
A Collaborative Environment for Distributed Web-based

CAD

by

Gangadhar Konduri

B.Tech(Hons), Indian Institute of Technology, Kharagpur (1997)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1999

@ 1998 Massachusetts Institute of Technology. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly

paper and electronic copies of this thesis document in whole or in part.

A u th o r 0
Department of Electrical Engineering and Computer Science

December 18, 1998

Certified by....................... I..............
Anantha Chandrakasan

Associate Professor of EECS
Thesis Supervisor

Accepted by ~..m~~
ArthuV C. Smith

Chairman, Department Committee on Graduate Students

2

A Collaborative Environment for Distributed Web-based CAD
by

Gangadhar Konduri

Submitted to the Department of Electrical Engineering and Computer Science
on December 18, 1998, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

The increasing complexity and geographical separation of design data, tools and teams has

created a need for a collaborative and distributed Computer-Aided Design environment.
The high integration levels call for tools and generators that allow the exploration of the

design space irrespective of the geographical location of the design tools.
The World Wide Web serves as a desirable platform for distributed access to libraries

and design tools. The web has several properties that can provide an important platform for

VLSI CAD, when combined with distributed object technologies and platform independent
languages. In this thesis an environment for collaborative and distributed Web-based CAD
is presented. In this environment, the designers can efficiently utilize the capabilities of

existing design tools on the Web and also build hierarchical Web-tools in a collaborative
fashion. The environment includes a Java hierarchical collaborative schematic editor and

the required interfaces to distributed Web-tools and cell libraries. The environment also

includes the infrastructure to store and manipulate design objects and the protocols for

communication with tools, message passing and collaboration.

Thesis Supervisor: Anantha Chandrakasan
Title: Associate Professor of EECS

3

4

Acknowledgments

" I would like to express my deepest gratitude to my advisor, Anantha Chandrakasan,
for his support, guidance and suggestions throughout the project. Anantha has always

inspired and motivated me. It has been a wonderful experience to have him as my

advisor.

" My sincere thanks to Debashis Saha, who helped me throughout the project with his

inputs about WebTop and other issues.

" My thanks to all my office mates, Duke Xanthapoulos, Jim Goodman, Seonghwan

Cho, Raj Amritharajah, Wendi Rabiner, Vadim Gutnik, Joshua Bretz, Amit Sinha,
Alicia Wong and Scott Meninger for providing a wonderful environment to grow and

develop myself.

" I gratefully acknowledge DARPA for supporting my graduate study.

" And most importantly, I would like to thank my parents and my brother for their

constant support, love and encouragement. Their blessings and sacrifice have made

this possible.

5

6

Contents

1 Introduction 11

1.1 Challenges in designing "Systems-on-a-chip" 11

1.2 The Web and the Internet . 12

1.3 The model of Web-based CAD . 13

1.4 The Distributed Microsystem Design Framework, WebTop 15

1.5 The Collaborative environment . 16

1.6 Related W ork . 17

2 Web based Technologies and Java 19

2.1 The Hypertext Transport Protocol . 19

2.2 The Common Gateway Interface (CGI) . 21

2.3 Java Programming Language . 22

2.3.1 New Features in Javal.1 . 24

2.4 Distributed Object Technologies . 25

2.4.1 Java R M I . 26

2.4.2 Java Serialization Mechanisms . 27

2.5 Sum m ary . 28

3 Design Example with the Distributed Tool 29

3.1 The Distributed Web-based CAD tool, WebTop 29

3.2 Adding new cells to WebTop . 32

3.3 Interaction with tools . 36

3.4 Saving the designs . 37

3.5 Design Example with the Distributed Tool 38

7

4 The Collaborative Environment 41

4.1 C ollabTop . 41

4.1.1 Client-Server Architecture 42

4.2 Higher Level Issues . 44

4.2.1 Synchronization . 45

4.2.2 R ecovery . 48

4.2.3 Locking . 49

4.3 Implementation Details . 50

4.4 Example Collaborative Flow . 53

5 Summary and future work 59

A Snapshots from the design example 61

8

List of Figures

Distributed CAD Environment

WebTop: The distributed framework

The Concept of the Collaborative Environment

The components of a simple WWW interaction

Java language and its APIs .

The Java RMI Mechanism .

3-1 Data flow in Hierarchical tools

3-2 A snapshot of WebTop's schematic editor and Library Manager .

3-3 WebTop and Various tools .

A 2 input 1 output prototype cell with Verilog and

A cell including a prototype cell in its schematic .

Steps involved in the DC-DC simulation

Concept of the Collaborative framework

Collaborative design with several sessions

Client-Server and Peer-to-Peer Architecture . . .

Synchronization of the System

An example of mouse movements where locking is

Snapshot of the Collaborative framework

Client-Server Architecture of the System

Example flow in the Collaborative framework . .

Spice views

required

A-i The Schematic of the media processor

A-2 The netlist from the media processor that is submitted to PowerPlay .

9

1-1

1-2

1-3

2-1

2-2

2-3

. 14

. 15

. 16

. 20

. 23

. 27

3-4

3-5

3-6

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

31

32

33

34

35

40

42

43

44

48

50

55

56

57

. 6 1

62

A-3 The snapshot of PowerPlay after it receives the netlist from WebTop 63

A-4 The output of Stanford Power Simulator and the netlist from WebTop . . . 64

A-5 The Schematic of the IDCT chip submitted to Pythia 65

A-6 The verilog netlist of IDCT chip . 65

A-7 The Pythia output on submitting the netlist from WebTop 66

10

Chapter 1

Introduction

In the design of large integrated systems, design teams use various CAD tools that is

distributed across several sites. The tools used in the design process might be situated in

different locations. Such distribution of tools and the data calls for a framework facilitating

distributed design. Diverse expertise is required at various levels of abstraction during the

design process, and the design teams are expected to be geographically separated, requiring

that the design environment be collaborative in nature.

1.1 Challenges in designing "Systems-on-a-chip"

Deep submicron scaling enables integration of tens of millions of transistors on a single chip,

allowing the implementation of an entire system on a chip. Such a design of "systems -

on - a - chip" increases both the complexity of design and the issues of management in

the design process. CAD tools that are capable of handling the increased complexity are

required to design such systems. Making tools that integrate these large designs and that

efficiently test and verify them is a major challenge.

Modular approach helps in easier and better management of the designs. These complex

chips consist of various modules requiring diverse design knowledge. Reuse of existing

modules and libraries in the design helps significantly in the design process, by reducing

the design time and by simplifying the design.

Therefore, there is a need for a design environment exhibiting the following properties:

9 It simplifies the design process, as seen by the user, by automating design flows and

by allowing collaboration among the users.

11

" The environment gives collaborative access to the remote libraries and design tools,

at all levels of design abstraction, with simple and standard user interfaces.

" It enables a modular/hierarchical approach to the design.

Such a requirement motivated us to develop an environment that facilitates collabo-

rative, distributed and hierarchical design. The WorldWideWeb(WWW) provides a nice

channel of communication required for the tool.

1.2 The Web and the Internet

The advent of Internet has opened new vistas in the area of collaboration. The WWW

has emerged as the most desirable platform for distributed access to information. The Web

can serve as a very attractive platform for distributed applications because of the following

reasons:

" The protocols and mechanisms of WWW are simple and do not rely on the underlying

hardware.

" The popularity of the WWW is mainly due to its simple and standard browser inter-

face. This means that many users are already familiar with a friendly user interface

that WWW has to offer.

" The limitation of only server-side computation of the WWW using form based CGI

programming has been alleviated with the emergence of a platform independent pro-

gramming language, Java. Client-side processing can be done through the Java ap-

plets.

" The limitations of state-less connection are also overcome with Java as a full program-

ming language being integrated in the browsers.

" The Object technologies and the Java serialization mechanisms facilitate the easy

communication of large data between clients and server and among different clients.

" The WWW has also emerged as a strong platform for remote access to tools, enabling

the designer to access web-tools using a browser.

12

Java applets can be embedded in the webpages and therefore the designers can use their

browsers to use the tools implemented as an applet. All these factors, along with the

advantages of Java, make the WWW an ideal platform for collaborative and distributed

micro-system design.

1.3 The model of Web-based CAD

The World Wide Web has led to a paradigm shift in the research, development and integra-

tion of EDA tools. Web-based CAD poses to define a new era of electronic design in which

tools, models and cell libraries are accessible from any remote location. VLSI design in-

volves many compute-intensive steps like simulation and verification. These jobs should be

executed nodes on the network with significant computation power. Typically, server-side

computation meets such requirements, and less compute-intensive jobs can be performed

at the client end. A Web-based framework should optimally partition the client-side and

server-side jobs efficiently. It should integrate the tools seamlessly in the framework. At all

levels, it should allow the designers to collaborate in the design process.

