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Abstract

The advent of Probabilistically Checkable Proofs (PCP) established the surprising result
that the validity of a proof can be checked with good accuracy by reading only a very small
number of randomly selected locations of the proof. In particular, if one is willing to tolerate
a small probability of error, then one need not even read the entire proof in order to check
its validity! The celebrated PCP theorem [AS92, ALMSS92] shows that it is possible to
encode membership in any NP language into polynomially long proofs in such a manner
that a probabilistic polynomial-time verifier can read only a constant number of locations in
the proof and still reject any adversarially chosen proof of a false claim of membership with
50% probability. The probability of accepting a "false proof" is called the error probability
of the PCP system.

The PCP theorem, in addition to being of inherent interest in proof checking, also has
applications in proving hardness of approximation results for a whole genre of optimization
problems. The appearance of the PCP theorem spurred a lot of research devoted to finding
quantitative strengthenings of it, with improved trade-offs between the different parameters
arising in the proof-checking procedure. A sequence of surprising developments along these
directions recently culminated in the striking results of Hastad showing that every language
in NP has a PCP verifier querying only 3 bits of the proof and having error probability
arbitrarily close to 1/2. This characterization of NP is tight as it is known that no verifier
querying only 3 bits can achieve an error strictly smaller than 1/2, unless P = NP.

Histad's construction of the 3-query PCP however has two-sided error in that there is
a small but non-zero probability that even a correct proof is rejected, and this fact is used
in a very critical manner in his construction. It seems somewhat more natural to require
that the verifier only make one-sided error, so that "correct" proofs are always accepted.
There is an aesthetically pleasing element to PCP proof systems with one-sided error: Every
rejected proof has a short counterexample and the proof system explicitly exhibits a flaw
in any proof it rejects; for example in the case of 3 query verifiers, the flaw is in the 3 bits
queried.

We give a tight PCP construction for NP that makes only 3 queries to the proof, has
error probability arbitrarily close to 1/2, and always accepts "correct" proofs. It is known
that such a PCP cannot exist if the 3 queries are made non-adaptively all at once; so one
important aspect of our construction is that the 3 queries are made adaptively i.e the next
query location is chosen depending upon the value of the previously queried bits. This
also establishes for the first time the previously unsuspected result that making queries



adaptively is more powerful than making them all at once. We also extend our PCP

constructions for a slightly higher number of queries and in many cases construct proof

systems with one-sided error achieving the same error probability as the previously best
known constructions, which had to resort to two-sided error.

Thesis Supervisor: Madhu Sudan

Title: Associate Professor
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Chapter 1

Introduction

The notion of proof verification is central to the theory of computing. For example, the

fundamental complexity class NP consists of precisely those languages for which there ex-

ist short (polynomially long) proofs of membership that can be verified by a deterministic

polynomial time algorithm. For the canonical NP-complete problem SAT, the proof that a

formula is satisfiable is simply a satisfying assignment itself, and a polynomial time algo-

rithm can check if the assignment indeed satisfies all clauses in the input formula.

Over the past decade there have been a number of new, different proof checking methods

that have been proposed and studied, both for intrinsic complexity-theoretic purposes and

for other applications. One of these is the now famous notion of a Probabilistically Checkable

Proof (henceforth PCP), which is motivated by the following question: "How can a proof

be written so that it can be verified very efficiently?" 1 In particular, can one write (encode)

the proof in such a manner that it can be checked with reasonable accuracy even without

looking at the entire proof, i.e can a verification procedure look at only a few locations of

the proof and still spot flaws in incorrect proofs with good probability? This is clearly not

possible if the verifier strategy is deterministic, and such a verifier must necessarily look at

the entire proof. This, however, is not true for a probabilistic verifier that can toss random

coins and probe randomly selected locations of the proof, and this leads to the definition of

the intriguing notion of PCP systems as described below.

'Historically the primary interest in studying PCPs was their immediate application to proving hardness
of approximate versions of NP-hard problems, but there is no denying that there is these are of inherent
interest in the domain of proof checking itself.
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1.1 Probabilistically Checkable Proofs

Informally, a Probabilistically Checkable Proof (PCP) system for a language L consists of a

verifier V which is a probabilistic polynomial-time Turing machine whose goal is ascertain

membership of an input string x in a language L. The verifier is given oracle access to a

(binary) proof string H which purportedly proves the statement x E L. The verifier tosses

a certain number of random coins, and decides, based on its random string and x whether

to accept or reject the proof H.

Since we are interested in the efficiency of the proof-checking procedure, we can pa-

rameterize PCP systems by their complexity and performance. For example, for integer

valued functions r and q, we can require that the verifier, for inputs x of length n, tosses at

most O(r(n)) random coins and queries the oracle (proof) H in at most O(q(n)) locations;

we refer to such verifiers as (r(n), q(n))-restricted verifiers. (We move freely between the

usages "querying an oracle" and "reading a proof".) These quantify the complexity of the

verification procedure and we expect that r(n) and q(n) will be much smaller functions than

n so that the proof-checking will be very efficient. We can also quantify the performance

of the verifier by additional parameters c(n) and s(n) (called completeness and soundness

respectively) which satisfy : (a) When x E L, there exists a proof H such that the verifier

with input x and oracle access to H accepts with probability at least c(n) over its coin

tosses, and (b) When x 0 L, for all proofs H the verifier accepts with probability at most

s(n) over its coin tosses. This leads to the formal definition of a class of languages in terms

of the parameters of the PCP systems languages in the class admit.

Definition 1 The class PCPc(n),s(n) [r(-), q(-)] consists of all languages for which there exist

(r(n), q(n))-restricted verifiers with completeness c(n) and soundness s(n).

In the notation of the above definition, it is clear that NP = PCP 1 ,o [0, poly].

It might seem a bit strange that we do not always insist that c(n) equal 1 (i.e require

that when x C L, the prover can write down a proof which the verifier always accepts), but

we will see shortly that not requiring so has led to some very interesting results. When c = 1

and s = 1/2 we omit the subscripts c, s and refer to the PCP class as simply PCP[r(n), q(n)].

The study of PCPs has involved interest in a host of parameters which are related to the

efficiency of the proof checking procedure. We have already encountered the most basic ones

among these like query complexity, randomness complexity, completeness and soundness.
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We look at these and further parameters in the next section.

1.2 Parameters of PCPs

We now list the parameters relating to PCPs that have been considered in the literature

by various authors; most of these parameters were defined and studied extensively for the

purposes of proving stronger, and sometimes tight, inapproximability results for certain

classical optimization problems. We only define these parameters in this section; their

applications and the motivation to study them are discussed in a later section. All these

parameters are functions of the length n of the input x to the PCP verifier V.

Randomness: This refers to the number of coin tosses that the verifier makes; it is typically

denoted by r(n).

Completeness: Denoted by c. Formally defined as:

c(n) = min{max Pr [Vr(x; R) accepts] : x E L and |x| = n}.
H R

We are usually interested in PCPs with c(n) being some constant function. Of special

interest is the case when the PCP has completeness 1, we then say it has perfect

completeness. A family of PCP constructions, with completeness 1 - e for any e > 0,

is said to have near-perfect completeness.

Soundness: This denotes the maximum probability of accepting a "false proof". Formally,

the soundness s is defined as:

s(n) = max{max Pr [Vr (x; R) accepts] : x ( L and |x| = n}.
rl R

As with the completeness, we are usually interested in PCPs with s(n) being some

constant function.

Error-probability: This stands for the ratio s/c of soundness to completeness.

We now move to various measures of information conveyed by the proof oracle to the

verifier. We only consider oracles which return a single bit on each query.
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Query Complexity: Denoted by q(n) this refers to the maximum number of queries made

by the verifier to the proof oracle 1 over all proofs H and all strings x of length n.

Free-bit complexity: Intuitively the free-bit complexity of a PCP verifier is f, if after

reading f bits of the proof, the verifier knows the (unique) values it should expect in

the remaining bits it is going to read. For instance if the verifier reads three bits of

the proof and accepts iff their parity is 0, then the free-bit complexity of the verifier is

2, since once it reads the values of the first two bits, it knows the value of the third bit

which will cause it to accept. To formalize this, let us denote by patternv(x; R) the

set of all sequences a such that the verifier accepts with input x and random string R

when the sequence of bits it reads from the proof oracle is a. The free-bit complexity

of V is the maximum of (lg Ipatternv(x; R)|) over all x, R (lg denotes logarithm to

the base 2). Equivalently, a PCP verifier uses f free bits if for any input x, and any

fixed random string R, its acceptance predicate (which is a boolean function of the

bits of proof) can be expressed by a DNF formula with at most 2f terms every pair of

which are inconsistent, i.e no truth assignment to the bits of proof can simultaneously

satisfy more than one of these terms.

Amortized query complexity: V is said to have amortized query complexity q (for a

constant q) if for some constant k it reads at most qk bits and has error-probability

at most 2 -k. The amortized query complexity of a PCP that has query complexity q

(for constant q) and soundness and completeness s, c is defined as: q = q/ lg(c/s).

Amortized free-bit complexity: The amortized free-bit complexity of a PCP that has

free-bit complexity f (for constant f) and soundness and completeness s, c is likewise

defined as: f = f/ lg(c/s).

Similar to the notation PCP[r, q] we denote PCP classes parameterized in terms of their

free bit complexity as FPCPc,S [r, f] for the class of languages which have PCP verifiers with

soundness and completeness s, c and use f free bits and 0(r) random coin tosses.

Adaptive Vs. Non-adaptive PCPs: We now discuss another subtlety in the definition

of a PCP. Note that the definition of the PCP allows for the verifier to be adaptive, i.e

to make future queries depending upon the values it reads for its previous queries. The

only restriction is that, for each input x and random string R, it reads at most q bits of

11



the proof and then decides to accept or reject. One could imagine requiring the verifier to

be non-adaptive i.e to decide the (at most) q locations of the proof it is going to read all

at once depending upon x, R alone, and then query them and finally accept or reject. A

PCP whose verifier is constrained to be non-adaptive is called a non-adaptive PCP and is

denoted by naPCP. Whenever we want to make the non-adaptivity of a PCP construction

explicit, we will always use this notation.

One can also define a notion of non-adaptivity associated with the free-bit complexity

of a PCP verifier. The definition we gave for free-bit complexity above corresponds to the

adaptive case. We say a verifier has non-adaptive free-bit complexity f, if for any input x

and any fixed random string R, its acceptance predicate is a boolean function that has at

most 2f satisfying assignments. It is easy to see that a verifier using f non-adaptive free

bits also uses only f (adaptive) free bits; the non-adaptive free-bit complexity of a verifier

could, however, be much higher than its adaptive free-bit complexity. For example if the

acceptance predicate p of the verifier for each fixed x, R is of the form p = (a A b) V (a A c)

for some variables a, b, c, then its free-bit complexity is only 1 while its non-adaptive free-

bit complexity is 2 as there are four assignments to (a, b, c) which satisfy p. PCP classes

parameterized in terms of their non-adaptive free bit complexity are denoted using naFPCP.

1.3 PCP Constructions: A Brief History

We now begin sketching a brief history of results in the area of PCPs leading up to our

work.2 The study of PCPs has been a subject of active research in the past few years. A

central and important result early in the area was the result of Babai, Fortnow and Lund [5],

who, stating in the above terminology, proved that NEXP C PCP[poly, poly]. This impor-

tant result was scaled down to the NP level by two independent works. Babai, Fortnow,

Levin and Szegedy [6] proved that there exist PCPs for NP in which the verifier runs in

polylogarithmic time. The definition of PCPs as above was implicit in the seminal work of

Feige, Goldwasser, Lovisz, Safra and Szegedy [11] who observed a remarkable connection

between PCP systems and the hardness of approximating Max-Clique. They proved that

NP C PCP[ log n log log n, log n log log n], and as a consequence of their connection to ap-

2We stress that this area is rich in deep and beautiful results and it is impossible to cite each piece of
important work; we have done our best to cite and mention all results that closely relate to our line of study.
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proximating clique deduced that Max-Clique cannot be approximated within any constant

factor unless NP C Dtime(loglogn ).

The purpose of proving stronger hardness results for approximating Max-Clique moti-

vated much of the initial investigation on PCPs. Arora and Safra [2] proved that NP C

PCP1 ,1 /2[log, o(log)], this proved that Max-Clique is NP-hard to approximate within any

constant factor. They made the definition of PCPs and of the class PCP[r, q] explicit, and

identified query complexity as an important parameter of PCP constructions. Their work

also introduced and used the idea of recursive proof checking (also known as proof compo-

sition) and this has played an important role in all future developments in the area. Arora,

Lund, Motwani, Sudan and Szegedy [1] showed how to reduce the query complexity to a

constant while preserving logarithmic randomness, yielding the celebrated PCP theorem

that states

NP C_ PCP1 ,1/ 2[log, O(1)]

The above, in addition to being an astonishing and inherently interesting statement about

proof checking itself, also had remarkable applications to proving hardness of approximation

problems: for example NP-hardness of approximating Max-Clique within NE for some e > 0,

and the NP-hardness of approximating MAx 3-SAT within some constant factor.

The appearance of the PCP theorem spurred a lot of research devoted to finding quanti-

tative strengthening of it, with improved trade-offs between the different parameters arising

in the proof-checking procedure. One main motivation behind this line of research is to get

improved, and sometimes tight, hardness results for approximately solving various classical

optimization problems like Max-Clique and MAx 3-SAT.

The work in [2, 1] distilled the role of "recursive proof checking" as an important tool

in PCP constructions, and the construction of constant-prover one-round proof systems

became an important step in the latter steps of the recursion as it is instrumental in getting

PCP systems that make only a constant number of queries. In a constant-prover one-round

proof system, a probabilistic polynomial time verifier makes one probe to each one of a

number p (which is 0(1)) of provers each of which returns possibly many bits as an answer.

The verifier then decides to accept or reject depending upon the answers it receives. As in

PCPs, there are several parameters of interest here like the number of provers, the answer

sizes of the provers, the randomness complexity of the prover, to name a few. Following

13



[1], the task of constructing PCPs bifurcated into the tasks of constructing good constant-

prover proof systems (which will serve as what have been called outer verifiers) and good

inner verification procedures (these notions will be formalized and discussed in detail in the

next Chapter).

PCP constructions ideally require constant-prover proof systems whose error can be

made an arbitrarily small constant while keeping the randomness and answer sizes small, and

the number of provers fixed, preferably two. Early constructions of constant-prover proof

systems due to Lapidot and Shamir [18] and Feige and Lova'sz [12] used polylogarithmic

randomness and answer sizes. The randomness complexity was reduced to logarithmic in

[1] at the expense of increasing the number of provers to a constant much larger than

2. Bellare et al. [8] achieve the same logarithmic randomness while keeping the number

of provers bounded (they needed 4 provers) and also achieve sub-logarithmic answer sizes.

