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Abstract

The time-to-collision task is that of estimating the ratio of the distance of an object
to the relative velocity in the direction of that object, based on time-varying images
resulting from the 3-D motion of a camera with respect to the object. Traditional
methods require large amounts of memory and computation time, and are not suited
for real time hardware implementations. We used a direct method to provide a
non-linear closed form solution for the case of translational motion, because it is
more robust to noise, and provides a straightforward solution for time-to-collision.
Three approaches - gradient descent, a grid search method and an improved grid
search were used for solving the non-linear equations. Two alternatives - analog
VLSI chip implementation and digital signal processing microprocessor based system
design were investigated. Finally, the time-to-collision algorithms were simulated on
a Texas Instruments digital signal processor(DSP) TMS320C67 based system. From
the results of the simulation on the TMS320C67 Code Generator and Simulator,
it is shown that the improved grid search method provides reliable results and high
computational efficiency with real time performance when implemented with the DSP
TMS320C67.

Thesis Supervisor: Berthold K.P. Horn
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The motion vision processing problem involves using a sequence of camera images to

estimate motion in the world. This has been well-studied over the past few decades,

and numerous algorithms having been proposed, ranging from feature based methods

to motion field methods [12]. In this thesis, we focus on the time-to-collision problem

and its real-time implementations, which in particular has immediate and practical

application to automatic navigation.

1.1 Time-to-collision for Automatic Navigation

At a high level, the goal of automatic navigation is to move a mobile robot or vehicle

from some starting position to a goal location. The task of having a program auto-

matically drive a car from Boston to New York City is an example of this, and so is

the task of having a mail-delivery robot wander from the mail-room to a particular

office in a building. In both of these tasks, it is generally crucial for the car or robot

to avoid running into other objects.

Focusing on the driving example, by exploring emerging intelligent transporta-

tion system(ITS) technologies for automatic navigation, road-vehicle systems can be

safer, more efficient, and more environment-friendly [16]. ITS systems can broadly be

classified into two classes: On-road systems and in-vehicle systems [1]. As its name

suggest, the on-road approach involves building sensors into the environment (the
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"road") to monitor and analyze vehicular motion, and uses the results of that analy-

sis to make appropriate decisions to control the traffic. In contrast, the in-vehicular

approach involves building a system into the mobile object itself (the "car") to mon-

itor local conditions and to make appropriate navigational movements so as to avoid

collisions. In this thesis, we focus on implementations that generally fall into this

latter category of in-vehicular approaches.

Given images from a camera mounted on the mobile object (the car or robot), it is

the task of the time-to-collision algorithm to give a warning whenever a collision with

another object is imminent, and in fact to further estimate the time remaining to the

collision. This facilitates the building of an early-warning collision system, which can

often be crucial to avoiding such collisions.

A curious but very useful property of the time-to-collision problem is that, despite

operating in a three-dimensional world where stereoscopic vision is needed for most

vision processing tasks (such as depth estimation), the time-to-collision problem re-

quires only one camera. It is certainly true that, without additional information, it is

impossible to estimate the absolute value of depth or absolute velocity when we are

given a sequence of images taken by a single moving camera. Thus, it would seem

impossible, using just a single camera, either to estimate the distances of objects we

might collide into, or to estimate how quickly we are approaching them, and therefore

that time-to-collision cannot be solved if we had only a single camera.

Happily, this is not the case. While there is an ambiguity in the scaling of distances

and in the scaling of velocities, there is no ambiguity in the ratio of distance to

velocity, and this ratio gives exactly the time-to-collision. This fact will be explained

in considerable detail later in this thesis, and is the key fact that will enable us to

design sound time-to-collision algorithms that require only one camera mounted on

the moving object.
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1.2 Real-time Implementations

Most interesting vision problems are difficult, perhaps even "Al-complete," and so

the algorithms designed for them are often only attempts at approximating truly

"optimal" solutions. And because many vision algorithms were designed to try to

achieve the best possible performance perhaps even under adverse conditions, it is

often the case that they will engage in a large amount of costly statistical estimation

and processing to give answers that are as accurate as possible. Taking this approach,

the literature reports numerous successes of these algorithms, which occasionally even

beat human performance on restricted tasks. [5]

Yet because of a growing desire to apply vision algorithms to real systems that

often have tight time constraints, much recent attention has also been focused on the

particular case of real-time implementations of such algorithms. Indeed, this is partic-

ularly important when applying time-to-collision algorithms to obstacle avoidance-if

we are about to collide into another object in Is, then any algorithm that takes longer

than Is to warn us about it would not be of much use!

This thesis addresses the problem of real-time implementations of solutions to the

time-to-collision problem. To successfully build such a system, our requirements are

two-fold:

" (Algorithm) We need to design an algorithm that is sound and robust, yet fast

enough for real-time applications.

" (Implementation) We need to make careful choices in the implementation of the

algorithms, both to reduce cost and to ensure sufficiently fast processing for a

quick time-to-collision estimate.

This work addresses the real-time implementation of the time-to-collision problem.

The system does not perform high level navigation such as following certain lane

markings. Instead, it is designed to detect and avoid obstacles, in order for the

vehicle to travel safely in the unknown environment. Collision avoidance is a key

consideration for people working with vehicles. Time-to-collision is an effective tool
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in collision avoidance, because it provides the time it takes for the camera to hit

the object without physical contact in the measurement. Once implemented in real

time, a time-to-collision system can be useful in guiding a moving vehicle, a robot or

perhaps a blind person.

There are two possible approaches for real-time implementation of time-to-collision.

The first is based on the system level integration of an imager (usually a CMOS or

CCD) camera and a digital processor to run the time-to-collision algorithm [18]. The

other solution is a specialized chip which includes both image sensors and image pro-

cessing units [22]. In either case, the designed hardware has to have both reliable

results and real-time performance.

The time-to-collision problem is concerned with time dependent features of the

scenes, which requires inputs from two time-frames. Due to the fast motion of vehicle,

the camera inside the vehicle must take images at real-time video rate, which is 30

frames per second for a real-time implementation. The computation of the time-to-

collision is required to be completed in less than 33ms per frame. Because of the

large number of pixels in each image, the number of arithmetic operations involved

will be huge. Most existing motion vision processing problems are computationally

expensive, and are not suited for real-time implementation. In this research, we

have explored new algorithms with less computation and reliable results for time-to-

collision and its possible real-time implementation.

1.3 Thesis Organization

The remainder of this thesis is structured as follows: Chapter 2 surveys related work

in time-to-collision processing, and then introduces the theoretical framework and

assumptions that are used throughout this thesis. Based on this framework, Chapter

3 then describes and gives the mathematical derivations and characteristic features

of different time-to-collision algorithms-gradient descent algorithm, grid search al-

gorithm, and improved grid search algorithm. Chapter 4 then investigates various

issues in the hardware-implementations of these algorithms, and shows the tradeoff
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between two main alternatives-Analog VLSI with a parallel algorithm (the gradi-

ent descent algorithm), and Digital signal processing (DSP) with a serial algorithm

(the improved grid search algorithm). Eventually choosing the latter, we also show

how software that was specialized for the particular chosen chip architecture (a DSP

TMS320C67 chip) was able to significantly improve computational and memory effi-

ciency. Chapter 5 then reports on experiments using a DSP microprocessor simulator,

that compares the efficiency of different time-to-collision algorithm implementations.

Finally, Chapter 6 closes with conclusions and future work.
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Chapter 2

Theoretical Foundation

This chapter presents a brief discussion of some background and theoretical founda-

tion that is directly related to this work.

2. 1 Background

The standard approach for motion vision processing is to first compute correspon-

dences. Generally, the correspondences can be either characteristic features or mo-

tion field estimates[24]. From the computed correspondences, camera motion or scene

structure can be obtained. In the characteristic feature based methods, an estimate

of camera motion and scene structure is found by identifying characteristic features

of objects, such as edges or corners, and tracking them through the image sequence.

vThe other method is based on motion field estimation. In the motion field methods,

optical flow, the apparent velocity of each location in the image, is first calculated

through the image brightness at every location to approximate the motion field. The

calculated optical flow is then used to estimate the camera motion and scene structure.

