>The equipotential lines for a point-plane electrode geometry with a thin Teflon film ($\sigma_2 \approx 0$) on the surface of the ground plane. We see that except around the center, most of the equipotential lines are normal to the film surface, which means that the electric field just above the surface of the Teflon film is tangential.</td>
<td>82</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

2.23 The calculated electric field component E_r for point-plane electrodes with $R_c = 550\mu m$ and $d = 5$ mm, with and without a thin Teflon film on the ground plane with a transformer oil dielectric as a function of r for $x = 2.54, 3.81, 4.78$ mm under an applied DC voltage 1 V.

2.24 The calculated electric field component E_x for point-plane electrodes with $R_c = 550\mu m$ and $d = 5$ mm, with and without a thin Teflon film on the ground plane with a transformer oil dielectric as a function of r for $x = 2.54, 3.81, 4.78$ mm under an applied DC voltage 1 V.

2.25 The calculated electric field component E_z with and without a thin Teflon film on the ground plane with a transformer oil dielectric at $x = 0.25$ mm as a function of r with an applied DC voltage 1 V.

2.26 Parallel plate electrodes where either positive volume charge is injected from the positive electrode or negative volume charge is injected from the negative electrode.

2.27 Steady state electric field distributions for various current values in the presence of positive space charge between parallel plate electrodes, injected from the positive electrode at $x = 0$. In this figure, the area under each curve is equal to $V_0 = 10000$ volts.

2.28 Steady state positive space charge distributions for various current values between parallel plate electrodes for positive charge injected from the positive electrode at $x = 0$.

2.29 Steady state electric field distributions for various current values in the presence of negative space charge between parallel plate electrodes, injected from the negative electrode at $x = h = 0.1$ m. Note that the area under each curve is equal to $V_0 = 10000$ volts.

2.30 Steady state negative space charge distributions for various current values between parallel plate electrodes for negative charge injected from the negative electrode at $x = h = 0.1$ m.

2.31 Coaxial cylinder conductors.

2.32 Steady state electric field distributions for various current values in the presence of positive space charge injected from the positive inner cylinder at $r = a = 0.05$ m.

2.33 Steady state positive space charge distributions for positive charge injection from the inner cylinder at $r = a = 0.05$ m.

2.34 Steady state electric field distributions for various current values in the presence of negative space charge injected from the outer cylinder at $r = b = 0.1$ m.

2.35 Steady state negative space charge distributions for negative charge injection from the outer cylinder at $r = b = 0.1$ m.

2.36 A circular column of space charge with 2 mm radius and charge density of 0.00001 C/m^3 between point-plane electrodes with point radius of curvature $R_c = 550\mu m$ and gap distance $d = 5$ mm.
LIST OF FIGURES

2.37 Calculated electric field component E_r for different values of x as a function of r, comparing the cases with (thick lines) and without (thin lines) the space charge distribution of Figure 2.36 under applied DC voltage of 10 kV. ... 104

2.38 Calculated electric field component E_x for different values of x as a function of r, comparing the cases with (thick lines) and without (thin lines) the space charge distribution of Figure 2.36 under applied DC voltage of 10 kV. ... 105

2.39 Calculated optical characteristic parameter α for different values of x as a function of y, comparing the cases with (thick lines) and without (thin lines) the space charge distribution of Figure 2.36 with an applied DC voltage of 10 kV. ... 106

2.40 Calculated normalized characteristic parameter γ_N for different values of x as a function of y, comparing the cases with (thick lines) and without (thin lines) the space charge distribution of Figure 2.36 with an applied DC voltage of 10 kV. ... 107

3.1 Picture of experimental apparatus. .. 110

3.2 Top and side view of the experimental apparatus arrangement for incident light intensity I_i just after the filtering polarizer and output light intensity I_o after the analyzing polarizer. 112

3.3 Interconnection of electronic instruments. .. 120

3.4 When we simultaneously apply AC and DC high voltages to the Kerr cell electrodes, there will be AC and DC electric fields that are not collinear if space charge is present. .. 125

3.5 Window of Maxwell 3D Simulator for a non-axisymmetric point-plane electrode geometry. .. 135

3.6 Model drawing environment in Maxwell 3D Simulator for the electrode geometry of Figure 3.5. .. 136

3.7 Window to set up materials properties. .. 137

3.8 Window to set up boundary conditions and source values. 138

3.9 Window of post processor of the electrode geometry in Figure 3.5. 139

4.1 Point-plane electrode geometry with large ground plane. 143

4.2 Stainless steel needle electrode with radius of curvature $\approx 550\mu m$ and length ≈ 7 cm. .. 144

4.3 Aluminum needle electrode with radius of curvature $\approx 1050\mu m$ and length ≈ 7 cm. .. 145

4.4 High voltage point-ring electrode with multiple layer rings. The center point electrode is 2.5 mm above the ground plane and the surrounding ring electrodes are 5 mm above the ground plane. 148
LIST OF FIGURES