Significant progress was made when Feige and Kilian [13] constructed constant-prover proof

systems with logarithmic randomness, constant answer size and only 2 provers. Bellare and

Sudan [9] identified extra features of two-prover one-round proof systems that could be

exploited to construct better PCPs; the 2-prover proof systems of [13], however, did not

have such properties, so instead [9] worked with a modification of the proof systems in

[18, 12]. A breakthrough came in the form of Raz's parallel repetition theorem [21], which

gave a construction of a 2-prover 1-round proof system with logarithmic randomness and

constant answer size, and in addition had the properties which [9] needed. The proof system

of Raz has been the "outer verifier" in all future PCP constructions, beginning with the

ones in [7].

This is a good point to remark that constant-prover proof systems, in addition to being of

importance to PCP constructions, are of intrinsic interest and also have direct applications

in proving hardness of approximations; for instance in the inapproximability results for Set

Cover [19, 10]. There still remain interesting questions pertaining to constant-prover proof

systems themselves, and there has been recent work in [22, 3] obtaining constant-prover

proof systems with sub-constant error-probability while using logarithmic randomness and

answer sizes. Our work will not focus on results on constant-prover proof systems; we

will just use the construction of Raz [21] as an "outer verifier" in order to get our PCP

constructions.

The sequence of works [8, 13, 9, 7] identified the important parameters for PCPs (like

14



query bits, free bits, amortized free bits, soundness, etc.), and gave better and better PCP

constructions for NP (all using logarithmic randomness) with improved parameters using

the above constructions of constant-prover proof systems together with some other ideas to

perform efficient "inner verification". The notion of free bits was implicit in [13] and was

formalized in [9]. Amortized free-bits were introduced in [9] and formalized better in [7].

PCPs with low free bit complexity have applications to proving hardness of approximating

Vertex Cover, while amortized free bits turns out to be the right measure to optimize for

inapproximability results for Max-Clique [9, 7].

A PCP construction with amortized free-bit complexity 2 + e was given in [7]. This

paper introduced the Long code as an error-correcting code to be used in proof composition,

and this important discovery has been the standard for subsequent constructions. They

also showed that NP C PCP 1,0.85+E[log, 3] and NP C FPCP,0.79 35+E[log, 2]. They also

considered the question of determining the minimum q for which NP C PCP1,1 2 [log, q]

and showed that q = 11 would suffice. 3 Hastad [15), in a major breakthrough, constructed

PCPs with amortized free-bit complexity e for arbitrary e > 0. Trevisan [27] and Sudan

and Trevisan [24] construct PCPs with amortized query complexity 1.5 + - for any - > 0.

This sequence of developments [5, 4, 11, 2, 1, 8, 13, 9, 21, 7, 15] culminated in the striking

results of Hastad [16] showing that every language in NP has a PCP verifier querying 3 bits

and having error probability arbitrarily close to 1/2. This characterization of NP is tight

in the sense that no verifier querying 3 bits could achieve an error strictly smaller than

" [29]. Haistad in his papers [15, 16] actually describes a general machinery for analyzing

Long code based PCP constructions using Discrete Fourier analysis, and in principle these

methods could yield a tight analysis of any given verifier.

1.4 Current Research Directions and Our Main Results

Current results in better quantitative improvements to existing PCP constructions (for

NP) can be classified into (broadly) four kind of endeavors depending upon the complexity

measure they are trying to optimize:

3This question was addressed in initial works in order to prove the hardness of approximating Max-Clique.

While we now know amortized free-bits is the right measure for this purpose, the query complexity of a proof

system is still a most natural measure, and it is an intriguing question how many query bits one needs in

order to achieve a certain error probability.
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1. Amortized free bits: This is the correct parameter to optimize for applications to

inapproximability results for Max-Clique, as shown by [9, 7]. A tight result achieving

e amortized free bits for any e > 0 has been shown by Histad [15].

2. Free bits: The goal here is to achieve the best soundness possible for PCPs that use

a small number of free bits; free-bit complexity is the right measure to optimize for

obtaining inapproximability results for Vertex Cover. The best known construction

for free bits is again by Histad [16] and achieves near-perfect completeness, soundness

1/2 using only two free bits.

3. Amortized query bits: This parameter specifies the precise rate at which the error of

a PCP goes down with the number of queries it makes, and also has applications to

the approximability of the Boolean constraint satisfaction problem with constraints

involving at most k variables, usually called MAX k-CSP. A construction achieving

1.5 + e amortized query bits is known [27, 24], and recently [23] announced an optimal

PCP construction achieving 1 + e amortized query bits for any E > 0 (a lower bound

of 1 holds for the amortized query complexity of any PCP system powerful enough to

capture NP, assuming P # NP).

4. Query bits: The goal here is to achieve the best soundness possible for PCPs that use

a small number of query bits. The query complexity being such a natural parameter

of the proof-checking procedure, this is a fundamental question in the understanding

of PCPs, and it also has applications to proving hardness results for approximating

fundamental optimization problems like MAX 3-SAT, MAX CUT, MAX 2-SAT, MAX

k-CSP for small values of k, to name a few.

Since tight results have been obtained for the case of amortized query and free bits, our

work focuses on obtaining improved PCP constructions for the parameters of query bits,

and also as corollaries, free bits.

A "tight" PCP construction in terms of query bits follows from the work of Histad,

namely his 3-query PCP construction with error-probability 1/2 [16]. In the process of

proving this tight characterization of NP in terms of 3-query PCPs, Hi'stad's work exposes

some of the previously unexplored subtleties in the definition of a PCP system. Recall

that such a proof system is described by an (r, q)-restricted PCP verifier, and also the
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soundness and completeness parameters s, c. Notice that while the definition allows for the

verifier to make two-sided error i.e have completeness less than 1, most PCP constructions

to date restricted their attention to verifiers making one-sided error (i.e having perfect

completeness). There are several reasons for this: (1) It was not known how to exploit

the power of two-sided error, and (2) Verifiers with one-sided error work better in proof

composition and in many applications to inapproximability results. Moreover, there is an

aesthetically pleasing element to PCP proof systems with one-sided error when looked from

the perspective of proof-checking: There is a short counterexample to any rejected proof

and verifier explicitly exhibits a flaw in any proof it rejects; and in the case of 3 query

verifiers, the flaw is in the 3 bits queried. In fact, the original definition of PCPs in [2, 1]

required the proof system to have perfect completeness.

Histad's construction, however, yields a verifier making two-sided error. Specifically,

his construction has near-perfect completeness and when x E L the verifier makes an arbi-

trarily small but non-zero error, i.e he proves NP C PCP1- , 1/ 2 [log, 3]. The near-perfect

completeness is inherent in his construction and leaves open the question: What is the

lowest error that can be achieved in a 3-query PCP for NP having perfect completeness?

In light of the newly acquired ability to perform (at least in principle) a tight analysis of

almost any PCP verifier through Histad's work, it seems feasible to examine this question:

The only challenge seems to be in designing the right PCP verifier. Yet, the best previous

construction of a PCP verifier that queries three bits and has perfect completeness only

achieves an error probability arbitrarily close to 3/4 [16].

Trevisan [26] and Zwick [29] show a fundamental barrier to this quest: They show that

any PCP verifier making 3 non-adaptive queries to the proof oracle, and having perfect

completeness and soundness less than 5/8 can only recognize languages in P. This brings

up another subtlety in the definition of PCPs: as we mentioned in Section 1.2 the definition

actually allows the queries of the verifier to be generated adaptively. Most previous PCP

constructions do not use adaptivity. However, to get a tight answer to the 3-query question,

it seems necessary to build an adaptive verifier; and the only construction of an adaptive

PCP verifier in the literature is a construction of Bellare et al. [7). Thus this entire area

seems relatively unexplored.

We build a new adaptive 3-query verifier for NP. This verifier is based on a combination

of the adaptive verifier of Bellare et al. [7] and the non-adaptive verifier with perfect com-
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pleteness of Histad [16]. We perform a tight analysis of this verifier and obtain a somewhat

surprising result:

Theorem 1.1 For every e > 0, NP = PCP1 , !+[log, 3].

The theorem is tight since, as pointed out earlier, any 3-query verifier for NP must

make an error with probability at least 1 [29]. This theorem, therefore, resolves a central

question relating to PCPs by obtaining a tight characterization of NP in terms of a 3-

query PCP making one-sided error. 4 The surprising element of the result above is that

it shows that an adaptive verifier can achieve a lower error than any non-adaptive verifier

- thereby establishing a separation between adaptive and non-adaptive PCPs. Prior to

this result there was no evidence indicating that such a separation might exist. In fact,

on the contrary, Trevisan [25] points out that adaptive and non-adaptive PCPs actually

have the same power for PCPs with two-sided error. Of technical interest is that we extend

(in retrospect, quite easily) the Fourier analysis method of Histad to the case of adaptive

PCPs. While our proof of Theorem 1.1 borrows lots of ideas from [16], our presentation

here is self-contained and also different from the one in [16] which does not make proof

composition and the notion of inner verification explicit.

We move on to examine PCPs with slightly higher number of queries. One motivation for

addressing this question is to determine the smallest number of queries required for a (non-

adaptive) PCP to have soundness strictly less than 1/2. This question has the intriguing

aspect of answering what the constant in the PCP Theorem (stated with completeness 1 and

soundness 1/2 and requiring non-adaptivity) actually is. This quest was initiated in [8] and

pursued further in [13, 9, 21, 7] and the best bound prior to our work was 9 and was implicit

in the work of [16]. Another motivation is the following question: Is it true that every

additional query increases the power of PCPs? (I.e., is PCP1 ,,[log, q] c PCP 1,,, [log, q + 1],

for some s' < s?') It is easy to see that 3 additional bits certainly reduce the error. Yet, for

one additional bit we do not know the answer. In fact, prior to this paper, it was not even

known if there exists a non-trivial q (q > 3) for which this statement is true. To answer

such questions, we prove some more new (but not necessarily tight) PCP characterizations

4 At this stage almost every question relating to NP and PCP with 3-queries seems to be tightly resolved,
except for the case of a non-adaptive PCP with perfect completeness where the best soundness achievable
lies somewhere between 5/8 and 3/4.

5This question was posed to us by Oded Goldreich.
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of NP (recall that the notation naPCP below stands for non-adaptive PCP).

Theorem 1.2 For every - > 0, the following hold:

(1) (4 non-adaptive queries) NP = naPCP 1 ,+e[og, 4].
(2

(2) (5 adaptive queries) NP = PCP CP [o[gog, 5].

(3) (5 non-adaptive queries) NP = naPCP1 iL+,[log, 5].

(4) (6 non-adaptive queries) NP = naPCP1 ,.+[log, 6].

Part (2) of result is where the main technical work is done. Parts (1) and (4) are

immediate corollaries of the adaptive protocols in Theorem 1.1 and Part (2) of the theorem

above: The non-adaptive verifier is obtained by reading all possible bits that may be read

by the adaptive verifier. It is interesting to observe that that for several choices of q, the

best known non-adaptive PCP verifier is obtained by starting from an adaptive one. Part

(3) above requires some modification of the verifier of Part (2), and shows that at most 5

non-adaptive queries are required to get soundness below 1/2 (improving the bound of 9

known earlier).

The above results together yield some partial answer to the question posed earlier, since

they exhibit a non-trivial value of q for which q + 1 queries give more power than q: For

non-adaptive PCPs, 4 queries are stronger than 3. (This follows from Theorem 1.2 (1) and

the fact that naPCP1,s[log, 3] g P for any s < 5/8 [26, 29].) We will observe some more

such results in Chapter 7.

Our PCP constructions also have implications for optimizing free bits. For instance, our

3-query construction also proves that NP C FPCP1,1/2 +e[log, 2], thereby answering an open

question raised in [7]. We also obtain a few other such results, and also note a result which

hints at potential difficulties which have to be surmounted in order to get PCP constructions

that significantly improve the inapproximability results for Vertex Cover. These results

are described in detail in Chapter 5. We also obtain some results showing that certain

PCP classes (with perfect and near-perfect completeness) and certain soundness to query

complexity trade-offs in fact collapse to P; these results will be mentioned in Chapter 6.

A preliminary version of the results presented in this thesis appeared in the paper [14].
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1.5 Organization of the Thesis

We give some background on the methodology of PCP constructions and describe in detail

the notion of proof composition as needed for our constructions in Chapter 2. We describe

the 3-query PCP construction that proves Theorem 1.1 in Chapter 3. Chapter 4 describes

the PCP constructions with higher number of queries and proves all the parts in Theo-

rem 1.2 above. PCP constructions optimizing free bits that follow from our constructions

in Chapters 3 and 4, together with a few others, are described in Chapter 5. Chapter 6

proves some results that establish limitations on the power of PCPs that make a small

number of queries and have perfect or near-perfect completeness. Finally, in Chapter 7

we make some concluding remarks and list a few open questions and directions for future

research.
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Chapter 2

Proof Methodology and

Background

2.1 Proof Composition: The general paradigm

Our PCP constructions rely on the proof-composition methodology introduced by Arora

and Safra [2] and then refined in [1, 8, 9, 7, 16]. The main idea behind proof composition

is to construct two proof systems, that optimize different efficiency parameters, and then

combine them to build a composed proof system which is efficient under all the parameters.

In this methodology in its current, most convenient form, one composes an outer verifier

Vout that is typically a 2-Provers 1-Round (2P1R) protocol (in which the verifier makes one

query to each of two provers and accepts if their answers are "consistent") and an inner

verifier Vin. The verifier of the composed system Vcomp expects as proof the entry-wise

encoding of the proof of Vout using an error correcting code. Vcomp starts of by simulating

Vout, choosing two entries of the proof as Vout would, and then calls as a subroutine i"

whose job is to determine, given two strings, whether they are the valid encodings of two

possible consistent answers that would have been accepted by Vut(see Figure 2-1). Since

this requirement on Vin is too strong, we relax it to testing if the two strings are close to

valid encodings of consistent answers. The power of this methodology in obtaining very

good parameters for PCP constructions comes from the fact that Vcomp inherits the query

complexity and error probability of the inner verifier Vn, and even if Vin requires a large

amount of randomness, the composed verifier will still only use logarithmic randomness.
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Raz's verifier A inner verifiers The composed verifier

Figure 2-1: Proof composition

Moreover, as we shall see shortly, an outer verifier that is essentially the best possible one

for our purposes has been given by Raz [21], and therefore resorting to proof composition

reduces the task of designing PCPs to the simpler task of constructing inner verifiers.