In the standard approaches mentioned above, finding correspondence is a hard

problem. Features have to be recovered accurately in order to correctly recover cam-

era motion. For characteristic feature based methods, it is still an open research

subject to find out what set of features such as edges, corners is best for different im-

ages. In addition, a window search, which is generally used in characteristic feature
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based method, is a computationally expensive process. For motion field methods, it-

erative approaches are very often used in obtaining optical flow. Accurate optical flow

usually requires a large number of iterations. Meanwhile, optical flow suffers from

the "aperture problem", which is that local flow estimates are only in the direction

of the image brightness gradient. Thus, recovery of optical flow is computationally

expensive and ill-conditioned [5]. Errors calculated in the correspondences will be

carried to the next stage of camera motion estimation, therefore causing the final

result to be not very robust in the presence of noise. Because of the reasons above,

the standard methods are not suitable for camera motion estimation in a real time

system. We are now exploring some new approaches that promise to be more robust

and computationally less expensive than the traditional methods.

Time-to-collision is solved with a direct method, which was developed by Horn

and Negahdaripour [21]. It forms the theoretical foundation for the time-to-collision

problem. This method is an improved motion field method, and uses vthe direct re-

lationship between camera geometry and image, brightness. Therefor it solves tae

time-to-collision problem, while skipping the optical flow computation as, an inter-

mediate quantity, causing less computation for obtaining the camera motion. At the

same time, by making use of image intensity for every pixel on a two-image sequence

and minimizing error using a least squares approach, our approach avoids the aperture

problem, and is relatively robust to quantization error, noise, illumination gradients,

and other effects [6].

2.2 Previous Work

Given the direct method as the theoretical foundation, we should also mention a

few projects related to the present work. McQuirk implemented analog circuitry to

solve a related problem, finding the focus of expansion (FOE) of time-varying image

sequences [17]. Focus of expansion is the intersection of the translation vector of the

camera with the image plane. As one moves through a world of static objects, for

a given direction of translational motion and direction of gaze, the world seems to
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be flowing out of one particular retinal point. That point is the focus of expansion.

The focus-of-expansion problem finds the direction of the motion, while velocity and

distance are not of interest. Conversely, our time-to-collision problem obtains the

ratio of distance and velocity in the direction of the motion, while direction of motion

itself is not of interest. Both problems can be solved using the direct method and

least squares error as the theoretical basis.

Frumkin investigated the problem of time-to-collision in a digital chip design [3].

Because of computation complexity, only a 1-D special case was implemented. As

a generalization of that work, in this project we will explore algorithms for the 2-D

case and their possible real time implementations.

2.3 Direct Method

The direct method builds the theoretical foundation for time-to-collision problem. It

is derived from the following two constraints [6]:

* Perspective Projection Constraint

" Constant Brightness Constraint

To understand how the direct method works, we first review these two constraints

individually, then combine these two constraints to form the method.

2.3.1 Perspective Projection Constraint

In our application, a camera based coordinate system is used to express the correspon-

dence between objects in the 3-D world and images in the image plane. Figure 2-1

shows this camera based coordinate system.

In this figure, the origin is located at the center of projection, which is taken

as the camera location. The image plane is positioned at the principal distance f,
parallel to the xy-plane. The z axis represents the direction that is perpendicular to

the image plane. Position R = (X, Y, Z)T in the real world system is mapped into the
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z

R

(X,Y,Z)

Image Plane

Figure 2-1: Camera-centered geometry and perspective projection

image plane at r = (x, y, f)T according to the perspective projection constraint. This

constraint is modeled as a pinhole camera which provides a relation between object

coordinate R and image coordinate r as follows:

r = (2.1)
R _

where i is the unit vector 'in z direction. Equation (2.1) is called the perspective

projection equation.

As we know, the motion of the object relative to the camera is the opposite of

the motion of the camera relative to the object. If the camera moves with instan-

taneous translational velocity t = (taI tyI tz)T and instantaneous rotational velocity

w = (w, wyI, wz)T, the motion of a world point in the camera coordinate system will

be:

R= -t - (w x R) = -t - (w x r)( ) (2.2)
f

The motion Rt of the object in the world system generates a motion on the image

plane, which can be represented as rt = (u, v, 0). The relation between these two

motions can be determined by taking the derivative of equation 2.1 with respect to

time:

rt = (Rf) 2 ((R - )Rt - (R - )R) (2.3)
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From the motion Rt obtained in equation 2.2, we can rewrite equation 2.3 to

represent the motion field rt on the image plane as:

r x w t
rt =-2x (r x ( fW- ,R ) (2.4)

2.3.2 Constant Brightness Constraint

Using the perspective projection, we have built the relation between camera motion

and the motion field. To relate the motion field to the image brightness, we will

introduce the concept of optical flow.

Optical flow is a two-dimensional field of vectors (u,v) corresponding to the appar-

ent motion of these patterns over a sequence of frames. It can be used to approximate

the motion field [6]. Optical flow can be recovered using temporal variations in image

intensity patterns by computing the partial derivatives using discrete approximation

to derivatives.

The constant brightness constraint assumes that the brightness of a particular

point in the image pattern remains steady with the change of view. This is saying

that the perceived motion of brightness patterns within the image is only due to

actual motion of the scene and not due to varying illumination conditions. Under

this constraint, the optical flow for the 2-D case (u, v) is given by:

dE 01E &E OE
E=Et+E,-rt=Et+Exu+Eyv= + u+ v=0 (2.5)

di at ax Oy

where E(x, y, t) is the image brightness at the point (x, y) in the image plane at time

t. Ex, Ey, Et are the brightness gradients with respect to x, y coordinates and time,

respectively. The vector (u, v) is the optical flow field. Equation 2.5 is called the

constant brightness constraint.

It should be noted that there is a limit beyond which the first order constant

brightness constraint will not apply: when motion between images is more than 2

pixel/frame. Above that we cannot neglect higher order terms in the Taylor series

expansion of dE.In addition, from equation 2.5, we can see that in the location where

18



the brightness gradient is zero, the optical flow field is locally unrecoverable. So,

usually the input image is required to have rich visual texture in order to use the

equation above.

2.3.3 Recovering General Motion of the Camera

In most cases, the optical flow will correspond to the motion field. This will allow us

to estimate relative motion with time-varying images. In the following, we will explain

how the constant brightness constraint and the perspective projection constraint are

combined in one direct equation to recover the general motion of the camera. The

constant brightness constraint builds the relationship between image brightness and

optical flow field, while the perspective projection constraint connects camera motion

to the motion field. The direct method combines those two separate stages into one

step. Putting together the constant brightness equation and the perspective projection

equation, we can get:

v-w s-t
Et+ + =0 (2.6)f R-z

where the new variables s and v are 3 x 1 vectors defined as:

Ex

s=(Er x x r =E

-(!Ex+ Y-Ell)

and

EY + Y(xEx + YEY)

v = r X s= -E, - x(xE, + yEy)

yEx - xEy
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2.4 Solving for Time-to-Collision

2.4.1 Assumptions

We now perform the mathematical derivation of time-to-collision. Three assumptions

were made to simplify this problem. Firstly, it is assumed that we have either a fixed

camera in a changing environment or a moving camera in a static environment. If

there is more than one object with independent motion, then we shall assume that the

image has been segmented and that we can concentrate on one region corresponding to

a single object. Secondly, in this project, we consider only the case where the relative

motion is purely translational, because motion of vehicles on the road is generally pure

translational and the theoretical derivation will provide a nice closed form solution

for translational motion. Thirdly, a further assumption is made that the local shape

of the surface of the object is planar. These assumptions are approximately valid for

inany cases in a real world problem when the camera has a narrow view angle,-and

Arnplify the time-to-collision problem to reduce a large amount of computation.

2.4.2 Time-to-Collision for Translational Case on Planar Sur-

face

Assuming the object has only translational motion, time-to-collision is defined as the

ratio of the distance of an object to the relative translational velocity in the direction

of that object [3]. With the camera based coordinate system defined in section 2.3.1,

the time-to-collision is expressed as:

r R (2.7)
t-z

where R - is the distance of object and the camera in the direction of the optical

axis, and t - is the translational velocity in the direction of the optical axis.