In the model of Web-based CAD, the designers use a Web browser on their desktop and

access cell libraries and design tools irrespective of their location. The designer can also

collaborate in the design process. The tool utilizes the existing cells and tools from different

places without the user having to install these locally. This is a design-centric approach,

with the designer at the center of the methodology and the tool takes care of the distributed

access.

The following are the various aspects of Web-based CAD that are fundamentally different

from the way VLSI design is done today:

" No installation of CAD tools: Web-based CAD does not require any client end

installation of tools. Tools are either downloaded via internet or the input is sent to

the server, where the tool is executed. The location of the tool on the Web and the

interfaces of the tool are required for accessing it through Web-based CAD framework.

" No Maintenance: It reduces the maintenance cost of the CAD tools. The latest

version of the tool can be maintained and distributed by the vendor at their site so

that the designer can use it. Currently, much of the designers' effort go into tool

13

Client browser

Figure 1-1: Distributed CAD Environment

installation and maintenance in terms of version controls, license controls etc. Since

all of the burden falls on the vendor with web-based CAD, the designers are simply

left with the use of the tool in this framework.

" Access to Powerful Computers: Many CAD tools require extensive computational

power, which many small designer houses cannot afford to have. With the server

based computation of Web-based CAD, users could make use of the high performance

computing power of the servers.

" Pay-per-use CAD: Making tools available on the Web will allow tool vendors to

use a pay-per-use model.

" Ease of Collaboration:The framework creates a collaborative environment so that

the designers could easily cooperate in the design process.

Irrespective of the business prospects, Web-based CAD allows designers to use a col-

14

laborative framework in a distributed design environment. The WWW can help better

utilization of resources through distributed design and in bringing together team of experts

from all over the world into the design space through collaboration. The information ex-

change between the tools should be efficient in this framework to make effective use of the

wide variety of tools available.

1.4 The Distributed Microsystem Design Framework, WebTop

A distributed design environment, WebTop, has been developed at M.I.T. It is a web-

based CAD framework providing all the advantages mentioned in the previous section. The

environment makes it easier for the designer to use the tools or data without having to

think about their physical location and versioning.

Client Server
Design Prediction
Entrv

Figure 1-2: WebTop: The distributed framework

The entry point for the design is a schematic editor that supports hierarchical design.

WebTop is capable of accessing cell libraries located on different servers through the internet.

The users can extract the netlist, that conforms to the input specification of several web-

tools, from their design. They can submit such a netlist to the corresponding webtool and

view the results. The tool uses the CGI mechanisms for remote tool invocation. There

15

I ___ Simulation
Verification

are certain fundamental cells, inbuilt and defined by WebTop, that can be included in the

design. The tool has a very easy-to-use and intuitive user interface.

1.5 The Collaborative environment

Collaborative design involves various designers co-operating in the design process. The

environment used by the designers to access the distributed tools and libraries has to enable

collaboration among the designers because of various reasons as mentioned in Section 1.1.

The environment should provide an efficient way to exchange the information and allow

designers to be involved in parallel sessions at the same time. Though the parallel sessions

increase the load on the server, it is sometimes convenient for the designer to participate in

more than one session at the same time.

CONSISTENT VIEW

OF THE DESIGN

1'

User 1 User 2 User 3

Figure 1-3: The Concept of the Collaborative Environment

The collaboration should also allow one designer to use the tools and all the designers

to view and use the results to enhance the design.

In this model the issues with limited internet bandwidth and secure communications

need to be addressed critically. Since, the data has to be transferred to the location where

the tool is available, the limitation in bandwidth is of concern. Similarly, the security of

communications of the design data over the internet is an important aspect of the design.

16

The web-tools should have the capability to exchange information efficiently and in a secure

manner.

1.6 Related Work

The popularity of the internet and the WWW has lead to many web-based tools. Bentz et al.

have proposed an information based design environment[2]. They describe an environment

which helps the users to collect and manage information in a uniform fashion, independent

of the abstraction levels or implementation platforms. Lidsky and Rabaey present a World

Wide Web based prototype tool, PowerPlay[3], which helps in system level exploration of

power consumption. PowerPlay uses a HTML form-based user interface which prompts

the user to select a subset of the available library and their parameters. The design is

then submitted to a script which calculates the power, area and timing information. The

methodology combines pre-characterized and user defined modes to provide quick and power

estimation in a spread sheet like format at the earliest stages of design, using a distributed

modeling environment.

The WELD project at UC Berkeley [4], aims to construct a distributed CAD environ-

ment enabling Internet-wide IC design for the US electronic industry. They have developed

a Java Object Database Server supporting persistent object class management. Boglilo et

al. describe PPP, a gate-level power simulator[5], which provides a Web-based integrated

environment for synthesis and simulation of low-power CMOS circuits. The graphical in-

terface of PPP is a dynamically generated tree of interactive HTML pages that allow the

user to access and execute the tool by using a Web browser.

There have been efforts to provide Web-based Interfaces to executable CAD/CAM soft-

ware. Links to different Web-based tools can be found at [6]. Fortes et al. present a

network based simulation laboratory which can be accessed via standard WWW browser.

The Purdue University Network Computing Hub (PUNCH) [7], is a set of network-based

laboratories that provide toolkits of programs for various fields.

A stand-alone utility, XMX[8], for sharing an X Window system session on multiple

X displays has been developed at Brown university. It acts as an intermediary between

XClient and XServer and takes advantage of the networked nature of the X Window system.

Though it leads to a collaborative environment, it works only on X-based systems. It is not

17

platform-independent and not web-based, the two features that are essential for distributed

design. Xplexer[9] is a distributed application sharing system for X Windows. It allows

sharing of stand-alone X window applications, in a heterogeneous environment. This tool

restricts the applications to those developed in X Windows. Some other such systems that

are available include Xshare and XTV. Lavana et al. use executable directed hypergraphs

to describe collaborative design activities on the internet[1O].

Although there are numerous instances of design tools being available over the Web,

there has been limited attention to design an environment which would allow designers to

utilize the different tools over the Web and do design in a collaborative fashion. In this

paper we show how a collaborative and distributed environment could be built over the Web,

utilizing the core Web technologies, to support efficient communication and data exchange

between different Web-based tools and to allow the designers to collaborate in the design.

18

Chapter 2

Web based Technologies and Java

"Web is a planetary nervous system", - John Barlow, 1996.

There are several technologies, mechanisms and protocols available that support dis-

tributed applications with the standard Web interface. In this chapter, we briefly explain

some mechanisms that have been used in developing this framework. They include protocols

that support the transfer of information through the Web using the HyperText Transfer

Protocol, HTTP and those that support remote execution like the Common Gateway Mech-

anism, CGI. There are mechanisms that create applications that could be executed locally

on the client machines using Java technology, scripts and plug-ins. The mechanisms for

communication use object technologies to define, locate and request computational services

from participating applications, both remotely and locally. In these approaches, the Web

takes the role of providing uniform access and presentation mechanisms. For creators and

users of CAD, the Internet is an ideal mechanism for facilitating collaborative design and

real time communication.

2.1 The Hypertext Transport Protocol

The Hypertext Transport Protocol (HTTP) is the principal means by which a Web server

and a client communicate with each other[11]. This communication could be to retrieve

a document or to execute a script. Under this protocol, a client sends a request to the

server. The server compiles such a request and replies with a response containing the

19

requested output or with an error message. Together, the request and the response form a

transaction, a single interaction between the server and the client. The protocol is basically

stateless, a transaction consisting of a connection, request, response and a disconnection. A

feature of HTTP is the negotiation of data representation, which allows systems to be built

independently of the development of new advanced representations.

User

www
7 Browser Client

(client) Computer

4. Disconnection 1. Connection

Internet

3. Response 2. Request

HTML
files Server

HTTP Computer
Server LExecute

Scripts

Figure 2-1: The components of a simple WWW interaction

There are two common methods or syntax for the request line, GET and POST methods.

GET method is generally used for simple document retrieval, database lookup and similar

operations. POST method is useful when the client wants to send a relatively large amount

20

of data to the server. The POST method uses the method body to send the additional infor-

mation from the user, rather than encoding it in the part of URL as in GET. The client can

use different encodings, that the server and the script can understand, for sending the data.

The default HTML[12] encoding is application/x-www-f orm-urlencoded which encodes

the data as ampersand-limited name/value pairs. The data that needs to be transmitted

from the client to the CAD tools in the Web-based CAD paradigm tends to be large and it

would be useful to send large files with a single HTML tag. File uploads with the HTML

tag <input type=file>, use the encoding of multipart/f orm-data. Error responses are

supplied in human readable text in HTML syntax. The error messages and the response

messages are different only in the content of the text.