Let us look a little more closely at the properties of the inner verifier. It knows the

acceptance criterion of Vut, and, given oracle access to two strings which are allegedly

encodings of answers that Vut would have accepted, it job is to test whether this is the

case. In order to design a PCP with completeness c and soundness s, we would like to say

that: (a) Whenever all the conditions are satisfied, in accepts with probability at least c,

and, stating the soundness condition in the contrapositive form, (b) Whenever Vi" accepts

with probability more than s, the strings it is accessing are close to being valid encodings

of answers that would have caused Vout to accept.

The second property above turns out to be a tricky one to formalize. One possible

approach is to require that in the case when Vn accepts with probability more than s,

there is a way to "decode" the strings it is accessing independently into possible consistent

answers for the outer 2P1R protocol. This requirement is however too stringent. It turns

out that a weaker requirement that will still suffice for purposes of composition, is to allow

the decoding procedures to be randomized and require that if Vin accepts with probability

more than s + 6, then the decoding procedure, applied independently to the two strings

which the inner verifier accesses, produces a pair of consistent answers (for Vout in the outer

protocol) with probability at least y > 0, for some y which depends only on 6. Such a

decoding procedure was made explicit in [16] and was implicit in the work of [7].

22



We now proceed to explicitly describe the outer verifier and give more details on the

composition scheme the way we define and use it.

2.2 The Outer Verifier

For our outer verifier we use the 2-Prover 1-Round proof system due to Raz [21] which

achieves perfect completeness, constant answer size and small soundness (the soundness

can be made an arbitrarily small constant by letting the answer size be a sufficiently large

constant). We now describe the construction of such a 2P1R protocol, and later abstract

the details of the Raz verifier to give the final general form of our outer verifier, as will be

most useful to us.

As a consequence of the PCP theorem [2, 1], together with a reduction due to Papadim-

itriou and Yannakakis [20] , there exists a polynomial time reduction that maps an instance

p of 3SAT to an instance p' of 3SAT in which each variable occurs in the same constant

number of clauses, with the property that if sp is satisfiable then so is so', and if sp is not

satisfiable then every assignment satisfies less than a fraction (1 - @) of the clauses of so',

where 4 > 0 is an absolute constant.

This transformation yields the following 2P1R system for ascertaining membership in

3SAT. Given a formula so, we first use the above transformation to produce a formula o'

with N variables and M clauses. The verifier of the 2P1R protocol has oracle access to

two tables (provers) P : [N] -+ {0, 1} and Q : [M] -+ [7] which allegedly encode the same

satisfying assignment for sp' (for an integer n we use [n] to denote the set {1, 2, ... , n}).

Specifically, for every variable x, P(x) contains the truth value of x in the assignment. The

Q table supposedly contains, for every clause C, the values of the three variables occurring

in C according to the same assignment as defined by P, and encoded as a number between

1 and 7, which represents, say, the index of the assignment in the lexicographic order among

the satisfying assignments of C.

The verifier operates as follows: It picks at random a clause C in so' and then one of

the three variables (say the ith variable x for some i E {1, 2, 3}) occurring in C again at

random. It then gets answers a = P(x) and b = Q(c). The verifier now determines bi, b2 , b3

such that b E [7] encodes the satisfying assignment bi, b2 , b3 of C, and then accepts if by = 1.

Due to the "gap" that exists in the number of satisfiable clauses of sp', it is easy to show
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Figure 2-2: A description of the outer 2-Provers 1-Round Protocol.

that this 2P1R protocol has perfect completeness and soundness (1 - p/3) < 1.

Our final outer 2P1R will be obtained by driving down the soundness of the above

protocol by iterating it several times in parallel. For example the u-parallel version of this

protocol does the following: The verifier picks at random u clauses C1, C2,... 'Cu of p'

(possibly with repetitions), and for each Ci it picks a variable xi occurring in it at random.

The prover P is now expected to encode a satisfying assignment to p', and for every u-tuple

of variables P must return the value of this assignment restricted to the variables in that

tuple. The prover Q is expected to return, for every u-tuple of clauses, the value of the same

assignment (that P encodes) restricted to the variables occurring in the u-clauses (encoded

in the obvious way as an element of [7 ]u). The verifier now gets answers (ai, a2, ... ,au)

P(xi, X2 , --. , X) and (bi, b2 , ... , bu) = Q(C1, C2, ... , Cu) and checks that r(bi, b2 , .. ,bu)

(ai, a 2 , ... , au) where 7 : [7 ]u - {0, 1 }U is the appropriate projection function that extracts

the values of X 1 , X2, .. . , Xu from the values of all the variables occurring in C1, C2,... , C.

The parallel repetition theorem of Raz [21] proves that the above u-parallel version of

the basic protocol has soundness cu for some absolute constant c < 1. It is clear that the

2P1R has perfect completeness and uses answer size of 0(u).

We are now ready to abstract the above verifier into a form that will be useful to us

and that will also aid us in our presentation. We will use the following description of it (see

Figure 2-2): The verifier is parameterized by an integer u and it has oracle access to two

tables P, Q (with P : [N]U - [2]u and Q : [M]U - [7]u; the exact values of N, M will not be

important, we only need N, M to be polynomial in the size of 0). (We have also identified

{0, 1}u with [2]u in the obvious manner for clarity of presentation.) The verifier then picks,

uniformly at random, an entry q in table Q to query and then picks a projection function
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(First computes a formula p' with N variables and M clauses

and which has a "gap" in the number of satisfiable clauses.)

Randomly pick q E [M]".

Pick a projection function ir : [7]u - [2]u according to D(q).

Compute the query p = f(q, r).

Get answers a = P(p) E [2]u and b = Q(q) E [7]u.

accept iff r(b) = a.



7r : [7]" -+ [2]" randomly according to a distribution D(q) that is determined by q. It then

decides the query p into P as a deterministic function f of q, 7r, and then reads a = P(p)

and b = Q(q) from the tables and finally accepts iff r(b) = a. By the parallel repetition

theorem, we obtain:

Propostion 2.1 For every y > 0, the 2P1R using the verifier VOJut for u = O(log 1/-Y) has

perfect completeness, soundness at most y and answer size O(log 1/-y).

A restriction on the distribution D(q): We now slightly compromise the generality of

the description of our outer verifier of Figure 2-2 by placing a restriction on the possible

distributions D(q) that the verifier V"u is allowed to use. For this purpose we first make

the following definition:

Definition 2 A distribution D on functions f : S -+ T is called o-distinguishing if for

every fixed x # y c S,

Pr [f(x) # f (y)] 2 o.
fED

We require that each distribution D(q) be the product of distributions D1 (q), D 2 (q), . . . , D,, (q)

where each Di(q) is a o-distinguishing distribution on functions 1ri : [7] -+ {0, 1} (for an

absolute constant - > 0; in fact we may take a = 1/3). We refer to such valid distributions

D(q) as smooth distributions.

Definition 3 A distribution D on functions f : S" -+ T" is called smooth if it is the

product of n o-distinguishing distributions D 1 , D 2 ,... , D", (on functions g : S -+ T).

The key property of smooth distributions D(q) is that a random function 7 chosen

according to D(q), with good probability, has the property that the image of a "large" set

under 7r is also quite "large". We show this by proving the following lemma, which was

shown to us by Luca Trevisan.

Lemma 2.2 (Trevisan) Let E, R be arbitrary finite sets, and D be a smooth distribution

over functions 7r : E" -+ R". Then, for every k and every set S C E",

|S 2 |E~k -> Pr [|7r(S)I <-k/2] < e-"k/
7rED
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Proof: Let S be a set such that |SI |Elk. We define a subset T C S and we prove that

Pr[fr(T)| < ak2] e-k'/ 8 .

Towards this goal, we will construct a set T = { .. . , sk+1I} and indices si,... ,

such that for every j = 1, ... k it is the case that

s,[i] 4 sj+1(ii] = ' = Sk+1[ij]

We prove that such a set T and associated indices i 1 ,... ik+1 must always exist. We proceed

by induction on k. (The proof will also define a recursive algorithm to find the set and the

indices - this algorithmic aspect is irrelevant for the sake of the proof.) For the base case

k = 0 we can take il to be an arbitrary index and T to be a singleton set consisting of

an arbitrary element of S. For larger values of k, we let il be an index where not all the

elements of S are equal. Let a be the most popular value in the ii-th entry of the elements

of S; let si be an element of S such that s1[ii] j a and let S' = {s c S : s[ii] = a}; observe

that |S'| 2 ISI/IEl 2 |Ek-1. Apply the inductive hypothesis to S' and get a set T' C S'

of k elements and k indices i 2 , -- -, ik+1 with the required property. Then T' U {s1} and

i1,... ,k+ have the required property for S.

Let T = {si,... ,Sk+1} g S and i1,... ,k+1 as above. Let a3 = sj[ig] and let bj be

the common value of sj+1[ij], ... , sk+1[ij]. Define the random variable Xj for j = 1, ... , k

whose value is 1 when ri, [aj] $ 7rij [bj] and 0 otherwise where 7ri, is drawn according to the

a-distinguishing distribution Di2 . Then

1. Xj are mutually independent 0/1 random variables, each one with expectation at least

01.

2. Ej X, is a random variable that lower bounds the number of distinct elements of ir(T)

(consider {s3 : Xj = 1}; then ir maps this elements to different binary strings.)

By the fact that T C S, by part (2) above, and by Chernoff bounds and part (1) above,

we have

Pr[\jr(S)\I < ak/2] < Pr[\ir(T }| < ak/2] < Pr[( Xj < ak/2] : e-ko!/.

As a consequence of the above lemma and the requirement of smoothness we placed on

the distributions 'D(q), we get
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Lemma 2.3 For every 6 g [7]u, the distribution D(q) employed by our outer verifier sat-

isfies:

Pr [|Ir#)|> l ] I 1 e-o-og 171/16

irE-(q) 4 ]
Proof: Follows from the previous Lemma with choice of k = [log|#|J. L

2.3 The Inner Verifier

We now need to define a suitable inner verifier that can be used for composition in conjunc-

tion with the outer verifier of Figure 2-2. As was briefly discussed in Section 2.1, the inner

verifier will be given the acceptance predicate 7r used by the outer verifier and will have

oracle access to supposed encodings A and B of two strings (that lie in [7 ]u and [2 ]u) as per

some error-correcting code. The inner verifier needs to check that the two strings A and B

are close to valid encodings of elements a E [2 ]u and b E [7 ]u which satisfy the acceptance

criterion of the outer verifier viz., ir(b) = a, and for the purpose of getting composed PCP

verifiers that have small query complexity, the inner verifier needs to do this while making

only few queries into the tables A and B. The hope is that by using very redundant encod-

ings A and B, we will be able to reject invalid A and B with good probability even though

we make only a small number of queries.

In order to be able to define our inner verifiers, we first need to do two things: (a) define

the method of encoding answers a and b of the outer verifier into strings A and B, and (b)

specify a (randomized) decoding procedure, that decodes A and B independently into a and

b such that whenever the inner verifier having access to tables A and B accepts with large

enough probability, a and b satisfy ir(b) = a with "good" probability (recall the discussion

in Section 2.1).

2.3.1 The Long Code

The current standard for the encoding method used in proof composition is the Long code

introduced by Bellare, Goldreich and Sudan [7] and this code has since been instrumental

in all powerful PCP constructions. The Long code of an element x in a domain D consists

of the evaluation f (x) for all the 2 |DI boolean functions f : D -+ {O, 1}. For our purposes,

we will only be using domains D which are either [2]" or [7]U for a positive integer u, though

we still give the presentation in this section for a general domain D. From now on Boolean
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functions will be defined with values in {1, - 1} rather than {0, 1}. The association is that

-1 stands for 1 (or true) and 1 stands for 0 (or false). This system is a lot easier to work

with as it has the nice property that multiplication in {1, -1} acts as Boolean xor in {0, 1}.

We now establish some notation that will be used throughout and also describe the

machinery relating to Long codes that will be necessary and useful for our purposes. For

a domain D, we denote by .FD the set of all functions f : D -4 {1, -1}. The operator

o denotes composition of functions, and if f E YR and r : D -+ R then the function

(f o 7r) E FD is defined as (f o ir)(b) = f (ir(b)) for any b E D. For two sets a,,3, we denote

by aA/ = (a U 3) \ (a n 3) their symmetric difference.

We say that a functionA :YFD -+ {-1, 1} is linear iff A(f)A(g) = A(fg) for all f, g E -D.

There are 21D linear functions a, one for each set a C D; it is defined as

la(f) = H f (a).
aEa

(By convention, we say that a product ranging over the empty set equals 1.) Note that the

Long code is the set of linear functions whose support is a singleton, i.e. LONGD {l{x}

x E D}, and l{x} is the Long code of x.

We will be using the following three standard properties of linear functions:

lQ(f)la(g) = la(fg)

la(f)lp(f) = la,(f)

Ela(f) = Ifa= (2.1)
f ~ 0 otherwise.

(In the third equation above f is picked uniformly at random from FD.)

It is useful to view a function A : YD -4 {-1, 1} as a real-valued function A : FD -4 R.

The set of functions A : FD -+ R is a vector space over the reals of dimension 21D. We can

define a scalar product between functions as

A -B= 2|D| A(f)B(f) = E[A(f)B(f)].
2f EYDf

The set of linear functions is easily seen to form an orthonormal basis for the set of

functions A : TD -+ R (with respect to the above dot product). This implies that for any
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such function A we have the Fourier expansion

A(f) = Za 0 (f), (2.2)
a

where for a C D, Za = A - la is the Fourier coefficient of A w.r.t a. Equation (2.2) above

is an important one and will be used repeatedly in analyzing inner verifiers based on long

codes. Observe that for a function A : YD -+ {1, -1}, we have -1 < A < 1 for any a. The

following proves another useful property of the Fourier coefficients of any A : FD - {1, -1}-

Propostion 2.4 For any function A : YD -+ {1, -1} we have

Proof: We have

Z2 = A -A = E[A(f)2]=1
a f

since A(f) = ±1. El

Folding of Long Codes: We will also need the notion of folding as introduced in [7].

Observe that for a long code A = l{}, A(f) = f(a) = -(-f(a)) = -A(-f) for any

f E FD. If A satisfies A(f) = -A(-f) for any f E FD, we say that A is folded; thus all

long codes are folded. For any function A : FD -+ {1, -1}, we can define a new function

A', called the folding of A, that satisfies such a property. Specifically A' can be defined as

follows: fix an element ao E D, say the smallest element as per some ordering of elements

in D, and then define:

A'(f) - A(f) if f (ao) = (2.3)
-A(-f) if f(ao) = -1.

Note that A' clearly satisfies A'(-f) = -A'(f). We stress that for any f, A'(f) can be

obtained using just one query into A, and that A' is equal to A if A a valid Long code

of some element a. We therefore assume without loss of generality from now on that the

strings (which are purported long codes), to which the inner verifier is given oracle access,

are all folded.