As mentioned above, the shape of the object is assumed to be a planar surface,

and have only translational motion. The moving object can be described by a normal
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vector n = (nx, ny, nz) of the planar surface and the translational velocity vector

t = (t, ty, tz) T . Vector n and t are shown in figure 2-2.

z

object
plane

(xY'z)

n

(0,0,f ,
image plane

(0,0,2 X
center of projection

Figure 2-2: The time-to-collision is defined as

We choose the scale of n such that the value of 1/l|nl is the distance from the

center of projection to the object plane. With this scale, time-to-collision can also be

expressed as the reciprocal of the velocity along the normal vector n:

R-n 1
t-n t-n

(2.8)

Equation 2.6 is used to solve for t and n in equation 2.8. In the case of pure translation,

W = 0 and equation (2.6) simplifies to become:

Et + s =0t
R - z

(2.9)

Equation 2.9 provides the relationship between the image brightness and the motion

of the object.

The planar object constraint mentioned above gives the equation below:

R -n = 1 (2.10)
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Combining with the perspective projection equation (2.1), equation 2.10 can be used

to relate depth (z component of R expressed as R- 2) to the point in the image plane

as:

R - z = - (2.11)
r -n

Combining equation 2.11 with equation 2.9, we have:

Et + (r - n)(t -s) = 0 (2.12)

Equation 2.12 is valid at any instant in time for every pixel in the image. In this

nonlinear equation, there are six unknowns, a 3-D translational motion t = (tx, ty, ty)

and a 3-D normal vector n = (nx, ny, nz). Because of the scaling factor ambiguity

mentioned in section1.1, this equation has five degrees of freedom. In general, five

points in the image plane uniquely determine the purely translational motion of a

camera.. However, there is a drawback to utilizing so little of the available informa-

tion. The brightness derivatives are hard to estimate accurately with only five points

especially if that the image is noisy, and the optical flow we measure is usually cor-

rupted by noise. Reliable results can be obtained if the brightnesses values from the

whole image plane are used. We therefore use a least squares error method, which is

more robust against noise. When we are given N points, vectors t and n obtained

from the least squares error method are those best fitted for all the given points. The

error function for this case is defined as:

A(n, t) = Z(Et + (r -n)(t -s)) (2.13)

Equation 2.8 and equation 2.13 are the heart of the time-to-collision problem. Equa-

tion 2.13 is used to find vector n and t when minimizing the error function. Then

time-to-collision is solved with equation 2.8 from vector n and t.
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Chapter 3

Time-to-Collision Algorithm

The mathematical derivation outlined in the previous chapter provides nonlinear

equations for the time-to-collision problem. Now we turn to algorithms to solve the

nonlinear equation with a goal of constructing a dedicated chip or system to estimate

time-to-collision. Recall that the defining equations are given by:

A(n, t) = (Et + (r- n)(t- s)) (3.1)
x~y

__1

T n (3.2)t -n

The nonlinear equation is a minimization problem with unknown vectors t and n.

A simple approach to the minimization problem is the method of gradient descent.

Besides the traditional method, we also introduce a new approach, a grid search

method and its improved version.

3.1 Gradient Descent Method

3.1.1 Mathematical Derivation

Gradient descent is a traditional method to solve non-linear minimization problems.

The gradient descent method is based on the well-known fact that a function decreases

locally fastest in the direction of the negative gradient [14]. For the problem of
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minimizing f(x) with respect to x, the gradient descent method will provide an

iterative solution as:

zi+1 =i - adf (xi) (3.3)

where a is a positive scale factor that can be used to adjust the step size. It is also

called the "learning rate" for the function f(x). And x and xi+1 denote the estimates

of x after the ith iteration and after the i + 1th iteration. Vector x is an N x 1 column

vector consisting of N parameters:

x = [x1, x2, ... , iXNT

Of(x) Of(x)
Afx)=[I 

'OX1 OX2

Of(x) T

OXN

Figure 3-1 illustrates gradient descent for special case when x consists of only o'ne

element (z a). In figure 3-1, f(a) has a positive gradient. The estimate of a after,

ith iteration will be in the negative direction of a.

f(a)

I I Ia

b~ c I S a "a e

Figure 3-1: Gradient descent:
iteration and i + 1th iteration

ai and a'+1 denoting the estimates of a after ith

In our application, the gradient descent method is used to minimize the error

function A(x) in the nonlinear equation 3.1 with respect to x, where x is a column
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vector:

x = [n,,nynz,tX,tytz]T

The vector n = (nx, ny, xz) and t = (tx, ty, tz) can thus be obtained iteratively as:

ni+1 = i _ a M= ni - a 1:2(Et + (r -n )(s - t')) (s -t')r (3.4)

ti+1 = t - a = ti - a 2(Et + (r n')(s - t'))(r ni)s (3.5)

Notice that in equation 3.4, solving for n, we need to use the value of t, while in the

equation 3.5 solving for t, the value of n is needed too. The vector n is estimated

with equation 3.4, by assuming t known; the vector t is estimated with equation 3.5,

by assuming n known. In the next iteration, the vectors n and t will be re-estimated

using the same equations with the new value of n and t, and the iterative procedure

continues until both converge to a minimum error. In general, the gradient descent

nethod uses an iterative comnputationi1 to solve equiation 3.1.

3.1.2 Characteristic Features

The gradient descent method is very effective in decreasing the function in the initial

stage of the algorithm, when the iterative solution is far from the true solution.

However, we need to carefully choose the learning rate a. If the learning rate a is

too large, the ai+1 may overshoot to get into an oscillation around the solution and

not converge. On the other hand, if a is too small, this algorithm will converge very

slowly. Generally, because different image sequences may have a different type of

image data, the learning rate a is usually adjusted based on the experimental results.

In this iterative computation, an initial value of n and t should be provided.

Because the gradient descent method always searches in the direction of negative

gradient, it may converge to a local minimum of f(x). For example, in figure 3-

1, when the initial value of a is located in the region between f and e, the final

value will be converged to local minimum d. When the initial value of a is located

in the region between b and f, gradient descent method will condge to the global
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minimum c. So when a function has more than one minimum, it is hard to tell if it

will converge to a local minimum or the global minimum from the gradient descent

method. From experiments, we know that the error function in equation 3.1 has many

local minima, whereas the actual solution is the global minimum. Because the value

where the iterative computation converges depends on the initial value at the start

of the algorithm, it is important to choose good initial values for n and t. This can

be achieved from doing some experiments with different initial values.

3.1.3 Algorithm Description

The computational structure of the gradient descent method is shown below.

... ; load image 1 and image 2

... ; smooth image 1 and image 2

.; compute derivatives (E,, Ev, Et) from image 1 and image 2

... ; initialize vector ,t and n

for (i=O; i<iterations; i++)

for (j=0; j<rows; j++)

for (k=0; k<cols; k++)

... ; compute the gradient of error function A

respect to vector n and sum up for each pixel

... ; compute the gradient of error function A

respect to vector t and sum up for each pixel

end;

end;

... ; update t with equation 3.5

... ; update n with equation 3.4

end;

... ; compute time-to-collision with calculated t and n
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3.2 Grid search Method

Another method we use to solve the nonlinear equation is a grid search method.

In this method, we make use of the scale-factor ambiguity to change the nonlinear

equation to a number of linear equations. It provides a global minimum solution by

explicitly searching over a fine grid for a solution with small error.

3.2.1 Mathematical Derivation

In motion vision problems, there exists a scale-factor ambiguity in recovering motion

and the distance of the planar object from the motion field [17]. If we scale distance

in the scene by some constant factor A and the velocity by the same factor, the image

sequences obtained from the camera remains the same. Because of this scale factor

ambiguity, we cannot recover the magnitudes of the vectors n and t individually.

However, since time-to-collision is the ratio of the distance and speed, (calculated as

the reciprocal of the dot product of translation velocity t and the normal vector n

of the ima e), it is not ambiguous. Equation 3.1 remains the same and the absolute

value of time-to-collision does not change, if we multiply 1/n by a constant factor A

and t with the same factor A. We also should point out that time-to-collision is not

defined when either n or t is zero. Because of all the reasons above, we can treat t as

a unit vector to simplify the problem. Vector t can be any points on a unit sphere,

which can be denoted in a polar coordinate system as below:

tX = sin 6 cos # (3.6)

ty = sin6sin# (3.7)

tz = cos 0 (3.8)

where 0 E [0, 7r] and # E [0, 27r].