The server breaks the TCP-IP connection when the whole document has been trans-

ferred. The client may abort the transfer by breaking the connection before this, in which

case, the server does not record any error condition. In the environment of collaborative

and distributed CAD, we are dealing with non-deterministic delays, corresponding to the

execution time of the tools. The client might have to wait for longer time for some responses

in Web-based CAD tools because of these delays. The http server times out after waiting for

a specific period of time, which is defined by a server variable. Therefore, the methodology

used should be robust with respect to these delays. To allow the users to continue working

with the design while waiting for the results from a web-tool, these jobs could be spawned

as a thread of execution.

2.2 The Common Gateway Interface (CGI)

Sometimes we need the server to generate information depending on the client input. The

Common Gateway Interface[14] is a mechanism to present dynamically generated informa-

tion on the World Wide Web. A Hypertext Transport Protocol (HTTP) server is often used

as a gateway to a legacy information system: for example, an existing body of documents

or an existing database application. The Common Gateway Interface (CGI) is an agree-

ment between HTTP server implementors about how to integrate such gateway scripts and

programs. CGI programs are usually referred to as scripts. They run on the server machine

and produce the output (usually HTML output) to be displayed on the client's browser.

CGI is the component of the Web server that can communicate with other programs

21

running on the server. With CGI, the Web server can execute a program, while passing

user specific data to that program. The program processes the data and passes its response

back to the server, which sends this data back to the client. CGI transforms the Web from

a simple collection of static hypermedia documents into an interactive medium, in which

users can ask questions and execute remote applications.

The request for a CGI program looks the same as it does for all Web documents. The dif-

ference is that when a server recognizes that the address being requested is a CGI program,

the server does not return the file content, but instead it tries to execute the program.

CGI scripts provide a very useful mechanism to provide remote access to CAD tools.

Since many CAD tools take inputs which are either files or some parameters in plain text,

HTML forms can easily be used to capture the inputs from a browser interface and can be

submitted to CGI scripts. For example, a power estimation tool could have a simple Web

interface using the CGI mechanism.

2.3 Java Programming Language

Though the CGI mechanisms allow the client to execute server-side programs, they lack

the interactivity and good user interface. Designers would not be satisfied with the limited

display of a CGI based program and HTML output. They need to modify and view different

designs in real time. Java[13] helps us overcome this problem by allowing us to do complex

client-side processing in a platform independent manner.

Java is an object-oriented programming language and comes with a rich set of Applica-

tion Programmers Interface (APIs) as shown in Figure 2-2. Java has been widely accepted

as the standard for Web computing. Java source code is compiled to byte-codes whose

target architecture is the Java Virtual Machine (JVM). This JVM can be embedded within

other environments, like the web-browser and operating systems. A class loader can load

classes over the network and a byte-code verifier verifies the byte-codes while reading them.

Java has been designed such that a compiled Java class can be conveniently handled with

ordinary text and graphics. Java applets can be embedded in HTML pages, which are

loaded from the Web server. The browser interprets the Java byte-codes and executes them

as an application on the client side.

Since Java is a programming language, it is much easier to make an applet interactive

22

Figure 2-2: Java language and its APIs

than making interactive CGI programs Complex user interfaces where the users use the

mouse to draw and edit images, which are not easy to create with HTML and CGI, can

be easily incorporated in a Java applet. Java applets use modern graphical user interfaces

(GUI) like text boxes, buttons, list boxes etc. With Java, the processing is off-loaded to the

user's system and thus Java enables client side processing without the need to go across the

network for every small application. Moreover, the problems of the non-persistent connec-

tion of HTTP and CGI are alleviated since Java applets run as independent applications.

The Virtual Machine refers to the active interpreter which executes Java byte-codes.

Since the Virtual Machine does not necessarily correspond to any particular hardware or

operating system, the Java class files are portable to any implementation of the Virtual

Machine. This is the essence of Java's portability. Therefore, applications which do not

need extensive computational power could be handled well with Java based interface. But

leaving all the work to Java based client-side processing would hinder our attempts to do

CAD with a simple desktop. Therefore what we need is a partitioning of an application

into Java based client processing and the traditional remote server-side computation. Java

enables a philosophy of "Write once, Run anywhere" for programs. The features which

make Java so attractive are listed below.

23

e Java is Object-oriented.

" Java is a cross platform language enabling easy portability.

" Java inherently supports multi-threading, enabling a Java Server to time multiplex

several tasks.

" Java has API's for transparent network access and can be inlined in a HTML document

in a Java-capable browser.

To prevent the creation of malicious applets that can damage the file system on the

client side, there are some security restrictions on the applets. One of these is that the Java

applets are not allowed to examine the file system on the client side. So, the applets can

not save designs on the client machines. In a web-based CAD application, the designer,

using an applet, might want to save the design on the local machine. This is a limitation

on the Java applets that needs to be worked around.

2.3.1 New Features in Javal.1

Several new features have been added in the new version 1.1 of the Java programming

language. Out of them, the new event model, the security features, and the serialization

mechanisms are extensively used in developing this distributed framework, WebTop into

the collaborative environment. The event model is described briefly in this section and the

serialization mechanisms are explained in Section2.4.

Event Model:

WebTop was originally developed using Javal.0 event model. In Java 1.0, there are

certain Graphical User Interface(GUI) component classes and the applets or the GUIs have

to subclass these components and handle events. This model is not suitable for develop-

ing complex programs. All these events should be managed in one method action. This

necessitates the method to check the cause of the event to take appropriate action.

Javal.1 defines a new model for dispatching and handling events. The new event han-

dling model is a "callback" model. When a GUI component is created, the methods that

should be invoked on the occurrence of different events, have to be declared. Since Java does

24

not support first-class functions (functions that can be passed as parameters), an instance

of this class has to be passed to the GUI component to specify the callbacks. The GUI

component invokes the appropriate method of the object specified. These interfaces are

called listeners(e.g., MouseMotionListener, WindowListener). Given below is an example

of how this event model has to be programmed with:

" A componentBox has a button. If the user clicks on the button, it disappears and

takes the appropriate action. The componentBox class contains an instance of the

Button GUI component.

" The componentBox is added to the button's actionListenerList.

" The componentBox which implements ActionListener interface implements the ac-

tionPerformed method with the signature as specified in the interface.

" When the user clicks on the button, the button component calls the corresponding

method in the componentBox class, which takes the necessary action.

In the collaborative environment, where various user actions at the clients are to be broad-

cast to all the clients, such a callback model would make the program flow simple. The

corresponding message object can be created in this callback method to be sent over the

network.

2.4 Distributed Object Technologies

Distributed computing enables the development of applications across several heterogeneous

systems. With the growth of the internet and the advances in networking, distributed

computing offers a vision of flexible computing with no boundaries. Distributed computing

has gained a new direction with a vision of object-oriented computing in which, there is no

essential distinction between objects that share an address space and objects that are on

two different machines with different architectures and at different geographical locations.

Distributed computing in this context refers to programs that make calls to other address

space, possibly on other machine. Objects can therefore invoke a method of an object which

may be remote to the calling object. In such a system, an object, whether remote or local,

is defined in terms of a set of interfaces. The implementation of the object is independent

25

of the interface and hidden from other objects. This can be seen as an extension to the

remote procedure call (RPC) in the object-oriented paradigm.

The distributed programs can communicate through message-passing. These messages

are examined by the receiver to take appropriate action on its variables. Java Serialization

mechanisms could be used for this purpose to create the messages. In this section we describe

in brief the Remote Method Invocation of Java and the Java Serialization mechanisms.

2.4.1 Java RMI

Java Remote Method Invocation (RMI) [16] enables the programmer to create distributed

Java-to-Java applications, in which the methods of remote Java objects can be invoked from

other Java virtual machines, which might be on different hosts. A Java program can make

a call on a remote object once it obtains a reference to that remote object. This reference

could be obtained either by looking up the remote object in the bootstrap naming service

provided by RMI or by receiving it as an argument or as a return value. A client can make

a call on a remote object in a server, and that server can also be a client of other remote

objects.

Java Remote Method Invocation (RMI) is an interprocess protocol for Java, allowing

Java objects located on different Java Virtual Machines to invoke transparently each others'

methods. Since these Virtual Machines could be running on different computers anywhere

on the network, RMI enables object-oriented distributed computing.

Java RMI provides the Java programmers with an efficient, transparent communication

mechanism that frees them of all the application-level protocols necessary to encode and

decode messages for data exchange.

Remote objects written in Java RMI interact in the following way:

" server objects publish their interfaces to make them available to RMI clients.

" stub classes deal with binding to the remote objects and do the client-side data mar-

shaling.

* skeleton classes on the server-side handle incoming calls.

The communication mechanism is shown in Figure 2-3 .

26

r - - -

Java I I Java

Virtual Machine ' ' Virtual Machine
I ~I II
I ~I II

Client Remote Object
I ~I II

Stub Skeleton
I ~I II

Figure 2-3: The Java RMI Mechanism

2.4.2 Java Serialization Mechanisms

Message-passing is another mechanism in which distributed programs could communicate

with each other. They could do so by agreeing upon a protocol for communication. Though,

RMI does the same thing, a user-defined protocol gives the user more control over the

communication. These messages could be implemented as objects using the serialization

mechanisms of Java. Programs written in Java could communicate easily in this way.