We now note the following key property of folded functions A : FD -+ {1, -1} which is
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Decoding Procedure Decode(A);
/* A : FD -+ {-1, 1}, A folded. Returns an element of D. */

Choose a C D with probability A.

Pick an x E a uniformly at random and return x.

Figure 2-3: The Decoding Procedure

proved in [16].

Lemma 2.5 If A: .FD - {1, -1} is folded, then As = 0 for all S C D with |SI even. In

particular we have AO = 0.

Proof: Recall the definition

A = 2--IDI Z A(f) fi f (x)
f6FD XES

Since A(f) = -A(-f) and ls(f) = ls(-f) when |S| is even, the two terms corresponding

to f and -f cancel and hence we get As = 0. 0

With this Fourier machinery we are now ready to describe the decoding procedure to be

used with our inner verifier.

2.3.2 The Decoding Procedure

The decoding procedure takes as input A : TD -+ {1, -1} (which we assume, without loss of

generality, is folded) and returns an element in D. The description of the decoding procedure

is given in Figure 2-3. We remark that the procedure is well-defined since Parseval's identity

implies that A in fact defines a probability distribution, and because the procedure will

never get stuck by picking a = 0 as the assumption that A is folded guarantees A = 0 (by

Lemma 2.5).

2.3.3 Formalizing "Good" Inner Verifiers

We are now ready to define precisely the requirements on our inner verifiers.

Definition 4 (Inner Verifier) An inner verifier is a randomized oracle program that is

given input a positive integer u and a projection function 1r : [7 ]u , [2]", and has oracle

access to folded functions A : 77)] -+ {1, -1} and B : F[7]u - {1, -1}.
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Definition 5 (Good Inner Verifier) An inner verifier Vj, is (c, s, q)-good if the follow-

ing properties hold:

* [NUMBER OF QUERIES] For all u, VAB(u, i) makes a total of q (possibly adaptive)

queries into the oracles A and B.

e [COMPLETENESS] For all u, if A is the Long code of a and B is the Long code of b

and ir(b) = a, then

Pr [Vi.,B(u, 7r) accepts] c

(Here the probability is over the internal randomness of V.)

" [SOUNDNESS] For any constant 6 > 0, there is a constant y > 0 and a positive integer

uo such that for all u > uo, if 7r is drawn according to a distribution that is smooth,

then

Pr [V 'B(u, 7r) accepts] 2 s + 6 =- Pr [Decode(A') = 7r(Decode(B))] y

where the probabilities are taken over the distribution of 7r and over the internal coin

tosses of Vn(u, -) and Decode. (For each B, we let A = A' to depend on 7r as we vary

-x according to its underlying smooth distribution.)

Remark: A non-adaptive (c, s, q)-good inner verifier is a (c, s, q)-good inner verifier that

makes at most q queries non-adaptively for every u, -x, A, B.

The above definition is based on the standard definition of an inner verifier (e.g. from

[7]) but it incorporates the possibility that the decoding procedure be randomized' and

also allows the soundness condition to be averaged over the choices of 7r. The latter is

a technicality and it makes the definition less elegant as the restriction that 7v be drawn

randomly from smooth distributions has to be placed. With the precise definition of an

inner verifier in place we are now ready to state and prove the Composition Theorem.

1Bellare et al. [7] used a deterministic procedure that returned a list of candidates, and this was concep-
tually similar to the randomized decoding idea that first appeared in [16] which however did not formalize
the notion of an inner verifier explicitly. A definition of inner verifier with respect to a randomized decoding
procedure is explicit in [27].
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Verif ier Vc'mp(; LP, LQ)
(First computes a formula o' with N variables and M clauses
and which has a "gap" in number of satisfiable clauses.)

Randomly pick q E [M]".
Pick a projection function x : [7]u -+ [2]u according to D(q). (D(q) is smooth.)
Compute the query p = f(q, 7r).
Let A = LP(p) and B = LQ(q). (Assume A, B are folded.)
Run VA,B (u 7r).

in

Figure 2-4: A composed verifier that uses an inner verifier Vin

2.4 The Composition Theorem

Theorem 2.6 (Composition Theorem) If there exists a (c, s, q)-good inner verifier, then

for any e > 0, NP = PCPc,s+e[log, q]. Moreover, if there exists a non-adaptive (c, s, q)-good

inner verifier, then, for any E > 0, NP = naPCPc,s±e[log, q)-

Proof: The proof follows by composing together (using the method that was briefly

sketched in Section 2.1) the outer verifier described in Figure 2-2 together with a (c, s, q)-

good inner verifier. Let e > 0 be fixed. The PCP verifier Vcomp we are claiming to exist will

expect as a proof a pair of tables LP and LQ that are the entry-wise Long code of a valid

pair of proof oracles P and Q for the outer verifier of Figure 2-2 (i.e. for each query p (q)

into P (Q), LP(p) (resp. LQ(q)) will be the Long code of P(p) (resp. Q(q))). As discussed

earlier, we may assume that all entries of LP and LQ are folded. We will use the outer

verifier Vut with answer size u, perfect completeness and soundness q (where 71, u will be

specified later, but these will be constants depending only on E).

The composed verifier Vcomp is described in Figure 2-4. It is parameterized by an

integer u; we assume that u is large enough so that the outer verifier Vout of Figure 2-2 has

soundness q where q > 0 is a constant that depends only on E and will be specified later in

the proof. Vmp starts off by simulating the outer verifier VoJut and picks queries p, q and

the projection 7 exactly as VJut does, and then it executes the inner verification procedure

(using a (c, s, q)-good inner verifier Vil) on input u, 7r and with oracle access to the the two

supposed Long codes LP(p) and LQ(q).

Clearly the number of queries that Vcomp makes is the same as that made by Vi, which

by the assumption of (c, s, q)-goodness is at most q. Also, if the inner verifier makes its q
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queries non-adaptively, then so does the composed verifier, and hence the statement about

non-adaptive PCP constructions will also follow. Since u is a constant, and M, N are

polynomial in the size of p, the randomness complexity of Vcuomp is dominated by that of

the outer verifier and is clearly O(log n) (where n is the size of the formula p).

It is also easy to see that the composed verifier has completeness c. Indeed when W is

satisfiable, let LP and LQ are valid entry-wise Long codes of tables P and Q which will

always cause the outer verifier to accept (such tables P, Q exist because the outer verifier

V, has perfect completeness). The input that is passed to Vin in this case satisfies the

completeness condition of Vi. Therefore Vi accepts with probability at least c over its coin

tosses for every possible choice of coin tosses of the outer verifier. This implies that Vcomp

accepts with probability at least c.

The only thing that remains to be proven is that the composed verifier has soundness

s + e. We show this by proving that if Veomp accepts its proofs LP and LQ with probability

at least s + E, then W is satisfiable. Using the soundness condition for the outer verifier, in

order to prove that o is satisfiable it suffices to exhibit proofs P, Q that would make Vut

accept with probability at least ', and this what we do next to complete the proof.

By an averaging argument, if Ve'omp accepts with probability at least s + E, then for at

least an -/2 fraction of the random choices of q (or equivalently of B = LQ(q)), we have

Pr [VAB(u, 7r) accepts] s + . (2.4)
7rERTg(q)

(Note that once q is picked, the choice of 7r fixes p and therefore also fixes A = A' = LP(p).)

The probability in the above equation is also taken over in's internal coin tosses. We denote

by G the set of such "good" choices q for which Equation (2.4) holds.

By the soundness condition of the inner verifier Vn and the fact that D(q) is a smooth

distribution, Equation (2.4) implies that there is a constant Y = 7e/2, such that for all large

enough u 2 uo, for every qo C G it is the case that

Pr [Decode(LP(p')) = gr(Decode(LQ(qo)))] > 7 (2.5)
coin tosses of Decode,wERD(qo)

Now imagine constructing proofs P, Q for the outer verifier by using the randomized

decoding strategy Decode (on the proof LP, LQ given to the composed verifier) as follows:
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* Independently for each p set P(p) = Decode(LP(p)), and

* Independently for each q set Q(q) = Decode(LQ(q)).

(Remember that Decode is a randomized algorithm; in the above definition of P, Q the

executions of D have to be independent each time.)

We now mention how to fix the parameter u of Veuomp; pick u such that Vut has soundness

at most q = ye//4 (-Y = 7e2 is fixed in Equation (2.5) and by Proposition 2.1 u = O(log 1/71)

will suffice for this purpose) and also such that u > uO (no was once again fixed in Equa-

tion 2.5).

We now claim that the probability that Vut accepts P, Q constructed as above (expected

over the way P, Q are chosen) is more than q. This will clearly imply that there exist proofs

P, Q that are accepted by Vut with probability more than 7, and by the soundness condition

of Vt this will imply that <p was satisfiable, as desired. It remains therefore to lower bound

this probability.

Pr [P(p) = 7r(Q(q))] Pr[q e G] Pr [P(p) = 7r(Q(qo))Iqo E G]
P,Q,q,7rERV(q) q PQ,7rED(qo)

6
;> - (2.6)

2

where Step (2.6) follows since at least an e/2 fraction of the choices of q fall in G, and

for each q E G, we can use Equation (2.5) and the construction of P, Q to conclude that

we will have 7r(Q(q)) = P(p) with probability at least -y. This completes the proof of the

Composition Theorem. 11
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Chapter 3

The Adaptive 3-Query PCP

Construction

3.1 Intuition behind the construction

Among the tasks of designing and analyzing PCP verifiers, the latter used to be the more

challenging one, but the wide applicability of the new analysis techniques for inner verifiers

based on Long codes (which were was described in the previous chapter) is shifting much of

the difficulty to the design phase. We will spend much of this section motivating the intuition

behind our tight 3-query PCP construction (which proves Theorem 1.1) and describing the

ideas that lead to it.

As discussed in the previous Chapter, the inner verification problem is: given u, 7r and

given oracle access to folded strings A and B (with A : F[2]- -+ {1, -1} and B : F[7 ] u -+

{1, -1}), test whether there exists a b E [7]u such that B is the long code of b and A

is the long code of ir(b). Equivalently, we want to test whether for every f, gi and g2,

the following properties hold: (1) A(f) = B(f o rr); (2) B(gi A 92) = B(gi) A B(g2 ); (3)

B(gig2 ) = B(g 1 )B(9 2 ). Properties (2) and (3), together with the fact that B is folded,

ensure that B is a legal long code (of say b), and then Property (1) makes sure that A is

the long code of a which satisfies a = 7r(b). We will call A and B consistent if they satisfy

the above properties. The goal is therefore to test if A and B are consistent (or "nearly"

consistent) while only making 3 queries in all to A and B.

Assume A and B are consistent, and suppose A(f) = 1: then B(f o 7r) = 1 and also
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Inner Verifier MBCAB (U, 7)

Choose uniformly at random f E F[2 ]u, g, h E [7]u
if A(f) = 1 then accept iff B(g) = B(g(f o 7r A h))

if A(f) = -1 then accept iff B(g) = B(g(-f o 7r A h))

Figure 3-1: The Inner Verifier based on the Monomial Basis Check of Bellare et al. [7].

for any h B(f o r A h) = B(f o r) A B(h) = 1 A B(h) = 1. Similarly, if A(f) = -1 then

B(-f o ir A h) = 1 for every h. So far we used only the first two properties of consistent

strings A and B. Using also the third, we deduce that if A and B are consistent, then for

any f E F[2 ]. and any g, h E J[7]u.

A(f) = 1 implies B(g) = B(g(f o r A h)) (3.1)

and A(f) = -1 implies B(g) = B(g(-f o r A h))

Checking this condition is essentially the Monomial Basis Check (MBC) of Bellare et al. [7],

with the minor twist of looking at both A and B (Bellare et al. [7] would instead look only at

B, and then test separately whether A is consistent with B). As a first proposal, we consider

the test of Figure 3-1, which checks the Condition (3.1) for f, g and h chosen uniformly

at random from their domain. Notice that this inner verifier has perfect completeness by

construction and also makes only 3 (adaptive) queries. It is possible to prove that the

soundness is 3/4 and therefore the MBC inner verifier is (1, 3/4, 3)-good. We omit the (not

too hard) analysis, that is based on the techniques of [16]. The following argument shows

that the analysis is tight: if A and B are inconsistent long codes then the MBC verifier

accepts with probability 3/4, and our decoding procedure will have success probability zero

when working with two inconsistent Long codes.

Since the worst case for the MBC verifier arises when A and B are individually correct

but inconsistent, we try to patch the MBC test by adding another test that handles this

case well. A good candidate for this "patching" role is the Projection Test, where f is

taken uniformly from F[2]-, g is taken uniformly from -F[7]u, and the test accepts iff A(f) =

B(g)B(g(f o 7r)). Indeed, one can verify that if A and B are inconsistent long codes, then

with probability 1/2 over the choices of f and g the Projection Test rejects. Combining the

two verification procedures, we define the BGS, verifier (see Figure 3-2) that is very similar

to one used in [7]. This performs the MBC test with probability p and the Projection test
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Figure 3-2: The Inner Verifier that combines Monomial Basis Check and Projection Test.

Inner Verifier B-MBCPAB (u, r)

Choose uniformly at random f E -T[2], g E f[7u

Choose at random h E T[7]u such that Vb E [7]u, Pr[h(b) = 1] = p
if A(f) = 1 then accept iff B(g) = B(g(f o 7r A h))
if A(f) = -1 then accept iff B(g) = B(g(-f o 7r A h))

Inner Verifier IV 3 jA'B (u, -r)

Set t = [1/61, Ei = 62 and Ei = E -i
i-i

Choose p E {E, ... , Et} uniformly at random
Run B-MBCPA'B (u, 7r).

Figure 3-3: The B-MBC, verifier, a version of the MBC verifier where h is biased, and our
final Inner Verifier IV33 .

with probability (1 - p). It turns out that one can show (and this time the calculations are

pretty hard) that it is best to set p = 1/3 and that BGSI/ 3 is a (1, 2/3, 3)-good verifier,

i.e. the soundness is 2/3. Again, the analysis can be shown to be tight: no setting of p can

result in a verifier with soundness less than 2/3.

3.2 Obtaining a better 3-query construction

A second look at the BGS, verifier reveals that the two possible tests to be executed are

very related: if we pick h = -1 instead that according to the uniform distribution, then the

Projection Test coincides with the MBC test1 . Therefore, we can view BGS, in the following

equivalent way: it first chooses to pick h according to one out of two possible distributions

(i.e. either the uniform distribution on F[7]. or the deterministic choice of setting h(b) = -1

Recall that B is folded - otherwise the claim would not be true.
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Inner Verifier BGSPAB (U 7r)
Choose uniformly at random f E F[2]-, g, h E F[7ja
With probability p do

if A(f) = 1 then accept iff B(g) = B(g(f o ir A h))

if A(f) = -1 then accept iff B(g) = B(g(-f o 7r A h))
With probability 1 - p do

accept iff A(f) = B(g)B(g(f o 7r))



for every b), then it picks f and g uniformly and performs the MBC test. An alternative

approach, that turns out to be much better, is to "shuffle" the distributions, and to skew

the distribution of h point-wise. This gives rise to the definition of the B-MBC, verifier

(Figure 3-3, top). The analysis of the BGS, verifier suggests that it would be good to set

p = 1/6 in B-MBC,. Instead, it turns out that it is better to have p much smaller. We now

see some details of the analysis which will guide us to the right inner verifier construction.