When vector t is known, the error function becomes a quadratic function of vector

n. More importantly, it provides a closed form solution for vector n. Because a

quadratic function has only one minimum, it is very straightforward to minimize the
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error A with respect to vector n. Vector t can be any point on a unit sphere, so

there are an infinite number of possible vectors t. A simple but effective technique

to approximate all the points on the unit sphere is to construct an artificial grid so

that the divided small areas can be approximated by the closest grid intersection

point. When this artificial grid is fine enough, it is good enough to approximate the

whole sphere with grid points. Also because we create the artificial grid, we limit the

computation on a finite number of vectors t. This artificial grid is shown in figure 3-2:

Figure 3-2: Grid search method

The artificial grid is created by dividing 0 into N1 parts, and dividing 4 into N2

parts. This unit sphere now is represented by Ni x N2 grid intersection points on the

sphere. If Ni and N2 are large enough, actually we can get a very fine grid on the

sphere to represent the whole sphere. Rewrite to, t., and tz as:

. 7k1 2xrk2
t = sin k cos - (3.9)

N 1  N 2

ty = sin 7rk1 sin 21k 2  (3.10)
N 1  N 2

tz = cos 7rk1  (3.11)
N1

where ki = (0, 1, 2, ..., N1 ) and k2 = (0, 1, 2, ..., N2). Every grid intersection point

represents a value for vector t. For each value of t, we minimize the error function

with respect to the unknown vector n. The error function is a quadratic function

which is concave up with respect to n, so the minimum error occurs where the partial
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derivative of the error function A with respect to n is zero:

dA_

dn = (Et + (r - n)(s -t))(s - tr = 0 (3.12)

The above equation is a linear equation. We can solve that equation for n shown as

below:

n =- (s - t) 2 (rrT)) Et(s -t)r = -M-1(t)L(t) (3.13)

where
y(S- t)2X2 E.',,(s- t)2xy E,,(-t)f

M(t) = (s - t)2xy EZ,,(s - t) 2y 2 EZ,,(s t) 2yf

E'(s - )2xf EX,,(s- t)2yf E,,(s -t)2f2

and

L(t) =.x, Ej(s -t)y

,Exy Et (s - t) f

There are Ni x N2 grid intersection points on the unit sphere, which correspond

to Ni x N 2 different values of t. At each value of t, the minimum error and its

corresponding n are computed. The computation above is repeated for Ni x N2

different values of t. Afterwards, the minimized error obtained for each different

vector t is compared to obtain the minimal one among all possible values of t. The

time-to-collision can be calculated from equation 2.8, with the corresponding n and t.

This provides a global-minimum solution for the error function by explicitly searching

over a fine grid. By creating an artificial grid, our search for minimum error will only

be limited to a finite number of grid intersection points, and obtain a solution with

small error.
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3.2.2 Characteristic Features

The main advantage of this method is that the grid search approach provides a

global minimum solution. In this method, we can always guarantee that the solution

obtained from this algorithm corresponds the global minimum of the error function,

provided the artificial grid is fine enough.

Another advantage of the grid search is to convert the nonlinear equation 3.1 into

a set of closed form linear equations. The computation speed is significantly better

than the gradient descent method. Solving those linear equations is much faster

than solving the previous nonlinear equation with iterative computation. The linear

operation is shown in the algorithm structure below:

I mage *N N*N

g e*N tic

Linear Operator: t(k) -

Figure 3-3: Block diagram of grid search method

it is too coarse, we might miss the global minimum; if it is too fine, there will be

more computation than necessary. We strike the balance between these two extremes

by considering the results of experiments on different grids, which will be shown in

Chapter 5.

3.2.3 Algorithm Description

Below is a straightforward implementation of the grid search method.

... ; load image 1 and image 2

... ; smooth image 1 and image 2

.; compute derivatives (E,,Ey,Et) from image 1 and image 2
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... ; initialize vector t and n

for (i=O; i<gridpoints; i++)

... ;assign t to each grid intersection point on the unit sphere

for (j0; j<rows; j++)

for (k=O; k<cols; k++)

...; compute matrix M (sum up over all the pixels) in equation 3.13

...; compute Matrix L (sum up over all the pixels) in equation 3.13

end;

end;

...; from matrix M and N calculate n with equation 3.13

... ; initialize error to zero;

for (j=O; j<rows; j++)

for (k=O, k<cols; k++)

...; compute error A with the assigned t and calculated n

end;

end;

... ; compare error to obtain minimal error

... ; update minimal error A, n, t

end;

... ; using equation 3.2 to compute time-to-collision with t and n

;that corresponding to the global minimal error

3.3 Improved Grid Search Method

There are some changes we made in the grid search method to improve the perfor-

mance. These changes make the computation more efficient, while still keeping the

final solution as accurate as the original version. The most significant changes we

make are to use a hierarchical search and sufficient statistic.
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3.3.1 Hierarchical Search

We can reduce the computational load in the grid search method by using a more

efficient search procedure, rather than a brute force approach. In the grid search

method, the error expression is evaluated at the grid intersection points on the t unit

sphere. Then obviously, the finer the grid is, the more accurate the final result will

be. It will cost quite a lot of computation, if we start with a very fine grid. Instead,

a hierarchical search is applied to define the region for grid search. The grid search

will initialized with a relatively coarse grid. After obtaining the minimum error, the

local area where the minimum error occurs will be divided into finer grid. A finer

search will be utilized in that local area. It is a coarse-to-fine search [14]. A relatively

coarse search is made by making comparisons between the grid points on the whole

sphere. Once we get the area where the minimum error occurs, a finer grid will be

used on the local area to get better accuracy for our final result.

This operation is performed recursively until the error in the error function does

not change significantly. In general, two or three steps of coaise-to-fine processes will

be enough to obtain a good result.

3.3.2 Sufficient Statistics

In this project, our algorithms will have an image sequence as input and generate

time-to-collision as the output. The information of time-to-collision that the input

image sequence brings, can also be brought by sufficient statistics, which are a set

of functions of the input image sequence. Once we extract those functions from the

input data to form sufficient statistics, the rest of the information is irrelevant and

can be ignored. The solution obtained from the sufficient statistics is exactly the

same as the one obtained from all the input data, but with a lot less computation.

So far we have treated each pixel as an individual input datum. Notice that

the derivatives of pixel intensity and pixel location appear in each iteration, when

selecting a new value of vector t. For an image size of 128 x 128, the number of pixels

is on the order of 104. If we choose 50 different values of t, we must process on the
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order of 50 x 104 pixels. That amount of computation is significant. Instead, from

the idea of sufficient statistics, if we can loop through each image pixel only once to

extract a small number of significant quantities and process only these quantities, we

will be able to save a lot of computation time and memory.

To obtain sufficient statistics, the error function must first be expanded. To make

it easy to explain, we will represent the error function (3.14) in matrix notation for

detailed computation. Here is the error function again:

A(n, t) = Z(Et + (r - n)(t - s))2  (3.14)
xIy

In the equation above, index x and y run along the width and height of in-

put images. In the following derivation, instead of representing an image as a two-

dimensional array, represent it as a one-dimensional array with an index i. The size

of this one dimensional array is m, where m = width x height. As we can see, E , r,

and s are different for each pixel. With this new notation, we Fepresent the temporal

gradient Et as a new vector G with index i:

Gi = [Gi, G2, G3 , ..., Gm]T

G1 refers to Et for 1th pixel, G 2 refers to Et for 2th pixel, ... , Gm refers to Et for

mth pixel. For each pixel, r and s are 3-D vectors. In equation 3.14, r and s are

m x 3 matrices represented as rij and si,k. The translational velocity t and the normal

vector n are 3-D vectors. In matrix notation, matrix-vector multiplication z = Ax is

usually represented as:
n

z = E Ai,jxj
j=1
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With the notation above, equation 3.14 expands:

A = (Gi
i=1

3

+ Z(si,ktk)
k=1

3 2

((ri,ini))
1=1

= Gtotai + ( Ck,Itkni + ( Z Dkkill'tktkinini,
k,j k,k' 1,1'

= Gtotai + I(( Ck,ltk )nl + Z(Z Dk,k,,1,1,tktk')nlnl,
I k 1,1' k,k'

= Gtotai +( Fin, + ( Hynin1,
1,1'

where Gtotai is a scalar, C is a 3 x 3 matrix, D is a 3 x 3 x 3 x 3 tensor, F is a 3 x 1

matrix, and H is a 3 x 3 matrix:

m

i571 2

CkDs ,(2Gs'rkri,i,)
i=1

Dk,k',l,l' = ESi,kSi,k'ri,lri,1I

3

F1 = E Ck,ltk
k=1

H y = ( Dkki,1,1itktki

k,k'

By representing our error function A as equation 3.15 above, vector n is obtained

when the partial derivative of the error function A with respect to n is zero:

dA = F + 2(H)n
dn

From this, we easily get

1
n = H F

2

(3.15)

(3.16)

(3.17)
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As shown in equation 3.15, matrix C and D are not dependent on the unknown

vectors t and n. They are sufficient statistics, which can be computed directly from

input data. Once C and D are computed, the rest of the input data can be ig-

nored. From characteristics of matrix multiplication, D(l,1',:,:) = D(l', ,:,:) and

D(:,:, k, k') = D(:,:, k', k). Because of this, there are 36 independent variables for

tensor D, 9 independent variables for matrix C. Compared to an order of 104 of

image data, using 45 independent variables saves quite a significant amount of com-

putational time for further computation. Thus, sufficient statistics make the grid

search method possible for real time performance with digital signal processor design.