Object Serialization[17] is the mechanism in Java through which objects are written to

output streams. Through deserialization, objects can be read from the input streams at the

receiving end. Java writes out the values of all the fields of the object being serialized. If

the object refers to another object, serialization is done recursively. Care is taken such that

this serialization mechanism does not enter into infinite recursion. Classes should implement

serializable interface for its instantiations to be serializable. The transient and static fields

of an object are not serialized.

The various events at different client ends are to be sent to the server in the collaborative

environment and these events are to be broadcast from the server to various clients. The

Java Serialization mechanisms are used to create these messages from the Java objects.

27

2.5 Summary

In this chapter, we presented the enabling technologies for Web-based CAD. HTTP and CGI

include protocols and mechanism, which provide access to tools running on the Web server.

Java applets can be embedded in Web browsers to enable complex, platform independent

client side processing. And finally, the distributed object technologies enable transparent,

distributed method invocation on remote objects.

28

Chapter 3

Design Example with the

Distributed Tool

As a first step in developing the collaborative environment for web-based CAD, a framework

for distributed web-based micro-system design, WebTop, was developed[18]. WebTop is an

environment in which users can design systems using either the in-built fundamental cells

or other designed cells in the library, in a hierarchical fashion. Designer can access the

distributed library of cells and can execute several web-based remote tools through WebTop.

WebTop can be accessed at the URL http: //apsara.mit.edu/WebTop. An example design

using the distributed tool of a single-chip media-processor is described here.

3.1 The Distributed Web-based CAD tool, WebTop

WebTop is a distributed Web-based CAD framework, implemented as a Java applet. It is

based on a public domain applet called "Digital Simulator" (DigSim) [191. The entry point

of the design is a hierarchical schematic/block editor. This editor has a simple GUI. The

design can be validated by using distributed Web-based tools. The netlist of the design

can be extracted from WebTop so that it conforms to the input specification of several

web-based tools. Such a netlist can be submitted to the remote web-tools.

WebTop includes a hierarchical schematic editor. It includes mechanisms to add and

delete cells, to cut and paste schematic, to change properties of cells and the mechanisms

to save the designs. WebTop has a number of in-built primitive cells (e.g., logic gates, MOS

devices, passive circuit elements). The designer can include them in the design by selecting

29

them from the menus in the GUI. The properties of these cells(e.g., transistor sizes) can be

changed using the pop-up menus. The design can be hierarchical, meaning that a new cell

designed can be included within other cells. There is a simple User Interface through which

the designer can navigate a cell hierarchically. WebTop supports block editing, in which

the user can create a template of the cell and provide a behavioral and structural view in

SPICE or verilog.

The Library Manager helps the designer keep track of the cells. Figure 3-2 shows a

snapshot of the schematic editor and the Library Manager. The designer should be able

to save the schematic cells into a file and use it subsequently in the design. This can be

performed in two different ways using WebTop. The schematic cells created in WebTop's

editor are serializable using the Java serialization mechanisms. So, the cells created by

designers can be saved in the Java object format. There is a WebTop file format in which

the tool can save the cells in files. The schematic cells saved in both these formats can be

loaded into WebTop's editor from the files subsequently. These cells can be downloaded

from a URL and so schematic cells created and stored, using WebTop, by another designer

can be downloaded and used. WebTop supports distributed cell storage and access. Cells

could be stored in different Web servers and such cells can be loaded from WebTop by

referring to the corresponding URL. A CellServer exists along with WebTop on the host

server and it allows users to store cells remotely at the server's site after checking user

authentication. Both the verilog and SPICE views of cells can be entered through a text

editor in WebTop. They can also be referred to by a URL or by the location of a local file

and WebTop loads them.

The main objective of the distributed environment is to give access to remote Web-tools

through a single point web-tool. Therefore, WebTop has a mechanism through which the

design(or parts of the design) can be submitted to the web-tools. The designer can extract

a netlist from WebTop's schematic, so that it conforms to the Input Specification of the

remote tool. The user can also extract the netlist of subparts of the schematic. The user can

submit this extracted netlist to the corresponding web-tool through the WWW and obtain

the results of its execution. WebTop provides the infrastructure to extract the netlist, to

submit it to the web-tool and to get the results back to view them through the browser.

The tool uses the CGI(Common Gateway Interface) mechanisms to invoke remote tools.

WebTop has interfaces with several webtools including Pythia [20], a verilog RTL power

30

estimator tool, PowerPlay [3], a system level power exploration tool and WebSpice. The

extracted netlist is submitted to a CGI script existing on the applet host. The results

from the remote tool can be returned to the applet as a dynamic URL, which is used by

WebTop to display the HTML page. In some other cases, a Java server is started on the

applet host by the CGI tool, which accepts the results from the remote tool through a

socket connection. This is also useful when these results should be submitted to a second

web-tool, whose output is shown to the designer. Therefore, a new meta web-tool could be

created using the CGI mechanisms and the Java server. An example in which a web server

at a site z creates a meta webtool, by accessing the tools at the sites x and y, is shown in

Figure 3-1 [18].

Figure 3-1: Data flow in Hierarchical tools

Originally, WebTop was developed using Java Development Kit (JDK) Version 1.0.

But, as explained in Chapter 2, the event model in JDK Version 1.1 is more suitable for

developing the environment into a collaborative framework. So, the whole code base for

WebTop was modified to follow the JDK 1.1 format. Also, some useful features like menu

31

Figure 3-2: A snapshot of WebTop's schematic editor and Library Manager

shortcuts were added to the framework.

3.2 Adding new cells to WebTop

As mentioned in the previous section, WebTop has several inbuilt primitive cells. All these

primitive cells have the SPICE and verilog views included in their specification. Each of

these cells has a java source file written with these specifications. A primitive cell can be

included in the design by selecting the corresponding item from the "Fundamental" menu

in the GUI. Designers might need new fundamental cells to simplify the process of design

and so WebTop provides the support to add new cells.

One way in which this can be achieved is to create a new blank cell with the required

number of ports, both input and output, in it. Such a cell when included in the schematic

has a symbolic view which looks like a black box with all these input ports and output

32

Figure 3-3: WebTop and Various tools

33

Figure 3-4: A 2 input 1 output prototype cell with Verilog and Spice views

ports. The verilog and SPICE view of this cell could be specified as either separate URLs

or as local files. This cell can be used like a primitive cell, by choosing from the library.

As an example, in Figure 3-4 a prototype 2 input 1 output cell is shown in the WebTop

schematic editor. The Verilog and Spice views are specified as URLs. In Figure 3-5 a cell

includes this prototype cell in its schematic.

The other way in which new fundamental cell could be included into WebTop is to

include another java source file that follows the format of any of such files (e.g.,AND.java).

In this file, the geometry of the view, which the cell should exhibit in the schematic, has

to be specified. The verilog and SPICE views are also to be specified in this file. Any

new view(e.g., PowerPlay view) could be defined in this source file. The cell properties are

defined in this source file (e.g.,).

34

Figure 3-5: A cell including a prototype cell in its schematic

35

3.3 Interaction with tools

As explained in Section1.1, WebTop can interact with several remote web tools. The de-

signer can extract the netlist from the design and submit it to a web tool. The tools with

which WebTop can currently interact are Pythia, WebSpice, PowerPlay and a DC-DC sim-

ulator. Currently, the specifications of extraction of netlist and the manner of interaction

with tools is hardwired into the source code and the CGI scripts of the framework.

The first step in making the interaction between a remote webtool and WebTop is to

get output from the schematic that conforms to the input specifications(e.g., the input

language of that tool). This step would be simpler if the remote tool accepts the WebTop

file format as input. Pythia takes the verilog specification of a design along with some

technology parameters as input. So, to interact with that tool, WebTop should output

verilog specification of the schematic. Each fundamental cell in WebTop has a verilog

description of it inlined in its source file. Similarly, a verilog view can be attributed to a

cell, as explained in the previous section. The extractor does a hierarchical navigation of

the cells to provide the necessary output from the schematic.

WebSpice accepts its input in the SPICE format. In a similar way as explained above,

the SPICE views for cells can be specified and WebTop's extractor uses this information to

generate the SPICE output.

To incorporate interaction with a new tool, the extraction method in WebTop should

have the knowledge of the parts of the schematic that are relevant to the new tool and of the

method in which the output for that parts of the design could be generated. New views of

the fundamental cells might have to be incorporated in WebTop. For example, the DC-DC

simulator only needs the URL of the data input file and so no new information in terms

of the views of cells was needed to incorporate interaction with this new tool. In order to

make this scalable, all the remote webtools should be using a common format and WebTop

should have a netlist extraction capability to that common format.