Let A, B, 7r and p be fixed, and let X = XA,B,,,p be the random variable whose

value is 1 when B-MBCA'B (u, 7r) accepts and 0 otherwise2 . The acceptance probability of

B-MBCA'B (u, 7r) is E[X], which equals

E [(1 + A(f)) (1+ B(g)B(g(f o 7r A h)))
f,9,h [( 22

(1 - A(f)) (1 + B(g)B(g(-f o 7r Ah)))
+ ( 2 2

Since A is folded, we always have -A(f) = A(-f). Using the linearity of expectation and

the fact that f and -f are identically distributed in the uniform distribution, we get E[X]

equals

2 E ((1+A(f)) (1+B(g)B(g(fo7rAh)))

f,9,h

+1 E [A(f)B(g)B(g(f o ir A h))] (3.2)
f,g,h

(there would also be a term 1 E[A(f)] that we omit since it is zero owing to the foldedness
2f

of A).

The expressions arising in (3.2) are extremely hard to bound, but we are fortunate that

their analysis already appeared in the literature! Indeed they are the same expressions aris-

ing in a verifier that Haistad [16] constructs in order to prove a (tight) non-approximability

result for satisfiable instances of MAX 3SAT. 3 An equivalent description of the verifier of

Histad is the following: it asks the queries A(f), B(g) and B(-g(f o ir A h)), where f, g, h

are generated as in B-MBCp, then

2The sample space of XA,B,,,,, is given by the possible choices of f, g, and h.
3 We are able to provide slightly simpler analyses of these terms than [16] since we allow the projections 7r

to be picked from a broad class of distributions rather than the specific one which [16] uses. But the overall

structure of the analysis is the same as that of [16].
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- if A(f) = 1 it accepts iff B(g) = -B(-g(f o 7r A h));

- if A(f) = -1 it accepts no matter what is the value of B(g) and B(-g(f o 7r A h)).

Our goal is to prove that, by choosing p small enough, B-MBC, will be a (1, 1/2 + e, 3)-

good inner verifier for e > 0 as small as we desire and then by using the composition

theorem we will be done. In order to prove this, we would like to prove that, for any

B, the expectation of B(g)B(g(f o 7r A h)) can be upper bounded by some arbitrarily

small constant by choosing p correspondingly small, and that whenever the expectation of

A(f)B(g)B(g(f o 7r A h)) is non-negligible, then the probability of success of the decoding

procedure (described in Section 2.3.2) is non-negligible. In order to bound the expectation

of B(g)B(g(f o7r A h)), however, one cannot fix a particular p, but one has to pick p according

to an appropriate distribution; also the bounds hold only if the expectation is also taken

over 7r. Indeed there is a counterexample showing that the expressions of (3.2) cannot be

bounded without going through such additional complications. 4 Our final verifier IV3j,

described in Figure 3-3, is the same as B-MBC, except for the choice of p. The strange

distribution of p is the particular one for which we will be able to bound the expressions of

(3.2). The constant c used in the definition of e1,... , et is an absolute constant which will

be left unspecified but can be easily calculated from our proofs.

3.3 Analysis of the 3-Query Protocol

In this section we will prove the following result.

Theorem 3.1 For any 6 > 0, IV3 6 is a (1, 1/2 + 36/2, 3)-good inner verifier.

Using the above Theorem together with the Composition Theorem 2.6 gives us the main

theorem of this chapter:

Theorem 3.2 For any - > 0, NP = PCPi,1/ 2 +e[log, 3].

Corollary 3.3 For any E > 0, NP = naPCP1 ,1 /2+e (log, 4].

Proof: Observe that IV36 can be viewed as making 4 non-adaptive queries. The result

now follows using the Composition Theorem. E-

4We thank Johan Histad for showing us such an example.
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3.3.1 Technical Lemmas

We now state and prove the two main lemmas (Lemmas 3.4 and 3.5 below) that will be

required in the proof of Theorem 3.1 (which will be presented in Section 3.3.2). Our

proofs are based on the proofs of these lemmas in [16] but we rework them as we allow the

projections 7r from a wide class of distributions as opposed to the very specific distribution

which [16] uses and it turns out that this in fact simplifies the presentation somewhat.

Recall the definition of the decoding procedure Decode(A) from Section 2.3.2: it takes as

input a folded string A; it picks a set a with probability A and returns an element of the

set a picked uniformly at random.

Lemma 3.4 ([16]) If t = [3-], ci = 32 and Ei = E - for 1 < i < t, and p E

{,1,-- -, Et} is chosen uniformly at random, then for large enough positive integers u, for

all folded B : .F[ 7 1 -+ {-1, 1},

E [B(g)B(g - (f o 7r A h))] < 2e/2 + 1< 36
p,i,fg,h

assuming ir is picked according to a smooth distribution. (The parameter p is implicitly used

in bias of the random choice of the function h.)

Lemma 3.5 ([16]) For every 6,p > 0, there exists a constant y = 'yd, > 0, such that

for all large enough u, for all folded strings B : F[7]u -* {1, -1} and {A" : F[2]-

{1, -1}}xeRV(B)> if

E [Al(f)B(g)B(g - (f o7r A h))] 6,
ir,f,g,h

then Pr [Decode(Ar) = ir(Decode(B))] -y where the probability is taken over the choice

of ir from the smooth distribution D(B) and the coin tosses of Decode. (Note that the

parameter p is implicitly used in bias of the random choice of the function h.)

The following fact will be very useful in the proofs of the above two lemmas.

Lemma 3.6 Let B : F[7]u -+ {1, -1} be a folded string and let D(B) be a smooth distribu-

tion on projection functions 7r : [7]u -+ [2]u. Then, for any p, 0 < p < 1,

E E ( p) 17r(,11 <
rE.RDV(B) 0:P|;>K )
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provided K > 2 (P~' ~1).

Proof: Since 7r is picked according to a smooth distribution, we can use Lemma 2.3 and

therefore conclude:

E 3 (1- p)1(13)] e-ao log7K/16 +(1 _p)olog7 K/4

7# :101>K0

<6

provided K > 716o-'p-1 ln(2/6) = 2 Q(P-1 1n 6-1) (recall that o- is an absolute constant). 13

Proof of Lemma 3.4: Using the Fourier expansions of B(g) and B(g - (f o ir A h)) as in

Equation (2.2), the properties of linear functions (2.1), and using linearity of expectation,

we transform the given expectation, for each fixed p, into

B 1 3 02 E [113AB22(9)102(f o 7r A h)]
,31,02 irfgh

Since g is picked uniformly and independently at random, the inner expectation is 0

unless 31 = 32 = #. Let us take expectation fixing 7r also for the moment. For x E 7r(#),

we define 3, = {y E #3: 7r(y) = 4. We need to compute, for each # with 11 odd (we only

worry about such 3 as B3o = 0 otherwise by Lemma 2.5)

E [ (f(r(y)) A h(y))] = E [ H (f (x) A h(y))]
f,9,h YEf xEir(13) f,h YE13

- 1I + ( .(2p - 1)|x)
Xeir(,3)

1 3 ( 1  (( 1)|113x I (1 - 2p)|10 x1

= (-1)I13xI ( - 2p ) 3x 2

xE7r() 2 2

as 11 = Excr(3 ) |#3| is odd. For each fixed p the (absolute value of the) expectation we

need to estimate thus becomes

E [ZBl J ( (-1)1"1 + (1 - 2p)13x 1 (3.3)
E 3 ( 2 2

0 xEr(,3)
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One hopes to estimate this sum as a function of p tending to 0 with p. Unfortunately such

a estimate does not exist (and one can construct examples where such a statement would

be false). It turns out, however, that it is easy to bound the expectation of Equation (3.3)

above for small 3 and large 3 and this is very useful as it will allow us to vary p as per

some distribution so that one can bound (3.3) when we take expectations over p as well.

Let c > 1 be a small absolute constant to be determined. We have

Claim 1 For each fixed p > 0 and B,

E [B(g)B(g - (f o 7r A h))] 5 21/2 + $2
rERD(B),,h 3J-1/2 p-c/p

Proof: We split the sum of Equation (3.3) into three parts depending upon which of

the three disjoint intervals [1,p- 1/ 21, (p-1/2 ,p-c/P) and [p-c/P, oo), 11 lies in. The middle

interval need not be estimated as it appears on the right hand side of the estimate stated

in the Claim.

Let us now consider 3 with 1,#| small, i.e |1| 5 p-1 2 . Since 131 is odd, there must exist

x E 7r(0) with |,xI odd (also 1|3x| 1 1)31 p-1/ 2 ). For such an x

0 > ( 2 + + )1 (1 - 2pl#I)) = -p13I 2 -p 1 /2 . (3.4)
2 2 2

Hence, when 131 < p-1/ 2,

(-1)l"X + (1 - 2p)10x ) < 1/2

XEr,) 2 2

(using (3.4) and the fact that all factors are bounded by 1 in absolute value), and so

_[3 (1)+xl (+ 2p) 1/ I) 2PI/2 <p 1 22 (3.5)

:3<p- 1/2  XE7r(3) p-1/2

Let us now consider the 3's with 1131 > p-c/P. For these the relevant expectation to bound

is:

( 1),3 1 (1 - 2p)x I]
E $b2 ( -2 2 E B3 (1 - p) 1,(#)

7#': 0>p-c/p 0 XG(#) 2: 2-c/p
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biE 1 -p) *1 ( 3)1
_0 E/:lp3l>p-c/P

< b' $j1/2
p:|pj>p-c/p

pi/2  (3.6)

where the last but one step follows using Lemma 3.6 together with an appropriate choice

of the (absolute) constant c > 1.

The statement of our Claim now follows from Equations (3.5) and (3.6). I (Claim 1)

All that remains to be done is to now take expectations over the choice of p as well.

Recall that p is drawn uniformly at random from {Ei, E2,... , Et} for t = [-1| and where

Ei = 2ci for 1 < i < t. Hence using Claim 1, we have

E [B(g)B(g -(f o 7r A h))] E [2pi/2 + f $2
p,7r,f,g,h P 0-1/2 < -c/P

< 2 1/2+1 t

where the last step follows because si > ei for 1 < i < t and because the ranges of 1131 for

the different values of p are disjoint. Since Ei = 62 and l/t < 6, we have

E [B(g)B(g (f o 7r A h))] < 36

the Lemma follows. L (Lemma 3.4)

Proof of Lemma 3.5: Using the Fourier expansions of A (f), B(g) and B(g -(f orAh)) as

in Equation (2.2), the properties of linear functions (2.1), and using linearity of expectation,

we transform the given expectation, for each fixed 7r, into

E api A1 5 2 E [l(f )l11 3 2 (9)l3 2 (f o r A h)].

(We have omitted the superscript 7r on A for notational convenience.)

Since g is picked uniformly and independently at random, the inner expectation is 0

unless #1 = 32 = 1 (say). Since f is also picked uniformly and independently at random,
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we can also conclude a C ir(#). Using this, our expression simplifies, once a ir is fixed, to

E [A(f)B(g)B(g
f,g,h

.(f o,r A h))]
'3,

3,

$ E lau#( oE
acr(#) f,h

Z IA|$B3 E
aC-70) fh

We proceed to simplify this expression further:

a
IA| Ib2 ][ E [f(x) fi (f(x) A h(y))]

xEa yEfx

I1 E 1 ((f (x) A h(y))
xE-r(#)\a yEfx

- (

2
XEr(#)\

-- S fi2IAll
'3 X~ca

ckCr(/3)

-(2p -1)If=
2 )

+ (2p - 1)1"-)
2

(-1)
2

2p)
2

(1 - 2p)10- (.8
+ 2 (38

where the last step follows since 11 =xEr(#) loxI is odd if 3 $ 0. Define h(a,3) to be

the quantity

(1 - 2p)10xlI

2
(-1)lxl

x a 2
(1- 2p)I/xI

2

It is not difficult to see that

= ( 2
< xr(3) p(#)

< (I1_P) 7r (3)j

(1 - 2p)IxI 2

2 )
+ (-1)0xI +l (1 - 2p)I P-1 2

2 2()

(3.9)
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7r A h)]

(3.7)

z'3
aCir(i3)

|Al f|$ E[1a (f )l3(f o7r A h)]

xeir(#)\a

(-1)
2

E
aoC-r(3)

h2 (a,# )

(la(f)lp(f 0 '7r A h) I

(1)|| 13I

2
xer(#3)\a



The last step follows from the fact that if al, |bi < 1-p and |a|+|b| = 1, then a2 +b 2 < p).

It is also easy to see that

aQ

Hence for each fixed 7r and p, we have

E [A(f)B(g)B(g(f o 7r A
f,g,h

h))] (using (3.7))< E J~A|$ i3 E l1c(f)l#(f o 7r A h)]
,3, aC 7r 3) 0f,h

bz (~(la||h(a,3)|) (using (3.8))

S)Cir(8)

#:1013K aC7r(#)
+E h2(a, 1

a~r(#)

f2 A|| Jh(a,#)| +

$2 JA|| h(a,#)|

h2 (a,#)1/2+' 4

03:101<K
aCgr(),IAal 6/4

+ E
0:101<K

a 9r(,3),IAa16/4

0:11>K aC7r(

4

#
1,:I31< K

a E (using Equation 3.10))+/

a9lr(), IAa 126/4

< 1: $32(1 - p)17r(#3)1/2 + 6+ 41 A2f2
S#:131< K

C r ()

(3.11)

where the last step follows using (3.9). We now take expectations over the projection 7r.

Using Lemma 3.6 we conclude

0:|01>K

(3.12)

provided K = 29(P-' n3'). Such a choice of K is possible provided 7 ' > K, and we assume

that u is large enough for this purpose. Now, combining (3.11) and (3.12), together with

the hypothesis of the Lemma that E [A'(f)B(g)B(g - (f o 7r A h))] 2 6, we get
7r,f,g,h

(3.13)E [ 1
7r : 1,31K

oaw(/3)
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We now estimate the probability of success of the decoding strategy.

Pr [Decode(A") = ir(Decode(B))] E [ Z AE 1 117r,coin tosses of Decode 7 ,C l |If|

SE [ S Z] (3.14)
7r 3:/3<K

aCr(13)

(We have used A = 0 in the last step above.)