The overall structure of this algorithm is shown in figure 3-4.

Linear Operator: t(1)

nIma1 *l N*N -
Lnear Operator: t(2) -

O N*Ntt
Image2 _*N --

Linear Operator: t(k)

Figure 3-4: Block diagram of improved grid search method

Algorithm Description

Below is the algorithm description of grid search with sufficient statistics:

... ; load image 1 and image 2

... ; smooth image 1 and image 2

.; compute derivatives (E,,Ev,Et) from image 1 and image 2

for (i=0; i<rows; i++)

for (j=0; j<cols; j++)
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... ; compute Matrix C and D (sum up over all the pixels)

end;

end;

for (i=O; i<grid; i++)

... ; assign vector t to the grid intersection points on the grid

... ; compute matrix F and H from C, D and t

... ; compute vector n from matrix F and H

... ; compute error A from matrix F, H and computed n

end;

end;

. .; calculate n with equation 3.13

... ; compare errors to obtain minimal error

.. ; update minimal error A, n, t

end

... ; using equation 3.2 to compute ttc with calculated t and nt
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Chapter 4

Hardware Implementation

4.1 Possible Solutions

When designing a vision system, we will have to face different design challenges,

such as computational -speed, reliability.,of the processing, size of the system, power

dissipation, and flexibility. When making design decisions, -we have to determine

the priorities of these design challenges, and make tradeoffs among them. In our

application, computational speed is our major concern due to the requirement for

real-time performance.

In many applications, calculations corresponding to the early vision tasks are

often the main computational bottleneck [12]. Towards speeding these up, hardware

implementations are often used, and the main two common architectures used are

application-specific analog chip design, and a programmable digital signal processor

system design.1 Both of these approaches have already found a number of success

stories in the vision literation: For example, analog chip design has successfully been

applied to motion detection [2] and to calculating focus of expansion [17], and a robust

tracking system was also built with a digital signal processor system design [22]. In

this Chapter, we will discuss these two architectural choices, as well as their associated

'Other alternatives that some authors have tried include application-specific digital chip design
and system-level integration of camera and programmable analog processor. (The interested reader
is referred to the excellent papers [23, 15]). But since these approaches often have prohibitively high
complexity and do not really address our goals in this thesis, we will not consider them here.

37



algorithms, in considerable detail.

4.1.1 Analog VLSI Chip Design

Analog processing provides a possible solution for time-to-collision, because analog

circuits can do certain computations that are time consuming when implemented in

the conventional digital paradigm with much less power [17]. However, analog vision

chip designs face limitations, such as low processing precision, and low resolution.

In addition, designing single analog vision chips is time consuming and error-prone,

because each single chip is fully custom designed.

To solve the nonlinear equation, the gradient descent method provides an iterative

solution, which can be easily represented as a feedback scheme in an analog approach.

A negative feedback loop can be used to correct an estimated value until it fits into

the non-linear equation constraint. The iteration property makes the gradient descent

method a very promising algorithm for analog VLSI chip design. On the other hand,

the grid seardhheth6d provides the solutidn by explicitly searching and coriparing

over a fine grid, which is a more digital approach, and less suitable for the nature of

analog chip design. Therefore, below we only consider the gradient descent algorithm

for an analog VLSI chip design.

Applications for vision usually have pixel based processing, which leads to a highly

parallel overall architecture [4]. The gradient descent method is a highly parallel

algorithm; all the pixels in the image have the same processing. This process will be

performed by identical processing elements (PEs) in the chip. Each PE corresponds to

a pixel in the image, and executes the same function. These PEs are interconnected

in a regular fashion, and data streams can flow in single or multiple directions as

shown in the figure 4-1:

In our application, there are certain operations required for each PE unit:

e Multiplication; this operation requires the use of a four-quadrant multiplier,

where each quadrant corresponds to a particular combination of signs of input

signals.
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PE Array

Figure 4-1: Array processor with PE

" Aggregation, where a very large number of inputs are brought together. This

operation is done by an adder in current mode.

" Scaling. where a quantity of interest is multiplied by a scaling factor.

Normalization, the purpose of which is- to reduce the dynamic range of input

signals to levels compatible with the needs of subsequent processing stages.

e Differentiation; this operation will be done with a hysteretic differentiator.

Circuits that implement these functions are described in Mead (1989, Analog and

Neural System) [19]. Every pixel on the chip contains: an adaptive photocircuit which

transduces light into a voltage signal that responds to contrast, independently of the

background illumination; a hysteretic differentiator, which calculates the temporal

gradient, whereas the spatial gradient is obtained simply by taking the difference be-

tween the output of the photoreceptors on either side; and a processing unit including

adders, multipliers, and scaling and normalization units ??.

For the gradient descent algorithm, the processing unit will implement the equa-

39



tions below:

ni+1 - i -A a (t+( n') (s- t')) (s -Pt)r (4.1)

6A~

t'+1 = t' - a JtA = t' - a E 2(Et + (r - n')(s - t'))(r - n')s (4.2)

As with any other vision chip, the major drawback of this pixel level analog vision

chip is low resolution. Each pixel includes a photocircuit and a processing unit that

occupies a large pixel area. The area required for implementing the circuits and rout-

ing the information across the chip puts an upper bound on the number of pixels.

Therefore, vision chips in general have a very low resolution. The average size of a

vision chip reported has only 64 x 64 pixels, even for each process element imple-

menting much simpler functions than the functions described above [20]. As rough

estimate with 0.25pm process technology shows that we can have only around 10 x 10

pixels on a large chip (9.40mm x 9.70mm). Experiments on test images with such a

low resolution showed that the results obtained have a very low preciion. So unless

we find a better way to make the photocircuit or processing unit part smaller, we

will not be able to obtain reliable results with pixel level analog vision chips for this

application.

4.1.2 Digital Signal Processor (DSP) System Design

The other possible approach is a system level integration of an imaging camera and

a digital signal processor. The challenge for digital signal processor system designs is

still speed. Typically, motion vision algorithms are parallel algorithms. Usually they

require thousands of operations per pixel for each input image [12]. The gradient

descent algorithm and grid search algorithm are good examples of parallel algorithm.

Due to use of sufficient statistics, our improved grid search method is a serial algo-

rithm, which is more suited for digital signal processing system design. Meanwhile,

the improved grid search algorithm successfully decreases the most amount of compu-

tation and makes such a task possible in real time with a fast digital signal processor

40



unit. The detailed performance of gradient descent and the improved grid search in

Chapter 5 will prove that the improved grid search method is well suited for a digital

signal processor system with real-time performance.

Figure 4-2 shows the digital signal processor system architecture [22]. Included is

a video camera (imager) for image acquisition, an A/D circuit block to convert the

image format (data converter), and a digital signal processing unit for time-to-collision

calculation.

Data .S ttc
Imager CnetrProcessmng

Units
image 2

Figure 4--2: DSP system design

Digital signal processors are optimized for three types of multimedia applications:

data compression, graphics, and image processing. A digital signal processor performs

image processing tasks much more efficiently than a conventional microprocessor be-

cause of the following reasons [7]:

* Pipelined architecture

" Multiple operations of multiplier and ALU per cycle

" Single cycle multiplier and arithmetic logic unit (ALU)

" Zero overhead looping in hardware

* Fast on-chip memory

" Efficient program sequencing

Time-to-collision algorithms contain quite a lot of looped computation. Loop

computations have potentially more parallelism than non-looped code because there
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are multiple iterations in the same code executing with limited dependencies between

each iteration. Because of the pipelined architecture and zero overhead looping in

DSP hardware, our algorithms are well suited for a digital signal processor system

implementation.