The netlist extracted from WebTop is submitted to a tool-specific CGI script that is

located on the applet host. The tool specific details are all incorporated in these scripts

(e.g., the technology parameters in the invocation of Pythia). This CGI script invokes

the corresponding webtool. The CGI script on the receiving end of the webtool sends the

dynamic URL containing the output or the output itself, back to the invoking CGI script

36

on the applet host which presents this information to WebTop.

In case of some tools, a JavaServer can be installed on the server, where the tool is lo-

cated, to accept the input data and to send the output through socket connections. The CGI

scripts and the tool-input-specific view information of WebTop cells are the specifications

in WebTop that are to be written for incorporating interaction with a new web-tool.

3.4 Saving the designs

The users should be able to save the schematic designed in WebTop to obtain persistent

copies of the designs. This could be done either on the user's local disk or on the applet

host. The security restrictions of Java do not allow an applet to read from or write to the

local disks. They cannot open a socket connection with any host except the applet host.

This problem can be worked around in the following ways:

" A CellServer has been implemented on the applet host site. This is a server program

written in Java, which allows the users of WebTop to store their designs on the applet

host after checking user authentication. Since it runs on the applet host itself, the

applet can open a socket connection with the CellServer.

" The security restrictions, that are applicable to the downloaded applets, can be set

through the HotJava browser. So, if the browser being used is HotJava, the designs

can be saved on local disk by choosing a less strict security mechanism for this applet.

" In JDK1.1, the appletviewer tool accepts digitally signed files. When it loads an

applet that has been signed by a trusted entity, it runs the applet without subjecting

to the usual security restrictions. So, digitally signed applets can read and write

files on the local disks. Common Web browsers are expected to follow suit and give

special privileges to trusted applets. Using these features in the browser, WebTop as

an applet can be digitally signed so that the user can save the design on the local

machine by trusting this applet.

" If the framework is used as a stand alone application for designing and extracting,

without the interfaces with the distributed tools and libraries, there are no security

restrictions and the user can save the designs on local machines.

37

3.5 Design Example with the Distributed Tool

As a driver application, we chose the design of a single-chip media-processor that includes

an embedded low-power ARM core, a video compression module, with more than 160,000

transistors in its schematic, and power supply circuits. The design was entered using the

WebTop editor and was validated using a distributed simulation strategy. The remote tools

used in this process are Pythia, a Verilog RTL power estimator at MIT[20], PowerPlay,

a system level power exploration tool[3] at UC Berkeley, and a DC-DC voltage converter

simulation tool at Stanford. The netlist is extracted from the circuit to conform to the

Basic Input Specification of the remote tools. The different remote tools being used require

information about the design at different levels of the design. The method in which the

remote tools are invoked varies with the tool being invoked.

Pythia, the tool present at the host at MIT, accepts as input the netlist in Verilog.

The verilog netlist of the decompression module is extracted from WebTop and submitted

to Pythia to get a power estimate of the module. A CGI call is made by WebTop to the

Web Server where Pythia resides. After the CGI script executes Pythia, the dynamic URL

containing the results as a HTML file is returned to WebTop which uses the browser's

context to display it.

The PowerPlay netlist can be extracted from WebTop and the results of the behavioral

level power estimate can be obtaining by executing PowerPlay with this netlist. The CGI

tool at MIT is invoked by WebTop when the netlist is submitted to PowerPlay. This tool

creates a file with the netlist and returns the URL to WebTop, which contains a link to

the CGI script of PowerPlay containing proper links to the design URL. WebTop uses

the browser's context to load the page of that URL, which is a HTML spreadsheet of the

design generated by the CGI script of PowerPlay. From this spreadsheet all the utilities

in PowerPlay can be used. For example, the details in the spreadsheet could be used by

PowerPlay to get the behavioral level power estimate.

The mechanism through which the DC-DC simulator is invoked is different from the way

in which the other two tools are invoked. The reason is that the results of the simulation

from the simulator at Stanford have to be supplied to a graphing utility at MIT and the

graph output is to be shown at the client side. Thus, two web-tools are used in the process.

This can be viewed as the piping of the processes in UNIX. The simulator code is written

38

in "C". It has been wrapped up in Java code, which calls the C code as a native method.

The sequence of events that occur during the process of getting results from the simulator

are given below and are shown in Figure 3-6.

1. The designer extracts the netlist from the schematic in WebTop and submits it to the

simulator.

2. WebTop invokes the CGI script at MIT and passes on the netlist which is saved by

the CGI script.

3. The CGI script starts a Java server which sends the netlist to the CGI script at

Stanford as a URL.

4. The CGI script at Stanford starts the Java simulator code, which reads in the data

URL and runs the simulation, the results of which are sent back to the Java server at

MIT.

5. The Java server at MIT stores the simulation results in a file to be read from by the

graphing utility. It returns a dynamic URL through the CGI script to WebTop. The

URL points to the graphing applet to be run with this input file,

6. WebTop uses the browser's context to load the page of that URL to show the resulting

graph.

Steps 2 and 3 above can be combined by making WebTop send the netlist directly to the

Java server. But, to maintain the earlier sequence of the applet invoking CGI tool in other

tools, steps 2 and 3 are separated.

Thus, using three different remote tools, the design of a single chip media processor has

been validated using the distributed environment with the use of a simple web browser. The

different ways in which the three web-tools are invoked shows us the flexibility involved and

the power of Web-based CAD with respect to the invocation of the tools. Several snapshots

of the tool while in the process of executing the design example are shown in Appendix A.

39

Figure 3-6: Steps involved in the DC-DC simulation

40

Chapter 4

The Collaborative Environment

WebTop allows a single designer to access distributed libraries and remote web-tools within

the framework in the process of the design. It serves as an entry point as well as the center

for the design. But, with the increased complexity of the designs diverse expertise is required

at various stages of the design. The design teams are typically separated geographically.

Thus, there is a need for the distributed framework to be collaborative in nature for it to

be more useful.

4.1 CollabTop

The distributed Web-based CAD framework, WebTop, has been extended into a collab-

orative and distributed environment, called CollabTop. Conceptually, the collaborative

environment should allow the designers to make changes to the design simultaneously and

should show a consistent view of the design to each one of them. This is pictorially shown

in Figure 4-1.

First steps in developing such a framework involves deciding a software architecture

for the tool and identifying the various changes the designer could do to the design(i.e.,

the events that a single designer could generate in WebTop). In a typical session with

WebTop, the designer creates a schematic by adding new components either from the in-

built primitive cells or from the cells in the library. The cell in the library could be the cells

designed by the user previously or those downloaded from distributed cell libraries. The

designer can save the cell and proceed to design another cell. Or the designer might choose

to extract the netlist from the design to submit to the remote Web-tools. Each of these

41

CONSISTENT VIEW

OF THE DESIGN

User 1 User 2 User 3

Figure 4-1: Concept of the Collaborative framework

actions of the designer cause the events that are generated through the use of the tool.

In order to make the environment collaborative, these events are to be made collabo-

rative, i.e., the effect of all the events caused by one designer's actions should be seen by

all other designers in their view of the editor. For practical use of the tool, the designers

should be able to join other designers in individual sessions and several sessions should be

able to run in parallel. This situation is shown in Figure 4-2. The events in one session

should not effect the design in other sessions. Hereafter, as we talk about the collaborative

environment, we assume that the designers are in the same session, unless specified other-

wise. Also, by a user we mean an identity in a session. We can easily imagine the same

designer in two parallel sessions at the same time and we consider these two identities as

two different users.

4.1.1 Client-Server Architecture

When a designer edits a schematic, several types of events are generated. These events have

to be propagated to all other designers so that they could take the corresponding action

on their design. These events can be either propagated to all other designers or can be

sent to a central server which broadcasts these events to all the other designers. These are

the peer-to-peer and the client-server models respectively. The client-server model is used

42

User 1 User 2 User 3 User 4

Figure 4-2: Collaborative design with several sessions

in CollabTop. The events that are generated by any client are sent to the central server

which is responsible for the broadcast of these events to all the clients. The most important

reason for choosing the client-server model is that it is easier to incorporate the higher level

ideas, as explained in the next section(e.g., synchronization into the system), in this model.

Another reason is that the number of channels involved in a client-server model is smaller

than the peer-to-peer model and so it is less error prone to the network congestion due to

other traffic. If n is the number of designer clients in a session, the number of channels

needed by a client-server model is of the order O(n) whereas the number of channels needed

by a peer-to-peer network is O(n 2). Moreover, a client-server system can be scaled later in

order to support multicasting in the connections from the server to the clients.

There is a provision to enter the session in a read-only mode. Clients with read-only

capabilities can view the actions of other designers in the session (e.g., the selection of a

cell). But, the client cannot cause any actions in the session. This feature is particularly

useful in the design reviews. Events produced by such a client are not broadcast to the

clients in the collaborative environment, but the client would be able to see the consistent

view of the copy being edited. Some clients can highlight parts of the cell and edit the cell,

and the read-only client can view it. It is very useful in the design review phase, where

particular parts of the design can be highlighted and hierarchically edited by one or more

43

Session 1

Design of Adder

Session 2

Design of ALU

JL

CLIENT-SERVER Architecture PEER-PEER Architecture

Figure 4-3: Client-Server and Peer-to-Peer Architecture

clients and the read-only client would be able to view it.