Combining (3.13) and (3.14) we get

62
Pr [Decode(A") = 7r(Decode(B))] 2 . (3.15)

7r,coin tosses of Decode K

Recalling that K = 2Q lP", the success probability depends only on p, 6, and the proof

is complete. El (Lemma 3.5)

3.3.2 Proof of Theorem 3.1

The Proof: The statements about query complexity and completeness are clear, we verify

the soundness claim. Recall that the probability of acceptance of IV36 is

1 11
- + - E [B(g)B(g(f o 7r A h))] + E [A(f)B(g)B(g(f o gr A h))].
2 2 p,f,g,h 2 p,f,g,h

By Lemma 3.4,

irpfE gh[B(g)B(g - (f o 7r A h))] < 36

and hence if Pr [V(A', B, ir) accepts] 1/2 + 36/2 + y, we must have

E [A(f)B(g)B(g(f o 7r A h))] 2-y (3.16)
1,p,f,g,h

and invoking Lemma 3.5, we can conclude that Pr [Decode(A7) = r(Decode(B))] 2 77 for

some 17 > 0 for all large enough u. (Note that in (3.16) the expectation is also taken over

p, while Lemma 3.5 works with a fixed p. But clearly if (3.16) holds there exists a p such

that the condition for Lemma 3.5 is satisfied and we can then work with that particular

p.) This verifies the soundness condition of IV3j and concludes the proof that IV3j is a

(1, 1/2 + 36/2, 3)-good inner verifier. l
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Chapter 4

The 5-Query PCP Constructions

In this chapter we describe extensions of our 3-query PCP construction for slightly higher

number of queries. We will first describe the construction of an adaptive 5-query inner

verifier and then obtain some non-adaptive PCP constructions based on it.

4.1 The Inner Verifier Construction

We now construct an inner verifier that makes 5 queries. The way to exploit the additional

queries at our disposal is to query the purported long code A at two functions fi, f2 (E [2]-

instead of just a single f E F[2]- . In the 3 query protocol, the rationale used was that

if f(a) = 1 then (f A h)(a) = 1 for any h and similarly for the case when f(a) = -1.

Similarly if fi(a) = f 2(a) = 1, then we must have (fi A h)(a) = 1 and (f2 A h)(a) = 1

for any h, and these two tests can be performed (instead of just one test (f A h)(a) = 1

as was done in the 3 query protocol). One might expect that such a test will achieve a

soundness of (1/2)2 = 1/4 by making 5 adaptive queries, and indeed this can be shown

to be the case using the same ananlysis technqiues presented in the previous Chapter.

construction follows the same idea of recycling one bit between two repetitions of a basic

test as in [27]). We, however, now present and analyze a different 5-query test that gives

no improvement (in soundness) over the above-mentioned test for the case of 5 adaptive

queries, but which has other applications (in construction of non-adaptive verifiers) that

the originally suggested one does not. We will use as basis for our test the following fact:

if fi(a) = f 2 (a) = 1, then (fi A f 2 A h)(a) = (fi A -f 2 A h)(a) = (-fi A f 2 A h)(a) for any

h. Thus, we will able to perform two equality tests while reading five bits, so one expects
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Inner Verifier IV5' (U, 7T)

Set t = [6-11, Ei = 62 and ei = 6 -2c/Fi for 1 < i < t.
Choose p E {&1, - - , Et} uniformly at random.
Run B-V5,A'B (u, 7r)

Figure 4-1: The adaptive 5-query inner verifier with a fixed p and the final inner verifier.

that the soundness should be (1/2)2 = 1/4 and indeed we shall prove that to be the case.

In the actual protocol, however, f and h will belong to different spaces and this will be

handled using the projection function ir as in the construction of our 3-query inner verifier,

and moreover, since we would like all queried bits (functions) to be unbiased, we will also

xor these functions with an unbiased function g. This yields the inner verifier of Figure 4-1.

As in the case of the 3 query protocol, we once again need to pick the bias p at random

from a set of different possibilities for the analysis to work. This gives us the final inner

verifier IV55 of Figure 4-1.

4.2 Analysis of the soundness

We now analyze the soundness of the inner verfier IV5j. Let Y denote the indicator random

variable for the acceptance of IV55, clearly we have

y 1 + A(fi)) 1 + A(f 2 )) 1 + B(G1)B(G2 )) 1 + B(G1)B(G 3)
2 / 2  (1 2 / 2 /

+1 + A(fi)) 1I - A(f2)) (1 + B(G1)B(G2)) (1 + B(G1)B(G4))+ 2 / 2 /2 /2/

48

Inner Verifier B-V5pA'B (u )
Choose uniformly at random fi, f2 E -F[2]u, g E Y[ 7]u
Choose at random h C F[7]u such that Vb E [7]u Pr[h(b) = 1] = p

Let

G1 = g - (fi o r A f2 o 7r A h),
G2 = g - (fi o r A -f2 o 7rA h),
G3 = g (-fi o A f2 o r A h),
G4 = g (-f1 oir A -f2 air A h).

if A(fi) = 1 and A(f 2 ) = 1 accept iff B(G 1 ) = B(G 2 ) = B(G 3 )
if A(fi) = 1 and A(f 2 ) = -1 accept iff B(G1 ) = B(G 2 ) = B(G 4 )
if A(fi) = -1 and A(f 2 ) = 1 accept iff B(G1 ) = B(G 3) = B(G 4 )
if A(fi) = -1 and A(f 2 ) = -1 accept iff B(G2 ) = B(G 3 ) = B(G 4)



- A(fi)) (1 + A(f 2 ))
2 2 /

(1-Affi)) 1 - A(f2)
2 2

( + B(G1)B(G 3 )) 1 + B(G1)B(G4 )
2  / 2

1 + B(G2)B(G3)) 1 + B(G2)B(G4))
2 /2/

The probability that B-V5, accepts, given input (u, 7r) and oracle access to (A, B), is

simply the expectation of Y over the choices of fi, f 2 , g, h, and this expectation equals:

1
4

+ 1 E B(G1)B(G2) + B(GI)B(G3 ) + B(G 1 )B(G4 ) + B(G 2)B(G3 ) +8 E

+B(G2)B(G4 ) + B(G3 )B(G 4 )]

[A(f1)B(G1)B(G 2) - A(f 1 )B(G 3 )B(G 4) + A(f 2 )B(G1 )B(G 3 ) -

-A(f 2)B(G2)B(G4)]

A(fi)A(f2)B(G2)B(G3) - A(fi)A(f 2 )B(G 1 )B(G 4 )] (4.1)

1
+-E
8

1
8

The following sequence of (simple) lemmas will now help us simplify the above expression.

Lemma 4.1 If f1, f2, f are picked uniformly at random from F[2]u, g u.a.r from J( 7[7 and

h c F[7]u is chosen at random so that Pr [h(b) = 1] = p Vb C [7]u, then

E [B(G 1 )B(G 2 )] = E [B(g)B(g - (f o 7r A h))]
fi,f 2 ,g,h fg,h

Proof: Note that G1 is unbiased (i.e Pr [G1 (b) = 1] = 1/2 Vb E [7]u), and G2 = G1 - (fi o

7r A f 2 o7r A h) - (fi o ir A -f 2 ow7r A h) = G1 - (fi o r A h) (after some boolean algebra). Thus

the distribution of G1 and G2 when fi, f2, g, h are picked as specified is the same as the

distribution of g and g - (f o 7r A h) when f, g, h picked randomly as specified. Hence the

above expectations are equal.

For the same reason, we also have

0

[B(G 1 )B(G)] = E [B(G 2 )B(G4 )] = E [B(G 3 )B(G4 )] = E [B(g)B(g-(foirAh))]
fi,f 2 ,g,h fi,f 2 ,g,h f,g,h

(4.2)

Lemma 4.2 If f1, f2, f are picked uniformly at random from FT[2 ]u, g u.a.r from F[7]u and
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E [Y]
fi,f2,g,h

E
fi,f 2 ,g,h



h E F[71 u is chosen at random so that Pr [h(b) = 1] = p Vb C [7]U, then

E [B(G1)B(G4)] = E [B(G 2)B(G 3)] = E [B(g)B(g - (f o 7r A h))]
f1,f 2 ,g,h fi,f 2 ,g,h f,9,h

Proof: We argue about the expectation of B(G 1 )B(G 4 ), the other expectation being clearly

the same as this one. As before G1 is an unbiased function on [7 ]u and has the same

distribution as g, and G 4 = G-(fi o7rAf 2 o7rAh)-(-fio7rA-f 2o7rAh) = Gi-(-(fif 2 )o7rAh).

Now fi, f2 are picked u.a.r from F[2]u, so the function -fi - f2 also is a random function

from F[2]u therefore G 4 has the same distribution as g - (f o 7r A h), and hence B(G 1)B(G 4 )

has the same distributions as B(g)B(g - (f o r A h)). 0

Lemma 4.3 If f1, f2, f are picked uniformly at random from F[2]u, g u.a.r from .F[ 7 ]u and

h E F[7]u is chosen at random so that Pr [h(b) = 1] = p Vb C [7]u, then

e E [A(fi)B(G1)B(G 2)] = E [A(f 2 )B(Gi)B(G 3)]= E [A(f)B(g)B(g-(fo7rAh))]
fi,f 2 ,g,h fi,f 2 ,g,h fg,h

e E [A(f 1 )B(G 3)B(G 4)] = E [A(f 2)B(G 2)B(G 4 )] = E [A(f)B(g)B(g-(-forAh))]
fif 2 ,g,h fi,f 2 ,g,h fy,h

Proof: We consider the expectation of A(fi)B(G 1 )B(G 2 ), the other expectations can be

handled similarly. The proof is similar to those of the previous two lemmas: fi and G1 are

unbiased and G2 = G1 - (fi o 7r A h) and hence the distribution of fi, G 1 , G2 is the same as

the distribution of f, g, (f o ir A h), and the result follows. L

Since A : F[2)u -+ {1, -1} is folded, A(-fi) = -A(fi) and hence

E [A(fi)A(f 2)B(G 2)B(G 3)]= - E [A(fi)A(f 2)B(G 1)B(G 4 )], (4.3)
fi,f 2 ,g,h fi,f 2,g,h

and for a similar reason

E [A(f)B(g)B(g - (-f o 7r A h))] = - E [A(f)B(g)B(g - (f o ir A h))]. (4.4)
f,9,h f,g,h

Now Equation (4.1) together with (4.3) and (4.4) and Lemmas 4.1, 4.2, and 4.3, implies

1 3 1
E [Y] =- + - E [B(g)B(g - (f o 7r A h))] + - E [A(f)B(g)B(g - (f o ir A h))]

fi,f 2 ,g,h 4 4 f,g,h 2 f,g,h
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1
- I E [A(fi)A(f 2)B(g - (fi o 7r A f2 o r A h))B(g - (-fi oir A -f2 o 7r A h)A.5)

4 fi,f 2 ,g,h

The second and third terms above are ones which we recognize from the analysis of

the 3-query protocol (Equation (3.2), and we handled them using Lemmas 3.4 and 3.5

respectively). We now proceed to handle the last term by stating and proving a lemma very

similar to Lemma 3.5.

Lemma 4.4 For every 6, p > 0, there exists a constant -y = -y, > 0, such that for all large

enough u, for all folded strings B : FY7u - {1, -1} and {A : F[21 -+ {1, -1}}erCR(B), if

E [A"(fi)A"(f 2 )B(G 1)B(G 4)] > 6,
7r,fi ,f2,g,h

then Pr [Decode(AT) = ir(Decode(B))] ;> y where the probability is taken over the choice

of 7r from the smooth distribution D(B) and the coin tosses of Decode. (Note that the

parameter p is implicitly used in the bias in the random choice of the function h.)

Proof: The proof closely follows that of Lemma 3.5, and in fact after a certain point

we will complete our proof by just resorting to the proof of Lemma 3.5. Using the Fourier

expansions of A(fi) and B(Gj) as in Equation 2.2 and the properties of linear functions (2.1),

we can transform the given expectation, for each fixed 7r, into

S A 01 aa 2 B 1 5B102  E [la1 f12(f2)A (g) 1 1 (fi oirAf 2a1rAh) 3 2 (-f1o7rA-f 2 7rAh)].
Q1,a2,031,032 fi,f 2,g,h

Since g is picked uniformly and independently at random, the inner expectation is 0

unless 31 = 32 = 3 (say). Since fi and f2 are also picked uniformly and independently at

random, we can also conclude ai, a2 c 7r(). Some boolean algebra yields (fi oir A f2 o7r A

h) (-fi o 7r A -f2 o7r A h) = (-fif2 a 7r A h). Incorporating all this, our expression simplifies

to

Za1 Za2 $f3  E [l 1 (fi)10 2 (f2 )1 13((-fif 2 ) o 7r A h)] . (4.6)
fi ,f2 ,h

011,a22r(0)

Since fi(x) and f2(x) are chosen independently for different values of x, the inner

expectation can be written as a product of expectations, one for each x E 7r(#). If there
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exists xO E al - a2, then the expectation

ExO E [fi(xo) II (-fi(Xo)f2(xo) A h(y))
fif2, h yEpOxO

occurs as one of the factors of the inner expectation, and since this expectation ExO can

easily be seen to be 0, the original expectation will be 0 as well. This implies that all

non-zero terms in the summation (4.6) have ai g a 2 , and similarly we must have a2 g ai

as well. Thus we have ai = a2 whenever the inner expectation in (4.6) is non-zero. This

further simplifies our expression to:

A2 Z 3 E [la (fif2)l,3(-fif2 o 7r A h)] .(4.7)
fi,f 2,h

Now since -fi -f2 is a uniformly distributed function in F[2pu, and also Ia is odd for Za # 0,

the above simplifies to

- Z AcB E [la(f)1p(f o 7r A h)] . (4.8)
f,h

Hence for each fixed 7r we have

E [A'(f1)A"(f 2)B(G1)B(G 4 )] = - S E [la(f)lp(f o1r A h)]
f1,f 2 ,g,h f,h

SI A|b E [la(f)l3(f or A h)])f,h
ckg 7r(03)

since IA| 1 implies A < IA,1. Comparing with Equation (3.7) of the proof of Lemma 3.5,

we are now in the same position as we were in the proof of Lemma 3.5, and we can complete

the proof using exactly the same approach as used there.

We are now ready to prove the claimed soundness for the inner verifier AIV53 .

Theorem 4.5 For any 5 > 0, AIV56 is a (1, . + Lj, 5)-good inner verifier.