4.2 Final Solution: DSP Design

As previously mentioned, the facts of low resolution and low precision make analog

VLSI design unsuitable for the time-to-collision task. A digital signal processor system

design is chosen for the real-time implementation. Popular high speed digital signal

processors includes:

" the TMS320 series of chips from Texas Instruments

* the DSP56000, DSP56100, DS.P56600 from Motdrola

0 DSP 160O and DSP3200 series from Lucent Technologies

e ADSP2100 and ADSP21000 series from Analog Devices

After comparisons among those different digital signal processors, we chose TMS320C67

as the core processing unit. The TMS320C67xx is the latest family of floating-point

DSP processor from Texas Instruments. We decided to use floating-point DSP as our

processing unit due to the large dynamic range of the data during the computation.

This also makes software implementation easier, and giving better accuracy for the

final results.

Because of time limitations, this DSP microprocessor based system will be a

"proof-of-concept", and simulations were done on the DSP microprocessor TMS320C67

Code Generator and C Source Debugger/Simulator. The simulator lets us run the

time-to-collision code in a simulation environment to test the software without using

an actual hardware system. The results of simulation provide memory requirements

and the maximum speed that a time-to-collision could provide on a TMS320C67 DSP

microprocessor system.
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4.2.1 TMS320C67x Architecture and Tool Overview

Before we discuss how to efficiently implement the real-valued time-to-collision algo-

rithms on the 'C67x, it is helpful to take a brief look at the 'C67x architecture and

code development tools.

The 'C67x is a floating-point DSP with the VelociTI architecture. It is an Ad-

vanced Very Long Instruction Word (VLIW) CPU architecture and designed to

achieve high performance through increased instruction-level parallelism. This is

done by avoiding the need for complex instruction scheduling and dispatch hardware

in the processor. The device's core CPU consists of 32 general-purpose registers of

32-bit word length and eight function units, including two multipliers and six arith-

metic units. These function units operate in parallel and can perform up to eight

32-bit instructions during a single cycle. It operates at 167-MHz clock rate [7].

Table 4.1: Characteristic Features for TMS320C67

Parameter Name Value
Cycle Time (ns)' : 6

Data/Program Memory (bits) 512k/512k
DMA 4

Synchronous Memory Interface (1) 32-bit
Nominal Voltage (V) 1.8/3.3

Host Port (1) 16-bit
McBSP 2

The TMS320C67xx is supported by a set of software development tools, which

includes an optimizing C compiler, an assembler, a linker, a C source Debugger and

assorted utilities. Its orthogonal RISC-like CPU architecture makes the 'C67x CPU

a good C compiler target.

4.2.2 Implementation and Optimization of TTC for DSP 'C67x

Our algorithms are implemented in C to provide an easy way to verify the functionality

of these algorithms and obtain results of an optimized version.
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Some optimizations were made on the software codes in adcordance with the

TMS320C67 architecture, for better efficiency. We focus our optimization on the

the procedures which are most important in terms of MIPS requirements. One of the

easiest methods used to optimize the C code is to evoke the C compiler's optimizer,

using compiler options, such as -o3, -pm, -mt. Besides that, look-up tables, loop un-

rolling, and dynamical memory access strategies were used [9]. These optimizations

successfully improved the code performance by 10% in total.

Look-up Table

A common strategy used in digital signal processing code implementation is to replace

some complex arithmetic computation with a fast direct look-up table [111. In the

grid search method, the vector t is assigned to the grid intersection points as:

. irki 27rk 2t = n cos (4.3)
Ni N2

7irk 21irk2- sin - sin - -(4.4)
N1  N2

tz = cos i (4.$)
N1

where ki (0, 1, 2, ..., N1 ) and k2 = (0,1, 2, ..., N2). The quickest way to implement

this is to create a table with all different values of to, tY, and tz. When we run

the application on the digital signal processor, this table is directly loaded into the

memory and read one by one. Obviously, it will be much faster than computing

trigonometric functions from the equations above.

Loop Unrolling

The TMS320C67 has a pipelined architecture, which can dispatch up to eight parallel

instructions every cycle. These parallel instructions proceed simultaneously through

the same pipeline phases, which greatly improves the performance of our code. To

schedule instructions in parallel, the compiler must determine the relationships, or de-

pendencies, between instructions. If the compiler can determine that two instructions
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are independent of one another, it can schedule them in parallel. Otherwise, it as-

sumes a dependency and schedules the two instructions sequentially. Loops inherently

have more parallelism than non-looping code because there are multiple iterations of

the same code executing with limited dependencies between each iteration. To maxi-

mize the number of instructions available to execute in parallel, in parts of the code,

we use a loop unrolling strategy to expand small loops when the operations in a single

iteration do not use all the resources of the DSP architecture [8]. Use of this strategy

is limited by the resources of the DSP architecture, which contains eight functional

units, including two multipliers and six arithmetic units. Through increasing the

pipeline, the 'C6x code generation tools use the multiple resources of the VelociTi

architecture efficiently and obtain very high performance.

Dynamical Memory Access for C Programs

There are two memdry models for the DSP 'C67 to access data when programming

in C [10]. In the small memory model, the external bus is used to access data from

memory. Direct addressing limits the number of words that the small model can

access to 32K bytes. However, it produces fast and compact code. The big model is

not limited to 32K bytes, but it uses an indirect addressing mode. So it has a cost

of two instructions per data access. Because our application requires a large image

data reach and fast execution, dynamically allocated memory is used. The MALLOC

function from the runtime support library is called at run time to reserve a block

of memory in the .SYSMEM section. Code referring to the dynamically allocated

array is one instruction per data access. Meanwhile it has a large word address

reach. The price is a one-time call to MALLOC for each dynamically allocated array.

In our application, dynamically allocated memory is efficient, because the overhead

associated with the MALLOC call is insignificant when compared to the large number

of data accesses.
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Chapter 5

Testing and Experiments

5.1 Software Implementation Details

5.1.1 Input Image Smoothing

Input images for the DSP processing unit are discrete in time and space. Gradients

of the image intensity are needed for time-to-collision algorithms, which requires that

the image intensity be differentiable. Therefore, a smoothing process was applied to

the input images to avoid aliasing, and improve the subsequence derivative estimates.

Because there is a built-in lowpass filter in time - the video camera smears the input

image sequence and decreases alias, - we are more interested in smoothing images in

space (in x and y directions). The input images can be pre-smoothed with a lowpass

filter - a Gaussian filter or a binomial filter1 . In this project, a 2-D Gaussian lowpass

filter [14] is used:

1(x - px )2 (y _ py2(51f (x) = exp- ) - (5.1)
V'-7 2a2 2U2

where the mean in x direction and y direction (p, py) are set to zero, and the standard

deviation (a) of the Gaussian function is an user input. The user can change the value

of o depending on the need for the smoothness of the input images. The shape of the

'For the discrete images, a binomial lowpass filter usually works better than a Gaussian truncated

lowpass filter
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2-D Gaussian filters with different o values are shown in figure 5-1.
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Figure 5-1: Shape of 2-D Gaussian filter with different sigma values

When using a Gaussian filter to smooth images, the larger the value for o- is, the

larger the smoothing window will be. Figure 5-2 illustrates the performance of a

Gaussian filter with different - values. Clearly, the Gaussian filter blurs the image

by reducing high frequency components while preserving low-frequency components.

Another place we need a low-pass filter to smooth images is when there is a

large displacement between each input image frame. As mentioned before, the direct

method only applies for small motions between image frames. To meet this constraint,

we usually smooth the input image sequences with a Gaussian filter or a binomial

lowpass filter first, then the images are sub-sampled into a low-resolution image with

less motion. This process is usually repeated to obtain a hierarchical, multi-resolution

image representation, which allows us to use the direct method.