It is desirable to have designers across sessions to communicate with each other. In

Java, an event is generated when a menu selection occurs. But, the client who did not

generate the event does not know which menu item selection generated that event, because

examining the menuitems does not generate any event in Java. When a designer selects

a cell from a menu of the tool, the event of the menu popping up and the selection of a

menu item is not visible to other designers as these actions do not generate any events in

Java. Only after a menu item is selected, Java generates an event. A chat tool has been

implemented to come into use in such situations. It follows the client-server architecture

too and the designers across sessions share this tool. A ChatServer is also run along with

CollabServer, the server for the collaborative events.

4.2 Higher Level Issues

For the framework described in the above sections to work, some higher level software

design issues must be addressed. This includes the protocol of message passing, the issues

of reliability of clients and recovery of the tool from the sudden death of any of the clients.

The issues like reordering of messages and locking of some critical resources have to be

taken into account.

44

4.2.1 Synchronization

An event in a session is triggered by a designer client. This client sends the message to

the server, which broadcasts it to all the clients, which take the necessary action. The

delay between sending an event and it being received at the server is network dependent.

This could result in reordering of events at the destination, which might lead to undesirable

results on the design. For example, if a new cell is created and subsequently deleted from the

design by a designer client, reordering of these messages results in the first deletion giving

an error and subsequent creation of a cell, which is clearly not desirable effect. Reordering

of different clients' messages at the server causes a problem to the consistency of the views

at several client editors. In order to maintain the consistency of these views it is vital

that a way to synchronize these messages exists in the environment. It is crucial that the

consistency of the view in the edit window of the different clients in a collaborative session

is maintained.

We model the channel between each client and server as a First In First Out (FIFO),

reliable, directed communication channel. By the reliability of the channel, we mean that

all messages sent by the client are received at the server end of the channel. The channel

between the client and the server is a directed channel with the above properties.

At the server there is a thread dedicated to each of the clients. It is this thread that

receives the messages from its client. The channel between the client and this thread is

modeled as a FIFO channel. Also, we model the channels from the server to the clients

as directed reliable FIFO channels. So, we could prevent the reordering of the messages,

if there is a way of total ordering of the messages from different clients at the server end.

What we need is a way of timestamping the messages so that the total ordering of messages

can be done.

Logical time is an event dependent counter maintained at various client nodes. Several

implementations[21] of logical time are available in the literature. This concept cannot be

applied here because it does not model the ordering of events at different nodes. So, we

need to use the real-time for the ordering of the events. We used the Greenwich Mean Time

on the corresponding machines to model this. Though, this is not completely accurate

and it needs elaborate synchronization algorithms[22] to get the time in different clients to

synchronize, it stands as a good realistic implementation.

45

The message packets received by the server and clients are tuples of the type (msg, t)

where msg is the message and t is the time-stamp associated with it and the ordering of

message packets is as below:

(mi, ti) < (m 2 , t 2) if ti < t 2

As soon as the server receives the message packets of this type, it puts them up in an ordered

queue, messages being ordered by the time-stamps. The server takes the message that is

the least in the ordering to broadcast first. All the broadcast events are to be enclosed in a

critical section so that only one queue management action goes on at a time. Thus,we could

prevent the reordering of the messages at the server side with the help of time-stamping

with real time.

Till now, we assumed that all the clients are present in the session from the beginning

and that they receive all the events of other clients from the beginning. It is reasonable

to expect that a designer client joins the session at a later stage of the design, when the

design session is already in progress. The concept of time-stamping also helps in this phase

of synchronization. This type of synchronization is when a client joins a session which is

already in progress. Synchronizing this new client into the session involves bringing all

the details of the consistent view to this new client. These details include major things

like the presently edited design, and the stored cells in the libraryManager and the minor

things like the cutSchematic details(eg., if a cut in the design is done by a client before,

a paste later should paste the schematic which was cut). The new client sends a message

("sync- < id > ", t), where id is the identifier of the client, to the server which is broadcast

to all other clients in that session. This is the synchronization request. The clients when

they get this message send a reply (sync - reply, t) to the server which sends it to the new

client. So the new client gets replies to its synchronize request from each one of the other

clients in the same session. The following analysis shows that all these replies have the same

details. So it uses the first one it gets to construct the starting view of its editor.

The server broadcasts from the queue in a critical section of the code and as the channels

from client to server are modeled as FIFO channels it maintains that all clients receive the

synchronize message in the same relative position in the queue. So all the replies are similar

because of the consistency constraint we had due to the time-stamping. So the new client

can use any one of the replies of the synchronize request and then can start taking actions

as usual. The explanation below formally proves that this is true under our assumptions.

46

Proof: Suppose two clients had sent two different snapshot views to the new client.

Without loss of generality, we can say that client1 received at least one message before

getting the sync-request from the new client and the client2 had received the same message

after receiving the sync-request from the new client. But the action of broadcast is in the

critical section in the server and the thread doesn't start broadcasting another message

till the present message is broadcast to all the clients. So, it means that they are sent in

proper order at the server end and they got rearranged in the channel. This contradicts our

assumption that the channels are reliable FIFO channels. So, all the clients should receive

these messages in the same order and the new client gets the same snapshots from all other

clients.

So, with the mechanism of synchronization request and synchronization reply, synchro-

nizing a new client into a session in progress can be done. But, some more things have to be

taken care of for the smooth execution of this algorithm. The new client might be having

an event in its queue of events, which it got before the sync-reply but whose action has

been taken by the client which had sent the reply. In that case, the new client should not

be taking the corresponding action. An example is shown in the Figure 4-4. The message

for synchronization request will be received by the client 1 only after it had received the

wireMode and mouseEvt messages. But the sync-reply given by the client 1 is given after

the corresponding actions on messages 1 and 2 but before message 4. So the new client

should queue up message 4 and take the corresponding action after it takes the action for

the sync-reply message.

The new client queues up all the events that it received before receiving its synchro-

nization replies. After finishing the the work with the synchronizing view, it will take the

corresponding action on the events with time-stamps greater than the synchronization-reply

message in the start queue. The pseudo-code the new client follows to achieve the same is

given below:

ClientRcvPacket(pkt)

{

if(SessionInProgress)

if(pktIsSyncReplyMessage(pkt))

{

47

vent(2) Sync(3)

Pointer
Mode(4)Wire Wire

Mode(1) Mode (0)

Client 1 New
Client

Figure 4-4: Synchronization of the System

TakeSyncReplyAction(pkt);

TakeActionOnStartQueue (pkt . timeStamp);

// Take action on the packets in

// start queue with larger time-stamp.

}

else

PutInStartQueue(pkt);

}

else

TakeAction(pkt);

}

4.2.2 Recovery

Since the tool is a browser-based applet, the unreliability of the browsers has to be taken

into account. Some clients may get disconnected from the session because of the same.

Even the loss of network connectivity of the client results in the death of the client process

as far as the remaining clients view goes. The tool should be robust enough for these failure

of the clients not to affect the tool. Recovery from the failure of any client is another

48

important issue in the collaborative environment. The failure of the client can be modeled

in two ways. A process can exhibit a stoppingfailure by stopping somewhere in the middle

of the execution. It can also exhibit what is called a Byzantinefailure[23], by which it

can generate next messages in an arbitrary, unpredictable way. Since the reasons for the

failure of clients, as mentioned before, refer to the stopping failure of the clients, we model

the failures as in that category. We modeled the channels as reliable and the clients always

send meaningful information. If the client program gracefully exits the code, it sends an

exit message to the server. The server then deletes all the resources used for this client. If

the client gets killed otherwise, a server vulture which keeps track of the time for which a

client has not sent an event, sends a message to that client. If no reply is received for that,

it assumes that the client is killed and takes the required action. The assumption that the

channel is reliable plays a crucial role here. The server has to release all the locks held by

such a client explicitly.

4.2.3 Locking

Mutual exclusive execution of certain resources may be needed in some cases of execution.

Locking of critical resources is a required behavior to be incorporated into the collaborative

environment. One such resource is the mouse movements in wire mode. If this is not locked

and if more than one client uses the mouse at the same time, they do not get expected

results as shown in Figure 4-5. In this example, two designers are simultaneously trying to

draw wires, one being horizontal and the other being vertical. The screen might show the

wire with parts of both at an instance as shown in the figure.

To take care of this situation, a resource lock has to be maintained at the server for each

such critical resource. Whenever this lock is not set and there is request for the lock, the

resource is granted. If the lock is already set, this message is sent to the requesting client.