4.5 The simulated electric field component E_r for different x values as a function of r using multiple layer (3 layers) point-ring-plane electrodes whose high voltage electrodes are shown in Figure 4.4 under applied DC voltage 1 kV. ... 149

4.6 The simulated electric field component E_x for different x values as a function of r using multiple layer (3 layers) point-ring-plane electrodes whose high voltage electrodes are shown in Figure 4.4 under applied DC voltage 1 kV. ... 150

4.7 The calculated optical characteristic parameter α from calculated electric field components shown in Figures 4.5 and 4.6 for different x values as a function of y from $y = 0$ to $y = 100$ mm using multiple layer (3 layers) point-ring-plane electrodes whose high voltage electrode is shown in Figure 4.4. ... 151

4.8 The calculated normalized optical characteristic parameter γ_N (defined in Section 6.3.1) from simulated electric field components shown in Figures 4.5 and 4.6 for different x values as a function of y from $y = 0$ to $y = 100$ mm using multiple layer (3 layers) point-ring-plane electrodes whose high voltage electrode is shown in Figure 4.4. ... 152

4.9 The calculated optical characteristic parameter α from calculated electric field components shown in Figures 4.5 and 4.6 for different x values as a function of y from $y = 0$ to $y = 10$ mm using multiple layer (3 layers) point-ring-plane electrodes whose high voltage electrode is shown in Figure 4.4. ... 153

4.10 The calculated normalized optical characteristic parameter γ_N (defined in Section 6.3.1) from simulated electric field components shown in Figures 4.5 and 4.6 for different x values as a function of y from $y = 0$ to $y = 10$ mm using multiple layer (3 layers) point-ring-plane electrodes whose high voltage electrode is shown in Figure 4.4. ... 154

4.11 High voltage point-ring electrode with a single layer ring. ... 155

4.12 Aluminum needle electrode used in the point-ring-plane electrodes as the center sharp point electrode with radius of curvature $\approx 40\mu m$ and length ≈ 7 cm. ... 156

4.13 Point-ring-plane electrode structure showing the point electrode being ~ 2.5 mm below the ring electrode. ... 157

4.14 Space charge free equipotential lines for point-ring-plane electrode on the cross section of $x - y$ plane under applied DC voltage 1000 volts. ... 158

4.15 The calculated electric field component E_r for different x values as a function of r using the single layer point-ring-plane electrodes whose high voltage electrode is shown in Figures 4.11 and 4.13 under applied DC voltage 1 kV. ... 159
LIST OF FIGURES

4.16 The calculated electric field component E_x for different x values as a function of r using the single layer point-ring-plane electrodes whose high voltage electrode is shown in Figures 4.11 and 4.13 under applied DC voltage 1 kV. ... 160

4.17 The calculated optical characteristic parameter α from calculated electric field components shown in Figures 4.5 and 4.6 for different x values as a function of y from $y = 0$ to $y = 100$ mm using single layer point-ring-plane electrodes whose high voltage electrodes are shown in Figures 4.11 and 4.13. ... 161

4.18 The calculated normalized optical characteristic parameter γ_N (defined in Section 6.3.1) from calculated electric field components shown in Figures 4.5 and 4.6 for different x values as a function of y from $y = 0$ to $y = 100$ mm using single layer point-ring-plane electrodes whose high voltage electrode is shown in Figures 4.11 and 4.13. ... 162

4.19 The calculated optical characteristic parameter α from calculated electric field components shown in Figures 4.5 and 4.6 for different x values as a function of y from $y = 0$ to $y = 10$ mm using single layer point-ring-plane electrodes whose high voltage electrode is shown in Figures 4.11 and 4.13. ... 163

4.20 The calculated normalized optical characteristic parameter γ_N (defined in Section 6.3.1) from simulated electric field components shown in Figures 4.5 and 4.6 for different x values as a function of y from $y = 0$ to $y = 10$ mm using single layer point-ring-plane electrodes whose high voltage electrode is shown in Figures 4.11 and 4.13. ... 164

4.21 Non-axisymmetric electrode geometry. ... 165

4.22 Relative position and dimensions of metal wall and block used in the non-axisymmetric geometry of Figure 4.21. ... 166

4.23 Relative position of non-axisymmetric metal wall and block to the point electrode as shown in Figure 4.21. ... 167

5.1 Calculated electric field (rms) components E_r and E_x using the point-plane electrode of Figure 4.2 for $x = 2.54$ mm, $x = 3.81$ mm and $x = 4.78$ mm below the tip of the point electrode as a function of r under space charge free conditions with voltage 1 kVrms. ... 173

5.2 Electric field (rms) comparison between simulation results (solid lines) from Maxwell Simulator and reconstruction algorithm (dashed lines) using the onion peeling method from calculated characteristic parameters in Figures 2.39 and 2.40 under an applied AC voltage 1 kVrms. ... 174

5.3 Calculated electric field (rms) components E_r and E_x using the point-plane electrode of Figure 4.2 for $x = 6.35$ mm and $x = 10.5$ above the tip of the point electrode as a function of r under space charge free conditions at AC voltage 1 kVrms. ... 175