5.1.2 Gradient Derivation

From the derivation in previous chapters, the time-to-collision algorithms involves

computation of the partial spatial and temporal derivatives (Er, Ey, Et) of each pixel
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Image before smoothing
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Smoothing with Gaussian filter, sigma=0.8
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Smoothing with Gaussian filter, sigma=1.2

20 40 60 80 100 120

Figure 5-2: Smoothing with Gaussian filter

in the image. To get time derivatives Et, an image-pair taken sequentially in time is

required. In our approach, the partial derivatives of image intensity were computed

with a first order derivative. The first order difference approximations are:

E E(j + 1) - E(j) (5.2)
Ax

E(i + 1) - E(i)
Eyii,j,k (5.3)

E(k + 1) - E(k) (54)
At
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E(i+J,j+1,k)

E(i,j,k+1) t

Figure 5-3: Pixel cube used in estimating the three
ness from an image pair

partial derivatives of image bright-

where

E(i + 1) =

E(j + 1) =

E(k + 1) =

E(i + 1, j, k), E(i + 1, j + 1, k), E(i + 1, j, k + 1), E(i + 1, j + 1, k +1)

E(i) = (E(i, j, k), E(i, j + 1, k), E(i, j, k + 1), E(i, j + 1, k + 1))

(E(i, j + 1, k), E(i + 1, j + 1, k), E(i, j + 1, k + 1), E(i + 1, j + 1, k + 1))

E(j) = (E(i, j, k), E(i + 1, j, k), E(i, j, k + 1), E(i + 1, j, k + 1))

(E(i, j, k + 1), E(i + 1, j, k + 1), E(i, j + 1, k + 1), E(i + 1,j + 1, k + 1))

E(k) = (E(i, j, k), E(i + 1, j, k), E(i, j + 1, k), E(i + 1, j + 1, k))

E(i, j, k) here corresponds to the image intensity for pixel (i, j, k). Here i is in

the x direction, j is in the y direction and k is in the time direction. The three

partial derivatives of image brightness at the center of the cube are estimated from

the average of the first four differences along the four parallel edges. This is illustrated

in figure 5-3.
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5.2 Synthetic Image Sequences for Planar Scenes

The reason we test the program on the synthetic image sequences is that it is easy

to control the motion field, i.e. we know the "ground truth". Given a planar scene

brightness function E(x, y, 1), we would like to be able to render this function onto

the camera image plane as the plane containing the scene moves through space. With

this ability, a synthetic image pair E(x, y, 1) and E(x, y, 2) that corresponds to real

world motion can be generated.

The following mathematical derivation is used to create image E(x, y, 2) from

image E(x, y, 1) given the motion vector t and normal vector n. As shown in previous

chapters, the relation of the translational motion of the camera and the motion of

the image points is given as:

t
rt 2 x r x (5.5)

The instantaneous translational velocity is presented as t = (ti, tn tz)T. Opti

cal flow, the apparent motion on the image plane, is represented as rt = (u, v)T.

Equation 5.5 can be rewritten as:

xt xtz
u = (r -n)(-t. + -) = (xnx + yny + f n,)(-t. + -) (5.6)

f

v = (r- n)(-ty + ) = (xnx + yn, + fn2)(-ty + )t, (5.7)

From the constant brightness equation we know that:

Et + Eu + Ev = 0 (5.8)

Therefore, the second image frame can be created as:

E(x, y, 2) = AT[E,(x, y, 1)(-u) + Ey(x, y, 1)(-v)] + E(x, y, 1) (5.9)

where E(x, y, 1) is the image brightness for the first image in the image pair, while
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E(x, y, 2) is for the second image. In this way, the second image in the image pair

is generated given motion vector t, normal vector n, and first image E(x, y, 1) in the

image pair.

Terrain image2 pairs and car image pairs were created for testing the time-to-

collision algorithm. Figure 5-4, 5-5, and 5-6 present terrain image pairs and car

image pair and their motion fields, given the first image in the image pair (E(x, y, 1)),

a motion vector t and a normal vector n. .

The reason we create terrain image pairs is that they provide smooth images,

which were created from some smooth functions. The original functions project to

the image plane, creating a continuous function on image plane. On the other hand,

when car images are projected to the image plane, because of the fact that car images

are discrete in space, we have to use sub-pixel interpolation estimation, which causing

some distortion and aliasing. In addition, terrain image pairs have rich visual texture,

which is generally required for motion field methods.

2The terrain images were created with several random points in the image plane. The image
intensities are set to be exp(-25 * dist), where dist is the distance from the closest random point
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Figure 5-4: A terrain image pair created with t = (0.0011, 0.4247, -0.9053) and
n = (0, -0.0009, -0.0379): high resolution

5.3 Performance Evaluation

After software implementation, we need to verify the performance of the algorithms.

Items of interest include:

" Computational efficiency, including hardware resources and computational speed

" Verification of mathematical and numerical consistency and accuracy

5.3.1 Computational Efficiency

As we mentioned in chapter 3, because of the hierarchical search and sufficient statis-

tics, the improved grid search will have faster computational speed compared to the
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Figure 5-5: A terrain image pair created with t = (0.0011,0.4247, -0.9053) and
n = (0, -0.0009, -0.0579): low resolution

simple grid search. Here we compare the computational speed between the gradient

descent and the improved grid search on TMS320C67 compiler and simulator. Ex-

periments were performed on the image pairs of different image size with the gradient

descent method; the number of iterations for convergence in gradient descent was set

to 50. The gradient descent algorithm includes three functions - imageAcquisition,

getDeriv, and solve Ttc. The computational cycles for each function are shown in

table 5.1. Experiments were repeated with the improved grid search method, when

grid division N1 and N2 for angle 6 and # of the unit vector sphere were both set to

15. The improved grid search algorithm includes four functions - imageAcquisition,

getDeriv, obtainMatrix, and solve Ttc. The simulation results are shown in table 5.2.
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pair created with t = (0.0011, 0.4247, -0.9053); n =

From table 5.1 and table 5.2, it is obvious computation cycles for gradient descent

method is about 6 times bigger than the results from improved grid search method

for three different image sizes. Computational time for functions getDeriv and sol-

veTtc in gradient descent method are both proportional to the size of the image pair.

Therefore, computation time for overall gradient descent algorithm is proportional to

the size of image. In the improved grid search search method, computational time for

functions getDeriv and obtainMatrix are proportional to the size of image, while the

time for function solve Ttc is independent of image size. The reason for this is that af-

ter obtaining sufficient statistics from the input image pare in function obtainMatrix,

the rest of the program, including function solve Ttc, will not depend on the input
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Table 5.1: Performance of gradient descent method on TMS320C67

Function Cycles (32 x 64) Cycles (64 x 128) Cycles (128 x 256)

imageAcquisition 24933 51237 103845
getDeriv 576662 2061288 7087263
solveTtc 15843973 64445573 251433785

Total 16403520 65538613 264173681

Table 5.2: Performance of improved grid search method on TMS320C67

Function Cycles (32 x 64) Cycles (64 x 128) Cycles (128 x 256)

imageAcquisition 24933 51237 103845
getDeriv 576662 2061288 7087263

obtainMatrix 1945039 7949135 32147023
solveTtc 380841 380841 380841

Total 2928518 10417686 39642058

image pair at all. Compared to the computational time for function obtainMatrix,

time for function solve Ttc is insignificant. Therefore, we will say that the computa-

tional time for the overall improved grid search method is proportional to the input

image size. Given cycle time at 6ns for the digital signal processor TMS320C67, the

computational time for an image pair with the size of 32 x 64 is 17ms, when using

the improved grid search method. Because the computational time for the overall

improved grid search method is approximately proportional to the input image size,

the computation of the time-to-collision can be completed in 34ms each frame for an

image size of (64 x 64) with the TMS320C67 to achieve real-time performance.