It is also important to clear these locks if a lock-holding client fails. A lock for the wire

mode mouse movement is implemented in the collaborative environment and is described

below.

Each session has a corresponding wireModeLock in the server and it gets set automati-

cally whenever a client sends a WireModeRequest message when it is not already set. The

lock gets released when the same client sets to another mode. The mouse movements from

other clients are blocked from being broadcast when the lock is held. The locks are also

49

removed when the vulture finds that the lock-holding client got killed.

a b c

User 1 draws the wire abc

d

e

f

d

e

a b

The screen might show the wire
like this at an instance if both the
users draw their wires simultaneously.

User 2 draws the wire def

Figure 4-5: An example of mouse movements where locking is required

4.3 Implementation Details

The implementation details of the collaborative tool are given briefly in this section. The

programming language in which the whole tool was implemented is Java (Version 1.1.6).

The tool is implemented as a Java applet and can be run from a browser which supports

this version of Java(e.g., netscape version 4.5). The tool is available for use at http :

//apsara.mit.edu/CollabTop. The Java 1.1 observer-based event model suits the needs of

the event message passing. A snapshot of the tool with two users' editors who are in the

same session is given in Figure 4-6.

Different clients send various events as messages to the server asynchronously. Also,

several parallel sessions run in parallel at the same time. The server should be able to

receive these messages from different clients at the same time. Muiltithreading is a feature

50

in Java that provides support for multiple threads of execution that can handle different

tasks. These are also called light-weight processes. This feature is utilized in making the

server run several threads, one for each client to receive messages.

Whenever there are multiple threads running in the programs, specific care should be

taken that individual threads do not modify resources or variables common to all the threads

without obtaining a lock on them. Normally such code segments which access these common

resources are called critical sections and a lock on the critical resources is acquired before

entering this section and is released before leaving and these operations have to be atomic

in nature[24]. Java enables the user to create critical sections by putting them within a

synchronized statement. This feature of Java is used for implementing the critical sections

of the code for mutual exclusion. This is needed in all the queue management events in the

server and in the resource lock management (eg.,wireModeLock) events.

WebTop was developed as a Java applet and uses the CGI mechanisms to submit the

extracted netlist to various web-tools. The events that are generated from the user actions,

prompt the applet to take the necessary action. But, CollabTop follows the client-server

architecture. In the new architecture, each client event gets passed on as a message to the

server which broadcasts them to each of the clients, which take the corresponding action on

receiving the message. The server is a stand-alone Java program executing on the applet

host.

Initially, each designer client notifies the server of the designer name(id) and the session

name to join. Then it proceeds to generate events and take actions after finishing the

synchronization with the session if it is already in progress. The server can be broadly

thought of as three components. One is the NameServer, which takes all the messages

regarding the session names and the designers in the sessions. It can provide the designer

with the information on various designer clients present in a session. Another component

is the ChatServer which takes the messages in the accompanying Chat tool. The third

component is the CollabServer which takes care of all the other messages. In all the figures,

by server we mean the CollabServer, although all the servers follow the same architecture

as in Figure 4-7. The designer chooses a session to enter while starting the applet. Designs

in different sessions are not effected by each others' events. A pictorial representation of

the clients in sessions and the server is given in Figure 4-7.

The messages hold the key to the tool. These messages go from the clients to the

51

server and vice-versa. There are a variety of ways in which this message-passing can be

implemented using the object-web technologies. Two such methods are Common Object

Request Broker architecture(CORBA)[15] and Java Remote Method Invocation(RMI). The

other way of implementing this is to send messages as objects, using the Java serialization

mechanism, and the sockets to send and receive the messages. We used this approach to

implement the message-passing in CollabTop. The implementation of several higher level

issues, like synchronization, will be easy and intuitive, if this mechanism is chosen.

The several events that are passed as messages include the mouseEvents(e.g., mouseDrag

to move an object), the schematic edit events (e.g., cellSelect event), the extract events (e.g.,

verilog netlist extract) and all the UI events involved in the editor(e.g., menu selections).

After an event object is constructed Java serialization mechanism is used in order to pass

them over the network. All these message objects are derived from a base object, called

sendObject. Apart from the constructors, it has methods that send these messages to the

server and methods that test for the type of these messages.

The server just broadcasts these objects after checking the type of the events that caused

these messages. If it is of the type changeOflMode or a MouseEvent it has to do the lock

book-keeping. It broadcasts the message if the lock is held by the sender and the wireMode

is on or rejects the message otherwise. Rejecting the message results in none of the clients

taking the appropriate action.

The clients on receiving a message put it in their queue. The message with the least

time-stamp is taken up for action. Each main component of WebTop that handles user

actions has a collabHandler method. Depending on the type of message, it is delegated

to the corresponding collaborative message handler method. As explained in the previous

section, a vulture program is required to run for the recovery of the tool from sudden death

of clients. The vulture is implemented as a thread in server which checks on the inactive

clients at specific intervals.

It is crucial for these messages to be complete in themselves for the tool to behave

correctly. For the synchronization implementation to work, each message has to be an

event in itself and an event should not be split into more than one message. Otherwise, the

assumptions based on which the synchronization time-stamping method is developed fail.

In the case of late arrival of a client, all the information in the schematic has to be sent

to the new client as a single message in the synchronization reply message. It includes the

52

zoom level of the editor, the schematic cell in the editor, all the cells in the library of the

session, the mode in which editing is, and the pop-up property boxes if any on the screen.

A Java object syncNode has all these fields in it and is serializable. This object also is

derived from the sendObject node. and is used to send the synchronization reply.

In the case of loading file from URL the collaborative event broadcast by the server makes

every client in the session read the file from that URL. Similarly, if one user in a session

extracts the netlist, an extract window pops up on all the users' screens. The submission

of the netlist to a web-tool is also collaborative. But, once the dynamic URL from that

web-tool is loaded by the browser, the events on that HTML page are not broadcast, as

they are not events in CollabTop.

There is a ColorManager associated with WebTop, using which, users can change the

colors of their pins and sub-cells in their schematic. This feature is made non-collaborative

and so users can change the colors at any time and they will get immediate response on

their screens. Also, different users can have different settings in their colorManager.

4.4 Example Collaborative Flow

An example flow of events in the use of the Collaborative framework is given in this section

to demonstrate all the concepts developed in the earlier sections. In order to show the use

of the synchronization mechanisms in effect, in this example, one designer joins the session

after the other starts the session, in this example flow. Also, the number of designer clients

has been chosen to be two in order to simplify the flow. To show an example of distributed

tool invocation, Pythia is invoked remotely.

The example flow runs as follows. Designer A starts the design session and starts creating

and editing the schematic in the editor using the library cells in the tool. Designer B joins

the session and the synchronization mechanisms bring the consistent view of the design and

the saved cells in the library, if any, into B's editor. Then, they collaboratively editing

the design. In the process, B initiates downloading of WebTop cells from a URL. This

generates collaborative events and these cells appear in both A's and B's library managers.

After editing, one designer saves the cell in the library which generates collaborative events

to save it on both sides. Then one designer extracts the verilog netlist from the schematic

which makes the extract window with the netlist on it show up on both of their screens.

53

One designer submits it to Pythia and the results can be viewed by both on their screens.

Then they store the design in CellServer and quit the session. This flow is shown in Figure

4-8.

54

USER 1 USER 2

Figure 4-6: Snapshot of the Collaborative framework

55

I I

Figure 4-7: Client-Server Architecture of the System

56

(The collaborative events)

"A" starts the session
starts editing the schematic

"B" enters the session

\,

"B" gets the consistent view

4,
"A" and "B" edit the schematic

\,

"B" downloads cells from URL

\,

"A" saves the designed cell

\,
"B" extracts the verilog netlist

from the design

4,

"A" submits it to Pythia

"B" sends the synchronization request to
the server and the server sends it to "A"

"B" receives the synchronization reply
from "A"

All edit events are collaborative

"A" also downloads it

"B" also saves it

A's screen shows up the netlist

Both "A" and "B" see the results of Pythia

Figure 4-8: Example flow in the Collaborative framework

57

(The flow of events)

58

Chapter 5

Summary and future work

The distributed Web-based CAD tool, WebTop, has been extended into a collaborative envi-

ronment. The tool, CollabTop, is available for use at the URL http : //apsara.mit.edu/CollabTop.

The emergence of the Internet and the WorldWideWeb has led to the concept of Web-

based CAD enabling distributed library access and distributed tool access. The advent of

the platform independent programming languages and the markup languages like HTML

helped the interactivity of such frameworks.

Managing the bandwidth and the latency of communication in the Internet are impor-

tant issues in this Web-based CAD paradigm. In particular, the nondeterministic delays of

the CAD tools cause concern. Significant amounts of data involved in CAD tools, has to

be transmitted in doing designs across the Web. Therefore, the security and the speed of

communication are important. The transmission of data has to be minimized to speed-up

this process. Client-side caching of data is a feature needed for this. In some cases where

applicable, it might be more convenient to transport a tool and have the data processed

locally, rather than the traditional way of transporting the data to have it processed at the

tools' site.