Proof: The statements about query complexity and completeness are clear, we verify the
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soundness claim. By Lemma 3.4,

E [B(g)B(g - (f o 7r A h))] < 36
ir,p,f,g,h

and now using equation (4.5), we have

1 96 1
Pr [V(A", B, 7r)accepts) < -+ -+- E [A(f)B(g)B(g - (f o 7r A h))]

r,p,fi,f 2 ,g,h - 4 4 2 -r,p,f,g,h

1
+- E [A(fi)A(f 2 )B(G1 )B(G4 )]

4 ir,p,f,g,h

and hence if Pr [V(A", B, 7r)accepts] 1/4 + 96/4 + y, then either
7r,random tosses of V

E [A(f)B(g)B(g - (f o 7r A h))] -,

or

E [A(fi)A(f 2)B(G 1 )B(G 4)] 2-y.
7r,p,f,g,h

Therefore we can use Lemmas 3.5 and 4.4 to conclude that Pr [Decode(Ar) = 7r(Decode(B))]

r, where r = , > 0 for all large enough u. This establishes the soundness property of the

verifier AIV5 3 , completing the proof that AIV53 is a (1, 1/4 + 96/4,5)-good inner verifier.

Theorem 4.6 For any e > 0,

PCP1,1/4+,[log, 5] = NP

Proof: Follows from the previous Lemma and the Composition Theorem 2.6. E

4.3 Constructions of Non-adaptive PCPs

We now consider the problem of constructing non-adaptive PCPs with soundness strictly

less than 1/2. We have already seen in Theorem 3.3 that a soundness arbitrarily close to

1/2 can be achieved by PCPs that make 4 non-adaptive queries. We are going to prove in

this section that 5 non-adaptive queries suffice to achieve a soundness strictly less than 1/2.

The previous best known construction implicit in the work of Histad [16] required 9 queries.
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If we only require near-perfect completeness, a construction making 5 non-adaptive queries

and having soundness 1/4 is known [27]; proving a similar result with perfect completeness

turns out to be more complicated. It is known that three queries do not suffice to achieve a

soundness less than 1/2 (even for PCPs with near-perfect completeness); it reamins unknown

whether four queries will suffice or whether our bound of five queries is in fact optimal.

4.3.1 A construction with 6 non-adaptive queries

Theorem 4.7 For any E > 0,

naPCP1 ,1/44, [log, 6] = NP

Proof: Observe that by reading all the four bits B(Gj) for 1 < i < 4, the inner verifer

AIV5j reads only 6 bits non-adaptively. Hence AIV5j is a (1, 1/4 + 96/4,6)-good non-

adaptive inner verifer, and appealing to the Composition Theorem once again, we obtain

the desired PCP.

Remark: The above theorem implies that, for any e > 0, NP has PCPs with 3+e amortized

non-adaptive query bits even with perfect completeness. The best known bound prior to

our work was 3/ lg(4/3) + - = 7.2282625 + e amortized query bits implicit in [16]. Note

that Theorem 3.3 itself proves that 4 + E amortized query bits are achievable. If one does

not require perfect completeness, a construction achieving 1.5 + E amortized query bits has

been obtained recently [27, 24]. Our result implies that approximating satisfiable instances

of k-CSP to within a factor of 2 tk/3J-e is NP-hard, for any e > 0.

4.3.2 A construction with 5 non-adaptive queries

We modify the inner verifer B-V5, so that it does not read the bit B(G 4 ) and does not

perform any test that involves B(G 4 ). Let us call the new inner verifier B-NAV5p, which is

shown in Figure 4-2.

In the three cases when either A(fi) 41 or A(f 2 ) 54 1 (or both), B-NAV5, performs

only one test, while when A(fi) = A(f 2) = 1 it performs two tests. This implies that the

soundness of B-NAV5, is at least 3/4 x 1/2 + 1/4 x 1/4 = 7/16 (which is the probability

of accepting random, but inconsistent, long codes). We will now show, using the same
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Figure 4-2:
NAIV5 6 .

Inner Verifier NAIV56B ( r)
Set t - = 62 and si = E2c/Ei1 for 1 < i < t.

Choose p E {61, ... , et} uniformly at random.
Run B-NAV5,A'B (U7 7r)

The non-adaptive 5-query inner verifier with a fixed p and the final inner verifier

techniques as that of Section 4.2, that this bound is achieved, provided we use the inner

verifier NAIV55 (see Figure 4-2) that runs B-NAV5, with p chosen according to a certain

distribution.

Analysis of Soundness:

The arithmetization of the above test yields the following expression Z, which equals 1 if

the test accepts, and equals 0 otherwise:

z 1 + Affi)) 1 + A(f2)) 1+ B(G1)B(G2)) 1 + B(G1)B(G3)
Z = 2 2 /2 2 2

1 + A(fi)) (1 - A(f 2 )) (1 + B(G)B(G2))2 / 2 /2 /

(1 - A(fi)) 1+ A(f 2)) (1 + B(G1)B(G 3))2 / 2 /2 /

+(1 - Affi)) 1I - A~f2).) 1I + B(G2)B(G3))2 / 2 /2 /

The probability that this inner verifier B-NAV5, accepts, given input (u, 7r) and oracle

access to (A, B), is therefore just the expectation of Z over the choices of fi, f2, g, h, and

this expectation equals:
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Inner Verifier B-NAV5, AB (U Ir)
Choose uniformly at random fi, f2 E Y, g E Fm

Choose at random h E iFm such that Vb E {-1, 1}m. Pr[h(b) = 1] = p

Set
G1 = g- (fi o 7r A f2 o 7r A h)
G2 = g (f1 0 7r A -f2 0 7r A h)

G3 = g- (-fi o 7r A f2 o 7r A h)

if A(fi) = 1 and A(f 2 ) = 1 accept iff B(G1 ) = B(G 2 ) and B(G1 ) = B(G 3 )-
if A(fi) = 1 and A(f 2 ) = -1 accept iff B(GI) = B(G 2 )-
if A(fi) = -1 and A(f 2 ) = 1 accept iff B(Gi) = B(G 3 )-
if A(fi) = -1 and A(f 2 ) = -1 accept iff B(G2 ) = B(G 3)-



= -- E [A(fi) + A(f 2) + A(fi)A(f 2 )]

+ E [B(G1)B(G2) + B(GI)B(G 3) + B(G 2)B(G 3)

+ E [A(fi)B(G 1 )B(G 2) + A(f 2)B(GI)B(G 3)] +

3
+-E

16
1

-- E
16

1
16

[A(fi)A(f 2)B(G 2)B(G 3)]

[A(fi)B(G1)B(G 3) + A(fi)B(G 2)B(G 3) +

+ A(f 2)B(G1)B(G 2) + A(f 2)B(G 2)B(G 3)]

[A(fi)A(f 2)B(G1)B(G 2) - A(fi)A(f 2)B(G1)B(G 3)]

(4.9)

Since A is folded, we have E [A(fi)] = E [A(f 2 )] = 0 and since fi, f2 are chosen indepen-

dently, E [A(fi)A(f 2)] = E [A(fi)] x E [A(f 2)] = 0. Following the approach of Lemma 4.3,

one can prove that

E
fi,f 2 ,g',h

[A(fj)B(g')B(g'. (f2 o 7r A h))]

[B(g')B(g' - (f2 o ir A h))]= E [A(fi)] x E
fi f2,9',h

=0.

since f1 is chosen independent of f2, g', h. For exactly the same reason,

E [A(f 1 )B(G 2 )B(G 3 )] = E [A(f 2 )B(G 1 )B(G 2)] = E [A(f 2 )B(G 2 )B(G 3 )] = 0.

Arguing as in Lemma 4.3 again, we get

[A(fi)A(f 2)B(G 1 )B(G 2)] - E [A(fi)A(f 2 )B(g')B(g'- (fi o 7r A h))]
fi,f 2 ,g',h

- E [A(f 2)] E A(fi)B(g')B(g'- (fi o 7r A h))]
f2 f,g',h

= 0,

and similarly

E [A(f 1)A(f 2)B(G1)B(G 3)] = 0.
f1,f2,g,h

56

E [Z]
fl,f 2 ,g,h

E
fi,f 2 ,g,h

E
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Also, since A is folded, we clearly have:

E [A(fi)A(f 2)B(G 2)B(G 3)] = - E [A(fi)A(f 2)B(G1)B(G 4)] .
fi,f 2 ,g,h fi,f2,g,h

Combining these observations with Lemmas 4.1, 4.2 and 4.3, we get, going back to Equa-

tion (4.9),

7

16
E

fi,f2,g,h

9 6
+ - E [B(g)B(g - (f o 7r A h))] + - E [A(f)B(g)B(g - (f o r A h))]

16 f,g,h 16 f,g,h

(4.10)+ - E [A(fi)A(f 2 )B(G 1 )B(G 4 )]
16 fi,f 2 ,g,h

Consider now our final inner verifier NAIV56 defined in Figure 4-2. Using the above Equa-

tion (4.10) and Lemmas 3.4, 3.5 and 4.4, we can prove, exactly as we did in Lemma 4.5,

that

Lemma 4.8 For any 6 > 0, NAIV5j is a (1,7/16 + 276/16, 5)-good non-adaptive inner

verifier.

Theorem 4.9 For any E > 0,

naPCP1 ,7/ 16+ e[log, 5] = NP .
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Chapter 5

Some Results on Free Bit

Complexity

Free bits are an extremely important parameter measuring the complexity of a PCP con-

struction as it has direct applications to showing hardness of approximating Vertex Cover,

as is formalized in the following Proposition:

Propostion 5.1 ([7]) If NP C FPCPc,,[log, f], then approximating Vertex Cover up to a

factor of f2 - e is NP-hard for any e > 0.

5.1 Free bits and our PCP constructions

5.1.1 The Vertex Cover hardness revisited

The best hardness of approximation result known for vertex cover is a factor of 7/6 - e,

for any E > 0, and is obtained using Proposition 5.1 together with the two free bit PCP

construction of Histad [16], which has completeness 1 - e and soundness 1/2, for any e > 0.

We now prove that we can achieve the same soundness while also guaranteeing perfect

completeness, thereby answering in the affirmative a question raised in [7].

Theorem 5.2 For any E > 0, we have NP C FPCPi, 1/ 2 +e [log, 2].

Proof: We just observe that the inner verifier IV3 6 which we used to get our 3-query

PCP construction uses just two free bits. This is because, once A(f) and B(g) are read, the

verifier "knows" the values it expects for the other bits it reads. The theorem now follows
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using the soundness bound we proved for our 3-query PCP in Theorem 3.1.

Plugging the above into Proposition 5.1, we are therefore able to match the best known

hardness result for approximating Vertex Cover while only using perfect completeness, in-

dicating that imperfect completeness is not inherent at least for the current best inapprox-

imability result for Vertex Cover.

5.1.2 Some other constructions

Using the transformation of PCP systems as given Proposition 11.9 of [7], we also get the

following corollary:

Theorem 5.3 For any E > 0, we have

NP C FPCP 1 ,3/4+,[log,1g 3].

Theorems 5.2 and 5.5 above can be contrasted with that of Trevisan [26] on PCP classes

defined in terms of non-adaptive free bits collapsing to P, which states that, for all E > 0,

naFPCP 1 ,1/2-e[log,2] C P, and

naFPCP 1,3/4-[log,1lg3] C P .

The free bit complexity of the verifier IV36 is 3 when viewed in the non-adaptive sense

(there are at most 8 satisfying assignments to the boolean predicate tested by IV3j), and

hence we also get:

Theorem 5.4 For any > 0, we have NP C naFPCP1 ,1/2+e[log, 3].

Finally we get the following result from our 5-query PCP construction:

Theorem 5.5 For any e > 0, we have NP C FPCP 1 ,1/4+e[log, 3].

Proof: Follows from the fact that the inner verifier IV56 uses only 3 free bits (in the

adaptive sense). El
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5.2 Difficulty of Proving Bound better than 3/2 for Vertex

Cover

This section addresses the question of obtaining significantly better inapproximability re-

sults for Vertex Cover based on PCP constructions. In particular we hint at a potential

difficulty that has to be overcome in extending current PCP constructions to prove a hard-

ness factor of better than 3/2 for approximating Vertex Cover. Rather than as a negative

result, we view this result as pointing out that new type of constructions should be con-

ceived in order to further improve the inapproximability bounds for Vertex Cover, and also

indicating what minimal property such a construction must possess. By Proposition 5.1,

PCPs that use lg 3 free bits can at best prove the hardness of approximating Vertex Cover

within 3/2 - - (this result can be attained by showing NP C FPCP1_, [log, 2]). To get

better inapproximability results, one therefore needs to give good PCP constructions that

use at most one free bit. To get the best bounds, by Proposition 5.1, it is conceivable that

the PCP will have near-perfect completeness (1 - e), and we prove below that any such

PCP must be significantly different from existing constructions, as its query complexity can

not be a simple constant (as is the case with existing constructions exploiting near-perfect

completeness), but, in fact, must grow at least as e-

Theorem 5.6 For all E > 0, assuming P $ NP, any PCP system that captures NP that

uses only one free bit and has completeness 1 - e, must make Q(e-1/3) queries if it must

have any soundness s that is strictly bounded away from 1.

Proof: Let a PCP verifier make at most k queries on any sequence of its random bits and

decide membership in an NP-complete language L with completeness (1 - e) and soundness

s < 1. We want to prove a lower bound of Q(E-1/3) on k. For any outcome R of its random

coin tosses, it accepts if and only if a certain boolean formula fR is satisfied, and since the

verifier uses only one free bit, the formula fR is the disjunction of two inconsistent terms

Tk and T 2 each of which has at most k literals (since the verifier makes at most k queries).

Since Tk and T2 are inconsistent, there must exist a query xi such that xi E T' and zi E T'.

By the assumption about the parameters of the PCP, if x E L, at least a (1 - e) fraction of

the functions fR are satisfiable, while if x V L, at most a fraction s of the functions fA are
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satisfiable. We replace the function fR by the set of constraints SR = S1 U S2 where

SI = i => 1 : 1 is a literal in Tk, 1s Xi},

S= {2 => 1 : 1 is a literal in TR,l .

Assume, without loss of generality that SR and SI each have exactly k implication con-

straints (this may be achieved by repeating certain constraints or adding dummy variables

and constraints which can always be satisfied). Clearly if fR is satisfied, all the constraints

in SR are satisfied too, and even if fR is not satisfied all constraints in either SR or

can be satisfied. Thus, if a fraction 1 - E of the functions fR are satisfiable, then at least a

fraction
2k(1 - e) + kE E

2k 2

of the 2SAT constraints in UR SR are satisfiable.