For a larger image size, it is hard to obtain such high computational throughput

with available DSP chips; multiple DSPs must be used. Generally, we will break

down, or partition, the computation into smaller units, and distribute them among

several processors. Theoretically, computational time will be reduced by a maximum

factor of n (the number of parallel processors) [13]. In the parallel processor systems,

our task - time-to-collision, can be partitioned so that each processor operates on

different sub-blocks of image data.
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Table 5.3: Effects of Ni and N 2 on improved grid search method on TMS320C67

Function N1 = N2 = 5 Ni = N 2 = 10 N 1 = N 2 =15 Ni=N 2=20

imageAcquisition 24933 24933 24933 24933

getDeriv 576662 57662 57662 57662
obtainMatrix 1945039 1945039 1945039 1945039

solveTtc 34947 159890 380841 698469

Total 2582243 2707483 2928518 3246206

Effects of grid division Ni and N 2 for angle 9 and # of the unit vector sphere

on computational speed were investigated. From table 5.3, it is obvious that only

the function solve Ttc is related to N1 and N 2. The computational cycle of function

solve Ttc is proportional to Ni x N2 the number of grid points on the sphere. But as

we mentioned above, compared to the computational time for the overall improved

grid method, the computational cycle for function solve Ttc is insignificant. By using

a large value of N1 and N2, the DSP system obtains a more accurate result for the

time-to-collision without losing much in computational speed.

Now that we have studied computational speed, let us examine hardware re-

sources. As we know, our algorithms for time-to-collision need to use derivatives for

every pixel in the image. For both gradient descent method and grid search method,

the processing units will need a storage buffer to hold the derivatives for every pixel

since all of them are needed in every iteration of the algorithm. On the other hand,

because of the sufficient statistics, for the improved grid search method, the deriva-

tives are not needed for every iteration of the algorithm. Storage buffers are only

needed to hold derivatives for the current pixel, because they are used only once

in obtaining sufficient statistics. To obtain spatial and temporal derivatives, 3 x N

memory units are needed for a row by row computation, when N is the column size

in the input images.

A brief summary of hardware resources and computational bandwidth for the

three different algorithms is as follows. Let M and N be the width and height in

pixels of the image, respectively. Let T be the number of iterations for convergence in
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Table 5.4: Performance summary of different algorithms

Gradient Descent Grid Search Improved Grid Search

Cycles O(PxTxMx N) O(KxMx N) O(Mx N)+O(K)
Memory M x N M x N 3 x M+45

gradient descent method, and K be the number of grid intersection points representing

different vectors t. Whether the gradient descent computation converges to a global

minimum or local minimum depends on the initial values for vector n and t. Therefore,

the process is usually repeated for several different initial values to ensure about

convergence to the global minimal solution. Here P represents the number of initial

points for the gradient descent method. As shown in table 5.4, the computational

cycles for gradient descent are O(P x T x M x N), which can be explained as the

running time is proportional to P x T x M x N.

5.3.2 Accuracy

Now, let us determine how accurate the mathematical and numerical calculations for

the gradient descent method and the improved grid search method are. Sequences of

car images were created with a different translational velocity t and normal vector n.

Experiments were performed on synthetic image pairs in figure 5-4. Effects of grid

division N1 and N2 for angle 6 and # of the unit vector sphere on the experimental

results of the time-to-collision were investigated. Figure 5-7 shows the experimental

results using the grid search method. In figure 5-7, variable N is set as N = N1 = N2 .

From the result of this figure, we can see that when N takes value bigger than 15,

the improved grid search method obtains a solution with very small error.

To compare the gradient descent method with the improved grid search method,

experiments were performed on the same image pair in figure 5-4. Figure 5-8 shows

the experimental results for the gradient descent method with two different sets of

initial values of vector n and t. From figure 5-8, the solution starts to converge after

about fifty iterations. However, the value where the iterative computation converges
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Figure 5-7: Solving TTC with improved grid search method

depends on the initial values of vector n and t. Therefore, when the error function

have more than one local minima, the gradient descent method provides inconsistent

results depending on the initial values.

To check if the error function have more than one local minima, error distributions

were obtained from the improved grid search method. In figure 5-9, the value for error

is shown in z axis, and the location on the intersection of the grid on the sphere is

projected to the 2-D x - y plane. Figure 5-10 shows corresponding ttc distribution on

the different grid points. From figure 5-9, we can see that there are two local minima

in the error function, and our actual solution is the global minimum marked as 'x' in

figure 5-9 and figure 5-10. The improved grid method provides the global-minimum

solution once N is greater than 15. Comparing the performance of the improved grid

search method and the gradient descent method, it is obvious that the grid search

method provides a more consistent and reliable result for the time-to-collision.

The same experiments were repeated for the terrain image pair with lower resolu-

tion in figure 5-5 and the car image pair in figure 5-6. Similar behaviors were observed

from the simulation. The results show that terrain image pairs provide more accurate

results than car image pairs, and apparently, high resolution image pairs have better

performance than low resolution image pairs.
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Figure 5-8: Solving ttc with gradient descent method

More experiments were performed to test the performance of the improved grid

search algorithm for the image pairs with different translational motion. Each ex-

periment involved setting the translational motion vector t, and the normal vector n

appropriately. Keeping the normal vector n constant, while increasing the value of

translational velocity t in the direction of normal vector of planar object, the experi-

mental results of ttc are shown in figure 5-11, in comparison with the expected value

of ttc. Our experiments exhibit the same behavior as we expected. When motion

between two sequential image frames is very small, noise in the input image pairs will

have more effect on our final solution, causing a less accurate result. But when the

motion is not too small, our algorithm provides a very accurate result. The typical

error in our algorithm is less than 4%.
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Chapter 6

Conclusion

6.1 Summary

This thesis investigated the potential of using a digital signal processor to realize a

real-time system for the estimation of time-to-collision for camera motion. The direct

method builds the theoretical basis for time-to-collision, because it is more 'robust to

noise, and provides a straightforward solution for time-to-collision. The direct method

and least squares approach provide a non-linear closed form solution for determining

translational camera motion with respect to a planar surface [6]. To solve these non-

linear equations, we explored gradient descent, grid search, and improved grid search.

The performance of these algorithms were compared in terms of reliability, amount

of arithmetic operations required, and memory use.

The gradient descent approach provides an iterative solution. The iteration prop-

erty of this approach makes it well suited for analog implementation, because the

iterative solution can be easily obtained by closing a feedback loop in analog circuit

design. A major limitation of gradient descent is the need to choose a suitable value

for the learning rate parameter and the issue of convergence to local minima. The

gradient descent algorithm has pixel based processing, which leads to a highly parallel

overall architecture, if implemented with analog VLSI circuitry.

The grid search approach provides a global-minimum solution by explicitly search-

ing, over a fine grid, for a solution with small error. The improved grid search method
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uses hierarchical search and sufficient statistics strategies, basing on the original grid

search method. It successfully reduces a large amount of arithmetic operations. With

a Digital Signal Processing (DSP) processor having properties such as fast arithmetic

processing capability, fast on-chip memory, zero overhead looping in hardware, and

extended precision and dynamic range in the computation units, the improved grid

search approach seems well matched to a real time implementation with a digital

signal processor.

Due to computational complexity for the gradient descent method, the pixel level

analog VLSI chip has large pixel size, causing very low resolution. Therefore it is hard

to get reliable results for analog VLSI design for this application. A digital signal

processor TMS320C67 was chosen for our current real time implementation. Because

of time limitations, this DSP microprocessor based system will be a 'proof-of-concept,'

and simulations were on the DSP microprocessor TMS320C67 Code Generator and

C Source Debugger/Simulator. From the results of simulation, we conclude that

the improved grid search is well suited for DSP system design. It has provided. a

reliable solution and high computational efficiency when implemented with the Texas

Instruments digital signal processor TMS320C67.

6.2 Recommendation

There are a number of improvements which can be made for future real-time imple-

mentation of time-to-collision.

In this project, there is a trade-off between speed and precision. When imple-

mented time-to-collision algorithms with a digital signal processor (DSP) system de-

sign, a floating point DSP processor was used due to the large dynamic range of the

data in the implementation of the time-to-collision problem. If we are willing to ac-

cept lower accuracy for this problem, fixed point DSP combined with FPGA (Field

Programmable Gate Array) can be used to achieve even higher speeds.

The time-to-collision algorithm using the improved grid search method was sim-

ulated on a DSP microprocessor based system to provide real time performance. In
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the future, we hope to combine silicon VLSI technology and analog circuits for the

implementation of time-to-collision. Although analog circuits do indeed suffer from

low precision, this shortcoming is compensated for by the efficiency of computations

and less power consumption [12]. The gradient descent approach has a strong poten-

tial for robustness and a real time analog VLSI chip design. By investigating how

to decrease arithmetic operations on each pixel and the analog circuit size of each

pixel, the shortcoming of low resolution can be overcome, making a vision chip for

time-to-collision task possible.
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