Collaborative design environment allows the designers to cooperate in the design process

and utilize the diverse expertise available. Collaborative environment, with the capabili-

ties of distributed tool and library access, enables designer-centric dynamic design space

exploration.

There are some extensions and developments that could be done to the tool. The

tool is vulnerable to a single point of failure (at the server). Implementing fault-tolerant

59

leader election algorithms and allowing any node to be able to perform the role of a server

eliminates this problem.

The functionality of client-side caching and client-side saving of the files is required.

Now the designers can save their files in the CellServer, run at the applet host. This is

because the Java applets can only save their data at their host. Another improvement to

the tool involves the modification of the client-server model to the model of multicasting.

Outputting the netlist in ediff, a format to describe circuits supported by many CAD

tools is a desired functionality to be included in the tool. It would be interesting to add the

capability of dynamic invocation of tools. That would involve invoking tools transparently

and does not require recompilation of the applet to add interfaces to tools. This requires

all such tools to exhibit a basic common interface to the web framework. This calls for

agreements on standards for data communication and tool protocols between tool vendors

and the CAD users.

A database backend to the central cell storage is also an interesting extension to the tool

in present state. The Java DataBase Connectivity (JDBC) could be used for this purpose.

The tool could be of great use in design projects that involve collaboration among

students and can be used as an application in the coursework. The tools used in the design

could be maintained centrally. The feature making a client a "read-only" designer can

be of great utility in such situations. CollabTop gives the designers all the advantages of

distributed and collaborative Web-based CAD with easy-to-use user interfaces.

60

Appendix A

Snapshots from the design example

In this appendix, snapshots during the execution of the design example with the distributed

tool, WebTop are given. This example is explained in Chapter 3. The snapshots include

the editor, the extracted netlist and the view of the browser when the corresponding tool

is invoked. The tools invoked are Pythia, PowerPlay and Stanford Power Simulator.

Figure A-1: The Schematic of the media processor

61

user- We bTop&S howCosts-C HEC KED&viewal l=scale Power&
Variab les=2&Domai n-We bTop:gangad har&s up ply=1.3&freq ue ncy=1 4e6&
name=i dct&ow ner-We bTop&alI MOD=power&aI param=freq uency#s up ply# nz.
name-ARM &owner-We bTop&aI MOD-power&all param-s upp ly#code U R L#Tper
name-dc2 dc&ow ner-We bTop&alIMOD-power&allparam-Pload&Pload-# 1 pow
name-dc2 dc&ow ner-We bTop&aIIMOD=power&allparam-P load&Pload=#2 pow
TOTALS####TOTALS

Figure A-2: The netlist from the media processor that is submitted to PowerPlay

62

WebTop-PP summary
Pace your design in the krclve or D Pte the designL (only the top level)

You may Eit or Add Docetauon to the top or bottom of this page or Go to your D£ign 1 et

PLAY will save your design in a temporary file, Use PLAY and SAVE to save as a perminant design or to rename your design.

KAJ FBIVebTop-PP

Parameter Value

frequency Remove? 1

supply 1. 3 Remove?

Domain WebTop:gangadhar D

Name Parameters Costs

frequency 14e6/64 supply: supply nz comps

power = 0.000e+00
Domain: inherit

supply:

supply

codeURL:

±'http ://inf op ad. ees. berkeley. edu/-marlene/

*Tperiod:

2 ARMI . power =0.000e+00

code:

encoder'

Domain-

Figure A-3: The snapshot of PowerPlay after it receives the netlist from WebTop

63

Figure A-4: The output of Stanford Power Simulator and the netlist from WebTop

64

Figure A-5: The Schematic of the IDCT chip submitted to Pythia

TopLevel Cell dct
'timnescule 1 nsf 1lO0ps
module idct(ckou dataoutstart-blockoutclkin,dctinresetinstart-blockin

output clkout
output[9:0] dataout
output Start-block.out
input cMkin;
input[1:0] dctin;
n Put resetin;
Input sturtblockin;

wire clkbuf;
wire[9:0] b70;
wire clk-tram;
wire[2:0] pos;
wire startblock-s1;
wIre114:01 b40:

Figure A-6: The verilog netlist of IDCT chip

65

Pythia Results

Pythia 1.0 Simulation Report

PART 1. Energy/Power Information

Energy Dissipation

Gate Capacitance Energy :3.87e-04 raloules

'Drain Capacitance Energy :4.75e-05 osiJoules

cena Capacitance Energy :1 .99e-04 osi~aules

Interconnect Energy 0 00e+00 mJoules

TOTAL ENERGY DISSIPATED 6.34e-O4nJovIes

Power Dissipation

:Gate Capacitance Power :3.40e+01 onWatts; (61.10%)

55r*ain CZ'ap a ,cit ,an ,c e 'Po w er 4.17e+00 onWatts (7.49 %)
Inteinal Capacitance Power 1 75e+01 mWatts (31 41 %)

:TOTAL POWER DISSIPATED 15S7e+OlmWatte

H ere is the Power Dump file

Here is the Current Dump file

H ere is the blocks output file

...1.....K.......

Figure A-7: The Pythia output on submitting the netlist from WebTop

66

Bibliography

[1] "What's ahead for design on the Web?", Panel Discussion, IEEE Spectrum, September

1998, pp. 53-63.

[2] 0. Bentz, D. Lidsky, J. M. Rabaey ," Information-based Design Environment", IEEE

VLSI Signal Processing VIII, pp. 237-246, Nov 1995.

[3] D. Lidsky, J. M. Rabaey ," Early Power Exploration-a World Wide Web Application",

Proc. Design Automation Conf, June 1996.

[4] The WELD Project, http://www-cad. EECS.Berkeley.EDU/Respep/Research/weld.

[5] A. Boglio, L. Benini, G. De Micheli and B. Ricco, " PPP: A Gate-Level Power Estimator

- A World Wide Web Application", Stanford Technical Report No. CSL-TR-96-691,

1996.

[6] Microsystem Design - Test Bed for Distributed Design Tools and Applications,

http://web-nt.sainc.com/arpa/msdproject/testbed.htm.

[7] A. B. Fortes, "A Network-based Simulation Hub for Microelectronic Technologies

CAD", IEEE Computer Society 1996 Annual Workshop on VLSI, Florida, USA,

http://jacoby. ecn.purdue. edu:8000

[8] The XMX Home Page, http://www.cs.brown.edu/software/xmx.

[9] The XpleXer, http://www-stz.dfki.uni-sb.de/stz/projects/xplexer.html.

[10] H. Lavana, A. Khetawat, F. Brglez, K. Kozminski, "Executable Workflows: A

Paradigm for Collaborative Design on the Internet", Proceedings of the Design Au-

tomation Conference, June 1997.

67

[11] The HTTP Specification, http://www.w3.org/Protocols.

[12] The HTML Specification, http://www.w3.org/MarkUp.

[13] The Java Technology home page, http://www.javasoft. com.

[14] The Common Gateway Interface home page, http://www.w3.org/CGI.

[15] "The Common Object Request Bro-

ker Architecture Specification Revision 2.0", Technical report ptc/96-08-04, Object

Management Group, http://www.omg.org/corba/corbaiiop.htm.

[16] The Java Remote Method Invocation Specification,

http://www.javasoft.com/products/jdk/rmi/doc/rmi-spec/rmi TOC.doc.html.

[17] The Java Object Serialization Specification,

http://www.javasoft.com/products/jdk/1.2/docs/guide/serialization/spec/serialTO C.doc.html.

[18] Debashis Saha, "Framework for distributed Web-based Microsystem design", Masters

thesis, MIT, Jan 1998.

[19] DigSim: Digital Simulator,

http://www.lookup.com/Homepages/96457/digsim/index.html.

[20] T. Xanthopoulos, Y. Yaoi, A. Chandrakasan, " Architectural Exploration Using

Verilog-Based Power Estimation: A Case Study of the IDCT", Proc. Design Automa-

tion Conf, June 1997.

[21] N.Lynch, "Distributed Algorithms" , Logical Time, pp. 592-615.

[22] N.Lynch, "Distributed Algorithms" , Synchronizers in Asynchronous network systems,

pp. 531-560.

[23] N.Lynch, "Distributed Algorithms" , Failures, pp. 2-21.

[24] N.Lynch, M.Merritt, W.Weihl, A. Fekete, "Atomic Transactions" Morgan Kaufmann

Publishers.

[25] "IC Design on the World Wide Web", IEEE Spectrum, June 1998.

68

[26] WebCAD: Web-Based Interfaces to Executable CAD/CAM Software,

http://www- bsac. eecs. berkeley. edu/ jjudy/ntu/simulations/.

[27] The Vela Project, http://www.cbl.ncsu.edu/vela.

69