Now, consider running Zwick's algorithm [30] for almost-satisfiable 2SAT instances on

the 2SAT instance comprising of clauses in UR SR. If a fraction 1 - e/2 of the clauses are

satisfiable (as will be the case when x C L), then the algorithm will find an assignment that

satisfies at least a fraction 1 - O(e1/3) of the 2SAT clauses. In the case when x V L, at

most a fraction
s - 2k + (1 - s)(2k - 1) (1-s)

2k 2k

of the 2SAT clauses are simultaneously satisfiable. Thus, if 1 (1-s) < 1 - O(E1/3), we

can decide membership in L in polynomial time by running Zwick's algorithm on the 2SAT

instance with clauses in URSR, and accepting only those strings x for which the algorithm

finds an assignment satisfying more than a 1 - (I 2k) fraction of the 2SAT constrains. Since

L is an NP-complete language, this is impossible assuming P 5 NP, and thus we must have

1 - 2k > 1 - 0(E1/3)2k-

or,

k ;> Q( -) 61/3) _ - E-1/3)

implying that the PCP must read at least Q(--/3) bits.
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5.3 A gadget based PCP construction with ig 3 free bits

We investigated PCPs that use only one free bit in the previous section. We now consider

what can be achieved with lg 3 free bits (which is the next higher number of free bits

possible). We prove the following:

Theorem 5.7 For any e > 0,

NP C naFPCP1-e,5 /6 [log,1g 3].

Proof: The construction is obtained from Hastad's 3-query PCP [16] which simply checks

if the parity of the 3 bits it reads is a certain value 0 or 1 (depending upon the bits it

reads). This construction has free-bit complexity 2 because a 3-parity constraint has four

satisfying assignments. We now give a "gadget" which will express a 3-parity constraint in

terms of 1-ONE constraints (the 1-ONE constraint is a 3-ary boolean constraint defined by

1-ONE(p, q, r) is true iff exactly one of the literals p, q, r is true). The gadget is: replace

the constraint x e y E z = 1 (here we treat boolean functions as 0-1 functions in the usual

way) by the three clauses 1-ONE(x, a, b), 1-ONE(y, b, c), and 1-ONE(z, c, a), where a, b, c

are auxiliary variables specific to this single parity constraint. It is easy to see that if the

original parity constraint was satisfied, then all the three 1-ONE constraints can be satisfied

by assigning appropriate values to a, b and c, where as if the parity constraint was violated,

no assignment to a, b and c can satisfy more than two 1-ONE clauses. In the terminology

of [28], this is a 3-gadget.

Now consider again the proof system of Histad [16] that has completeness (1 - E) and

soundness 1/2 (actually it has soundness 1/2 + E, but assume that the soundness is actually

1/2 by unconditionally rejecting with a certain small probability), and whose verifier always

checks the 3-parity of the three bits it reads. Now, assume that the proof of the above system

is modified to include, in addition to the original proof, also the assignment to the auxiliary

variables a, b, c above for each triple of bits in the original proof (note that this blows up

the size of the proof only by a polynomial factor). Modify the verifier as follows: instead of

reading three bits Xi, x2 and X3 and checking if X1 E X2 E X3 = 1, it picks one of the three

1-ONE clauses of the above gadget (for the particular triple X1, X2, X3) at random, reads

the corresponding three bits and checks that the values indeed satisfy 1-ONE.
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The query complexity of the new verifier is still 3, but it has free bit complexity only lg 3

(even in the non-adaptive sense), as any constraint it checks is a 1-ONE constraint which

has only three satisfying assignments. The completeness is at least (1-c) -1+e - q = 1-E/3,

while a false proof is rejected with probability at least - = , since with probability 1/2 a

parity constraint that is violated is picked (because of the soundness of the original verifier),

and with probability 1/3 a violation is caught through the gadget. The proof system thus

has soundness 5/6.
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Chapter 6

Weakness Results for PCPs

Our PCP constructions so far are powerful enough to capture all of NP while only making

few queries into the proof and yet having very good soundness. In this chapter, we proceed to

prove the complementary results that PCP classes with certain query complexity and error

probability are weak in the sense that they can only capture languages in P. We achieve this

goal by providing approximation algorithms for constraint satisfaction problems and then

invoking the following results which connect the power of PCPs with the approximability

of the MAx kCSP problem. Recall that MAx kCSP is the constraint satisfaction problem

where all constraints are k-ary boolean functions, and the goal is to find a truth assignment

to the underlying variables that maximizes the number of constraints satisfied.

Fact 1 ([1]) If there exists a polynomial time factor r approximation algorithm for satisfi-

able instances of MAX kCSP, then naPCPI,8 [log, k] C P for any s < r.

Fact 2 ([25]) If there exists a polynomial time factor r approximation algorithm for MAX

kCSP, then PCPc,[log, k] 9 P for any s/c < r.

Existing approximation algorithms in [25, 26, 29] for various MAX kCSP problems

therefore imply that PCPc,8 [log, 3] g P for any s/c < 1/2, naPCP 1 ,,[log, 3] g P for any

s < 5/8, PCPc,s[log,k] q P for any s/c < 2 -k, and lastly naPCP 1,8 [log,k] g P for any

s < (k + 1 )/ 2 .

We use the above two results connecting constraint satisfaction problems with limita-

tions of PCPs to limit the the power of k-query PCPs for all values of k, for the special

cases of perfect and near-perfect completeness.
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6.1 Weakness of PCPs with perfect completeness

Theorem 6.1 For an e > 0, PCP1,3 /(2 k+l)-e[log, k] C P.

Proof: Consider a PCP verifier V for language L that makes k (possibly adaptive) queries,

has perfect completeness, has soundness less than 3 /( 2k + 1). Our goal is to show that L

is in P. We prove this by constructing in polynomial time, for the case when x E L, an

explicit proof that will be accepted by V with probability at least 3 /( 2 k + 1). Note that this

yields the following polynomial time procedure to decide membership of x in L: construct

the afore-mentioned proof in polynomial time (if construction of the proof fails, then we

know that x ( L, so reject x immediately) and then accept x iff V accepts this proof with

probability at least 3 /( 2 k +1) (since V has logarithmic randomness this can be also be done

in polynomial time by enumerating over all possible random strings of V).

The construction of such a proof when x c L (which is accepted by V with probability

at least 3 /( 2 k + 1)) is achieved by considering a random proof and a proof constructed by

finding a satisfying assignment to an appropriately constructed satisfiable 2SAT instance,

and taking the "better" of the two proofs. The details of the construction follow.

For any particular choice R of the random bits of V, the computation of V can be

modeled as a decision tree TR of depth at most k. Let ml (respectively m2) denote the

fraction of random strings R for which TR has exactly one accepting "leaf" (respectively

exactly two accepting leaves). Let m3 = 1 - MI - m 2 be the fraction of R's for which T

has at least three accepting leaves.

It is easy to see that the probability that a decision tree TR with exactly I accepting

leaves accepts a random proof equals -, and hence the probability that V accepts a random

proof is at least (ml+2m2+3M3 . (This is because each decision tree of V has the property

that configurations corresponding to two distinct leaves can never occur simultaneously: and

hence the events corresponding to the various accepting leafs of a particular tree occurring

are mutually exclusive.)

For the case when x E L, consider the following proof: For each tree TR with just one

accepting leaf, create unary clauses consisting of the (at most k) literals which when set to

true will make TR accept (these literals will correspond to the variables on the path from

the root to the unique accepting leaf in TR). For each tree TR with exactly two accepting

leaves, there must exist a variable x such that both the left and right subtrees of the tree
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rooted at x have exactly one accepting leaf. Create unary clauses as before for the variables

(other than x) which occur in the path from the root of TR to x, and if 11,12,... ,lp and

ri, r2, ... , rg are the literals which when set to true will make TR accept in the cases when

X = 0 and x = 1 respectively, create the (at most 2k) clauses z -> li,1..., 2- land

X =>r1,..., ->rg.

Since V has perfect completeness and x E L, the 2SAT formula C comprising all clauses

so created must be satisfiable, and using the polynomial time algorithm for 2SAT, a satis-

fying assignment o- for C can be found. Now, let H be the proof that agrees with o- on all

variables (bits) occurring in the clauses of C, and arbitrary elsewhere. Clearly, the proba-

bility that V accepts II is at least the probability that V chooses an R such that TR has at

most 2 accepting leaves, which is mi + m 2.

Combining the bounds on acceptance probability for a random proof and I, we get that,

in the case when x E L, we can, in polynomial time, construct a proof that is accepted by

V with probability at least

mmn + 1 max MI + M2 7 mi + 2m 2 + 3m3 }3

mi,m2,m3:m1+m2+m3=1 2k I 2k g

6.2 Weakness of PCPs with near-perfect completeness

Theorem 6.2 We have, for any e > 0, PCP 1 .,,[log, k] c P, where s = -3+2 - O(k ).

Proof: The idea is the same as the above proof, the only difference is that the 2SAT

formula C created as above will not in general be satisfiable since V no longer has perfect

completeness. If V has completeness 1 - E, however, it is easy to check that at least a

fraction 1 - e/(mi + M 2 ) of the clauses in C will be satisfiable, and hence we can run the

polynomial time algorithm of Zwick [29] for nearly satisfiable instances of 2SAT to find an

assignment a satisfying at least 1 - O((e/(mi + M2)) 1/ 3 ) of the clauses in C. As before,

considering a random proof and a proof II constructed so that it agrees with a on all its

variables and is arbitrary elsewhere, will imply, after a few simple calculations, that the

soundness of the verifier cannot be less than

mi{ max mii+m2O(k1/3) M 1 + 2M2 + 3m 3  3 kei/3
ml,m2 ,m3:m+m2+m3=1 2k 2k + 2 2 k + 2)
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Chapter 7

Concluding Remarks

We considered the problem of getting the best possible soundness out of a PCP construction

that makes a small number of queries and in addition has perfect completeness. The work

of Histad [16], in addition to providing some striking constructions of PCPs, also developed

a general analysis technique based on Discrete Fourier Analysis to bound the soundness of

PCP constructions, and in principle reduced the task of obtaining better PCPs to construc-

tion of good inner verifiers without worrying too much about how they can be analyzed

tightly.1 This work was the primary driving force behind our work.

One of our principal results is that perfect completeness and a soundness arbitrarily close

to 1/2 can be achieved by 3-query PCPs. This somewhat surprising result is tight in that

one cannot achieve a better soundness, and also demonstrates the power of adaptive queries

in PCP constructions. In fact it demonstrates that adaptivity gives strictly more power

to PCP verifiers as one cannot achieve a soundness smaller than 5/8 using 3 non-adaptive

queries and having perfect completeness.

We also used our techniques to give improved (but not necessarily tight) PCP construc-

tions for a slightly higher number of queries. For example we prove that with 5 queries

one can achieve a soundness of 1/4 + E; the best previous construction achieved the same

soundness [27], but as was the case with Histad's 3-query PCP, it too resorted to near-

perfect completeness. Thus, we are, once again, able to match the previously best known

soundness, but in addition achieving perfect completeness by resorting to adaptive queries.

This raised questions about the power of adaptivity in general, and in particular whether

'It is however not true that any inner verifier construction can be analyzed tightly now without difficulty,

but at least in principle the techniques to do so seem to exist now while they were unknown earlier.
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they can always be used to do away with near-perfect completeness in PCP constructions

while still achieving the same (or even nearly same) soundness.

While our principal PCP constructions are adaptive, we are able to extract non-adaptive

PCPs out of our constructions which are also better than previously known constructions.

For example our main 3-query result also implies a soundness of 1/2 + e can be attained

by making 4 non-adaptive queries. We are also able to modify our 5-query construction

slightly to conclude that a soundness of 7/16 + e is achievable using just 5 non-adaptive

queries. This result makes significant progress on the question of determining the smallest

number of queries required by a non-adaptive PCP with perfect completeness to achieve a

soundness strictly less than 1/2. Our result shows that 5 queries suffice, while the previous

best bound was 9 queries implicit in the work of [16].

Our result also has some implications for PCP constructions with a small number of

free bits. In particular, we obtain that NP C FPCPy,1 / 2+,[log, 2], which can be used to

derive the (already known) hardness result of approximating Vertex Cover within 7/6 - E,

but only resorting to perfect completeness. This shows that near-perfect completeness is

not inherent at least to the current inapproximability result for Vertex Cover.

We are also able to deduce some non-trivial values of q for which q +1 queries are strictly

more powerful than q queries. In order to be able to do this, we design an approximation

algorithm for MAX 4CSP, the constraint satisfaction problem where all constraints are

boolean functions of (at most) four variables, using the semidefinite programming method-

ology of Karloff and Zwick [17, 29]. While the exact performance guarantee can be expressed

in terms of the minimum of a complicated function over a certain range (the function in-

volves the volume function of spherical tetrahedra), it is very hard to bound analytically.

We have run numerical programs to estimate this minimum and based on the results are

able to conclude the following containment result for 4-query PCPs.2

Theorem 7.1 There is a polynomial time factor 0.33-approximation algorithm for MAX

4CSP.

Corollary 7.2 For any c, s such that s/c < 0.33, PCPc,s[log, 4] C P.

2The statement is not really a "theorem" since we do not have an analytical proof of it. We thank Uri
Zwick for providing us with some of the programs we used to obtain this result.

68



Based on the above and our PCP constructions, we are able to exhibit some non-trivial

values of q for which q + 1 queries add more power to PCPs compared to q-query PCPs.

* For non-adaptive PCP, 4 queries are stronger than 3. (This follows from Corollary 3.3

and the fact that naPCP1,8 [log, 3] 9 P for s < 5/8 [26, 29].)

* For adaptive PCP, 5 queries are stronger than 4. (This follows from Theorem 4.6 and

Corollary 7.2.)

* 5 non-adaptive queries are stronger than 4 adaptive queries. (This follows from Corol-

lary 7.2 with c = 1 - E and the fact - proved in [27] - that NP C PCP1_,1 4 [log, 5]

for any E > 0.)

Open Questions: There are plenty of related questions which still remain unanswered

and it is not clear how much current techniques will have to be modified or new techniques

invented to answer some of them. We list some of the most prominent questions below:

1. What is the best soundness achievable by non-adaptive 3 query PCPs with perfect

completeness? It is known that the soundness has to be at least 5/8 and a construction

with soundness 3/4 + e is also known. It is not clear at this moment which of these

two (or if any of the two) is tight, though our guess seems to be that one can achieve

a soundness of 5/8 + e with 3 non-adaptive queries and perfect completeness.

2. Can one achieve a soundness better than 1/2 using 4 queries, even allowing for near-

perfect completeness? What about the same question if in addition the queries are

restricted to be non-adaptive?

3. Can one construct 2 free-bit PCPs with near-perfect completeness and soundness less

than 1/2? Such a construction appears difficult, but it will be a very important de-

velopment as it would improve the current inapproximability result for Vertex Cover.

4. Asking questions of a more general nature, is it true that adaptive queries strictly add

more power to q-query PCPs for all q > 3? Is it true that an additional query always

helps, i.e are q + 1 query PCPs more powerful than q query PCPs for all q > 2?
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